

GIL ANTÓNIOESTABILIDADE DE TALUDES NOS PASSADIÇOS DOALMEIDA MOREIRAPAIVA (GEOPARQUE AROUCA)

GIL ANTÓNIO ESTABILIDADE DE TALUDES NOS PASSADIÇOS DO ALMEIDA MOREIRA PAIVA (GEOPARQUE AROUCA)

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Engenharia Geológica (Ramo em Georecursos), realizada sob a orientação científica do Doutor Jorge Manuel Pessoa Girão Medina, Professor Auxiliar do Departamento de Geociências da Universidade de Aveiro.

o júri

Prof^a. Doutora Beatriz Valle Aguado Professora Associada do Departamento de Geociências da Universidade de Aveiro presidente Prof. Doutor Jorge Manuel Pessoa Girão Medina Professor Auxiliar do Departamento de Geociências da Universidade de Aveiro vogais

Prof. Doutor Agostinho António Rocha Correia e Almeida da Benta Professor Auxiliar do Departamento de Engenharia Civil da Universidade de Aveiro

agradecimentos Ao Professor Doutor Jorge Manuel Pessoa Girão Medina pela orientação, pela disponibilidade e por todos os conhecimentos partilhados.

Ao Professor Doutor Luís Menezes Pinheiro pela licença fornecida do *software* indispensável para a realização deste trabalho.

À Associação Geoparque Arouca na pessoa da Doutora Daniela Rocha e do Doutor António Carlos Duarte pela oportunidade e acompanhamento que muito enriqueceu este trabalho.

Aos meus familiares e amigos, que de uma maneira ou de outra ajudaram na elaboração desta tese, e, em particular, à minha mãe e irmã por lerem e reverem os meus documentos.

palavras-chave

Engenharia geológica, geologia estrutural, mecânica das rochas, Passadiços do Paiva, tadules rochosos, descontinuidades, potencial de rotura.

resumo

A presente dissertação tem como objetivo principal contribuir para uma avaliação do potencial risco de instabilidade nas vertentes da margem esquerda do Rio Paiva, ao longo de um troço de, aproximadamente, 600 metros de extensão dos Passadiços do Paiva. Para o efeito foram recolhidos dados no terreno referentes aos taludes e das descontinuidades presentes nos mesmos. Da análise cinemática de cada talude foi possível verificar a existência, ou não, de potencial de rotura. Posteriormente são propostas medidas preventivas e de mitigação de danos para os casos identificados como de risco.

keywordsGeological engineering, structural geology, rock mechanics, Passadiços do
Paiva, rock slopes, discontinuities, potencial rupture.abstractThe present dissertation aims to contribute to an assessment of the potential risk
of instability in the slopes of the left bank of Rio Paiva, along a section of
approximately 600 meters of the Passadiços do Paiva. For this purpose, data
were collected *in situ* concerning the slopes and the discontinuities present in

mitigation are proposed for cases identified of risk.

them. From the kinematic analysis of each slope it was possible to verify the existence, or not, of potential rupture. Subsequently, preventive and damage

Índice

I. INTRODUÇÃO	1
I.1 Apresentação do tema	1
I.2 OBJETIVOS	2
I.3 ORGANIZAÇÃO DA DISSERTAÇÃO	2
I.4 TRABALHO DE ESTÁGIO NA AGA (ASSOCIAÇÃO GEOPARQUE AROUCA)	
I.4.1 Geoparques	3
I.4.2 Geoparque Arouca	5
I.4.2.1 Território do Geoparque Arouca	5
I.4.2.2 Associação Geoparque Arouca	6
I.4.3 Trabalhos desenvolvidos durante o estágio na AGA	6
I.4.4 Passadiços do Paiva	7
II. ENQUADRAMENTO GERAL	9
II.1 ENQUADRAMENTO GEOGRÁFICO	9
II.2 ENQUADRAMENTO CLIMATÉRICO	
II.3 ENQUADRAMENTO GEOMORFOLÓGICO	
II.4 ENQUADRAMENTO GEOLÓGICO	
II.4.1 Rochas metassedimentares	13
II.4.2 Rochas magmáticas	
II.4.3 Rochas sedimentares	17
	10
III. REVISAO DA LITERATORA	
III.1 INTRODUÇÃO	19
III.2 DESCONTINUIDADES	19
III.2.1 Influência das descontinuidades no maciço rochoso	20
III.2.2 Tipos de descontinuidades	20
III.2.3 Parâmetros que caracterizam as descontinuidades	
III.2.3.1 Orientação	
III.2.3.2 Espaçamento	
III.2.3.5 Continuidade	
III.2.3.5 Abertura	
III.2.3.6 Preenchimento	
III.2.3.7 Infiltrações	24
III.2.3.8 Resistência ao corte	25
III.3 FATORES DE INSTABILIDADE DE TALUDES	
III.3.1 Mecanismos de rotura	27
III.3.1.1 Rotura planar	
III.3.1.2 Rotura por cunha	
III.3.1.3 Rotura por tombamento	
III.3.2 Análise cinemática	
III.3.2.1 Teste de Markland	
III.4 MEDIDAS MITIGADORAS	
III.4.1 Medidas de estabilização	
III.4.1.1 Alteração da geometria	36
III.4.1.2 Drenagem	37
III.4.1.3 Reforço	38
III.4.2 Medidas de proteção	40
IV. METODOLOGIA E RESULTADOS	43
IV.1 METODOLOGIA ADOTADA	
IV.2 RESULTADOS OBTIDAS E DISCUSSÃO	
IV.2.1 Análise geral	45
IV.2.2 Análise das seccões	
IV.2.2.1 Secção A (tabela IV-2; figura IV-7)	48

	IV.2.2.2	Secção B (tabela IV-3; figura IV-11)	
	IV.2.2.3	Secção C (tabela IV-4; figura IV-15)	
	IV.2.2.4	Secção D (tabela IV-5; figura IV-18)	
	IV.2.2.5	Secção E (tabela IV-6; figura IV-21)	
	IV.2.2.6	Secção F (tabela IV-7; figura IV-25)	
	IV.2.2.7	Secção G (tabela IV-8; figura IV-29)	
	IV.2.2.8	Secção H (tabela IV-9; figura IV-32)	
	IV.2.2.9	Secção G-H (tabela IV-10)	
	IV.2.2.10	Secção I (tabela IV-11; figura IV-37)	
	IV.2.2.11	Secção J (tabela IV-12; figura IV-40)	
	IV.2.2.12	Secção L (tabela IV-13; figura IV-43)	
	IV.2.2.13	Secção M (tabela IV-14; figura IV-46)	74
	IV.2.2.14	Secção N (tabela IV-15; figura IV-49)	
	IV.2.2.15	Secção O (tabela IV-16; figura IV-52)	
	IV.2.2.16	Secção P (tabela IV-17; figura IV-55)	
	IV.2.2.17	Secção Q (tabela IV-18; figura IV-58)	
	IV.2.2.18	Secção R (tabela IV-19; figura IV-61)	
	IV.2.2.19	Secção S (tabela IV-20; figura IV-64)	
	IV.2.2.20	Secção T (tabela IV-21; figura IV-67)	
	IV.2.2.21	Secção U (tabela IV-22; figura IV-70)	
	IV.2.2.22	Secção V (tabela IV-23; figura IV-73)	
	IV.2.2.23	Secção X (tabela IV-24; figura IV-76)	
	IV.2.2.24	Secção Z (tabela IV-25; figura IV-79)	
	IV.2.2.25	Secção A1 (tabela IV-26; figura IV-82)	
	IV.2.2.26	Secção B1 (tabela IV-27; figura IV-85)	100
	IV.2.2.27	Secção C1 (tabela IV-28; figura IV-88)	102
	IV.2.2.28	Secção D1 (tabela IV-29; figura IV-91)	
	IV.2.2.29	Secção B1-C1-D1 (tabela IV-30)	106
	IV.2.2.30	Secção E1 (tabela IV-31; figura IV-96)	108
	IV.2.2.31	Secção F1 (tabela IV-32; figura IV-99)	110
	IV.2.2.32	Secção G1 (tabela IV-33; figura IV-102)	112
	IV.2.2.33	Secção H1 (tabela IV-34; figura IV-105)	114
ν.	CONSIDE	RAÇÕES FINAIS	
		-	
VI.	BIBLIOGR	AFIA	121
VII	. ANEXO 1 -	- TABELAS COM OS DADOS COLHIDOS NO CAMP	0125
·			
VII	I.ANEXO 2 -	- TUTORIAL PARA CRIAÇÃO DE DIAGRAMAS DE F	ROSA E
וט	AGRAMAS I	DE CONTORNOS USANDO O SOFTWARE ROCKWO	JKKS 1/157

Índice de figuras

FIGURA I-1 DISTRIBUIÇÃO DOS MEMBROS DA EGN (REDE EUROPEIA DA GEOPARQUES) (RETIRADO DO SITE
FIGURA I-2 DISTRIBUIÇÃO DOS MEMBROS DA GGN (REDE GLOBAL DE GEOPARQUES) (RETIRADO DO SITE
HTTP://www.globalgeopark.org/Homepagealix/tupai/6513 htm)
FIGURA I-3 PASSADICOS DO PAIVA (RETIRADA DO SITE HTTP://www.passadicosdopaiva.pt) 7
FIGURA II-1 ENQUADRAMENTO GEOGRÁFICO E ADMINISTRATIVO DO CONCELHO DE ARQUICA. COM
CONCELHOS LIMÍTROFES (ELABORADO A PARTIR DO PORTAL SIGA)
FIGURA II-2 VALORES MEDIOS ANUAIS DE PRECIPITAÇÃO E TEMPERATURA DO CONCELHO DE AROUCA
(RETIRADO DE HTTPS://PT.CLIMATE-DATA.ORG/LOCATION/54811/)
FIGURA II-3 MAPA HIPSOMETRICO DO CONCELHO DE AROUCA (RETIRADO DE SA ET AL., 2009) 11
FIGURA II-4 ZONAMENTO DO MACIÇO HESPERICO LOCALIZANDO O CONCELHO DE AROUCA (ADAPTADO DE GUTIÉRREZ-MARCO, 2002)
FIGURA II-5 CARTA GEOLÓGICA SIMPLIFICADA DO CONCELHO DE AROUCA (RETIRADO DE ROCHA, 2008) 14
FIGURA III-1 TERMINOLOGIA PARA DEFINIR A ORIENTAÇÃO DAS DESCONTINUIDADES (ADAPTADO DE WYLLIE E MAH, 2004)
FIGURA III-2 PERFIS DE RUGOSIDADE (ADAPTADO DE VALLEJO ET AL., 2002)
FIGURA III-3 APARELHO PARA ENSAIO DE TILT TEST
FIGURA III-4 PRINCIPAIS TIPOS DE ROTURAS EM TALUDES ROCHOSOS, E POTENCIAS CONDIÇÕES
ESTRUTURAIS QUA AS FAVOREÇAM: (A) ROTURA PLANAR; (B) ROTURA POR CUNHA; (C) ROTURA POR
TOMBAMENTO; (D) ROTURA CIRCULAR. (LEGENDA: AF - AZIMUTE DO PENDOR DA FACE DO TALUDE; AS-
DIREÇÃO E SENTIDO DO DESLIZAMENTO; AT - DIREÇÃO E SENTIDO DO TOMBAMENTO; AI - AZIMUTE DO
PENDOR DA LINHA DE INTERSEÇÃO) (ADAPTADO DE WYLLIE E MAH, 2004)
FIGURA III-5 GEOMETRIA DE UM TALUDE EXIBINDO ROTURA PLANAR: (A) PERFIL MOSTRANDO O PLANO DE
DESLIZAMENTO, Ψ_F – INCLINAÇÃO DA FACE DO TALUDE, Ψ_P – INCLINAÇÃO DO PLANO DE
DESCONTINUIDADE, Φ – ÂNGULO DE ATRITO; (B) EXEMPLO DE SUPERFÍCIES LIBERTADORAS (ADAPTADO
DE WYLLIE E MAH, 2004)
FIGURA III-6 TIPOS DE ROTURA PLANAR(A) ROTURA NA FACE SUPERIOR DO TALUDE; (B) ROTURA NA FACE
DO TALUDE (ADAPTADO DE WYLLIE E MAH, 2004)
FIGURA III-7 CONDIÇÕES GEOMÉTRICAS GERAIS PARA FALHA POR CUNHA: (A) GEOMETRIA DE ROTURA POR
CUNHA, Ψ_F — ÂNGULO DE INCLINAÇÃO DA FACE DO TALUDE, Ψ_I — INCLINAÇÃO DA LINHA DE
INTERSECÇÃO, Φ – ÂNGULO DE ATRITO; (B) PERFIL MOSTRANDO A LINHA DE INTERSEÇÃO (ADAPTADO
DE WYLIE E MAH, 2004)
FIGURA III-8 DESCONTINUIDADES QUE CONDUZEM À ROTURA POR TOMBAMENTO (ADAPTADO DE
GOODMAN, 1989)
FIGURA III-9 PERFIL DE UMA ROTURA CIRCULAR TIPICA
FIGURA III-10 TESTE DE MARKLAND PARA ROTURA PLANAR USANDO PENDORES VETORIAIS (DIP VECTORS)
(ADAPTADO DO GUIA DO ROCKPACK III)
FIGURA III-11 DISPLAY DO ROCKPACK III INCLUINDO A ZONA CRITICA DE TOMBAMENTO (ADAPTADO DO
GUIA DO ROCKPACK III)
FIGURA III-12 PROJEÇÃO ESTEREOGRAFICA FAZENDO DISTINÇÃO ENTRE POLO E PENDOR VETORIAL DO
MESMO PLANO (TRADUZIDO DE WHISONANT E WATTS, 1989)
FIGURA III-13 NA PROJEÇAO ESTEREOGRAFICA DA ESQUERDA E FEITA A ANALISE DO POTENCIAL DE
ROTURA PLANAR E POR TOMBAMENTO, PROJETANDO OS PLANOS DE DESCONTINUIDADES USANDO
PENDORES VETORIAIS. NA PROJEÇÃO ESTEREOGRAFICA DA DIREITA E FEITA A ANALISE DO POTENCIAL
DE ROTURA POR CUNHA USANDO OS POLOS DOS PLANOS DE DESCONTINUIDADES (ROCKPACK III) 35
FIGURA III-14 REPRESENTAÇÃO ESQUEMATICA DE POSSIVEIS MODIFICAÇÕES GEOMETRICAS (ADAPTADO DE
WYLLIE E MAH, 2004)
FIGURA III-15 REPRESENTAÇÃO ESQUEMATICA DE ANCORAGENS ATIVAS E PASSIVAS (ADAPTADO DE WYLLIE E MAH, 2004)
FIGURA III-16 EXEMPLOS DE REDES METÁLICAS (RETIRADO DE CARDOSO E MENEZES, 2009)
FIGURA III-17 BARREIA ESTÁTICA (RETIRADO DE HTTPS://SOLUTIOMA.COM/PT/DESPRENDIMIENTOS-PT.PHP)
FIGURA III-18 BARREIRA DINÄMICA (RETIRADO DE HTTPS://SOLUTIOMA.COM/PT/PANTALLAS-DINAMICAS- PT.PHP)
FIGURA IV-1 EXEMPLO DE ZONA DE BAIXO RISCO
FIGURA IV-2 EXEMPLO DE ZONA DE RISCO ELEVADO

FIGURA IV-3 EXTENSÃO TOTAL DA ÁREA ESTUDADA (IMAGEM COMPOSTA TENDO POR BASE O GOOGLE) FIGURA IV-4 REPRESENTAÇÃO DE TODOS OS POLOS DAS DESCONTINUIDADES (584) DE TODAS AS SECÇÕES (PROJEÇÃO ESTEREOGRÁFICA DE IGUAL ÁREA, HEMISFÉRIO INFERIOR NO ROCKPACK III).	45 46
FIGURA IV-5 DIAGRAMA DE ROSAS REFERENTE A TODAS AS DESCONTINUIDADES MEDIDAS COM	17
FIGURA IV-6 DIAGRAMAS DE ISODENSIDADES DA PROJEÇÃO ESTEREOGRÁFICA DOS POLOS DE TODAS AS DESCONTINUIDADES MEDIDAS OBTIDOS COM O ROCKWORKS 17 (A) E STEREO32 (B). F1: SUBHORIZONTAL E2: NNE-SSW SUBVERTICAL E3: NW-SE SUBVERTICAL E4: W-F SUBVERTICA	<i>ч,</i>
	47
FIGURA IV-7 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO A	49
FIGURA IV-8 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO Á; (B) DIAGRAMA DE ISODENSIDADES REFERENTE À SECÇÃO A. (ROCKWORKS 17)	49
FIGURA IV-9 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO A; A CINZENTO ESTÁ REPRESENTADA	А
ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTU POR CUNHA. (ROCKPACK III)	ra 50
FIGURA IV-10 BLOCO QUE SE APRESENTA EM POSSÍVEL RISCO ANTES DA SECÇÃO A	50
FIGURA IV-11 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO B	51
FIGURA IV-12 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO B; (B) DIAGRAMA DE ISODENSIDADES REFERENTE À SECÇÃO B. (ROCKWORKS 17)	52
FIGURA IV-13 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO B, A CINZENTO ESTÁ REPRESENTAD ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTU POR CUNHA (ROCKPACK III)	AA RA 52
FIGURA IV-14 PLANOS QUE COMPROMETEM A ESTABILIDADE NA PARTE SUPERIOR DO TALUDE DA SECÇÃO B.	0 53
FIGURA IV-15 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO C	54
FIGURA IV-16 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO C; (B) DIAGRAMA DE ISODENSIDADES REFERENTE À SECCÃO C. (ROCKWORKS 17)	55
FIGURA IV-17 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO C, A CINZENTO ESTÁ REPRESENTAD	A
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE	
ROTURA POR CUNHA. (ROCKPACK III)	55
FIGURA IV-18 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO D	56
FIGURA IV-19 A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO D; (B) DIAGRAMA DE ISODENSIDADES REFERENTE À SECCÃO D. (ROCKWORKS 17)	57
FIGURA IV-20 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO D, A CINZENTO ESTÁ REPRESENTAD	A
POTUDA DOD CUMUA (ROCKPACK III)	57
FIGURA IV-21 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO E	58
FIGURA IV-22 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO E; (B) DIAGRAMA DE ISODENSIDADES	50
REFERENTE A SECÇAU E. (ROCKWORKS 17)	58
FIGURA IV-23 PROJEÇÃO ESTEREOGRAFICA DO TALUDE DA SECÇÃO E, A CINZENTO ESTA REPRESENTAD	AA
ZONA CRITICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTU	RA
	59
FIGURA IV-24 PLANOS QUE COMPROMETEM A ESTABILIDADE DO TALUDE DA SECÇÃO E	59
FIGURA IV-25 ASPETU GERAL DU TALUDE REFERIDU COMU SECÇAU F	00
FIGURATV-20 (A) DIAGRAMA DE ROSAS REFERENTE A SECÇAU F, (B) DIAGRAMA DE ISODENSIDADES	60
REFERENTE A SECUAU F. (ROUNWORKS 17) Είςμαλ IV 27 Ρασιεσίο εστερεοοράειος ρο τουμας δα σεσσίο Ε. ο ςιντεντό εστά βεραρεσενταρ	00
ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTU DOR CLINHA. (ROCKPACK III)	RA RA
	61
	62
FIGURA IV-30 (a) DIAGRAMA DE ROSAS REFERENTE À SECCÃO G , (b) DIAGRAMA DE ISODENSIDADES	02
REFERENTE À SECCÃO G (ROCKWORKS 17)	63
FIGURA IV-31 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECCÃO G. A CINZENTO ESTÁ REPRESENTAD)A
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE	62
FIGURA IV-32 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO H	64
	J T

REFERENTE À SECÇÃO H. (ROCKWORKS 17)
FIGURA IV-34 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO H, A CINZENTO ESTÁ REPRESENTADA
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO: (B) MODO DE
ROTURA POR CUNHA. (ROCKPACK III)
FIGURA IV-35 (A) DIAGRAMA DE ROSAS REFERENTE À SECCÃO G-H: (B) DIAGRAMA DE ISODENSIDADES
REFERENTE À SECCÃO G-H (ROCKWORKS 17) 66
FIGURA IV-36 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECCÃO G-H. A CINZENTO ESTÁ
REPRESENTADA A ZONA CRÍTICA DE ROTURA (A) MODO DE ROTURA PI ANAR E POR TOMBAMENTO: (B)
MODO DE ROTURA POR CUNHA (ROCKPACK III)
FIGURA IV-37 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO I
FIGURA IV-38 (A) DIAGRAMA DE ROSAS REFERENTE À SECCÃO I: (B) DIAGRAMA DE ISODENSIDADES
REFERENTE À SECCÃO L (ROCKWORKS 17)
FIGURA IV-39 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECCÃO LA CINZENTO ESTÁ REPRESENTADA A
ZONA CRÍTICA DE ROTURA (A) MODO DE ROTURA PI ANAR E POR TOMBAMENTO: (B) MODO DE ROTURA
POR CUNHA (ROCKPACK III)
FIGURA IV-40 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO J 70
FIGURA IV-41 (A) DIAGRAMA DE ROSAS REFERENTE À SECCÃO J. (B) DIAGRAMA DE ISODENSIDADES
REFERENTE À SECCÃO J (ROCKWORKS 17)
FIGURA IV-42 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECCÃO J. A CINZENTO ESTÁ REPRESENTADA A
ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PI ANAR E POR TOMBAMENTO: (B) MODO DE ROTURA
POR CUNHA. (ROCKPACK III)
FIGURA IV-43 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO L
FIGURA IV-44 (A) DIAGRAMA DE ROSAS REFERENTE À SECCÃO L: (B) DIAGRAMA DE ISODENSIDADES
REFERENTE À SECCÃO L. (ROCKWORKS 17)
FIGURA IV-45 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECCÃO L. A CINZENTO ESTÁ REPRESENTADA A
ZONA CRÍTICA DE ROTURA (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO: (B) MODO DE ROTURA
POR CUNHA. (ROCKPACK III)
FIGURA IV-46 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO M
FIGURA IV-47 (A) DIAGRAMA DE ROSAS REFERENTE À SECCÃO M: (B) DIAGRAMA DE ISODENSIDADES
REFERENTE À SECCÃO M. (ROCKWORKS 17)
FIGURA IV-48 PROJECÃO ESTEREOCRÁFICA DO TAU UNE DA SECCÃO MA CINZENTO ESTÁ REPRESENTADA
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)
 A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTURA POR CUNHA. (ROCKPACK III)

FIGURA IV-61 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO R FIGURA IV-62 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO R; (B) DIAGRAMA DE ISODENSIDADES	84 85
REFERENTE Α SECUAU Ν. (ΝΟΟΝΨΟΚΝΟΤΤ) Είζιμα ΙV 62 Ροσιεσίο εστερεοοράεισα ος ται μρε σα σεσσίο Ρ. α σιντεντό εστά ρεορεσενταρ	00
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE	95
	00
FIGURA IV-65 (A) DIACRAMA DE ROSAS REFERIDO COMO SECÇÃO S	00
DECEDENTE À SECCÃO S (ROCK/WORKS 17)	87
FIGURA IV-66 PRO JECÃO ESTEREOGRÁFICA DO TALUDE DA SECCÃO SUA CINZENTO ESTÁ REPRESENTAD	
ZONA OPÍTICA DE ROTURA (A) MODO DE ROTURA EL ANAR E POR TOMBAMENTO: (B) MODO DE ROTURA	
POR CLINHA (ROCKPACK III)	87
FIGURA IV-67 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO T	88
FIGURA IV-68 (A) DIAGRAMA DE ROSAS REFERENTE À SECCÃO T: (B) DIAGRAMA DE ISODENISIDADES	00
REFERENTE À SECCÃO T (ROCKWORKS 17)	89
FIGURA IV-69 PROJECÃO ESTEREOGRÁFICA DO TALUDE DA SECCÃO T. A CINZENTO ESTÁ REPRESENTAD	
ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PI ANAR E POR TOMBAMENTO: (B) MODO DE ROTURA	RA
POR CLINHA (ROCKPACK III)	89
FIGURA IV-70 ASPETO GERAL DO TALUDE REFERIDO COMO SECCÃO U	90
FIGURA IV-71 (A) DIAGRAMA DE ROSAS REFERENTE À SECCÃO U: (B) DIAGRAMA DE ISODENSIDADES	
REFERENTE À SECCÃO U. (ROCKWORKS 17)	91
FIGURA IV-72 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO U. A CINZENTO ESTÁ REPRESENTAD	A
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO: (B) MODO DE	
ROTURA POR CUNHA. (ROCKPACK III)	91
FIGURA IV-73 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO V	92
FIGURA IV-74 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO V; (B) DIAGRAMA DE ISODENSIDADES	
REFERENTE À SECÇÃO V. (ROCKWORKS 17)	93
FIGURA IV-75 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO V, A CINZENTO ESTÁ REPRESENTAD	AA
ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTU	RA
POR CUNHA. (ROCKPACK III).	93
FIGURA IV-76 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO X	94
FIGURA IV-77 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO X; (B) DIAGRAMA DE ISODENSIDADES	
REFERENTE À SECÇÃO X. (ROCKWORKS 17)	95
FIGURA IV-78 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO X, A CINZENTO ESTÁ REPRESENTAD	AA
ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTU	RA
POR CUNHA. (ROCKPACK III)	95
FIGURA IV-79 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO Z	96
FIGURA IV-80 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO Z; (B) DIAGRAMA DE ISODENSIDADES	
REFERENTE À SECÇÃO Z. (ROCKWORKS 17)	97
FIGURA IV-81 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO Z, A CINZENTO ESTÁ REPRESENTAD.	ΑA
ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE ROTU	RA
POR CUNHA. (ROCKPACK III)	97
FIGURA IV-82 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO A1	98
FIGURA IV-83 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO A1; (B) DIAGRAMA DE ISODENSIDADES	
REFERENTE À SECÇÃO A1. (ROCKWORKS 17)	99
FIGURA IV-84 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO A1, A CINZENTO ESTÁ REPRESENTA	DA
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE	
	99
FIGURA IV-85 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO B1	00
FIGURA IV-86 (A) DIAGRAMA DE ROSAS REFERENTE A SECÇAO B1; (B) DIAGRAMA DE ISODENSIDADES	
REFERENTE A SECÇAO B1. (ROCKWORKS 17) 1	01
FIGURA IV-8/ PROJEÇÃO ESTEREOGRAFICA DO TALUDE DA SECÇÃO B1, A CINZENTO ESTÁ REPRESENTA	DA
A ZONA CRITICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE	
	01
FIGURA IV-88 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO C1	02
FIGURA IV-89 (A) DIAGRAMA DE ROSAS REFERENTE A SECÇÃO C1; (B) DIAGRAMA DE ISODENSIDADES	000
REFERENTE A SECÇAU CT. (RUCKWORKS 17) 1	03

FIGURA IV-90 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO C1, A CINZENTO ESTÁ REPRESEN	TADA
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE	
ROTURA POR CUNHA. (ROCKPACK III)	. 103
FIGURA IV-91 ASPETO GERAL DO TALUDE REFERIDO COMO SECÇÃO D1	. 104
FIGURA IV-92 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO D1; (B) DIAGRAMA DE ISODENSIDADES	
REFERENTE À SECÇÃO D1. (ROCKWORKS 17)	. 105
FIGURA IV-93 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO D1, A CINZENTO ESTÁ REPRESENT	TADA
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE	
ROTURA POR CUNHA. (ROCKPACK III)	. 105
FIGURA IV-94 (A) DIAGRAMA DE ROSAS RÉFERENTE À SECÇÃO B1-C1-D1; (B) DIAGRAMA DE	
ISODENSIDADES REFERENTE À SECÇÃO B1-C1-D1. (ROCKWORKS 17)	. 106
FIGURA IV-95 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO B1-C1-D1, A CINZENTO ESTÁ	
REPRESENTADA A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO	; (в)
MODO DE ROTURA POR CUNHA. (ROCKPACK III)	. 1Ó7
FIGURA IV-96 ASPETO GERAL DOS TALUDES REFERÍDOS COMO SECÇÃO E1	. 108
FIGURA IV-97 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO E1; (B) DIAGRAMA DE ISODENSIDADES	
REFERENTE À SECÇÃO E1. (ROCKWORKS 17)	. 109
FIGURA IV-98 PROJEÇÃO ESTEREOGRÁFICA DO TÁLUDE DA SECÇÃO E1, A CINZENTO ESTÁ REPRESENT	ΓADA
A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO; (B) MODO DE	
ROTURA POR CUNHA. (ROCKPACK III)	. 109
FIGURA IV-99 ASPETO GERAL DOS TALUDES REFERIDOS COMO SECÇÃO F1	. 110
FIGURA IV-100 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO F1; (B) DIAGRAMA DE ISODENSIDADES	3
REFERENTE À SECÇÃO F1. (ROCKWORKS 17)	. 111
FIGURA IV-101 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO F1, A CINZENTO ESTÁ	
REPRESENTADA A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO	; (В)
MODO DE ROTURA POR CUNHA. (ROCKPACK III)	. 111
FIGURA IV-102 ASPETO GERAL DOS TALUDES REFERIDOS COMO SECÇÃO G1	. 112
FIGURA IV-103 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO G1; (B) DIAGRAMA DE ISODENSIDADES	S
REFERENTE À SECÇÃO G1. (ROCKWORKS 17)	. 113
FIGURA IV-104 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO G1, A CINZENTO ESTÁ	
REPRESENTADA A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO	; (В)
MODO DE ROTURA POR CUNHA. (ROCKPACK III)	. 113
FIGURA IV-105 ASPETO GERAL DOS TALUDES REFERIDOS COMO SECÇÃO H1	. 114
FIGURA IV-106 (A) DIAGRAMA DE ROSAS REFERENTE À SECÇÃO H1; (B) DIAGRAMA DE ISODENSIDADES	3
REFERENTE À SECÇÃO H1. (ROCKWORKS 17)	. 115
FIGURA IV-107 PROJEÇÃO ESTEREOGRÁFICA DO TALUDE DA SECÇÃO H1, A CINZENTO ESTÁ	
REPRESENTADA A ZONA CRÍTICA DE ROTURA. (A) MODO DE ROTURA PLANAR E POR TOMBAMENTO	; (В)
Modo de rotura por cunha. (RockPack III)	. 115
FIGURA VIII-1 LAYOUT INICIAL	. 157
FIGURA VIII-2 IMPORTAR DO EXCEL	. 158
FIGURA VIII-3 IMPORTAR DO EXCEL – OPÇÕES	. 158
FIGURA VIII-4 DATASHEET COM OS DADOS	. 159
FIGURA VIII-5 PASSOS PARA FAZER UM DIAGRAM DE ROSAS	. 159
FIGURA VIII-6 OPÇÕES DO DIAGRAMA DE ROSAS	. 160
FIGURA VIII-7 EXEMPLO DE UM DIAGRAMA DE ROSAS	. 160
FIGURA VIII-8 PASSOS PARA FAZER UMA PROJEÇÃO ESTERIOGRÁFICA	. 161
FIGURA VIII-9 OPÇÕES DA PROJEÇÃO ESTEREOGRÁFICA	. 161
FIGURA VIII-10 EXEMPLO DE UM DIAGRAMA DE CONRTORNOS	. 162

Índice de tabelas

TABELA III-1 TIPOS DE DESCONTINUIDADES (ADAPTADO DE VALLEJO ET AL., 2002)	. 20
TABELA III-2 CLASSES DE ESPAÇAMENTO (ISRM, 1978)	. 22
TABELA III-3 VALORES DE CONTINUIDADE (ADAPTADO DE ISRM, 1981)	. 22
TABELA III-4 DESCRIÇÃO DA ABERTURA (ADAPTADO DE ISRM, 1981)	. 24
TABELA III-5 DESCRIÇÃO DAS INFILTRAÇÕES EM DESCONTINUIDADES (ADAPTADO DE ISRM, 1981)	. 25
TABELA III-6 FATORES QUE INFLUENCIAM A ESTABILIDADE DE TALUDES (ADAPTADO DE VALLEJO ET AL.,	
2002)	. 27
TABELA IV-1 TABELA DE CAMPO	. 43
TABELA IV-2 INFORMAÇÃO GERAL DA SECÇÃO A	. 48
TABELA IV-3 INFORMAÇÃO GERAL DA SECÇÃO B	. 51
TABELA IV-4 INFORMAÇÃO GERAL DA SECÇÃO C	. 54
TABELA IV-5 INFORMAÇÃO GERAL DA SECÇÃO D	. 56
TABELA IV-6 INFORMAÇÃO GERAL DA SECÇÃO E	. 58
TABELA IV-7 INFORMAÇÃO GERAL DA SECÇÃO F	. 60
TABELA IV-8 INFORMAÇÃO GERAL DA SECÇÃO G	. 62
TABELA IV-9 INFORMAÇÃO GERAL DA SECÇÃO H	. 64
TABELA IV-10 INFORMÁÇÃO GERAL DA SECÇÃO G-H	. 66
TABELA IV-11 INFORMAÇÃO GERAL DA SECÇÃO I	. 68
TABELA IV-12 INFORMAÇÃO GERAL DA SECÇÃO J	. 70
TABELA IV-13 INFORMAÇÃO GERAL DA SECÇÃO L.	. 72
TABELA IV-14 INFORMAÇÃO GERAL DA SECÇÃO M	. 74
TABELA IV-15 INFORMAÇÃO GERAL DA SECÇÃO N	. 76
TABELA IV-16 INFORMAÇÃO GERAL DA SECÇÃO O	. 78
TABELA IV-17 INFORMAÇÃO GERAL DA SECÇÃO P	. 80
TABELA IV-18 INFORMAÇÃO GERAL DA SECÇÃO Q	. 82
TABELA IV-19 INFORMAÇÃO GERAL DA SECÇÃO R	. 84
TABELA IV-20 INFORMAÇÃO GERAL DA SECÇÃO S	. 86
TABELA IV-21 INFORMAÇÃO GERAL DA SECÇÃO T	. 88
TABELA IV-22 INFORMAÇÃO GERAL DA SECÇÃO U	. 90
TABELA IV-23 INFORMAÇÃO GERAL DA SECÇÃO V	. 92
TABELA IV-24 INFORMAÇÃO GERAL DA SECÇÃO X	. 94
TABELA IV-25 INFORMAÇÃO GERAL DA SECÇÃO Z	. 96
TABELA IV-26 INFORMAÇÃO GERAL DA SECÇÃO A1	. 98
TABELA IV-27 INFORMAÇÃO GERAL DA SECÇÃO B1	100
TABELA IV-28 INFORMAÇÃO GERAL DA SECÇÃO C1	102
TABELA IV-29 INFORMAÇÃO GERAL DA SECÇÃO D1	104
TABELA IV-30 INFORMAÇÃO GERAL DA SECÇÃO B1-C1-D1	106
TABELA IV-31 INFORMAÇÃO GERAL DA SECÇÃO E1	108
TABELA IV-32 INFORMAÇÃO GERAL DA SECÇÃO F1	110
TABELA IV-33 INFORMAÇÃO GERAL DA SECÇÃO G1	112
TABELA IV-34 INFORMAÇÃO GERAL DA SECÇÃO H1	114
TABELA V-1 SÍNTESE DE RESULTADOS OBTIDOS ATRAVÉS DO TESTE DE MARKLAND ASSOCIADO À	
POSSIBILIDADE DE AFETAR A ESTRUTURA DE MADEIRA DOS PASSADIÇOS. À VERDE OS CASOS ONDE	Ξ
NÃO SE VERIFICA QUALQUER INDÍCIO DE ROTURA, A LARANJA AS SITUAÇÕES ONDE, NO MÍNIMO, DEV	/E
HAVER UMA INSPEÇÃO MAIS PORMENORIZADA DA SECÇÃO EM CAUSA E A VERMELHO AS SECÇÕES C	λΠΕ
REQUEREM INTERVENÇÃO O QUANTO ANTES	118
TABELA VII-1 TABELA DE CAMPO DA SECÇÃO A	125
TABELA VII-2 TABELA DE CAMPO DA SECÇÃO B	126
TABELA VII-3 TABELA DE CAMPO DA SECÇÃO C	127
TABELA VII-4 TABELA DE CAMPO DA SECÇÃO D	128
TABELA VII-5 TABELA DE CAMPO DA SECÇÃO E	129
TABELA VII-6 TABELA DE CAMPO DA SECÇÃO F	130
TABELA VII-7 TABELA DE CAMPO DA SECÇÃO G	131
TABELA VII-8 TABELA DE CAMPO DA SECÇÃO H	132
TABELA VII-9 TABELA DE CAMPO DA SECÇÃO I	133
TABELA VII-10 TABELA DE CAMPO DA SECÇÃO J	134

TABELA VII-11 TABELA DE CAMPO DA SECÇÃO L	135
TABELA VII-12 TABELA DE CAMPO DA SECÇÃO M	136
TABELA VII-13 TABELA DE CAMPO DA SECÇÃO N	137
TABELA VII-14 TABELA DE CAMPO DA SECÇÃO O	138
TABELA VII-15 TABELA DE CAMPO DA SECÇÃO P	139
TABELA VII-16 TABELA DE CAMPO DA SECÇÃO Q	140
TABELA VII-17 TABELA DE CAMPO DA SECÇÃO R	141
TABELA VII-18 TABELA DE CAMPO DA SECÇÃO S	142
TABELA VII-19 TABELA DE CAMPO DA SECÇÃO T	143
TABELA VII-20 TABELA DE CAMPO DA SECÇÃO U	144
TABELA VII-21 TABELA DE CAMPO DA SECÇÃO V	145
TABELA VII-22 TABELA DE CAMPO DA SECÇÃO X	146
TABELA VII-23 TABELA DE CAMPO DA SECÇÃO Z	147
TABELA VII-24 TABELA DE CAMPO DA SECÇÃO A1	148
TABELA VII-25 TABELA DE CAMPO DA SECÇÃO B1	149
TABELA VII-26 TABELA DE CAMPO DA SECÇÃO C1	150
TABELA VII-27 TABELA DE CAMPO DA SECÇÃO D1	151
TABELA VII-28 TABELA DE CAMPO DA SECÇÃO E1	152
TABELA VII-29TABELA DE CAMPO DA SECÇÃO F1	153
TABELA VII-30 TABELA DE CAMPO DA SECÇÃO G1	154
TABELA VII-31 TABELA DE CAMPO DA SECÇÃO H1	155

I. Introdução

I.1 Apresentação do tema

O foco do presente trabalho assenta no estudo da estabilidade das vertentes na margem esquerdo do rio Paiva, ao longo da qual foram construídos os Passadiços do Paiva que são atualmente um dos pontos turísticos mais procurados para quem deseja uma viagem pela geologia, biologia e arqueologia, em Portugal. Sendo o rio Paiva bastante encaixado, com vertentes por vezes quase verticais, procurou-se analisar e avaliar a estabilidade destas vertentes já que a sua instabilidade pode colocar em risco não só a estrutura em madeira dos passadiços como causar eventuais acidentes pessoais.

Qualquer género de obra ou atividade humana interage, de um modo direto ou indireto, com o terreno, solo ou rocha, influenciando o seu estado inicial, quer aplicando novas cargas ao sistema quer através do aumento de agentes erosivos. Todos estes fatores podem levar a um aumento da instabilidade geológica do terreno, facilitando a ocorrência de episódios de rotura dos mesmos, suscetíveis de causar danos em bens e até em pessoas.

De um ponto de vista económico, um episódio de rotura leva a custos diretos, como a danificação de bens e trabalhos de reconstrução, até custos indiretos, tais como interrupções de negócios, atrasos na deslocação, mobilização de recursos para o local, entre outras consequências menos favoráveis.

A escolha do tema abordado no presente trabalho é justificada, em parte, pelos aspetos referidos anteriormente e, também, pela inevitável necessidade de manutenção por parte da Associação Geoparque Arouca (AGA) das suas diversas infraestruturas, nomeadamente os Passadiços do Paiva, estrutura inaugurada a 20 de junho de 2015 e que, desde o primeiro dia, se revelou de elevado interesse turístico, com mais de 200 mil visitantes até à data.

Tendo em conta que os Passadiços do Paiva se localizam num vale encaixado, na margem esquerda do rio Paiva, numa zona rural com baixa densidade populacional, o aumento da afluência de transportes e pessoas pode acarretar desvantagens. Carcavilla *et al.* (2007) defendem que a presença de turismo pode alterar as condições ambientais, acelerar os processos erosivos e prejudicar a concentração de organismos através de modificações introduzidas para a acomodação turística.

Neste sentido, é imperativo que se desenvolvam estratégias de acompanhamento e controlo, não só no âmbito da monitorização geológica, como também de toda a bio e geodiversidade, evitando assim a perda do potencial geoturístico do local.

A implementação de qualquer procedimento de geoconservação deve ser sustentada por conhecimentos de todas as áreas que possam vir a ser aplicadas, que sustentem a utilização do local de interesse geológico. Para além de todo o conhecimento científico, os Passadiços do Paiva deverão obter permanente acompanhamento técnico especializado, tanto para a divulgação e valorização, como também para uma eficiente monitorização, imprescindível para a manutenção do local.

A estabilidade dos taludes é normalmente influenciada pela geologia estrutural do maciço rochoso em que estão inseridos. Na geologia estrutural, para todas as quebras no maciço rochoso como planos de estratificação, diaclases, xistosidade e falhas, é usado o termo superfícies de descontinuidades. As propriedades das descontinuidades relativas à

estabilidade incluem a orientação, continuidade, rugosidade, preenchimento, entre outros. A importância das descontinuidades deve-se ao facto de serem planos de fraqueza num maciço rochoso mais competente, logo, os episódios de rotura tendem a ocorrer preferencialmente ao longo destas superfícies (Hoek e Bray, 1981).

As descontinuidades podem influenciar diretamente a estabilidade do talude se houver, por exemplo, deslizamento de rocha sobre um plano de descontinuidades, chamado de rotura planar. Por outro lado, se a rotura ocorrer segundo a interseção de dois planos de descontinuidades no interior do próprio maciço, é chamada de rotura em cunha. Alternativamente, as descontinuidades podem influenciar apenas de um modo indireto se o seu comprimento for muito menor relativamente ao tamanho do talude. Estes conceitos serão desenvolvidos mais à frente no decorrer do documento.

I.2 Objetivos

Esta dissertação, para a obtenção do grau de Mestre em Engenharia Geológica pela Universidade de Aveiro, pretende contribuir para o estudo e monitorização de taludes associados à problemática da estabilização numa dada extensão dos Passadiços do Paiva.

Neste contexto, foi realizado um levantamento da informação estrutural das vertentes em causa e um estudo das condições de estabilidade nas zonas que se apresentavam em situação menos favorável, com o objetivo de identificar os locais menos favoráveis à estabilização.

Com o trabalho realizado pretende-se contribuir para que sejam providenciadas medidas mitigadoras que possam ser implementadas através de trabalhos de estabilização que garantam, à partida, uma melhor solução prática para os problemas identificados.

I.3 Organização da dissertação

A presente dissertação encontra-se dividida em oito capítulos, com a seguinte estrutura:

No capítulo I é feita uma breve introdução à temática abordada incluindo-se também os objetivos deste trabalho. É também abordado o tema dos geoparques, mais concretamente o Geoparque Arouca, e onde se descreve as atividades realizadas nesse período, por mim, no âmbito do estágio curricular na Associação Geoparque Arouca.

No capítulo II é feito um enquadramento geral da área estudada em termos geográficos, climatéricos, geomorfológicos e em termos geológicos.

No capítulo III, de cariz essencialmente bibliográfico, é feita uma revisão da literatura onde se aborda, de uma forma sucinta, os conhecimentos básicos para a caracterização de um maciço rochoso, os fatores que podem levar à instabilidade de taludes, os mecanismos de rotura bem como a sua prevenção e manutenção.

No capítulo IV, descreve-se toda a metodologia adotada, tanto no campo como no trabalho de gabinete, e apresenta-se de forma detalhada todos os dados obtidos da extensão estudada nos Passadiços do Paiva, bem como uma avaliação da estabilidade de cada talude, através de *software* apropriado com base nos dados recolhidos em campo.

No capítulo V, depois de todos os resultados tratados, tecem-se algumas considerações e conclusões sendo propostas medidas para solucionar alguns dos problemas referidos no capítulo anterior.

No capítulo VI, é apresentada toda a bibliografia usada para a elaboração do presente trabalho.

No fim do documento, há ainda uma lista de anexos, capítulos VII e VIII, com informação complementar para consulta e para uma melhor compreensão da dissertação. Todas as figuras apresentadas ao longo da dissertação, que não incluam referência bibliográfica, são da minha autoria.

I.4 Trabalho de estágio na AGA (Associação Geoparque Arouca)

Nesta secção, será feita uma introdução ao conceito de geoparque e às entidades que os regulam. Posteriormente, serão descritos mais pormenorizadamente a Associação Geoparque Arouca (AGA) e mais concretamente o geossítio em questão, os Passadiços do Paiva. Para o efeito, ao abrigo do protocolo assinado entre a Universidade de Aveiro e a Associação Geoparque Arouca foi feito um acordo de estágio com a finalidade de complementar este trabalho.

I.4.1 Geoparques

Um geoparque é um território com um património geológico de excecional importância, reconhecido pela Rede Global de Geoparques de Unesco.

A Rede Europeia de Geoparques (EGN) foi estabelecida em junho de 2000 (a primeira rede de geoparques) e, até à data, é composta por 69 membros de 23 países europeus (figura I-1) e serviu de modelo à Rede Global de Geoparques (GGN) criada em 2004. Esta última já possui 111 membros em 33 países (figura I-2) e tem vindo a alargar-se com novas adesões.

Figura I-1 Distribuição dos membros da EGN (Rede Europeia da Geoparques) (retirado do site http://www.europeangeoparks.org/?page_id=168)

O património geológico é constituído por um conjunto de ocorrências de natureza geológica a que chamamos geodiversidade. Estas ocorrências podem ser observadas e estudadas em locais designados por geossítios e, os mais significativos, por geomonumentos. Estes narram partes importantes da história da Terra e constituem georrecursos culturais não renováveis, daí a necessidade da sua conservação.

Figura I-2 Distribuição dos membros da GGN (Rede Global de Geoparques) (retirado do site http://www.globalgeopark.org/homepageaux/tupai/6513.htm)

No ano de 2015, em Paris, na Conferência Geral da Unesco, foi aprovado o novo "Programa Internacional Geociências e Geoparques" e a designação "Geoparque Global da UNESCO" (UNESCO Global Geopark) como forma de reconhecer a importância de conservar e gerir sítios e paisagens de importância geológica internacional (património geológico) de forma holística e em benefício das comunidades onde se encontram. Foi ainda conferido aos Geoparques Globais um estatuto idêntico ao do Património Mundial e Reservas da Biosfera (Brilha, 2015).

Os Geoparques Globais da UNESCO são territórios com alguma expressão territorial, com limites bem definidos e cujo património geológico é fundamental conhecer, promovendo, para além da conservação da herança geológica, a educação e o geoturismo, numa estratégia de desenvolvimento sustentado. Por esta razão, a promoção dos aspetos culturais, históricos, ecológicos e arqueológicos é também de primordial importância para os geoparques (Zouros, 2004; Rocha, 2015; Brilha, 2015). A sua gestão deve, portanto, basear-se no seu uso sustentável, procurando conciliar as expetativas de desenvolvimento económico das comunidades locais com o fomento de comportamentos e atitudes de responsabilidade e respeito pelo património geológico (Pacheco, 2012). Deve ainda, transformando os patrimónios e as memórias a eles associados em produtos turísticos, gerar atividade económica com impacto direto na melhoria do ambiente natural e das condições de vida das populações, fortalecendo a identificação das mesmas com os objetivos fundamentais de desenvolvimento de um geoparque (Vasquez, 2010) e num

espirito de complementaridade com os outros membros da Rede Global de Geoparques da UNESCO.

Em Portugal existem atualmente quatro Geoparques Globais da UNESCO: Naturtejo, Arouca, Açores e Terras de Cavaleiros. Encontra-se, também, em processo de candidatura o Geoparque da Serra da Estrela (Geopark Estrela).

I.4.2 Geoparque Arouca

Em 2006 foi apresentado o projeto de candidatura do "Geoparque Arouca" (Sá *et al.* 2006) na Conferência Internacional de Geoparques, em Belfast, na Irlanda do Norte.

Em agosto de 2008, foi apresentada a candidatura do Geoparque Arouca à Rede Europeia de Geoparques (EGN) tendo esta candidatura recebido o aval do Grupo Português da ProGEO (Associação Portuguesa para a Conservação do Património Geológico), da Comissão Nacional da UNESCO e da Coordenação Nacional do Programa MAB – O Homem e a Biosfera. Em abril de 2009, o Geoparque Arouca tornou-se então membro da Rede Europeia de Geoparques (EGN) e da Rede Global de Geoparques (GGN) (Vasquez, 2010).

Este projeto tem os seus objetivos bem definidos e traçados, sendo eles os seguintes:

- 1. Conhecer e conservar o património geológico da região de Arouca, reconhecido pela Câmara Municipal como uma mais-valia importante para o Concelho;
- Promover e valorizar este património junto das populações locais e do grande público;
- 3. Sensibilizar a população escolar para a importância do património geológico no âmbito da conservação da natureza;
- 4. Promover um turismo sustentável de qualidade, suportado nos valores naturais e culturais da região, englobando as múltiplas atividades turísticas em curso;
- 5. Potenciar o desenvolvimento de atividades económicas tradicionais relacionadas com o património natural;
- 6. Divulgar um exemplo de boas práticas de cooperação entre a atividade industrial extrativa, o conhecimento científico e a conservação.

Classificado em 2009, desde então, de acordo com Rocha (2015), "o Geoparque Arouca tem-se imposto como um reconhecido bom exemplo na prática de ações de geoconservação, educação para o desenvolvimento sustentável e geoturismo, que se assumem como pilares fundamentais desde conceito de desenvolvimento territorial".

Como reconhecimento deste trabalho, o "Prémio Geoconservação 2017" foi atribuído à Câmara Municipal de Arouca pela ProGEO Portugal, destacando-se o valor dos "Passadiços do Paiva" e a "Rota dos Geossítios".

I.4.2.1 Território do Geoparque Arouca

Localizado no distrito de Aveiro, o território do Geoparque Arouca coincide com os limites geográficos do concelho de Arouca. Segundo dados do Plano Estratégico da Associação Geoparque Arouca 2008-2013, é um território com uma baixa densidade populacional e com acessos rodoviários pouco eficientes, considerado interior apesar da proximidade do litoral (Vasquez, 2010).

Conforme Pacheco (2012) "do ponto de vista geológico o geoparque está enquadrado na Zona Centro Ibérica uma das mais internas no Maciço Ibérico. Aqui predominam formações de idade proterozoica e paleozoica, metamorfizadas, deformadas e intruídas por corpos ígneos granitoides que resultam de um conjunto de processos geológicos que, durante o Paleozoico Superior, intervieram na formação de uma cadeia de montanhas, conhecida como a Cadeia Varisca (ou Cadeia Hercínica) (Ribeiro *et al*.1979; Ribeiro, 2006; Dias e Ribeiro, 2013)". A caracterização geológica é objeto de um tratamento mais aprofundado em capítulo próprio, capítulo III.

O Geoparque Arouca é gerido pela AGA (Associação Geoparque Arouca) e a sua estratégia de desenvolvimento assenta nos 41 geossítios que constituem o Património Geológico da região, inventariados, caracterizados e avaliados como excecional importância científica, didática e turística (Rocha, 2008 e 2015).

I.4.2.2 Associação Geoparque Arouca

A Associação Geoparque Arouca (AGA) foi fundada no dia 9 de junho de 2008, constituindo um corpo social privado sem fins lucrativos que se propõe, entre outras medidas e, de acordo com o plano Estratégico 2009-2013 – Geoparque Arouca a (http://aroucageopark.pt/pt/quem-somos):

- 1. Promover e realizar ações conducentes a um desenvolvimento sustentável do concelho de Arouca e da região, gerindo a área de Geoparque;
- 2. Promover e valorizar o património cultural e natural;
- 3. Promover um turismo sustentável;
- 4. Promover e realizar ações de sensibilização ambiental, animação cultural e turística;
- 5. Promover e desenvolver formação profissional;
- 6. Recolher, tratar e divulgar informação sobre os recursos de região;
- 7. Potenciar o desenvolvimento de atividades económicas e fornecer atividades tradicionais;
- 8. Realizar ações de proteção, conservação e divulgação do património natural, com ênfase para o património geológico;
- 9. Prestar serviços aos associados, agentes locais ou outros, assim como comercializar artesanato regional e produtos.

I.4.3 Trabalhos desenvolvidos durante o estágio na AGA

No âmbito deste trabalho nos Passadiços do Paiva, foi também elaborado Protocolo e um Acordo de Estágio entre o Geoparque Arouca e a Universidade de Aveiro. Este acordo de estágio teve como objetivo enriquecer todo o trabalho realizado no contexto desta dissertação, bem como acrescentar experiência profissional ao autor. Para tal, durante a elaboração deste trabalho, foi-me proposto acompanhar diversas atividades do Geoparque Arouca, tendo sido elas as seguintes:

- 1. 16 de fevereiro de 2017 Preparação de nódulos de pedras parideiras para "campanha de fertilidade";
- 20 e 21 de fevereiro de 2017 Trabalhos de levantamento da sinalética do Arouca Geoparque;

- 3. 10 de março de 2017 Participação no congresso de Jovens Cientistas na Universidade de Coimbra. Presença no *stand* do Geoparque Arouca.
- 4. 14 a 16 de março de 2017 Acompanhamento das visitas ao território do Geoparque Arouca no âmbito do Projeto *ERASMUS*+;
- 23 de março de 2017 Acompanhamento de uma visita de estudantes seniores de uma Universidade Francesa à Serra da Freita, que teve de ser cancelada devido ao mau tempo. Em alternativa visitaram o Centro de Turismo, Convento de Arouca, "Pedra Má" e Museu Municipal.
- 24 e 27 de março de 2017 Trabalhos de levantamento e catalogação da sinalética do Arouca Geoparque (continuação);
- 7. 30 de maio de 2017 Participação na atividade *Peddy-Paper* Geologia urbana com alunos da escola primária de Ponte de Telhe.

I.4.4 Passadiços do Paiva

Com uma distância total de 8,7 km e um âmbito desportivo, cultural, ambiental e paisagístico, os Passadiços do Paiva são uma das mais recentes apostas do Geoparque Arouca (figura I-3). Estendem-se ao longo da margem esquerda de um troço do Rio Paiva, e passam por vários geossítios: Garganta do Paiva (G36); Cascata das Águieiras (G35); Praia Fluvial do Vau (G30) e Falha de Espiunca (G32).

O presente trabalho procura avaliar a estabilidade dos taludes ao longo de aproximadamente 600 metros dos Passadiços de Paiva.

Figura I-3 Passadiços do Paiva (retirada do site http://www.passadicosdopaiva.pt)

II. Enquadramento Geral

Neste capítulo caracteriza-se toda a zona estudada, localizando-a geograficamente e climatericamente. De seguida, para uma compreensão mais detalhada de toda a geologia da região é feito o enquadramento geomorfológico e geológico englobando toda a área do Geoparque Arouca.

II.1 Enquadramento geográfico

O concelho de Arouca situa-se no NE do distrito de Aveiro, estando integrado na unidade administrativa da Região de Aveiro (nomenclatura esta que foi modificada em 2015 e pode ser encontrada em trabalhos posteriores a esta data como sub-região Entre-Douro e Vouga). Com 327 km2 de área, o concelho de Arouca faz fronteira com os seguintes oito municípios: Castelo de Paiva, Castro Daire, Cinfães, Gondomar, Oliveira de Azeméis, São Pedro do Sul, Santa Maria da Feira e Vale de Cambra (figura II-1).

No que diz respeita aos acessos, é possível chegar a Arouca, a Norte, pela estrada nacional nº224 a partir de Castelo de Paiva e, a Oeste, pela estrada nacional nº326 a partir do Porto, e seguir pela estrada nacional nº326-1 que liga Arouca a Alvarenga. Também é possível vir pela estrada nacional nº225 proveniente de Castro Daire. Partindo de Aveiro é possível chegar a Arouca pela estrada nacional nº109 no sentido Norte e trocando para a estrada nacional nº224 em Estarreja.

O concelho de Arouca tem aproximadamente 24000 habitantes distribuídos por 16 freguesias. A área em estudo neste trabalho encontra-se localizada numa dada extensão, na margem esquerda do Rio Paiva, na extremidade NE da União de Freguesias de Canelas e Espiunca.

Figura II-1 Enquadramento geográfico e administrativo do concelho de Arouca, com concelhos limítrofes (elaborado a partir do Portal SIGA)

A área do concelho de Arouca pode ser consultada nas cartas militares com escala 1:25000 editadas pelo Centro de Informação Geoespacial do Exército, nomeadamente, nas folhas 144 – Canedo (Feira), 145 – Santa Eulália (Arouca) (onde se localiza a zona de estudo), 146 – Tendais (Cinfães), 154 – São João da Madeira, 155 – Arouca e 156 – Reriz (Castro

de Aire). Pode, também, ser consultada nas cartas 13-I – Castelo de Paiva (onde está inserida a zona de estudo), 14-IV – Lamego, 13-II – S. João da Madeira e 14-III S. Pedro do Sul, na escala 1:50000.

O Rio Paiva, com aproximadamente 110 km de extensão, é um afluente da margem esquerda do Rio Douro, fazendo assim parte da Bacia Hidrográfica do mesmo, bem como a grande maioria da área do município de Arouca, à exceção da zona Sul que, devido à serra da Freita, pertence à bacia Hidrográfica do Vouga.

II.2 Enquadramento climatérico

O concelho de Arouca insere-se no Norte Atlântico, assim como a grande maioria do Nordeste Português. O clima apresenta fortes contrastes entre as zonas mais baixas e as zonas mais altas, tanto em termos de temperatura como de precipitação. Segundo o sistema de classificação de Köppen-Geiger, a classificação do clima de Arouca é Csb. Querendo esta classificação indicar que se trata de um clima temperado húmido com verão seco e temperado.

A temperatura média anual do concelho de Arouca é de aproximadamente 14 °C, e a pluviosidade ronda os 1200 mm (https://pt.climate-data.org/location/54811/). Janeiro é o mês mais chuvoso e o mês mais seco é o mês de julho. Com a temperatura média mais alta está o mês de agosto, e janeiro com as temperaturas mais baixas (figura II-2).

Figura II-2 Valores médios anuais de precipitação e temperatura do concelho de Arouca (retirado de https://pt.climate-data.org/location/54811/)

II.3 Enquadramento geomorfológico

O concelho de Arouca é uma zona montanhosa, onde pontuam cristas, escarpas, planaltos cortados por vales profundos e muito encaixados, com altitudes dominantes entre os 200 e os 600 metros, atingindo as superiores a 1000 metros nas serras da Freita e de Montemuro e as inferiores a 200 metros nos vales dos rios Paiva e Arda, onde predominam as rochas metassedimentares e as rochas magmáticas de idade Paleozóica (figura II-3).

Dentro dos limites do concelho de Arouca são identificados três níveis de aplanação, dispostos em degraus, em resultado de três significativos episódios de erosão. O nível mais baixo, com 300-350 metros de altura, ter-se-á formado durante o Pliocénico superior correspondendo a Barreiros e Pala; o nível intermédio, com 600 metros de altura, ter-se-á formado durante o Miocénico inferior, que pode ser observado em Povos, S. João, Souto Redondo e Fuste; e o nível mais elevado, com mais de 1000 metros de altura, originado durante o Paleogénico e pode ser observado no Detrelo da Malhada.

Figura II-3 Mapa hipsométrico do concelho de Arouca (retirado de Sá et al., 2009)

Na região NE, a geomorfologia está relacionada com a existência de rochas quartzíticas do Ordovícico que originaram várias escarpas com orientação NW-SE (Medeiros *et al.* 1964). As duas cristas quartzíticas mais importantes da região são a dos Galinheiros e da Gralheira d´Água.

A cotas mais altas a Serra da Freita apresenta-se com uma superfície residual bastante deteriorada salientando-se os pontos mais elevados de Malhada com 1102 metros, Detrelo da Malhada com 1099 metros, Côto do Boi com 1001 metros, S. Pedro Velho com 1077 metros, Serlei com 1091 metros, e Vidoeiro com 1097 metros (Sá *et al.* 2009). Todos estes níveis encontram-se recortados por corredores de erosão, o que implica que, da porção peniplanáltica central apareçam ramificações cada vez mais baixas, apresentando vários degraus ou lombas até às cotas mais baixas, podendo muitos destes degraus, também conhecidos como rechãs, serem usados para a agricultura.

II.4 Enquadramento geológico

O enquadramento geológico do Geoparque Arouca encontra-se, de forma muito completa e pormenorizada nos trabalhos de Rocha (2008) e Sá *et al.* (2005, 2006 e 2008). Partindo destes estudos pode-se afirmar que Arouca se insere, em termos geológicos, na zona morfo-estrurural designada por Zona Centro Ibérica (ZCI). Esta é uma das zonas geotectónicas em que se divide o Maciço Hespérico ou Ibérico (figura II-4).

Figura II-4 Zonamento do Maciço Hespérico localizando o concelho de Arouca (adaptado de Gutiérrez-Marco, 2002)

A ZCI divide-se em dois domínios distintos: Domínio do Olho de Sapo e Domínio do Complexo Xisto-Grauváquico. Arouca insere-se no Domínio do Complexo Xisto-Grauváquico (posteriormente designado por Silva *et al.* (1995) como Super-Grupo Dúrico-Beirão) e pode ser consultado nas folhas 13-B (Castelo de Paiva), 13-D (Oliveira de Azeméis), 14-A (Lamego) e 14-C (Castro Daire) da Carta Geológica de Portugal à escala de 1:50000 e respetivas notícias explicativas.

II.4.1 Rochas metassedimentares

Os afloramentos geológicos predominantes na região de Arouca são rochas metassedimentares (figura II-5). Os mais extensos e antigos são constituídos por rochas do Grupo do Douro, uma das grandes unidades litológicas em que se divide o atualmente designado Super-Grupo Dúrico-Beirão (correspondendo ao anteriormente denominado Complexo Xisto-Grauváquico) e são constituídos por "xistos, conglomerados, alguns níveis de grauvagues e rochas carbonatadas". São também os mais antigos, com uma idade que se situa no Neoproterozóico-Câmbrico Inferior (Rocha, 2008; Sá et al., 2009, com referências prévias). Segundo Valle Aguado (1992) e Valle Aguado e Martínez Catalán (1994) é uma seguência constituída por xistos e guartzo-xistos com intercalações (milimétricas ou centimétricas) de metagrauvaques e, por vezes, também de quartzitos. As intercalações de níveis conglomeráticos predominam na zona NE do concelho e os níveis carbonatados são muito raros e restritos (é conhecida apenas uma intercalação decimétrica a NE do macico granítico da Serra da Feita) (Rocha, 2008). Os mesmos autores definiram, também, uma unidade inferior, monótona, onde predominam rochas pelíticas quartzosas com intercalações de metagrauvagues, e uma unidade superior que se inicia "com níveis lenticulares de conglomerados, intercalados com metagrauvaques, filitos e xistos argilosos". Admite-se a natureza turbidítica destes materiais e que a sua deposição aconteceu num "ambiente sedimentar de talude ou leque de dejeção submarina", sendo dobrados e erodidos, posteriormente, durante as fases Toledânica e Ibérica da Orogenia Caledónica, dando origem a uma descontinuidade (Rocha, 2008; Sá et al., 2009, com referências prévias).

Os materiais do Super-Grupo Dúrico-Beirão foram cobertos ao longo da sucessão ordovícico-carbónica por litologias que afloram ao longo de uma estreita e alongada estrutura da ZCI, conhecida por eixo Valongo-Tamames, com direção NW-SE, localizada na zona NE do concelho (figura II-5), e são constituídos principalmente por quartzitos, xistos ardosíferos e carbonosos com fósseis e metaconglomerados. Esta sequência metassedimentar assenta em discordância sobre os materiais do Super Grupo Dúrico-Beirão (Rocha, 2008; Sá *et al.*, 2009, com referências prévias) com interrupções sedimentares de diferentes amplitudes, resultantes de episódios glaciares e episódios tectónicos a nível regional.

O Ordovícico inicia-se com um movimento transgressivo que se caracteriza pela deposição de sedimentos grosseiros conglomeráticos e areníticos, "numa plataforma extensa, mas pouco profunda" (Gutiérrez-Marco *et al.*, 2002) resultantes da desagregação dos terrenos emersos do Gondwana.

Na sucessão ordovícico-carbónica foram definidas por Romano e Digens (1974) três formações: Formação Santa Justa, Formação Valongo e Formação Sobrido.

Figura II-5 Carta geológica simplificada do concelho de Arouca (retirado de Rocha, 2008)
A Formação Santa Justa é a formação mais antiga (Arenigiano, Ordovícico Inferior) e corresponde a uma unidade quartzítica. Segundo Medeiros et al. (1964 in Sá et al., 2009), os quartzitos são compactos, atravessados por veios de quartzo branco, e alternam com camadas de xistos duros, cinzento-escuros. "A espessura destas camadas oscila entre 100 e 800 m, orientam-se na direção N40ºW e inclinam 45º a 85º para NE, apresentando-se verticalizadas em algumas áreas (Medeiros et al., (1964 in Sá et al., 2009). Estas litologias preservam inúmeros icnofósseis (destacando-se as pistas de "Cruziana") que revelam deposição em ambiente marinho de plataforma pouco profunda (Sá e Gutiérrez-Marco (2006, in Sá et al., 2009). Sobrejacentes e em concordância com os quartzitos da Formação Santa Justa estão as rochas da Formação Valongo (Oretaniano-Dobrotiviano, Ordovícico Médio). Com a subida do nível médio das águas do oceano Rheic, no Ordovícico Médio, ocorreu a deposição, homogénea, de materiais mais finos (siltes e argilas), que originam os xistos argilosos finos, ardosíferos, com fósseis (Medeiros et al., 1964; Sá et al. (2005, in Sá et al., 2009), de que é exemplo a louseira de Canelas, de grande e preservada riqueza fossilífera. De acordo com Sá e Gutiérrez-Marco (2006 in Sá et al., 2009), o depósito/sedimentação destes materiais não foi sempre contínuo. Estes autores referem interrupções sedimentares, resultantes de episódios tectónicos a nível regional e, mais tarde, da glaciação fini-ordovícica que provocou uma descida do nível médio das águas do mar. Após esta grande glaciação depositaram-se areias que vieram a formar os quartzitos da base da Formação Sobrido (Hirnantiano, Ordovícico Superior), paleontologicamente estéreis, que foram cobertos por greso-xistos intercalados por pequenos seixos que se libertaram com a posterior fusão dos icebergs (dropstones).

Com a nova transgressão do mar, assistiu-se à deposição de sedimentos muito finos (argila e sílica coloidal) que originaram os xistos carbonosos do Llandovery (Silúrico Inferior), por vezes intercalados por níveis finos de quartzitos e liditos, onde ficaram preservados fósseis de Graptólitos. Os xistos do Silúrico afloram na região NE de Arouca (figura II-5), ao longo de uma comprida e estreita faixa com direção aproximada de N40°W, com algumas interrupções, e que se estende desde Galinheiros até aos limites do concelho, passando por Paradinha, na margem direita do Paiva (Medeiros *et al.*, 1964 e Piçarra (2006 in Sá *et al.*, 2009)).

De acordo com Sá *et al.* (2009), do Período Devónico, em que ocorreu a descida progressiva do nível do mar devido a fenómenos relacionados com o Orógeno Varisco, não afloram litologias na área do Geoparque Arouca. Isto deve-se a constrangimentos tectónicos relacionados com a estruturação da Bacia Carbonífera do Douro.

Nesta bacia, de natureza límnica, formada no interior das terras emersas, desenvolveuse, posteriormente, uma vegetação variada e abundante, resultante de um clima quente e húmido, que explica os níveis ricos em carvão. Os materiais deste período, Carbónico continental terminal (Gzheliano, Pennsylvaniano), assentam em discordância sobre as litologias do Ordovícico e do Silúrico (numa faixa que tem início a Este do Porto até S. Pedro do Sul, mas com interrupções) e caracterizam-se pela ocorrência de xistos com fósseis de vegetais, arenitos e um espesso conglomerado. Alternando com os xistos encontram-se estreitas camadas de carvão, que foi explorado nas minas do Pejão no concelho de Castelo de Paiva (Sá et al., 2009), com referências prévias). Os terrenos carboníferos têm pouca representatividade no concelho de Arouca, devido a um estreitamento da faixa. Os materiais aflorantes são constituídos principalmente por xistos argilosos, negros e fossilíferos, alternando com grés, psamitos e conglomerados. Estes últimos são polimíticos com uma matriz greso-xistosa. Os clastos compreendem xistos argilosos, xistos, filitos e quartzitos derivados tanto do Ordovícico como das unidades do Super-Grupo Dúrico-Beirão e ainda granitos e granodioritos de grão médio. (Sá et al., 2009), com referências prévias).

II.4.2 Rochas magmáticas

As rochas metassedimentares (neoproterozóicas e paleozoicas) foram intruídas por corpos granitoides que se instalaram durante as fases de plutonismo/magmatismo da Orogenia Varisca. (Rocha, 2008; Sá *et al.*, 2009, com referências prévias). Foi apenas a ação da terceira fase de deformação que ficou impressa nesses corpos granitoides.

Ferreira *et al.* (1987), subdividiram os granitoides variscos em quatro grupos: préorogénicos, ante-F3, sin-F3 e tardi- a pós-orogénicos.

Os primeiros granitoides sin-orogénicos a instalarem-se, os ante-F3, correspondem a granitos de duas micas ou biotíticos com restites; os posteriores, granitoides sin-F3, poderão corresponder tanto a granitoides biotíticos com plagioclase cálcica e seus diferenciados, como a granitos de duas micas ou biotíticos com restites (Azevedo e Valle Aguado, 2013).

Destes corpos granitoides variscos, destacam-se o Granito da Serra da Freita, o Granito Nodular da Castanheira (mais conhecido por "Pedras Parideiras"), os microgranitos alcalinos com pegmatitos e quartzo associados, o Granito de Alvarenga, o Maciço de Arouca (quartzodiorito biotítico), o Granito de Regoufe e o Granito de Montemuro (Mancha Cinfães-Alhões) (figura II-5).

Segundo Ferreira *et al.* (1987), os granitoides tardi- a pós-orogénicos são mineralogicamente bastante homogéneos, sendo biotíticos com plagioclase cálcica, ocasionalmente horneblenda, de origem profunda, "provavelmente resultado da fracionação de um magma básico empobrecido em terras raras" e ter-se-ão instalado no Carbónico terminal ou até no Pérmico, segundo um modelo distinto dos granitoides sinorogénicos, mas controlados ainda pela tectónica varisca.

Dos granitoides tardi- a pós-orogénicos destacam-se, na área do Geoparque Arouca: os filões de quartzo, de aplito e de pegmatito associados, os pórfiros granitoides, os doleritos e os lamprófiros (figura II-5).

À instalação de magmas que originaram os corpos granitoides, no final do Paleozoico, encontram-se associadas a generalidade das mineralizações que foram intensamente exploradas, como o antimónio, o ouro, o estanho, o volfrâmio ou o chumbo, maioritariamente associados a filões de quartzo. Estes locais foram propícios à abertura de minas que remontam ao tempo dos romanos (por ex. de ouro, Gralheira d'Água) e, mais recentemente, a "febre do volfrâmio" deu origem a explorações mineiras, por exemplo, Regoufe, Rio de Frades, Pena Amarela e Alvarenga.

II.4.3 Rochas sedimentares

As rochas sedimentares são as mais recentes, todas elas com menos de 2 Ma, e as que têm menor expressão cartográfica (figura II-5). Estas rochas resultaram da erosão das anteriores e da acumulação de depósitos fluviais, aluviões e eluviões durante o Pleistocénio.

Os depósitos de terraços fluviais estão presentes sobretudo nas margens meandrizadas do rio Paiva (Medeiros *et al.* (1964); Pereira *et al.* (1980 in Sá *et al.*, 2009) em dois tipos de terraços: uns elevam-se 10-15 m acima do leito do rio Paiva e são constituídos por calhaus soltos, mal calibrados e pouco selecionados onde predominam clastos de quartzitos, de quartzo e de grauvaques; outro depósito a 30-40 m acima do rio encontra-se consolidado com alguns calhaus grosseiros, aglutinados por cimento argilo-ferroginoso. Também existem alguns amontoados de calhaus rolados sobretudo de quartzito e quartzo, a menos de 20 m acima do leito do rio.

Os depósitos de fundo de vale, aluviões e eluviões atuais preenchem o fundo dos vales do Arda e Caima e são aproveitados como terrenos de cultivo. São constituídos por terras argilosas, arenosas e, mais raramente, por cascalhos (Pereira *et al.* (1980 in Sá *et al.*, 2009).

Toda esta riqueza geológica e geodiversidade singular permitem a criação dos vários geossítios e o aparecimento de uma igualmente singular biodiversidade, justificando assim a existência do Geoparque Arouca.

III. Revisão da Literatura

Neste capítulo serão abordados os aspetos fundamentais para conhecer e compreender as caraterísticas e comportamento dos maciços rochosos presentes na área de estudo. Para tal, é necessário conhecer o tipo de maciço em causa. Posteriormente, é fundamental tentar avaliar as suas propriedades mecânicas para verificar a estabilidade e possíveis roturas associadas. Após uma completa compreensão das caraterísticas, segue-se o tipo de medidas de reabilitação a aplicar consoante a necessidade e, mais tarde, a sua monitorização. A esta disciplina de estudo chama-se mecânica das rochas. O objetivo da mecânica das rochas é conhecer e prever o comportamento dos maciços rochosos perante a atuação de forças internas e externas que lhe são exercidas através de qualquer atividade humana ou natural.

III.1 Introdução

As massas rochosas aparecem, na maioria dos casos, afetadas por descontinuidades ou superfícies de fraqueza que separam os blocos da matriz rochosa, ou rocha intacta, constituindo, em conjunto, os maciços rochosos. Estes dois parâmetros são objeto de estudo da mecânica das rochas, mas são principalmente as descontinuidades que acabam por determinar o comportamento do maciço rochoso. A caracterização dos maciços rochosos e o estudo do seu comportamento mecânico e deformação são complexos devido à grande variabilidade das características e propriedades que apresentam e ao grande número de fatores que condicionam (Vallejo *et al.*, 2002).

O conhecimento das tensões e das deformações que o material rochoso pode suportar permite avaliar o seu comportamento mecânico e dimensionar estruturas e obras de engenharia. A relação entre estes parâmetros descreve o comportamento dos diferentes tipos de rochas e maciços rochosos, que dependem das propriedades dos materiais e das condições a que estão submetidos na natureza.

O estudo da estrutura geológica e das descontinuidades é um aspeto fundamental para perceber o comportamento dos maciços rochosos. Os planos de descontinuidades preexistentes controlam os aspetos de deformação e rotura destas massas rochosas a cotas superficiais, onde se desenvolve a grande maioria da atividade humana.

III.2 Descontinuidades

Os maciços rochosos estão fortemente condicionados pelas superfícies ou planos de descontinuidades que caracterizam as suas propriedades e comportamento. As superfícies de descontinuidades, como o próprio nome indica, forçam um comportamento descontínuo e anisotrópico da massa de rocha. Este comportamento descontínuo favorece um comportamento mais suscetível a deformações e consequentemente a uma maior instabilidade.

III.2.1 Influência das descontinuidades no maciço rochoso

A maioria dos maciços rochosos, em particular aqueles que surgem junto à superfície, comporta-se como descontínuo, com as descontinuidades a controlarem o seu comportamento mecânico. Logo, é imperativo que tanto a estrutura do maciço rochoso como a natureza das descontinuidades sejam cuidadosamente descritas assim como a litologia das mesmas. Estes parâmetros que possam ser usados em qualquer tipo de análise de estabilidade devem ser quantificados assim que possível.

Segundo dados obtidos por Kley e Lutton (1967) e mais tarde complementados por Ross-Brown (1973) e referidos por Hoek e Bray (1981), enquanto muitos taludes são estáveis a ângulos elevados e a alturas bastante altas, outros taludes pouco inclinados falham com alturas mais baixas. Estas diferenças devem-se ao facto de a estabilidade dos taludes variar com a direção e inclinação das descontinuidades, como planos de falhas, estratificação e superfícies de contacto litológico no interior do maciço rochoso. Quando estas descontinuidades são verticais ou horizontais, o simples deslizamento pelos planos pode não ocorrer e a rotura do talude terá de envolver fratura de rocha intacta. Por outro lado, quando o maciço rochoso contém descontinuidades voltadas para a face do talude com ângulos entre 30º e 70º, o deslizamento pode acontecer e a estabilidade do talude fica significativamente comprometida, ao contrário dos que só têm descontinuidades verticais ou horizontais.

Claramente a presença, ou ausência, de descontinuidades tem um papel muito importante na estabilidade dos taludes e a deteção destas características geológicas é um dos pontos mais críticos na sua análise.

III.2.2 Tipos de descontinuidades

O termo descontinuidade refere-se, sem qualquer referência à sua génese, a qualquer plano de separação da rocha dentro do maciço rochoso. Relativamente à sua génese, estas separações podem ser de origem sedimentar, tais como superfícies de estratificação e laminação, diagenético ou tectónico, tais como as diaclases ou falhas. Na tabela III-1 encontram-se discriminados os principais tipos de descontinuidades.

Tabela III-1 Tipos de descontinuidades (adaptado de Vallejo et al., 2002)								
Descontinuidades	Sistemáticas	singulares						
	- Diaclases							
	 Planos de estratificação 	- Falhas						
Planares	- Planos de clivagem							
	- Planos de xistosidade	-Discordâncias						
	- Foliação							
Lincorea	- Intersecção de descontinuidades	Eivon de debrea						
Lineares	planares							

III.2.3 Parâmetros que caracterizam as descontinuidades

Na descrição das diferentes famílias de descontinuidades de um maciço rochoso incluemse as seguintes características e parâmetros geométricos: orientação, espaçamento, continuidade, rugosidade, abertura, preenchimento, infiltrações e resistência ao corte. Alguns deles, como a rugosidade, abertura e resistência determinam o comportamento mecânico e a resistência dos planos de descontinuidade.

III.2.3.1 Orientação

A orientação, ou atitude, de uma descontinuidade no espaço é descrita pela direção e inclinação, sendo obtida com recurso a uma bússola de geólogo. Assumindo a descontinuidade como um plano, a direção é o ângulo que uma linha horizontal define com o Norte. Já a inclinação é o ângulo que o plano horizontal faz com a linha de maior inclinação do plano da descontinuidade. Para se representar a atitude das descontinuidades existem duas notações principais: convenção europeia, onde se indica o azimute da inclinação seguida do ângulo de inclinação do plano, por exemplo, 50/135; ou a convenção americana, onde se indica a direção do plano seguida do pendor da inclinação, por exemplo, N45ºE; 50ºSE. Exemplos estes representados esquematicamente na figura III-1.

Figura III-1 Terminologia para definir a orientação das descontinuidades (adaptado de Wyllie e Mah, 2004)

É conveniente medir um grande número de orientações de descontinuidades presentes no talude para se poder definir com rigor cada família. Existem diferentes representações gráficas que se podem obter com a orientação média das várias famílias:

- 1. Projeções estereográficas dos polos de todos os planos medidos no campo;
- Diagramas de contornos, ou de isodensidades, onde visualmente se consegue individualizar cada família de descontinuidades e saber a atitude média de cada uma delas;
- 3. Diagramas de rosas que exibem a frequência de planos para uma dada orientação;
- 4. Blocos diagrama permitindo uma visão geral das famílias e suas orientações;
- 5. Símbolos em mapas geológicos indicando a sua localização e valores médios para diferentes descontinuidades medidas.

No presente trabalho serão apenas utilizadas as projeções estereográficas, diagramas de contornos e diagramas de rosas.

III.2.3.2 Espaçamento

O espaçamento das descontinuidades é a distância, medida na perpendicular, entre dois planos de descontinuidades sucessivos, considerados da mesma família. O espaçamento entre as descontinuidades adjacentes controla fortemente o tamanho individual de cada bloco de rocha intacta. Várias descontinuidades muito próximas umas das outras tendem a imprimir um caráter de baixa coesão ao maciço rochoso, enquanto as descontinuidades

mais espaçadas oferecem condições mais prováveis de "bloqueio" desses mesmos blocos. Estes efeitos estão também dependentes da persistência (ou continuidade) dos planos de descontinuidades individualmente (parâmetro esse abordado no próximo ponto).

Em casos muito particulares, um espaçamento muito pequeno pode alterar o modo de rotura do talude de planar para circular com espaçamento excecionalmente baixo, a orientação oferece pouca importância e a rotura pode ocorrer por rotação ou rolamento de pequenos blocos. No caso da orientação, a importância do espaçamento aumenta quando outras condições para a deformação estão presentes, por exemplo, baixa resistência ao cisalhamento e um número suficiente de descontinuidades para o deslizamento ocorrer (ISRM, 1978). É o que acontece num maciço rochoso muito fraturado, com espaçamento entre fraturas muito pequeno, acabando por mecanicamente se comportar como um solo.

O espaçamento, de uma maneira geral, também influencia a permeabilidade do maciço rochoso. Quanto maior for o espaçamento entre as descontinuidades, menor é a sua permeabilidade. O espaçamento pode ser descrito conforme a tabela III-2 (ISRM, 1978).

Tabela III-2 Classes de espaçamento (ISRM, 1978)						
Descrição	Espaçamento (mm)					
Extremamente próximas	<20					
Muito próximas	20 - 60					
Próximas	60 - 200					
Moderadamente próximas	200 - 600					
Afastadas	600 - 2000					
Muito afastadas	2000 - 6000					
Extremamente afastadas	>6000					

III.2.3.3 Continuidade

A continuidade, ou persistência, pode ser definida como a extensão superficial visível do plano de descontinuidade, medida em metros, ao longo do maciço rochoso. É um dos parâmetros mais importantes, mas também um dos mais difíceis de se obter no campo. Em áreas pouco arborizadas, a análise da fotografia aérea permite definir este parâmetro. Uma família de descontinuidades será normalmente mais contínua do que outra dada família. As famílias com menores continuidades têm, portanto, tendência a terminar quando se cruzam com outras descontinuidades.

No caso dos taludes é de elevada importância averiguar a persistência das descontinuidades orientadas para a instabilidade. A continuidade também tem um papel de relevo importante na permeabilidade do maciço rochoso, visto que este parâmetro influencia a interseção, ou não, das descontinuidades e, consequentemente, faz variar a conetividade hidráulica (Hoek e Bray, 1981). A continuidade pode ser qualificada segundo ISRM (1981) conforme a tabela III-3.

	Tabela III-3	Valores	de	continuidade	(ada	ptado	de	ISRM,	1981)
--	--------------	---------	----	--------------	------	-------	----	-------	------	---

Continuidade	Comprimento (m)
Muito baixa continuidade	<1
Baixa continuidade	1 – 3
Continuidade média	3 – 10
Muito continua	10 – 20
Elevada continuidade	>20

III.2.3.4 Rugosidade

Em termos gerais, a rugosidade das descontinuidades pode ser caracterizada tendo em conta duas escalas. Uma escala maior, em sentido amplo, que se refere à ondulação da superfície de descontinuidade e uma escala menor, referente às pequenas irregularidades dos planos (Patton, 1966 e Patton e Deere, 1971). Normalmente são referidas como de 1^a e 2^a ordem respetivamente. Por regra, quando mais rugosa a superfície das descontinuidades maior a resistência do maciço rochoso. A quantificação deste parâmetro pode ser obtida através de padrões de auxílio de rugosidade como mostra a figura III-2. No presente trabalho a rugosidade foi avaliada visualmente com o auxílio destes perfis.

Figura III-2 Perfis de rugosidade (adaptado de Vallejo et al., 2002)

III.2.3.5 Abertura

A abertura define-se com a distância, medida na perpendicular, entre as duas faces da mesma descontinuidade em que o espaço está preenchido por ar ou água. No caso de a abertura estar preenchida por outro material como, por exemplo, terra ou argila, esta distância passa a ser denominada de largura.

Na maioria dos maciços rochosos subsuperficiais, as aberturas são diminutas não atingindo mais do que meio milímetro, comparadas com as aberturas à superfície que podem mesmo atingir vários metros. A menos que as descontinuidades sejam excecionalmente lisas e planares, as aberturas com menos de 1 milímetro, não terão significância no comportamento mecânico do maciço rochoso. No entanto, a abertura e rugosidade das descontinuidades afeta diretamente a conetividade hidráulica do maciço (Tatone e Grasselli, 2012), modificando as tensões efetivas que são exercidas nas paredes

das superfícies de descontinuidade. ISRM propõe a classificação apresentada na tabela III-4.

Tabela III-4 Descrição da abertura (adaptado de ISRM, 1981)							
Abertura (mm)	Descrição	1					
<0,1	Muito apertada						
0,1 – 0,25	Apertada	Fechada					
0,25 – 0,5	Parcialmente aberta						
0,5 – 2,5	Aberta						
2,5 – 10	Moderadamente aberta	Aberta					
>10	Larga						
10 - 100	Muito larga						
100 – 1000	Extramente larga	Muito aberta					
>1000	Cavernosa						

III.2.3.6 Preenchimento

Preenchimento é o termo usado para descrever o material que possa estar no espaço entre as descontinuidades, espaço esse chamado de largura, como referido no ponto anterior. Devido a diversas variedades de ocorrências, as descontinuidades preenchidas apresentam um vasto leque de comportamentos mecânicos, em particular referentes à sua resistência ao corte, deformabilidade e permeabilidade. Estes diferentes comportamentos mecânicos que o maciço rochoso acaba por experimentar dependem do comportamento mecânico do material de preenchimento. O comportamento a curto ou a longo prazo pode ser bastante diferente, podendo facilmente induzir em erro as condições favoráveis a curto prazo (ISRM, 1981).

Vallejo *et al.* (2002) refere as principais características a ser descritas no afloramento como sendo:

- 1. A sua largura;
- 2. A descrição do material de preenchimento e a identificação do mesmo;
- 3. A resistência medida através do uso do esclerómetro (martelo de Schmidt);
- 4. O grau de humidade e uma estimativa da permeabilidade do material;
- 5. O deslocamento por corte a favor do material, no caso de ser possível o seu reconhecimento.

III.2.3.7 Infiltrações

As descontinuidades, no caso de se encontrarem preenchidas ou não, são zonas preferenciais de passagem de água, conhecida como permeabilidade secundária, ainda que certas rochas apresentem também permeabilidade através da matriz rochosa, conhecida como permeabilidade primária.

Para se descrever a percolação de água nas descontinuidades deve-se recorrer à tabela III-5.

Classe	Descontinuidades sem preenchimento	Descontinuidades com preenchimento
I	Fenda muito plana e fechada; aparece seca e não parece possível que circule água	Material de preenchimento muito consolidado e seco; não é possível o fluxo de água
П	Fenda seca sem evidências de fluxo de água	Material de preenchimento molhado, mas sem água livre
Ш	Fenda seca, mas com evidência de ter circulado água	Material de preenchimento molhado com gotejar ocasional
IV	Fenda húmida, mas sem água livre	Material de preenchimento onde se observa fluxo de água contínuo (estimar caudal)
V	Fenda com água; gotejar ocasional, mas sem fluxo contínuo	Material de preenchimento localmente lavado; fluxo de água considerável segundo canais preferenciais (estimar caudal e pressão)
VI	Fenda com fluxo contínuo de água (estimar caudal e pressão)	Material de preenchimento completamente lavado (pressão de água elevada)

Tabela III-5 Descrição das infiltrações em descontinuidades (adaptado de ISRM, 1981)

III.2.3.8 Resistência ao corte

As forças compressivas que atuam num maciço rochoso e que afetam as paredes das descontinuidades são uma importante componente da resistência ao corte e deformabilidade, especialmente se as paredes estiverem fechadas, existindo assim contato direto entre os dois lados. Os maciços rochosos são frequentemente meteorizados perto da superfície e noutros casos via processos hidrotermais. A meteorização (e alteração) geralmente afeta mais as paredes das descontinuidades do que o interior da rocha em si. Isto resulta numa resistência das paredes mais baixa, comparativamente com o maciço rochoso intacto (ISRM,1978).

O estudo das descontinuidades é, portanto, muito importante na estabilidade de um talude, pois desempenha um papel muito relevante na resistência através do respetivo ângulo de atrito. No caso de descontinuidades sem preenchimento, o ensaio mais comum para se obter este valor é o *tilt test*.

O ensaio de *tilt test* pode ser realizado num aparelho rotativo e consiste em inclinar uma superfície gradualmente, paralela à descontinuidade, que se encontra inicialmente na horizontal. Nesse plano são então colocados dois blocos cortados por uma superfície preferencial de corte inerente à rocha, estando o bloco inferior fixo e o superior livre para deslizar ao longo do plano de descontinuidade. Assim, com o progressivo aumento da inclinação do plano por ação manual, o bloco solto, superior, pode deslizar sobre o fixo quando o atrito entre os dois blocos for inferior ao peso do bloco solto. Na figura III-3 é possível observar o aparelho para realizar o ensaio de *tilt test*. O ensaio dá-se por concluído quando se observa movimento por parte do bloco solto, medindo-se o ângulo entre o plano inclinado e a horizontal (α), (Muralha, 1991).

O valor do ângulo de atrito (ϕ) é obtido através da seguinte equação:

 $\phi = \operatorname{arctg}(1, 115 \times tg(\alpha))$

Figura III-3 Aparelho para ensaio de tilt test

O ensaio deve ser feito na direção e sentido simulando o movimento que aconteceria no talude que está a ser estudado.

III.3 Fatores de instabilidade de taludes

A estabilidade de um talude é determinada por fatores geométricos, altura e inclinação, fatores geológicos, presença de planos e zonas de fragilidade, fatores hidrogeológicos (presença de água) e fatores geotécnicos, resistência e deformabilidade. A combinação destes fatores pode determinar as condições de rotura ao longo de uma superfície, e que o movimento de um determinado volume de solo ou rocha seja cinematicamente possível (Vallejo *et al.*, 2002). A possibilidade de rotura e os mecanismos de instabilidade dos taludes são controlados principalmente pelos fatores geométricos e geológicos, parâmetros esses alvos de estudo no presente trabalho.

Os diferentes processos que provocam a instabilização dos taludes podem-se agrupar em dois grupos: os desencadeantes e os condicionantes, como observável na tabela III-6. Os fatores desencadeantes, que têm em conta o meio envolvente, podem influenciar o material rochoso ao afetar as suas propriedades e características comprometendo o seu equilíbrio. Já os fatores condicionantes são intrínsecos ao maciço rochoso e são suscetíveis de incitar uma possível rotura.

Fatores condicionantes	Fatores desencadeantes		
Estratigrafia e litologia	Sobrecargas estáticas		
Estrutura geológica	Cargas dinâmicas		
Condições hidrogeológicas	Alterações nas condições		
Propriedades física, resistência e	hidrogeológicas		
deformabilidade	Variações na geometria		
Tensões naturais e estado de tensão- deformação	Redução de parâmetros resistentes		

A natureza do material que forma o talude está intimamente relacionada com o tipo de instabilidade que este pode sofrer, apresentando as litologias diferentes graus de suscetibilidade potencial antes da ocorrência de deslizamentos ou roturas. As propriedades físicas e resistentes de cada tipo de material, assim como a presença de água, controlam o seu comportamento tensão-deformação e, portanto, a sua estabilidade.

As descontinuidades e toda a estrutura geológica também são um dos fatores mais relevantes no estudo de estabilidade de qualquer talude. A estrutura geológica tem um papel decisivo nas condições de estabilidade do maciço rochoso. A combinação dos elementos estruturais com os parâmetros geométricos do talude e a sua orientação, têm um papel importante. Por exemplo, um talude com orientação para Norte e xistosidade para Este não apresenta os mesmos problemas de estabilidade que um talude e respetiva xistosidade com a mesma orientação.

Os sistemas de descontinuidades distribuídos espacialmente pelo maciço rochoso que definem a estrutura desse mesmo macico, individualizam blocos mais ou menos competentes de rocha que se mantêm agrupados entre si pelas características e propriedades físicas e resistentes das descontinuidades. A presença de descontinuidades (como superfícies de estratificação, falhas, diaclases entre outros) acarreta comportamentos possivelmente anisotrópicos do macico rochoso levando à existência de planos preferenciais de rotura.

III.3.1 Mecanismos de rotura

Segundo Carreto (1989), os casos de instabilidade de taludes estão essencialmente relacionados com a litologia, com os planos de descontinuidades, com o grau de meteorização e com o estado hidrogeológico do maciço rochoso. Quando a estabilidade do talude fica comprometida, é possível diferenciar-se duas etapas ligadas a diferentes mecanismos: rotura inicial, demarcando o volume rocha solta e a movimentação desse volume.

Diferentes tipos de taludes estão associados com diferentes estruturas geológicas e, no caso desse talude estar de alguma maneira ligado, direta ou indiretamente, à atividade humana, é imperativo conhecer potenciais problemas de instabilidade que possam ocorrer. A figura III-4 mostra os quatro principais tipos de rotura que podem ocorrer em maciços rochosos e a respetiva projeção estereográfica das descontinuidades associada mais provável para levar à rotura. A importância da distinção entre os diferentes tipos de rotura deve-se ao fato de as medidas de segurança a aplicar não serem as mesmas para qualquer situação de rotura.

Figura III-4 Principais tipos de roturas em taludes rochosos, e potencias condições estruturais qua as favoreçam: (a) rotura planar; (b) rotura por cunha; (c) rotura por tombamento; (d) rotura circular. (Legenda: αf – azimute do pendor da face do talude; αs- direção e sentido do deslizamento; α_l - direção e sentido do tombamento; α_l - azimute do pendor da linha de interseção) (adaptado de Wyllie e Mah, 2004)

III.3.1.1 Rotura planar

Este tipo de rotura é relativamente raro de ocorrer num talude rochoso pois só acontece se todas as condições geométricas necessárias existirem. A rotura por cunha, considerada no próximo ponto, é mais geral e em muitos casos a rotura planar é englobada numa rotura por cunha generalizada, Hoek e Bray (1981). Para que o deslizamento planar ocorra é necessário que as seguintes condições geométricas existam:

- 1. O plano por onde ocorre o deslizamento tem de apresentar uma direção paralela ou variando no máximo até 20º com a face do talude;
- 2. O plano de deslizamento deve-se apresentar virado para o exterior do talude, sendo a sua inclinação menor que a da face do talude (figura III-5(a));
- 3. A inclinação do plano de deslizamento deve ser maior que o ângulo de atrito desse plano (figura III-5(a));
- 4. Inexistência de confinamento lateral, permitindo o deslizamento gravítico dos blocos deslocados (figura III-5(b)).

Figura III-5 Geometria de um talude exibindo rotura planar: (a) perfil mostrando o plano de deslizamento, ψ_{I} – inclinação da face do talude, ψ_{P} – inclinação do plano de descontinuidade, ϕ – ângulo de atrito; (b) exemplo de superfícies libertadoras (adaptado de Wyllie e Mah, 2004)

Os diferentes tipos de roturas planares dependem da distribuição e características das descontinuidades do talude. Segundo Vallejo *et al.* (2002) as mais frequentes são:

- 1. Rotura por um plano que aflora na face do talude (figura III-6);
- 2. Rotura por um plano paralelo à face do talude, por erosão ou perda da resistência da base.

Figura III-6 Tipos de rotura planar(a) rotura na face superior do talude; (b) rotura na face do talude (adaptado de Wyllie e Mah, 2004)

III.3.1.2 Rotura por cunha

Quando duas descontinuidades com pendor oposto se intersetam, e a linha resultante está virada para o exterior do talude, o bloco, em forma de cunha, que está pousado nessas descontinuidades vai deslizar para baixo ao longo dessa linha, assumindo que a inclinação da mesma é maior que o ângulo de atrito.

A geometria para que uma rotura por cunha ocorra é definida na figura III-7. Baseado nesta geometria, Hoek e Bray (1981) referem que as condições gerais para haver deslizamento são as seguintes:

- 1. Dois planos que se intersetem vão sempre formar uma linha; numa projeção estereográfica, a linha de interseção é representada por um ponto;
- A linha de interseção entre as duas descontinuidades tem de ser menos inclinada que a face do talude, e mais inclinada que a média do ângulo de atrito das duas faces de deslizamento;
- 3. A linha de interseção tem de mergulhar para fora em direção ao exterior da face do talude para o deslizamento ser exequível.

Figura III-7 Condições geométricas gerais para falha por cunha: (a) geometria de rotura por cunha, ψ_f – ângulo de inclinação da face do talude, ψ_i – inclinação da linha de intersecção, φ – ângulo de atrito; (b) perfil mostrando a linha de interseção (adaptado de Wylie e Mah, 2004)

De uma forma geral, o deslizamento pode acontecer se a linha de interseção entre as duas descontinuidades formadores da cunha estiver dentro da zona crítica, assunto esse explicado mais à frente.

III.3.1.3 Rotura por tombamento

Este tipo de rotura acontece quando há descontinuidades com direção paralela, ou próxima, à do talude (desvio máximo de 30º entre ambos os planos, segundo Goodman (1989). A rotura pode ocorrer com ou sem flexão dos planos de falha, a condição necessária é que os planos de falha, ou estratos, sejam suficientemente alongados, em relação à altura do talude, para poderem, se for o caso, curvar (figura III-8).

Figura III-8 Descontinuidades que conduzem à rotura por tombamento (adaptado de Goodman, 1989)

Segundo Vallejo *et al.* (2002), as causas para que possa ocorrer rotura por tombamento são:

- 1. Altura excessiva do talude;
- 2. Existência de forças externas aplicadas sobre os estratos;
- 3. Geometria desfavorável dos estratos;
- 4. Existência de pressão de água sobre os estratos;
- 5. Concentração desfavorável de tensões.

III.3.1.4 Rotura circular

A rotura circular é típica em maciços rochosos que apresentam blocos de pequenas dimensões comparativamente ao talude, mais comum em litologias brandas, bastante meteorizadas ou fortemente fraturados. Neste último caso o talude apresenta um comportamento isotrópico que é auxiliado pela aleatoriedade da malha de descontinuidades. A superfície de rotura desenvolve-se normalmente a partir de falhas de tração localizadas na parte superior do talude, e desenvolve-se, parcialmente ou não, ao longo de superfícies de descontinuidades (figura III-9).

Figura III-9 Perfil de uma rotura circular típica

III.3.2 Análise cinemática

As projeções estereográficas permitem uma análise tridimensional das descontinuidades contidas num maciço rochoso e isto permite a identificação de descontinuidades com possível orientação desfavorável. As análises de projeções estereográficas são frequentemente referidas como análises cinemáticas, onde a análise cinemática é a ciência que examina movimentos ou potenciais movimentos sem considerar as massas e forças envolvidas. Pela análise cinemática é possível identificar potenciais de rotura planar, rotura por tombamento e rotura por cunha, não sendo possível identificar potenciais de rotura circular.

A menos que o maciço rochoso seja severamente fraturado, vários agrupamentos distintos serão óbvios quando as descontinuidades forem traçadas. No entanto, estes agrupamentos de descontinuidades nem sempre são de imediata identificação, sendo preciso recorrer a diagramas de isodensidades, ou também conhecidos como diagramas de contorno, para se obter uma ajuda visual na identificação das famílias de descontinuidades.

Na presente tese de mestrado recorreu-se ao software *RockPack III* para se proceder à análise cinemática da área em estudo. Este programa informático tem como base o teste de Markland, assunto abordado e explicado no próximo ponto.

III.3.2.1 Teste de Markland

Inicialmente proposto por Markland (1972 in Yoon *et al.*, 2002) e refinado por Hocking (1976 in Yoon *et al.*, 2002), este método da análise cinemática destina-se à avaliação da possibilidade de rotura. O conceito base da análise cinética por rotura planar é bastante direta, para isso duas condições têm obrigatoriamente de acontecer.

Primeiro, a descontinuidade tem de ter um ângulo de inclinação maior que o ângulo de atrito. Por outras palavras, o ângulo de atrito é o mínimo valor que a descontinuidade pode ter para que haja deslizamento pelo plano de descontinuidade. No entanto, são ignorados alguns fatores óbvios como a coesão e irregularidades (como a rugosidade) entre as superfícies de deslizamento, daí ser conservadora. Os ângulos de atrito reais podem ser obtidos realizando testes de corte direto nas descontinuidades. Valores de ângulo de atrito para a maioria das rochas competentes estão entre 28 e 32 graus (guia do *RockPack III* e Hoek e Bray, 1981).

A segunda condição para haver deslizamento é que a descontinuidade tenha pendor para a face do talude, ou seja, esteja "virada para fora". Isto quer dizer que a descontinuidade tem de ter um pendor geral semelhante ao da face do talude, mas menos acentuado. O deslizamento não ocorre se a descontinuidade tiver pendor para o interior do talude, pois fica "presa" nessa posição.

As duas condições descritas anteriormente podem ser representadas numa projeção estereográfica sob a forma de uma zona crítica, como representado na figura III-10. Os pendores vetoriais das descontinuidades, que caiam dentro da zona crítica, área apresentada a cinza, têm um ângulo de inclinação maior que o ângulo de atrito da rocha (aqui 28°). Isto é conhecido como o teste de Markland.

Figura III-10 Teste de Markland para rotura planar usando pendores vetoriais (dip vectors) (adaptado do guia do RockPack III)

O teste de Markland é uma ferramenta muito útil na identificação de descontinuidades que possam resultar em roturas planares no maciço rochoso e para filtrar outras descontinuidades em consideração. No entanto, nem todas as descontinuidades que caiam dentro da zona crítica irão obrigatoriamente resultar em rotura, existindo mais fatores envolvidos no processo de rotura e deslizamento, sendo esta, como já referido atrás, uma análise conservativa.

Neste processo todas as descontinuidades são assumidas como contínuas e planas, quando na realidade a maior parte dos casos não o é. Até mesmo uma pequena fração de rocha intacta ao longo da descontinuidade pode prevenir o deslizamento. Este processo também assume valores de coesão iguais a zero, o que nem sempre corresponde à realidade, criando um cenário que parece mais grave do que na realidade o poderá ser.

A análise estereográfica para potencial de rotura por cunha é muito similar ao potencial de rotura planar. Para que uma rotura por cunha ocorra, a linha resultante pela interseção das famílias de descontinuidades que formam a cunha tem de ter maior inclinação que o ângulo de atrito e o pendor tem de ser menor e estar, obviamente, virado para a face do talude, para fora.

Para a análise de falha por tombamento, Goodman (1989) refinou o processo e considerando-o semelhante ao planar, procedendo-se à combinação geométrica dos planos intersetados com o cone de atrito adotado (figura III-11).

Figura III-11 Display do RockPack III incluindo a zona crítica de tombamento (adaptado do guia do RockPack III)

Na análise cinemática de um talude rochoso os dados usados são os mesmos, no entanto, para calcular o potencial de rotura planar e por tombamento, são usados os pendores vetoriais, e para calcular o potencial de rotura em cunha são usados os polos desses mesmos planos. Na figura III-12 encontram-se representados esquematicamente os dois tipos de projeções usadas.

Figura III-12 Projeção estereográfica fazendo distinção entre pólo e pendor vetorial do mesmo plano (traduzido de Whisonant e Watts, 1989)

Para se perceber como estes dois métodos de representação de descontinuidades se aplicam na análise cinemática do presente trabalho, na figura III-13 são mostradas duas projeções estereográficas, usando os mesmos dados obtidos no campo para cada uma, de uma secção escolhida ao acaso. Na projeção estereográfica da esquerda é feita a análise do potencial de rotura planar e por tombamento, projetando os planos de descontinuidades usando pendores vetoriais. Na projeção estereográfica da direita é feita a análise do potencial de rotura por cunha usando os polos dos planos de descontinuidades.

No capítulo IV aquando da apresentação e discussão dos resultados deverá ser esta a interpretação das figuras do *RockPack III* usadas para a análise cinemática, duas projeções estereográficas por talude a analisar.

Figura III-13 Na projeção estereográfica da esquerda é feita a análise do potencial de rotura planar e por tombamento, projetando os planos de descontinuidades usando pendores vetoriais. Na projeção estereográfica da direita é feita a análise do potencial de rotura por cunha usando os polos dos planos de descontinuidades (RockPack III)

III.4 Medidas mitigadoras

Depois da análise cinemática da estabilidade dos taludos em causa e conhecidas todas as condicionantes dessa instabilidade devem-se tomar medidas preventivas adequadas, com o principal objetivo de nuns casos aumentar a estabilidade do talude e noutros prevenir o risco associado.

Para projetar e aplicar estas medidas, segundo Vallejo et al. (2002) é preciso conhecer:

- 1. As propriedades e o comportamento geomecânico do maciço rochoso constituinte do talude;
- 2. Os mecanismos de rotura, incluindo a velocidade e direção do movimento bem como a geometria da rotura;
- 3. Todos os fatores geológicos, hidrogeológicos e de qualquer outro tipo que influenciem a estabilidade do talude.

Para que se possam pôr em prática estas medidas é necessário ter em atenção os meios económicos e materiais disponíveis, a urgência da intervenção e a magnitude e dimensão da instabilidade.

Segundo Wyllie e Mah (2004), podem-se dividir as medidas mitigadoras em dois grandes grupos: as medidas de estabilização e as medidas de proteção. As medidas de estabilização são medidas ativas, ou seja, atuam diretamente sobre a fonte da instabilidade prevenindo futuros deslizamentos. As medidas de proteção são medidas passivas e visam minimizar os danos causados aquando do processo de instabilização, nomeadamente queda de blocos.

III.4.1 Medidas de estabilização

As medidas estabilizadoras podem ser a modificação da geometria do talude, criação de mecanismos de drenagem ou o aumento da resistência do maciço rochoso através de elementos estruturais.

III.4.1.1 Alteração da geometria

Para se obter uma configuração mais estável do talude, as forças causadas pelo peso dos materiais podem ser redistribuídas pelas seguintes maneiras: diminuição da inclinação do talude, remoção de blocos nas zonas superiores, construção de patamares e bermas (escalonamento do talude). A figura III-14 mostra alguns exemplos de remoção de material num talude.

Figura III-14 Representação esquemática de possíveis modificações geométricas (adaptado de Wyllie e Mah, 2004)

A remoção de material meteorizado e instável na crista do talude elimina peso desta zona, reduzindo possíveis forças instabilizadoras.

A diminuição do ângulo geral do talude e a retirada de peso na crista nem sempre são medidas exequíveis por dificuldades de acesso à zona superior do talude, pelos grandes volumes a mover, por questões ambientais, entre outras. Por isto, as alterações de geometria consistem, muitas vezes, em aumentar o peso da base do talude. No entanto, esta solução implica ocupar maior área no assentamento do talude. É recomendável que o material colocado na base do talude para maior suporte seja drenante ou permeável, para permitir o fluxo de águas e não criar outros problemas associados.

O escalonamento do talude, com a construção de patamares e bermas contribui para evitar que se formem roturas superficiais que afetem toda a frente do talude. As bermas também servem para reter blocos que se desprendam ou roturas locais do talude, para instalação de medidas de drenagem e acesso para obras de saneamento e controlo do talude de uma forma geral.

III.4.1.2 Drenagem

As medidas de drenagem têm como finalidade eliminar ou diminuir a quantidade de água percolante que devido à pluviosidade pode existir no talude, reduzindo as pressões intersticiais que atuam como fator instabilizador ao longo das superfícies de rotura e descontinuidades. Mesmo que em pequenas quantidades, a existência de água em maciços rochosos favorece a instabilidade ao reduzir a resistência ao corte das descontinuidades. A presença de água contribui também para a meteorização do talude e, em casos de climas extremos, para a expansão das descontinuidades durante os ciclos de gelo-degelo (Andrew *et al.*, 2011).

A drenagem pode ser superficial, através de valas e canalizações, ou interna, através de drenos horizontais, poços ou galerias de drenagem.

A drenagem superficial previne que a água de escorrência se infiltre no talude e nas descontinuidades evitando a subida do nível freático, o aparecimento de pressões

intersticiais nos planos de descontinuidades e a saturação dos solos. Evitam, da mesma forma, a erosão causada pelas águas de escorrência.

Estas medidas devem ser planeadas para evitar a chegada e acumulação de água no talude, principalmente na zona da crista do talude, e, em casos de taludes escalonados, nas bermas, visto serem locais sub-horizontais e, por esta razão, mais propícios a acumular água.

As águas de escorrência canalizam-se através de valas e condutas de drenagem, que geralmente se devem situar nas zonas superiores e laterais do talude. Segundo Ramos (2010), a capacidade de vazão vai depender das dimensões da secção transversal, da inclinação longitudinal e da rugosidade das paredes, sendo, portanto, importante dimensionar as valas e condutas de acordo com a quantidade esperada de água.

A drenagem interna tem como finalidade baixar o nível freático e drenar a água do interior do talude, sendo uma solução frequente em taludes rochosos com problemas de instabilidade. Segundo Vallejo *et al.* (2002), no planeamento da drenagem interna devemse considerar os seguintes aspetos:

- 1. A permeabilidade e características hidrogeológicas dos materiais, os caudais a drenar e o raio de ação do elemento drenante;
- 2. Os drenos devem atingir as cotas nas quais se encontra a água;
- 3. Dependendo da sua profundidade e localização, os drenos podem-se rasgar e ficar incapacitados se houver movimentos no talude, causando efeitos contrários aos pretendidos inicialmente, levando água para o interior da massa rochosa.

Nos sistemas de drenagem interna destacam-se os poços, os drenos californianos, as valas e as galerias drenantes.

III.4.1.3 Reforço

Nos procedimentos de reforço são introduzidos elementos resistentes no talude com a finalidade de aumentar a resistência ao corte mediante alguns dos seguintes sistemas (Vallejo *et al.*, 2002):

- 1. Introdução de elementos que melhorem a resistência do maciço na superfície de rotura;
- 2. Introdução de elementos que aumentem as forças tangenciais de fricção na superfície de rotura.

Estes elementos, tendo em conta a sua função e foco de ação, podem ser de reforço interno ou externo. Os elementos de reforço interno, na sua grande maioria, atuam fortalecendo internamente a massa rochosa aumentando assim a sua resistência ao corte. Ancoragens, ativas e passivas, injeções de permeação e redes metálicas pregadas são alguns exemplos a destacar. Os elementos de reforço externo protegem o maciço rochoso da erosão superficial e da meteorização, conferindo também algum reforço estrutural. Destacam-se a colocação de betão projetado, os contrafortes, muros de contenção e as proteções contra a erosão.

As ancoragens são normalmente constituídas por varões ou fios de aço, aplicados no maciço rochoso por meio de furos para estabilizar um bloco pontual ou através de uma malha de ancoragens em todo o talude. O comprimento destas ancoragens pode variar e é compatível com uma grande multiplicidade de litologias, características estruturais e

resistências a aplicar (Andrew *et al.*, 2011). As ancoragens ativas adquirem capacidade de carga depois de pré-esforçadas e as ancoragens passivas só entram em esforço quando solicitadas pelo terreno. Na figura III-15 podem-se observar os dois tipos de ancoragens.

Figura III-15 Representação esquemática de ancoragens ativas e passivas (adaptado de Wyllie e Mah, 2004)

As injeções de permeação são utlizadas quando existem fraturas no maciço rochoso preenchido com ar e/ou água e as condições geológicas e geotécnicas permitem o enchimento dessas fraturas, geralmente por um cimento a baixas pressões, colmatando as fraturas e possíveis deslizamentos pelas mesmas.

As redes metálicas pregadas, por meio de ancoragens passivas ou ativas, podem ter comportamento flexível e recebem e aplicam forças ao talude de uma forma contínua. São elementos estabilizadores e de suporte ao material contido na rede metálica. Têm capacidade de suporte ligeiro pelo que não podem ser aplicados em casos de blocos com grandes dimensões, no entanto são versáteis noutros aspetos pois adaptam-se a superfícies irregulares, confinam e evitam a gradual desagregação do material à superfície do talude (Cardoso e Menezes, 2009) (figura III-16).

Figura III-16 Exemplos de redes metálicas (retirado de Cardoso e Menezes, 2009)

O betão projetado é uma técnica que pode ser aplicada por via seca ou por via húmida. A escolha é feita tendo em conta os seguintes parâmetros: o tipo de aplicação, a quantidade e a distância a transportar. Na via seca, os agregados são misturados e projetados sobre pressão humidificando homogeneamente a pasta; na via húmida a mistura é feita de forma mais tradicional e onde só depois é projetada sob pressão (Saraiva, 2007).

Em qualquer um dos casos referidos anteriormente é necessário a criação de uma rede de drenagem de forma a ser possível à água sair detrás da camada de betão, prevenindo a sua acumulação e, consequentemente, o aparecimento de fissuras indesejáveis.

Os contrafortes são estruturas colocadas em lugar de material rochoso que tenha caído devido a desprendimentos ou à erosão. Segundo Wyllie e Mah (2004), os contrafortes têm duas principais funções: protegem o material exposto e suportam o material circundante que perdeu o apoio original.

Os muros de contenção, por norma, são construídos na base do talude como elementos resistentes, de contenção ou suporte, sendo úteis face a instabilidades superficiais. Estes muros têm a desvantagem de ter de se escavar na base do talude para a sua construção, podendo favorecer a instabilidade, e não evitam possíveis deslizamentos a favor da superfície de rotura à volta do muro, tanto por cima como por baixo. Segundo Vallejo *et al.* (2002), os diferentes tipos de muros de contenção apresentam várias características que os tornam indicados para diferentes casos de aplicação: muros flexíveis ou muros rígidos, contrariar um movimento ou introduzir uma resistência adicional.

As proteções contra a erosão são normalmente mais usadas em talude de rocha de baixa resistência; podem ser valetas na crista do talude, reperfilamento por introdução de banquetas ou revestimento vegetal à superfície.

III.4.2 Medidas de proteção

As medidas de proteção não previnem o deslizamento e consequente queda de blocos e massas rochosas. São medidas passivas que pretendem minimizar os possíveis danos associados a episódios de rotura. Alguns exemplos de medidas de proteção vão de simples sinais ou vedações de alerta até estruturas complexas de proteção.

Com estas medidas é permitida a queda de blocos rochosos, mas por outro lado tentam impedir que estes mesmos causem danos a pessoas, bens materiais e perdas económicas. Algumas destas proteções podem controlar a trajetória do material em queda, reduzir a sua energia potencial e facilitar a sua remoção. No entanto, estas medidas têm uma desvantagem pois, no caso de taludes como os dos Passadiços do Paiva onde prevalece a beleza natural, são medidas que podem causar impacto visual (Andrew *et al.*, 2011).

Cano e Tomás (2013) fazem uma simples divisão destes métodos em barreiras estáticas ou dinâmicas, dependendo das suas funções. As barreiras estáticas são rígidas e não se deformam com a queda e impacto dos blocos. As barreiras dinâmicas tentam dissipar o máximo de energia do impacto recorrendo a auto-deformação, isto é, são flexíveis ou amortecedoras.

As barreiras estáticas são geralmente colocadas à superfície do talude, podendo ser colocadas também só na base, e têm como principal objetivo prevenir a queda de blocos e caso aconteça queda, intercetá-los e retê-los. Podem ser formadas por postes e redes metálicas. Na figura III-17 está representada uma barreira estática constituída por uma malha metálica pregada ao próprio talude.

Figura III-17 Barreia estática (retirado de https://solutioma.com/pt/desprendimientos-pt.php)

As barreiras dinâmicas não são capazes de prevenir a queda de blocos, mas absorvem a sua energia de impacto. Consistem em redes de cabos de aço normalmente suportados por postes cimentados no solo e ancorados ao talude. Este sistema tem por base a deformação dos cabos que permite a dissipação da energia e consequente captura dos blocos. O dimensionamento destas barreiras é feito tendo em conta o tamanho e peso dos blocos instabilizados, energia de impacto, e trajetória (Vallejo *et al.*, 2002). A figura III-18 mostra uma barreia dinâmica colocada na base de um talude.

Figura III-18 Barreira dinâmica (retirado de https://solutioma.com/pt/pantallas-dinamicas-pt.php)

Eventualmente algumas destas medidas de estabilização e proteção poderiam vir a ser adotadas nos taludes menos estáveis que venham a ser identificados como tal nos Passadiços do Paiva.

IV. Metodologia e Resultados

Neste capítulo caracteriza-se o trecho estudado. Numa primeira abordagem, de um ponto de vista mais abrangente e onde toda a informação é interpretada de forma global, seguida de uma individualização, justificada em diferentes secções, para uma melhor compreensão do comportamento do talude ao longo de toda a sua extensão. A realização deste capítulo baseou-se em elementos obtidos na bibliografia existente e em deslocações ao local de estudo para a obtenção dos dados.

IV.1 Metodologia adotada

Tendo em conta toda a extensão dos Passadiços do Paiva (cerca de 8600 metros) e o facto de, na altura, não ser possível ter acesso a toda a sua extensão (em parte devido a incêndios florestais que destruíram parte da estrutura de madeira dos passadiços), definiuse, como objetivo, estudar o primeiro trecho de taludes a partir da entrada NW (em Espiunca). Este primeiro troço estende-se ao longo de, aproximadamente, 600 metros.

Depois da escolha da extensão a estudar, procedeu-se a um levantamento estrutural para avaliar a sua estabilidade. Procurou-se, em primeiro lugar, identificar as áreas onde existiam taludes com importância para serem individualizados e estudados e, de seguida, fazer uma avaliação das descontinuidades existentes nos mesmos. Estes parâmetros podem ser separados em duas categorias: dados referentes ao talude de uma perspetiva geral e dados das descontinuidades apresentadas pelo talude.

Os dados medidos nos taludes foram: orientação e atitude do talude, extensão, altura e localização geográfica do mesmo. Para as descontinuidades foram medidos os seguintes parâmetros: orientação e atitude da descontinuidade, família, espaçamento, continuidade, rugosidade, abertura, preenchimento e infiltrações/percolações.

O material usado em campo para efetuar as medições foram: uma bússola de geólogo e uma fita métrica bem como todo o material normalmente usado em trabalho de campo além de todas as tabelas necessárias referidas no capitulo III.

A tabela IV-1 mostra a estrutura usada para a anotação dos dados no caderno de campo, e no anexo 1 encontram-se todos os dados de campo colhidos e observados durante a realização deste trabalho.

	Azimute Magnético	Inclinação	Sentido Inclinação	ID Familia	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltra ções Percola ção
3	L									
- 2	2									
3	1									
4	L .									
-	5									

Operador:

Data:

Comprimento (m):

Altura (m):

Secção: Orientação:

Numa primeira abordagem, teve-se como objetivo separar toda a extensão em estudo em secções menores com extensões de aproximadamente uma dezena de metros. No entanto, ao longo dos 600 metros de Passadiço e respetivo talude, nem sempre se

apresentavam secções que justificassem a sua análise. Na figura IV-1 pode-se observar um exemplo de uma secção onde o talude não apresenta maciço rochoso exposto, com baixo risco e que não foi estudada.

Figura IV-1 Exemplo de zona de baixo risco

Na figura IV-2 temos uma secção que, numa primeira análise, apresenta um risco mais elevado, tendo sido sujeita a estudo.

Figura IV-2 Exemplo de zona de risco elevado

Para a determinação das principais famílias de descontinuidades e o possível tipo de rotura associado a cada talude, utilizaram-se três diferentes programas informáticos: o *RockWorks* 17 e o *RockPack* III, ambos da *RockWare*, e também o *Stereo32*. O objetivo de se usar vários *softwares* neste trabalho deve-se ao fato de se poder obter diferentes análises para os mesmos dados, podendo assim mitigar erros e comparar resultados tirando conclusões mais robustas.

Como já foi referido, estas ferramentas permitiram definir as principais famílias de descontinuidades, com o auxílio das projeções estereográficas dos polos, diagramas de isodensidades e diagramas de rosas. Com estes diagramas, é possível analisar os potenciais mecanismos de rotura a que os taludes possam estar sujeitos, como rotura planar, rotura por tombamento ou rotura em cunha. As projeções estereográficas foram feitas numa rede de igual área (rede de *Schmidt*) com projeção no hemisfério inferior.

IV.2 Resultados obtidas e discussão

Como referido anteriormente, os dados de cada talude foram primeiro analisados em conjunto para se ter uma ideia geral das características estruturais da rocha e, de seguida, analisados secção a secção. As secções serão apresentadas por ordem, com início na entrada dos Passadiços em Espiunca até ao fim da primeira estrutura. Depois da análise individualizada de cada secção, em dois casos foi possível agrupar duas ou mais secções, que apresentam um comportamento e orientação semelhantes, para nova análise.

IV.2.1 Análise geral

Com o auxílio de um dispositivo GPS, foi marcada toda a extensão percorrida num mapa, bem como a localização em coordenadas geográficas *datum* WGS84 de cada secção (figura IV-3). O somatório da extensão de todas as secções é de aproximadamente 350 metros, não perfazendo os 600 metros do total do percurso estudado devido a, como referido anteriormente, nem sempre se justificar o estudo de toda a extensão percorrida.

Figura IV-3 Extensão total da área estudada (imagem composta tendo por base o Google)

A orientação geral dos taludes é de, aproximadamente, N130 e com inclinações que vão desde 50º graus de inclinação a 30º graus "negativos", ou seja, inclinam no sentido contrário ao dos passadiços. A altura média dos taludes está entre os 10 e 20 metros, havendo casos pontuais de taludes com 50 metros de altura.

A projeção estereográfica dos polos de todas as descontinuidades medidas (perfazendo um total de 584) está representada na figura IV-4 recorrendo ao *RockPack III*. Nesta projeção é também possível representar a orientação média dos taludes (N130, subvertical). Vê-se que há alguma dispersão aparente das descontinuidades, mas após uma análise mais cuidada com o auxílio dos outros programas informáticos, foi possível, com alguma certeza, como veremos, definir quatro principais famílias em toda a extensão estudada.

Figura IV-4 Representação de todos os polos das descontinuidades (584) de todas as secções (projeção estereográfica de igual área, hemisfério inferior no RockPack III)

Elaborou-se, com o *software RockWorks* 17, um diagrama de rosas de todas as descontinuidades medidas (figura IV-5). Pela observação deste diagrama, é possível identificar uma família de descontinuidades com orientação W-E e subvertical (F4) bem representada. A partir de uma análise mais minuciosa, e recorrendo aos digramas de isodensidades, tanto do *RockWorks* 17 como do *Stereo32* (figura IV-6(a) e IV-6(b) respetivamente), podem-se identificar mais duas famílias de descontinuidades. A família (F2) com orientação NNE-SSW e a família (F3) com orientação NW-SE, ambas subverticais, embora esta última menos significativa.

Figura IV-5 Diagrama de rosas referente a todas as descontinuidades medidas com identificação das famílias F2, F3 e F4 (RockWorks 17)

É possível identificar ainda uma quarta família (F1), mas que apresenta uma inclinação bastante baixa (subhorizontal) pelo que não é visível no diagrama de rosas. No entanto, é de fácil identificação nos diagramas de isodensidades (figura IV-6).

Figura IV-6 Diagramas de isodensidades da projeção estereográfica dos polos de todas as descontinuidades medidas obtidos com o RockWorks 17 (a) e Stereo32 (b). F1: subhorizontal, F2: NNE-SSW, subvertical, F3: NW-SE, subvertical, F4: W-E, subvertical.

Nesta projeção vê-se que há alguma dispersão das descontinuidades, mas com o auxílio dos programas informáticos de isodensidades pode-se, com toda a clareza, definir as

quatro principais famílias de descontinuidades já referidas em toda a extensão estudada. A família F1 subhorizontal que é a estratificação, a família F2 com atitude de NNE-SSW subvertical, a família F3 com atitude NW-SE subvertical que é a xistosidade principal predominante e a família F4 com atitude W-E subvertical.

IV.2.2 Análise das secções

Neste ponto será feita a análise de cada secção individualmente e a discussão dos resultados relativos à análise cinemática, onde se incluem os modos de rotura inerentes a cada talude. Na análise das secções, numa abordagem qualitativa, as famílias de descontinuidades tidas como representativas são identificadas visualmente nas projeções estereográficas e nos diferentes diagramas respetivos a cada parâmetro de rotura.

Como mencionado anteriormente, as secções foram divididas de forma a terem, aproximadamente, 10 metros de comprimento cada. Posteriormente verificou-se que algumas destas secções apresentavam uma continuidade óbvia, tendo orientação igual e aspeto geral semelhante. Estas foram agrupadas e reavaliadas como uma só. As secções que, segundo este critério, foram agrupadas são as secções G-H e B1-C1-D1.

Além das quatro principais famílias de descontinuidades representadas por um "F" maiúsculo seguido de um número, surgem também outras famílias com menor importância no contexto geral, mas relevantes na análise individual de cada secção. Estas novas famílias serão representadas por um "f" minúsculo seguido de um número. Todos os parâmetros medidos em cada secção estudada encontram-se para consulta no Anexo 1.

IV	.2.2.1 Secçã	Secção A (tabela IV-2; figura IV-7)					
	Tabela IV-2 Informação geral da secção A						
	Orienta	N110; subvertical					
	Exten	são	15 metros				
	Altu	10 metros					
	Coordonadas	Latitude	N 40° 59' 33,18"				
	Coordenadas	Longitude	W 8° 12' 36,90"				

Como é possível ver pela figura IV-7, esta secção apresenta um talude com uma face bastante irregular e número de descontinuidades relativamente elevado.

Neste talude é possível identificar as quatro famílias de descontinuidades já mencionadas mais uma quinta nova família, f6, de relevância para esta secção (figura IV-8). Todas as famílias apresentam dispersão aparente, sendo as famílias F1 e F2 as que se encontram mais dispersas; no diagrama de isodensidades (figura IV-8(b)) a família F1 pode aparentar tratar-se de duas famílias distintas, mas após uma análise mais pormenorizada no campo considerou-se como uma única família, já que se trata da estratificação que é subhorizontal e, como tal, sujeita a maior dispersão de medições com a bússola.

Figura IV-7 Aspeto geral do talude referido como secção A

Pela análise da figura IV-9 pode-se concluir que não há risco de rotura por cunha nem rotura planar. Apresenta algum risco por tombamento evidenciado pela família de descontinuidades f6. No entanto, como estes planos têm inclinações não muito altas, com uma direção média de N120S, e sem qualquer sinal de abertura ao longo dos mesmos, é seguro concluir que este talude não apresenta risco de instabilidade.

Figura IV-8 (a) Diagrama de rosas referente à secção A; (b) Diagrama de isodensidades referente à secção A. (RockWorks 17)

Figura IV-9 Projeção estereográfica do talude da secção A; a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Cerca de um metro antes do início desta secção, a cerca de 5 metros de altura, há um bloco com cerca 2 metros cúbicos que, devido a descontinuidades que o delimitam com orientações de N14,80E, N127,78N e N350,8E e aberturas já consideráveis (na ordem dos centímetros), merece alguma atenção extra de forma a prevenir possíveis roturas e desprendimentos, como ilustra a figura IV-10.

Figura IV-10 Bloco que se apresenta em possível risco antes da secção A
IV.2.2.2	2 Secção	Secção B (tabela IV-3; figura IV-11)		
	Tabela IV-3	Tabela IV-3 Informação geral da secção B		
	Orienta	ção	N124; subvertica	I
	Extensão		18 metros	
	Altura		12 metros	
Coordonadas		Latitude	N 40° 59' 33,24"	
Cooldenaua	nu c nauas	Longitude	W 8° 12' 36,12"	

O talude da secção B apresenta-se com uma face igualmente irregular com o aparecimento de pequenas árvores.

Figura IV-11 Aspeto geral do talude referido como secção B

Pela análise dos diagramas de rosas (figura IV-12(a)) e de isodensidades (figura IV-12(b)) podem-se identificar quatro famílias principais: a família F1, a estratificação, as famílias F2 e F4 com atitudes bastante verticais e uma nova família f5 a destacar nesta secção com valores de inclinação na ordem dos 30 a 40°.

Figura IV-12 (a) Diagrama de rosas referente à secção B; (b) Diagrama de isodensidades referente à secção B. (RockWorks 17)

Pela análise dos diagramas da figura IV-13, nesta secção não se verifica potencial para rotura planar nem rotura por cunha. Existe, no entanto, possibilidade de rotura por tombamento derivada das interseções entre a família f5 e o plano da face do talude que se manifestam dentro da zona crítica de rotura, mas nada de preocupante.

Figura IV-13 Projeção estereográfica do talude da secção B, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Devido à impossibilidade de acesso, a zona superior do talude não foi analisada. Contudo, visualmente é possível observar que apresenta vários blocos que terão provavelmente mais de cinco metros cúbicos. Aparentemente estas blocos (figura IV-14) não estando estabilizados podem vir a cair diretamente sobre a estrutura de madeira dos passadiços, ficando aqui a nota para que no futuro, com outros recursos, seja feita a análise e verificação da estabilidade.

Figura IV-14 Planos que comprometem a estabilidade na parte superior do talude da secção B

IV.2.2.3	Secção C (tabela IV-4; figura IV-15)			
_	Tabela IV-4 Informação geral da secção C			
Orientação			N104; subvertical	
	Extensão		8,5 metros	
	Altura		5 metros	
Coordenadas	donadae	Latitude	N 40° 59' 33,06"	
	uenauas	Longitude	W 8° 12' 35,52"	

Para o talude da secção C (figura IV-15), identificam-se três famílias de descontinuidades, figura IV-16. As famílias F1, a estratificação, e as famílias F3 e F4 bastante mais verticais.

Figura IV-15 Aspeto geral do talude referido como secção C

Figura IV-16 (a) Diagrama de rosas referente à secção C; (b) Diagrama de isodensidades referente à secção C. (RockWorks 17)

Com base nos valores tidos como representativos, observa-se que não existe qualquer potencial de modo de rotura inerente ao talude como se pode ver pela interpretação dos diagramas da figura IV-17. O facto de o talude ter uma altura relativamente baixa também ajuda a reduzir o risco associado.

Figura IV-17 Projeção estereográfica do talude da secção C, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

-	-		
Tabela IV-5 Informação geral da secção D			
Orientação		N123; subvertical	
Extensão		6,5 metros	
Altura		2 a 8 metros	
Coordenadas	Latitude	N 40° 59' 33,06"	
	Longitude	W 8° 12' 35,22"	

IV.2.2.4 Secção D (tabela IV-5; figura IV-18)

Para a secção D (figura IV-18), identificaram-se quatro famílias de descontinuidades, sendo a mais representativa a família F2 (figura IV-19). A família menos significativa é a família F4 da qual foi medida apenas uma única descontinuidade.

Figura IV-18 Aspeto geral do talude referido como secção D

Figura IV-19 a) Diagrama de rosas referente à secção D; (b) Diagrama de isodensidades referente à secção D. (RockWorks 17)

Apesar do elevado número de descontinuidades, nenhuma delas apresenta potencial para rotura planar, por tombamento ou por cunha, como se pode ver pela interpretação da figura IV-20, uma vez que não existem pontos nas zonas críticas das projeções, indicadas a cinzento. Também é importante referir que o talude na maior parte da sua extensão é relativamente baixo, diminuindo assim o possível risco.

Figura IV-20 Projeção estereográfica do talude da secção D, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-6 Informação geral da secção E				
Orienta	ção	N105; subvertical a 70ºN		
Extensão		13,5 metros		
Altura		10 metros		
Coordenadas	Latitude	N 40° 59' 32,70"		
	Longitude	W 8° 12' 34,68"		

Secção E (tabela IV-6; figura IV-21)

IV.2.2.5

Neste talude identificam-se claramente três famílias de descontinuidades. A presença de solo e vegetação sobre a família F1 (estratificação) impossibilitou a sua correta medição em campo (figura IV-21). As três famílias apresentam-se com atitudes bastante verticais. Na figura IV-22 é possível observar alguma dispersão da família F2, fator este que levou à divisão desta numa outra subfamília f7.

Figura IV-21 Aspeto geral do talude referido como secção E

Figura IV-22 (a) Diagrama de rosas referente à secção E; (b) Diagrama de isodensidades referente à secção E. (RockWorks 17)

Recorrendo aos diagramas da figura IV-23, a secção não mostra potencial de rotura planar nem por cunha, apresenta sim potencial de rotura por tombamento, evidenciado pela família F3.

Figura IV-23 Projeção estereográfica do talude da secção E, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Na figura IV-24 é possível observar como a família F4 provoca instabilidade em vários blocos no talude, denunciando a possível instabilidade do talude por deslizamento ao longo dos planos da família F1 (apenas identificada visualmente) e a necessária intervenção.

Figura IV-24 Planos que comprometem a estabilidade do talude da secção E

IV.2.2.6	Secção F (tabela IV-7; figura IV-25)			
	Tabela IV-7 Informação geral da secção F			
Orientação			N132; subvertical	
	Extensão		9 metros	
	Altura		2 metros	
Coordenadas	acherob	Latitude	N 40° 59' 32,64"	
	uenauas	Longitude	W 8° 12' 34,26"	

O talude da secção F (figura IV-25) é o que apresenta menor altura, com apenas dois metros de altura máxima.

Figura IV-25 Aspeto geral do talude referido como secção F

Tem três famílias principais de descontinuidades, identificadas na figura IV-26. A família F1, a estratificação subhorizontal, e duas famílias subverticais, F3 e F4.

Figura IV-26 (a) Diagrama de rosas referente à secção F; (b) Diagrama de isodensidades referente à secção F. (RockWorks 17)

Pela análise dos gráficos obtidos com o *RockPack III* (figura IV-27), a secção F não apresenta qualquer potencial de rotura, podendo ser considerada como uma secção sem risco.

Figura IV-27 Projeção estereográfica do talude da secção F, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

No entanto, uns metros mais à frente, há uma encosta mais inclinada coberta com solo e vegetação onde existem alguns blocos, aparentemente soltos, que podem deslizar até ao passadiço. Na figura IV-28 pode-se ver um destes blocos que deslizou e embateu na estrutura de madeira sem, felizmente, fazer grandes estragos.

Figura IV-28 Bloco solto junto aos passadiços depois da secção F

Tabela IV-8 Informação geral da secção G			
Orientação		N130°; vertical	
Extensão		20 metros	
Altura		>20 metros	
Coordenadas	Latitude	N 40°59'31.02"	
	Longitude	W 8°12'32.46"	

IV.2.2.7	Secção G (tabela IV-8; figura l	V-29)
----------	------------	-----------------------	-------

Nas próximas secções a altura dos taludes apresenta-se mais elevada atingindo alturas superiores a 20 metros (figura IV-29). É possível identificar três famílias principais de descontinuidades, duas famílias com inclinação bastante alta (F3 e F4) e uma terceira família F1 quase horizontal, a estratificação (figural IV-30). Como a face do talude é vertical e as principais falhas também se apresentam na vertical, nenhum bloco se encontra instável. Isto porque esses mesmos blocos assentam na estratificação subhorizontal, e a grande maioria das descontinuidades medidas não têm mais do que 1 milímetro de abertura, apresentando uma baixa probabilidade de ocorrência de deslizamentos.

Figura IV-29 Aspeto geral do talude referido como secção G

Figura IV-30 (a) Diagrama de rosas referente à secção G; (b) Diagrama de isodensidades referente à secção G. (RockWorks 17)

Com base nos gráficos dos diferentes programas (figura IV-31), a Secção G não apresenta potencial de rotura planar nem por cunha. Apresenta apenas, evidenciado pela família F3, algum potencial de rotura por tombamento, mas com valores muito próximos da vertical, como referido anteriormente.

Figura IV-31 Projeção estereográfica do talude da secção G, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-9 Informação geral da secção H			
Orientação		N98°; vertical	
Extensão		18 metros	
Altura		20 metros	
Coordenadas	Latitude	N 40°59'30.54"	
	Longitude	W 8°12'31.56"	

Secção H (tabela IV-9; figura IV-32)

IV.2.2.8

O talude referente a esta secção (figura IV-32) é semelhante ao talude da secção anterior. Logo, tem três famílias de descontinuidades como o talude anterior. Duas famílias (F3 e F4) bastante verticais e a estratificação (F1) como se pode ver na figura IV-33. Ao contrário da secção anterior, este talude apresenta, a cotas mais altas, uma face mais irregular. Irregularidade esta que pode originar diferentes predisposições dos blocos localizados mais abaixo. Na figura IV-32 podemos observar um bloco que se encontra em posição de instabilidade.

Figura IV-32 Aspeto geral do talude referido como secção H

Figura IV-33 (a) Diagrama de rosas referente à secção H; (b) Diagrama de isodensidades referente à secção H. (RockWorks 17)

Tendo por base os valores médios da orientação e inclinação podem-se identificar os modos de rotura inerentes a este talude. O talude da seção H não mostra sinais de potencial de rotura planar nem por cunha, apresenta sim potencial para rotura por tombamento, evidenciado pelo bloco anteriormente referido (figura IV-34). Para além desta abordagem, os valores de abertura para a família F3 são maiores que as restantes famílias, com valores atingindo os 5 centímetros de abertura, favorecendo assim a instabilidade.

Figura IV-34 Projeção estereográfica do talude da secção H, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

IV.2.2.9 Secçã	V.2.2.9 Secção G-H (tabela IV-10)			
Tabela IV-10 Informação geral da secção G-H				
Orienta	ação	N100; subvertical		
Extensão		38 metros		
Altura		>20 metros		
Coordenadas	Latitude	N 40° 59' 31,02"		
	Longitude	W 8° 12' 32,46"		

Pela junção dos dados obtidos referentes a cada secção G e H há uma clara sobreposição e correlação da localização das famílias de descontinuidades, evidenciando que se trata das mesmas famílias para as duas secções, como mostrado na figura IV-35. Esta secção é também a que apresenta maior extensão, com 38 metros.

Figura IV-35 (a) Diagrama de rosas referente à secção G-H; (b) Diagrama de isodensidades referente à secção G-H. (RockWorks 17)

Nos diagramas da figura IV-36 é confirmado o potencial de rotura por tombamento evidenciado pelas famílias F3 e F4, comprometendo a estabilidade e corroborando a necessidade de uma intervenção ao longo dos dois taludes constituintes desta secção.

Figura IV-36 Projeção estereográfica do talude da secção G-H, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-11 Informação geral da secção l			
Orientação		N123; subvertical	
Extensão		21 metros	
Altura		10 a 15 metros	
Coordenadas	Latitude	N 40° 59' 30,48"	
	Longitude	W 8° 12' 30,84"	

IV.2.2.10	Secção I	(tabela IV-11; figur	a IV-37)
-----------	----------	----------------------	----------

Nesta secção o talude, ao contrário das duas secções anteriores, apresenta uma altura máxima de 15 metros, consideravelmente mais baixa (figura IV-37). No entanto, apresenta quatro famílias de descontinuidades (figura IV-38). Três famílias (F2, F3 e F4) bastante verticais, nunca inclinando menos de 80°, e a estratificação (F1) novamente subhorizontal e bastante ondulada. Por norma, todas as descontinuidades têm uma abertura reduzida na ordem dos dois milímetros e a família F2 é a que apresenta o espaçamento entre si menor.

Figura IV-37 Aspeto geral do talude referido como secção I

Figura IV-38 (a) Diagrama de rosas referente à secção I; (b) Diagrama de isodensidades referente à secção I. (RockWorks 17)

O talude da secção I, pela interpretação da figura IV-39, não exibe potencial de rotura por cunha nem por tombamento. Existe apenas potencial para rotura planar, que pode ser considerada de baixa importância devido a, novamente, as descontinuidades da família em questão (F2 e F4) serem muito verticalizadas. Concluindo, assim, esta secção apresenta-se como relativamente estável.

Figura IV-39 Projeção estereográfica do talude da secção I, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-12 Informação geral da secção J		
Orientação		N156; subvertical
Extensão		8 metros
Altura		13 metros
Coordonadaa	Latitude	N 40° 59' 30,36"
Coordenadas	Longitude	W 8° 12' 30,24"

Para o talude da secção J, logo numa primeira observação no local, é possível verificar a existência de vários blocos soltos que já não se encontram na sua posição inicial. No entanto, este talude encontra-se dividido por quatro patamares; devido a este efeito de escada, os blocos tombados ficam retidos no patamar abaixo, não apresentado riscos elevados, como é possível observar na figura IV-40.

Figura IV-40 Aspeto geral do talude referido como secção J

A secção J apresenta três famílias de descontinuidades, duas famílias com atitude bastante vertical (F2 e F4) e a família representativa da estratificação (F1), através da interpretação da figura IV-41.

Figura IV-41 (a) Diagrama de rosas referente à secção J; (b) Diagrama de isodensidades referente à secção J. (RockWorks 17)

Este talude, pela análise a partir dos diagramas obtidos pelos diferentes *softwares* (figura IV-42), não apresenta potencial de rotura planar nem por tombamento nem por rotura por cunha. Com base nestes dados é seguro concluir que esta secção não apresenta qualquer tipo de problema de instabilidade e consequente rotura.

Figura IV-42 Projeção estereográfica do talude da secção J, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-13 Informação geral da secção L		
Orientação		N20; 70ºE
Extensão		8 metros
Altura		20 metros
Coordenadas	Latitude	N 40° 59' 30,00"
	Longitude	W 8° 12' 30,18"

IV.2.2.12 Secção L (tabela IV-13; figura IV-43)

O talude da secção L destaca-se por uma irregularidade da face do próprio talude como é possível observar na figura IV-43. Pela interpretação das figuras IV-44, esta secção apresenta três famílias de descontinuidades (F2, F3 e F4), sendo estas três famílias relativamente verticais. Não foram medidos os planos sub-horizontais que podem ser identificados na figura IV-43, família F1, por estarem cobertas de terra e vegetação, impossibilitando a sua correta medição.

Figura IV-43 Aspeto geral do talude referido como secção L

Figura IV-44 (a) Diagrama de rosas referente à secção L; (b) Diagrama de isodensidades referente à secção L. (RockWorks 17)

Recorrendo aos digramas obtidos pelo *RockPack III*, o talude da secção L não mostra sinais de qualquer potencial de rotura (figura IV-45). Todas as descontinuidades apresentam aberturas na ordem de 1 a 2 milímetros e continuidades que não ultrapassam em média mais do que 2 metros de comprimento. Tendo em conta todos estes fatores, o talude da secção L não apresenta risco de instabilidade.

Figura IV-45 Projeção estereográfica do talude da secção L, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-14 Informação geral da secção M		
Orientação		N105; subvertical
Extensão		7 metros
Altura		9 metros
Coordonadaa	Latitude	N 40° 59' 29,88"
Coordenadas	Longitude	W 8° 12' 29,94"

IV.2.2.13 Secção M (tabela IV-14; figura IV-46)

Este talude, no seguimento do anterior para Este, também se apresenta bastante fraturado e com uma superfície irregular. O talude em estudo tem uma altura de aproximadamente 9 metros, estando dividido em três diferentes patamares de igual tamanho (figura IV-46).

Figura IV-46 Aspeto geral do talude referido como secção M

Figura IV-47 (a) Diagrama de rosas referente à secção M; (b) Diagrama de isodensidades referente à secção M. (RockWorks 17)

Este talude apresenta 4 famílias de descontinuidades, as famílias F2, F3 e F4 bastante verticalizadas não inclinando menos do que 78º, e a família F1, a estratificação (figura IV-47). Com base nos valores tidos como representativos, e interpretados com o *software RockPack III*, na secção M apenas se verifica potencial para rotura por cunha entre as famílias F2 e F4 (figura IV-48). Contudo, tal como na secção anterior, as descontinuidades apresentam valores de abertura bastante reduzidos, na ordem de 1 milímetro e continuidades não maiores do que 2 metros. Também o facto do talude se encontrar em patamares e ser relativamente baixo não o coloca em risco de rotura.

Figura IV-48 Projeção estereográfica do talude da secção M, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-15 Informação geral da secção N		
Orientação		N137; subvertical
Extensão		6 metros
Altura		9 metros
Coordenadas	Latitude	N 40° 59' 29,64"
	Longitude	W 8° 12' 29,34"

IV.2.2.14 Secção N (tabela IV-15; figura IV-49)

Para o talude da secção N (figura IV-49), identificam-se quatro famílias de descontinuidades, as famílias F2, F3 e F4 com atitude maioritariamente vertical, e a família F1 representada pela estratificação (figura IV-50). Esta é uma secção que também se apresenta em três patamares de, aproximadamente, três metros cada e igualmente bastante fraturada, como é possível observar na figura IV-49, sendo a família F4 a mais significativa (figura IV-50).

Figura IV-49 Aspeto geral do talude referido como secção N

Figura IV-50 (a) Diagrama de rosas referente à secção N; (b) Diagrama de isodensidades referente à secção N. (RockWorks 17)

Tendo por base os valores de inclinação e respetivo azimute, identificam-se os modos de rotura inerentes a este talude. A secção N não mostra sinais de potencial de rotura por cunha nem por tombamento, exibe somente potencial de rotura planar evidenciado pela família F4 (figura IV-51). Sendo a face do talude "em escada" e de reduzida altura, pode-se considerar esta secção como não apresentando risco acentuado.

Figura IV-51 Projeção estereográfica do talude da secção N, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-16 Informação geral da secção O		
Orientação		N112; subvertical
Extensão		6 metros
Altura		6 metros
Coordenadas	Latitude	N 40° 59' 29,76"
	Longitude	W 8° 12' 28,86"

IV.2.2.15 Secção O (tabela IV-16; figura IV-52)

Para o talude da secção O (figura IV-52) identificaram-se quatro famílias (F1, F2, F3 e F4). As famílias F2, F3 e F4 têm uma atitude próximo da vertical e a família F1 representa a estratificação sub-horizontal (figura IV-53). O talude nesta secção é mais verticalizado do que nas anteriores e, como se pode observar na figura IV-52, um conjunto de estratos apresentam como que uma protuberância sobre os passadiços que, apesar de não pôr em risco a estabilidade do talude, localiza-se à altura da cabeça de um adulto, podendo ser problemática para os mais distraídos.

Figura IV-52 Aspeto geral do talude referido como secção O

Figura IV-53 (a) Diagrama de rosas referente à secção O; (b) Diagrama de isodensidades referente à secção O. (RockWorks 17)

Com base nos diagramas dos modos de rotura inerentes a este talude (figura IV-54), conclui-se que a secção O não mostra qualquer potencial de rotura, podendo-se concluir que o talude da secção O não apresenta risco de instabilidade.

Figura IV-54 Projeção estereográfica do talude da secção O, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-17 Informação geral da secção p		
Orientação		N136; subvertical
Extensão		14 metros
Altura		8 metros
Coordenadas	Latitude	N 40° 59' 29,52""
	Longitude	W 8° 12' 28,56"

IV.2.2.16 Secção P (tabela IV-17; figura IV-55)

Para o talude da secção P (figura IV-55), através dos diagramas da figura IV-56, identificam-se quatro famílias de descontinuidades. A família de descontinuidades F1, estratificação, as famílias de descontinuidades F3, F4 e uma família f8 que se considera ser importante nesta secção, com atitudes mais verticais. A família F4 é a família de descontinuidades mais bem representada nesta secção.

Figura IV-55 Aspeto geral do talude referido como secção P

Figura IV-56 (a) Diagrama de rosas referente à secção P; (b) Diagrama de isodensidades referente à secção P. (RockWorks 17)

Neste talude não se verifica potencial para rotura planar nem por cunha. Existe, no entanto, potencial para rotura por tombamento, evidenciado pela família F3, como é possível interpretar pelos diagramas da figura IV-57, que tem orientação semelhante à orientação da face do talude. Apesar dos valores de abertura da família F3 serem relativamente baixos, a rondar 1 e 2 milímetros, têm espaçamentos inferiores a 50 centímetros ao longo de toda a secção, podendo comprometer a estabilidade do talude.

Figura IV-57 Projeção estereográfica do talude da secção P, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

V.2.2.17 Secção Q (tabela IV-18; figura IV-58)		
Tabela IV-18 Informação geral da secção Q		
Orientação		N117; subvertical
Extensão		7 metros
Altura		5 metros
Coordenadas	Latitude	N 40° 59' 29,16"
	Longitude	W 8° 12' 28,14"

Com 5 metros de altura, o talude da secção Q apresenta-se como um dos taludes mais baixos de todo o percurso estudado (figura IV-58).

Figura IV-58 Aspeto geral do talude referido como secção Q

Na secção Q identificam-se quatro famílias de descontinuidades (figura IV-59), como tem vindo a ser observado pela análise dos taludes anteriores. A família F1, que é a estratificação, e as três outras famílias, F2, F3 e F4, com inclinações bastante verticais. A estratificação apresenta-se novamente ligeiramente ondulada.

Figura IV-59 (a) Diagrama de rosas referente à secção Q; (b) Diagrama de isodensidades referente à secção Q. (RockWorks 17)

Através da interpretação dos digramas obtidos no *RockPack III*, figura IV-60, baseados nas medições de campo da inclinação e respetivo azimute, identificam-se os respetivos modos de rotura. O talude não mostra sinais de potencial de rotura planar nem por cunha, apresenta apenas um potencial muito baixo de rotura por tombamento, sem gravidade, evidenciado pela família F3.

Figura IV-60 Projeção estereográfica do talude da secção Q, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-19 Informação geral da secção R			
Orientação		N148; subvertical a 40° NE	
Extensão		9 metros	
Altura		2+10 metros	
Coordenadas	Latitude	N 40° 59' 29,22"	
	Longitude	W 8° 12' 27,78"	

IV.2.2.18	Secção R	(tabela IV-19;	figura IV-61)
-----------	----------	----------------	---------------

Na secção R o talude encontra-se dividido verticalmente em duas partes. A porção inferior com apenas 2 metros de altura e inclinação vertical, e uma segunda porção com 10 metros de altura e inclinação aproximada de 40°NE, coberta por solo e vegetação, como é possível observar na figura IV-61. Todos os dados estruturais obtidos nesta secção são referentes à porção inferior do talude, uma vez que, com os recursos disponíveis para este estudo, a parte mais alta do talude era inacessível.

Figura IV-61 Aspeto geral do talude referido como secção R

Como observável na figura IV-62, o talude da secção R apresenta-se com três principais famílias de descontinuidades. As famílias F2, F3 e F4 com atitudes bastante verticais, não sendo possível medir a estratificação, devido a todo o solo e vegetação que cobre o talude.

Figura IV-62 (a) Diagrama de rosas referente à secção R; (b) Diagrama de isodensidades referente à secção R. (RockWorks 17)

Pela análise dos diagramas de rotura da figura IV-63, o talude não mostra sinais de potencial de rotura planar nem por cunha, existindo apenas um ligeiro potencial de rotura por tombamento, evidencia pela família F3. Como esta análise é referente à porção mais próxima da base, a sua reduzida altura e baixos valores de continuidade e abertura não comprometem a estabilidade do talude.

Figura IV-63 Projeção estereográfica do talude da secção R, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-20 Informação geral da secção S		
Orientação		N148; 50º NE
Extensão		11 metros
Altura		12 metros
Coordenadas	Latitude	N 40° 59' 29,34"
	Longitude	W 8° 12' 27,24"

IV.2.2.19 Secção S (tabela IV-20; figura IV-64)

Nesta secção S, como se pode observar na figura IV-64, o talude encontra-se com algum solo e vegetação e ainda com algumas árvores de pequeno porte. É um talude bastante fraturado, podendo as raízes destas mesmas árvores agravar a abertura e meteorização ao longo das descontinuidades, e é relativamente mais inclinado que a norma das restantes secções.

Figura IV-64 Aspeto geral do talude referido como secção S
Relativamente às descontinuidades, o talude da secção S apresenta-se com quatro famílias de descontinuidades. A família F1, muito pouco representada, indicando a estratificação ligeiramente ondulada, e três famílias verticalizadas, as famílias F2, F3 e F4 (figura IV-65). A família F4 é claramente a mais importante nesta secção, sendo a mais bem representada.

Figura IV-65 (a) Diagrama de rosas referente à secção S; (b) Diagrama de isodensidades referente à secção S. (RockWorks 17)

Com base nos valores de inclinação e respetivo azimute, introduzidos no *software RockPack III*, observáveis na figura IV-66, o talude não apresenta potencial de rotura planar nem por cunha. Apresenta sim um ligeiro potencial de rotura por tombamento, evidenciada pela família F3. Existem mesmo alguns blocos de pequenas dimensões na parte superior da secção já soltos, não visíveis na figura IV-64, mas que devido à inclinação do talude e à presença da vegetação não comprometem a estabilidade nesta secção.

Figura IV-66 Projeção estereográfica do talude da secção S, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-21 Informação geral da secção T		
Orientação		N152; 70º NE
Extensão		10 metros
Altura		10 metros
Coordonadaa	Latitude	N 40° 59' 28,38"
Coordenadas	Longitude	W 8° 12' 26,46"

IV.2.2.20 Secção T (tabela IV-21; figura IV-67)

No talude da secção T (figura IV-67) identificam-se três principais famílias de descontinuidades (figura IV-68). A espectável família F1, estratificação ligeiramente ondulada, e duas famílias mais verticais afastadas entre si por 90º graus. A família F2 é, sem dúvida, a mais representativa nesta secção.

Figura IV-67 Aspeto geral do talude referido como secção T

Figura IV-68 (a) Diagrama de rosas referente à secção T; (b) Diagrama de isodensidades referente à secção T. (RockWorks 17)

Pelos diagramas da figura IV-69, o talude não mostra sinais de potencial rotura planar, por tombamento ou por cunha, indicando tratar-se de uma secção com taludes estáveis.

Figura IV-69 Projeção estereográfica do talude da secção T, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

V.2.2.21 Secção U (tabela IV-22; figura IV-70			
Tabela IV-22 Informação geral da secção U			
Orientação N140; subvertica			
Extensão		11 metros	
Altura		10 metros	
Coordenadas	Latitude	N 40° 59' 28,02"	
	C Longitude	W 8° 12' 26,28"	

A secção U (figura IV-70) destaca-se pela ausência de rocha na base do talude conferindolhe, visualmente, um aspeto instável.

Figura IV-70 Aspeto geral do talude referido como secção U

Este talude apresenta-se com três famílias de descontinuidades, a família F1, estratificação, e as famílias F2 e F4 bastante mais verticalizadas. Pela análise dos diagramas da figura IV-71 é possível ver que a família F2 é a bem mais representada nesta secção.

Figura IV-71 (a) Diagrama de rosas referente à secção U; (b) Diagrama de isodensidades referente à secção U. (RockWorks 17)

Recorrendo aos diagramas de zonas de rotura verifica-se que nenhum apresenta potencial de rotura planar, por tombamento ou por cunha. Apesar do espaçamento entre as descontinuidades ser reduzido, rondando os 50 centímetros, as descontinuidades têm baixos valores de continuidade, não passando em média de um metro de extensão. Aparentando ser um talude estável, no entanto, há blocos mais saídos que de momento parecem estáveis, embora necessitem de monitorização no futuro, no caso de alguma descontinuidade se estender para o interior da rocha e os instabilizar.

Figura IV-72 Projeção estereográfica do talude da secção U, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-23 Informação geral da secção V			
Orientação		N132; subvertical a 60° NE	
Extensão		10 metros	
Altura		23 metros	
Coordenadas	Latitude	N 40° 59' 27,66"	
	Longitude	W 8° 12' 25,86"	

IV.2.2.22 Secção V (tabela IV-23; figura IV-73)

O talude da secção V foi dividido em duas porções verticalmente: a inferior com 3 metros de altura e pendor vertical e a porção localizada acima com 20 metros de altura e com 60° de inclinação para NE (figura IV-73). Foram unicamente obtidos dados estruturais referentes à porção inferior. Este talude encontra-se numa zona muito húmida o que, na altura, dificultou o trabalho nas medições estruturais em campo.

Figura IV-73 Aspeto geral do talude referido como secção V

Este talude apresenta-se com quatro famílias de descontinuidades distintas. A família F1, a estratificação apresentando-se com alguma ondulação, e as famílias F2, F3 e F4 com atitudes mais verticais (figura IV-74). A família F4 é a melhor representada, ao contrário das restantes, com poucas medições, pelo motivo explicado anteriormente.

Figura IV-74 (a) Diagrama de rosas referente à secção V; (b) Diagrama de isodensidades referente à secção V. (RockWorks 17)

Pela análise dos diagramas da figura IV-75, o talude apresenta potencial de rotura por tombamento possibilitado pela família de descontinuidades F3. Não apresenta potencial de rotura planar nem por cunha. Como a família F3 é apenas representada por uma única descontinuidade com apenas 1 milímetro de abertura e a presença de solo e vegetação por todo o talude, é refutado qualquer potencial de instabilidade denunciado pela interpretação do *software RockPack III*.

Figura IV-75 Projeção estereográfica do talude da secção V, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

IV.2.2.23 Secção X (tabela IV-24; figura IV-76)			
Tabela IV-24 Informação geral da secção X			
Orienta	ação	N160; subvertical	
Extensão		7,5 metros	
Altura		10 metros	
Coordenadas	Latitude	N 40° 59' 27,42"	
	Longitude	W 8° 12' 24,96"	

Nesta secção, o talude apresenta-se bastente afastado da estrutura de madeira, havendo uma extensão de solo de cerca de 2 a 3 metros entre o talude e os passadiços, como é visível na figura IV-76, criando um espaço de segurança na eventualidade de alguma queda.

Figura IV-76 Aspeto geral do talude referido como secção X

No talude da secção X, identificam-se quatro famílias de descontinuidades, pela interpretação dos diagramas de rosa e de contornos presentes na figura IV-77. A já espectável e ondulada estratificação, marcada como a família F1, e três outras famílias bastante verticalizadas, F3, F4 e uma nova família f9.

Figura IV-77 (a) Diagrama de rosas referente à secção X; (b) Diagrama de isodensidades referente à secção X. (RockWorks 17)

Com base nos valores tidos como representativos das atitudes e respetivos azimutes das descontinuidades medidas (figura IV-78), observa-se que não existe potencial de rotura por cunha. Existe algum potencial de rotura planar provocado pela família f9 que, por ser apenas uma descontinuidade na zona crítica e estando tão próximo da vertical, não é significativo para causar instabilidade do talude. Verifica-se sim algum potencial de rotura por tombamento, evidenciado pela família F3. Apesar de esta família F3 poder pôr em causa a estabilidade do talude, não se apresenta como situação de perigo visto haver, como referido anteriormente, um espaço entre o talude e a estrutura de madeira para onde podem tombar os blocos.

Figura IV-78 Projeção estereográfica do talude da secção X, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-25 Informação geral da secção Z			
Orientação		N142; subvertical a 50° NE	
Extensão		7 metros	
Altura		43 metros	
Coordenadas	Latitude	N 40° 59' 27,24"	
	Longitude	W 8° 12' 24,84"	

IV.2.2.24 Secção Z (tabela IV-25; figura IV-79)

O talude da secção Z também foi dividido em duas partes, tendo em conta a sua diferença de inclinação, na vertical, ao longo do talude (figura IV-79). A primeira porção apresentase subvertical com 3 metros de altura e o restante mais acima inclinado 50º para NE. Os dados obtidos nesta secção referem-se à porção inferior.

Figura IV-79 Aspeto geral do talude referido como secção Z

Neste talude estão presentes cinco famílias de descontinuidades, pela interpretação dos diagramas da figural IV-80. A família F1, a estratificação, e as restantes famílias F2, F3, F4 e f8 com alguma dispersão não habitual.

Figura IV-80 (a) Diagrama de rosas referente à secção Z; (b) Diagrama de isodensidades referente à secção Z. (RockWorks 17)

Segundo os diagramas da figura IV-81, a secção não apresenta potencial de rotura planar nem por cunha. Há apenas uma família que apresenta potencial de rotura por tombamento, a família F2, sendo, no entanto, bastante pontual para instabilizar o talude. Assume-se, assim, o talude como estável.

Figura IV-81 Projeção estereográfica do talude da secção Z, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-26 Informação geral da secção A1			
Orientação		N115; 80º N	
Extensão		12 metros	
Altura		12 metros	
Coordonadaa	Latitude	N 40° 59' 26,10"	
Coordenadas	Longitude	W 8° 12' 23,82"	

IV.2.2.25 Secção A1 (tabela IV-26; figura IV-82)

A secção A1 (figura IV-82) apresenta-se com quatro famílias de descontinuidades (figura IV-83). As famílias, F2, F3, F4 e f10 bastante verticalizadas. A família F2 é apenas representada por uma descontinuidade, ao contrário da família F4 que é claramente a mais importante neste talude.

Figura IV-82 Aspeto geral do talude referido como secção A1

Figura IV-83 (a) Diagrama de rosas referente à secção A1; (b) Diagrama de isodensidades referente à secção A1. (RockWorks 17)

Segundo os diagramas da figura IV-84, o talude da secção A1 não apresenta nem potencial de rotura por tombamento nem por cunha. Apresenta potencial rotura planar, evidenciado pela família f10. No entanto, a família f10 tem valores de abertura inferiores a 1 milímetro, existindo mesmo uma descontinuidade que não tem continuidade para o interior do maciço, permitindo marcar este talude como fora de risco, ou seja, não estando comprometida a sua estabilidade.

Figura IV-84 Projeção estereográfica do talude da secção A1, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-27 Informação geral da secção B1		
Orientação		N92°; subvertical
Extensão		8 metros
Altura		30 a 50 metros
Coordenadas	Latitude	N 40°59'25.86"
	Longitude	W 8°12'23.22"

IV.2.2.26 Secção B1 (tabela IV-27; figura IV-85)

O talude da secção B1, bem como as duas próximas secções C1 e D1, apresentam-se com inclinação sobre a estrutura de madeira (figura IV-85). Este fator, por si só, levanta preocupação e requer uma monitorização extra.

Figura IV-85 Aspeto geral do talude referido como secção B1

O talude apresenta-se com três famílias de descontinuidades, pela interpretação dos diagramas de rosas e de contornos apresentados na figura IV-86. A família F1 sendo a estratificação, e as famílias F3 e F4 com atitudes mais verticais. A família F4 é consideravelmente a mais representada.

Figura IV-86 (a) Diagrama de rosas referente à secção B1; (b) Diagrama de isodensidades referente à secção B1. (RockWorks 17)

Baseado nos valores de inclinação e respetivo azimute identificam-se os métodos de rotura inerentes para este talude. O talude não mostra sinais de potencial de rotura planar, mas apresenta um ligeiro potencial de rotura por tombamento, evidencia pela família F2. O talude mostra sinais de potencial de rotura por cunha, derivado das interseções entre as famílias de descontinuidades F2-F3-F4, instabilizando a secção.

Figura IV-87 Projeção estereográfica do talude da secção B1, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

IV.2.2.27 Secção C1 (tabela IV-28; figura IV-88)			
Tabela IV-28 Informação geral da secção C1			
Orientação N106º; 10º negativos			
Extensão		9.5 metros	
Altura		8 metros	
Coordonadaa	Latitude	N 40°59'26.16"	
Coordenadas	Longitude	W 8°12'22.50"	

O talude da secção C1 apresenta-se no seguimento da secção anterior, com inclinação a pender em sentido contrário ao da estrutura e sobre ela (figura IV-88).

Figura IV-88 Aspeto geral do talude referido como secção C1

Pela análise dos digramas da figura IV-89 identificam-se quatro famílias principais de descontinuidades: a família F1 sendo a estratificação, e três famílias verticalizadas. A família mais representativa é a família F4.

Figura IV-89 (a) Diagrama de rosas referente à secção C1; (b) Diagrama de isodensidades referente à secção C1. (RockWorks 17)

O talude não mostra sinais de potencial de rotura planar, mas mostra sinais de rotura por tombamento evidenciado pela família de descontinuidades F4 que exibe o seu pendor vetorial dentro da zona crítica com forma triangular referente ao tombamento, podendo-se, assim, indicar esta secção como instável.

Figura IV-90 Projeção estereográfica do talude da secção C1, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

IV	IV.2.2.28 Secção D1 (tabela IV-29; figura IV-91)			
Tabela IV-29 Informação geral da secção D1				
	Orientação N107º; subvertical			
Extensão		9 metros		
Altura		8 metros		
Coordonadaa	Latitude	N 40°59'25.98"		
Coordenadas		Longitude	W 8°12'22.32"	

A secção D1, apesar de se encontrar no seguimento das duas secções anteriores, apresenta-se com inclinação subvertical e consideravelmente menos fraturada (figura IV-91).

Figura IV-91 Aspeto geral do talude referido como secção D1

O talude da secção D1 apresenta-se com quatro famílias de descontinuidades, sendo elas a F1, estratificação, e as restantes as famílias F4 e duas subfamílias f7 e f8 como é possível observar nos diagrama de rosas e contornos na figura IV-92.

Figura IV-92 (a) Diagrama de rosas referente à secção D1; (b) Diagrama de isodensidades referente à secção D1. (RockWorks 17)

Recorrendo agora aos diagramas obtidos no *RockPack III*, figura IV-93, o talude não apresenta sinais de potencial rotura planar nem por cunha, existindo apenas algum potencial de rotura por tombamento, denunciado pela família F4, que apresenta valores de abertura até 1 centímetro, comprometendo assim a estabilidade da secção.

Figura IV-93 Projeção estereográfica do talude da secção D1, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

IV.2.2.29 Secção B1-C1-D1 (tabela IV-30)			
Tabela IV-30 Informação geral da secção B1-C1-D1			
Orientação N190; subvertical a 30º negativos			
Extensão		26,5 metros	
Altura		30 a 50 metros	
Coordonadas	Latitude	N 40° 59' 26,16"	
Coordenadas	Longitude	W 8° 12' 22,50"	

Pela junção dos três taludes anteriormente referidos obtemos a secção B1-C1-D1. Esta é uma das maiores secções que podem ser consideradas, com uma extensão de 26,5 metros. Nesta secção há igualmente uma correlação entre as famílias de descontinuidades entre os três taludes, existindo apenas alguma dispersão, mas não muito significativa.

Figura IV-94 (a) Diagrama de rosas referente à secção B1-C1-D1; (b) Diagrama de isodensidades referente à secção B1-C1-D1. (RockWorks 17)

Devido ao talude, nesta secção, se apresentar com pendor sobre os passadiços, como referido anteriormente, a inclinação foi tida como 30º negativos, ou seja, inclinando mais 30º que os teóricos 90º de inclinação máxima. Assim, além do potencial de rotura por tombamento, identificado na análise das secções individualizadas, é possível também identificar, com base nos valores de inclinação e respetivo azimute, outros modos de rotura inerentes para este conjunto de taludes, figura IV-95. Nesta secção há fortes sinais de potencial rotura por cunha evidenciado pela interseção das três famílias mais verticais, F2-F3-F4. Devido à significativa inclinação do talude com pendor sobre a estrutura de madeira, é uma secção onde a estabilidade se apresenta comprometida, sendo uma zona que necessita de vigilância e eventual intervenção.

Figura IV-95 Projeção estereográfica do talude da secção B1-C1-D1, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

IV	IV.2.2.30 Secção E1 (tabela IV-31; figura IV-96)			
Tabela IV-31 Informação geral da secção E1				
Orientação N120; su			N120; subvertical	
Extensão		13 metros		
	Altura		10 metros	
Coordonadaa	Latitude	N 40° 59' 25,62"		
Coordenadas		Longitude	W 8° 12' 22,38"	

Para o talude da secção E1 (figura IV-96) identificaram-se três famílias de descontinuidades (figura IV-97), as famílias F3, F4 e f8 com atitudes perto de verticais. A família F4 é a mais representada nesta secção.

Figura IV-96 Aspeto geral dos taludes referidos como secção E1

Figura IV-97 (a) Diagrama de rosas referente à secção E1; (b) Diagrama de isodensidades referente à secção E1. (RockWorks 17)

A secção não mostra sinais de potenciais de rotura, não estando a sua estabilidade comprometida. No entanto, existem blocos na parte superior do talude que aparentam estar soltos (figura IV-96). Sugere-se a sua remoção de forma a diminuir possíveis acidentes.

Figura IV-98 Projeção estereográfica do talude da secção E1, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-32 Informação geral da secção F1			
Orientação		N120; 40º NE	
Extensão		11 metros	
Altura		10 metros	
Coordonadaa	Latitude	N 40° 59' 24,72"	
Coordenadas	Longitude	W 8° 12' 20,64"	

IV.2.2.31 Secção F1¹ (tabela IV-32; figura IV-99)

A secção F1 (figura IV-99) apresenta-se com três famílias de descontinuidades. A família f12, considerada no campo como a estratificação, mas que já não tem atitude perto da horizontal, mas com valores a atingir os 80° de inclinação para Sul, e as duas restantes famílias, F2 e F4, continuando bastante verticalizadas (figura IV-100).

Figura IV-99 Aspeto geral dos taludes referidos como secção F1

¹ Nota: por favor, não confundir a designação desta secção com a família de descontinuidades F1.

Figura IV-100 (a) Diagrama de rosas referente à secção F1; (b) Diagrama de isodensidades referente à secção F1. (RockWorks 17)

Com base nos valores tidos como representativos, pela abordagem dos diagramas das zonas de rotura da figura IV-101, observa-se que não existe potencial rotura planar, por tombamento ou cunha. Apesar de secção F1 se mostrar com bastantes descontinuidades e uma superfície irregular, é uma secção onde a estabilidade não parece estar comprometida.

Figura IV-101 Projeção estereográfica do talude da secção F1, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

V.2.2.32 Secção G1 (tabela IV-33; figura IV-102)						
Tabela IV-33 Informação geral da secção G1						
Orientação		N115; subvertical				
Extensão		8 metros				
Altura		12 metros				
Coordenadas	Latitude	N 40° 59' 24,60"				
	Longitude	W 8° 12' 20,34"				

O talude da secção G1, localizado imediatamente a seguir à anterior, já não se encontra tão fraturado, tendo áreas sem nenhuma descontinuidade, como se pode observar do lado esquerdo da figura IV-102, formando assim grandes blocos que, numa primeira análise, se apresentam estáveis.

Figura IV-102 Aspeto geral dos taludes referidos como secção G1

Tendo em conta todos os valores de atitudes e respetivos azimutes de cada descontinuidade obtém-se os diagramas de rosa e de contornos apresentados na figura IV-103. A secção apresenta-se com quatro famílias de descontinuidade, mas algumas com bastante dispersão, podendo na realidade baixar o número de famílias para apenas três. No entanto, nesta análise serão consideradas as quatro famílias distintas de descontinuidades.

Figura IV-103 (a) Diagrama de rosas referente à secção G1; (b) Diagrama de isodensidades referente à secção G1. (RockWorks 17)

O talude da secção G1 não mostra sinais de potencial rotura planar ou cunha. Apresenta potencial rotura por tombamento, evidenciado pela família f6, mas como já foi dito, apresenta-se estável (figura IV-104).

Figura IV-104 Projeção estereográfica do talude da secção G1, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

Tabela IV-34 Informação geral da secção H1					
Orientação		N114; 80º N			
Extensão		14 metros			
Altura		15 metros			
Coordenadas	Latitude	N 40° 59' 24,54"			
	Longitude	W 8° 12' 19,32"			

IV.2.2.33 Secção H1 (tabela IV-34; figura IV-105)

A secção H1 é a última secção deste troço dos passadiços a ser estudada e avaliada no presente trabalho. É um talude que, apesar de estar fraturado, não se apresenta muito deformado, tendo um comportamento homogéneo (figura IV-105).

Figura IV-105 Aspeto geral dos taludes referidos como secção H1

Como se pode observar na figura IV-106, o talude da secção H1 apresenta-se com quatro famílias de descontinuidades. A família F1 sendo a estratificação, neste caso apenas representada por uma descontinuidade, e as famílias F2, F4 e f11 sendo as restantes e mais verticais. A família f11 é igualmente apenas representada por uma descontinuidade e as famílias F2 e F4 bem representadas nesta secção.

Figura IV-106 (a) Diagrama de rosas referente à secção H1; (b) Diagrama de isodensidades referente à secção H1. (RockWorks 17)

Recorrendo aos diagramas da figura IV-107, o talude não apresenta potencial rotura planar nem por tombamento. Apenas apresenta potencial rotura por cunha pela interseção das famílias F2-f11, mas como a família f11 é apenas representada por uma única descontinuidade, não coloca em causa a segurança do talude, considerando-se assim esta secção como estável.

Figura IV-107 Projeção estereográfica do talude da secção H1, a cinzento está representada a zona crítica de rotura. (a) Modo de rotura planar e por tombamento; (b) Modo de rotura por cunha. (RockPack III)

V. Considerações Finais

A presente dissertação tem como objetivo final contribuir para uma avaliação do potencial risco de instabilidade nas vertentes da margem esquerda do Rio Paiva, ao longo de um troço de, aproximadamente, 600 metros de extensão dos Passadiços do Paiva (com início na entrada de Espiunca). Para o efeito foram recolhidos dados no terreno referentes aos taludes e, mais pormenorizadamente, das descontinuidades presentes nos mesmos.

Primeiramente, foi apresentada a geologia da região enquadrando-se todo o contexto do Geoparque Arouca onde se inserem os Passadiços do Paiva, não só geologicamente, mas também geográfica e climatericamente. De seguida, procedeu-se à caracterização geológica e geotécnica, onde se recorreu aos métodos descritos por ISRM (1978 e 1981), através de medições e inspeção visual nas áreas em estudo.

Posteriormente, para a interpretação dos dados obtidos, todos os parâmetros foram introduzidos em diferentes *softwares* (*RockWorks 17, Stereo32 e RockPack III*) para a obtenção de diagramas de rosas e isodensidades, permitindo ter uma perceção espacial dos dados, e projeções estereográficas dos polos onde, recorrendo ao teste de Markland, se determinou a existência ou não de potencial de rotura.

De salientar que o método usado foi um método conservativo, não devendo ser o único parâmetro a ter em consideração na avaliação da estabilidade dos taludes. A existência de algum potencial de rotura, como o próprio nome indica, apenas denuncia uma possível rotura, levando a uma próxima etapa de avaliação mais aprofundada, onde será necessário, por exemplo, a determinação do peso volúmico, da resistência à compressão e do ângulo de atrito.

Da análise cinemática de cada talude foi possível verificar a existência, ou não, do tipo de potencial de rotura, podendo tratar-se de rotura planar, por tombamento ou cunha. Aparecem, ainda, algumas situações pontuais de possível instabilidade não englobadas pelos critérios de rotura anteriormente mencionados.

De salientar que os dados contemplam apenas situações cinemáticas e os resultados obtidos devem ser interpretados só desde este ponto de vista. Considerando esta salvaguarda, os resultados dos dados apresentados no capítulo IV são apresentados de forma mais sucinta, e visualmente mais simples, na tabela V-1, onde, através de diferentes cores, é possível distinguir os vários graus de estabilidade a que cada secção está sujeita. A verde estão marcados os casos onde não se verifica qualquer indício de rotura, a laranja estão marcadas as situações onde, no mínimo, deve haver uma inspeção mais pormenorizada da secção em causa e a vermelho são destacadas as secções que requerem intervenção o quanto antes. Na escolha do grau de perigosidade também se teve em consideração a forma como essa instabilidade poderia afetar os passadiços, isto é, quando a potencial queda de blocos não coloca em risco a estrutura de madeira que constitui os passadiços e/ou transeuntes turistas; esse grau foi considerado como menor.

Os resultados obtidos na classificação cinemática, e interpretados pelo autor, indicam que para as secções C, D, F, I, J, L, M, N, Q, T, V, Z, A1, F1 e H1 existem condições estáveis. No entanto, recomenda-se, nestes casos, uma inspeção visual de rotina aos taludes para despistar deteriorações da rocha e evolução da abertura das descontinuidades no maciço rochoso que possam comprometer a sua estabilidade. Deve aplicar-se também este critério a todos os taludes e estruturas associadas aos Passadiços, especialmente após episódios de caráter excecional como intensa precipitação ou ocorrência de tremores de terra.

Tabela V-1 Síntese de resultados obtidos através do teste de Markland associado à possibilidade de afetar a estrutura de madeira dos Passadiços. Salvaguardando o facto de se tratar de uma análise puramente cinemática, a verde estão representados os casos onde não se verifica qualquer indício de rotura, a laranja as situações onde, no mínimo, deve haver uma inspeção mais pormenorizada da secção em causa e a vermelho as secções que requerem intervenção o quanto antes

Secção	Planar	Tombamento	Cunha	Outro
Α	Não	Não	Não	Sim
B	Não	Sim	Não	Não
С	Não	Não	Não	Não
D	Não	Não	Não	Não
E	Não	Sim	Não	Não
F	Não	Não	Não	Não
G	Não	Baixo	Não	Não
н	Não	Sim	Não	Não
1	Não	Não	Não	Não
J	Não	Não	Não	Não
L	Não	Não	Não	Não
Μ	Não	Não	Não	Não
Ν	Não	Não	Não	Não
0	Não	Não	Não	Muito baixo
Р	Não	Muito baixo	Não	Não
Q	Não	Não	Não	Não
R	Não	Muito baixo	Não	Não
S	Não	Muito baixo	Não	Não
т	Não	Não	Não	Não
U	Não	Não	Não	Muito baixo
V	Não	Não	Não	Não
X	Muito baixo	Baixo	Não	Não
Z	Não	Não	Não	Não
<u>A1</u>	Não	Não	Não	Não
B1	Não	Baixo	Sim	Não
C1	Não	Sim	Baixo	Não
D1	Não	Baixo	Não	Não
E1	Não	Não	Não	Muito baixo
F1	Não	Não	Não	Não
G1	Não	Baixo	Não	Não
H1	Não	Não	Não	Não

As secções O, P, R, S, U e E1 são as que, dentro das instáveis, apresentam um risco de rotura muito baixo, não sendo desta forma requerida a aplicação de medidas de estabilização nem de proteção. É sim necessária uma monitorização apertada dos locais indicados e a remoção de vegetação e blocos soltos, assim como a limpeza dos taludes, prevenindo o agravamento das condições de instabilidade. Para a secção O, aconselhase ainda a utilização de sinalética para alertar para a "barriga" que se encontra à altura da cabeça de um adulto de estatura média podendo causar, nos menos atentos, ferimentos ao nível da cabeça (figura IV-52), indicada no capítulo anterior.

Imediatamente a seguir na escala de instabilidade e perigosidade estão os taludes das secções X e G1 que, apesar de serem classificados como de baixo risco, requerem já algum tipo de intervenção, ainda que reduzida. Para a secção X, que se apresenta com algum afastamento da estrutura de madeira (ver IV 2.2.23), não se justifica a aplicação de medidas de estabilização devido a esse mesmo afastamento lhe conferir algum grau de segurança. Contudo, podem ser tomadas medidas de proteção, como barreiras dinâmicas, mas em vez de redes de aço suportadas por postes, podem ser substituídas por vegetação

de algum porte, minimizando o impacto visual que uma estrutura desta natureza poderia ter. Outra possibilidade é a construção das ditas barreiras dinâmicas, mas com a introdução de vegetação para visualmente não serem facilmente detetados. Para a secção G1 (ver IV 2.2.32), as medidas a implementar seriam a limpeza, ou seja, a remoção de toda a vegetação, grosseira e rasteira, que se encontra no talude, globalmente fraturado, e que faz com que as raízes cresçam nas descontinuidades, acentuando as respetivas aberturas e levando a um aumento da instabilidade. Além disso, é necessária a remoção de blocos já bastante soltos do maciço rochoso.

As próximas secções são classificadas como mais problemáticas pois, além de apresentaram potenciais de rotura, são taludes bastante verticais e muito próximos da estrutura de madeira dos Passadiços. Estes taludes estão presentes nas secções A, B e E. O talude da secção A considera-se estável, no entanto, para o bloco potencialmente instável referido no Capítulo IV (figura IV-10) é aconselhável tomar medidas mitigadoras de danos. Para estabilizar este bloco, nesta situação pontual, poder-se-ia proceder ao desmonte do mesmo, mas correr-se-ia o risco de instabilizar outros blocos situados acima. Com a plantação de vegetação de elevado porte, entre o bloco e a estrutura de madeira do Passadiço, reduzia-se o possível risco de danos sobre a estrutura de madeira apresentado por este bloco. No caso da secção B, está-se perante uma situação de instabilidade mais complexa e de difícil solução, visto ser um talude de altura considerável. O seu reperfilamento, ou alteração da geometria, não seria uma medida plausível de ser aplicada devido ao grande volume de rocha a deslocar e à possibilidade de instabilizar toda a restante seccão. Devido ao facto de o talude e o Passadico estarem praticamente encostados, não há espaço para a implementação de medidas de proteção, sobrando apenas as medidas de estabilização. A aplicação de ancoragens e redes metálicas, na face do talude, são uma possível solução, mas, devido aos custos e ao impacto visual, assim como a aparente forma de "escada invertida" (figura IV-14), é preferível a aplicação de uma estrutura de contraforte na base do talude. Este é um método que pode ter um impacto mínimo no visual natural do talude, podendo o material usado no contraforte ser pintado numa cor semelhante ao aspeto geral do talude. Também é aconselhável a monitorização da secção e a limpeza de todo o talude.

As restantes secções serão agrupas segundo o mesmo critério que no capítulo IV, restando, portanto, as secções G-H e B1-C1-D1. Para a secção G-H, com uma extensão de 38 metros e mais de 20 metros de altura, a primeira porção, secção G, é uma secção que se apresenta com um baixo grau de instabilidade. No entanto, a segunda metade desta secção (secção H) já tem um aspeto bastante mais instável. Devido ao risco associado a este talude as medidas mitigadoras de danos poderão ser as seguintes:

- 1. Alteração da geometria, através da remoção de blocos mais instáveis e de relativa pequena dimensão;
- 2. Colocação de drenos nas zonas mais problemáticas, facilitando o saneamento da água do interior do talude, evitando a sua acumulação;
- 3. Aplicação de medidas estabilizadoras, nomeadamente, ancoragens e redes metálicas nos blocos, mas desta vez para os blocos de maiores dimensões.

Após a implementação destas medidas mitigadoras, recomenda-se que toda a secção seja sujeita a inspeções periódicas, principalmente em períodos do ano de clima mais severo, para a manutenção das ancoragens e redes metálicas assim como a limpeza dos drenos de modo a que não figuem colmatados ou danificados.

Por fim, está-se perante a secção que maior risco apresenta, a secção B1-C1-D1 com 26.5 metros de extensão e até 50 metros de altura máxima em algumas zonas. Esta secção também se encontra dividida, mas desta vez em 3 partes, sendo a última menos instável comparativamente com as duas primeiras. Tal como a secção anterior, o talude encontra-se muito próximo da estrutura de madeira dos Passadiços, pelo que não é possível usar medidas de proteção. Para esta secção propõe-se as seguintes medidas:

- Alteração da geometria nas zonas onde o pendor do talude está sobre os Passadiços, reduzindo a inclinação negativa e se possível até se ter uma atitude com pendor para fora dos passadiços;
- 2. Limpeza de toda a secção através da remoção da vegetação para que as raízes não causem o alargamento das descontinuidades pré-existentes;
- 3. Colocação de drenos nas zonas mais problemáticas, facilitando a percolação da água no interior do talude evitando a sua acumulação;
- Aplicação de medidas estabilizadoras, particularmente, redes metálicas conferindo uma força extra perpendicular e na direção do talude. Neste caso, não se justifica o uso de ancoragens devido ao talude estar bastante fraturado;
- 5. Aplicação de injeções de permeação nas descontinuidades que apresentem maior abertura e uso de técnicas de proteção contra a erosão, prevenindo o desgaste da face do talude e o aparecimento de novos planos de descontinuidade.

Depois de executadas estas medidas, recomenda-se igualmente uma monitorização do estado de toda a secção, com especial foco nos drenos e na manutenção das redes metálicas, e para se observar a evolução do estado de estabilidade do talude ao longo do tempo.

Toda esta avaliação nos Passadiços do Paiva, apesar de estar associada a alguma subjetividade por ser uma análise apenas qualitativa e não quantitativa, acrescenta informação valiosa numa avaliação preliminar que permite, desde já, a identificação e hierarquização das zonas mais suscetíveis a episódios de instabilidade e a possível implementação de medidas de estabilização e mitigação do risco.

Uma grande dificuldade experienciada ao longo do trabalho de campo traduziu-se na impossibilidade de obtenção de dados estruturais em zonas do maciço rochoso mais inacessíveis, especialmente nas zonas que não se posicionassem na base dos taludes ou em zonas cobertas por vegetação ou solo. Esta dificuldade resulta num possível aumento do erro associado à variabilidade das caraterísticas inventariadas, atendendo que o mesmo plano de descontinuidade pode apresentar desigualdades nos parâmetros medidos como a abertura ou até mesmo orientação da base para o topo do talude.

Tratando-se de um tema tão na ordem do dia, evidenciado pela adesão de centenas e mesmo milhares de visitantes diários, todo este trabalho ganha um novo peso. Como possíveis trabalhos futuros, tendo sida provada a validade da metodologia utilizada, indicase a continuação do estudo na restante extensão do Passadiço, bem como o uso de técnicas que permitam a obtenção de dados em toda a altura das vertentes.

VI. Bibliografia

- ANDREW, R.; BARTINGALE, R.; HUME, H. Context Sensitive Rock Slope Design Solutions. U.S. Department of Transportation, Federal Highway Administration (FHWA), Central Federal Lands Highway Division, (2011) Publication No. FHWA-CFL/TD-11-002.
- AZEVEDO, M.; VALLE AGUADO, B. Origem e instalação de granotoides variscos na Zona Centro-Ibérica. In: R. Dias, A. Araújo, P. Terrinha, & J. Kullberg (Eds.), Geologia de Portugal, 1 (2013), pp. 377-401). Lisboa: Escolar Editora.
- Barreia estática. https://solutioma.com/pt/desprendimientos-pt.php. Consultado em: 1 de setembro de 2017.
- Barreira dinâmica. https://solutioma.com/pt/pantallas-dinamicas-pt.php. Consultado em: 1 de setembro de 2017.
- BRILHA, J. (2015). https://www.publico.pt/2016/01/01/ciencia/noticia/geoparques-unescoreconhecer-o-patrimonio-geologico-1718893. Consultado em: 20 de maio de 2016
- CANO, M.; TOMÁS, R. Assessment of corrective measures for alleviating slope instabilities in carbonatic Flysch formations: Alicante (SE of Spain) case study. Bull Eng Geol Environ, 72 (2013), pp. 509–522
- CARCAVILLA, L.; DURÁN, J.J.; LÓPEZ-MARTÍNEZ, J. Geodiversidad: concepto y relación con el patrimonio geológico. **Geo-Temas**, 10, 2007.
- CARDOSO, Ana Isabel Soares; MENEZES, José Eduardo Quintanilha. Estudo da interação mecânica entre redes metálicas pregadas e taludes rochosos. 2009.
- CARRETO, A. Pires. Técnicas de estabilização de taludes. III **Congresso Nacional de Geotecnia** (1989), pp. 87-109). FEUP, Porto.
- Climate Data. https://pt.climate-data.org/location/54811/. Consultado em: 10 de setembro de 2017.
- DIAS, R.; RIBEIRO, A. O Varisco do Sector Norte de Portugal Geologia de Portugal no contexto da Ibéria. In: R. Dias, A. Araújo, P. Terrinha, & J. Kullberg (Eds.), Geologia de Portugal, 1 (2013), pp. 59-71). Lisboa: Escolar Editora.
- FERREIRA, N.; IGLÉSIAS, M.; NORONHA, F.; PEREIRA, E.; RIBEIRO, A.; RIBEIRO, M.L. Granitoides da Zona Centro Ibérica e seu enquadramento geodinâmico. In: F. Bea, A. Carnicero, J.C. Gonzalo, M. Lópes Plaza & M.D. Rodriguez Alonso (Eds.) Geologia de los granitoides y rocas asociadas del Macizo Hesperico. Madrid: Edital Ruela, 1987, pp. 37-51. ISBN: 84-7207-051-4.
- Geoparque Arouca. http://aroucageopark.pt/pt/quem-somos/. Consultado em: 15 de junho de 2017.
- GONÇALVES, Diana Magina. Reabilitação de taludes de escavação em rochas de baixa resistência na ER 266. Lisboa: Universidade Nova de Lisboa, 2014. Dissertação de mestrado.

GOODMAN, R. E. Introduction to Rock Mechanics. New York: John Wiley & Sons, 1989.

- GUTIÉRREZ-MARCO, J. C.; Parque Nacional de Cabañeros: Un pasado marino de hace 500 millones de años. Instituto Geológico y Minero de España, Museo GeoMinero. 2006. ISBN: M-47612-2002.
- HOEK, E.; BRAY, J.W. Rock Slope Engineering. Revised 3th edition. London and New York: Spon Press, 1981. ISBN: 0-419-16010-8.
- ISRM (Internacional Society of Rock Mechanics). Basic geotechnical description of rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 18 (1981).
- ISRM (Internacional Society of Rock Mechanics). Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts, 15:4 (1978).
- KLEY, R.J. and LUTTON, R.J. Engineering properties of nuclear craters: a study of selected rock excavations as related to large nuclear craters. Report U.S. Army Engineers, No. PNE 5010, 1967.
- MEDEIROS, A.C.; PILAR, L. & FERNANDES, A.P. Carta e notícia explicativa da folha 13 -B (Castelo de Paiva) da Carta Geológica de Portugal à escala 1:50 000- D.G.G.M. Serviços Geológicos de Portugal, 1964.
- MURALHA, J. Ensaios de deslizamento de descontinuidades a tensões normais quase nulas, Tilt and Pull Tests of rock joints. IV Congresso Nacional de Geotecnia. Lisboa: LNEC, 1991.
- PACHECO, João Lopes. Interpretação do Património Geológico: uma aplicação ao geoparque Arouca. Braga: Universidade do Minho, 2012. Dissertação de Mestrado.
- Passadiços do Paiva. http://www.passadicosdopaiva.pt. Consultado em: 28 de agosto de 2017.
- PATTON, F.D.; DEERE, D.U. Significant geological factores in rock slope stability -Planning open pit mines. Johannesburg Symposium 1970. Amsterdam: A.A. Balkema, 1971, pp. 143-151.
- PATTON, F.D. Multiple modes of shear failure in rock. Porc. Ist International Congress of rock Mechanics, 1 (1966), pp. 509-513.
- PEEL, M. C. *et al.* Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 4:2 (2007), pp. 439-473.
- PEREIRA, E.; GONÇALVES, L.S.; MOREIRA, A. Carta e notícia explicativa da folha 13 -D (Oliveira de Azeméis) da Carta Geológica de Portugal à escala 1:50 000. D.G.G.M. Serviços Geológicos de Portugal, 1980.
- Portal SIGA: http://siga.cm-arouca.pt/SIGA/. Consultado em: 23 de novembro de 2017.
- RAMOS, C. M. Drenagem em Infra-Estruturas de Transportes e Hidráulica de Pontes 2a Edição. LNEC, 2010.
- Rede Europeia de Geoparques. http://www.europeangeoparks.org/?page_id=168. Consultado em: 4 de julho de 2017.
- Rede Global de Geoparques. http://www.globalgeopark.org/homepageaux/tupai/6513.htm. Consultado em: 4 de julho de 2017.
- RIBEIRO, A. A Evolução Geodinâmica de Portugal Geologia de Portugal no contexto da Ibéria. Évora: Universidade de Évora, 2006.
- RIBEIRO, A. *et al.* Introduction à la geologie générale du Portugal. **Serviços Geológicos de Portugal**, 1979.
- ROCHA, Daniela Maria Teixeira da Inventariação, Caracterização e Avaliação do Património Geológico do Concelho de Arouca. Braga: Universidade do Minho, 2008. Dissertação de mestrado.
- ROCHA, Daniela Maria Teixeira da. Avaliação do alargamento do Geoparque Arouca ao território Montemuro e Gralheira - Um estudo sobre património geológico e proposta de um plano de desenvolvimento territorial. Vila Real: Universidade de Trás-os-Montes e Alto Douro, 2015. Tese de Doutoramento.
- ROMANO, M.; DIGGENS, J.N. The stratigraphy and structure of Ordovician and associated rocks around Valongo, north Portugal. Comunicações dos Serviços Geológicos de Portugal, 57 (1974), pp.23-50.
- ROSS-BROWN, D.R. **Slope design in opencast mines**. Londres: Imperial College, 1973. Tese de doutoramento.
- SÁ, A. A.; GUTIÉRREZ-MARCO, J.C.; ROCHA, D.; RÁBANO, I.; PIÇARRA, J. M.; BRILHA, J.; SARMIENTO, G. N.; VALÉRIO, M. El patrimonio geológico del Ordovícico y Silúrico de la región de Arouca (Portugal). Geogaceta, 44 (2008).
- SÁ, A. A.; BRILHA, J.; ROCHA, D.; RÁBANO, I.; MEDINA, J.; GUTTIÉRREZ-MARCO, J. C.; CACHÃO, M.; VALÉRIO, M. Geopark Arouca. Geologia e Património Geológico. AGA – Associação Geoparque Arouca, 2009. ISBN: 978-989-96055-3-4.
- SÁ, A. A.; BRILHA, J.; CACHÃO, M.; COUTO, H.; MEDINA, J.; ROCHA, D.; VALEÉRIO, M.; RÁBANO, I.; GUTIÉRREZ-MARCO, J. C. Geoparque Arouca: um novo projecto para o desenvolvimento sustentado baseado na conservação e promoção do Património Geológico. VII Congresso Nacional de Geologia, 2006, pp 894-896.
- SÁ, A. A.; MEIRELES, C.; COKE, C.; GUTIÉRREZ-MARCO, J. C. Unidades Litoestratigráficas do Ordovícico da região de Trás-os-Montes (Zona Centro-Ibérica, Portugal). Comunicações Geológicas, 92 (2005), pp. 31-74.
- SARAIVA, João Gustavo Raminhos Pavia. Técnicas de protecção e reparação de estruturas de betão armado. Lisboa: Instituto Superior Técnico, 2007. Dissertação de mestrado.
- SILVA, A. FERREIRA; ROMÃO, J. M. C.; SEQUEIRA, A. J. D. J.; OLIVEIRA, J. TOMÁS. A sucessão litoestratigráfica ante-ordovícica na Xona Centro-Ibérica (ZCI), em Portugal: ensaio de interpretação com base nos dados atuais. In: Comunicaciones XIII RGPO/PICG 319-320 Septiembre '95 Comunicaciones, Salamanca: Eds. M. D. Rodriguez Alonso & J. C. Gonzalo Corral. 1995, 71-72.
- TATONE, B.; GRASSELLI, G. Quantitative measurements of fracture aperture and directional roughness from rock cores. Rock Mechanics and Rock Engineering, 45 (2012), pp. 619–629.

- VALLE AGUADO, B. Geología estructural de la Zona de Cizalla de Porto-Tomar en la región de Oliveira de Azeméis Serra da Arada (Norte de Protugal). Salamanca: Universidad de Salamanca, 1992. Tese de Douturamento.
- VALLE AGUADO, B.; MARTÍNEZ CATALÁN J.R. (1994). Contribuición para el conocimiento del Complejo Esquisto-Grauváquico de la région de Arouca (N de Portugal). **Comun. Inst. Geol. e Min Portugal**, 80, 1994.
- VALLEJO, Luis I. Gonzáles; FERRER, Mercedes; ORTUÑO, Luis; OTEO, Carlos. Ingeniería Geológica. Madrid: Pearson Educacíon, 2002. ISBN: 10:84-205-3104-9.
- VASQUEZ, Lúcia Maria de Jesus. Estratégia de Valorização de Geossítios no Geoparque Arouca. Braga: Universidade do Minho, 2010. Dissertação de mestrado.
- WATTS, C. F.; GILLIAM, Daniel R.; HROVATIC, Marc D.; HONG, Han. User's manual: ROCKPACK III FOR WINDOWS - Rock Slope Stability Computerized Analysis package. **Radford University Office**, 540 (2003), pp. 831-5637.
- WHISONANT, R.; WATTS, C. Using Dip Vectores to Analyse Structural Data. Journal of Geological Education, Department of Geology, RadfordUniversity, 1989.
- WYLLIE, Duncan C.; MAH, Christopher W. Rock Slope Engineering. Civil and mining. 4th edition. London and New York: Spon Press, 2004. ISBN 0-203-57083-9.
- YOON, W.S., JEONG, U.J., KIM, J.H. Kinematic analysis for sliding failure of multi-faced rock slopes. **Engineering Geology**, 67 (2002).
- ZOUROS, Nickolas. The European Geoparks Network -Geological heritage protection and local development. **Episodes**, 27:3 (2004), pp. 165-171.

	Secção:		А	١	Comprimen	to (m):	15		Operador:	Gil
	Orientaçã	o:	N110, su	overtical	Altura (m):		10)	Data:	20/10/16
#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	120	50	SW	1	50-60	120	IV			
2	114	48	SW	1	50-60	160	V			
3	104	50	S	1	50-60	270		0,5	terra escura	П
4	43	84	SE	2	27	120	VIII	0,1	terra escura	П
5	38	78	SE	2	23	160	VII	0,1	terra escura	П
6	15	80	SE	2	40	170	VIII	0,1	terra escura	П
7	20	90	-	2	30	180	VIII	0,1	terra escura	П
8	61	23	S	1	20		IV	0,1	sem	Sem
9	81	21	S	1	15	10	IV	0,1	sem	Sem
10	164	28	E	1	40	10	IV	0,1	sem	Sem
11	128	78	SW	3	15	50	VIII	0,1	terra escura	
12	138	76	SW	3	15	50	VIII	0,1	terra escura	sem
13	157	76	SW	3	15	50	VIII	0,1	terra escura	sem
14	39	87	W	2	5	220	VII	0,1	terra escura	sem
15	40	82	E	2	5	220	VII	0,1	terra escura	sem
16	41	80	SW	2	5	200	VII	0,1	terra escura	sem
17	145	81	W	3	30	40	VIII	0,1	terra escura	sem
18	82	15	S	1		300	V		terra escura	
19	148	24	E	1		1000	V	0,1	terra escura	sem
20	157	15	E	1	100	1200	V	0,5	terra escura	sem
21	13	20	E	1	70	1500	V	4	terra escura	sem
22	50	17	SE	1	30	1500	V	2	terra escura	sem
23	43	90	-	2	20		VII	1	terra escura	sem
24	22	77	W	2	35	40	VII	1	terra escura	sem
25	30	80	W	2	60	70	VII	2	terra escura	
26	15	86	W	2	20	75	VII	2	terra escura	sem
27	18	90	-	2	45	40	VII	3	terra escura	sem
28	102	78	Ν	3	10	110	VI	0,1	terra escura	sem
29	122	77	Ν	3	20	60	VI	1	terra escura	sem
30	130	82	NE	3	20	30	VI	3	terra escura	sem
31	95	77	S	4	120	1000	ш	5	sem	sem

VII. Anexo 1 – Tabelas com os dados colhidos no Campo

Tabela VII-1 Tabela de campo da secção A

Tabela VII-2 Tabela de campo da secção B									
Secção:	В	Comprimento (m):	18	Operador:	Gil				
Orientação:	N124, subvertical	Altura (m):	12	Data:	25/10/16				

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1			SW	1	20	180	V	0,5	terra	П
2			SW	1	20	300	V	0,1	terra	II
3			SW	1	20	300	V	0,2	terra	II
4	23	43	W	6	10	10	V	0,2	terra seca	I
5	38	32	W	6	10	30	V	0,2	terra seca	1
6	30	27	W	6	15	30	V	1	terra seca	I
7	25	30	W	6	5	20	VIII	0,2	terra	II
8	33	32	W	6	10	20	VIII	0,2	terra	11
9	98	82	S	4	50	100	VIII	0,2	sem	II
10	90	79	SW	4	50	120	VIII	0,2	sem	П
11	93	82	S	4	100	30	VIII	0,1	terra seca	I
12	105	82	S	4	10	100	VIII	0,1	sem	11
13	100	90	-	4	10	100	VIII	0,1	sem	II
14	120	17	S	1	100	300	V	0,1	terra seca	I
15	149	17	N	1	15	600	IV	0,1	terra	1
16	27	83	W	2	60	50	V	0,1	terra	11
17	37	80	E	2	80	50	VIII	0,1	terra	II
18	42	88	NW	2	70	150	VIII	0,1	terra	П
19	7	88	W	2	80	150	VIII	0,1	terra	II
20	27	90	-	2	80	300	V	0,1	terra	II
21	44	87	NW	2	70	150	VIII	1	terra	II
22	36	12	SE	1	20	500	IV	0,2	terra	I
23	21	16	SE	1	30	600	IV	0,2	terra	I
24	14	86	E	2	-	20		0,1	terra	I
25	4	88	E	2	30	300	VIII	0,2	terra seca	1
26	21	80	w	2	30	320	VIII	0,1	terra	1
27	58	12	SW	1	35	10000	V	0,2	terra	11
28	55	77	S	2	30	600	VIII	0,1	terra	11
29	46	78	S	2	30	600	VIII	0,1	terra	11
30	2	79	W	7	20	250	VIII	0,2	terra	П

Secção:	С	Comprimento (m):	8,5	Operador:	Gil
Orientação:	N104	Altura (m):	5	Data:	25/10/16

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	130	78	SW	2	180	400	VII	0,1	terra	П
2	142	82	SW	2	180	200	VII	0,1	terra	Ш
3	159	80	SW	2	210	300	VII	0,1	terra	II
4	141	81	SW	2	200	200	VII	0,1	terra	П
5	70	85	Ν	3	100	300	VII	0,1	terra	III
6	76	87	N	3	70	200	VII	0,1	terra	П
7	12	19	SE	1	10	2000	V	0,1	terra	П
8	24	20	SE	1	15	2000	V	0,2	terra	П
9	0	15	SE	1	20	2000	V	0,1	terra	П

Tabela VII-3 Tabela de campo da secção C

Secção:	D	Comprimento (m):	6,5	Operador:	Gil
Orientação:	N123, subvertical	Altura (m):	2-8	Data:	26/10/16

|--|

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	23	19	SE	1	40	500	V	1	alguma terra	II
2	20	21	SE	1	10	500	V	0,5	alguma terra	II
3	29	17	SE	1	15	500	V	0,5	alguma terra	П
4	10	72	w	2	45	80	VIII	0,1	terra húmida	П
5	13	79	W	2	50	60	VIII	0,1	terra húmida	П
6	17	80	w	2	50	60	VIII	0,1	terra húmida	П
7	17	80	W	2	30	50	VIII	0,1	terra húmida	П
8	10	83	w	2	30	50	VIII	0,1	terra húmida	П
9	18	81	W	2	30	50	VIII	0,1	terra húmida	П
10	33	82	W	3	40	50	VIII	0,1	terra húmida	П
11	32	84	W	3	20	20	VIII	0,1	terra húmida	П
12	146	83	SW	4	10	300	VIII	0,1	terra húmida	ш
13	139	85	SW	4	50	300	VIII	0,1	terra húmida	ш
14	140	81	SW	4	10	250	VIII	0,1	terra húmida	ш
15	137	85	SW	4	30	250	VIII	0,2	terra húmida	ш
16	129	81	SW	4	30	200	VIII	0,2	terra húmida	ш
17	129	90	-	4	15	200	VII	0,2	terra húmida	ш
18	138	84	SW	4	15	150	VII	0,1	terra húmida	ш
19	136	88	SW	4	15	150	VII	0,1	terra húmida	ш
20	128	90	SW	4	15	100	VII	0,1	terra húmida	ш
21	38	82	NW	3	100	150	VIII	0,1	terra húmida	11
22	15	75	W	2	100	100	VIII	0,1	terra húmida	П
23	89	82	S	6	900	200	VIII	0,1	terra húmida	11
24	55	19	NE	1	500	-	VI ?	-	terra húmida	Ш

Secção:	E	Comprimento (m):	13,5	Operador:	Gil
Orientação:	N105, 70N	Altura (m):	10	Data:	26/20/16

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	41	65	NW	2	70	200	VIII	0,1	terra húmida	П
2	33	67	NW	2	70	50	VIII	0,1	terra húmida	11
3	38	62	NW	2	120	40	VIII	0,1	terra húmida	11
4	100	70	S	3	25	100-50	VIII	0,1	terra húmida	II
5	96	82	S	3	30	100-50	VIII	0,1	terra húmida	II
6	95	84	N	3	30	100-50	VIII	0,1	terra húmida	11
7	90	80	S	3	30	100-50	VIII	0,1	terra húmida	II
8	92	82	S	3	25	100-50	VIII	0,1	terra húmida	11
9	90	87	S	3	20	100-50	VIII	0,1	terra húmida	II
10	93	78	S	3	15	100-50	VIII	0,1	terra húmida	II
11	90	88	N	3	15	250	VIII	0,1	terra húmida	II
12	90	90	-	3	15	250	VIII	0,1	terra húmida	II
13	96	88	N	3	20	250	VIII	0,1	terra húmida	II
14	35	82	W	4	45	100	VIII	0,1	terra húmida	11
15	14	73	W	4	45	100	VIII	0,1	terra húmida	II
16	13	90	-	4	45	100	VIII	0,1	terra húmida	II

Tabela VII-5 Tabela de campo da secção E

Secção:	F	Comprimento (m):	9	Operador:	Gil
Orientação:	N132, subvertical	Altura (m):	2	Data:	27/10/16

Tabela	VII-6	Tabela	de	campo	da	secção F	7

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	96	90	-	2	20	100	VIII	0,1	terra escura	Ι
2	87	82	S	2	20	100	VIII	0,1	terra escura	II
3	85	80	S	2	20	100	VIII	0,1	terra escura	II
4	82	80	N	2	20	100	VIII	0,1	terra escura	П
5	91	83	S	2	20	100	VIII	0,1	terra escura	П
6	91	78	S	2	110	100	VIII	0,1	terra escura	П
7	91	90	-	2	30	100	VIII	0,1	terra escura	П
8	90	90	-	2	30	100	VIII	0,1	terra escura	II
9	90	83	N	2	30	100	VIII	0,1	terra escura	П
10	81	83	N	2	30	100	VIII	0,1	terra escura	П
11	91	87	S	2	30	100	VIII	0,1	terra escura	II
12	97	83	S	2	30	100	VIII	0,1	terra escura	II
13	84	86	S	2	30	100	VIII	0,1	terra escura	П
14	160	81	w	3	10	150	V	0,1	terra escura	II
15	144	83	w	3	10	150	V	0,1	terra escura	П
16	156	83	w	3	10	150	V	0,1	terra escura	П
17	170	86	w	3	30	150	V	0,1	terra escura	II
18	161	90	-	3	30	100	V	0,1	terra escura	П
19	164	80	w	3	30	100	V	0,1	terra escura	П
20	172	82	w	3	20	100	V	0,1	terra escura	П
21	175	71	w	3	20	100	V	0,1	terra escura	11
22	82	21	S	1	25	900	V	1	terra escura	
23	30	16	S	1	30	900	V	1	terra escura	11
24	0	16	SE	1	25	900	V	1	terra escura	11
25	40	12	SE	1	30	900	V	3	terra escura	Ш

Secção:	G	Comprimento (m):	20	Operador:	Gil
Orientação:	N130, subvertical	Altura (m):	>20	Data:	28/10/16

|--|

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	87	81	S	2	20	800	VIII	0,1	terra	II
2	89	87	S	2	20	100	VIII	0,1	terra	II
3	90	84	S	2	30	1000	VIII	1	terra	П
4	90	84	S	2	5	900	VIII	0,5	terra	II
5	95	84	S	2	30	30	VIII	0	-	-
6	145	85	SW	3	70	30	VIII	0	-	-
7	139	83	SW	3	70	30	VIII	0	-	-
8	151	82	SW	3	70	30	VIII	0	-	-
9	155	84	SW	3	60	40	VIII	0	-	-
10	135	85	SW	3	60	40	VIII	0	-	-
11	136	80	SW	3	50	40	VIII	0	-	-
12	55	8	SE	1	10	100	v	0,1	terra	П
13	153	10	NE	1	30	50	v	0,1	terra	II
14	159	14	NE	1	30	50	v	0,1	terra	П
15	140	75	SW	3	35	300	V	0,5	terra	II
16	134	85	NE	3	35	300	V	3	terra	II
17	88	80	S	2	100	50	VIII	0,2	terra	II
18	63	81	S	2	100	50	VIII	0	-	-
19	82	78	S	2	100	50	VIII	1	terra	П
20									terra	П
21	161	8	E	1	50	200	V	0	-	-
22	Н	0	-	1	50	200	V	0	-	-
23	137	12	NE	1	50	200	V	0	-	-
24	135	75	w	3	50	200	VIII	0,1	terra	II
25	149	82	SW	3	50	100	VIII	0,1	terra	11
26	137	81	W	3	70	100	VIII	0,1	terra	11
27	89	80	S	2	160	500	VIII	1	terra	Ш

Secção:	Н	Comprimento (m):	18	Operador:	Gil
Orientação:	N098, -10	Altura (m):	20	Data:	28/10/16

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	136	90	-	2	200	500	VIII	0,2	terra	I
2	127	77	SW	2	150	500	VIII	0,2	terra	I
3	137	90	-	2	100	500	VIII	0,1	terra	I
4	131	81	SW	2	60	500	VIII	0,1	terra	I
5	127	80	SW	2	50	500	VIII	2	terra	1
6	150	83	SW	2	50	500	VIII	5	pedras soltas	I
7	136	90	-	2	50	1000	VIII	0,2	terra	I
8	124	85	NE	2	50	1000	VIII		terra	I
9	91	79	S	3	50	1000	VIII	0,1	terra	I
10	87	80	S	3	40	1000	VIII	0,5	terra	1
11	83	75	S	3	50	1000	VIII	0,4	terra	I
12	91	77	S	3	50	1000	VIII	0,1	terra	I
13	87	78	S	3	50	1000	VIII	-	terra	I
14	150	15	E	1	50	1000	V	0,1	terra	I
15	163	8	E	1	50	1000	V	0,1	terra	1
16	162	6	E	1	50	1000	V	0,1	terra	1
17	118	8	E	1	40	1000	V	0,5	terra	1
18	115	12	E	1	50	1000	V	0,1	terra	1

Secção:	I	Comprimento (m):	21	Operador:	Gil
Orientação:	N123, subvertical	Altura (m):	10-15	Data:	07/11/16

Tapela VII-9 Tapela de campo da secção I		Tabela	VII-9	Tabela	de c	ampo	da	secção	1
--	--	--------	-------	--------	------	------	----	--------	---

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	91	80	S	2	5	120	VIII	0,5	Sem	П
2	91	78	S	2	50	120	VIII	2	sem	II
3	92	77	S	2	120	400	VIII	1	pouca terra	I
4	88	81	S	2	80	350	VIII	0,2	terra	II
5	91	85	S	2	60	400	VIII	0,3	terra	Ш
6	92	85	S	2	40	100	VIII	0,1	terra	П
7	90	79	S	2	50	500	VIII	0,2	terra	П
8	91	78	S	2	25	500	VIII	6	terra e rochas	П
9	90	84	S	2	40	180	VIII	0,1	terra	П
10	90	81	S	2	80	100	VIII	0,2	sem	П
11	92	83	s	2	80	200	VIII	5	terra	П
12	11	87	E	3	160	100	VIII	0,5	sem	П
13	10	81	E	3	150	80	VIII	1	sem	П
14	16	78	E	3	130	100	VIII	0,1	terra	1
15	12	81	E	3	60	300	VIII	0,1	terra	1
16	17	72	E	3	150	250	VIII	0,1	terra	1
17	159	83	E	4	90	200	VIII	0	-	-
18	153	85	E	4	130	150	VIII	0,5	pouca terra	П
19	157	83	E	4	150	170	VIII	0,1	terra	П
20	160	80	E	4	30	50	VIII	0	-	-
21	152	83	E	4	30	70	VIII	0	-	-
22	20	9	SE	1						
23	23	8	SE	1	70	2100	V	0,1	terra	1

Secção:	J	Comprimento (m):	8	Operador:	Gil
Orientação:	N156, subvertical	Altura (m):	4x3	Data:	09/11/16

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	85	78	S	2	25	150	VIII	1	pouca terra	II
2	92	79	S	2	100	200	VIII	0,1	Terra	II
3	88	83	S	2	5	30	VIII	0,1	sem	I
4	90	81	S	2	80	200	VIII	7	alguma terra	П
5	90	85	S	2	30	120	VIII	0,1	sem	1
6	94	73	S	2	15	130	VIII	0	-	-
7	93	81	S	2	15	90	VIII	0,2	terra	III
8	93	76	S	2	15	130	VIII	0,1	terra	II
9	94	78	S	2	60	250	VIII	0,2	terra	II
10	12	78	SE	3	200	200	VIII	2	alguma terra	П
11	21	79	W	3	180	50	I	0	-	-
12	9	81	W	3	150	70	VIII	0,1	terra	II
13	h	0	-	1	60	120	V	1	sem	II
14	h	0	-	1	60	150	V	0,1	terra	11
15	h	0	-	1	60	80	V	0,1	terra	11
16	111	14	S	1	100	160	V	2	pouca terra	Ш

Tabela VII-10 Tabela de campo da secção J

Secção:	L	Comprimento (m):	8	Operador:	Gil
Orientação:	N020, 70E	Altura (m):	20	Data:	09/11/16

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	12	80	E	2	20	200	VIII	-	-	-
2	11	86	E	2	30	30	VIII	-	-	-
3	13	78	E	2	30	300	VIII	-	-	-
4	14	78	E	2	30	90	VIII	0,1	terra	Ш
5	153	86	W	3	50	160	VIII	0,2	terra	П
6	142	86	W	3	40	160	VIII	0,1	terra	II
7	158	83	W	3	30	80	VIII	0,1	terra	II
8	92	81	S	4	30	180	VIII	0,2	terra	П
9	74	70	S	4	40	170	VIII	0,1	terra	II
10	90	74	S	4	100	220	VIII	0,5	terra	Ш
11	90	71	S	4	40	140	VIII	0,2	terra	Ш
12	89	80	S	4	80	150	VIII	0,1	terra	Ш
13	12	77	E	2	30	150	VIII	0,2	terra	111
14	25	90	-	2	30	15	VIII	0	-	-
15	130	85	NE	6	15	50	VIII	0,1	-	Ш
16	120	88	NE	6	15	30	VIII	0,1	terra	

Tabela VII-11 Tabela de campo da secção L

Secção:	М	Comprimento (m):	7	Operador:	Gil
Orientação:	N105, subvertical	Altura (m):	3x3	Data:	10/11/16

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	94	84	S	2	35	200	V	0,1	terra	III
2	90	88	S	2	40	100	V	0	-	-
3	89	83	S	2	50	200	VIII	-	-	-
4	88	78	S	2	20	130	VIII	-	-	-
5	90	81	S	2	20	200	VIII	2	sem	Π
6	96	80	S	2	30	100	VIII	-	-	-
7	35	90	-	3	20	170	VIII	0,2	pouca terra	Ш
8	45	90	-	3	70	80	VIII	0,1	terra	Π
9	27	84	E	3	5	150	IV	0,2	terra	II
10	11	81	E	3	40	70	VIII	0,1	terra	II
11	17	80	E	3	40	150	VIII	0,5	terra	II
12	13	78	E	3	70	170	IX	0,2	terra	II
13	10	79	E	3	70	160	VIII	0,2	terra	II
14	140	78	NE	4	40	50	VIII	0,1	sem	I
15	145	83	NE	4	40	50	VIII	0	-	-
16	117	79	N	4	40	20	VIII	0,1	terra	
17	39	84	NW	3	30	150	VIII	0,1	terra	
18	143	16	E	1	25	200	V	0,1	terra	

Tabela VII-12 Tabela de campo da secção M

Secção:	N	Comprimento (m):	18	Operador:	Gil
Orientação:	N137, subvertical	Altura (m):	3x3	Data:	11/11/16

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	143	83	SW	2	50	110	V	0	-	-
2	147	90	-	2	100	130	IV	-	-	-
3	149	90	-	2	50	100	V	0	-	-
4	160	84	W	2	30	100	V	0	-	-
5	90	79	S	3	35	150	VIII	0,2	terra	П
6	87	77	S	3	60	200	VIII	0,2	terra	П
7	90	77	S	3	30	190	VIII	0,1	terra	П
8	95	83	S	3	60	200	VIII	0,1	terra	П
9	87	82	S	3	80	130	VIII	0,1	terra	П
10	83	81	S	3	10	100	VIII	0,1	sem	1
11	88	75	S	3	5	120	VIII	0,1	terra	II
12	90	82	S	3	20	100	VIII	0,1	terra	II
13	81	86	S	3	15	150	VIII	0,1	terra	II
14	91	77	S	3	40	200	VIII	0,3	terra	Ш
15	90	86	S	3	20	160	VIII	0,2	terra	П
16	83	83	S	3	20	150	VIII	0,1	terra	П
17	23	90	-	4	30	150	VIII	0,1	terra	II
18	15	82	E	4	40	180	VIII	0,2	terra	П
19	13	77	E	4	100	180	VIII	0,1	terra	П
20	21	72	E	4	20	100	VIII	0,1	terra	Ш
21	15	81	E	4	25	120	VIII	0,1	terra	П
22	9	80	E	4	20	50	VIII	0,1	terra	П
23	162	83	W	2	15	150	VIII	0,3	terra	II
24	12	81	W	4	10	200	VIII	0,1	terra	Ш
25	44	5	S	1	10	500	V	0,1	sem	1
26	90	18	S	1	20	200	V	0,1	sem	1
27	37	5	SE	1	15		V	0,1	sem	1
28	97	12	S	1	15		V	0,1	sem	1

Tabela VII-13 Tabela de campo da secção N

Tabela VII-14 Tabela de campo da secção O										
Secção:	Secção: O Comprimento (m): 6 Operador: Gil									
Orientação:	N112, subvertical	Altura (m):	6	Data:	22/11/16					

#	Azimute Magnético	Inclinção	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	87	82	S	2	50	160	VIII	0	-	-
2	85	86	S	2	50	190	VIII	0,2	terra	П
3	87	85	S	2	20	180	VIII	0,1	terra	П
4	87	84	S	2	20	45	VIII	0,1	terra	П
5	136	82	SW	3	20	60	VIII	0	-	-
6	124	81	N	3	10	90	VIII	-	-	-
7	138	88	SW	3	50	20	VIII	0,2	terra	П
8	30	87	SE	4	10	110	VIII	0,2	terra	Ш
9	14	76	W	4	20	80	VIII	0,1	terra	Ш
10	6	83	E	4	20	80	VIII	0,1	terra	П
11	26	76	W	4	30	150	VIII	0,2	terra	П
12	23	76	W	4	20	80	VIII	0,3	terra	П
13	0	12	SE	1	40	600	V	1	terra	III

Secção:	Р	Comprimento (m):	14	Operador:	Gil
Orientação:	N136, subvertical	Altura (m):	8	Data:	28/11/16

Tabela VII-15 Tabela de campo da secção	оP
---	----

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	84	80	S	2	30	90	VIII	3	sem	II
2	79	82	S	2	20	70	VIII	0,1	terra	III
3	82	90	-	2	5	70	VIII	0,1	terra	ш
4	82	89	S	2	5	40	VIII	0	-	-
5	90	75	S	2	30	90	VIII	0,1	terra	Ш
6	90	80	S	2	10	50	VIII	0	-	-
7	91	73	S	2	35	250	VIII	1	terra	III
8	88	82	S	2	20	90	VIII	0,1	terra	
9	92	81	S	2	30	150	VIII	0,2	terra	П
10	82	83	S	2	30	50	VIII	0	-	-
11	90	82	S	2	30	70	VIII	0,1	terra	II
12	92	78	S	2	50	200	VIII	0,1	terra	П
13	96	78	S	2	50	300	VIII	1	terra	III
14	47	85	SE	3	25	100	VIII	0,2	sem	IV
15	43	80	SE	3	10	100	VIII	0,1	terra	Ш
16	51	82	SE	3	10	50	VIII	0,1	sem	IV
17	50	83	SE	3	20	90	VIII	0,1	sem	IV
18	42	87	SE	3	5	100	VIII	0,3	terra	ш
19	55	83	SE	3	40	90	VIII	0,2	terra	ш
20	47	83	SE	3	20	20	VIII	0	-	-
21	138	90	-	4	20	150	VIII	0	-	-
22	149	86	NE	4	30	150	VIII	0	-	-
23	160	86	W	4	40	100	VIII	0,1	terra	ш
24	146	80	W	4	40	100	VIII	0,2	terra	Ш
25	150	82	W	4	50	60	VIII	0	•	-
26	144	78	w	4	30	200	VIII	0,1	terra	11
27	10	10	E	1	40	200	V	1	terra	Ш
28	26	9	SE	1	15	200	V	0,3	sem	IV

Tabela VII-16 Tabela de campo da secção Q										
Secção:	Q	Comprimento (m):	7	Operador:	Gil					
Orientação:	N117, subvertical	Altura (m):	5	Data:	29/11/16					

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	141	81	SW	2	50	200	VIII	0,1	terra	Π
2	127	85	SW	2	100	40	VIII	0,1	terra	П
3	154	85	W	2	50	50	VIII	0,1	terra	П
4	145	79	SW	2	50	300	VIII	0,1	terra	П
5	155	86	W	2	50	100	VIII	0,1	terra	П
6	93	87	S	3	30	200	VIII	0,1	terra	П
7	96	80	S	3	50	150	VIII	0,1	terra	П
8	91	79	S	3	50	200	VIII	0,1	terra	П
9	12	80	E	4	40	100	VIII	0,2	terra	П
10	13	80	E	4	40	200	VIII	0,1	terra	П
11	13	81	E	4	150	150	VIII	0,1	terra	П
12	12	79	E	4	150	200	VIII	2	terra	П
13	96	2	SW	1	110	200	V	0,1	terra	П

Tabela VII-17 Tabela de campo da secção R									
Secção:	R	Comprimento (m):	9	Operador:	Gil				
Orientação:	N148, subvertical	Altura (m):	12	Data:	29/11/16				

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	148	83	SW	2	30	200	VIII	0,1	terra	П
2	148	82	SW	2	30	300	VIII	0,1	terra	П
3	146	82	SW	2	30	100	VIII	0,1	terra	Π
4	155	84	SW	2	30	100	VIII	0,1	terra	11
5	154	90	-	2	20	120	VIII	0,1	terra	П
6	86	80	S	3	40	180	VIII	0,2	terra	11
7	92	80	S	3	60	60	VIII	0,1	terra	II
8	88	80	S	3	80	220	VIII	0,1	terra	11
9	93	77	S	3	60	70	VIII	0,1	terra	II
10	86	74	S	3	70	180	VIII	0,1	terra	П
11	86	80	S	3	5	200	VIII	0,1	terra	11
12	86	80	S	3	20	220	VIII	0,1	terra	II
13	12	76	SE	4	100	100	VIII	0,1	terra	11
14	14	77	SE	4	100	100	VIII	0,1	terra	11

Tabela VII-18 Tabela de campo da secção S									
Secção:	S	Comprimento (m):	11	Operador:	Gil				
Orientação:	N148, 50NE	Altura (m):	12	Data:	30/11/16				

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	91	84	S	2	40	130	VIII	0	-	-
2	87	82	S	2	10	110	VIII	0,1	terra	Ш
3	82	77	S	2	10	100	VIII	0,1	terra	П
4	85	76	S	2	20	170	VIII	0,1	terra	II
5	82	72	S	2	10	250	VIII	2	alguma terra	П
6	82	78	S	2	10	300	VII	0,1	terra	П
7	86	74	S	2	20	300	VIII	0,1	terra	П
8	82	73	S	2	30	110	VIII	0,1	terra	II
9	93	77	S	2	20	60	VIII	0,1	terra	П
10	89	72	S	2	60	400	VIII	0,1	terra	П
11	84	70	S	2	20	110	VIII	0,1	terra	П
12	84	75	S	2	20	500	VIII	0,1	terra	П
13	86	72	S	2	15	500	VIII	0,1	terra	П
14	84	73	S	2	20	200	VIII	0,2	terra	П
15	152	81	W	3	60	150	VIII	0,1	terra	П
16	151	86	W	3	15	100	VIII	0,1	terra	П
17	152	86	W	3	90	90	VIII	0,2	terra	П
18	157	85	W	3	100	80	VIII	0	-	-
19	20	77	E	4	100	200	VIII	5	alguma terra	Ш
20	22	81	E	4	20	170	VIII	0,1	terra	П
21	24	85	E	4	20	150	VIII	0,1	terra	11
22	24	90	-	4	80	50	VIII	0,1	terra	
23	100	22	SW	1?	40	800	V	0,5	terra	11

Tabela VII-19 Tabela de campo da secção T									
Secção:	Т	Comprimento (m):	10	Operador:	Gil				
Orientação:	N152, 70NE	Altura (m):	10	Data:	30/11/16				

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	22	85	E	2	60	100	VII	0,1	terra	П
2	17	84	E	2	10	100	VII	0,1	terra	П
3	14	86	W	2	35	100	VII	0,1	terra	I
4	22	90	-	2	60	50	VIII	-	-	-
5	14	87	W	2	40	110	VIII	0,1	terra	II
6	12	85	W	2	40	150	VIII	1	alguma terra	П
7	14	88	W	2	30	30	VIII	0,1	terra	II
8	15	82	W	2	20	70	VII	0,1	terra	П
9	30	86	W	2	30	200	VII	0,1	terra	II
10	20	86	W	2	20	300	VIII	0,1	terra	П
11	21	88	W	2	30	150	VII	0,1	terra	Π
12	138	80	NE	3	40	300	VII	0,1	terra	П
13	133	81	SW	3	80	250	VII	0,1	terra	П
14	131	70	SW	3	50	400	VII	0,1	terra	Π
15	28	5	S	1	20	80	V	-	-	-
16	35	6	S	1	15	50	V	0	-	-
17	10	2	S	1	80	200	V	0,1	terra	П

Secção:	U	Comprimento (m):	11	Operador:	Gil
Orientação:	N140, subvertical	Altura (m):	10	Data:	12/12/16
<u> </u>				1	

Tabela V	/11-20	Tabela	de	campo	da	secç	сãо	U	
									-

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	23	84	E	2	30	170	VIII	0,1	terra	II
2	27	80	W	2	30	180	VIII	0,2	terra	II
3	26	79	W	2	15	150	VIII	0,1	terra	II
4	24	87	w	2	40	150	VIII	0,1	terra	II
5	30	90	-	2	15	40	VIII	0	-	-
6	26	78	W	2	50	150	VIII	0,2	terra	II
7	17	84	W	2	50	200	VIII	0,1	terra	П
8	25	71	W	2	20	60	VIII	0	-	-
9	28	81	E	2	30	80	VIII	0	-	-
10	71	83	S	3	70	80	VIII	2	terra	П
11	86	90	-	3	70	90	VIII	0,1	terra	II
12	86	81	S	3	190	80	VIII	0,1	terra	II
13	90	81	S	3	140	250	VIII	0,5	terra	11
14	86	86	S	3	140	190	VIII	0,2	terra	11
15	50	6	S	1	30	100	V	0,2	terra	П

Tabela VII-21 Tabela de campo da secção V									
Secção:	V	Comprimento (m):	10	Operador:	Gil				
Orientação:	N132, subvertical	Altura (m):	23	Data:	13/12/16				

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	132	71	SW	2	100	200	VII	0,1	terra	Π
2	74	72	S	3	200	250	VIII	0,1	terra	П
3	73	78	S	3	60	50	VIII	0,1	terra	П
4	66	76	S	3	150	200	VIII	1	terra	П
5	90	84	S	3	100	50	VII	0,5	terra	П
6	88	85	S	3	10	350	VII	0,2	terra	Ш
7	76	85	S	3	90	10	VIII	0	-	-
8	74	90	-	3	20	100	VIII	0,2	sem	П
9	79	90	-	3	60	90	VIII	0,1	terra	П
10	20	82	SE	4	200	50	VIII	0,1	terra	П
11	17	73	SE	4	40	80	VII	0,2	terra	Ш
12	110	13	SW	1	10	150	V	0,1	terra	
13	80	15	S	1	10	150	V	0,1	terra	

Secção:	х	Comprimento (m):	7,5	Operador:	Gil
Orientação:	N160, subvertical	Altura (m):	10	Data:	15/12/16

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	57	58	NW	2	40	100	VII	0,1	terra	Ш
2	60	53	NW	2	60	300	VII	0,5	sem	П
3	51	57	NW	2	60	400	VII	0,3	sem	П
4	45	66	SE	2	80	200	VIII	0,1	sem	П
5	64	69	N	2	80	500	VII	2	quase sem	II
6	58	75	SE	2	10	200	VIII	0,5	sem	П
7	79	86	N	3	60	200	VIII	0,3	terra	Ш
8	79	75	S	3	60	500	V	1	sem	П
9	170	66	W	4	10	500	VII	-	-	-
10	160	60	W	4	10	100	VII	0,1	sem	П
11	66	20	SW	1	20	300	V	0,1	sem	-
12	69	21	S	1	20	200	V	0,1	sem	II
13	68	20	S	1	20	200	V	0,1	sem	II

Tabela VII-22 Tabela de campo da secção X

Secção:	Z	Comprimento (m):	7	Operador:	Gil
Orientação:	N142, 50NE	Altura (m):	50	Data:	15/12/16

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	128	78	SW	2	100	150	VII	0,1	terra	П
2	12	90	-	3	50	200	VIII	0,1	sem	П
3	10	85	NW	3	50	200	VIII	0,5	terra	Ш
4	172	68	E	3	30	60	VIII	0,1	terra	Ш
5	22	80	W	3	30	50	VIII	0,1	terra	=
6	0	67	W	3	20	100	VIII	0	-	-
7	15	75	W	3	20	80	VIII	0	-	-
8	13	79	W	3	30	100	VIII	1	terra	II
9	46	80	SE	4	70	50	VIII	0,2	terra	II
10	42	80	SE	4	40	60				
11	50	82	SE	4	40	50	VIII	0,1	terra	II
12	116	24	S	1	20	INF	V	0,1	sem	II
13	118	34	S	1	10	INF	V	0,1	sem	II
14	70	79	S	5	50	200	VIII	0,5	terra	11

Tabela VII-24 Tabela de campo da secção A1								
Secção:	A1	Comprimento (m):	12	Operador:	Gil			
Orientação:	N115, 80NE	Altura (m):	12	Data:	17/12/16			

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	91	83	S	2	110	200	VIII	-	-	-
2	90	86	S	2	50	150	VIII	0,1	alguma terra	II
3	87	85	S	2	50	100	VIII	0,1	sem	II
4	90	74	S	2	30	200	VIII	0,3	terra	III
5	94	79	S	2	30	200	VIII	1	terra	П
6	94	81	S	2	80	250	VIII	2	terra	П
7	94	81	S	2	80	270	VIII	8	terra	П
8	96	77	S	2	100	250	VIII	0,2	terra	П
9	4	88	E	5	40	170	VIII	0,1	terra	11
10	162	83	SW	3	50	210	V	0,2	terra	П
11	164	79	SW	3	50	50	VIII	1	terra	П
12	172	78	W	3	20	100	Ι	1	terra	П
13	168	80	W	3	60	160	VIII	2	terra	II
14	152	78	SW	3	60	240	Ι	5	terra	П
15	174	78	SW	3	170	240	IV	0	-	1
16	156	82	W	3	170	200	VIII	4	terra	II
17	119	70	S	4	10	80	VIII	0,1	terra	П
18	98	68	N	4	50	100	VIII	0,1	terra	
19	107	67	N	4	50	50	VIII	0,1	terra	II
20	111	68	N	4	50	100	1	0	-	1

Tabela VII-25 Tabela de campo da secção B1								
Secção:	B1	Comprimento (m):	8	Operador:	Gil			
Orientação:	N092, -30	Altura (m):	30-50	Data:	27/12/16			

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	81	84	S	2	20	50	VIII	0,2	terra	П
2	90	87	S	2	20	100	VIII	0,1	terra	II
3	87	87	S	2	30	120	VIII	2	terra/raízes	II
4	87	84	S	2	5	120	VIII	0,2	terra	П
5	80	79	S	2	15	150	VIII	0,1	terra	П
6	92	90	-	2	30	70	VIII	0,1	terra	П
7	86	78	S	2	20	100	VIII	0,1	terra	П
8	140	86	SW	3	30	50	VIII	0,1	terra	П
9	160	90	-	3	30	100	VIII	0,2	terra	П
10	156	80	S	3	50	100	VIII	-	-	-
11	16	89	NW	4	40	200	VIII	0,5	sem	П
12	136	20	SW	1	20	150	V	0,5	sem	
13	160	20	SW	1	20	200	V	0,5	sem	III

Secção:	C1	Comprimento (m):	9,5	Operador:	Gil e Rita
Orientação:	N106, -10	Altura (m):	8	Data:	29/12/16
				•	

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	90	90	-	2	25	100	VIII	2	sem	
2	86	80	S	2	40	120	VIII	0,3	sem	IV
3	76	83	N	2	20	70	VIII	0,5	sem	IV
4	81	86	S	2	20	50	VIII	0,3	terra/musgo	ш
5	86	85	S	2	10	40	VII	0,1	terra	П
6	88	75	S	2	15	200	VIII	0,5	terra	П
7	89	85	S	2	10	200	VIII	0,1	terra	П
8	91	77	S	2	5	300	VIII	0,1	sem	IV
9	90	88	S	2	15	100	VIII	0,2	terra	II
10	90	89	S	2	30	400	VIII	0,5	terra	Ш
11	82	86	S	2	30	200	VIII	0,2	algum musgo	П
12	165	85	W	3	30	80	VIII	-	-	-
13	163	85	W	3	25	40	VIII	0,1	sem	IV
14	178	90	-	3	20	30	VIII	0	-	-
15	170	90	-	3	35	70	VIII	0,1	terra	П
16	160	84	SW	3	20	40	VIII	0,1	sem	Ι
17	165	75	SW	3	15	80	VIII	0,2	terra	III
18	8	87	W	4	10	70	VIII	0,3	sem	IV
19	22	88	W	4	25	70	VIII	0,3	sem	IV
20	18	76	SE	4	20	100	VIII	0,2	sem	IV
21	66	4	S	1	15	INF	V	0,5	sem	IV
22	100	24	S	1	15	INF	V	0.1	sem	

Tabela VII-26 Tabela de campo da secção C1

Tabela VII-27 Tabela de campo da secção D1									
Secção:	D1	Comprimento (m):	9	Operador:	Gil e Rita				
Orientação:	N107, subvertical	Altura (m):	8	Data:	29/12/2016				

Secçao:		DI Comprimento (m):		to (m):	9		Operador:	Gliert	
Orientação	o:	N107, sub	overtical	Altura (m): 8 Data: 2		29/12/20			
Azimute	Inclinação	Sentido	ID Família	Espaçamento	Continuidade	Rugosidade	Abertura	Preenchimento	Infiltraçõe

#

	Magnetico		munaçau	Tannia	(cm)	(CIII)		(cm)		Felcolação
1	90	79	S	2	30	500	VIII	0,5	sem	IV
2	91	80	S	2	5	200	VIII	1	alguma terra	III
3	86	84	Ν	2	15	90	VIII	0,5	sem	IV
4	80	86	N	2	20	150	VIII	0,1	terra	II
5	90	84	S	2	10	150	Ш	0,2	terra	III
6	90	78	S	2	20	700	VIII	3	alguma terra	III
7	24	67	SE	3	30	100	VIII	0,1	terra	III
8	40	70	SE	3	20	70	VII	0	-	-
9	46	89	SE	3	20	120	VIII	0,1	terra	II
10	1	85	W	4	30	50	VIII	0,1	sem	П
11	4	87	W	4	30	60	VIII	0,5	terra	Ш
12	0	85	W	4	90	120	VIII	0,2	terra	II
13	168	17	E	1	70	400	V	0,5	terra	III

Tabela VII-28 Tabela de campo da secção E1										
Secção:	E1 Comprimento (m): 13 Operador: Gil									
Orientação:	N120, subvertical	Altura (m):	10	Data:	03/01/17					

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	88	80	S	2	60	600	VII	-	-	-
2	88	82	S	2	15	160	VIII	0,2	terra	П
3	87	78	S	2	5	160	VIII	0,2	terra	П
4	89	81	S	2	10	140	VIII	0,1	terra	П
5	90	80	S	2	30	110	VIII	0,1	terra/musgo	П
6	88	87	S	2	40	250	VII	2	terra/musgo	11
7	89	90	-	2	15	60	VIII	0,1	terra	П
8	85	90	-	2	15	160	VIII	0,1	terra	11
9	80	87	S	2	25	70	VIII	0,1	terra	11
10	82	87	S	2	25	30	VIII	0,1	terra	П
11	84	80	N	2	20	30	VIII	0,1	terra	11
12	82	86	S	2	40	150	VIII	0,2	terra	11
13	76	90	-	2	50	140	VIII	0,2	terra	П
14	152	89	SW	3	20	80	VII	0,1	terra	11
15	152	90	-	3	20	300	VII	0	-	-
16	154	85	E	3	40	40	VIII	0,2	terra	П
17	163	85	E	3	40	50	VIII	0,1	terra	П
18	162	84	E	3	20	50	VIII	0,2	terra	П
19	165	86	E	3	20	40	VIII	0,1	terra	П
20	160	90	-	3	70	30	VIII	0,1	terra	П
21	152	90	-	3	30	150	VIII	0,1	terra	11
22	41	80	SE	4	30	70	VII	0,1	terra	11
23	33	80	SE	4	80	100	VIII	0,1	terra	11

Secção:	F1	Comprimento (m):	11	Operador:	Gil
Orientação:	N120, 40NE	Altura (m):	10	Data:	04/01/17

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	21	81	W	2	70	130	VIII	0,1	terra	III
2	32	80	NW	2	2 40 250 VIII		0,2	terra	III	
3	27	81	SE	2	5	180	VIII	0,1	terra	III
4	29	75	NW	2	5	180	VIII	0,1	sem	IV
5	31	84	NW	2	30	230	VIII	0,1	terra/musgo	III
6	34	82	NW	2	100	200	VIII	0,3	terra/musgo	III
7	23	74	SE	2	100	110	VIII	0	-	-
8	76	90	-	3	60	150	VII	0,2	terra/musgo	III
9	90	80	N	3	100	300	VIII	0,3	terra	ш
10	74	90	-	3	40	100	VIII	0,1	terra	П
11	70	80	N	3	80	100	VIII	0,1 terra		111
12	73	89	S	3	40	100	VIII	0,1	terra	111
13	56	87	N	3	70	180	V	0,2	terra	П
14	114	70	S	1	100	200	VII	0,1	terra	II
15	118	65	S	1	20	100	V	0	-	-
16	120	77	S	1	10	250	IV	0,1	terra	II
17	124	76	S	1	10	50	V	0	-	-
18	120	70	S	1	15	300	IV	0,1	terra	III
19	118	60	S	1	10	250	IV	0,1	terra	III
20	121	61	S	1	10	150	IV	0,1	terra/musgo	Ш
21	116	61	SW	1	40	80	VII	0,1	sem	V
22	117	60	SW	1	70	250	VII	0,1	terra	
23	119	62	S	1	10	200	V	0,1	terra/musgo	Ш

Secção:	G1	Comprimento (m):	8	Operador:	Gil
Orientação:	N115, subvertical	Altura (m):	12	Data:	05/11/17

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	57	70	SE	2	150	300	IV	0,5	musgo	Ш
2	70	85	Ν	2	200	50	VIII	-	-	-
3	72	81	SE	2	50	500	VII	1	terra	Ш
4	73	84	SE	2	50	700	VII	0,1	terra	Ш
5	19	88	W	3	10	250	VIII	0,3	sem	IV
6	24	80	W	3	20	200	VIII	0,5	sem	IV
7	20	80	E	3	5	200	VIII	0,1	sem	IV
8	20	83	E	3	60	150	VIII	0,1	terra	II
9	10	88	E	3	60	150	VIII	0,1	terra	III
10	10	69	W	3	200	150	VIII	0,1	terra	П
11	110	52	S	1	30	150	V	0,1	terra	III
12	108	52	S	1	30	100	VIII	0,1	terra	III
13	102	40	S	1	20	150	V	0,1	terra	Ш
14	105	52	S	1	20	40	VIII	0,1	terra	II
15	100	41	S	1	20	100	V	0,1	terra	П
16	80	29	S	4	60	200	V	0,2	terra	1

Secção:	H1	Comprimento (m):	14	Operador:	Gil
Orientação:	N114, 80N	Altura (m):	15	Data:	05/01/17

#	Azimute Magnético	Inclinação	Sentido Inclinação	ID Família	Espaçamento (cm)	Continuidade (cm)	Rugosidade	Abertura (cm)	Preenchimento	Infiltrações Percolação
1	64	79	S	2	30	200	VII	0,5	terra/musgo	
2	82	90	- 2 40		300	VII	0,1	terra	II	
3	69	80	S	2	40	150	VIII	0,1	terra	Ш
4	72	80	S	2	15	100	VIII	0,1	terra/musgo	Ш
5	72	86	Ν	2	15	100	VIII	0,1	terra	Ш
6	78	84	N	2	100	100	VIII	0	-	-
7	74	90	-	2	100	300	VII	5	terra	II
8	84	86	S	2	200	1000	VIII	0,2	terra	II
9	27	77	W	3	50	150	VIII	0,2	terra/musgo	Ш
10	30	80	NW	3	50	100	VIII	0,2	terra	П
11	30	78	NW	3	80	50	VIII	0,1	terra	II
12	15	78	SE	3	50	200	VIII	0,1	terra	III
13	15	76	NW	3	10	50	VIII	0,1	terra	Ш
14	21	85	SE	3	30	150	VIII	0,1	terra/musgo	III
15	22	72	SE	3	40	150	VIII	0,1	terra	Ш
16	24	78	E	3	40	200	VIII	0,2	terra	III
17	0	77	E	4	40	250	VIII	0,1	terra	Ш
18	78	23	S	1	20	300	V	1	terra/musgo	

VIII. Anexo 2 – Tutorial para criação de diagramas de rosa e diagramas de contornos usando o *software RockWorks* 17

O RockWorks é um *software* para a gestão, análise, correlação espacial e visualização de dados geológicos. Neste tutorial iremos apenas trabalhar com a ferramenta *RockWorks Utilities*. Na figura VIII-1 podemos ver o layout inicial onde vamos trabalhar.

Figura VIII-1 Layout inicial

Procedimento para criar um novo diagrama de rosas:

O primeiro passo é criar um novo projeto, clicando em *folder* e escolhendo o diretório de trabalho desejado. De seguida, é-nos pedido o sistema de coordenadas em que estamos a trabalhar (este parâmetro pode ser alterado a qualquer altura do trabalho, acedendo ao separador *coordinates* na parte superior da janela de trabalho).

Por fim escolhemos a ferramenta *RockWorks Utilities* para onde vamos importar os dados. Dados estes que podem ser diretamente introduzidos na *Datasheet,* manualmente ou importados de um documento *Excel* da seguinte forma:

File - import - Excel

Como indicado na imagem abaixo (figura VIII-2).

∋Folder ▼ C	:\Users	ıgil.moreir tes: Local l	a\Docu Meters	ments\RockWork Origin (0,00, 0,00	s17 Data\New) X: 0,0 - 100	, p),0	👔 Text File 😨 CSV (Comma Separated Va	alues)								Subsit	e: Full I	Projec	t	- 3	Preferences Window Knun Script								
Dimensions Coordinates Coordin	Grid X: [Y: [Z:]	& Model Minimu an Datash	Dimens m 0 0 0 eet	ions Maximum 100 100 100 Scan Boreholes	Spacing N 10 10 10 10	√o [Der (Brase, Arcsis) DXF (AutoCAD Lines & Poi Stellencel External Database Garmin TXT (From MapSou Geonics EM38 GPL (Delorme GPS)	ints)	arth 💌							Xmin	rth	Ymax	Zmax Zspacing Zmin Ymax /spacing	Ž Ž									
Project Ta Types Types Grid Mod Grid Mod	ibles Tables Model 1 ection T Tables ym Tab t Files (i lels (0 F	ables ables les) Files) iles)	Aap Data D C C	Grid So sheet File Edit Sear D' New Dopen	liid Volume	etri lur	GFX (Universal GFS) Mayp GSM-19 (GEM Systems Ma Laser Atlanta (Survey) LAS File (Log ASCII Format) ModPath (Particle Flowpat) NEIC (USGS Seismic)	 ag.)) hs)	aults	LL Statist	ics Su 13	⊼ irvey 14	Coords	¢ ^d Widg 16	al gets In 17	agery	Srafix	Eart	S hApps - Additi Numer	onal File ric Forma Decimal	Information It Separator: ,								
Solid Models (0 Files) 2-D Diagrams (0 Files) 3-D Diagrams (0 Files) 3-D Diagrams (0 Files) Google Earth Files (0 Files 1 LAS Files (0 Files) 5 RCL Files (0 Files)		ns ((🏐		Save Save As Save As Terr Print Import	olate	olate >	plate	plate	plate	plate	olate)late	ilate		SEG-P1 (Shotpoint Location SHP (ESRI Shapefile) WCS (Tobin Well Locations Create File List	ns)											Notes	ousands (Metada	Separator: •
,	10162			Export Export Export I2 V I3 V I4 V I5 V I6 V 17 P		•																							
	fresh	, Q	Colur	nn: 0 Row: 1	Rows	: 98	untitled											,	1.12										

Figura VIII-2 Importar do Excel

No seguimento deste procedimento abre-se uma nova janela onde nos é pedido o diretório do ficheiro *Excel* (1) e a folha do documento (2), como na figura VIII-3.

🔁 Excel Import	
& ↔ ++ +1+ +2+ ⊞ ↓ ‡	Instructions
«	4 P
Existing Excel File	Home > RockWorks Utilities - Entering Data > Importing Data > Importing Data from Excel Files into the Utilities Datasheet
🖻 🗹 Header Line	Show pavingtion
Process Header Line	Jion hergelon
C Ignore Header Line	Importing Data from Excel Files into the Utilities Datasheet
B-Number of Rows	
I Header Row C 2 Header Rows (Units) Excel Datasheet #	
- Di video Help	
	RockWorks Utilities File Import Excel
	This program is used to import into the Utilities datasheet the entriety of a specified worksheet (.xk or .xks) created by the Microsoft Excel program. The imported rows and columns will be placed in the active RockWorks datasheet, starting at the row in which returns is currently placed. Once the data is displayed in RockWorks, you can modify the column names and types using the Columns [Column Properties command.
E	In order to use this import tool, you must have Microsoft Excel installed on your computer. The Excel program will be launched, and the selected file opened. The selected worksheet's data will be imported rito the current RockWorks data sheet, starting at the current cursor location. The header of the datasheet will be modified to list the Excel column headings if you so requested. The Excel program will be closed automatcally. <u>Menu Options</u> <u>Step-by-Step Summary</u>
	 Menu Options Existing Excel File: Cick here to browse for the name of the Excel file to be inported, in an ".xks" or ".xks." format. Note: Microsoft Excel must be instaled on this machine in order for the OLE import to take place. Data will be added to the spreadsheet starting at the currently active row. This import will start on the first row of the Excel spreadsheet and stop when the first blank row of cells is encountered.
	 Header Line: Insert a check in this box f the first row in the Excel fie contains column headings rather than data. Clear this check-box f there are no column headings in the first row of the file being imported. Process freader Line: If you've checked the Header Line box, click here to have RockWorks use the header line to define the column headings in the datasheet to be created. Jorce header Line: Choose this option to tell RockWorks to ignore the header line in the Excel spreadsheet. Datasheet: Since Excel permits a single spreadsheet file to contain more than one worksheet, here you can select which worksheet to import rot RockWorks.
	Step-by-Step Summary -
X Process (Ctrl+G)	
	0500 5, 가이 한 한 번 역 이 생각 **

Figura VIII-3 Importar do Excel – opções
leangs cool	rdinates: Local I	Meters	Drigin (0,00, 0,0	10) X: 0,0 - 100	,0 Y:0,0	- 100,0 Z: 0,0 - 100	,0 Node	s: 11x11x11				500			Run Script
Dimensions Coordinates Units Image Notes	Grid & Model Minimu X: Y: Z: Z: Scan Datash	Dimensi m 0 0	ons Maximum 100 100 100 Scan Borehole	Spacing 1 1 10 1 10 1 10 1 10 1 10	Indes	Range Unit	s ers Preview	Scog	e Earth 👻			Xr	North	f zpacing Vrax Vspacing mn	
oject Manager Project Tabl D C Types Ta D C Map/Mo D C Log/Sect	les ables odel Tables tion Tables	A H Aap Datas	iome) 🎸 U Grid S Sheet File Edit Sea	Jtilities 🔷 🌩 Iolid Volume	Borehole M trics Hyc	Manager \ drology HydroChei	X n Linear	rs Planes	D il. Faults Statist	⊼ dics Survey Co	े 🛃 ords Widgets	ø Imagery	👗 Grafix Ea	🔕 🗄 irthApps	
 Index Ta Synonym 	bles Tables	Ľ	Row# Use	Azimute Magn	ético Incli	nção Sentido Inclin	ação ID F	amília Espa	çamento (cm) Co	ntinuidade (cm) R	ugosidade Abe	rtura (cm) F	Preenchiment	 Additional File Numeric Forma 	Information t
Crid Model	r (O Files)		1 🔽		120	50	SW	1	50-60	120	īv			De simela	
Solid Mode	ls (0 Files)	6	2 🕅		114	48	SW	1	50-60	160	v			Decimal	separator: 7
2-D Diagram	ns (0 Files)		3 🗸		104	50	s	1	50-60	270		0.5	Terra escu	Thousands	Separator:
🕺 3-D Diagrar	ns (0 Files)	E.	4 🗸		43	84	SE	2	27	120	VIII	0.1	Terra escu	Notes (Metada	ta)
ReportWork	cs Diagrams ((4	5 🗸		38	78	SE	2	23	160	VII	0.1	Terra escu	Tiotes (Hierada	
- Soogle Earth Files (0 Files			6 🗸		15	80	SE	2	40	170	VII	0.1	Terra escu		
			7 🗸		20	90		2	30	180	VII	0.1	Terra escu		
🛔 LAS Files (0	啦 RCL Files (0 Files)		8 🗸		61	23	S	1	20		IV	0,1	se		
LAS Files (0			9 🗸		81	21	s	1	15	10	IV	0.1	se		
LAS Files (0 CLAS Files (0 CLAS Files (0 System Tabl	les				164	28	E	1	40	10	IV	0,1	se		
AS Files (0 RCL Files (0 System Tabl	les	121	10 🔽		128	78	sw	3	15	50	VIII	0,1	Terra escu		
LAS Files (0 CLAS Files (0 CL Files (0 System Tabl	les	8	10 🔽 11 🔽					0	45	FO	VIII	0.1	Terra escu		
LAS Files (0 CLS Files (0 CL Files (0 System Tabl	les	B	10 V 11 V 12 V		138	76	SW	3	15	50	A TT	-,-			
LAS Files (0 RCL Files (0 System Tabl	les	8	10 V 11 V 12 V 13 V		138 157	76 76	SW SW	3	15	50	VII	0,1	Terra escu		
LAS Files (0 RCL Files (0	les		10 V 11 V 12 V 13 V 14 V		138 157 39	76 76 87	sw sw w	3	15	50 220	VII VII	0,1	Terra escu Terra escu		
LAS Files (0 RCL Files (0	les		10 V 11 V 12 V 13 V 14 V 15 V		138 157 39 40	76 76 87 82	SW SW W E	3 2 2	15 15 5	50 220 220		0,1 0,1 0,1	Terra escu Terra escu Terra escu		
LAS Files (0 RCL Files (0 System Tabl	les		10 V 11 V 12 V 13 V 14 V 15 V		138 157 39 40 41	76 76 87 82 80	SW SW W E SW	3 2 2 2	15 15 5 5 5	50 220 220 200		0,1 0,1 0,1 0,1	Terra escu Terra escu Terra escu Terra escu		
LAS Files (0	les		10 V 11 V 12 V 13 V 14 V 15 V 16 V		138 157 39 40 41	76 76 87 82 80 91	SW SW E SW	3 2 2 2 2	15 15 5 5 5	50 220 220 200		0,1 0,1 0,1 0,1	Terra escu Terra escu Terra escu Terra escu	-	

Os dados são então apresentados na Datasheet como mostrado na figura VIII-4.

Figura VIII-4 Datasheet com os dados

Depois de verificar que os dados estão todos corretamente inseridos vamos à faixa de ferramentas onde selecionamos *Linears – Rose Diagram – From Bearings* (figura VIII-5).

Settings A Co	:\Users\gil.more	eira\Docun	nents\RockW Drigin (0,00, 0	orks17 Data\New ,00) X: 0,0 - 100	Project\ 1,0 Y: 0,0 -	100,0 Z: 0,0 - 10	0,0 Nodes	: 11x11x11				Subsite: Full Proj	ect 🔹	Window
🛱 Dimensions	Grid & Mode	el Dimensi	ons									North		Kun script
Coordinates	Minin	num	Maximum	Spacing N	lodes	Range Un	ts						-Zmax	
Linits	x	0	1	00 10	11	100							Zspacing Z	
Tanana a	Y	0	11	10 10	11	100 Met	ers						-Zπin - 1	4
mage													Ymax	·
Notes	4	0	1	10 10	11	100						Xspecing	Yspacing min X	
	Scan Data:	sheet	Scan Boreho	les 📴 Import	🗮 Export	🗊 Summary f	Preview	🚱 Google Earth	-			Xmin Xmax		
roio d Manage	or.													
Opect Ivialiage Project Ta	ables		Home	Utilities	Borehole M	anager								
P - S Types 1	Tables			🐮 🔁		s 🔄	- X-	🔶 🕅	և	Л 🖣	वस 🕼	÷.	S 🖗	
Map/N	Vodel Tables	Map	Grid	Solid Volume	trics Hydr	ology HydroChe	m Linear	s Planes Faults	Statisti	cs Survey Coords	Widgets Image	ry Grafix Ea	arthApps 💛	
D Se Log/Se	ection Tables	Datas	heet				🔜 💥 An	row Map						
🛛 🧧 Index 7	Tables	-	File Edit Si	earch ⊻iew <u>C</u> ol	lumns <u>R</u> ov	/s Filter	🔀 Lin	eation Gridding						
🖟 👵 Synony	ym Tables	1	Row# Us	e Azimute Magn	ético Indin	ção Sentido Inclir	iaçă 🎡 😳		pr	ntinuidade (cm) Rugos	idade Abertura (ci	n) Preenchiment	 Additional F 	ile Information
🔨 Datasheet	t Files (0 Files)	2					X Lin	eation Map					Numeric For	mat
🗄 Grid Mod	lels (0 Files)	2	1 🔽	1	120	50	s 🏏 Lin	eation Properties	•	120	IV		Decim	al Separator:
	della (B. Cilera)		2 🗸	1	114	48	n 😽 🗤							
- 🖪 Solid Mod	dels (U Files)						- S ਆ 🔍	ose Diagram	· · /	From Bearings	(Frequency-Ba	sed Analysis _.	Thousans	le Separator
- 👫 Solid Moc - 🔛 2-D Diagr	ams (0 Files)		3 🔽		104	50	Imp	port		From Bearings From Endpoints	(Frequency-Ba	sed Analysis _.) Thousand	ls Separator:
🖶 Solid Moc 🔛 2-D Diagr. 🕵 3-D Diagr.	ams (0 Files) ams (0 Files) ams (0 Files)		3 🛛	0	104 43	50 84	5 million Ste	port	> / > /	From Bearings From Endpoints	(Frequency-Ba	sed Analysis	Thousand	ls Separator:
- 🔁 Solid Moc - 🔜 2-D Diagr - 🛃 3-D Diagr - 📆 ReportWo	dels (U Files) "ams (0 Files) "ams (0 Files) orks Diagrams (1		3 9	1 1 1	104 43 38	50 84 78	S Imp Sturrer SE	port 2	23	From Bearings	(Frequency-Ba	sed Analysis ,1 Terra escu ,1 Terra escu	Thousand	ls Separator: •
Solid Moc 2-D Diagr 3-D Diagr ReportWo Google Ea	deis (0 Files) "ams (0 Files) "ams (0 Files) orks Diagrams (1 arth Files (0 Files		3 2 4 2 5 2 6 2		104 43 38 15	50 84 78 80	SE SE	port 2 2 2	23 40	From Bearings From Endpoints 160 170	(Frequency-Ba	sed Analysis ,1 Terra escu ,1 Terra escu ,1 Terra escu	Thousand	ls Separator: -
Solid Moc 2-D Diagr 2-D Diagr 3-D Diagr ReportWo Google Ea LAS Files (aers (0 Files) ams (0 Files) ams (0 Files) orks Diagrams (arth Files (0 Files) (0 Files)		3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		104 43 38 15 20	50 84 78 80 90	SE SE	port 2 2 2 2	23 40 30	From Bearings From Endpoints 120 160 170 180	(Frequency-Ba	sed Analysis (1) Terra escu (1) Terra escu (1) Terra escu (1) Terra escu	Notes (Meta	ls Separator: •
Solid Moc Control Con	ams (0 Files) ams (0 Files) ams (0 Files) orks Diagrams (i arth Files (0 Files) (0 Files) (0 Files)		3 0 4 0 5 0 6 0 7 0 8 0	9 9 9 9 9	104 43 38 15 20 61	50 84 78 80 90 23	SE SE SE	port 2 2 2 2 1	23 23 40 30 20	From Bearings From Endpoints	VII 0	sed Analysis ,1 Terra escu ,1 Terra escu ,1 Terra escu ,1 Terra escu ,1 se	Notes (Meta	ls Separator: 🕡
Solid Moc 2-D Diagr 3-D Diagr Solid ReportWo Google Ea LAS Files (6 RCL Files (7 System Ta	clers (U Files) rams (O Files) orks Diagrams (I arth Files (O Files (O Files) (O Files) ables		3 4 9 9		104 43 38 15 20 61 81	50 84 78 80 90 23 21	SE SE SE SE SE	port 2 2 2 1 1	23 40 30 20 15	From Bearings From Endpoints 120 160 170 180 10	viii (viii (viii (viii (viii (iv ()	sed Analysis ,1 Terra escu ,1 Terra escu ,1 Terra escu ,1 Terra escu ,1 se ,1 se	Notes (Meta	ls Separator: 🕡
Solid Moc 2-D Diagr 3-D Diagr 3-D Diagr Gogle Ea Cogle Ea Cogle Ea CL Files (C Files (System Ta	cers (U Files) rams (O Files) orks Diagrams (I arth Files (O Files (O Files) (O Files) ables		3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0		104 43 38 15 20 61 81 164	50 84 78 80 90 23 21 28	SE SE SE SE SE SE SE	port 2 2 2 1 1 1	23 40 30 20 15 40	From Bearings From Endpoints 160 170 180 10 10	マロ マロ	sed Analysis ,1 Terra escu ,1 Terra escu ,1 Terra escu ,1 Terra escu ,1 se ,1 se ,1 se	Thousand	ls Separator: .
 Solid Moc 2-D Diagr 3-D Diagr ReportWo Google Ea LAS Files (RCL Files (RCL Files (aans (0 Files) 'aams (0 Files) 'aams (0 Files) arths Diagrams (i arth Files (0 Files (0 Files) (0 Files) ables		3 4 9 5 9 7 9 9 9 10 9		104 43 38 15 20 61 81 164 128	50 84 78 80 90 23 21 28 78	SE SE SE SE SE SE SE SE SE SE SE SE SW	port 2 2 2 1 1 1 3	23 40 30 20 15 40 15	From Bearings From Endpoints 160 170 180 10 10 10 50	マロ マロ	sed Analysis 1 Terra escu 1 Terra escu 1 Terra escu 1 Terra escu 1 se 1 se 1 se 1 se 1 se	Thousand	ls Separator: .
Solid Moc Solid Moc Solid Moc Solid Solid Solid Solid Solid Solid	tels (0 Files) rams (0 Files) rams (0 Files) ricks Diagrams (i arth Files (0 Files) (0 Files) ables		3 0 4 0 5 0 7 0 8 0 9 0 10 0 11 0 12 0		104 43 38 15 20 61 81 164 128 138	50 84 78 80 90 23 21 28 78 76	SE SE SE SE S S S S SW SW	2 2 2 2 1 1 3 3 3	23 40 30 20 15 40 15 15	From Bearings From Endpoints 160 160 170 180 10 10 50 50	マロ マロ	Sed Analysis 1 Terra escu 11 Terra escu 12 Terra escu 13 Terra escu 14 Terra escu 15 Terra escu 16 Terra escu 17 Se 18 Se 19 Se 11 Se 12 Se 13 Se 14 Se 15 Se 16 Se 17 Se 18 Se 19 Se 10 Se 11 Se 12 Se 13 Se 14 Se 15 Se 16 Se 17 Se 18 Se 19 Se 10 Se 11 Se 12 Se 13 Se	Notes (Meta	ls Separator: .
Solid Moc Solid Moc Solid Moc Solid Solid Solid Solid Solid	ters (0 Files) rams (0 Files) ams (0 Files) orks Diagrams (i arth Files (0 Files) (0 Files) (0 Files) ables		3 4 9 5 9 6 9 9 9 10 9 11 9 12 9		104 43 38 15 20 61 81 164 128 138 157	50 50 84 78 80 90 23 21 28 78 78 76 76	SE SE SE SE SE SW SW SW	2 2 2 1 1 1 3 3 3	23 40 30 20 15 40 15 15 15 15	From Bearings From Endpoints 180 100 100 100 50 50 50	マ川 C マ川 ()	sed Analysis 1 Terra escu 1 Terra escu 1 Terra escu 1 se 1 se 1 Terra escu 1 se 1 Terra escu 1 Terra escu 1 Terra escu 1 Terra escu 1	Thousanc	Is Separator.
Solid Moc Solid Moc Solid Moc Solid Ano Solid	ters (0 Files) rams (0 Files) ams (0 Files) orks Diagrams (i arth Files (0 Files) (0 Files) (0 Files) ables		3 4 4 9 5 9 7 9 10 9 11 9 11 9 12 9 13 9		104 43 38 15 20 61 81 164 128 138 157 39	50 50 84 78 80 90 23 21 28 78 76 76 76 87	SE SE SE SE SE SW SW SW SW SW	560 Diagitam 2 2 2 1 1 1 1 3 3 3 2	23 40 30 20 15 40 15 15 15 5	From Bearings From Endpoints 100 170 180 10 10 50 50 50 220	・ 1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	Sed Analysis 1 Terra escu 1 Se 1 Se 1 Se 1 Se 1 Terra escu	Notes (Meta	Is Separator:
Solid Moc Solid Moc Solid Moc Solid Moc Solid Ac Solid Moc Solid Ac Solid Ac Solid Moc	ams (0 Files) arms (0 Files) arms (1 Files) prks Diagrams (t arth Files (0 Files) (0 Files) (0 Files) ables		3 4 4 9 5 9 6 9 9 9 10 9 11 9 12 9 12 9 13 9 14 9		104 43 38 15 20 61 164 128 138 157 39 40	50 84 78 80 90 23 21 28 78 78 76 76 76 87 82	SE SE SE SE S S S S S S S W S W S W S W	vse Dragram port 2 2 2 1 1 1 3 3 3 3 2 2 2	23 40 30 20 15 40 15 15 15 15 5 5 5	✓ From Bearings	「Frequency-Be マゴ マゴ	Sed Analysis 1 Terra escu 1 Se 1 Terra escu	Thousanc	Is Separator: .
Solid Moc Solid Moc Solid Moc Solid Ac	ams (0 Files) rams (0 Files) rams (0 Files) orks Diagrams (arth Files (0 Files) (0 Files) (0 Files) ables		3 4 9 5 6 9 7 8 9 9 10 9 11 9 12 9 13 9 14 9 15 9 16 9		104 43 38 15 20 61 164 128 138 157 39 40 41	50 84 78 80 90 23 21 23 21 28 76 76 76 87 82 80	S E SE SE SE S S S S S S S W S W S W S W S	ose D Lagram port 2 2 2 1 1 1 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	23 40 30 20 15 40 15 15 15 5 5 5 5 5	✓ From Bearings	ソロ (Frequency-Be) VII (4) VIII (4) VIII (4) IV (4) IV (4) VIII (4)	Sed Analysis 1 Terra escu 11 Terra escu 12 Terra escu 13 Terra escu 14 Terra escu 15 Se 16 Terra escu 17 Se 18 Terra escu 19 Terra escu 11 Terra escu 12 Terra escu 13 Terra escu 14 Terra escu 15 Terra escu 16 Terra escu 17 Terra escu 18 Terra escu 19 Terra escu 11 Terra escu 12 Terra escu 13 Terra escu 14 Terra escu	Thousanc	Is Separator:
₽ Solid Moc 2:D Diagr 3:D Diagr 4:D Diagr 4:D Solid ReportWc Coogle E: 4: LAS Files (4: RCL Files (7: System Ta	ams (0 Files) rams (0 Files) rams (0 Files) arks Diagrams (arth Files (0 Files) (0 Files) (0 Files) ables		3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	104 43 38 15 20 61 164 128 138 157 39 40 41	50 84 78 80 90 23 21 28 78 76 87 82 82 82 82 82 82	SE SE SE SE SW SW SW SW SW SW SW SW SW SW SW SW SW	Dept 4000000000000000000000000000000000000	27 23 40 30 20 15 40 15 15 5 5 5 5 5 5 5 5	From Bearings From Bearings 160 170 180 10 10 50 50 50 50 50 220 220 200 40	「Frequency-Be VII () VII () VII () IV () IV () IV () VII ()	Sed Analysis 1 Terra escu 1 Terra escu 1 Terra escu 1 Terra escu 1 Se 1 Se 1 Terra escu	Thousanc	is Separator:
Biolid Moc 2:D Diagr 3:D Diagr 3:D Diagr 3:D Diagr 3:D Diagr 3:D Diagr 3:D Diagr Charlies 4:CL Files 7: System Ta	ams (0 Files) ams (0 Files) arks (0 Files) arks Diagrams () arth Files (0 Files) (0 Files) (0 Files) ables		3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	104 43 38 15 20 61 81 164 128 138 157 39 40 40 41 1,45	50 84 78 80 90 23 23 23 23 23 76 76 76 76 87 87 87 82 80 91	SE SE SE SE SE SW SW W E SW W W E	Ose Diagram port 2 2 2 1 1 3 3 2 2 2 2 1 3 3 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2	27 23 40 30 20 15 40 15 15 5 5 5 5 5 5 5 5 5 5 5	✓ From Bearings ✓ From Bearings 160 170 180 10 10 10 50 50 50 220 220 220 200 40 270 200	VII (Frequency-Beveency-Beveency-Bevercy-Bevency-Bevevency-Bevency-Bevency-Bevency-Bev	Sed Analysis 1 Terra escu	Piotes (Meta	is Separator: 🕡

Figura VIII-5 Passos para fazer um diagram de rosas

Abre-se uma nova janela (figura VIII-6) onde nos é solicitado as *Input columns* (1). Aqui deve-se escolher a coluna referente à orientação em azimute magnético. É possível também fazer ajustes ao diagrama onde diz *Options* (2).

O próximo passo é clicar em Process (3).

Figura VIII-6 Opções do diagrama de rosas

É de esperar que se obtenha um diagrama de rosas semelhante ao da figura VIII-7.

Figura VIII-7 Exemplo de um diagrama de rosas

Procedimento para criar uma nova projeção estereográfica:

O primeiro passo é criar um novo projeto e importar os dados para a *Datasheet*, como explicado no procedimento anterior.

De seguida é necessário aceder à faixa de ferramentas acima da *Datasheet* e selecionar *Planes – Stereonet Diagram* (figura VIII-8).

Figura VIII-8 Passos para fazer uma projeção esteriográfica

Aparecerá uma nova janela como na figura VIII-9. É-nos pedido as *Input Columns* (1) onde devemos discriminar as colunas com a direção e inclinação da *Datasheet*. Para obter a projeção basta carregar em *Process* (2) no fundo da janela.

Figura VIII-9 Opções da projeção estereográfica

Na figura VIII-10 podemos ver um exemplo de um diagrama de contornos.

Para se alterar as opções da projeção basta fazê-lo na secção das opções à esquerda e carregar em *Process* novamente.

Nota: sempre que se faz alguma alteração e se carrega em *Process*, a projeção é substituída, perdendo-se a anterior projeção.

Figura VIII-10 Exemplo de um diagrama de conrtornos.