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resumo 
 

 

As diatomáceas são as algas que se encontram mais frequentemente e em 
maior abundância em cursos de água doce. São conhecidas pela capacidade 
dos diferentes taxa responderem a variações das condições ambientais dos 
rios e por serem frequentemente o único elemento de qualidade biológica 
representativo da flora aquática em pequenos rios e ribeiras. Em consequência 
destas características, e de acordo com a Directiva Quadro da Água, as 
diatomáceas são presentemente um dos elementos biológicos obrigatórios na 
avaliação da qualidade ecológica dos rios europeus. No entanto, ainda existe 
algum desconhecimento acerca dos efeitos das alterações globais e da escala 
espacial nas diatomáceas. Para colmatar esta lacuna, o presente trabalho tem 
como objetivo estudar o efeito de alterações globais relevantes e da escala 
espacial nas comunidades de diatomáceas de rios temperados assim como 
estudar a melhor forma de lidar com as suas implicações na biomonitorização. 
O efeito das alterações globais foi estudado em rios e ribeiras da região centro 
litoral de Portugal continental dado tratar-se de uma região densamente 
povoada e sujeita a impactos antropogénicos significativos. O efeito da escala 
espacial nas comunidades de diatomáceas foi investigado através de uma 
experiência laboratorial (mesocosmos) e também com recurso a informação 
estatística de comunidades de diatomáceas de várias regiões temperadas, 
incluindo as costas ocidentais dos Estados Unidos da América e da Austrália. 
De modo atingir o objetivo principal deste trabalho, três questões globais foram 
colocadas: (1) Como lidar com as influências antrópicas históricas na 
biomonitorização?; (2) Será que as comunidades de diatomáceas reflectem os 
eventos extremos causados pelas alterações climáticas? Uma comparação 
com as comunidades de macroinvertebrados; (3) Como são as comunidades 
de diatomáceas influenciadas pela escala espacial (pequena escala: habitats; 
grande escala: inter-continental). Verificou-se uma influência antropogénica 
considerável nos rios e ribeiras da região centro litoral de Portugal continental 
assim como a inexistência de verdadeiros locais de referência. Mesmo os 
locais considerados como estando em condições de menor perturbação 
apresentaram concentrações de nutrientes consideravelmente elevadas na 
água. Uma vez que as fortes pressões antropogénica (p.e., alteração da 
vegetação ripária, condição morfológica e carga de sedimentos) não 
permitiram o estabelecimento de condições de referência adequadas para os 
rios desta região, foi proposto um procedimento alternativo baseado numa  
combinação de dois métodos – modelação e filtros ambientais. A aplicação  



 



 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deste procedimento na definição de condições de referência revelou-se útil 
para lidar com os efeitos das alterações globais na biomonitorização com 
recurso a comunidades de diatomáceas e macroinvertebrados. De facto, como 
seria de esperar, as comunidades observadas em rios sujeitos a alterações 
antropogénicas revelaram-se menos homogéneas do que as previstas em 
condições de referência para esses mesmos rios, i.e., através da aplicação 
dos referidos filtros ambientais. Em conjunto com o desenvolvimento deste 
novo procedimento, foi também proposto um novo índice multimétrico de 
diatomáceas. Este novo índice revelou-se fortemente correlacionado com as 
pressões selecionadas, fornecendo uma avaliação da qualidade biológica mais 
abrangente do que o índice oficial adotado por Portugal, o Indice de 
Polluosensibilité spécifique (IPS). Para responder à segunda questão global 
apenas um subconjunto de ribeiras da região litoral de Portugal foi 
selecionado, o qual engloba as ribeiras cujos leitos secaram durante uma vaga 
de calor invulgar que ocorreu em Portugal em 2011/2012. Verificou-se que, de 
facto, quer as comunidades de diatomáceas quer de macroinvertebrados 
foram afetadas pelo evento de seca extrema tendo-se observado alterações ao 
nível das proporções de traits, composição e a classificação da qualidade 
biológica. No entanto, as diatomáceas apresentaram uma recuperação 
significativamente mais rápida que os macroinvertebrados. Os tipos de 
substratos usados na experiência de mesocosmos realizada neste trabalho 
(duro vs. macio; pequena escala espacial) também mostraram afetar as 
comunidades de diatomáceas, uma vez que houve diferenças quer na sua 
composição quer nas proporções de traits. Esta resposta ao tipo de substrato 
foi mais evidente em condições físico-químicas controladas do que aquela 
sugerida pelas diferenças entre as comunidades epipsâmicas e epilíticas dos 
rios monitorizados neste trabalho. Não obstante, durante a experiência de 
mesocosmos verificou-se que ao nível de IPS as diferenças entre substratos 
não eram relevantes quando comparadas com as que se haviam verificado 
nos rios. As diferenças observadas entre as comunidades de diatomáceas dos 
vários continentes (Europa, América e Austrália) sugerem que variações ao 
nível da grande escala também ocasionam diferenças nas comunidades, 
apesar de influenciados pelo mesmo tipo de clima. Isto sugere que outros 
factores para além do clima (p.e., geologia, processos biogeográficos 
históricos e hidrologia) podem ter contribuído para as diferenças inter-
continentais verificadas ao nível da composição das comunidades de 
diatomáceas, a todos os níveis taxonómicos estudados. De um modo geral, os 
resultados obtidos durante este estudo trazem novas informações e novas 
abordagens para lidar com a biomonitorização. No entanto, mais trabalho será 
necessário a fim de investigar, por exemplo, os efeitos do aumento da 
temperatura previstos devido ao aquecimento global na avaliação da qualidade 
da água com base em comunidades de diatomáceas.  
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abstract 

 
Diatoms are generally the most frequent and abundant algae in streams and 
are known by their responsiveness to changes in the environmental conditions 
of streams. Diatoms are frequently the only biological quality element 
representative of the aquatic flora in small streams. As a result, diatoms are 
nowadays a mandatory biological element in the evaluation of the ecological 
quality of European rivers, according to the Water Framework Directive. 
Nevertheless, there is still a relative lack of knowledge of key effects of global 
changes and spatial scale on diatoms. To bridge this gap, this work aims to 
study the effect of relevant global changes as well as spatial scale on diatom 
communities of temperate rivers and to deal with its implications in 
bioassessment. The relevant global changes were assessed in streams from 
the central Portuguese littoral region which is highly populated and suffers from 
high anthropogenic impacts. The effect of spatial scale on diatom communities 
was investigated by a laboratorial experiment (mesocosm experiment) and by 
using diatom data from temperate regions of the United States of America and 
Australia. In order to achieve the main aim, three global questions were raised: 
(1) How to deal with the historical anthropogenic influences in the 
bioassessment?; (2) Are extreme events due to climatic changes reflected in 
diatom communities? A comparison with macroinvertebrate communities; (3) 
How are diatom communities influenced at the spatial scale (small-scale: 
habitats; large-scale: inter-continental). A strong anthropogenic influence on the 
streams and rivers of the Portuguese littoral region was confirmed as well as 
the lack of true reference sites. Sites in the Least Disturbed Condition (LDC) 
had considerable high nutrient concentrations. As the strong anthropogenic 
pressures (e.g., alteration of the riparian vegetation, morphological condition 
and sediment load) prevented an adequate definition of reference conditions for 
streams in this area an alternative procedure to define suitable reference 
conditions was investigated, consisting of a combination of modelling and filter 
approach. This procedure is suitable to deal with the implications of global 
changes on diatom and on macroinvertebrate communities. The communities 
observed in the different streams were less homogeneous than those predicted 
for the same streams under reference conditions (i.e., through the filter 
approach), as would be expected in sites having variable levels of 
anthropogenic change. Along with the development of this new approach a new 
multimetric diatom index was developed. This index produced strong 
correlations with the selected pressures, providing a more comprehensive 



 

 



 

 

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
assessment of biological quality than the Indice de Polluosensibilité 
Spécifique (IPS) officially adopted for Portugal. To answer the second 
global question a smaller set of streams were used within the 
Portuguese littoral region that were affected by an unusual drought 
event that lead to the complete drying of the stream channels. Diatoms, 
as well as macroinvertebrates, were affected by the drought event 
considering trait proportions, community’s composition and 
bioassessment classifications. However, the diatom communities had a 
faster recovery response than macroinvertebrates. The type of substrate 
– hard and soft –representing the small spatial scale affected diatom 
communities by changing its composition and trait proportions but not 
water quality classification in a mesocosm experiment. However, the 
differences found in the epipsammic and epilithic diatom communities in 
the streams that were used to answer the first global question were 
more evident than those found in the mesocosm experiment. In fact, 
with the mesocosm results, and under the same physical and chemical 
conditions the IPS differences between substrates disappeared 
contrasting with the differences that were found in the streams. 
Additionally, the diatom communities were different between continents 
with the same type of climate, suggesting that diatom communities are 
also influenced at the large-scale (even at the order level). Therefore, 
constraints other than climate are likely to have contributed to the inter-
continental differences in diatom community composition found at all 
taxonomical levels (e.g., geology, historical biogeographic processes 
and hydrology). On the whole, the results obtained during this study 
bring new information and new approaches to deal with the 
bioassessment. However, some more work must be done in order to 
investigate e.g., based in the global warming predictions, the effects of 
the temperature increase, on the water quality assessment based on 
diatom communities. 
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Chapter 1 - Introduction 

1.1 Diatoms 

Diatoms (Class Bacillariophyceae sensu Ruggiero et al., 2015) are considered the major 

constituents of benthic and planktonic algal communities (Mann and Droop, 1996) even with 

a higher species-richness (Mann, 1999). They are very common and abundant in almost all 

aquatic habitats (freshwater and marine) and also in terrestrial habitats (Mann and Droop, 

1996; Stoermer and Smol, 1999). This group of algae is characterized by many features but 

especially by their siliceous cell walls, composed of two valves that together with the girdle 

bandas form the frustule (Figure 1.1). Due to the size, shape, and ornamentation of its cell 

walls, diatoms are relatively easily distinguished to species and subspecies levels. Also, due to 

its siliceous nature, diatom frustules are preserved in sediments and record habitat history 

(Stevenson and Pan, 1999). 

Diatoms are the most species-rich components of river and stream ecosystems. They 

play an important role in food webs (e.g., they are the food for many macroinvertebrates and 

fish), in the oxygenation of surface waters, and constitute a linkage between biogeochemical 

cycles (e.g., nutrient uptake and remineralization) (Mulholland, 1996; Stevenson and Pan, 

1999). In rivers and streams diatoms are present either in the water column 

(potamoplanktonic diatom communities) or in the benthos (growing attached to surfaces-

rocks, aquatic plants, sand grains or living free in the sediment) (Round et al., 1990). 

However, diatom communities found in small streams are mostly benthic (Patrick, 1977).  
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Figure 1.1 - a) Two frustules of Caloneis, as seen in gilde view; b) one valve of Caloneis, as seen in valve 

view. Photograph from the sample collected in Vala da Corujeira (Casal dos Netos). Scale bar: 10 µm 

(for both figures). 

The structure and function of diatom communities are regulated by many abiotic and 

biotic factors, at different spatial scales (from single sand grains to across continents) (Biggs, 

1996). Climate, geology, biogeography and land use are ultimate factors, at large spatial scale, 

that affect the resources (e.g., light, nutrients and space), biotic factors (e.g., competitors and 

herbivores) and abiotic stressors (e.g., pH, temperature and toxic substances) that directly 

affect the function and structure of benthic algal communities (Stevenson, 1997) (Figure 1.2). 

Environmental factors, expressed at multiple scales, determine the composition and structure 

of local biological communities as these variables can be seen as ‘filters’ through which 

species in the regional species pool must ‘pass’ to potentially be present at a given site 

(Keddy, 1992; Poff, 1997; Quist et al., 2005). The suite of taxa existing at a site under 

reference conditions is visualised as resulting from a natural, top-down filtering process 

applied to a regional pool of taxa, whereby only those taxa with appropriate traits are able to 

pass the natural filters (Chessman and Royal, 2004). Thus, if diatoms were well dispersed in 

sites with similar environmental conditions we would find the same species in all sites 

(Virtanen and Soininen, 2012) as the reference condition is, accordingly with Reynoldson et 

al. (1997), ‘the condition that is representative of a group of minimally disturbed sites 

organized by selected physical, chemical, and biological characteristics’.  



Chapter 1 

3 

 

Figure 1.2 - Hierarchical interrelationships among proximate (resources and abiotic stresses), 

intermediate, and ultimate (climate, geology, land use) determinants of benthic algal assemblage 

composition and biomass. Source: Stevenson (1997). 

Diatoms, like other organisms, have been considered to be ubiquitous. In contrast to 

larger organisms (e.g., macroinvertebrates Heino and Soininen, 2007), diatoms may be easily 

distributed via wind, currents and animal vectors (e.g., Kristiansen, 1996), which result in 

wider distributions in comparison to metazoans (e.g., Finlay et al., 2002; Heino and Soininen, 

2007).  

Some large-scale studies (Potapova and Charles, 2002; Soininen, 2004; Soininen et al., 

2004) have demonstrated that factors related to spatial variables may also influence diatom 

distribution patterns (Virtanen and Soininen, 2012) even at the genus level (Vyverman et al., 

2007). The increasing incidence of apparent regional endemisms (e.g., in the diatom floras of 

Australia) and the increasing evidences pointing to a strong regionalization of diatom floras 

in the Antarctic and sub-Antarctic regions, mirroring the biogeographical regions that have 

been recognized for macroorganisms, are in favour of the prevalence of restricted 

distribution patterns among diatom species (Vyverman et al., 2007; Vyverman et al., 2010). 

Factors related to historical processes (i.e., colonization and extinction, dispersion and 

migration) constrain global patterns in regional and local diatom composition and diversity 

(Vyverman et al., 2007). 
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1.2 Global changes and implication on river ecosystems 

Freshwater is a fundamental resource for both nature and humans (Naiman and 

Dudgeon, 2011). However, freshwater ecosystems are among the most altered systems on 

Earth (Naiman and Dudgeon, 2011). Due to the high number of species per area found in 

these ecosystems the decline in its biodiversity is far greater than in terrestrial or marine 

ecosystems (Sabater et al., 2013). Within these ecosystems running waters are unique in 

their unidirectional flow (Malmqvist and Rundle, 2002). Such characteristic shapes the 

morphology of river channels, makes running waters inherently variable in space and time 

and has led to a biota that is highly adapted to dynamic conditions (Malmqvist and Rundle, 

2002). 

The unidirectional nature of rivers and streams makes these systems unique, however 

also aggravates its vulnerability. Almost any activity within a river catchment has the 

potential to cause environmental change and any pollutant entering a river is likely to exert 

effects for a large distance downstream (Malmqvist and Rundle, 2002). Running waters 

provide a multitude of benefits for humans, such as sources of water, means of power 

generation and waste disposal, routes for navigation and places for leisure activities 

(Malmqvist and Rundle, 2002). Due to this, river banks have been inhabited for millennia and 

until nowadays are densely populated. With such intense human pressure on rivers and 

increasing demand for water over the past century (Gleick, 2000), it is not surprising that 

nowadays few streams or rivers remain unaltered (Frissell and Bayles, 1996; Malmqvist and 

Rundle, 2002; Wiens, 2002; Naiman and Dudgeon, 2011). In fact, some of these ecosystems 

have been so starkly and extensively modified that their return to a natural state is almost 

impossible (Frissell and Bayles, 1996). The main factors causing such modifications in 

running waters are ecosystem destruction (e.g., urban and agricultural expansion), physical 

habitat (e.g., hydrology, channel morphology) and water chemistry alteration (e.g., industrial 

emissions) and direct species additions or removals (e.g., aquaculture/aquariums) 

(Malmqvist and Rundle, 2002). An indirect factor that is presently, and will in the future be 

expected to cause more modifications in the rivers is the increase in the use of coal, oil and 

gas worldwide. This induces higher greenhouse gases emissions (carbon dioxide- CO2, 

methane- CH4 and nitrous oxide- N2O) that are resulting in a global transformation of the 

Earth’s atmosphere and climate without precedents (Sabater et al., 2013; IPCC, 2014).  

Due to climate changes many freshwater species have shifted their geographic ranges, 

seasonal activities, migration patterns, abundances and species interactions as in many 

regions, changing precipitation or melting snow and ice are altering hydrological systems, 

affecting water resources in terms of quantity and quality (IPCC, 2014). At high rates of 
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warming, major groups of terrestrial and freshwater species are unable to move fast enough 

to stay within the spatially shifting climate envelopes to which they are adapted (IPCC, 2014).  

Despite all the climate changes that have already been verified, forecasts predict a 

doubling in atmospheric CO2 concentration by the end of this century and a rise in world 

mean air temperature between 1.8 and 4.0 °C (IPCC, 2007). In central Europe, heat waves are 

predicted to be more frequent, more intense and longer in duration. Heavy winter 

precipitation is also predicted to increase in central and northern Europe, and decrease in the 

south (IPCC, 2007; IPCC, 2013). The southern part of Europe will also suffer a predicted 

decrease in summer precipitation (Beniston et al., 2007). These changes in precipitation, 

temperature and consequently evapotranspiration rates will affect volumes of surface water 

runoff. Model simulations predict a 10-30% decrease in annual runoff in southern Africa, 

southern Europe and in the western United States by the mid-century (Milly et al., 2005; 

IPCC, 2007). In contrast, other models predict a decrease in annual runoff in southern Europe 

that may reach as much as 50% of the current levels (Arnell, 1999). Typically temperate and 

rainy climate areas (e.g., central Europe) will become more similar to Mediterranean climate 

areas that are characterised by mild wet winters and hot dry summers (Giorgi and Lionello, 

2008), thus suggesting its expansion to northern regions. These changes in the world climate 

will be exacerbated by other pressures that are presently affecting the streams and rivers 

(e.g., increase in the length of time that threshold concentrations of nutrients are exceeded) 

(Ockenden et al., 2016). 

Europe's running waters are no exception and are affected by a range of pressures, 

including water pollution, water scarcity, floods, and modifications to water bodies that affect 

morphology and water flow (EEA, 2015). In order to try to reverse this situation, in 2000 the 

European Community published the Water Framework Directive (WFD: European 

Commission, 2000, Directive 2000/60/EC). This directive aims to incorporate into a legally 

binding instrument the key principles of integrated river basin management bringing 

together economic and ecological perspectives (COM (2012) 670 final).  

In the WFD, water management accounts for the water needs of both humans and nature 

(European Commission, 2000). The WFD established that all European Union Member States 

(MS) shall protect, enhance and restore the aquatic environment through the implementation 

of programmes of measures developed and implemented as part of river basin management 

plans in order to maintain or achieve good water status by 2015 (European Commission, 

2000). This status would allow aquatic ecosystems to recover and to deliver the ecosystem 

services that are necessary to support life and economic activity that depend on water (COM 

(2012) 670 final).The good water status goal is achieved when both good chemical and 

ecological status of water bodies is attained (European Commission, 2000; Guidance 

Document No. 10, 2003). However, 2015 reports state that the MS still have a long way to go 
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before the quality of all European Union waters is good enough, due to decades of previous 

degradation and persisting ineffective management and that the WFD objective will only 

likely be met by 53% of surface water bodies (Figure 1.3) (EEA, 2015). This constitutes a 

modest improvement, as in 2009 43% of surface water bodies were in good or high ecological 

status, and is far from meeting policy objectives. Rivers and transitional waters are on 

average in a worse condition than lakes and coastal waters. 

 
Figure 1.3 - Percentage of good ecological status or potential of classified rivers and lakes in Water 

Framework Directive river basin districts. Source: EEA (2015). 

1.3 Implications of global changes on diatom communities 

Environmental factors determine the composition and structure of local biological 

diatom communities. Therefore, any anthropogenic changes to these environmental factors 

(e.g., pH, salinity, nutrients, suspended sediments, flow) may affect the diatom communities 

as aquatic organisms are known to integrate all the biotic and abiotic changes that occurred 

in their habitat (Lowe and Pan, 1996).  

Pan et al. (1999) showed that diatom communities are strongly controlled by 

geomorphic and disturbance factors (e.g., land cover/use in watersheds and riparian 

condition). The degradation of riparian vegetation can lead, for example, to change in water 

temperature patterns. The streams are more exposed to sunlight and, therefore, more 

influenced by atmospheric temperature (Poole and Berman, 2001). Among the sources that 

contribute to sedimentation and turbidity in streams are agriculture, forestry, mining, road 
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construction, and urban activities (Henley et al., 2000). Land use in the catchment can also 

influence the water quality as it may cause changes in nutrient load. However, this influence 

depends on intrinsic factors of the catchment, such as the transport capacity of the 

watershed, the influence of riparian buffers, climatic and geomorphological basin features, 

and the existence of additional pressures (Pardo et al., 2012). The loss of riparian vegetation 

also facilitates the runoff of sediments into the streams, as these areas are important 

sediment sinks (Daniels and Gilliam, 1996; Sheridan et al., 1999). Increase in the sediment 

load and consequent increase in turbidity of streams can cause a reduction in algae growth 

due to the decrease of light availability for photosynthesis (Henley et al., 2000). In addition, 

sediment deposition can also promote smothering and stability of substrata to which diatoms 

attach. Hence, non-motile and particularly chain-forming diatoms cannot establish easily, 

further pushing the assemblage towards single celled and motile taxa (Jones et al., 2014).  

Nutrient enrichment of freshwaters is widespread. The main sources of nitrogen and 

phosphorus include point source emissions from urban wastewater treatment plants and 

industry, and diffuse emissions from agricultural production (EEA, 2015). The projected 

climate changes have also been associated with likely increases in sediment and nutrient 

loads. For example, the expected increase in winter rainfall due to climate changes is likely to 

enhance the annual loads of total phosphorus and total reactive phosphorus load from land to 

water (Ockenden et al., 2016).  

The alterations in nutrient concentrations can potentially cause changes in the diatom 

communities as different diatoms have different ranges and tolerances. The nutrient 

enrichment can benefit certain taxa, while others become rarer (Lange et al., 2011). Tolerant 

species can become dominant in the communities (e.g., Cocconeis placentula, Encyonema 

minuta and Fragilaria vaucheria) whereas Achnanthidium minutissimum and Rossithidium 

petersenii show the opposite pattern (Lange et al., 2011).  

Current velocity variations over both space and time is typical of all streams and 

periphytic algae are exposed to these variations. Therefore, current affects directly (e.g., 

dislodging of species loosely attached to substrata) and indirectly (e.g., affecting the 

distribution of macroinvertebrate grazers) benthic algal metabolism and distribution 

(Stevenson, 1996). Diatoms are known to be relatively susceptible to disturbance by current 

(Stevenson, 1996; Ghosh and Gaur, 1998). Floods and droughts are also important hydrologic 

events in running water ecosystems. Therefore, in-stream biological communities have 

developed adaptations that range from the avoidance of individual floods or droughts to life-

history strategies that are synchronised with long-term flow patterns (Lytle and Poff, 2004). 

The traits developed by species enable them to survive, exploit and even depend on 

disturbance as a result of a long evolutionary period (Lytle and Poff, 2004). Thus, the native 

communities of drought-prone systems are the result of a multi-habitat filter process that 
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selects organisms with a set of traits that enable them to either survive to droughts 

(resistance traits) or to re-colonise and recruit after the drought breaks (resilience traits) 

(Poff, 1997; Bond et al. 2008). However, the communities of rivers exposed to rapid changes 

in natural flow conditions (i.e., magnitude, frequency, duration, timing and predictability) are 

deprived of such an evolutionary period. Changes in the natural flow of typically permanent 

streams due to extreme events or climate change may therefore exert stronger effects on the 

ecological structure and functioning of stream communities (Lake, 2000). 

1.4 Dealing with global changes and spatial scale in bioassessment 

Diatoms are valuable indicators of environmental conditions in rivers and streams, 

because they respond directly and sensitively to many physical, chemical, and biological 

changes in river and stream ecosystems, namely nutrient concentrations (Stevenson and Pan, 

1999). In fact, diatom community characteristics (composition and abundance) have been 

used to assess the ecological integrity of rivers and streams due to three basic reasons: their 

importance in ecosystems, their utility as indicators of environmental conditions, and their 

ease of use (Stevenson and Pan, 1999). The frequent use of diatoms as biological indicators 

has led to the development of several systems in order to interpret the data (Kelly et al., 

1995). Diatom autecological indices were developed to infer levels of pollution (mostly 

nutrients) based on the species’ composition of communities and their ecological preferences 

and tolerances (IPS-Cemagref, 1982; CEE-Descy and Coste, 1990; EPI-D – Dell’Uomo, 2004; 

IBD – Prygiel and Coste, 1998, among others). However, several studies have demonstrated 

that diatoms also respond to important hydromorphological, chemical (besides nutrients), 

and physical changes in the environment (e.g., Potapova and Charles, 2003; Almeida and Feio, 

2012; Feio et al., 2014). 

In result of this sensitivity to environmental conditions, diatoms are nowadays a 

mandatory biological element in the evaluation of ecological quality of European rivers, 

according to the WFD (European Commission, 2000; Leira and Sabater, 2005). In association 

with other Biological Quality Elements - BQE (other aquatic flora, benthic invertebrate fauna 

and fish fauna), and the hydromorphological, chemical and physical elements that support 

them (European Commission, 2000; Ferreira et al., 2011) they provide a holistic picture of 

the ecological status of the aquatic environment (Leira and Sabater, 2005; SWD (2012) 379 

final). The ecological status of each water body is determined by the quality element having 

the lowest status class, according to the one-out-all-out principle. This principle is at the 

heart of integrated river basin management that addresses all pressures and impacts on 

aquatic environment. It ensures that the negative impact of the most dominant pressure on 
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the most sensitive quality element is not averaged out and obscured by minor impacts of less 

severe pressures or by less sensitive quality elements responding to the same pressure. 

From all types of substrates found in rivers, most studies with diatoms focus on 

epilithon (Winter and Duthie, 2000), as hard surfaces are the preferred substrates used in 

water quality assessment (Kelly et al., 1998). However, other substrates like submerged 

macrophytes and sediments are also commonly found may be dominant in some stream and 

river sections (Kelly et al., 1998; Elias et al., 2015). Some studies indicate that benthic diatom 

species present different biological characteristics that enable them to adapt to specific 

micro-habitats (Krejci and Lowe, 1986; Soininen and Eloranta, 2004). If these natural inter-

substrate differences are reflected in water quality assessment metrics, this can potentially 

mask responses of algal communities to stresses associated with human activities and may 

interfere with water quality assessments based on the knowledge of these responses (Winter 

and Duthie, 2000; Potapova and Charles, 2005; Bere and Tundisi, 2011; Mendes et al., 2012). 

Some studies have tested the effect of different substrates in water quality assessments and 

have not verified significant differences (Kitner and Poulícková, 2003; Potapova and Charles, 

2005; Mendes et al., 2012). However, these studies were conducted under natural conditions 

where the communities are shaped simultaneously by many environmental factors, which 

may lead to confounding effects (Stevenson and Pan, 1999). In addition the substrate effect is 

difficult to detect in large-scale, coarse resolution studies, when the role of other factors, such 

as inter-stream differences in hydrology, physical habitat, and chemistry become more 

important than the role of substrate (Potapova and Charles, 2005). Even when different 

diatom communities of the same river are compared and differences are verified (Cetin, 

2008) it is difficult to ensure that the communities have been exposed to the same 

environmental variations at the same time or even at the same developmental phase. 

Additionally, it is impossible to avoid contamination between substrates with diatoms 

migrating between habitats in wadeable streams. 

The definition of type specific reference conditions is an important step in the process of 

assessing the ecological quality status of rivers. The ecological quality status is obtained by 

quantifying the deviation in composition and abundance of BQEs in a water body from the 

composition and abundance expected under reference conditions for that type of water body 

(e.g., mountain or lowland type) (Schaumburg et al., 2004). However, a representative suite of 

appropriate reference conditions has to be identified for each type of water body 

(Schaumburg et al., 2004; Pardo et al., 2012) to permit an interpretation of measured values 

(e.g., biological indices) that takes account of natural spatial differences in the composition 

and abundance of BQEs (Hawkins et al., 2010). Under the WFD, the reference point is 

‘undisturbed’ conditions with no or only ‘very minor’ human impacts on hydromorphological, 

physical and chemical elements (Guidance Document No. 10, 2003). However, reference 
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water bodies with only minor impacts are absent from many parts of Europe (and other 

regions of the world) because of historical anthropogenic alteration of landscapes and high 

population densities (Nijboer et al., 2004; Kelly et al., 2012; Feio et al., 2014). An example of 

an area where ‘undisturbed’ conditions is almost impossible to find is the central-western 

Portuguese littoral region. During the WFD implementation all this area was included in a 

single type, the Littoral (L type), since only a few reference sites were used. That probably 

resulted in the inclusion of a wide variety of streams in the same typology. Recognizing this 

limitation, the WFD allows the type-specific biological reference conditions to be either 

spatially based (via reference sites), based on modelling (predictive models or hindcasting 

methods), or derived from a combination of these methods and even based in 

paleolimnological data (European Commission, 2000). Where it is not possible to use these 

methods, Member States may use expert judgement to establish such conditions (European 

Commission, 2000).  

As in many situations it is difficult to dissociate the obvious effect of climate change, 

increase in temperature, from other anthropogenic or natural effects. Therefore, as the 

diatom communities are known to respond well to several environmental factors is very 

likely that the effects of climate change will be reflected in the presently used autecological 

indices. The prevention of higher negative impacts on diatom communities due to climate 

changes probably passes through the reduction of non-climatic stressors, such as habitat 

modification, overexploitation, pollution and invasive species, to increase the inherent 

capacity of ecosystems and their species to adapt to a changing climate (IPCC, 2014). 

Adaptive water management techniques, including scenario planning, learning-based 

approaches and flexible and low-regret solutions, can help adjust to uncertain hydrological 

changes due to climate change and their impacts (limited evidence, high agreement). 

Strategies include adopting integrated water management, augmenting supply, reducing the 

mismatch between water supply and demand, reducing non-climate stressors, strengthening 

institutional capacities and adopting more water-efficient technologies and water-saving 

strategies (IPCC, 2014). Results suggest that, for example, in order to build resilience in 

stream health and help mitigate potential increases in diffuse agricultural water pollution due 

to climate change, land management practices should target controllable risk factors, such as 

soil nutrient status, soil condition and crop cover (Ockenden et al., 2016). Actions may also 

include maintenance of genetic diversity, assisted species migration and dispersal, 

manipulation of disturbance regimes (e.g., fires, floods) (IPCC, 2014). 
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1.5 Aims of the present work 

In view of the current knowledge on diatoms communities and their use as indicators of 

rivers ecological quality, the present thesis aimed to answer to the following global questions:  

• How to deal with the historical anthropogenic influences in bioassessment? 

In order to achieve this goal, the central-western Portuguese littoral region, a highly 

impacted area subjected to different stressors (e.g., agriculture and urbanization), was 

defined as case study. The following chapters resulted from this global question: 

Chapter 2 - Determining useful benchmarks for the bioassessment of highly disturbed 

areas based on diatoms 

Chapter 3 - Predicting reference conditions for river bioassessment by incorporating 

boosted trees in the environmental filters method 

• Are extreme events due to climatic changes – reflected in diatom communities? A 

comparison with macroinvertebrate communities.  

In order to answer this question, four streams located in the central-western Portuguese 

littoral region, affected by a severe and uncharacteristic drought event from the end of 

summer 2011 to the winter of 2012, were defined as case study. The drought effects in the 

diatom and macroinvertebrate communities from temperate streams were also compared 

with those from Mediterranean systems to assess possible shifts in the communities. Two 

chapters resulted from this second global question: 

Chapter 4 - From perennial to temporary streams: an extreme drought as a driving force 

of freshwater communities´ traits 

Chapter 5 - Extreme drought effect and recovery patterns in benthic communities of 

temperate streams 

• How are diatom communities influenced at the spatial scale (small-scale: habitats; 

large-scale: inter-continental). 

In order to answer this question, an indoor controlled experiment was performed and 

diatom data from streams and rivers from three continents with similar climate were defined 

as case study. Two chapters resulted from this third global question: 

Chapter 6 - Influence of the colonizing substrate on diatom assemblages and 

implications for bioassessment - a mesocosm experiment 

Chapter 7 - Do similar climatic patterns in different continents lead to similar benthic 

diatom assemblages? 
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Abbreviations 

BQE Biological Quality Elements 

L type In general terms the L type (littoral type)  are a set of lowland coastal streams with a 

small to medium drainage area located all in the central-western Portuguese littoral 

region 

MS Member States, European Union 

WFD Water Framework Directive 
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Abstract 

Modern ecological assessments of running waters are based on the a priori definition of 

ecological benchmarks, given by reference-quality sites. Such benchmarks are established at 

the level of ecoregions, typologies, or site. Yet, in highly disturbed regions, such as coastal 

areas of European countries, the assessment of streams’ water quality based on the reference 

condition concept is very difficult, due to the lack of undisturbed sites. Among others, the 

reduced number of reference sites may have as a consequence the definition of imprecise 

ecological benchmarks. Here we tested the hypotheses that (1) the increase in the number of 

potential reference sites (2) the definition of more precise abiotic thresholds using the least 

disturbed condition approach (LDC), and (3) the use of diatom assemblages, as the most 

ubiquitous element in lowland areas, would result in refinement and eventual sub-division of 

existing river types of a highly disturbed area, such as the Portuguese centre-western region. 

For this purpose, abiotic data characterising natural conditions of 55 sites from a littoral 

highly disturbed region were used in a hierarchical classification analysis that revealed the 

existence of three different sub-groups. In addition, a three-step approach was used to define 

thresholds for the pressure variables in LDC. Based on these new thresholds, sites in LDC 

were selected. A hierarchical classification performed to the LDC diatom spring assemblages 

revealed the existence of two sub-groups, concordant with two of the abiotic sub-groups. 

Several species contributed to the dissimilarity between the two sub-groups (e.g., 

Achnanthidium minutissimum and Karayevia oblongella). Differences between the sub-groups 

were also found in the trait proportions of stalked species. New benchmark values for these 

two sub-groups, based on the scores of the official diatom index, the ‘Indice de 
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Polluosensibilité Spécifique’ (IPS), were different from the previous reference value used. Yet, 

no biological benchmark values were established for one of the groups due to the absence of 

sites in the LDC.  

Our study suggests that streambed substrate is an important characterisation variable in 

the river type definition and highlights that, in spite of the potential refinement in reference 

conditions and typology obtained, an alternative approach that does not require the use of 

reference sites should be explored in the future.  

 

Keywords 

Least Disturbed Condition, lowland streams, natural variability, substrate, type-specific 

reference conditions 
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2.1 Introduction 

Modern ecological assessments of streams and rivers are frequently based on the a 

priori definition of ecological benchmarks, given by reference-quality sites, to which assessed 

sites are matched in terms of assemblage composition and structure (Hawkins et al., 2010). 

Such ecological benchmarks have been established at the level of ecoregions, typologies or 

site-specific (Hawkins et al., 2010). 

In Europe, and according to the Water Framework Directive (WFD; European 

Commission, 2000), type-specific reference conditions must be defined (Schaumburg et al., 

2004; Pardo et al., 2012) for each water body and biological quality element (BQE; 

phytoplankton, macrophytes and phytobenthos, benthic invertebrate fauna, and fish fauna). 

The classification in types is an attempt to organise the abiotic variability of streams (or 

water bodies) in order to determine areas that are homogeneous regarding a certain number 

of features, such as climate, altitude, geology, or morphology, that strongly influence the 

distribution and community composition of aquatic biota (Wimmer et al., 2000). However, 

while the suitability of such an approach was often investigated and well accepted for 

macroinvertebrates (e.g., Rawer-Jost et al., 2004; Verdonschot and Nijboer, 2004; 

Verdonschot, 2006; but see Lorenz et al., 2004), the same is not always true for other 

biological elements. 

Among the BQEs that are primary producers, phytobenthos is frequently the only 

available community in small streams, due to the absence of true phytoplankton and 

macrophyte vegetation (Eloranta and Soininen, 2002). Diatoms have been selected by most 

countries in Europe as representative of such a group (Almeida and Feio, 2012; Kelly et al., 

2012; Feio et al., 2014). Several studies have demonstrated that diatoms respond to 

important hydromorphological, chemical, and physical changes in the environment (e.g., 

Potapova and Charles, 2003; Almeida and Feio, 2012; Feio et al., 2014). Yet, diatoms are also 

known to react differently than other aquatic elements to streams’ abiotic features. For 

example, in a study conducted by Feio et al. (2007), the macroinvertebrates revealed to be 

highly associated with the substrate type, diversity of habitats, and water velocity, while 

diatoms revealed to be highly associated with geology and stream size. That is one of the 

main problems of the WFD typological approach, as it assumes a community concordance 

between the BQEs (the use of the same river types to define ecological benchmarks for all 

BQEs), which is difficult precisely because the various elements respond differently to 

various water body and catchment features (Paavola et al., 2003; Dolph et al., 2011). 

In addition, the establishment of true reference conditions may be a problem in Europe, 

and also in many other regions of the world, due to a long history of anthropogenic alteration 
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of landscapes and high population densities (Nijboer et al., 2004; Kelly et al., 2012; Feio et al., 

2014). Therefore, alternatives to the use of pristine sites to establish benchmarks for the 

ecological assessment have been discussed and proposed by several authors in recent years 

(Reynoldson et al., 1997; Stoddard et al., 2006; Hawkins et al., 2010; Birk et al., 2012; Pardo 

et al., 2012).  

Among those, the concept of least disturbed condition (LDC), according to Stoddard et al. 

(2006), seems potentially useful to define ecological benchmarks for the central-western 

Portuguese littoral region. As in other lowland/coastal regions, this area has been suffering 

from intensive land use, urbanisation, industry, and agriculture, and historical data aren’t 

available. To establish the LDC for these regions, a careful definition of what are presently the 

‘best’ conditions, based on a set of explicit criteria, is needed (Stoddard et al., 2006). The 

‘best’ (best available) for the present region are sites with anthropogenic disturbances 

concerning changes in hydromorphological characteristics such has riparian vegetation, 

hydrological regime, channelisation, sediment load, and nutrient concentrations. However, 

applying this concept in highly disturbed regions may result in a reduced number of sites, and 

consequently in the need to enlarge the target area to include more reference sites. This was 

what we believe occurred during the implementation of the WFD in Portugal. By then, 15 

river types (INAG, 2008) were established by the Portuguese water authority (Portuguese 

Water Institute, now Agência Portuguesa do Ambiente); however, the entire central-western 

Portuguese littoral region was included in a single type, the Littoral (L type), since only a few 

reference sites were used. That probably resulted in the inclusion of a wide variety of streams 

(see section 2.2.1) in the L type, with different communities and potentially different 

reference values for water quality assessment. If reference values are inappropriate, an 

incorrect quality rating of sites is likely with the attribution of too high or too low quality 

classes.  

Here we discuss and test strategies to overcome the problem of inadequate reference 

conditions in such highly disturbed regions. Our main hypotheses were, first, that the 

increase of the sampling sites density, then the refinement of benchmark criteria (to LDC), 

and the use of diatom assemblages (as the most ubiquitous biological element in this region) 

could lead to (1) the alteration of the presently accepted reference values for water quality 

assessment for the L type based on diatoms, and (2) the redefinition of the L type, with its 

possible division. In order to avoid forcing the biological to the abiotic data or vice-versa, we 

analysed independently the existence of abiotic (abiotic data only) and biological (diatom 

assemblages) sub-groups and assessed a posteriori the congruence of the sub-groups formed. 

For this purpose, we used data collected at 55 sites from this region to (1) test the coherence 

of the L type concerning its abiotic characteristics – i.e., test the existence of sub-groups; (2) 
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establish and apply criteria for the selection of sites on the LDC; (3) verify if the least 

disturbed diatom assemblages validate the abiotic sub-groups formed in (1), using both 

taxonomic composition and diatom traits – i.e., if the abiotic grouping of sites (typology) 

matches the biological grouping; (4) if the sub-groups could be used to define more adequate 

benchmarks for the biological assessment of streams based on diatoms – namely, using the 

Portuguese mandatory diatom index for the region in study, the ‘Indice de Polluosensibilité 

Spécifique’ (IPS); and (5) recommend, if needed, new types for this region based on abiotic 

and biological information.  

2.2 Methods 

2.2.1 Study area and sampling sites 

The central-western Portuguese littoral region has an Atlantic-temperate climate 

characterised by mild temperatures, moderate summers and winters, and precipitation 

values above 2,800 mm·year-1 (Agência Portuguesa do Ambiente, 2007).  

It comprises the catchments of rivers Vouga (V), Mondego (M), Lis (L), and Tagus (T), 

and the Ribeiras do Oeste (O) and Ribeira do Noroeste (NO). The Ribeiras do Oeste and 

Ribeiras do Noroeste are small streams discharging directly into the sea, located in the south-

western part of the study area (Figure 2.1). In general, the L type refers to coastal lowland 

rivers (mean 40 m a.s.l.) with a wide range of drainage areas (from 10 to 5386 km2), 

including small tributaries and coastal streams but also lowland sections of the main rivers 

Mondego and Vouga (INAG, 2008). In the Portuguese context, these streams are located in an 

area with a high mean annual temperature (15 °C) and intermediate mean annual 

precipitation (900 mm) (INAG, 2008). The lithology has mixed characteristics but includes 

large limestone areas. 

The study sites cover most of the existing natural variability in the littoral region and 

also include other water bodies that were originally not included in the L type (e.g., streams 

from Tagus catchment) but have apparently similar environmental characteristics, regarding 

geology, sediment type, channel morphology, and climate, among others (as described above) 

(Figure 2.1). We used data from 31 sites sampled between 2004 and 2006 in spring for the 

implementation of the WFD in Portugal by the national water agency (INAG, IP). In addition, 

we collected 132 new samples from 36 sites in 2011 and 2012, covering spring, autumn and 

winter. Thus, a total of 163 samples from 55 different sites were used (as some of the sites 

were common in 2004/2006 and 2011/2012). At all sites, diatom assemblages and 

environmental data were collected following the same procedures (see section 2.2.2).  
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Figure 2.1 - Location of the study sites (grey circles) in the central Portugal catchments (above left, in 

grey). The rivers and streams represented (grey lines) are those presently included in the L type. 

2.2.2 Sampling collection and processing 

Sampling and treatment of the diatom assemblages were performed according to the 

European standards (European Committee for Standardisation 2003, 2004, 2006). The 

sampled substrate was preferably hard substrate (stone or rock); otherwise sediment (sand) 

was sampled. The sediment was used according to the study by Mendes et al. (2012), who 

validated the use of alternative substrates for water quality assessment with diatoms. For the 

epilithic biofilm sampling, an area of ≈100 cm2 (five stones) was scraped with a toothbrush 

from the upper surface of submerged stones. In epipsammon sampling, a volume of about 50 

mL of streambed sediment was collected using a syringe. Samples were preserved with 

formaldehyde (4%). In order to ensure ecological reliability of the samples, the proportion of 

living and dead cells was assessed under a light microscope. The samples were then oxidised 

with concentrated nitric acid and potassium dichromate for about 24 hours. Thereafter, 

permanent slides were mounted using Naphrax®, and a minimum of 400 diatom valves for 

each sample were counted and identified to the lowest taxonomic category possible. The 

identification was normally done to species or infra-specific rank using a light microscope 

(100x objective and 1.32 numerical aperture) and Krammer and Lange-Bertalot’s floras 

(1986, 1988, 1991a, 1991b) and Krammer’s (2000, 2001, 2009) floras.  
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2.2.3 Abiotic characterisation of the sites 

In situ measurements of pH, conductivity (μS·cm-1), and percentage of dissolved oxygen 

(DO; %) were made using a field meter (Multiparameter Probe 3430 WTW). Water samples 

were collected for posterior laboratory determination of nutrients and chemical oxygen 

demand. Stream data on hydromorphological characteristics (e.g., substrate) and a set of 

pressure categorical variables adapted from Pont et al. (2006) were assessed at each site 

(Table 2.1 and Table 2.2). Other data (latitude, altitude, runoff, mean annual temperature and 

precipitation, drainage area, slope, lithology, % artificial areas, % intensive and extensive 

agriculture) were obtained from cartographic sources (Table 2.1 and Table 2.2) (1:25,000 

digital military maps, Instituto Geográfico do Exército, Portugal; Atlas do Ambiente Digital: 

Agência Portuguesa do Ambiente 2007; Corine Land Cover, 1990). 

The abiotic variables were divided into characterisation and pressure variables. The first 

have very little or minimal influence of anthropogenic activities, such as altitude, lithology or 

precipitation and were used to analyse the streams’ typology (Table 2.1). The pressure 

variables (Table 2.2) are those highly influenced by human activities, such as nutrients (e.g., 

nitrates, phosphates, sulphates), dissolved oxygen, or hydrological regime and were used to 

determine the LDC. 

Table 2.1 - Abiotic characterisation variables measured or calculated for each site, units, and 

transformation applied for the PCA. 

Abiotic characterisation variables 

Latitude (log (x+1)) 

Altitude (m; square root)a 

Runoff, mean annual (mm; square root)a  

Temperature, mean annual air temperature (°C; log (x+1))a 

Precipitation, mean annual (mm; log (x+1))a 

Drainage area (km2; log (x+1))a  

Slope of the drainage area (%; square root)a 

Lithology (categorical; square root)a 

Dominant substrate (in ≈ 500 m from the site %):b 

Bedrock (BE; arcsin) 

Boulder (BO; arcsin) 

Cobble (CO; arcsin) 

Gravel/Pebble (GP; arcsin) 

Sand (SA; arcsin) 

Silt (SI; arcsin) 
a Based on Atlas do Ambiente (Agência Portuguesa do Ambiente, 2007); b Based on Environment Agency (2003). 
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2.2.4 Data analyses 

2.2.4.1 Typology 

To verify the coherence of the Portuguese L type in terms of abiotic characteristics, a 

hierarchical classification (Euclidean distance; Unweighted Pair Group Method with 

Arithmetic mean – UPGMA) was performed using data from the abiotic characterisation 

variables of all sites. A principal components analysis (PCA) was also performed to determine 

which of the abiotic characterisation variables best characterised the different groups 

(translated in the position of sites along the PCA axes). These were performed based on 

abiotic characterisation data of the 55 sampling sites (Table 2.1). The variables with non-

normal distribution were transformed to achieve normality and comparable measurement 

scales (normalising variables) (Table 2.1). This normalisation consists in subtracting to each 

entry the mean for the variable and then dividing by the standard deviation (Primer 6 & 

PERMANOVA+; PRIMER-E Ltd., Plymouth, UK; Clarke and Gorley, 2006; Anderson et al., 

2008). Mean values and standard deviations were calculated for the variables explaining 

most of the variability in PC1 and PC2. 

2.2.4.2 Establishment of the LDC 

For the establishment of the LDC we applied a three-step approach based on Feio et al. 

(2014) to the pool of 163 samples.  

Step 1. Samples with class 1 and 2 (minimal and small disturbance), according to Pont et 

al. (2006), in all abiotic categorical pressure variables (for more detail see Table 2.2) were 

kept and the remaining were eliminated. The selection based only on class 1 in all the 

categorical variables was not considered due to the absence of samples in such conditions.  

Step 2. Based on Step 1 selection, the distribution of numerical variables was 

characterised using boxplots. The minimum and maximum thresholds for the LDC, 

hereinafter called least disturbed abiotic condition (LDAC), were established based on all the 

samples from Step 1, after excluding outliers and extremes. We considered as outliers and 

extremes the values > 75th percentile + k (75th percentile – 25th percentile) or < 25th 

percentile – k (75th percentile – 25th percentile), being k=1.5 to outliers and k=3 for extremes. 

These thresholds characterise the LDC for littoral streams and can be used as thresholds 

to select least disturbed sites.  

Step 3. All samples were screened against the thresholds defined in Step 2, and those 

that were within the limits were considered as representatives of the LDAC for Littoral type. 

All samples of the same site should pass this step, otherwise they were all eliminated. 
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2.2.4.3 Least Disturbed Biological Condition (LDBC) based on diatom assemblages 

The spring samples obtained from Step 3 were used to analyse the biological consistency 

of the L type and the possible existence of sub-groups regarding diatom assemblages. For this 

purpose, a hierarchical classification (Bray-Curtis dissimilarity measure, flexible UPGMA; 

square root transformation, relative abundance ≥ 1%) was performed (PRIMER 6 & 

PERMANOVA+). Additionally, a SIMPER analysis was performed to see which taxa 

contributed the most to the Bray-Curtis dissimilarity (up to 80% cumulative contribution) 

between the resulting groups. As some of the sites had more than one spring sample, the 

number of valves in those samples was previously averaged. 

Benthic diatoms use different strategies to resist the environmental pressures. For 

instance, variations in life forms are strongly influenced by current velocity (Rimet and 

Bouchez, 2012). The use of this trait can provide new insights on the characterisation of river 

types. Thus, in addition to the taxonomic composition, we used a functional indicator of 

diatom assemblages, the trait life-form, and respective categories: mobile, adnate, 

pedunculate (pad and stalked), non-colonial, and colonial, according to Rimet and Bouchez 

(2012). Therefore, each species was assigned to all the trait categories that it could display, 

according to the bibliography. For each sample, the relative abundance of all the species 

presenting a given trait category was calculated. To obtain the trait abundance of each trait 

category in each sub-group, the average of all the samples from the same group was also 

calculated. Significant differences between the trait categories of the groups were checked 

with an ANOSIM (Analysis of similarity, PRIMER 6 & PERMANOVA+). 
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Table 2.2 - Abiotic pressure variables (water chemical and physical conditions and land use) used for the selection of the least disturbed condition. 

Abiotic pressure variables  

Categorical variables  

Connectivity, degree of alterations in longitudinal connectivity at the stream reach (minimal disturbances: no alterations related to the presence of 
artificial barriers (dams, weirs, or other); small disturbances: slight alterations (presence of a minor dam or weir) and allowing for water to flow over 
it) (category)a 

 

Riparian vegetation, changes in the integrity of the riparian corridor due to cut of vegetation or presence of alien species (minimal disturbances: no 
alteration; small disturbances: slight alteration with good riparian forest cover with only a few and isolated alien species) (category)a 

 

Sediment load, changes in the natural concentration of sediments transported by the stream (minimal disturbances: gravel, pebble, and boulder particles 
have <5% of their surface covered by fine sediment; small disturbances: gravel, pebble, and boulder particles have 5–25% of their surface covered by 
fine sediment) (category)a 

 

Hydrological regime, deviation from the natural discharge (minimal disturbances: >90% of the mean annual discharge and >90% of the natural duration of 
flood periods; small disturbances: >30% of the mean annual discharge and >75% of the natural duration of flood periods) (category)a 

 

Morphological condition, changes in the channel morphology and loss of natural habitats (minimal disturbances: no alterations or negligible; small 
disturbances: all habitats are present) (category)a 

 

Acidification and toxicity, changes in the natural acidification and oxygenation level of the water (minimal disturbances: no alterations; small disturbances: 
occasional deviation from the natural condition) (category)a 

 

Organic contamination and nutrient enrichment, evidences of organic substances and nutrients in the water (minimal disturbances: no evidence of 
eutrophication or organic load; small disturbances: small evidences of eutrophication or organic load) (category)a 

 

Numerical variables  

pH  

% Dissolved oxygen (DO)  

Ammonium (N; mg·L-1)  

Nitrates (NO3
-; mg·L-1)  

Total phosphorus (P; mg·L-1)  

Phosphates (PO4
3-; mg·L-1)  

Sulphates (SO4
2-; mg·L-1)  

Chemical oxygen demand (COD; mg·L-1)  

Conductivity (μS·cm-1)  

% Artificial areas, in the catchment (urban areas continuous and discontinuous, industrial and commercial zones, communication infrastructures and 
networks, mines, etc.)b 
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% Intensive agriculture, in the catchment (corresponding to a high potential impact from agricultural activities: arable land (including irrigated land), 
permanent crops (with associated annual crops), vineyards, orchards, olive groves, complex cultivation patterns)b 

 

% Extensive agriculture, in the catchment (lower potential impact from agricultural activities: pastures, land principally occupied by agriculture, with 
significant areas of natural vegetation, agro-forestry areas)b 

 

a Variables on a five-classes scale: 1-minimally disturbed from the natural state to 5-completely disturbed. Adapted from Pont et al. (2006); b Based on Atlas do Ambiente (Agência Portuguesa do 
Ambiente, 2007). 
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2.2.4.4 Establishing new benchmarks for ecological assessment 

Diatom taxa abundance was used to calculate the IPS of the least disturbed spring 

samples with the OMINIDIA software (Lecointe et al., 1993). As there were some sites with 

more than one sample, the respective IPS values were averaged for the remaining data 

analysis. For each sub-group (obtained from the diatom assemblages of the LDC sites), the 

median IPS reference value was calculated. Only spring samples were used because only this 

season is used in the Portuguese official monitoring programme; consequently, only spring 

reference values are available. To obtain the ecological quality ratios (EQRs) for each site, the 

observed IPS value was divided by the reference IPS value (i.e., the median of each sub-

group). The EQR gives the deviation of the observed biological parameter in a given water 

body (type) to the values of that parameter in reference conditions applicable to that water 

body. The EQRs were calculated for reference and disturbed sites (all spring samples) and 

compared with the values obtained from the use of the original median (17.4, as used 

presently in official monitoring programme) (INAG, 2009). The attribution of a sub-group to 

the disturbed sites was done according to the groups established in the abiotic hierarchical 

classification. 

2.3 Results 

2.3.1 Typology 

Cluster analysis (Figure 2.2) showed that, based on abiotic data, the L type could be sub-

divided into three sub-groups. A small group of sites (Group I) clearly segregated from the 

remaining, and two other bigger groups (Group II and III). Only one site (V80) was not 

included in any group because it was very different from the remaining (outlier) (Figure 2.2).  

The two streams from the Tagus catchment (T90 and T91) that presently are not 

included in the L type, as we expected, were similar to other streams that are considered L 

type (Figure 2.2).  

The first two axes explained 48.2% of sites’ abiotic variability (PC1=30.1%, PC2=18.1%). 

The variables with the highest contribution to PC1 were runoff, precipitation, slope, and 

channel substrate (sand and cobble) (eigenvectors between 0.314 and 0.424), while drainage 

area (eigenvectors = 0.483) and lithology (eigenvectors = 0.380) contributed more to PC2 

(Figure 2.3). The substrate sand contributed almost equally to PC1 and PC2 (eigenvectors of 

0.314 and 0.344, respectively). 
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Figure 2.2 - Hierarchical classification of the sites based on the abiotic characterisation variables. 
Three groups were formed. 

The PCA confirmed the segregation of the abiotic groups. Group I (Figure 2.3) was 

clearly segregated from the remaining over PC2. This group includes only sites from the 

Mondego River with a large drainage area (ca. 5000 km2) (Table 2.3). The other two groups 

appeared segregated towards the negative or the positive sides of the PC1 axis (Figure 2.3). 

The streams of these two groups differed in slope, altitude, mean annual runoff and 

precipitation values, and stream substrate (namely, cobble and sand) (Figure 2.3). In Group 

II, we found streams in a higher altitude with higher average values of precipitation and 

runoff than in Group III (Table 2.3) and streambed mainly of cobbles and gravel/pebble, 

while in Group III the streams have predominantly sandy bottoms (Table 2.3). Over the 

second axis there was also a segregation of the samples by catchment (i.e., latitudinal 

gradient). In the positive side of this axis, we found samples from Ribeiras do Oeste and Lis 

catchment (the most southern sites); in the negative side, we found samples from Mondego 

and Vouga catchments (the most northern sites) (Figure 2.3). 
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Figure 2.3 - Principal Component Analysis of the study sites plotted in relation to the abiotic 

characterisation variables. The groups obtained in the hierarchical classification of the sites (Figure 

2.2) are identified: square-Group I, black triangle-Group II, white triangle-Group III, diamond-V80.  

2.3.2 Establishment of the LDC 

Only 30 samples (from 13 sites) were selected after Step 1, corresponding to 18.4% of 

the total. The pressure categorical variables that contributed more to sample elimination 

were: riparian vegetation (58.9%), morphological condition (37.4%), and sediment load 

(33.1%). Contrarily, toxic acidification (3.1%) and hydrological regime (12.3%) were the 

categories with less contribution for sample elimination. 

In Step 2, the distribution of values for the numerical variables of the samples selected in 

Step 1 revealed several outliers and extremes, especially for ammonium, nitrates, phosphates, 

and sulphates (e.g., Figure 2.4). This means that these were sites in good hydromorphological 

condition but with an excess of nutrients. The samples corresponding to such values were 

also eliminated, except if they were outliers or extremes for just one of the pressure variables. 

The LDAC of littoral streams is thus represented by the thresholds determined with the 

remaining samples and presented in Table 2.4.  
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Table 2.3 - Mean (SD, standard deviation) of the abiotic characterisation variables for each abiotic group. 

 Group I Group II Group III 

Latitude 40.1742 to 40.2204 38.7048 to 40.6355 39.1350 to 40.7537 

 Mean Mean Mean 

Altitude (a.s.l; m) 9.52±10.46 84.89±56.93 31.19±21.09 

Runoff, mean annual (mm) 466.72±70.12 537.71±210.31 324.05±101.19 

Temperature, mean annual 
air temperature (°C) 

15.00±0.00 15.50±0.97 15.33±0.48 

Precipitation, mean annual 
(mm) 

1160.00±89.44 1256.00±267.83 983.33±130.77 

Drainage area (km2) 4995.20±543.74 97.13±183.43 70.09±60.60 

Slope of the drainage area 
(%) 

15.26±0.50 12.38±4.75 6.08±3.30 

Lithologya 17-100.00%  1-8.00%, 3-24.00%, 5-8.00%, 6-
28.00%, 7-4.00%, 11-28.00% 

1-50.00%, 3-8.33%, 5-16.67%, 6-
16.67%, 7-4.17%, 11-4.17% 

Dominant substrate (in ≈ 500 m from the site %): 

Bedrock (BE) 0.00 2.34±7.01 0.00 

Boulder (BO) 0.00 7.47±17.06 0.00 

Cobble (CO) 0.00 25.81±28.57 0.00 

Gravel/Pebble (GP) 16.00±35.78 51.88±30.20 3.48±8.47 

Sand (SA) 84.00±35.78 11.13±15.86 81.04±33.33 

Silt (SI) 0.00 0.57±2.86 2.56±7.12 
a 1-Sands, sand dunes, gravels, rolled stones, little consolidated sandstones, clays; 3-Limestones, dolomitic limestones, marly limestones, marls; 5-Conglomerates, sandstones, limestones, dolomitic 
limestones, marly limestones, marls, carbonaceous schist’s, schist’s; 6-Sandstones, more or less marly limestones, sands, gravels, clays conglomerates, limestones, dolomitic limestones, marls; 7-Red 
stoneware, conglomerates, marls, limestones generally dolomitic; 11-Schists and related rocks; 17-Granites and related rocks. 
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Table 2.4 - Thresholds for the Least Disturbed Abiotic Condition (LDAC) for water chemical and 

physical conditions and land use. 

Abiotic pressure variables Threshold 

pH 6.7 – 8.1 

% Dissolved oxygen (DO) 56.4 – 116.5 

Ammonium (N; mg·L-1) ≤ 0.40 

Nitrates (NO3
-; mg·L-1) ≤ 6.14 

Total-P (P; mg·L-1) ≤ 1.18 

Phosphates (PO43-; mg·L-1) ≤ 1.14 

Sulphates (SO42-; mg·L-1) ≤ 10.9 

COD (mg·L-1) ≤ 33.90 

Conductivity (µS·cm-1) ≤ 482.0 

Artificial areas (in the catchment; %)a ≤ 8 

Intensive agriculture (in the catchment; %)a ≤ 51  

Extensive agriculture (in the catchment; %)a ≤ 17  
a See description for these variables on Table 2.2 

After the three steps, 24 samples from 11 sites were considered in the LDC. From those 

24 samples, 54.2% were from spring, 25.0% from winter, and 20.8% from autumn. Twelve 

LDC spring samples from nine sites were retained for biological analyses. All these samples 

corresponded to Groups II and III of the abiotic classification (above). All samples from Group 

I, the large river, failed Step 1 due to hydrological (connectivity, hydrological regime) or 

morphological alterations, which are caused by the presence of large dams upstream and 

channelisation of some parts of the river. 

2.3.3 LDBC based on diatom assemblages 

The cluster analysis of the spring diatom least disturbed assemblages (Figure 2.5) 

identified two distinct groups (Group A and B). Among the species that most contributed to 

the 81.2% average dissimilarity between the two groups (SIMPER) were Achnanthidium 

minutissimum (Kützing) Czarnecki, Karayevia oblongella (Østrup) Aboal, Hippodonta 

pseudacceptata (H. Kobayasi) Lange-Bertalot, Metzeltin & A. Witkowski, and Nitzschia 

dissipata var. media (Hantzsch) Grunow (Table 2.5).  

There was a total agreement between the two groups formed by the diatom assemblages 

of the LDC sites (Figure 2.5) and two of the abiotic groups (Figure 2.2). The LDC sites of 

Group A were all inserted in the abiotic Group II (cluster), while the LDC sites in the Group B 

were all inserted in the abiotic Group III (cluster). Group A includes small stony streams with 

higher precipitation, slope, and runoff. The lithology of the area is quite varied, and includes 

six different categories (category 1, 3, 5, 6, 7, and 11, see Table 2.3 for category definition). 
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Species such as A. minutissimum, Eolimna minima (Grunow) Lange-Bertalot & W. Schiller, 

Cocconeis euglypta Ehrenberg, Amphora pediculus (Kützing) Grunow ex A. Schmidt, and 

Gomphonema pumilum (Grunow) E. Reichardt & Lange-Bertalot were more abundant in this 

group. In Group B we found sandy streams, low precipitation and runoff values, and lithology 

categories mainly siliceous (Table 2.3). Group B was characterised by higher abundances of 

species such as K. oblongella, H. pseudacceptata, N. dissipata var. media, Nitzschia palea 

(Kützing) W. Smith, and Hippodonta capitata (Ehrenberg) Lange-Bertalot, Metzeltin & 

Witkowski (Table 2.5). In general, both groups were composed mostly by neutrophil to 

alkaliphilic species.  

The biotic groups also presented differences regarding the trait life-form. Group A 

presented higher average abundances of mobile (92.7%) and stalked (64.4%) species. In 

Group B the trait categories with higher average abundances were mobile (80.2%) and pad 

(26.4%). Both groups presented high values of non-colonial species (90.7% Group A and 

78.5% Group B). The two groups only presented statistically significant differences in the 

trait category stalked, with higher average abundance in Group A than in Group B (Global 

R=0.76, P<0.02). 
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Figure 2.4 - Boxplots showing the distribution of selected numerical pressure variables for the least 

disturbed samples selected after Step 1 (only class 1 - minimal or 2 - minor disturbance). 

Outliers/Extremes: see section 2.2.4.2. 
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Figure 2.5 - Hierarchical classification of the diatom assemblages based on the least disturbed sites. 

Two groups were formed: black triangle-Group A, white triangle-Group B. The sites (triangles) are 

identified with the first letter of the catchment to which they belong - Vouga (V), Mondego (M), Lis (L), 

Ribeiras do Oeste (O), and Ribeiras do Noroeste (NO) - and with a number that is the site number. 

Table 2.5 - Most representative diatom species (contributing to up to 81% of the Bray-Curtis 

similarity) the two groups (A and B) obtained by SIMPER analysis with respective average abundance. 

In bold are the species that were more abundant to each group. 

 Group A Group B % of 
cumulative 

abundance 
 Average 

abundance 
Average 

abundance 

Achnanthidium minutissimum (Kützing) 
Czarnecki 

5.61 0.90 10.64 

Karayevia oblongella (Østrup) Aboal 0.67 3.51 17.35 

Hippodonta pseudacceptata (H. Kobayasi) 
Lange-Bertalot, Metzeltin & A. Witkowsk 

0.00 1.98 21.73 

Nitzschia dissipata var. media (Hantzsch) 
Grunow 

0.00 1.88 25.71 

Eolimna minima (Grunow) Lange-Bertalot & 
W. Schiller 

2.23 0.46 29.56 

Nitzschia palea (Kützing) W. Smith 0.00 1.61 32.81 

Cocconeis euglypta Ehrenberg 1.52 0.00 35.95 

Hippodonta capitata (Ehrenberg) Lange-
Bertalot, Metzeltin & Witkowski 

0.00 1.40 38.77 

Gomphonema parvulum (Kützing) Kützing 0.38 1.51 41.60 
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Geissleria decussis (Østrup) Lange-Bertalot & 
Metzeltin 

0.00 1.14 44.13 

Amphora pediculus (Kützing) Grunow ex A. 
Schmidt 

1.18 0.00 46.60 

Gomphonema pumilum (Grunow) E. Reichardt 
& Lange-Bertalot 

1.08 0.72 49.06 

Fragilaria gracilis Østrup 0.19 1.08 51.48 

Navicula gregaria Donkin 0.49 1.21 53.82 

Achnanthidium rivulare Potapova & Ponader 1.23 0.00 56.15 

Cocconeis placentula var. lineata (Ehrenberg) 
Van Heurck 

1.21 0.00 58.45 

Reimeria sinuata (W. Gregory) Kociolek & 
Stoermer 

1.04 0.00 60.58 

Achnanthidium subatomoides (Hustedt) O. 
Monnier, Lange-Bertalot & Ector 

0.00 0.99 62.07 

Planothidium frequentissimum (Lange-
Bertalot) Lange-Bertalot 

0.20 1.07 64.75 

Placoneis clementis (Grunow) E. J. Cox 0.00 1.03 66.79 

Sellaphora seminulum (Grunow) D. G. Mann 0.00 1.04 68.71 

Staurosirella pinnata (Ehrenberg) D. M. 
Williams & Round 

0.00 0.88 70.59 

Planothidium daui (Foged) Lange-Bertalot 0.00 0.87 72.45 

Nitzschia sp. 0.00 0.76 74.13 

Achnanthidium atomoides Monnier. Lange-
Bertalot & Ector 

0.88 0.00 75.81 

Gomphonema minutum (C. Agardh) C. Agardh 0.73 0.00 77.24 

Hippodonta lesmonensis (Hustedt) Lange-
Bertalot, Metzeltin & Witkowski 

0.00 0.61 78.59 

Parlibellus protracta (Grunow) Witkowski, 
Lange-Bertalot & Metzeltin 

0.00 0.59 79.90 

Encyonema minutum (Hilse) D. G. Mann 0.63 0.00 81.21 

 

2.3.4 Establishing new benchmarks for ecological assessment 

For LDC samples, the IPS values ranged between 11.3 and 19.9, with Group A presenting 

higher IPS values (median 18.2) than Group B (median of 13.7). While the median values of 

Group A were close to the one presently used in official monitoring (17.4), the median of 

Group B was much lower. The application of these medians resulted in a slight decrease of 

EQR values of LDC samples in Group A (that ranged 0.69 – 1.09) and a considerable increase 

of EQR in Group B (that ranged 0.82 – 1.16) compared to the EQR values resultant from the 

application of the official median for L type (Figure 2.6). For disturbed sites, the application of 
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the group medians also resulted in comparable increases/decreases of the EQR values 

(Figure 2.6). 

 

 
Figure 2.6 - EQR based on the new IPS median reference values (circles) and in original IPS median 

reference values (squares) used presently in the official monitoring programme of the sampling sites 

from Group A (a) and B (b). Dashed vertical lines separates samples selected as being in the least 

disturbed condition (LDC) from the ones considered to be impaired. Spring samples. 

2.4 Discussion 

In this study, we confirmed the environmental variability of streams present in the 

littoral Portuguese coastal region in terms of environmental characteristics. In a small 

geographic area, we were able to differentiate three sub-groups of streams with differences 

in mean annual precipitation, mean annual runoff, slope, altitude, size of the drainage area, 

lithology, and stream substrate. Since these variables are used in the definition of the WFD 

typology (European Commission, 2000), those groups could be considered different types. 

One of the groups formed is composed exclusively of sites from Mondego River. The 

environmental variables that contributed more to the segregation of this group (lithology and 

size of the drainage area) are geochemical and hydrological factors known to influence the 

diatom assemblages (Potapova and Charles, 2002; Lorenz et al., 2004; Feio et al., 2009; 

Almeida and Feio, 2012). Therefore, despite the lack of LDAC and consequently LDBC sites for 

this group, we predict that the diatom assemblages would also be different from the 

remaining groups. We also verified that streams which presently are not classified as L type 

(e.g., streams from the Tagus catchment) should be included in this type, as they weren’t 

segregated from the remaining in terms of environmental characteristics.  

Studies such as that by Pan et al. (1999) showed that diatom assemblages are strongly 

controlled by geomorphic and disturbance factors (e.g., land cover/use in watersheds and 

riparian condition). Here, the main alterations in the littoral streams were related to the 

riparian vegetation, morphological condition, and sediment load, which was expected, as the 
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main pressures in the region are agriculture and deforestation. The degradation of riparian 

vegetation in the majority of the L type streams can lead, for example, to change in water 

temperature patterns. The streams are more exposed to sunlight and, therefore, more 

influenced by atmospheric temperature (Poole and Berman, 2001). In Feio et al. (2014), 

degradation of the riparian vegetation was also among the main disturbances found in 

Mediterranean streams. The sediment load is a measure of deviation from the natural 

condition either in the water column or in the streambed. Among the sources that contribute 

to stream sedimentation and turbidity are agriculture, forestry, mining, road construction, 

and urban activities (Henley et al., 2000). The loss of riparian vegetation also facilitates the 

runoff of sediments into the streams, as these areas are important sediment sinks (Daniels 

and Gilliam, 1996; Sheridan et al., 1999). Increase in the sediment load and consequent 

increase in turbidity of streams can cause a reduction in algae growth due to the decrease of 

light availability for photosynthesis (Henley et al., 2000).  

Land use in the catchment can greatly influence the quality of the streams as it may 

cause changes in nutrient load. However, this influence depends on intrinsic factors of the 

catchment, such as the transport capacity of the watershed, the influence of riparian buffers, 

climatic and geomorphological basin features, and the existence of additional pressures 

(Pardo et al., 2012). The littoral Portuguese region is densely populated but nonetheless, it 

was possible to establish a threshold of 8% of the catchment covered by artificial areas for 

the LDC. However, this value is still high in comparison with other thresholds established in 

other studies (e.g., <0.4% reference and >0.8% rejection threshold in Pardo et al., 2012). 

Agriculture (intensive and extensive) is quite relevant in the region, which is reflected in the 

thresholds of 17% (extensive) and 51% (intensive). The threshold found in Feio et al. (2014) 

for the intensive agriculture in Mediterranean countries was only of 11%, but in Pardo et al. 

(2012) the rejection threshold (for a reference site) for northern Europe was very close to 

ours (i.e., 50%). Also, Allan (2004) stated that streams remain in good condition in 

agricultural catchments as long as the extent of agriculture (including intensive and 

extensive) doesn’t exceed 30% – 50%. Our values of total agriculture (intensive plus 

extensive) for the least disturbed sites are close to this limit, as they ranged from 5.8 to 

53.5%.  

Under pristine conditions, streams should have low concentration of nutrients (namely, 

phosphorous-P, nitrogen-N, and sulphur-S). Therefore, the values obtained here for littoral 

LDC were high. Several studies have proposed lower maximum values for these compounds 

(see Feio et al., 2014). The high values of N (0.40 mg·L-1) and P (1.18 mg·L-1) that we found in 

the streams were probably related with the high percentages of agriculture (such as rice 

fields in Mondego or large orchards in the Ribeiras do Oeste) found in the catchments, since 
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this is one of the major contributors of non-point source pollution (Bernot et al., 2006). In 

spite of these broad thresholds, by the end of the three-step approach used for LDC selection, 

the approach was in fact very strict, as only 14.7% of the samples were accepted. This high 

elimination rate of samples revealed that this region is under high anthropogenic pressure 

and that the approach we used for determining the LDC, through the increase in the sampling 

site density and the refinement of the benchmark criteria, may not be sufficient to define the 

reference condition. Other methods have been proposed to infer the LDC such as the use of a 

stressor gradient approach, which uses the relationship between the stressor gradient and 

biological indicators to predict LDC for the biological indicators (Angradi et al., 2009) or the 

quite similar alternative benchmarking (Birk et al., 2012) based on the notion of aquatic 

communities with similar low levels of impairment. Yet, none of these approaches assure that 

the existent communities are not already significantly altered, especially when the best sites 

are already far from the pristine conditions. 

The large river sites included in our study were all eliminated after failing Step 1, due to 

hydromorphological modifications, specifically in the hydrological regime, connectivity, 

and/or morphological alterations. These are two common problems of large rivers (Seegert, 

2000; Nilsson et al., 2005), which often require the establishment of alternative benchmarks 

(Birk et al., 2012), or ultimately their inclusion in the category of highly modified water 

bodies when their recovery to the Good status is not possible (European Commission, 2000). 

However, concerning the large river in this study (Mondego River), care must be taken as the 

number of samples was very small and the screening abiotic metrics may have been 

unsuitable for large rivers (Angradi et al., 2009). Criteria based on screening abiotic metrics, 

such has riparian vegetation and sediment load, are likely to be less reliable for screening 

large rivers compared to smaller rivers (Angradi et al., 2009). 

We found two distinct diatom assemblages (two sub-groups) for the least disturbed 

sites. These two groups were in accordance with two of the abiotic groups formed. The 

abiotic characterisation variables relevant for the difference between Groups II and III were 

mean annual runoff, slope, mean annual precipitation, substrate (stone vs. sand), and 

lithology. These variables are recognised to be important for determining diatom species 

composition, and therefore the biological groups were in total agreement with the natural 

division of the assemblages (Groups A and B) (Potapova, 1996; Potapova and Charles 2002; 

Almeida and Feio, 2012). Most of these variables reflected a longitudinal distribution of the 

streams: sites in Group A were found in more inland streams while the ones from Group B 

were found in more lowland streams close to the coast. Thus, despite the different 

approaches (abiotic and biotic), we verified a complete agreement between these two 

classifications. This agreement was also verified in some studies, even with other BQEs 

(Lorenz et al., 2004; Rawer-Jost et al., 2004; Verdonschot and Nijboer, 2004; Sandin and 
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Verdonschot, 2006) but not always (Sanchez-Montoya et al., 2007; Feio et al., 2014). In the 

study conducted by Feio et al. (2014), for example, the streams of one of the abiotic groups 

formed (temporary streams) were spread into at least three biological groups for all elements 

studied (diatoms, macrophytes, and macroinvertebrates). However, this lack of agreement 

was probably due to the broad scale of the variables for the definition of the types. In 

Sanchez-Montoya et al. (2007), the largest difference found between the abiotic classification 

and the macroinvertebrates communities was also in the ecotype comprising the temporary 

streams, which was probably due to the large variability in salinity and hydrology found in 

those streams.  

Given the abiotic differences of the two groups of streams in terms of slope, runoff, and 

substrate, we expected differences in diatoms’ trait life form. In Group A the species should 

have the capacity to attach to the substrate in order to resist the higher current velocities 

associated with higher slopes and runoff values; in Group B the species should be able to 

overcome the abrasion of moving grains that can detach larger taxa (Townsend and Gell, 

2005) or be able to move (Soininen and Eloranta, 2004) in order to avoid the entrapment by 

the sand grains. Indeed, Group A had higher abundance of stalked species than Group B. This 

difference confirms that the species from Group A are exposed to higher velocities, and that 

the streambed substrate is more stable than the streambed substrate found in streams of 

Group B. However, contrary to what we were expecting, the abundance of mobile species was 

similar in both groups, revealing the importance of this trait category in both groups of 

streams. 

As the sites used to calculate the median IPS in Groups A and B were under similar 

anthropogenic disturbances (LDC), it was to be expected that they presented similar IPS 

values. However, Group A presented a higher median IPS value than Group B. In particular, 

the high abundance of a sensitive species, Achnanthidium minutissimum, in Group A may be 

the cause of such differences. In some of the samples from Group A, A. minutissimum reached 

an abundance of approximately 70%. However, in Group B this particular species only 

reached a maximum abundance of 7.3%. As the number of counted valves was similar in all 

the samples, the diatom assemblages from Group B were generally more diverse and showed 

higher evenness. The sensitive and less sensitive species contributed equally to the IPS 

calculation in Group B, while in Group A the IPS calculation was highly influenced by A. 

minutissimum abundances. Therefore, the use of a single IPS benchmark value for both 

groups (Group A and B) to calculate EQR values would lead to erroneous classifications, 

particularly in the case of Group B. The division by a higher median than by the appropriate 

one (as done presently) results in lower ratios, and therefore potential erroneous attribution 

of lower quality to sites of good quality. These Type II errors (false negatives) can have 
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important consequences, as they imply a higher investment than the one needed for streams’ 

restoration (Johnson et al., 2006). The two groups are indeed abiotically different, suggesting 

the existence of sub-groups within the L type; however, due to the small number of LDC sites, 

particularly for Group B, we must be cautious in our interpretations. 

2.5 Conclusions 

The contribution of the stream substrate for the definition of the groups suggests that 

this variable should have been included in the typological variables during the WFD 

implementation to allow the construction of relevant types for diatoms. In fact, Lorenz et al. 

(2004) included the predominant type of substrate in the determination of stream typologies 

in Germany. This study also revealed that there is a wider abiotic variability and 

corresponding differences in diatom assemblages within the L type, as it was defined. 

However, we would still need a higher number of sites in LDC to achieve an adequate 

redefinition of reference conditions for all potential sub-groups, which is not feasible, as we 

already performed an intensive search. We must also take into consideration that type 

redefinition must consider other BQEs. Therefore, even if the LDC approach can help improve 

the present bioassessment methods, other alternatives that do not require the use of 

reference sites, such as modelling the reference conditions, are still needed, as the present 

LDC is far from the desired reference condition (Stoddard et al., 2006; Angradi et al., 2009). 
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Abstract 

Contemporary bioassessment methods for water bodies require the description of 

‘reference conditions’ representing an absence or only ‘very minor’ presence of human 

impacts on hydromorphological, physical and chemical properties. However, minimally 

disturbed reference sites are lacking in many European regions and other parts of the world 

because of pervasive anthropogenic influences. Here we describe the use of environmental 

filters modelling, incorporating boosted trees (BT), to derive reference data for abiotic 

variables and biological communities (diatoms and macroinvertebrates) for rivers in a highly 

disturbed region (Portuguese central-western lowland area), where minimally disturbed 

reference sites are non-existent. We also revise quality class boundaries for diatom and 

macroinvertebrate bioassessment in this region, and develop a new multimetric diatoms 

index (MDI). The new index includes not only the ‘Indice de Polluosensibilité Spécifique’ (IPS) 

based on species’ sensitivity to organic pollution and nutrients, but also the numbers of total 

and sensitive taxa. Our approach predicted significantly different communities under 

reference conditions from those observed, with a higher median reference number of taxa per 

site than the observed number (69 against 27 for diatoms; 53 against 22 for 

macroinvertebrates). In addition, the predicted communities for both biological groups were 

more similar among sites than the observed communities. Adjustment of index calculation 
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and quality class boundaries to incorporate the new reference data resulted in more stringent 

site assessments that were better correlated with human pressures than assessments with 

previous methods. This study brings new insight to solve the problem of an absence of 

minimally disturbed reference sites. 

Keywords 

Freshwater, macroinvertebrates, diatoms, reference condition, multimetric diatom index 



Chapter 3 

55 

3.1 Introduction 

Running waters provide a multitude of benefits for humans, such as sources of water, 

means of power generation and waste disposal, routes for navigation and places for leisure 

activities (Malmqvist and Rundle, 2002). With intense human pressure on rivers and 

increasing demand for water over the past century (Gleick, 2000), it is not surprising that 

nowadays few streams or rivers remain unaltered (Frissel and Bayles, 1996; Malmqvist and 

Rundle, 2002; Wiens, 2002; Naiman and Dudgeon, 2011). In fact, some of these ecosystems 

have been so starkly and extensively modified that their return to a natural state is almost 

impossible (Frissel and Bayles, 1996).  

In the European Union (EU), with the implementation of the Water Framework Directive 

(WFD: European Commission, 2000), water management accounts for the water needs of 

both humans and nature. The WFD main goals are to achieve good chemical and ecological 

status of water bodies and prevent deterioration (Guidance Document No. 10, 2003). In order 

to pursue these goals, ecological status is assessed by quantifying the deviation in 

composition and abundance of Biological Quality Elements (BQEs) in a water body from the 

composition and abundance expected under reference conditions for that type of water body 

(e.g., mountain or lowland type) (Schaumburg et al., 2004). A representative suite of 

appropriate reference conditions has to be identified for each type of water body 

(Schaumburg et al., 2004; Pardo et al., 2012) to permit an interpretation of measured values 

(e.g., biological indices) that takes account of natural spatial differences in the composition 

and abundance of BQEs (Hawkins et al., 2010). 

Under the WFD, the reference point is ‘undisturbed’ conditions with no or only ‘very 

minor’ human impacts on hydromorphological, physical and chemical elements (Guidance 

Document No. 10, 2003). However, reference water bodies with only minor impacts are 

absent from many parts of Europe (and other regions of the world) because of historical 

anthropogenic alteration of landscapes and high population densities (Nijboer et al., 2004; 

Kelly et al., 2012; Feio et al., 2014a). Recognizing this limitation, the WFD allows the 

reference condition to be either spatially based (via reference sites), based on modelling 

(predictive models or hindcasting methods), or derived from a combination of these methods 

and even based in paleolimnological data (European Commission, 2000). 

Several alternative ways to establish useful reference conditions for the ecological 

assessment of streams have been proposed and discussed in recent years (e.g., Reynoldson et 

al., 1997; Stoddard et al., 2006; Tison, et al., 2007; Hawkins et al., 2010; Birk et al., 2012; 

Pardo et al., 2012; Feio et al., 2014a). However, recent evaluations of ecological status have 

compared assemblage composition and structure between assessment sites and ‘least 
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disturbed’ reference sites (Hawkins et al., 2010). Such assessments do not fully express 

deviations from undisturbed conditions because of the ubiquity of human impacts, many of 

which are not easily detected and quantified (Chessman and Royal, 2004). To address this 

problem, Chessman and Royal (2004) proposed an alternative approach to establish a 

biological reference condition that does not rely on reference sites. This approach is based on 

the hypothesis that key environmental variables (filters), expressed at multiple scales, 

determine the composition and structure of local biological communities (Keddy, 1992; Poff, 

1997; Quist et al., 2005). The suite of taxa existing at a site under reference conditions is 

visualised as resulting from a natural, top-down filtering process applied to a regional pool of 

taxa, whereby only those taxa with appropriate traits are able to pass the natural filters 

(Chessman and Royal, 2004). Thus, knowledge of the environmental tolerances of the taxa in 

the regional pool will allow prediction of the suite of taxa that should occur at a test site 

under reference conditions, provided that reference values of the environmental filters can 

be estimated for that site (Hawkins et al., 2010).  

Diatoms and macroinvertebrates are key components of aquatic ecosystems, belonging 

to three trophic levels (primary producers, primary and secondary consumers), and are 

among the obligatory BQEs for rivers in the WFD. However, to our knowledge the 

environmental filters’ approach has not been used to predict the occurrence of diatom 

species or macroinvertebrates at the genus rank. For the present work, we hypothesised that 

the environmental filters approach could be used to establish biological reference conditions 

for Portuguese lowland streams and rivers that better represent communities existing before 

the effects of human activities, i.e., correspond to a higher level of naturalness, than the 

presently used Least Disturbed Condition (LDC) based only on reference sites. In addition, we 

further developed the filters’ approach of Chessman and Royal (2004) by using the statistical 

learning method of boosted trees to derive reference values of abiotic environmental filters, 

because we believe that the ‘best available’ values presently used are in some cases far from 

the reference ones required by the WFD (i.e., pre-human-disturbance conditions). We also 

derived reference values for abiotic variables from the literature. 

Finally, in order to use such predictions of WFD reference communities in biomonitoring 

of lowland streams, we established new reference values and quality class boundaries for the 

official Portuguese multimetric index for benthic macroinvertebrates and a new multimetric 

index for diatoms. The new index includes the present official diatom index used in Portugal, 

the ‘Indice de Polluosensibilité Spécifique’ - IPS (Cemagref, 1982), based on species sensitivity 

to pollution in general and in addition, the total number of species observed and the number 

of sensitive species. We suggest that more weight should be given to sensitive species in the 

assessment of biological quality because an increase in the number of such species is a less 
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ambiguous indicator of improvement in water quality than changes in relative abundance 

(Stevenson et al., 2008).  

In summary, the main aims of this work were: 1) prediction of WFD biological reference 

conditions for macroinvertebrates and diatoms for lowland streams of the central-western 

Portuguese region by extending the environmental filters’ approach of Chessman and Royal 

(2004) with boosted trees; 2) development and testing of a new multimetric diatom index; 

and 3) establishment of new reference values and class boundaries for bioassessment 

methods based on diatoms and macroinvertebrates for this region.  

3.2 Materials and methods 

3.2.1 Study area and data source 

The Portuguese central-western region comprises the lowland areas of the catchments 

of the Vouga (V), Mondego (M) and Tagus (T) rivers, and the entire catchment of the Lis River 

(L), the Ribeiras do Oeste (O) and the Ribeiras do Noroeste (NO). Mondego River is the 

largest river entirely within Portuguese territory with a length of 227 km from mouth to 

source and a catchment area of 6670 km2 (Feio et al., 2007). Tagus River is an international 

river with its source in Spain and a catchment area in Portugal of 24850 km2. Vouga River, 

located north of the Mondego River, has a catchment area of 3600 km2 and measures 136 km 

from mouth to source (Feio et al., 2007). Lis River has the smallest catchment of 945 km2 and 

is 40 km long from mouth to source (Feio et al., 2007). The Ribeiras do Oeste and Ribeiras do 

Noroeste are small lowland streams (mean 40 m a.s.l.) with a small/medium drainage area 

(mean 180 km2) (INAG, 2008a). The streams and rivers of this region were included in a 

single official river type during the implementation of the WFD which was the Littoral type 

(Elias et al., 2015). 

In this study, we used a database (AQUAWEB: www.aquaweb.pt) of records of diatom 

and macroinvertebrate community composition and abiotic variables covering the whole of 

Portugal and a wide variety of natural conditions from mountains (up to 2000 m a.s.l.) to 

lowland sedimentary areas, from northern schist and granite dominant lithology to southern 

more alkaline and sedimentary lithology and from temperate Atlantic to Mediterranean 

climates. It characterised both natural site attributes, such as geomorphology and climate, 

and also human pressures (Figure 3.1, Table 3.1). We used data from 549 diatom samples and 

984 macroinvertebrate samples from 506 sites, of which 167 diatom samples (55 sites) and 

218 macroinvertebrate samples (62 sites) were from rivers and streams in the lowland 

region of central Portugal. These data comprised samples collected from 1993 to 2012 

(during the four seasons). 
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In a previous study considering organic pollution and nutrients, hydromorphological 

alterations and land use, nine sites in the Portuguese lowland region were considered to be in 

LDC (Elias et al., 2015): Canadas (L03), Casal dos Netos (NO103), São Pedro de Muel (O92), 

Caldelas (L98), Alcaria (L01), Almagreira (M06), Botão (M18), Foz do Ceira (M09) and Avelãs 

de Cima (V117). Despite being considered in the least disturbed condition these sites present, 

however, high levels of nutrients (e.g., nitrates and phosphates concentrations reaching 5.1 

mg NO3-·L-1 and 0.83 mg PO43-·L-1, respectively) and minimal and small disturbance, according 

to Pont et al. (2006) in riparian vegetation and morphology. Samples from these sites, 

hereinafter treated as LDC samples and referred to by the site codes above, were used for 

comparative purposes to determine whether the new reference conditions represented an 

improvement on least disturbed conditions. 

 
Figure 3.1 - Map of Portuguese rivers showing locations of the lowland sites (white circles) and the 

remaining study sites (grey circles). 
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Table 3.1 - Characterization and pressure variables included in the study, with ranges of values for 

Portuguese lowland sites (n=218 samples from 62 sites). 

Variable Range 

Characterization variables  

Latitude (°N) 38.9264 - 40.7537 

Longitude (°W) 8.2394 - 9.3602  

Precipitation (annual mean; mm)a 600 - 1600 

Drainage area (km2)a 0.71 – 5518.43 

Air temperature (annual mean; °C)a 10.0 – 17.5 

Slope of the drainage area (%)a 1.65 – 24.55 

Lithology (categorical)a; b 1 - 17 

Runoff (annual mean; mm)c 81.63 – 1034.71 

Distance to the source (m)a 271 – 230098 

Soil pHa 6.95 – 14.90 

Alkalinity (CaCO3; mg·L-1) 2.41 – 478.00 

Water temperature (on sampling occasion; °C)d 3.8 – 24.0 

Conductivity (µS·cm-1)d 10 – 1388 

pH (on sampling occasion)d 5.13 – 11.06 

Mineralisation class (% high, medium and low)a; e 0 – 100 

Cover of substrata (within ≈ 500 m of sampling; %)f:  

Bedrock 0 – 40 

Boulder 0 – 90 

Cobble 0 – 100 

Gravel/Pebble 0 – 100 

Sand 0  – 100 

Silt 0 –50 

Clay 0 – 100 

Earth 0 – 100 

Pressure variables  

Dissolved oxygen (DO; % saturation)d 21 – 146 

Ammonium (N; mg·L-1)d 0.01 – 18.00 

Nitrate (NO3-; mg·L-1)d 0.03 – 23.90 

Nitrite (NO2-; mg·L-1)d 0.01 – 3.10 

Total phosphorus (P; mg·L-1)d 0.01 – 5.15 

Phosphate (PO43-; mg·L-1)d 0.01 – 4.56 

Biochemical oxygen demand (BOD5; mg·L−1)d 0.50 – 16.00 

Chemical oxygen demand (COD; mg·L−1)d 1.01 – 289.00 

Intensive agriculture (in the catchment; %)a 0.00 – 92.25 

Extensive agriculture (in the catchment; %)a 0.00 - 50.22 

Artificial areas (in the catchment; %)a 0.00 – 27.04 

Natural and semi-natural areas (in the catchment; %)a; d 2.11 – 100.00 

Riparian vegetation condition (change due to removal of natural 
vegetation or presence of alien species) (category)g; d 

1 ( no change) – 5 
(large change) 
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Morphological condition (change in channel morphology and loss of 
natural habitats) (category) g; d 

1 - 5 

Sediment load (change in natural concentration of sediments 
transported by stream water) (category) g; d 

1 - 5 

Hydrological condition (changes from natural discharge) (category)g; d 1 - 5 

Acidification and toxicity (change from natural acidity and 
oxygenation of the water) (category) g; d 

1 - 4 

Organic contamination and nutrient enrichment (evidence of organic 
substances and nutrients in the water) 

(category) g; d 

1 - 4 

Connectivity (degree of alteration  in longitudinal connectivity of the 
stream reach) (category) g; d 

1 - 5 

a Based on Atlas do Ambiente (Agência Portuguesa do Ambiente, 2007); b See Appendix I for category description; c Calculated; 
see section 3.2.3 for description; d Variables used in the PCA; e See section 3.2.3 for class description; f Based on Environment 
Agency (2003); g Adapted from Pont et al. (2006). 

3.2.2 Diatom and macroinvertebrate sampling and processing  

Diatom sampling followed European standards of sampling and treatment (European 

Committee for Standardisation, 2003, 2004, 2006). Hard substrata (rocks/stones) were 

sampled in each site if present; otherwise sediment was sampled. For epilithic biofilms the 

upper surfaces of five submerged stones (an area of ~100 cm2) were scraped with a 

toothbrush and washed with running water, and for epipsammic biofilms a volume of about 

50 mL of the upper surface of streambed sediment was collected with a syringe. Samples 

were preserved with formaldehyde (5-10% final concentration) and oxidised with 

concentrated nitric acid and potassium dichromate for about 24h at room temperature. 

Thereafter, permanent slide mounts in Naphrax® were prepared and a light microscope 

(100x objective and 1.32 numerical aperture) was used to count about 400 diatom valves per 

sample at species or infra-specific rank, mainly with Krammer and Lange-Bertalot’s floras 

(1986, 1988, 1991a, 1991b) and Krammer (2000, 2001, 2009). 

Benthic macroinvertebrate sampling followed the multi-habitat approach described in 

INAG (2008b). Briefly, each sample was a composite of six sub-samples from the most 

representative habitats (e.g., stones, sand and submerged macrophytes), collected by kicking 

and sweeping approximately 1 m towards upstream with a hand net (500 μm mesh size; 

0.25×0.25 m opening). Macroinvertebrate samples were preserved in formaldehyde (4%) 

and, after sorting, preserved in ethanol (75%) for later identification and counting. 

Identification, under a stereomicroscope (magnification 60x), was mostly to genus level 

except for Diptera (sub-family) and Annelida (class). 
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3.2.3 Conceptual model development 

As a starting point, a conceptual model (Figure 3.2) was developed to represent the 

environmental variables (filters) that have the potential to directly influence the composition 

of diatom and macroinvertebrate communities and the indirect abiotic variables that are 

potentially useful to estimate reference values of the environmental filters. The set of direct 

variables that were selected from a literature review are those provided in Figure 3.2. These 

variables were chosen because both taxonomic composition and structure of diatom and 

macroinvertebrate communities are known to be largely influenced by climate, geology and 

water chemistry (Potapova, 1996; Wallace and Webster, 1996; Tison et al., 2005; Potapova 

and Charles, 2007; Smith et al., 2007; Feio et al., 2009; Almeida and Feio, 2012; Marzin et al., 

2012). The indirect abiotic variables selected were mean annual precipitation, 

mineralization, soil pH and land-use alterations (as agriculture or artificial areas) (Figure 

3.2). The variable mineralization reflects the geology of the soil (geological formations) and 

its contribution to the water mineralisation. This variable was divided in a three-class scale: 

low (composed essentially by acid rocks), medium (composed essentially by alkaline rocks) 

and high mineralisation (composed essentially by sedimentary rocks) (INAG, 2008a). 

Values of the direct variables (Figure 3.2) were obtained from cartographic sources or 

assessed at each site, with the exception of the runoff values which were estimated from an 

annual water balance. Ignoring exchanges with other catchments, the water balance was 

expressed by the equation P=H+E, where P is annual precipitation, E is annual 

evapotranspiration and H is annual runoff (Hipólito and Vaz, 2011). P is an observed value 

and E was calculated with Turc’s (1954) method. P and H values were validated against 

cartographic sources. 

3.2.4 Defining abiotic reference conditions 

Boosted trees (BT) technique was used to predict reference values of environmental 

filters. This technique aims to improve the performance of a single model by fitting many 

models and combining them for prediction (Elith et al., 2008). BT uses two algorithms: 

regression trees (models that relate a response to their predictors by recursive binary splits) 

and boosting (that works by sequentially applying a classification algorithm to reweighted 

versions of the training data and then taking a weighted majority vote of the sequence of 

classifiers thus produced) (Friedman et al. 2000; Elith et al., 2008). The general idea of BT is 

to compute a sequence of simple trees, where each successive tree is built for the prediction 

residuals of the preceding tree. This method builds binary trees (i.e., partition the data into 

two samples at each split node) whose complexity is limited to 3 nodes only: a root node and 

two child nodes, i.e., a single split. Thus, at each step of the boosting (boosting trees 
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algorithm), a simple (best) partitioning of the data is determined, and the deviations of the 

observed values from the respective means (residuals for each partition) are computed.  

 

 
Figure 3.2 - Conceptual model showing the abiotic variables that directly influence the composition of 

diatom and macroinvertebrate communities (connections via dashed lines) and those useful to 

estimate values of other abiotic variables (connections via solid lines). See Table 3.1 for variable 

descriptions. 

The next 3-node tree will then be fitted to those residuals, to find another partition that will 

further reduce the residual (error) variance for the data, given the preceding sequence of 

trees (STATISTICA 7, StatSoft Inc.). Such ‘additive weighted expansions’ of trees can 

eventually produce an excellent fit of the predicted values to the observed values, even if the 

specific nature of the relationships between the predictor variables and the dependent 

variable of interest is very complex (nonlinear in nature). Hence, the method of gradient 

boosting - fitting a weighted additive expansion of simple trees - represents a very general 

and powerful machine learning algorithm (STATISTICA 7, StatSoft Inc.). The BT method 

includes all the desirable properties of classification and regression trees (CART): (1) 

handling different types of predictor variables including numeric and categorical variables; 

(2) being invariant to monotonic transformations of the predictors, so that a priori data 

transformation or elimination of outliers is not necessary; (3) simply modelling complex 

interactions; and (4) managing missing values in the predictors with minimal loss of 

information (Leathwick et al., 2006; De’ath, 2007; Elith et al., 2008). Additionally, boosted 

trees overcome two of CART’s weaknesses: poor prediction performance and interpretation 
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difficulties for large trees (De’ath, 2007; Elith et al., 2008). The analyses were carried out 

through the statistical software STATISTICA 7 (StatSoft Inc.). 

The application of the BT to predicting the environmental data was performed in two 

steps. First, models were developed to predict observed concentrations of dissolved oxygen 

(DO), phosphates, ammonium and nitrate from linked abiotic explanatory variables in the 

conceptual model (Figure 3.2). For example, nitrate concentrations were modelled from 

lithology, land use, mineralization and soil pH. The model training data were the entire 

abiotic dataset, covering a wide variety of spatial and temporal conditions (all sampled 

Portuguese river types, various disturbance levels and all seasons), but with 10% of samples 

excluded randomly for model validation. Two thousand trees were run with a learning rate of 

0.1. Model quality was evaluated through the R2 value of observed-predicted regression for 

the training set, with a minimum value for model acceptance of 0.5. The ratio of the Mean 

Squared Errors (MSEs) of the training and validation datasets was also calculated in order to 

test whether the value was close to one, which was considered optimal. 

Second, the accepted models were used to predict reference values of DO and nutrients 

for the lowland streams in all seasons. For this purpose, a new dataset with manipulated data 

was created for the lowland samples, with the observed values of the model predictors 

replaced by values corresponding to undisturbed conditions. Values of the predictors related 

to land use were set to 0, i.e., no or minor changes from natural conditions (Table 3.2), 

whereas values of climatic, topographic and geological predictors remained unchanged. This 

new dataset was then run as test data in the previous created boosted tree models to 

estimate reference DO and nutrient values. Values thus obtained for the lowland samples 

were used to build a complete dataset of abiotic reference values by adding the variables 

riparian vegetation, morphological condition and sediment load, with all values set to 1, 

corresponding to no or minor modifications, instead of the observed values. All other 

environmental filters not influenced by human disturbance remained unchanged. 

Table 3.2 - Abiotic pressure variables for which values were altered to predict reference communities. 

Variable Reference value 

Total dissolved oxygen (DO; %) Observed value retained if ≥ 73.7 and ≤ 
127.9%, otherwise replaced by 73.7% if < 73.7 
or 127.9% if > 127.9 (from Feio et al., 2014a) 

Ammonium (N; mg·L-1) Observed value retained if ≤ to 0.09 mg·L-1, 
otherwise replaced by 0.09 (from Feio et al., 
2014a) 

Nitrate (NO3-; mg·L-1) Estimated by boosted tree analysis 

Phosphates (PO43-; mg·L-1) Observed value retained if ≤ to 0.06 mg·L-1, 
otherwise replaced by 0.06 (from Feio et al., 
2014a) 
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Intensive agriculture (in the catchment; 
%) 

0 

Extensive agriculture (in the catchment; 
%) 

0 

Artificial areas (in the catchment; %) 0 

Riparian vegetation a 

Class 1 (no change) Sediment load a 

Morphological condition a 
a Variable on a five-class scale described in Table 3.1. 

3.2.5 Predicting the lowland reference community: diatoms and macroinvertebrates 

We followed the environmental filters approach described by Chessman and Royal 

(2004) to predict the taxa expected under WFD reference conditions in lowland streams. 

First, taxa considered exotic/invaders were removed from the datasets, as such taxa are not 

expected under reference conditions. For diatoms, the species considered ‘exotic/invader’ 

according to the ‘Indice Biologique Diatomées’-IBD (Prygiel and Coste, 2000) and Coste and 

Ector (2000) was Achnanthidium subhudsonis (Hustedt) H. Kobayasi; for macroinvertebrates 

the species considered exotic were Corbicula fluminea and Procambarus clarki. Second, all 

taxa present in fewer than 5% of samples (27 samples for diatoms and 49 for 

macroinvertebrates) were eliminated from the observed and predicted lists as we considered 

that these taxa were insufficiently represented to determine their tolerance limits with 

confidence. We determined the upper and lower tolerance limits of each remaining taxon for 

each environmental filter (dashed lines in Figure 3.2). These limits were set as the range of 

values at which a taxon was present in the national dataset (all sites and seasons), after 

removing extremes, considered as values > 75th percentile+3*(75th percentile-25th percentile) 

or < 25th percentile-3*(75th percentile -25th percentile). 

Finally, we compared the abiotic reference values predicted for each lowland site (from 

the previous section 3.2.4) with the tolerance ranges for each taxon. If a taxon’s tolerance 

ranges included all the abiotic reference values predicted for a given site, the taxon was 

included in the list of taxa predicted for that site under reference conditions. Predicted and 

observed taxon lists were compared for samples collected in spring (90 samples for diatoms 

and 122 for macroinvertebrates) because the LDC reference values currently used are based 

on spring data only. If a site had more than one spring sample, the samples were combined in 

order to obtain a single observed and predicted list per site (55 and 62 sites for diatoms and 

macroinvertebrates, respectively). As the filters approach predicts only presence or absence 

of taxa, the data from the observed lists of taxa were also converted to presence/absence. 
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Differences between the observed and predicted spring communities (diatoms and 

macroinvertebrates analysed separately) were depicted by non-metric multidimensional 

scaling (MDS) (Bray–Curtis dissimilarity measure) and statistically tested with a 

permutational multivariate analysis of variance (PERMANOVA global test) with unrestricted 

permutations. Additionally, a similarity percentage analysis, SIMPER (Bray–Curtis similarity 

measure) was performed to determine the within-community similarity of the observed and 

predicted communities. Additional PERMANOVA pairwise tests with unrestricted 

permutations were performed to compare LDC and non-LDC sites (see section 3.2.1). The 

reliability of the two-dimensional images of the multidimensional relationship between the 

samples is indicated by a stress value (Clarke and Warwick, 2001; Clarke and Gorley, 2006). 

Stress values < 0.05 are excellent, leaving little danger of misinterpretation, stress values < 

0.1 correspond to a good representation of the similarities between the samples and stress 

values > 0.2 indicate that not too much reliance should be placed on details (Clarke and 

Warwick, 2001). All these analyses were done in PRIMER 6 & PERMANOVA. 

3.2.6 Quality assessment and diatom index development 

The official indices currently accepted in Portugal were used to compare biological 

quality assessments based on the LDC and filters reference conditions for all the lowland sites 

sampled in spring. These are the IPS index (Cemagref, 1982) for diatoms and the multimetric 

‘Índice Português de Invertebrados’ (IPtIs–INAG, 2009; Ferreira et al., 2008) for 

macroinvertebrates (Equation 3.1). 
 

𝐼𝑃𝑡𝐼𝑠 =

𝑁º𝐹𝑎𝑚 .

𝑁º𝐹𝑎𝑚 .𝑟𝑒𝑓 .
× 0.4 +  

𝐸𝑃𝑇

𝐸𝑃𝑇 𝑟𝑒𝑓 .
× 0.2 + 

(𝐼𝐴𝑆𝑃𝑇−2)

�𝐼𝐴𝑆𝑃𝑇−2 𝑟𝑒𝑓 .
× 0.2 +

𝐿𝑜𝑔(𝑆𝑒𝑙 .𝐸𝑃𝑇𝐶𝐷+1)

𝐿𝑜𝑔�𝑆𝑒𝑙 .𝐸𝑃𝑇𝐶𝐷+1 𝑟𝑒𝑓 .
× 0.2

𝐼𝑃𝑇𝐼𝑠 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 1 

 
Equation 3.1 - Macroinvertebrate index used for biological quality assessment of the Portuguese 
lowland streams. EPT=number of families belonging to Ephemeroptera, Plecoptera and Trichoptera; 
IASPT=value of the Iberian BMWP index divided by the number of families included in Iberian BMWP 
index determination; Log (Sel. EPTCD + 1)=Log10 of 1 + the sum of abundances of individuals belonging 
to the families Chloroperlidae, Nemouridae, Leuctridae, Leptophlebiidae, Ephemerellidae, 
Philopotamidae, Limnephilidae, Psychomyiidae, Sericostomatidae, Elmidae, Dryopidae and 
Athericidae. 

The IPS was included as a metric in a new multimetric index proposed here for the 

biological quality assessment based on diatoms (Equation 3.2). This new index also contains 

two other metrics: the number of sensitive taxa and total taxa richness (Equation 3.2). The 

metric ‘sensitive taxa’ includes diatoms with sensitivity value ≥ to 4.5 according to the IPS 

(Cemagref, 1982 and updated in OMNIDIA software V.5.5) and a higher probability of being 
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present in the water quality class 6 or 7 of the IBD (Prygiel and Coste, 2000). These classes 

are the last two of a group of 7 of increasing water quality (Prygiel and Coste, 2000). 
 

𝑀𝐷𝐼�𝐸𝑄𝑅 =

𝐼𝑃𝑆

𝑀𝑒𝑑𝑖𝑎𝑛  𝐼𝑃𝑆 𝐿𝐷𝐶
× 𝑤𝑓1 + 

𝑁º𝑂𝑏𝑠𝑒𝑟 .𝑡𝑎𝑥𝑎

𝑀𝑒𝑑𝑖𝑎𝑛  𝑁º𝑃𝑟𝑒𝑑 .𝑡𝑎𝑥𝑎
× 𝑤𝑓2 +

𝑁º𝑂𝑏𝑠𝑒𝑟 .𝑠𝑒𝑛𝑠𝑖𝑡 .𝑡𝑎𝑥𝑎

𝑀𝑒𝑑𝑖𝑎𝑛  𝑁º𝑃𝑟𝑒𝑑 .𝑠𝑒𝑛𝑠𝑖𝑡 .𝑡𝑎𝑥𝑎
× 𝑤𝑓3

𝑀𝑒𝑑𝑖𝑎𝑛 𝑀𝐷𝐼
 1 

 
Equation 3.2 - Multimetric Diatom Index (MDI) proposed for biological quality assessment of 

Portuguese lowland streams. IPS=’Indice de Polluosensibilité Spécifique’; wf=Weighting factors; 

NºObser.taxa=Number of observed taxa; NºPred.taxa=Number of predicted taxa based on the filters 

approach; NºObser.sensit.taxa=Number of observed sensitive taxa; NºPred.sensit.taxa=Number of 

predicted sensitive taxa based in the filters approach. 

The two multimetric indices were calculated firstly with the current official metric and 

index reference values and secondly with reference values based on the filters approach. In 

the latter, reference median values of the diatom metrics number of taxa and number of 

sensitive taxa (Equation 3.2) and the macroinvertebrate metrics number of families, EPT and 

IASPT – 2 (Equation 3.1) were obtained from the lists of taxa predicted for each lowland site 

with the filters approach (see section 3.2.5). Because the macroinvertebrate index was 

created at the taxonomic level of family, filters’ predictions at finer taxonomic levels were 

amalgamated to family level prior to derivation of metric reference values. The filters 

approach could not be used to produce reference values for those metrics that require 

abundance data, i.e., IPS for diatoms in Equation 3.2 and EPTCD for macroinvertebrates in 

Equation 3.1, because it predicted only presence or absence of taxa. Consequently, median 

spring values for the nine lowland LDC sites were used instead for those metrics. Some LDC 

sites had multiple spring samples (range 1-3; total of 12 samples), which were averaged 

before medians were calculated. The overall reference values for the MDI (denominator in 

Equation 3.2) and IPtIs (denominator in Equation 3.1) were the median values calculated for 

the nine lowland LDC sites with metric reference values derived as described above.  

Weighting factors (wf) were applied to individual metrics in the new MDI (Equation 3.2), 

as is done for the IPtI, so that metrics responding strongly to human disturbance would 

contribute more to the overall score (Hering et al., 2006). The following steps were taken to 

obtain wf values. First, a Principal Components Analysis (rotated PCA; PRIMER 6 & 

PERMANOVA) was applied to normalised data for all samples from the lowland streams (all 

seasons) for environmental variables that express anthropogenic pressure on diatom 

communities (Table 3.1, footnote d). Second, sample scores on the PCA axes that represented 

most variation in the data (typically axes 1, 2 and 3) were correlated (Spearman rank 

correlation coefficient; STATISTICA 7 software, StatSoft Inc.) with corresponding IPS values, 

number of taxa and number of sensitive taxa. Finally, the average correlation with each 
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metric was normalised so that the correlations summed to 100%, and the normalised 

correlations were used as metric wf. 

As reference values for the IPS were defined only for spring, a second normalised PCA 

was performed to verify which of the diatom indices MDI or IPS, better reflected the 

pressures affecting the lowland streams in that season. Spearman rank correlations 

(STATISTICA 7 software, StatSoft Inc.) were calculated between diatom index values and PCA 

axes derived from spring samples only. 

For the two PCA Pearson correlation coefficient (STATISTICA 7 software, StatSoft Inc.) 

between the pressure variables on the first three components and each of the original 

variables were also performed.  

Additionally, new biological quality classes were established for the MDI and IPtIs based 

on their values for the LDC sites derived with the new reference data. The establishment of 

class boundaries followed the methods used by Ferreira et al. (2008) and recommended by 

Hering et al. (2006). All sites were assessed with these two new classification systems as well 

as the existing ones. 

All IPS calculations were done in OMNIDIA software V.5.5 (Lecointe et al., 1993). 

3.3 Results 

3.3.1 Defining abiotic reference conditions 

The boosted tree model for nitrate was acceptable with R2=0.52 for linear regression of 

observed and predicted values for the training data (Figure 3.3) and a training/validation 

ratio of MSE of 0.81 (n=701). All the predictor variables had some importance in the analysis 

(ranking on a 0-1.00 scale, with higher numbers indicating stronger influence on the 

response) with values ranging from 0.22 (low mineralisation class) to 1.00 (extensive 

agriculture). The maximum modelled nitrate value for the lowland streams under reference 

conditions was 3.64 mg NO3-·L-1 whereas the maximum observed value was 23.9 mg NO3-·L-1 

(Figure 3.4). 

We were unable to obtain robust models for DO, phosphates and ammonium because of 

data limitations such as high detection limits, and consequently some predicted values were 

not realistic. Therefore, we decided not to use boosted trees to estimate reference values for 

these variables, and instead used values from Feio et al. (2014a) for Mediterranean rivers in 

LDC, which generally represented an improvement on measured values for the lowland 

streams (Table 3.2). 
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Figure 3.3 - Linear regression of observed nitrate concentrations (NO3

-; mg·L-1) for the entire country 

and all seasons against actual values predicted by boosted trees. 

 
Figure 3.4 - Comparison of observed nitrate concentrations (NO3

-; mg·L-1) for the lowland sites in the 

training dataset (triangles) and reference values predicted by boosted trees (circles). 

3.3.2 Predicting reference communities for lowland streams 

Diatoms 

After removing the taxa present in less than 5% of the samples, 115 remained, including 

27 sensitive taxa. The median number of taxa per site predicted under reference conditions 

by the environmental filters method was 69 while the median number observed was 27. The 

median number of sensitive taxa predicted was 11 compared to 4 observed. 

The number of taxa predicted to occur in more than 50% of the sites (67) was also much 

higher than the number of observed (18). Taxa that were predicted to be almost ubiquitous 

were Achnanthidium minutissimum (Kützing) Czarnecki (96%), Nitzschia palea (Kützing) W. 

Smith (96%), Navicula gregaria Donkin (95%) and Eolimna minima (Grunow) Lange-Bertalot 

& W. Schiller (94%). The taxa most frequently observed were A. minutissimum (87%), E. 
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minima (87%), N. gregaria (84%) and Planothidium lanceolatum (Brebisson ex Kützing) 

Lange-Bertalot (80%) (reported in detail in the Appendix II).  

The majority (98%) of the observed taxa were predicted under reference conditions in 

at least one site. The exception was Platessa conspicua (A. Mayer) Lange-Bertalot, which was 

observed in 9% of the sites but not predicted, primarily because its furthest distance to the 

source was found to be 1033.7 m. Melosira varians C. Agardh was observed at 71% of the 

sites but was seldom predicted (4%), mainly because its estimated tolerance range for mean 

annual air temperature was limited between 17.5 and 20.0 °C. Conversely, some taxa were 

infrequently observed but often predicted, including Cyclotella meneghiniana Kützing, 

Navicula capitatoradiata H. Germain, Nitzschia frustulum (Kützing) Grunow and Staurosira 

venter (Ehrenberg) Cleve & J. D. Möeller; in 60-66% of the sites, these taxa were predicted but 

not collected. Navicula angusta Grunow was predicted in 4% of the sites but never observed. 

One of the 115 taxa, Frustulia erifuga Lange-Bertalot & Krammer, was the only taxon neither 

predicted nor observed. This taxon was not predicted because it was found only at a mean 

annual air temperature value of 12.5 °C which was never recorded in the lowland sites.  

The predicted reference diatom communities were statistically different from the 

observed communities (PERMANOVA: Pseudo-F=13.998, p=0.001) and more homogeneous, 

with average Bray-Curtis similarity between sites of 62% for the predicted communities and 

40% for the observed ones (SIMPER analysis). The MDS stress value (0.13) and PERMANOVA 

comparisons of sites considered to be in LDC with the remaining sites revealed no significant 

statistical differences for either observed or predicted communities (Figure 3.5, Table 3.3). 

However, the observed and predicted communities were significantly different for both LDC 

and non-LDC sites (Table 3.3).  

The filters (Figure 3.2), lithology, mean annual temperature, runoff and alkalinity 

excluded at least one taxon from the prediction for every site. Distance to source also filtered 

one or more taxa from 98% of the sites. Among the pressure variables used as filters, those 

that most frequently excluded taxa were DO (26%), phosphates (22%) and nitrate (22%). 

Table 3.3 - PERMANOVA results for pairwise comparisons among observed diatom communities and 

predicted reference communities. Obs. LDC-observed communities at sites in nominally Least 

Disturbed Condition; Obs. nLDC-observed communities in non-Least Disturbed Condition sites; Pred. 

LDC-predicted communities in Least Disturbed Condition sites; Pred. nLDC-predicted communities in 

non-Least Disturbed Condition sites. 

Comparison t value p (perm) 

Obs. LDC Obs. nLDC 0.918 0.643 

Obs. LDC Pred. LDC 2.181 0.001 

Obs. nLDC Pred. nLDC 3.176 0.001 

Pred. LDC Pred. nLDC 0.901 0.513 
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Figure 3.5 - Multidimensional scaling (MDS) ordination of observed (circles) and predicted (triangles) 

diatom communities from the lowland sites (a) and detailed view of the dashed area (b). The sites 

considered to be in the least disturbed condition are distinguished by grey shading. 

Macroinvertebrates 

After removing the taxa present in less than 5% of the samples, 113 remained, 

representing 73 families (including classes in the case of Annelida). The median number of 

families per site predicted under reference conditions by the environmental filters method 

was 53 while the median number observed was 22. Of the 73 families, 66 belonged to the 

orders Ephemeroptera, Plecoptera and Trichoptera (EPT) that include sensitive taxa. The 

median number of EPT families predicted was 18 compared to 6 observed. 

The number of families predicted to occur in more than 50% of the sites (57) was also 

much higher than the number of observed families (13). The families most frequently 

predicted were Physidae (95%), Hydrobiidae (95%), Baetidae (94%), Chironomidae (94%) 

and Limoniidae (94%), while those most frequently observed were Chironomidae (100%), 

Oligochaeta (95%), Baetidae (86%), Simuliidae (82%) and Caenidae (74%) (reported in 

detail in the Appendix III).  

The majority (97%) of the predicted macroinvertebrates families were observed in at 

least one site. Chloroperlidae and Perlidae were exceptions, being predicted in 15% and 27% 

of sites respectively but never observed. Goeridae and Planariidae were infrequently 

predicted (13%) but also seldom collected (< 5%). 
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The MDS illustrates that the predicted and observed communities are separated in the 

plot (Figure 3.6). Despite the stress value obtained (0.15) the two-dimensional plot can still 

be viewed as a useful representation of the multidimensional picture as the predicted 

communities were also statistically different from the observed communities (PERMANOVA: 

Pseudo-F=13.679, p=0.001) and more homogeneous (average inter-site similarity of 69% for 

predicted and 46% for observed communities) (Figure 3.6). Macroinvertebrate communities 

observed in LDC sites were also not statistically different from those observed at disturbed 

sites, but the observed and predicted communities were significantly different for both LDC 

and non-LDC sites (Table 3.4). 

All of the characterisation variables (Table 3.1) that were treated as filters (Figure 3.2) 

frequently excluded at least one family from the predictions for individual sites (frequencies 

up to 98%). The pressure variables treated as filters that most frequently excluded families 

were DO and phosphates (100%). Ammonium and nitrites rarely excluded 

macroinvertebrates (3%). 

 
Figure 3.6 - Multidimensional scaling (MDS) ordination of observed (circles) and predicted (triangles) 

macroinvertebrate communities from the lowland sites. The sites considered to be in the least 

disturbed condition are distinguished by grey shading. 
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Table 3.4 - PERMANOVA results for pairwise comparisons among observed macroinvertebrate 

communities and predicted reference communities. Obs. LDC-observed communities at sites in 

nominally Least Disturbed Condition; Obs. nLDC-observed communities in non-Least Disturbed 

Condition sites; Pred. LDC-predicted communities in Least Disturbed Condition sites; Pred. nLDC-

predicted communities in non-Least Disturbed Condition sites. 

Comparison t value p (perm) 

Obs. LDC Obs. nLDC 1.386 0.056 

Obs. LDC Pred. LDC 2.323 0.001 

Obs. nLDC Pred. nLDC 3.998 0.001 

Pred. LDC Pred. nLDC 1.023 0.265 

3.3.3 Quality assessment and index development 

Diatoms 

The three most important axes in the PCA of environmental data for all seasons 

accounted for 44% of total variation, with the first two axes (33%) related mainly to organic 

contamination and nutrients and the third to hydrological condition, connectivity and pH 

(Table 3.5). All three diatom metrics were significantly (p<0.05) correlated with PCA axis 

scores; for example, the IPS value was highly correlated with the first PCA axis while the 

number of sensitive taxa was correlated with all three axes (Table 3.6). The weighting factors 

obtained from these correlations were highest for the number of sensitive taxa (wf3) and 

lowest for the total number of taxa (wf2) (Table 3.7). Median reference IPS and MDI values 

based on the nine LDC sites are shown in Table 3.7; ranges were 13.4-18.9 for the IPS and 

0.70-1.29 for the MDI.  

The three first axes of the PCA based on spring data accounted for 45.3% of variation 

(Table 3.5). 

Spearman correlations between the MDI and IPS values and the first axis (spring PCA) 

were highly negative and significant (rs=0.54 and rs=0.55 respectively; p<0.05). However, the 

MDI also had a significant negative correlation with the second axis (rs=0.28, p<0.05).  

Boundaries for quality classes based on the MDI (EQR) calculated for the LDC sites with 

new reference values (Table 3.8) led to lower classifications of samples than the IPS (Figure 

3.7), i.e., the MDI assigned lower quality than the IPS. 

 

Macroinvertebrates 

The environmental filters approach provided new reference values for all metrics not 

requiring abundance data, whereas the reference values for Log(Sel. EPTCD+1) and IPtIs 

were the median observed values for the LDC sites (Table 3.9). IPtIs values at these sites 

ranged from 0.81 to 1.31. 
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Boundaries for quality classes based on the IPtIs (EQR) calculated for the LDC sites with 

new reference values (Table 3.8) were consistently lower than the boundaries currently 

established for Portugal (INAG, 2009). The IPtIs calculated with the environmental filters 

approach placed the samples in a lower classes than the IPtIs currently used (Figure 3.8). 

Table 3.5 - Pearson correlation coefficient between the pressure variables on the first three 

components from principal components analysis (PCA) of data for all seasons and spring only and each 

of the original variables. The three highest coefficients for each PC are in bold font. BOD5–biochemical 

oxygen demand, COD–chemical oxygen demand. 

 All seasons (n=156) Spring (n=84) 

Pressure variable (units and 
transformation) 

PC1 PC2 PC3 PC1 PC2 PC3 

Water temperature (°C; square 
root) 

0.303 -0.098 -0.247 0.229 -0.239 -0.205 

Conductivity (µS·cm-1; log) 0.148 0.260 0.180 0.291 0.227 -0.200 

pH 0.135 0.387 0.512 0.348 -0.152 0.102 

Dissolved oxygen (% saturation; 
square root) 

-0.426 0.473 0.024 -0.469 0.125 0.110 

BOD5 (mg·L−1; log) 0.322 0.030 0.144 -0.021 0.395 -0.576 

COD (mg·L−1; square root) 0.587 -0.208 -0.096 0.437 0.120 -0.390 

Phosphates (mg PO43-·L-1; log) 0.553 -0.391 0.003 0.332 -0.451 0.240 

Ammonium (mg N·L-1; log) 0.454 -0.174 -0.173 0.592 -0.101 0.022 

Nitrate (mg NO3-·L-1; log) 0.407 0.471 0.164 0.300 0.571 -0.122 

Nitrite (mg NO2-·L-1; log) 0.524 0.022 -0.056 0.363 0.032 -0.043 

Total P (mg P·L-1; log) 0.611 -0.328 -0.059 0.327 -0.541 0.172 

Riparian vegetation a 0.452 0.265 -0.175 0.468 0.188 0.439 

Sediment load a 0.407 -0.154 -0.158 0.581 -0.078 -0.033 

Hydrological regime a -0.077 0.325 -0.658 -0.169 0.400 0.496 

Acidification and toxicity a 0.121 -0.115 -0.152 0.342 0.156 -0.200 

Morphological condition a 0.229 0.473 -0.407 0.205 0.318 0.764 

Organic contamination and nutrient 
enrichment a 

0.408 0.600 -0.224 0.394 0.647 0.311 

Connectivity a -0.115 0.364 -0.632 -0.225 0.465 0.322 

Natural and semi-natural areas (%; 
square root) 

-0.583 -0.302 -0.449 -0.681 -0.105 0.113 

a Variable on a five-class scale described in Table 3.1. 

Table 3.6 - Coefficients of Spearman rank correlation between the PCA axis scores (all seasons; Table 

3.5) and diatom metrics, used to determine weighting factors (wf). *– p <0.05 

 IPS Nº observed taxa Nº observed sensitive taxa 

Nº observed taxa -0.48*   

Nº observed sensitive taxa 0.28* 0.29*  

PC1 -0.59* 0.12 -0.44* 
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PC2 -0.09 -0.26* -0.42* 

PC3 -0.12 0.17* -0.24* 

Table 3.7 - Median reference values of the MDI and its constituent metrics, and weighting factors (wf), 

for MDI (EQR) calculation (Equation 3.2). 

Median IPS LDC 17.0 

Median Nº predicted taxaa  69 

Median Nº predicted sensitive taxa a 11 

Median MDI reference 1.13 

wf1 (IPS) 0.33 

wf2 (Nº total taxa) 0.23 

wf3 (Nº sensitive taxa) 0.45 
a Median number obtained through the filters approach, see section 3.3.2. 

Table 3.8 - New class boundaries for biological quality assessment of lowland streams using the new 

diatom index (MDI) and the modified IPtI macroinvertebrate method. 

Boundary Diatoms Macroinvertebrates 

Good/High 0.83 0.95 

Moderate/Good 0.62 0.71 

Poor/Moderate 0.41 0.48 

Bad/Poor 0.21 0.24 

 

 
Figure 3.7 - Ecological quality ratios (EQR) for diatom indices based on (a) the presently used IPS and 

median reference values and (b) the new multimetric diatom index (MDI) and median reference values 

from the LDC samples. 1-Site L03; 2-Site NO103; 3-Site O92; 4-Site L98; 5-Site L01; 6-Site M06; 7, 8, 9-

Site M18; 10, 11-Site M09; 12-V117. Dashed lines indicate quality class boundaries. 

Table 3.9 - Metric and index reference values for IPtIs calculation (Equation 3.1). 

Nº families reference a 52.5 

EPT reference a 18.0 

(IASPT-2) reference a 3.65 



Chapter 3 

75 

Log (Sel. EPTCD+1) reference 1.16 

IPtIs reference 1.82 
a Median number obtained through the filters approach, see section 3.3.2. 

 

 
Figure 3.8 - Ecological quality ratios (EQR) for macroinvertebrate indices based on (a) the presently 

used IPtI median reference values and (b) the new IPtI median reference values from the LDC samples. 

1-Site L03; 2-Site NO103; 3-Site O92; 4-Site L98; 5-Site L01; 6-Site M06; 7, 8, 9-Site M18; 10, 11-Site 

M09; 12-Site V117. Dashed lines indicate quality class quality boundaries. 

3.4 Discussion 

Although several studies have tested alternative ways to establish reference conditions 

for biological assessment of streams, most have relied entirely on data obtained from 

reference sites that are not true pristine sites. Even when modelling techniques are applied in 

determining biological reference condition, reference sites, near-natural or least disturbed 

sites have been used (Tison et al., 2007; Almeida and Feio, 2012; Feio et al., 2012; Feio and 

Dolédec, 2012; Feio et al., 2014b; Pardo et al., 2014). Our study demonstrates that the filters’ 

approach with modelling of abiotic reference values enables determination of biological 

reference conditions for both diatoms and macroinvertebrates with less dependence on 

reference sites. Our approach, using a combination of modelling and data from LDC sites, 

exemplifies the third option for determining reference conditions allowed by the WFD.  

 

Predicting the lowland reference community: diatoms and macroinvertebrates 

The boosted trees successfully modelled reference values of nitrate for the lowland 

streams but could not be used for other abiotic variables because of high analytical detection 

limits. Our maximum reference nitrate value (3.64 mg·L-1) was high, however was within the 

range of threshold values for various river types of 2-6 mg·L-1 below which Pardo et al. 

(2012) considered a site to be ‘probably reference’. Feio et al. (2014a) set a lower threshold 

for Mediterranean areas (≤ 1.15 mg·L-1), but for a wider geographic region than the lowland 
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area considered in the present study. Additionally, the lowland streams as streams with 

typically moderate to null slope are naturally more sensitive to eutrophication and show 

lower reference notes (Tison et al., 2007). 

Application of the filters approach incorporating boosted trees should have predicted 

reference data closer to the WFD reference condition for diatoms and macroinvertebrates. 

For both groups, the predicted communities were statistically different from the observed 

communities, and the observed communities were less homogeneous, as would be expected 

with sites having variable levels of change from reference conditions. The median number of 

predicted taxa was more than double the median number of observed taxa, probably 

reflecting the elimination of taxa by anthropogenic pressures. However, other factors may 

also have contributed to the absence of predicted taxa from the collected samples. For 

diatoms it was assumed that the counting of about 400 valves per sample was sufficient to 

establish community composition (e.g., Prygiel et al., 2002), but ring-testing has shown that 

to achieve a full picture of a diatom community, subsamples should be collected within a 

larger transect of the stream site and the slide should be searched a posteriori to detect rare 

taxa that may be missed in the 400 valve count (Besse-Lototskaya et al., 2006). Consequently, 

rare taxa are absent in the observed communities and present (we considered all taxa 

predicted) in the predicted communities. Moreover, for diatoms only one type of substrate 

was sampled, usually rock/stone. Nevertheless, the median ratio of numbers of predicted and 

observed taxa was very similar for diatoms and macroinvertebrates (2.56 and 2.41, 

respectively), even though macroinvertebrates were collected from multiple substrata at 

each site and all individuals in a macroinvertebrate sample were counted (depending of the 

river these counting’s often reached values above 400 individuals). 

In some cases, taxa were observed at a site where they were not predicted to occur. This 

could indicate anthropogenic influences making a stream suitable for taxa that would not 

naturally occur there. However, it could also have resulted from limitations in estimation of 

the natural environmental attributes of the sites and environmental tolerance ranges of the 

taxa (Chessman and Royal, 2004). 

Diatoms that were frequently predicted under reference conditions (e.g., Achnanthidium 

minutissimum, Eolimna minima, Nitzschia palea, Navicula gregaria, Planothidium lanceolatum, 

Cyclotella meneghiniana, Gomphonema parvulum (Kützing) Kützing, Nitzschia inconspicua 

Grunow, Planothidium frequentissimum (Lange-Bertalot) Lange-Bertalot and Sellaphora 

seminulum (Grunow) D. G. Mann are considered cosmopolitan and near ubiquitous in 

continental waters (Potapova and Charles, 2002). Some of these species have been 

considered to indicate eutrophic conditions (e.g., N. inconspicua, G. parvulum, E. minima, N. 
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gregaria; van Dam et al., 1994) but they may also occur in lower numbers in streams 

considered to have good water quality (Delgado et al., 2012; Almeida et al., 2014). 

The only two diatom species predicted but never collected in the lowland streams 

(Navicula angusta and Frustulia erifuga) are sensitive to degradation. N. angusta was found in 

a previous study of Portuguese streams (of the same type as the streams in this study) and 

showed a preference for low conductivity and acid waters (Almeida and Gil, 2001). F. erifuga 

is a mobile, high-profile species forming a mucous tubule colony (Rimet and Bouchez, 2012). 

Species with similar morphological traits, such as Encyonema minutum (Hilse) D. G. Mann and 

Encyonema silesiacum (Bleisch) D. G. Mann, were frequently collected in the lowland streams, 

suggesting that chemical factors rather than physical habitat are responsible for the absence 

of F. erifuga.  

The macroinvertebrates that were commonly predicted under reference conditions 

included taxa characteristic of lowland sites as well as taxa requiring habitat conditions that 

are rarely found there. For example, the families Chloroperlidae and Perlidae that are very 

sensitive according to the IBMWP scoring system (Alba-Tercedor et al., 2002) were predicted 

for some sites but never observed. These families require cool, oxygenated waters and gravel 

or rocky bottoms, which are naturally present in only a few of lowland streams, especially 

those in the transition to other river types (Tachet et al., 2010). The taxa predicted most 

frequently included the gastropods Physidae and Hydrobiidae, which were expected because 

the characteristic bottom sediment at the lowland sites is sand, and families that are nearly 

ubiquitous in streams and rivers, such as the Chironomidae. However, this family comprises a 

great diversity of species (estimated at 20,000) with quite variable pollution tolerances 

(Coffman, 1995; Servia et al., 2004), so it is probable that sensitive taxa among this family 

could also be expected if a lowest level of resolution was used. 

The filters most often responsible for exclusions of diatom and macroinvertebrate taxa 

from site predictions were mean annual temperature, runoff and variables related to geology 

(lithology and alkalinity). Such variables have been reported in other studies as influencing 

diatom and macroinvertebrate distributions (e.g., Potapova and Charles, 2002; Rimet et al., 

2004; Tison et al., 2005; Feio et al., 2007; Rimet, 2009; Hawkins et al. 2010; Almeida and Feio, 

2012). As expected, the pressure variables treated as filters excluded few taxa when set to 

predicted values in the absence of anthropogenic influence (reference values). In spite of 

their importance, some of the filters we applied are not direct determinants of diatom and 

macroinvertebrate community composition but rather surrogate predictors (Clarke et al., 

2003). For example, mean annual air temperature, obtained from cartographic sources, was 

used here as a surrogate of water temperature and was responsible for the total exclusion of 

Frustulia erifuga and frequent exclusion of Melosira varians from the diatom reference 

lowland communities. Prediction directly from the annual range of water temperature would 
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have been more desirable, but would have required installing electronic temperature loggers 

(Clarke et al., 2003). It is also possible that the modelled reference nitrate value is too high 

(as discussed above), and consequently sometimes wrongly excluded taxa with low upper 

tolerance limits for nitrate from predictions under reference conditions. 

 

Index development and quality assessment 

For diatoms, application of the new multimetric index to all sites produced strong 

correlations with the pressure variables, providing a more comprehensive assessment of 

biological quality than the IPS (significant correlations with two PCA axes cf. only one axis). 

This improvement in performance was probably due to the inclusion of the number of 

sensitive species, as indicated by the high correlation of this metric with the PCA axes. 

Despite the limitations we encountered (e.g., in using boosted trees with some 

environmental variables), our hypothesis was supported. All of the samples from sites 

considered to be in LDC were rated as poorer biological quality with the reference values 

derived from the present work than with the existing reference values, indicating that the 

new reference values created more stringent criteria. This difference was more evident for 

macroinvertebrates, as almost all the samples considered to be in LDC were assessed as 

having high biological quality with the old reference values but poor biological quality with 

the new values. With the old system, the macroinvertebrate index rated many samples in a 

higher lower quality class than the IPS (EQR) did, but with the new system this difference was 

reversed. 

With the new methods, the assessments based on diatoms and macroinvertebrates 

became more similar, suggesting that the filters approach accounted for pressures that are 

presently affecting both diatom and macroinvertebrate communities in the lowland streams. 

However, differences in assessment between the two communities were evident for some 

samples, possibly because of differences in the responses of diatoms and macroinvertebrates 

to particular stressors. For example, sample 10 from site M09 was assessed as moderate by 

diatom analysis (Figure 3.7) and poor by the macroinvertebrate analysis (Figure 3.8). In this 

case the macroinvertebrate community may have responded to changes in the riparian 

vegetation and morphological condition of the site while the diatoms may have reacted to 

minor changes in water chemistry. Feio et al. (2007) also found the same site could be 

assessed differently by predictive models applied to diatom and macroinvertebrate 

communities. 

Despite the results obtained by this new method that were, according to our expertise 

knowledge, closer to the reality of lowland streams and rivers it is useful to remain aware 
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that all the methodological decision that we made can affect the stream assessment and its 

true uncertainty (Clarke, 2013). 

Stream communities are controlled mainly by physical and chemical factors (Chessman 

and Royal, 2004; Lange et al., 2011), but biotic interactions such as competition and 

predation, which were not explored in this work, can also influence the composition of the 

communities. Therefore, additional filters related to biotic factors may be a useful inclusion in 

future development of the approach (Chessman and Royal, 2004). 

3.5 Conclusions 

This study brings new insight to help solve the problem of the lack of acceptable 

reference sites. Additionally, the new multimetric index for diatoms seems to hold much 

promise as there was a good correlation between the number of sensitive species and 

anthropogenic pressures. Although data limitations prevented us from modelling abiotic 

variables other than nitrate successfully, we believe that such modelling has great future 

potential. And despite the wealth of available information on the ecological preferences of 

diatom and macroinvertebrates, their tolerance limits are still far from fully documented. 

More work is necessary in this respect, including microcosm or mesocosm experiments that 

enable a high degree of control of environmental factors. 

 

Abbreviations 

BQE Biological Quality Elements 

BT Boosted Trees 

EQR Ecological Quality Ratios 

EU European Union 

IBD Indice Biologique Diatomées 

IPS Indice de Polluosensibilité Spécifique 

IPtI Índice Português de Invertebrados 

LDC Least Disturbed Condition 

MDI Multimetric Diatom Index 

MDS non-metric Multidimensional Scaling 
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MSE Mean Squared Errors 

PCA Principal Components Analysis 

R2 Square of the correlation coefficient 

WFD Water Framework Directive 
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Abstract 

Alterations in trait proportions of diatom and aquatic macroinvertebrate communities 

were used to evaluate the consequences of the drying of temperate perennial streams due to 

an uncommon drought event. Four Atlantic-temperate Portuguese streams were sampled on 

three occasions; spring before the drought, two weeks after the return of water to the 

streambed, and spring after the drought. The traits from diatom and macroinvertebrate 

communities from temperate streams were also compared with those from Mediterranean 

systems to assess possible shifts in traits. The effects from stream drying were long-lasting 

for macroinvertebrates; however, only the diatom trait proportions shifted towards 

proportions similar to those occurring in Mediterranean streams. There was a significant 

reduction of macroinvertebrates with the ability to produce cocoons, to disperse actively by 

flight and passively disperse in the water and of swimmers following the return of water. A 

decrease in stalked species immediately after drought was evident in diatom communities. In 

contrast to temperate communities, Mediterranean ones were characterised by larger and 

less mobile diatoms, and smaller-bodied macroinvertebrates with shorter life cycles. 

Additional studies are required to determine the long-term effect of uncharacteristic drought 

events on biological traits and their ecosystem functions in typically perennial streams. 

Keywords 

Climatic changes, diatoms, extreme events, macroinvertebrates, Mediterranean, streams, 

temperate, traits 
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4.1 Introduction 

Climate forecasts predict a doubling in atmospheric carbon dioxide (CO2) concentration 

by the end of this century and a rise in world mean air temperature between 1.8 and 4.0 °C 

(IPCC, 2007). In central Europe, heat waves are predicted to be more frequent, more intense 

and longer in duration. Heavy winter precipitation is also predicted to increase in central and 

northern Europe, and decrease in the south (IPCC, 2007; IPCC, 2013). The southern part of 

Europe will also suffer a predicted decrease in summer precipitation (Beniston et al., 2007). 

These changes in precipitation, temperature and consequently evapotranspiration rates will 

affect volumes of surface water runoff. Model simulations predict a 10-30% decrease in 

annual runoff in southern Africa, southern Europe and in the western United States by the 

mid-century (Milly et al., 2005; IPCC, 2007). In contrast, other models predict a decrease in 

annual runoff in southern Europe that may reach as much as 50% of the current levels 

(Arnell, 1999). Typically temperate and rainy climate areas (e.g., central Europe) will become 

more similar to Mediterranean climate areas that are characterised by mild wet winters and 

hot dry summers (Giorgi and Lionello, 2008), thus suggesting its expansion to northern 

regions. 

In south-western Europe, Portugal was affected by a severe and uncharacteristic 

drought event from the end of summer 2011 to the winter of 2012. February 2012 was the 

driest February recorded since 1931, with a total monthly precipitation of 1-10 mm against a 

long-term mean of 50-150 mm (IPMA, I.P.; http://www.ipma.pt, accessed 8 May 2012). The 

low precipitation recorded during this drought event led to the complete drying of surface 

water in river channels of some typically Atlantic-temperate watercourses. Drought events 

with flow cessation are characteristic of Mediterranean climates where streams are 

physically, chemically and biologically shaped by sequential, predictable and seasonal events 

of flooding and drying over an annual hydrological cycle (Boix et al., 2010; García-Roger et al., 

2011; Delgado et al., 2012). For Atlantic-temperate areas, such flow conditions are 

uncommon. 

Floods and droughts are important hydrologic events in running water ecosystems. 

Therefore, in-stream biological communities have developed adaptations that range from the 

avoidance of individual floods or droughts, to life-history strategies that are synchronised 

with long-term flow patterns (Lytle and Poff, 2004). The traits developed by species in order 

to enable them to survive, exploit and even depend on disturbance are the result of a long 

evolutionary period (Lytle and Poff, 2004). In Mediterranean streams during the summer, 

organisms exhibit strategies such as low metabolic rates, short life spans with an early 
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maturity, less permeable cuticles and higher water content (Bonada et al., 2007a). That is, the 

native communities of drought-prone systems are the result of a multihabitat filter process 

that selects organisms with a set of traits that enable them to either survive the drought 

(resistance traits) or recolonise and recruit after the drought breaks (resilience traits) (Poff, 

1997; Bond et al., 2008). However, the communities of rivers exposed to rapid changes in 

natural flow conditions (i.e., magnitude, frequency, duration, timing and predictability) are 

deprived of such an evolutionary period. Changes in the natural flow of temperate streams 

due to extreme events or climate change may therefore exert stronger effects on the 

ecological structure and functioning of stream communities (Lake, 2000).  

The use of biological traits in the study of aquatic macroinvertebrate communities has 

increased in the last decade (e.g., Gayraud et al., 2003; Bonada et al., 2007a; Chessman, 2012; 

Feio and Dolédec, 2012; García-Roger et al., 2013) as they can be related to ecosystem 

functions (e.g., decomposition, productivity, energy cycling, relationship between different 

trophic levels) and thus act as potential indicators of a system’s integrity (Statzner et al., 

2001; Feio and Dolédec, 2012). However, to our knowledge, only the study by Bonada et al. 

(2007a) was aimed at assessing the trait differences between Mediterranean and temperate 

regions and only for aquatic macroinvertebrate communities. More recently, García-Roger et 

al. (2013) assessed trait differences between streams with different types of long-term 

aquatic regimes, but all within the Mediterranean climate area. Despite the recognition of the 

importance of traits to predict community composition in phytoplankton ecology (Litchman 

and Klausmeier, 2008), interest in trait approaches applied to benthic diatoms is relatively 

recent (Passy, 2007; Stevenson et al., 2008; Berthon et al., 2011; Rimet and Bouchez, 2011) 

and linked to changes caused by the degradation of stream quality, such as altered nutrient 

levels, current velocity and sediment regimes (Passy, 2007; Stevenson et al., 2008; Berthon et 

al., 2011; Rimet and Bouchez, 2011). 

In this study, the biological traits of both diatom and macroinvertebrate communities 

were used to test the hypotheses that a severe drought event, with the complete drying of the 

stream channel, leads the aquatic communities in the Atlantic-temperate streams to: (1) react 

to stress by changing their traits and consequently, the traits that confer them an advantage 

during drought are found in higher proportions, whereas those that constitute a disadvantage 

during drought are found in lower proportions; and (2) shift trait composition to become 

more similar to communities found in the Mediterranean streams. Moreover, we test the 

hypothesis (3) that hydric stress and posterior recovery of primary producers with short life 

cycles (diatoms) will be faster in comparison to consumers with longer life cycles 

(macroinvertebrates). 
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4.2 Material and methods 

4.2.1 Study sites 

Four small perennial lowland streams, located in the central region of Portugal were 

sampled between 2011 and 2012: Ribeira de Boialvo (Tb), Rio da Serra (Ts), Ribeira de Ança 

(Ta) and Rio Alcoa (Tl), which are located in Vouga, Mondego and Ribeiras do Oeste 

catchments (Figure 4.1). These catchments are within an Atlantic-temperate climate area 

characterised by mild temperatures, moderate summers and winters, and total annual 

precipitation above 2,800 mm·year-1 (Agência Portuguesa do Ambiente, 2007). A similar 

geology characterised by flatlands of sedimentary origin (as limestone and sand) can be 

found throughout the study area. 

For comparative purposes, four small streams located in a Mediterranean climate area 

were also selected for this study. Diatom and macroinvertebrate communities of those 

Mediterranean streams were collected in spring 2004 following the same procedures 

described for temperate streams. The sampling sites are located in the streams Ribeira do 

Vidigão (Mv), Ribeira de Oeiras (Mo), Ribeira de Grândola (Mg) and Ribeira da Capelinha 

(Mc), which belong to the Guadiana, Sado and Mira catchments (Figure 4.1). These temporary 

streams are located in southern Portugal where the climate is typically Mediterranean, with 

mild wet winters and hot dry summers, and a mean annual precipitation below 600mm year-1 

(Agência Portuguesa do Ambiente, 2007).  

The Mediterranean streams were selected with the aim of having geomorphic and 

anthropogenic pollution characteristics similar to each other and to the Atlantic-temperate 

streams. Therefore, the main difference between the Atlantic-temperate and Mediterranean 

streams (hereinafter referred as T and M) is the climate and, consequently, their natural long-

term hydrological regime (perennial and temporary). 

4.2.2 Climate characterisation of the study period in the Atlantic-temperate area 

Shifts in flow regime and groundwater recharge are determined by changes in 

temperature, evaporation and precipitation (Chiew, 2006; IPCC, 2012). Atlantic-temperate 

streams are small lowland water courses and therefore changes in precipitation are rapidly 

reflected in stream water flow. Mean monthly precipitation in the temperate and 

Mediterranean streams was obtained using gridded data from a dense network of gauge 

stations distributed across the study areas (IPMA, I.P.; http://www.ipma.pt; Belo-Pereira et 

al., 2011). The high summer (July, August September) temperatures of 2011 (average ~20 °C) 

associated with the low precipitation values during the same period led to the complete 
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drying of some stream channels in a typical Atlantic-temperate area (Figure 4.2a). These low 

values, similar to those recorded in the summer in the Mediterranean area (Figure 4.2b), 

remained during autumn (October, November and December) and winter (January, February 

and March). Only the rainy period recorded in November led to a resumption of flow in the 

temperate streams (Figure 4.2a). 

 
Figure 4.1 - Location of the study sites in continental Portugal in the Atlantic-temperate climate (black 

triangles) and in the Mediterranean climate (black circles). 

4.2.3 Sample collection and processing 

The temperate (T) streams were sampled on three occasions: spring 2011 (T1), before 

the severe and uncharacteristic drought event; autumn 2011 (TAD), 2 weeks after the return 

of water to the stream channel; and spring 2012 (T2) after the drought period when normal 

flow conditions were re-established (Figure 4.2a). Hereafter, the use of the term ‘drought’ 

refers to the event that caused the complete drying of the streambeds. Sampling for biological 

communities was always performed when the streams had visible flowing water. 
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Figure 4.2 - Mean precipitation of the (a) Atlantic-temperate climate and (b) Mediterranean climate 

sites recorded during the study. Sampling occasions: T1, temperate spring before drought; TAD, 

temperate first sample after water return; T2, temperate spring after drought. Data from the 

Portuguese Institute of Sea and Atmosphere (IPMA, I.P.; http://www.ipma.pt). 

Sampling and treatment of diatoms was performed according to the European standards 

(European Committee for Standardisation, 2003, 2004, 2006). In each site, hard substrate 

(rocks or stones) was sampled when present; otherwise, sediment was sampled. Sampling of 

sediment instead of hard substrate was acceptable in light of a study by Mendes et al. (2012), 

which validated the use of alternative substrates. For the epilithic biofilm, five random 

submerged stones (an area of ~100 cm2) were collected and gently washed with running 

water. The upper surface was then scraped with a toothbrush. For the epipsammon biofilm 

(site Ta), a volume of ~ 50 mL of the upper surface of the streambed sediment was collected 

using a syringe. Samples were preserved with formaldehyde (4%). In order to ensure 

ecological reliability of the samples, the proportion of living and dead cells was verified under 

a light microscope. The samples were then oxidised with concentrated nitric acid and 

potassium dichromate for 24 hours. Thereafter, permanent slides were mounted using 



Chapter 4 

95 

Naphrax® (Brunel Microscopes Ltd, Chippenham, UK). Using a light microscope (100x 

objective and 1.32 numerical aperture), ~400 diatom valves for each sample were counted 

and identified to species or infrapecific rank mainly using the floras of Krammer and Lange-

Bertalot’s (1986, 1988, 1991a, 1991b) and Krammer (2000, 2001, 2009). 

Benthic macroinvertebrates were sampled following a multihabitat approach according 

to the procedures described by the Portuguese Water Institute (INAG I.P.; INAG, 2008). 

Briefly, each sample was collected by kicking and sweeping approximately 1 m towards 

upstream with a hand-net (500 μm mesh size; 0.25×0.25 m width) and composed of six 

composite subsamples corresponding to the most representative habitats (e.g., stones, sand, 

submerged macrophytes). Macroinvertebrate samples were preserved in formaldehyde (4%) 

and, after sorting, preserved in ethanol (75%) for later identification and counting. 

Taxonomic identification, under a stereomicroscope (magnification 60x), was mostly done to 

genus level with the exception of Chironomidae (subfamily or tribe level). 

4.2.4 Biological traits 

For this study, we selected diatom and macroinvertebrate biological traits that we 

predicted would be affected (positively or negatively) by drought. For diatom communities, 

two biological traits were selected (Table 4.1): life form and biovolume. Within the life-form 

trait, four categories were considered: mobile, colonial, tube-forming and stalked. The taxa 

with mobility have the physical ability to select the most suitable habitat. The colonial taxa 

are in permanent contact with each other and therefore are more capable of surviving with 

less moisture due to interstitial spaces between the individual cells. The tube-forming life-

form is a kind of colonial life-form; however, the diatoms live in a mucilaginous protective 

case within which they are able to move freely (Berthon et al., 2011; Rimet and Bouchez, 

2011, 2012). The stalked taxa have the physical ability to be fixed to the substrate through 

mucilage stalks, which exposes them more to desiccation. Within the life-form trait, one taxon 

can be assigned to more than one category. The second trait selected was biovolume, with the 

categories: small species (5-299 µm3) and large species (≥1500 µm3). Intermediate 

biovolume categories were neglected, as we considered that differences caused by the 

drought would be more evident in small and large species. The higher the differences in the 

surface-to-volume ratio of the cells, the larger the differences found in the trait proportions of 

these two categories. The biovolume categories were adapted from a study carried out by 

Berthon et al. (2011), and the values used were those found in the OMNDIA software (version 

5.3) (Lecointe et al., 1993). We predicted that the categories that confer higher resistance or 

resilience (e.g., mobile, colonial, tube forming and small size) would be favoured by the 



Effect of global changes and spatial scale on diatom communities of temperate rivers. Dealing 

with implications in bioassessment 

96 

drought event (Table 4.1). The trait categories that confer lower resistance or resilience (e.g., 

stalked and large species) would be disadvantaged by the drought (Table 4.1). 

Table 4.1 - Predictions and justification for expected behaviour of diatom trait categories in response 

to an extreme drought event in temperate rivers. Arrows indicate changes in category proportion 

expected in the temperate samples after drought (TAD and T2) compared with temperate samples 

before drought (T1) (up arrow, higher proportion; down arrow, lower proportion). 

Trait Category  Justification 

Life form 

Mobile   
Physical capacity to move to the most suitable habitat 

(refuge use and recolonisation). 

Colonial  
Better resistance capacity, higher capacity to live with less 
moisture due to interstitial spaces between the individual 

cells. 

Tube forming  
Physical capacity to produce a mucilaginous protective 

substance that confers higher resistance to drought.  

Stalked  
Higher cell surface exposed to physical alterations of the 

habitat induced by the drought (desiccation). 

Biovolume 

5-299 µm3 
(small 

species) 
 

Better resilience capacity and higher capacity to live with 
less moisture. Small species have large local population 

density, that prevents extinction. 

≥ 1500 µm3 
(large species) 

 
Higher cell surface exposed reduces their capacity to live 

with less moisture. 

 

For macroinvertebrate communities, seven biological traits were considered here to be 

more affected by the drought (Table 4.2): maximum body size, life cycle duration, 

reproductive cycles per year, dispersal, locomotion, respiration and resistance forms. Within 

each trait, several categories were also considered, as shown in Table 4.2. Our predictions for 

the selected trait categories responses were based on the hypothesis that the categories 

allowing resilience to disturbances with rapid population growth (e.g., small body size, short 

life cycles, fast reproductive cycles), behavioural and physiological adaptations to escape and 

avoid desiccation (e.g., aerial dispersal, aerial respiration, resistance forms against 

desiccation) would be favoured by the drought event (Bonada et al, 2007a; Dolédec and 

Statzner, 2008; Feio and Dolédec, 2012; García-Roger et al., 2013). Trait information was 

derived according to the available biological information databases described in Tachet et al. 

(2002), for macroinvertebrate genera (and Diptera at family or subfamily level). Only the 

trait categories with a high affinity (affinity 3 or above, using a fuzzy coding approach, 

Chevenet et al. 1994) for a given category were considered in order to match the approach 

used for diatoms, for which affinity scores are not available. 
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Table 4.2 - Predictions and justification for expected behaviour of macroinvertebrate trait categories in 

response to an extreme drought event in temperate rivers. Arrows indicate changes in category 

proportion expected in the temperate samples after drought (TAD and T2) compared with temperate 

samples before drought (T1) (up arrow, higher proportion; down arrow, lower proportion). 

Trait Category  Justification 

Maximum body size 

<5 mm 
(small) 

 
Better resilience capacity for smaller sizes. 

20–80 mm 
(large) 

 

Life cycle duration  ≤1 year  Shorter cycles improve resilience capacity. 

Reproductive cycle  

<1 year-1  
Better resilience capacity with more frequent 

reproduction. >1 year-1  

Dispersal 

Aerial 
active 

 
Flight enables these animals to be the first to arrive 

after the flow return. 

Aquatic 
passive 

 
Animals do not drift from above locations due to flow 

cessation. 

Locomotion 

Crawler  Release from action of flow favours crawling. 

Swimmer  

Flow cessation or bed dryness disfavours swimmers. 

With lack of water there is no environment for 
swimmers locomotion. 

Respiration 

Aerial  
Aerial respiration is favoured with aquatic oxygen 

depletion resulting from dryness. 

Gills  
Specialised structures are essential to maximise the 

oxygen uptake in aquatic depletion conditions. 

Resistance forms 
Cocoons  Increased resistance against droughts. 

None  Absence of resistance form against droughts. 

4.2.5 Statistical analyses 

The communities’ data consisted of diatom relative abundances ≥1% and 

macroinvertebrate relative abundances >0.02%. For both groups of organisms, taxa present 

in only one sample were not considered. Using this approach, we reduced the effect of errors 

in identification, sample contamination and avoided the effect of very rare taxa that could 

create a confounding effect in our analyses while preventing the observation of clear 

multivariate patterns. Abundance data were fourth-root-transformed to down-weight the 

contributions of abundant taxa (García-Roger et al., 2011). For diatoms, this transformation 

gives more weight to large species that are often found at low relative abundances in benthic 

diatom communities, and which can be important for defining diatom assemblages (ter Braak 

and Verdonschot, 1995; Tison et al., 2005). 
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The taxa that contributed the most to the Bray-Curtis dissimilarity (up to 80% 

cumulative contribution) between T1 and TAD, and between T1 and T2, were determined 

through SIMPER analysis (PRIMER 6 and PERMANOVA+) for both diatom and 

macroinvertebrate communities. All of the taxa obtained from SIMPER analysis were then 

assigned to the different trait categories. The relative abundance of each taxon was added to 

obtain the total proportion for each trait category on each sampling occasion (T1, TAD, T2 

and M). The relative abundance of each taxon was always added in total to the trait categories 

that it was assigned to. 

In order to assess differences in groups of samples (T1, TAD, M and T1, T2, M) 

concerning trait proportions, Multidimensional Scaling Analyses (MDS) were run separately 

for diatoms and macroinvertebrates, based on a Bray-Curtis similarity matrix (PRIMER 6 and 

PERMANOVA+; data arcsine square root transformed). Statistical differences between the 

groups of samples (T1, TAD, T2 and M) were tested with a PERMANOVA pairwise test with 

unrestricted permutations (PRIMER 6 and PERMANOVA+) for diatoms and 

macroinvertebrates. 

To test our predictions and determine the traits responsible for the differences in 

communities between the initial status (temperate samples before drought-T1) and after 

drought (T2 and TAD) two Canonical Analyses of Principal Coordinates (CAP) were run for 

diatoms and for macroinvertebrates. In addition, to determine the traits responsible for 

possible differences between the communities in the temperate and Mediterranean streams, 

we ran two CAP analyses between temperate samples before drought (T1) and 

Mediterranean (M) samples for both macroinvertebrates and diatoms. The CAP provides a 

constrained ordination diagram by finding the axis (or axes) in the principal coordinate space 

that is best for discriminating between the a priori groups. Finally, overlaying vectors were 

added to the CAP ordination showing which traits had the highest correlations with the CAP 

axes (Pearson correlation > 0.5). The PCA analyses were performed with the PRIMER 6 and 

PERMANOVA+ software. 

For each individual trait category, two one-way ANOVA tests (SigmaPlot 12.0 software; 

data arcsine square-root-transformed) were carried out to verify statistical significant 

differences between groups (T1, TAD, M and T1, T2, M). When normality tests and equal 

variance tests failed, Kruskal–Wallis one-way ANOVA tests (ANOVA on ranks) were used. 

ANOVAs were followed by pairwise comparisons (Tukey´s test) to assess which groups of 

samples were different. 
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4.3 Results 

4.3.1 Trait patterns of diatom communities 

Effects immediately after the drought 

The MDS performed with the diatom trait proportions revealed a segregation of the 

diatom communities in the Mediterranean streams from those in the temperate streams (T1-

before the drought and TAD-2 weeks after the return of water) (Figure 4.3a). However, there 

was a higher similarity of the Mediterranean (M) communities to those immediately after 

drought (Bray-Curtis similarity, TAD-M=64% vs. T1-M=60%). In fact, the PERMANOVA 

pairwise test indicated that there were significant differences only between T1 and 

Mediterranean samples (T1-M: t=4.496, p<0.050). 

Through the CAP, we verified that species with the trait categories ‘stalked’, ‘mobile’, 

‘colonial’ and ‘small’ were those contributing more to the segregation between T1 and TAD 

(Figure 4.4a). These species were negatively affected (decreased in abundance) by the 

drought. Nevertheless, from these trait categories, only the stalked species were significantly 

different between T1 and TAD. The remaining trait categories only presented statistical 

differences between temperate and Mediterranean communities (Table 4.3). In general, the 

temperate streams recorded higher proportions of mobile and small species and lower 

proportions of large species (Table 4.3). 

Table 4.3 - Results of the one-way Analysis of Variance (ANOVA, F) and ANOVA on ranks (Kruskal–

Wallis test, H) carried out for the different diatom biological trait categories of communities T1 

(temperate spring before drought), TAD (first sample after water return) and M (Mediterranean). Only 

the trait categories where statistical differences were verified shown. Relationships shown in bold 

have p<0.05. 

Trait category Test result p value Relationship between groups 

Mobile F = 6.549 <0.050 T1 = TAD; TAD = M; T1 > M (Tukey test) 

Stalked F = 16.465 <0.010 T1 > TAD = M (Tukey test) 

5-299 µm3  

(small species) 
F = 8.511 <0.050 T1 = TAD > M (Tukey test) 

≥1500 µm3  

(large species) 
F = 14.605 <0.050  

T1 = TAD < M (Tukey test) 
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Figure 4.3 - Multidimensional Scaling Analysis (MDS) ordinations of the diatom traits for the groups of 

samples: (a) temperate spring before drought (T1), first temperate sample after water return (TAD) 

and Mediterranean spring (M); and (b) temperate spring before drought (T1), temperate spring after 

drought (T2) and Mediterranean spring (M). T1, black triangle; TAD, white circle; T2, white triangle; M, 

black square. 
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Figure 4.4 - Canonical Analysis of Principal Coordinates (CAP) based on proportions of diatom traits 

found in: (a) temperate spring before drought (T1) and first temperate sample after water return 

(TAD); (b) temperate spring before drought (T1) and after drought (T2); and (c) temperate spring 

before drought (T1) and Mediterranean streams. T1, black triangle; TAD, white circle; T2, white 

triangle; M, black square. 
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Effects over 1 year 

Comparing the two temperate groups of samples (T1-before the drought, and T2-spring 

after the drought) with the Mediterranean spring, we verified an increase in the similarity of 

the temperate communities (Figure 4.3b). This increase in the similarity between the 

temperate samples (T1-TAD=79% vs. T1-T2=84%, Bray-Curtis similarity) suggested a 

recovery of diatom communities. Additionally, the PERMANOVA pairwise test confirmed 

significant differences between T1 and M (t=4.400, p<0.050) and between T2 and M (t=4.750, 

p<0.050). Therefore, despite the similarity between T2 and M (63%, Bray-Curtis similarity) 

being comparable to the one recorded immediately after drought (TAD-M=64%), the spring 

communities affected by the drought (T2) were already different from the M communities. 

From TAD to T2, we verified that the temperate communities shifted from being more similar 

to M to becoming similar to T1.  

Similar to the MDS (Figure 4.3b), the CAP analyses also showed a smaller distinction 

between the temperate spring groups (T1 and T2) in comparison with T1 and TAD (Figure 

4.4a, b). No trait category was significantly different among the communities from these 

groups of samples (T1 and T2) (Table 4.4). Statistical differences were present only between 

the temperate and Mediterranean communities (Table 4.4). In fact, a CAP analysis performed 

on the T1 and M samples revealed that there were trait categories with a higher contribution 

for the differences between the Mediterranean and temperate streams (Figure 4.4c). The 

Mediterranean communities appeared to be related to higher proportions of larger species 

and the temperate communities were related to higher proportions of smaller, mobile and 

stalked species (Table 4.4). 

Table 4.4 - Results of the one-way Analysis of Variance (ANOVA, F) and ANOVA on ranks (Kruskal–

Wallis test, H) carried out for the different diatom biological trait categories of communities T1 

(temperate spring before drought), T2 (temperate spring after drought) and M(Mediterranean). Only 

the trait categories where statistical differences were verified are shown. Relationships shown in bold 

have p<0.05. 

Trait category Test result p value Relationship between groups 

Mobile F = 8.900 <0.050  T1 = T2 > M (Tukey test) 

Stalked F = 9.023 <0.010 T1 = T2 > M (Tukey test) 

5-299 µm3  

(small species) 
F = 9.187 <0.010 T1 = T2 > M (Tukey test) 

≥1500 µm3  

(large species) 
F = 12.544 <0.010  T1 = T2 < M (Tukey test) 
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4.3.2 Trait patterns of macroinvertebrate communities 

Effects immediately after the drought 

The MDS performed with all macroinvertebrate trait proportions from T1, TAD and M 

(Figure 4.5a) showed segregation of the three groups. This segregation was statistically 

confirmed by the PERMANOVA pairwise test results (T1-TAD, t=2.047, p<0.050; T1-M, 

t=1.543, p<0.050; TAD-M, t=2.116, p<0.050). However, TAD samples appeared more 

separated and presented a lower similarity with the remaining groups of samples (T1-

TAD=56%; TAD-M=64%, Bray-Curtis similarity). In fact, TAD similarities were even lower 

than the similarity found between T1 and M (73%). The proportions of some traits in the 

after drought communities (TAD) were affected by the drought, but did not shift towards the 

Mediterranean communities (Figure 4.5a; Table 4.5). 

Several traits contributed to the differences found in the temperate communities after 

drought (Figure 4.6a). There was a decrease in swimmers, animals with shorter life cycles, 

aerial active and aquatic passive dispersion or cocoons as a resistance form and an increase 

in animals with extreme sizes (small (<5mm) and large animals (20-80 mm)) and animals 

breathing though gills. However, from these traits, only the proportion of swimmers, cocoons 

as a resistance form, aerial active and aquatic passive dispersion were significantly lower 

after the drought (Table 4.5).  

Table 4.5 - Results of the one-way Analysis of Variance (ANOVA, F) and ANOVA on ranks (Kruskal–

Wallis test, H) carried out for the different macroinvertebrate trait categories of communities T1 

(temperate spring before drought), TAD (temperate first sample after water return and M 

(Mediterranean). Only the trait categories where statistical differences were verified are shown. 

Relationships shown in bold have p<0.05. 

Trait category Test result p value Relationship between groups 

Aerial active (dispersal) F = 10.589 <0.010 
T1 > TAD; T1 = M; TAD = M (Tukey 

test) 

Aquatic passive 
(dispersal) 

F = 4.513 <0.050 
T1 > TAD; T1 = M; TAD = M (Tukey 

test) 

Swimmer (locomotion) F = 10.951 <0.010 T1 = M > TAD (Tukey test) 

Cocoons (resistance form) H = 8.375 <0.010 
T1 > TAD; T1 = M; TAD = M (Tukey 

test) 
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Figure 4.5 – Multidimensional Scaling Analysis (MDS) ordinations of the macroinvertebrate traits for 

the groups of samples: (a) temperate spring before drought (T1), first temperate sample after water 

return (TAD) and Mediterranean spring (M); (b) temperate spring before drought (T1), temperate 

spring after drought (T2) and Mediterranean spring (M). T1, black triangle; TAD, white circle; T2, 

white triangle; M, black square. 
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Figure 4.6 – Canonical Analysis of Principal Coordinates (CAP) based on proportions of 

macroinvertebrate traits found in: (a) temperate spring before drought (T1) and first temperate 

sample after water return (TAD); (b) temperate spring before drought (T1) and after drought (T2); (c) 

temperate spring before drought (T1) and Mediterranean streams. T1, black triangle; TAD, white 

circle; T2, white triangle; M, black square. 
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Effects over 1 year 

The comparison of the proportions of macroinvertebrate trait categories found in T1, T2 

and M communities revealed a change in the T2 communities towards the initial T1 state 

(Figure 4.5b). The Bray-Curtis similarity between T1 and T2 (65%) was higher than the 

similarity between T1 and TAD (56%). The spring samples affected by the drought (T2) also 

became more similar to the Mediterranean samples (75%). In fact, there were statistical 

differences only between T1 and M (PERMANOVA pairwise test: t=1.577, p<0.050). 

Despite the shift of T2 communities to the initial state, there were some traits 

contributing to the segregation between T1 and T2 (Figure 4.6b). From the trait categories 

affected by the drought in TAD, only the aquatic passive trait was able to recover in T2 to 

proportions similar to T1 (Table 4.6). The species with the traits ‘aerial active’, ‘swimmers’ 

and ‘animals with cocoons’ still presented a significantly lower proportion in T2 than before 

the drought. However, despite the absence of statistical differences within trait categories, it 

was possible to verify some changes over time. For example, concerning the trait ‘small 

maximum body size’ (<5mm), we verified that there was a tendency for the trait proportion 

from TAD to T2 to become similar to T1 (Figure 4.6a, b).  

The CAP contrasting temperate and Mediterranean samples (Figure 4.6c) showed more 

similarities within Mediterranean samples than within temperate samples of the first spring 

(T1). The Mediterranean streams had higher proportions of species with no resistance form, 

shorter life cycles and small sizes, and a reduced proportion in swimmers, animals with 

aquatic passive dispersion, crawlers, animals breathing with gills, larger animals and cocoons 

as resistance form. However, individually, we found significant differences only between T1 

and M in one trait category (large body size) (Table 4.6). 

Table 4.6 - Results of the one-way Analysis of Variance (ANOVA, F) and ANOVA on ranks (Kruskal–

Wallis test, H) carried out for the different macroinvertebrate trait categories of communities T1 

(temperate spring before drought), T2 (temperate spring after drought and M (Mediterranean). Only 

the trait categories where statistical differences were verified are shown. Relationships shown in bold 

have p<0.05. 

Trait category Test result p value Relationship between groups 

20-80mm (maximum body 
size) 

H = 7.489 <0.020 T1 = T2 > M (Tukey test) 

Aerial active (dispersal) F = 5.214 <0.050 
T1 > T2; T1 = M; T2 = M (Tukey 

test) 

Swimmer (locomotion) F = 7.413 <0.020 
T1 > T2; T2 = M; T1 = M (Tukey 

test) 

Cocoons (resistance form) F = 7.379 <0.020 
T1 > T2; T2 = M; T1 = M (Tukey 

test) 
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4.4 Discussion 

Macroinvertebrate and diatom communities from typically perennial temperate rivers 

were affected by the complete drying of the stream channels caused by a drought event, 

confirming our first hypothesis. This uncharacteristic event led to changes in the trait 

proportions of the diatom and aquatic macroinvertebrate communities of these streams for 

at least a 6-month period. However, diatoms and macroinvertebrates had different responses 

to the drought. In accordance with the second hypothesis, the drought led to a shift in the 

diatom trait proportions towards proportions similar to those found in Mediterranean 

communities. However, shortly after the return of water to the channel (TAD) most of the 

communities’ traits did not present significant differences with the temperate communities 

before the drought (T1). In fact, the diatom communities from temporary rivers are known 

for their ability to rapidly recolonise a dry river after the water return (Robson et al., 2008). 

In spite of that, the temperate communities still presented some differences in the following 

spring (T2) as some traits did not return to their predrought proportions (i.e., ‘colonial’ and 

‘stalked’) (Figure 4.7). This may reveal more long-lasting changes resulting from the drought 

but also natural inter-annual variability. 

 
Figure 4.7 - Mean relative abundance of diatom (bold underlined) and macroinvertebrate traits found 

in the three groups of samples: black triangle, temperate spring before drought (T1); white circles, first 

temperate sample after water return (TAD); white triangle, temperate spring after drought (T2). 

Logarithmic scale. 
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Community attributes for macroinvertebrates just after rewetting were very different 

from those found in the spring of 2011. However, contrary to our hypothesis, the postdrought 

communities were different from the Mediterranean ones. This difference could be partially 

due to natural seasonal patterns of macroinvertebrates (autumn and spring); however, 

previous studies have already demonstrated the seasonal stability of biological traits in 

aquatic communities (Bêche et al., 2006). Differences are most probably associated with the 

drought event itself. Immediately after a stress condition (i.e., drought), it is expected that 

only the organisms with traits that are able to pass the strong abiotic filters imposed by this 

stress will be found in the streams (Poff, 1997; Bêche et al., 2006). Indeed, there was a 

significant decrease in the proportions of some trait categories with the drought event: ‘aerial 

active’ and ‘aquatic passive dispersion’, and ‘swimmers’ and ‘cocoons as a resistance form’ for 

macroinvertebrates. However, no trait category disappeared. The trait ‘swimmer’ was the 

only one for which statistical differences were observed between the temperate-after-

drought and Mediterranean communities. However, this trait proportion was not statistically 

different from the Mediterranean and predrought communities.  

Despite the confirmation of our first hypothesis, the predictions for the different diatom 

and macroinvertebrate trait categories were not always confirmed. We expected that a 

drought event, with flow cessation, would be sufficient for the trait proportions of the 

communities to change from being adapted to the temperate stream conditions and becoming 

closer to Mediterranean stream conditions where communities are adapted to droughts; 

however, that did not occur. We had predicted that the postdrought (both TAD and T2) and 

Mediterranean samples would have a higher proportion of colonial diatom species. The 

complex architecture of the colonies (Snoeijs et al., 2002) would allow them a better 

resistance capacity to the drought. Also, Passy (2002) suggested that increased 

morphological complexity in colonial diatoms is a possible evolutionary strategy for survival 

in unpredictable environments. However, we found colonial diatom species such as Fragilaria 

vaucheriae (Kützing) J. B. Petersen, Fragilaria capucina Desmazières and Melosira varians C. 

Agardh in all temperate samples, and in none of the Mediterranean samples. This may have 

occurred because the colonies from loosely attached mats, which are particularly vulnerable 

to disturbance (e.g., floods) and may lack traits that enable the retention of interstitial space 

(Ledger et al., 2008). Therefore, colonial species may have reached high proportions early in 

the colonisation process after the drought event, but were rapidly replaced by other more 

competitive species. Therefore, these were not highly represented in the sampled TAD, T2 

and M communities. 

The diatom species with the ability to move (‘mobile’ category) have the advantage of 

being able to select the most suitable habitat (Passy, 2007), finding refuges and thus a faster 
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recolonising capacity when the basal flow conditions are re-established. Therefore, we 

expected that species with this trait category would be present in higher proportions in the 

after drought (TAD and T2) and Mediterranean samples as they would be among the first 

colonisers. However, our predictions were not supported; in fact, the drought appears to have 

negatively affected the mobile taxa, and samples from the temperate streams (more stable) 

tend to have a higher proportion of mobile species than the Mediterranean streams (more 

unstable). This may be explained by the inability of such taxa to resist to the dislodgement by 

shear stress imposed by the elevated water currents (Peterson, 1996) of the seasonal events 

of flooding that are also typical in Mediterranean streams. 

A previous study (Virtanen et al., 2011) indicated that diatom taxa with attachment 

capability (‘stalk’ category) can resist the water current effects. Here, we predicted that this 

resistance capacity would be a disadvantage following a drought event due to their inability 

to seek protection from desiccation. Indeed, this prediction was confirmed as there was a 

statistically significant reduction of this trait after the drought (TAD). However, in the 

Mediterranean streams, this trait was found in lower proportions (even though not 

significantly different from the temperate streams), which may indicate that this is not a 

relevant adaptation in such systems. We predicted that diatoms with the tube-forming trait 

category would be able to overcome the cessation of water. The relative abundances of the 

taxa with this trait category were always very low in the temperate streams (T1 and TAD), 

and in temperate stream (T2) and Mediterranean streams, these taxa were not present at all. 

This suggests that our prediction for the trait category ‘tube forming’ was probably incorrect, 

as streams typically affected by droughts (Mediterranean streams) did not record taxa with 

this trait. 

The ability of macroinvertebrates to disperse actively by flight was predicted to be an 

advantage in drought disturbance situations. Individuals with the ability to fly would be able 

to depart with the drying of the streambed in order to find a suitable habitat, and would 

consequently be the first colonisers after the water return (e.g., Gasith and Resh, 1999). In 

fact, the decrease in those animals after the drought may have been due to an active escape to 

more suitable conditions. However, there was no return of macroinvertebrates with this trait 

during the study. Another hypothesis is that the macroinvertebrates with aerial dispersion in 

fact disappeared, as the aerial stage phase was not synchronised with the unpredicted 

drought period. In this case, it is very difficult to test these predictions without evaluating the 

phenomenon itself during its occurrence and assessing a larger area surrounding the stream 

through the capture of flying adults. Regarding aquatic passive dispersion and swimming 

locomotion, we also confirmed our predictions (Figure 4.7). The proportions of these trait 

categories were negatively affected by the drought as ‘drift’ or ‘swim’ became impracticable 

with the restricted flow and persistence of the dry bed that acted as a barrier. However, what 
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we did not expect was that the proportions of taxa with swimming locomotion after drought 

would be different from those found in the Mediterranean streams. In fact, García-Roger et al. 

(2013) also verified positive associations between the trait categories ‘aquatic passive’ and 

full water ‘swimmers’ with permanent Mediterranean climate streams and non-significant 

association with intermittent streams with summer dry channels. Additionally, Bonada et al. 

(2007b) verified that, in intermittent sites, the organisms were mostly fliers and surface 

swimmers. For the trait ‘cocoons’ as a resistance form we verified an unexpected decrease in 

temperate communities after the drought. It was expected that in a stable environment, such 

as perennial streams, the production of drought-resistant forms would be unnecessary in 

comparison with an unstable one, such as temporary streams (García-Roger et al., 2013). This 

contradiction could again be due to the unpredictability of the drought against the adaptation 

of communities to predictable changes in flow in Mediterranean streams. However, caution 

should be applied in the interpretation of the trait category ‘cocoons’ as a resistance form, as 

the taxon Baetis was the only one contributing to this trait category. Higher proportions were 

found in T1 samples than in those from after the drought (TAD and T2) and also in 

Mediterranean samples (M). In fact, these higher proportions of Baetis in the predrought 

temperate streams are in agreement with the results obtained by García-Roger et al. (2011), 

who found that the family Baetidae was characteristic of perennial streams and also 

indicative of the riffle mesohabitat of Mediterranean streams.  

For both elements of body size category, our predictions were not statistically 

confirmed. According to Virtanen et al. (2011) there are several mechanisms through which 

body size and temporal occurrence may be interrelated: (1) the short life cycles and fast 

reproduction for small organisms may increase their probability to occur at a site because of 

low extinction risk; (2) small-bodied organisms have the ability to disperse efficiently to 

another site; (3) small organisms have very large local population density, which prevents 

extinctions; and (4) the smaller the body size, the more susceptible the species is to 

environmental physical changes. However, contrary to our prediction, the small diatom 

species appeared to be more associated with typically more stable environments (T1). This is 

more evident when we look to the Mediterranean communities. These communities had 

significantly lower proportions of small diatom species and higher proportions of large 

species. Therefore, the physical variability (unstable environments) of Mediterranean 

streams appeared to favour larger diatoms. In contrast, higher proportions of small 

macroinvertebrates appeared more associated with the hydrologically unstable 

Mediterranean streams. This result is in accordance with the findings of other authors who 

stated that small sizes are favoured in more unstable environments (Dolédec and Statzner, 

2008; Feio and Dolédec, 2012; García-Roger et al., 2013). Significant differences in the 
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proportions of macroinvertebrate sizes in temperate streams following the drought event 

were not evident. However, there was a tendency for the after-drought samples (TAD) to be 

more highly correlated with both small and large macroinvertebrates. In the samples 

collected in the spring affected by the drought (T2), this correlation was no longer so evident, 

suggesting a recovery of the temperate streams with respect to macroinvertebrate sizes. 

More reproduction cycles per unit of time are necessary to mitigate extreme disturbance 

effects in the resistance of the community (Dolédec and Statzner, 2008). In agreement with 

this, individuals that reproduce more slowly (<1 year-1) were disadvantaged by the drought. 

Therefore, they were less abundant after rewetting, but the differences were not significant.  

Regarding the respiration trait, none of our predictions were confirmed. However, for 

the trait category ‘gills’, we found a higher correlation of this trait with some of the after-

drought samples (TAD). The drought seems to have caused an increase in the proportions of 

animals breathing by gills in some of the sites. In contrast, the results obtained by García-

Roger et al. (2013), carried out only in Mediterranean climate streams, indicate a positive 

correlation of this trait category but only with permanent streams. Concerning the trait 

‘aerial respiration’ there was an opposite tendency from that found in the trait ‘gills’. The 

temperate after-drought samples (TAD) correlated less with this trait. As in other cases, this 

may be related to a poor resistance to drought of other traits of these taxa, which led to its 

disappearance, even though a certain trait (e.g., aerial respiration) would confer an 

advantage. Also, the absence of statistically significant differences may be due to a high 

variability within temperate sites. 

The macroinvertebrates with the capacity to crawl were the ones present in higher 

proportions in all groups of samples (temperate and Mediterranean). We predicted that this 

trait category would be favoured by the drought. However, our prediction was not confirmed, 

as the crawlers appeared more associated with the predrought temperate samples than with 

the Mediterranean samples. This association of the macroinvertebrates with crawler 

locomotion with temperate streams, rather than with Mediterranean ones, is in accordance 

with the findings of Bonada et al. (2007a).  

The two biological elements of the study (diatoms and macroinvertebrates) appeared to 

have different responses and recovery times to the drought event, confirming our third 

hypothesis. Both were affected by the same drought period, yet macroinvertebrate traits 

recovered more slowly, suggesting that, at least partially, the ecosystem functioning was 

altered for a longer period. For example, primary production may have been restored rapidly 

due to the absence of some grazers and scrapers that were not able to resist drought. 

Therefore, the lack of top-down control may have caused interference in transference of 

energy and matter across the food chains. In the spring of 2012, some trait categories of the 

macroinvertebrate communities still occurred in different proportions to those found in the 
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spring of 2011. Other studies showed that, globally, community post-recovery processes after 

drought may last for over a few months or extend for much longer periods (e.g., Mosisch, 

2001; Death, 2008). However, despite the visibility of some drought effects, ~2 weeks after 

water resumption (TAD), diatoms in the temperate rivers reached trait proportions close to 

those of spring 2011. These results indicate the importance of the study of both communities 

for a more accurate assessment of unexpected drought events, and, in order to detect 

differences in diatom communities, the sampling should occur less than two weeks after the 

recovery of flow. 

4.5 Conclusions 

Further research is needed to establish a more complete database on diatom traits to be 

used in similar studies, as information on these traits is scarce compared to those for 

macroinvertebrates. Moreover, we conclude that traits that confer resistance to unexpected 

events, such as drought, are not necessarily the same as those that characterise a typically 

unstable environment where droughts (and floods) are predictable. In these unstable 

environments, community traits are the result of a long evolutionary process towards 

adaptation. More studies are needed to fully understand the mechanisms behind functional 

responses of both microalgae and macroinvertebrates to extreme droughts. 

 

Abbreviations 

CAP Canonical Analyses of Principal Coordinates 

M Samples from Mediterranean streams 

MDS non-metric Multidimensional Scaling 

PCA Principal Components Analysis 

T1 Samples from Temperate streams collected in spring 2011, before the 

severe and uncharacteristic drought event 

T2 Samples from Temperate streams collected in spring 2012, after the 

drought period when normal flow conditions were re-established 

TAD Samples from Temperate streams in autumn 2011, 2 weeks after the return 

of water to the stream channel 
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Abstract 

Portugal faced an uncharacteristic hydrological drought in the fall/winter of 2011-2012. 

Small, typically perennial streams were affected by this extreme event and many dried out. 

Five of these streams were examined during six sampling events between spring 2011 (pre-

drought) and spring 2012 (post-drought) to analyse the effects of this disturbance on the 

macroinvertebrate and diatom communities. Two weeks after dewatering, 

macroinvertebrate metrics exhibited accentuated decreases in the total abundance, EPT taxa 

and the scores of the ‘Índice Português de Invertebrados’ but exhibited increases in 

equitability. The post-drought diatom assemblages showed no significant difference in 

abundance or evenness in relation to pre-drought conditions, but the diatom quality index 

(‘Indice de Polluosensibilité Spécifique’ - IPS) decreased. Four weeks after the drought, the 

invertebrate communities progressively recovered, whereas the diatom metrics were already 

at pre-drought values, except for the IPS, which improved slowly over time. The benthic 

communities recovered faster in streams with higher Habitat Quality Assessment scores 

(HQA). The EPT taxa, Echinogammarus spp., Hydroporus spp. and Ancylus fluviatilis, did not 

recover to pre-drought values, whereas Lumbricidae and Orthocladiinae increased. For 

diatoms between the pre- and post-drought years, there was a shift from more sensitive to 

more tolerant taxa (e.g., the disappearance of Cocconeis euglypta Ehrenberg and the 

appearance of Nitzschia palea (Kützing) W. Smith. This study showed that an extreme off-

season drought had immediate effects on both of the analysed benthic communities, but the 

diatoms recovered faster. Over one year, none of the studied benthic communities returned 

to the same pre-drought conditions, but the differences were stronger for invertebrates. In 
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both cases, the a priori habitat condition of streams appeared to control the reaction and 

recovery patterns of the benthic communities to drought in the studied temperate streams. 

Keywords 

Diatoms, invertebrates, climate change, dewatering, precipitation 
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5.1 Introduction 

The increasing atmospheric concentrations of greenhouse gases and aerosols due to 

anthropogenic activities have been causing climate change (Forster et al., 2007), which have 

global implications for all ecosystems. Sea levels are expected to continue rising as the snow 

and ice extent decrease (IPCC, 2012). In addition, precipitation amounts and patterns are 

changing, and there are major alterations in the timing of wet and dry seasons (Arnell, 1999a, 

b). Climate change consequences, such as higher temperatures, more frequent floods and 

drought, clearly need further attention from both scientists and managers (Bond et al., 2008).  

Freshwater ecosystems are particularly vulnerable to climate change (Schindler, 1997; 

Heino et al., 2009; Whitehead et al., 2009). Shifts in river flow regimes and groundwater 

recharge are determined by changes in temperature, evaporation, and particularly 

precipitation (Chiew, 2006; IPCC, 2012). Modifications in river runoff will decrease the 

recharging of groundwater supplies (Mandal and Zhang, 2012; Thampi and Raneesh, 2012) 

and will be enhanced by increased evaporation rates. Moreover, this climatic alteration leads 

to an increase in extreme climate events such as floods and droughts which can be 

exacerbated by anthropogenic factors such as streambed alterations and deforestation (e.g., 

Hauer et al., 1997). According to Christensen et al. (2007), diverse future climatic scenarios 

for Europe predict an increase in annual mean temperatures (more than the global mean) 

and greater heterogeneity in precipitation patterns; e.g., in the increases in the annual 

precipitation are forecasted for northern Europe, whereas decreases are forecasted for 

southern Europe and Mediterranean. In addition, seasonal precipitation is expected to 

increase in winter and spring and decrease in summer and autumn (Johns et al., 2003; Giorgi 

et al., 2004).  

The northern and central Portuguese coastline and adjacent regions have a temperate 

Atlantic climate with typically wet winters. Despite these climatic characteristics, the country 

experienced a severe and uncharacteristic drought in the autumn/winter period of 

2011/2012. Throughout the territory, the total monthly precipitation observed in this period 

was extremely low when compared with the same seasons from previous years. More 

particularly, in central Portugal, the mean precipitation between October 2011 and March 

2012 was of 58.5 mm, compared to 126.6 mm for the same period between 1980 and 2013, 

according the Portuguese National Information System of Hydric Resources (SNIRH at 

http://snirh.pt). In fact, February 2012 was the driest month since 1931, and the monthly 

precipitation was only 3.3 mm, which largely contrasts with the 128.6 mm registered for the 

monthly average in February of previous years (period of 1980 to 2013; SNIRH; 

http://snirh.pt). This absence of precipitation led to a severe dewatering drought event in 
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some streams of the Portuguese Atlantic humid climate. The intermittence of flow is 

characteristic of Mediterranean streams where communities have adaptations for desiccation 

(Steinman and McIntire, 1990; Lake, 2003; Bonada et al., 2006) but constitutes an anomaly in 

Atlantic temperate areas, where streams are typically perennial.  

In previous studies, extreme droughts have caused sharp decreases in the total biomass 

of aquatic insects (e.g., Walters et al., 2011) and alterations in assemblages (e.g., Thomson et 

al., 2012), as well as triggered species loss and the collapse of food webs, with important 

decreases in secondary production (Ledger et al., 2011). Indeed, rapid or unpredicted drying 

does not provide the necessary amount of time for development of desiccation-resistant 

structures or physiological adjustments (Stanley et al., 2004). In this case, the ability of biota 

to recover from drought relies on the environment features (e.g., substratum type; Wright et 

al., 2003), availability of refugia (e.g., Gasith and Resh, 1999), intensity and/or duration of the 

hydrological event (e.g., Lake, 2003), and the taxonomic assemblage considered (e.g., Acuña 

et al., 2005; Ledger et al., 2008; Boinx et al., 2010). Primary producers with short life cycles, 

such as diatoms, usually recolonise faster after a disturbance when compared with secondary 

producers (e.g., invertebrates) with longer life cycles (Gasith and Resh, 1999).  

Other studies have addressed the impact of extreme climatic events such as droughts in 

shaping communities of freshwater systems under an intermittent hydrological regime (e.g., 

Bond et al., 2008; Feio et al., 2010; Marchetti et al., 2011; Thomson et al., 2012). However, 

little is known about the effects of extreme and uncharacteristic off-season dewatering events 

(but see Caramujo et al., 2008) in the benthic communities of temperate streams.  

This study aims to analyse the effect of an unusual (seasonally and geographically) 

extreme dewatering drought event in Atlantic temperate streams by comparatively assessing 

the recover responses of two distinct benthic communities (macroinvertebrates and diatoms) 

from the progression of dewatering to rewetting. 

5.2 Methods 

5.2.1 Study sites 

Five permanent streams were selected for this study, which are located near the coast of 

central Portugal (< 40 km from the Atlantic Ocean). This area has an Atlantic-humid 

temperate climate, with a mean annual precipitation within the period of 1971–2000 ranging 

from 800 to 1200 mm (Belo-Pereira et al., 2011; IPMA, Portuguese Institute of the Sea and 

Atmosphere at http://www.ipma.pt). These streams have mild temperatures and moderate 

summers and winters, and all five streams have similar environmental characteristics (size, 

altitude, geology). These streams, named Ribeira de Boialvo (Boialvo), Rio da Serra (Serra); 
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Ribeira de Eiras (Eiras); Ribeira de Ança (Ança); and Nascente do Rio Alcoa (Alcoa), are 

located in Mondego, Vouga and Ribeiras do Oeste catchments in the centre of Portugal 

(Figure 5.1). This study region is dominated by flatlands with sedimentary rocks (limestone 

and sand). The altitude of the study sites is relatively low, ranging from 36 (Ança) to 111 

meters (Serra). The distance to source varied between 4.2 and 12.0 km. All sites are 

influenced by mild organic pollution, mainly derived from agriculture activities and housing.  

In mid-fall 2011 (late October), all stream sites were found completely dry (without any 

visible water or remaining pools) because of an unusual climatological drought that occurred 

throughout 2011. The mean average precipitation registered until October was lower than 

the historical mean monthly precipitation for the period of 1980-2013, except for two 

months, May and August (Figure 5.2). In November 2011, a peak of precipitation occurred 

that allowed a break in the dewatering period in the streams; however, the flow level was still 

low. Afterwards, the recorded precipitation was still considered low in the following months 

in comparison to previous years (until March 2012; Figure 5.2), and the flow level was also 

low. The total monthly precipitation between October 2011 and March 2012 was 50% lower 

than the precipitation recorded in previous years for the same period (Figure 5.2). It was not 

until April/May 2012 that the streams appeared to recover to a typical average discharge for 

that season (based on the observed mean precipitation, which was closer to the historical 

reference values for the same period). 

 
Figure 5.1 - Locations of the study stream sites in Portugal (black triangles) and the precipitation gauge 

station (square) used in this study. 
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Figure 5.2 - Total monthly precipitation (mm) in the central territory region, Portugal, recorded during 

the study period (bars) and the historical mean monthly precipitation for the period of 1980-2013 

(line). Black arrows represent the sampling events, and the open arrow indicate the time when the 

streams completely dried out. 

5.2.2 Sample collection and processing 

The streams were first sampled in spring 2011 (Sample 1-s1; May). This sample was 

considered as the pre-drought condition, as the selected streams were not yet completely 

dewatered. The post-drought condition was assessed by four biweekly sampling events after 

rewetting during winter (between November 2011 and January 2012; Sample 2-s2, Sample 3-

s3, Sample 4-s4, Sample 5-s5) and then again in spring 2012 (Sample 6-s6; May; Figure 5.2). 

Sampling was only conducted when the streams had visible water in their streambeds. For 

each sampling event, measurements of pH, conductivity (µS·cm-1), total dissolved oxygen 

(DO; mg·L-1) and current velocity (m·s-1) were performed in situ using field meters 

(Multiparameter Probe 3430 WTW®; Current Meter 108MKIII VALEPORT). The water 

samples were collected in spring 2011 and spring 2012 (s1 and s6) for laboratory 

determination of chemical oxygen demand (COD; mg·L-1), biochemical oxygen demand (BOD5; 

mg·L), phosphates (PO4
3-; mg·L-1), total phosphorus (P; mg·L-1), total nitrogen (N; mg·L-1), 

nitrates (NO3
-; mg·L-1) and alkalinity (CaCO3; mg·L-1). In addition, all stream sites were 

geomorphologically characterized according to River Habitat Survey methodology (RHS - 

Environment Agency, 2003) to determine the Habitat Quality Assessment (HQA) scores. The 

HQA index reflects the overall habitat diversity through the assessment of the flow-types, 

diversity of channel substratum, in-channel vegetation, and the extent of bank-top trees and 

near-natural land-use adjacent to the river. The final HQA score results from the sum of the 
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individual scores attributed to those features; a higher score indicates a site with better 

habitat condition (36 is the Excellent-Good boundary for the HQA of littoral streams). 

Macroinvertebrates were sampled with a hand-net (500 μm mesh size) by kicking and 

sweeping the benthos, following a multi-habitat approach described in INAG (2008). Each 

sample was composed of six sub-samples distributed proportionally to the most 

representative habitats and defined by an area of 1 m × 0.25 m (hand net side). The samples 

were preserved in formaldehyde (4%) and conserved in ethanol (90%) after sorting for 

future identification and counting. Taxonomic identification using a stereomicroscope was 

typically performed to genus level; however, Chironomidae and Oligochaeta were identified 

to sub-family or tribe level.  

The diatoms were sampled and processed based on European standards (European 

Committee for Standardisation, 2003, 2004, 2006) and on the recommendations of Kelly et al. 

(1998). Whenever stones (preferred sampled substrate) were absent or unavailable, stream 

sediment was sampled as a substitute. A previous study (Mendes et al., 2012) showed that 

alternative substrates can be used for water quality assessment in the absence of a certain 

substrate, disregarding substrate variability. The epilithic biofilm was scraped with a 

toothbrush from the upper surface of submerged stones, comprising an area about 100 cm2. 

For sampling epipsammon/epipelon, a syringe (50 mL) was used to collect streambed 

sediment. The samples were preserved with formaldehyde (4%) and oxidised using 

concentrated nitric acid and potassium dichromate for approximately 24 hours for organic 

matter digestion. The samples were mounted on permanent slides using Naphrax®. Under a 

light microscope (100 × objective and 1.32 numerical aperture), up to 400 diatom valves for 

each sample were counted and identified to species or infra-specific rank mainly using 

Krammer and Lange-Bertalot’s floras (1986, 1988 and 1991a, b). 

5.2.3 Community analyses and biological metrics 

To assess differences in the macroinvertebrate and diatom communities between the 

different sampling events, non-parametric multidimensional scaling analysis (MDS) were run 

for each biological element based on a Bray-Curtis similarity matrix. We used taxa 

abundances from sites in spring 2011 pre-drought (s1) and spring 2012 post-drought (s6; 

diatom data transformed by fourth root). In addition, the ANOSIM global test (analysis of 

similarities; 126 permutations) was used to test for significant differences between the above 

groups of samples for both biological elements. ANOSIM is a non-parametric randomization 

based multivariate test analogous to a standard univariate ANOVA. 

To determine the taxa contributing the most to the dissimilarity between pre-drought 

(May 2011: s1) and post drought conditions (May 2012: s6), a SIMPER analysis (with Bray-
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Curtis similarity) was used based on the total abundance of diatoms and invertebrates for all 

sites at corresponding sampling date. In addition, widely used metrics were applied to 

evaluate eventual responses to drought. The metric values were represented by the mean (± 

standard error; SE) from all sites at each sampling event. The differences between sampling 

occasions were tested for each metric by running PERMANOVA pairwise tests (permutational 

univariate analysis of variance; based on Euclidean distance matrix; 999 permutations). 

For macroinvertebrates, we used the following metrics: total number of individuals, 

richness (number of taxa), Pielou’s evenness, EPT taxa, Coleoptera and Diptera richness 

(number of Families) and the multimetric index IPtI (‘Índice Português de Invertebrados’). The 

IPtI was expressed in an Ecological Quality Ratios (EQR), in which the values represent the 

relation between the observed biological parameters in a river type and the expected for that 

same river type in reference conditions, assigning a quality classification as High, Good, 

Moderate, Poor and Bad, according to the Water Framework Directive (WFD; European 

Commission, 2000). For diatoms we used the following metrics: richness (number of taxa), 

Shannon-Wiener diversity index, Pielou’s evenness and the IPS index (‘Indice de 

Polluosensibilité Spécifique’; Cemagref, 1982) expressed in EQR.  

For the macroinvertebrates, the metrics and indices were determined using the Amiib@ 

software (http://dqa.inag.pt/documenacaoficial_PORTUGAL_invertebradosbentonicos.html) 

developed by Instituto da Água, I.P., whereas the OMNIDIA software v. 5.3 (Lecointe et al., 

1993) was used for the diatoms. All statistical tests were performed using PRIMER 6 & 

PERMANOVA+. 

5.3 Results 

5.3.1 Abiotic characterisation of the sites 

The physical and chemical parameters recorded in the streams studied confirmed that 

they were all affected by mild organic pollution. The COD values ranged from 2.1 mg/L to 9.8 

mg/L, and phosphates values ranged from 0.25 and 0.97 mg PO43-·L-1 (Table 5.1). The HQA 

scores varied from 22 to 42, indicating that the Eiras and Alcoa streams had a low habitat 

quality (lowest scores), whereas the Serra and Boialvo had a high (highest scores), thus 

revealing an excellent classification according to the Portuguese limits established for the 

types of rivers under study (INAG, 2009). 

 



Chapter 5 

127 

Table 5.1 - Mean values (± standard error) of the measured and calculated variables for each study site. 

Parameters 
Ribeira de 

Boialvo (B) 

Ribeira de 

Eiras (E) 

Rio da Serra (S) Nascente do 

Rio Alcoa (Al) 

Ribeira de 

Ança (An) 

Latitude (y) 40.5844 40.254 40.4124 39.5366 40.2675 

Longitude (x) -8.3358 -8.4238 -8.3486 -8.9457 -8.5153 

Distance to source (km) 7.1 6.8 6.9 13 12 

Altitude (m) 44 38 111 44 36 

Current velocity (m·s-1)a 0.38 (±0.09) 0.41 (±0.15) 0.76 (±0.20) 0.78 (±0.16) 0.04 (±0.02) 

Depth (cm) a 21.00 (±6.42) 8.80 (±3.25) 21.60 (±2.98) 25.50 (±2.35) 36.33 (±7.12) 

pHa 6.80 (±0.05) 8.20 (±0.14) 7.35 (±0.24) 6.92 (±0.04) 7.10 (±0.08) 

Oxygen (mg·L-1)a 9.38 (±0.36) 10.10 (±0.64) 11.44 (±1.07) 6.50 (±0.18) 6.18 (±0.94) 

Conductivity (μS·cm-1)a 132.72 (±8.49) 275.40 (±19.58) 83.78 (±4.26) 619.33 (±32.83) 697.17 (±36.79) 

Chemical oxygen demand 
(COD; mg·L-1)b 

6.90 (±1.42) 5.97 (±0.54) 7.09 (±2.69) < 2.1 4.08 (±3.03) 

Biochemical oxygen 
demand (BOD5; mg·L−1) 

< 3.3 < 3.3 < 3.3 < 3.3 < 3.3 

Phosphates (PO3− 

4; mg·L−1)b 

0.50 (±0.25) 0.45 (±0.00) 0.64 (±0.33) 0.33 (±0.03) 0.46 (±0.05) 

Total P (P; mg·L−1)b 0.39 (±0.07) 0.49 (±0.26) 0.69 (±0.45) 0.34 (±0.09) 0.46 (±0.18) 

Total N (N; mg·L−1)b 0.64 (±0.23) 0.23 (±0.16) 0.28 (±0.21) 0.26 (±0.20) 0.13 (±0.07) 

Nitrates (NO3-; mg·L−1)b 2.28 (±0.58) 2.01 (±0.24) 0.78 (±0.41) 2.61 (±0.38) 3.03 (±0.63) 

Alcalinity (CaCO3; mg·L−1)b 116.35 (±96.45) 71.54 (±12.40) 70.35 (±60.75) 208.85 (±16.95) 282.35 (±69.55) 

Habitat Quality Assessment 
(HQA score) 

41 22 42 24 33 

a all sampling values; b spring values. 
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5.3.2 Macroinvertebrate patterns 

A total of 114 different macroinvertebrate taxa were identified for all sites throughout 

the study, comprising a total of 26,631 individuals. Taxa such as Ancylus fluviatilis 

(Planorbidae; Gastropoda), Baetis spp. (Baetidae; Ephemeroptera), Echinogammarus spp. 

(Gammaridae; Amphipod), Orthocladiinae (Chironomidae; Diptera), Perlodidae (Plecoptera), 

Oulimnius spp. (Elmidae; Coleoptera) and Simulidae (Diptera) were among the most 

abundant (above 1,100 total individuals). 

The MDS (stress 0.11) analysis showed a partial segregation between macroinvertebrate 

communities from pre-drought (s1) and post-drought (s6) conditions; however, for two sites 

(Boialvo and Serra), the s1 and s6 communities were more similar to each other than in the 

other cases (Figure 5.3A). The ANOSIM test confirmed differences in macroinvertebrate 

community composition between the two sampling events: s1 was different from s6 (Global R 

= 0.30, p=0.02), despite the high variability within groups. 

The SIMPER analysis revealed 88.3% dissimilarity in the macroinvertebrate community 

between samples in the pre-drought year (s1) and the post-drought year (s6). This high 

dissimilarity was mainly due to a decrease in s6 (post-drought) of the mean abundance of 

taxa such as Baetis spp., Echinogammarus spp., Ancylus fluviatilis, Simuliidae, Hydroporus spp. 

(Dytiscidae; Coleoptera) and Perlodidae and an increase of Leptophebiidae, Oligochaeta, 

Dugesia spp. (Dugesiidae; Turbellaria) and Orthocladiinae (Table 5.2).  

When analysing all sampling events, metrics such as the richness (number of taxa), 

number of EPT taxa, Coleoptera richness and IPtI index followed a similar short-term 

recovery pattern (Figure 5.4b, d, f, g), i.e., values obtained in spring 2011 (s1) generally 

decreased after the drought event (s2) and progressively recovered over time along sampling 

events (s3, s4, s5) until spring 2012 (s6). For the remaining metrics (evenness and Diptera 

richness), the values increased or did not changed immediately after the drought event (s2) 

and remained generally unchanged over 12 months until s6 (Figure 5.4c, e). However, when 

evaluating the significant differences among sampling events (PERMANOVA pair-wise test), 

the total number of individuals in s1 was different from s2 (t=3.48; p=0.01), s4 (t=2.47; 

p=0.03) and s6 (t=2.89; p=0.01). Moreover, the abundance in s2 was different from s5 

(t=2.76; p=0.01). Further, the total number of macroinvertebrates decreased sharply by 

91.5% from s1 to s2 and recovered by 83.7 % from s2 to s5. However, when comparing 

spring 2011 and spring 2012, the total number of macroinvertebrates decreased by 77.6% 

(from s1 to s6; Figure 5.4a).  

Although we found no significant differences in richness (p>0.05, PERMANOVA), the 

richness decreased by 45.3% from s1 to s2 (sampling just after the drought event) but 
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recovered again in s5 (42.6 %). After one year (s6), the taxa richness was 12.5% lower 

compared with the pre-drought condition (s1; Figure 5.4b). 

Pielou’s evenness in s1 was different from s2 (t=3.90; p=0.016), s3 (t=2.86; p=0.040) and 

s6 (t=2.42; p=0.038) according to the PERMANOVA pair-wise test results. The evenness 

increased by an average of 30.5% for all sites from s1 to s2. Overall, from s1 to s6, the 

community evenness presented an increase of 23.7% (Figure 5.4c).  

No significant differences were found in the EPT taxa and Coleoptera and Diptera 

richness (p>0.05, PERMANOVA pair-wise test) among the sampling events; however, a 

pattern was detected. In s2, rheophilic taxa such as Ephemeroptera, Plecoptera and 

Trichoptera decreased abruptly by 77.4% from s1 but progressively recovered over the 

duration of the sampling events, increasing by 73.1% until s5. After one year, these specific 

taxa had decreased 32.7% (from spring 2011 to spring 2012; Figure 5.4d). As for Diptera, in 

the majority of sites, the tendency was to maintain or increase the number of families (mean 

increased of 16.7%) after one year (Figure 5.4e). In addition, Diptera richness in s2 only 

decreased by 5 % when compared to s1. In the case of Coleoptera, the number of families 

decreased by 40.0% in s2 from s1 but recovered progressively by 38.8% until s5. Over one 

year of sampling, the Coleoptera richness decreased by approximately 10.0% from s1 to s6 

(Figure 5.4f). 

Finally, regarding the IPtI (macroinvertebrate index) given by the EQR values, the 

quality status in s1 was different from s2 (t=3.48; p=0.01), s4 (t=2.47; p=0.03) and s6 (t=2.89; 

p=0.02); this indicates that EQR values after one year (s6) had not recovered their initial 

status of high ecological quality. In addition, s2 was different from s5 (t=2.76; p=0.01). The 

lowest quality status for all streams was observed in s2 (first sampling just after the drought 

event), with a mean EQR value of 0.49 (±0.09), which indicates a moderate quality status 

(Figure 5.4g). 

Table 5.2 - Macroinvertebrate taxa contributing 88.3% to the mean dissimilarity (SIMPER analysis) 

between s1 and s6 (spring 2011 pre-drought and spring 2012 post-drought, respectively) with their 

percentage contribution, average dissimilarity and standard deviation (SD). The increase (I) or 

decrease (D) in the mean abundance of each taxon from s1 to s6 is also shown. 

Taxon Av. Diss. SD Diss. Contrib. % I/D 

Baetis spp. 16.7 1.1 18.9 D 

Echinogammarus spp. 12.8 0.5 14.5 D 

Simuliidae 10.2 0.5 11.6 D 

Ancylus fluviatilis 9.1 0.5 10.3 D 

Leptophlebiidae 6.2 0.8 6.4 I 

Perlodidae 4.8 0.5 5.2 D 

Hydroporinae 3.3 0.7 3.6 D 

Ephemerella spp. 3.3 0.7 3.6 D 
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Oligochaeta 2.7 0.6 3.0 I 

Dugesia spp. 2.0 0.7 2.2 I 

Orthocladiinae 2.0 0.7 2.2 I 

Physa spp. 2.0 0.5 2.2 D 

Chironominae 1.8 0.6 2.0 D 

Oulimnius spp. 1.7 0.9 1.8 D 

Ecdyonurus spp. 1.4 0.6 1.6 I 

 

 
Figure 5.3 - Multidimensional Scaling Analysis ordination for the macroinvertebrate (A) and diatom 

(B) communities of all study sites sampled in the pre-drought (spring 2011, s1: black triangles) and 

post-drought (spring 2012, s6: white triangles) conditions. Site codes are also indicated (Al: Alcoa; An: 

Ança; B: Boialvo; E: Eiras and S: Serra). 
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Figure 5.4 - Macroinvertebrate metrics for all study sites (mean ± SE) at each sampling event from 

spring 2011 (s1) until spring 2012 (s6); a) total number of individuals, b) number of taxa (richness), c) 

Pielou’s evenness, d) EPT taxa, e) number of Diptera families (Diptera richness), f) number of 

Coleoptera families (Coleoptera richness) and g) IPtI index (expressed in Ecological Quality Ratios). 

5.3.3 Diatom patterns 

A total of 181 diatom species were identified in all the samples. However, only 66 

species presented a relative abundance above or equal to 1% in at least one sample. The 
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species Achnanthidium minutissimum (Kützing) Czarnecki, Planothidium frequentissimum 

(Lange-Bertalot) Lange-Bertalot, Achnathidium cf. kranzii (Lange-Bertalot) Round & 

Bukhtiyarova and Karayevia oblongella (Østrup) Aboal were the most abundant. 

The MDS (stress 0.08) showed an apparent segregation between s1 and s6 samples but 

also a high variability among sites, except for the Serra site (Figure 5.3B). However, no 

significant differences were confirmed (Global R=0.1, p>0.05; ANOSIM). The dissimilarity was 

65.4% (SIMPER analysis) between spring 2011 (s1) and spring 2012 (s6), which was mainly 

due to the disappearance of species in post-drought samples such as Cocconeis euglypta 

Ehrenberg, Amphora pediculus (Kützing) Grunow ex A. Schmidt, Reimeria sinuata (W. 

Gregory) Kociolek & Stoermer and Cocconeis placentula var. lineata (Ehrenberg.) Van Heurck 

and the appearance of others like Nitzschia palea var. debilis (Kützing) Grunow and Fragilaria 

gracilis (Østrup). In addition, Gomphonema rhombicum Fricke and Eolimna minima (Grunow) 

Lange-Bertalot & W. Schiller were among the species that contributed the most for this 

dissimilarity by decreasing, whereas species such as Planothidium frequentissimum (Lange-

Bertalot) Lange-Bertalot, Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot, 

Navicula veneta Kützing and Karayevia oblongella increased in s6 compared to s1 (Table 5.3). 

When analysing the selected metrics in all streams, we found that richness and evenness 

for the diatom assemblages showed the same recovery trend over the sampling events from 

s2 to s6 (Figure 5.5a, c), despite there being no significant differences (p>0.05; PERMANOVA 

pair-wise test). For these metrics, an increase of 11.5% (in richness) and 14.3% (in evenness) 

was observed from s1 to s2; and over one year (from s1 to s6) an increase of 11.5% 

(richness) and 15.9% (evenness; Figure 5.5c) was also recorded. 

When analysing the IPS index scores, the good water quality status observed in s1 was 

not altered in s2 (before and immediately after the drought event). However, the index values 

dropped in s3, changing the status to moderate. In s4 and s5, the status recovered to good 

again. Despite these results, the average of the study sites in spring 2012 did not recover to 

the pre-drought values of spring 2011 (the quality status changed from good in s1 to 

moderate in s6; Figure 5.5d). 
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Table 5.3 - Diatom taxa contributing 65.4% to the mean dissimilarity (SIMPER analysis) between s1 

and s6 (spring 2011 pre-drought and spring 2012 post-drought, respectively), with their percentage 

contribution, average dissimilarity and standard deviation (SD). The increase (I) or decrease (D) in the 

mean abundance of each taxon from s1 to s6 (spring 2011 pre drought and spring 2012 post-drought) 

is also shown. 

Taxon Av. Diss. SD Diss. Contrib. (%) I/D 

Nitzschia palea (Kützing) W. Smith 3.3 1.2 5.0 I 

Planothidium frequentissimum (Lange-
Bertalot) Lange-Bertalot 

3.2 1.1 4.9 I 

Planothidium lanceolatum (Brébisson ex 
Kützing) Lange-Bertalot 

3.2 1.1 4.9 I 

Cocconeis euglypta Ehrenberg 3.1 1.1 4.7 D 

Navicula veneta Kützing 3.1 1.1 4.7 I 

Karayevia oblongella (Østrup) Aboal 2.9 1.0 4.4 I 

Gomphonema rhombicum Fricke 2.8 0.7 4.3 D 

Amphora pediculus (Kützing) Grunow ex A. 
Schmidt 

2.5 1.1 3.8 D 

Eolimna minima (Grunow) Lange-Bertalot & 
W. Schiller 

2.4 1.2 3.7 D 

Reimeria sinuata (W. Gregory) Kociolek & 
Stoermer 

2.4 0.8 3.6 D 

Nitzschia palea var. debilis (Kützing) Grunow 2.3 0.8 3.5 I 

Fragilaria capucina Desmazières 2.1 0.9 3.3 I 

Cocconeis placentula Ehrenberg 2.1 0.8 3.2 D 

Achnanthidium minutissimum (Kützing) 
Czarnecki 

2.1 1.5 3.2 D 

Fragilaria vaucheriae (Kützing) J. B. Petersen 2.0 0.9 3.1 I 

Mayamaea atomus var. permitis (Hustedt) 
Lange-Bertalot 

1.9 1.0 3.0 I 

Gomphonema acuminatum Ehrenberg 1.8 0.9 2.8 I 

Melosira varians C. Agardh 1.8 0.9 2.7 D 

Eunotia minor (Kützing) Grunow 1.8 0.9 2.7 D 

Gomphonema parvulum (Kützing) Kützing 1.8 0.9 2.7 I 

Navicula gregaria Donkin 1.7 0.7 2.6 I 

Fragilaria gracilis Østrup 1.7 0.8 2.6 I 

Ulnaria biceps (Kützing) Compère 1.7 0.9 2.6 I 

Nitzschia capitellata Hustedt 1.7 0.9 2.6 I 

Nitzschia inconspicua Grunow 1.6 0.8 2.5 I 

Encyonema minutum (Hilse) D. G. Mann 1.5 0.7 2.4 D 

Nitzschia fonticola (Grunow) Grunow 1.3 0.7 2.0 I 
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Figure 5.5 - Diatom metrics for all study sites (mean ± SE) at each sampling event from spring 2011 

(s1) until spring 2012 (s6); a) number of taxa (richness), b) Shannon-Wiener diversity index, c) 

Pielou’s evenness and d) IPS index (expressed in Ecological Quality Ratios). 

5.4 Discussion 

Diatom and macroinvertebrate community recovery differences 

The macroinvertebrates and diatoms differed in their recovery response after 

dewatering. The macroinvertebrates significantly decreased their abundance when the water 

first resumed, whereas the diatoms apparently did not differ from the pre-drought-sampled 

community. In fact, the same pattern prevailed after a year. The diatom biodiversity was not 

significantly altered over the rewetting progression. This could be because, when compared 

to macroinvertebrates, diatoms have a rapid life cycle and a consequently rapid ability to 

colonise a habitat. Oemke and Burton (1986) concluded that a period between 14 days to one 

month was adequate to complete the colonization of artificial substrates, attaining the 

equivalent to mature diatom communities, which was quite similar to the recovery time that 

we found in the present study (approximately two weeks). Despite their short life cycle, 

diatoms are capable of persisting in refuges during the dry period (Robson et al., 2008). 

Furthermore, many benthic algal species are able to resist desiccation due to physiological 

adaptations such as thick cell walls or resistant propagules, facilitating recolonisation 

(Steinman and McIntire, 1990). Regarding benthic invertebrates, the reduced flow and 
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decreased water velocity were not beneficial to taxa strongly dependent on flowing water, 

such as the EPT taxa (Boulton, 2003; Lake, 2003), whereas it had no effect on Diptera or 

Coleoptera. The latter taxa are most likely able to better tolerate extreme drought because 

they have desiccation-resistant stages (Coleoptera) or are capable of surviving in moist 

streambeds (Diptera; Lake, 2003; Boulton and Lake, 2008). Indeed, we found an increase of 

taxa resistant to drying and typically characteristic of intermittent systems, such as 

Oligochaeta and several Diptera (Frouz et al., 2003; Dumnicka and Koszalka, 2005). 

For both studied benthic elements, the increase in evenness immediately after the 

dewatering event followed the pattern of the first colonisation stages of empty niches (Begon 

et al., 1996). In the particular case of diatoms, the dominant species were generally 

characteristic of oligo- to eutraphentic environments, suggesting that the community shifted 

from the first colonisation stages to a stage of response from the stress affecting the site (van 

Dam, 1994). 

 

Drought effects on the evaluation of the ecological status 

Regarding the biological quality, the IPS index for diatoms was similar over the 

rewetting progression, but the quality status decreased after one year; this indicates that a 

shift in species occurred. Indeed, there was a shift from more sensitive species such as 

Reimeria sinuata and Cocconeis placentula var. lineata in spring 2011 to less sensitive or even 

tolerant species such as Nitzschia palea and Nitzschia palea var. debilis in spring 2012. 

Moreover, despite the initial similarity between the studied streams, the drought appeared to 

induce different environmental (physical and chemical) changes in the streams that led to an 

irregular response of the diatom communities to the drought. Similarly, Boix et al. (2010) did 

not find linear or uniform changes in the taxonomic composition or structural physiognomy 

of diatom communities in streams affected by hydrological alteration. 

Contrary to diatoms, stream water quality, given by the macroinvertebrate IPtI index, 

decreased with the drought event, and although it did not reach the initial reference values 

after one year, our streams gradually recovered during the winter season. Both communities 

provide reliable information on water quality (e.g., Alba-Tercedor et al., 2002; Rimet et al., 

2005). Diatoms are more sensitive to changes in water chemistry, whereas invertebrates are 

more susceptible to channel morphological changes and habitat conditions (Passy et al., 

2004). Under drought effects, their simultaneous use for bioassessment should be 

considered, as their responses are different and appear to be complementary (Feio et al., 

2007), particularly if considering responses at different temporal scales. In addition, these 

structural bioassessment measures using taxonomic composition may be complemented by 

adding trait-based metrics (e.g., body size, life cycle duration, dispersal ability, respiration 

type), which indirectly provide information on the ecological functioning of streams (Dolédec 
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and Statzner, 2010) and could therefore yield accurate insights into the assessment of 

extreme events such as droughts. 

The role of habitat features in drought resistance and resilience 

The river habitat characteristics appeared to play an important role in the recovery of 

macroinvertebrate and diatom communities. Our study showed that the initial condition of 

streams was important in the recovery process, as the communities of streams displaying 

better environmental conditions (e.g., riparian corridors, HQA) recovered faster and easier 

from extreme disturbances, which is in agreement with other authors (e.g., Sponseller et al., 

2001; Elosegi et al., 2010; Thomson et al., 2012). It is known that benthic communities are 

strongly influenced by local riparian conditions (Lammert and Allan, 1999; Sponseller et al., 

2001; Poole and Berman, 2001; Elias et al., 2012), which might generate a buffer favouring 

humidity and lower temperatures by shading. Moreover, the heterogeneity of habitats within 

the channel and the availability, size and the spatial distribution of refugia during drought 

likely played a crucial role not only in the communities’ resistance but also in their resilience 

(Magoulick and Kobza, 2003; Lake, 2003) to the dewatering event in the streams of this 

study. By moving to moist leaf litter or to the moisture under rocks and bark, migrating to the 

hyporheic zone or burrowing into the bed of the water body (Boulton et al., 1992; Clinton et 

al., 1996; Magoulick and Kobza, 2003), the communities found drought refugia that enabled 

them to survive and progressively recover. 

Under the current climate change scenario and consequent unpredictability of extreme 

events such as the occurrence of dewatering droughts in small, typically perennial streams, 

the maintenance of morphological riverine features that enhance habitat quality (e.g., 

continuous riparian corridors, channel habitat heterogeneity) constitutes a determining 

factor in the continued resilience of aquatic ecosystems (Lake, 2003). 

5.5 Conclusion 

Our study revealed that isolated, unusual dewatering drought events in temperate 

streams affected primary and secondary producers despite their differences in reaction and 

recovery patterns. The ability of diatom assemblages to recover faster than 

macroinvertebrates after a drought is most likely due to their shorter life cycles, capability to 

remain in refuges and physiological adaptations to dryness. We also found that the quality of 

the habitat appears crucial to minimise the impact and accelerate the recovery processes of 

these key riverine biological communities as soon as water returns to the channel. 
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With increasing anthropogenic pressures and climatic alterations, we expect biological 

communities of temperate streams to change through time to comprise more pollution-

tolerant taxa and those with a higher resilience to extreme drought events. 

 

Abbreviations 

EQR Ecological Quality Ratios 

HQA Habitat Quality Assessment 

IPS Indice de Polluosensibilité Spécifique 

IPtI Índice Português de Invertebrados 

MDS non-metric Multidimensional Scaling 

RHS River Habitat Survey 

S1 Samples collected in spring 2011 (May), before the severe and uncharacteristic 

drought event, pre-drought condition 

S2 to 

S5 

Samples collected biweekly in winter (between November 2011 and January 

2012), after the drought period when normal flow conditions were re-established, 

post-drought condition 

S6 Samples collected in spring 2012 (May), after the drought period when normal 

flow conditions were re-established, post-drought condition 

WFD Water Framework Directive 
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ABSTRACT 

Although diatoms are important bioindicators of water quality, their ecological traits are 

still not well understood. A major issue is that of substrate preferences, which may result in 

differences in production, and assemblage structure and composition, and which should be 

taken into account for water quality assessment studies. Thus in this work, the periphyton 

grown on sand and ceramic tiles in indoor controlled channels were compared to understand 

if substrate differences lead to differences in: periphyton production (chlorophyll-a), 

chlorophyll-b and c concentrations, diatom assemblages (diversity-Shannon-Wiener, cell 

density, taxonomic composition, trait proportions) and water quality assessments (IPS - 

‘Indice de Polluosensibilité Spécifique’). A combined inoculum of periphyton from four 

Portuguese streams was introduced to the running channels (six sand and six tile) and left to 

colonize for 35 days. Epilithic (tiles) and epipsammic (sand) assemblages were sampled at 

days 14 and 35. We verified that there were no differences in chlorophyll-a concentration 

over time and between substrates. On both sampling moments the epipsammic assemblages 

had higher concentration of chlorophyll-c and diatom density but without significant 

differences over time in each substrate. The taxonomic composition was different between 

substrates and over time. However, these differences were not reflected in water quality 

assessment. The diversity was also similar between substrates in both sampling moments but 

it was higher at day 14. Mobile and stalked species were more abundant over the entire study 

and differed significantly between substrates, with the epipsammic assemblages presenting 
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higher abundances of both traits. We concluded that the colonizing substrate influences 

diatom assemblages but not the water quality assessment. 

Kewords 

Diatoms, chlorophyll, traits, mesocosm, water quality assessment, freshwater 
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6.1 Introduction 

Streams are continuously affected by erosion and deposition processes, which along 

with lithology, slope, current, degree of disturbance, and distance from headwaters result in 

different sediment sizes (Cattaneo et al., 1997; Rolland et al., 1997). Therefore, there are 

streams where rocks dominate (large stable substrates), streams that within the same site 

have large stable and small unstable substrates (e.g., sand), and even streams with fine 

unstable substrates only (in particular lowland sites). Substrate type, texture, roughness and 

stability/instability (granulometry) are relevant habitat criteria for the interactions between 

benthic algae and their substrates (Cattaneo et al., 1997; Hunt and Parry, 1998; Janauer and 

Dokulil, 2006; Bergey and Cooper, 2015). Substrate size can affect the abundance and 

composition of the attached algae by providing different degrees of stability to colonizing 

organisms (Cattaneo et al., 1997). Several studies have addressed the distinct associations of 

periphyton on different substrates (e.g., rock surface, upper layer of sediment, or aquatic 

plants) through their biovolume, diversity, algal assemblages and chlorophyll concentration 

(e.g., Cattaneo et al., 1997; Rolland et al., 1997; Sabater et al., 1998; Potapova and Charles, 

2005). 

Among algae, diatoms have been selected in most European countries as representative 

of periphyton (Almeida and Feio, 2012; Kelly et al., 2012; Feio et al., 2014) namely due to 

their good performance as water quality indicators (Lowe and Pan, 1996; Kelly et al., 1998; 

Stevenson and Pan, 1999). From all types of substrates found in rivers, most studies focus on 

epilithon (Winter and Duthie, 2000), as hard surfaces are the preferred substrates used in 

water quality assessment (Kelly et al., 1998). However, other substrates like submerged 

macrophytes and sediments are also commonly found and may be dominant in some stream 

and river sections (Kelly et al., 1998; Elias et al., 2015). Some studies indicate that benthic 

diatom species present different biological characteristics that enable them to adapt to 

specific micro-habitats (Krejci and Lowe, 1986; Soininen and Eloranta, 2004). If these natural 

inter-substrate differences are reflected in water quality assessment metrics, this can 

potentially mask responses of algal assemblages to stresses associated with human activities 

and may interfere with water quality assessments based on the knowledge of these responses 

(Winter and Duthie, 2000; Potapova and Charles, 2005; Bere and Tundisi, 2011; Mendes et 

al., 2012). However, some studies have tested the effect of different substrates in water 

quality assessments without finding significant differences (Kitner and Poulíčková, 2003; 

Potapova and Charles, 2005; Mendes et al., 2012). These studies were conducted under 

natural conditions where the assemblages are shaped simultaneously by many 

environmental factors which may lead to confounding effects (Stevenson and Pan, 1999). In 
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addition the substrate effect is difficult to detect in large-scale, coarse resolution studies, 

when the role of other factors, such as inter-stream differences in hydrology, physical habitat, 

and chemistry become more important than the role of substrate (Potapova and Charles, 

2005). Even when different diatom assemblages of the same river are compared and 

differences are verified (Cetin, 2008) it is difficult to ensure that the assemblages have been 

exposed to the same environmental variations at the same time or even at the same 

developmental phase. Additionally, it is impossible to avoid contamination between 

substrates with diatoms migrating between habitats in wadeable streams. 

Therefore, the present work was conducted ex situ under controlled experimental 

conditions to investigate: (1) if algae assemblages establishing on new hard (ceramic tiles) 

and soft (sand) substrates become significantly different concerning chlorophyll-a (chl-a), b 

(chl-b) and c (chl-c) concentrations, diversity (Shannon-Wiener, H’), density (cells·cm-2), 

taxonomic composition and trait proportions; (2) how they evolve over time (up to five 

weeks of colonization) on the different substrates (3) and if differences in diatom 

assemblages on the different substrates result in differences in water quality assessment. The 

water quality of the channels was assessed by using a common autoecological diatom method 

which is also the Portuguese official index, the ‘Indice de Polluosensibilité Spécifique’ (IPS) for 

monitoring programs, in the context of the Water Framework Directive (INAG, 2009). 

6.2 Methods 

6.2.1 Experimental system description 

The experimental system was composed of twelve modular mesocosm systems (MMS). 

Each MMS was composed of one Poly(methyl methacrylate) (PMMA, 8 mm thick) mesocosm 

channel (150 cm long, 10 cm wide and 12 cm high) with a maximum functional volume of 

approximately 18 L, connected to a PMMA (8 mm thick) water reservoir (60 cm long, 10 cm 

wide, and 45 cm high), operating with a maximum functional water volume of approximately 

27 L (Figure 6.1).  

The MMS operated in recirculated system. Water in the reservoir was pumped through a 

25 mm PVC (polyvinyl chloride) inlet pipe system, which allowed flow direction regulation in 

the mesocosm channel, by a submerged water pump (EHEIM compact+ 3000, Germany) that 

can operate with a regulated water flow from 200 to 2000 L/h. The water outlet pipe system, 

from the mesocosm channel to the reservoir, was built with 50 mm PVC pipe, with an 

adjustable damper placed close to the end of the mesocosm channel, which allowed the 

regulation of water level.  
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Each mesocosm channel was illuminated from above with T5 HO 80W tubular 

fluorescent lamps, Lumilux - 8000 K (Osram, Germany). The distance from the illumination 

system and the water surface was adjustable in order to control the photosynthetic active 

radiation (PAR). 

6.2.2 Experimental Set-up 

At the beginning of the experiment 25 L of tap water was fed to the water deposit of each 

channel, after passing through 5 µm wound polypropylene and active carbon filters to 

remove suspended particulate matter and free chlorine, respectively. The water depth in 

mesocosm tanks was kept at 5 cm. Water velocity was maintained at approximately 0.05 m/s. 

The illumination systems were positioned at about 1 m above the channels to provide light to 

the attached algae (≈200 µmol/m2/s) with a 12h:12h light-dark cycle. Water temperature 

was measured by K-type thermocouples (Testo 176T4 data logger) and maintained within 17 

°C and 20 °C during the experiment. This was possible with the help of an air conditioning 

system and a well-isolated experimental room that was able to minimize air temperature 

variations. 

The bottom of all mesocosm channels (n=12) was covered with 62 unglazed ceramic 

tiles-T (40 × 50 mm in size). In 6 of the channels (n=6) the tiles were completely covered with 

about 1 cm depth of sand bed-S (98% SiO2, 2 mm particles). A two week preliminary study 

revealed that the tiles did not influence the chemical composition of the circulating water. 

However, in order to exclude any previously undetected differences due to the tile chemical 

composition, and as the sand is almost inert (SiO2), the tiles were kept under the sand bed in 

the sand channels.  

Biofilms samples were collected from four streams in the Portuguese littoral region and 

mixed in 1 L bottle to be used as inoculum in the channels. These biofilm included epilithic 

and epipsammic assemblages. Each channel (n=12) was seeded with 60 mL inoculum at the 

beginning of the experiment. Thereafter, 10 L (40%) of water was removed from each 

channel on a weekly basis and immediately replaced by 10 L of new filtered tap water. The 

total duration of the experiment was 35 days (d35). The streams were selected to obtain a 

diverse inoculum community representative of the different streams found in the central-

western Portuguese region (Atlantic-temperate climate). This includes a variety of streams 

with streambeds ranging from rocks to sand, and with a variety of human pressures (from 

least to highly disturbed) (Feio et al., 2010; Elias et al., 2015).



Effect of global changes and spatial scale on diatom communities of temperate rivers. Dealing with implications in bioassessment 

150 

 
Figure 6.1 - Cross-section of one of the twelve modular mesocosm systems used in the laboratory experiments. See Appendix IV. 
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6.2.3 Water, periphyton sampling and treatment 

The inoculum was left to colonize the substrates in the channels for an initial period of 

seven days, after which water replacement and sampling was initiated. Water samples from 

the channels and from the tap were collected weekly (d0, d7, d14, d21, d28 and d35) for 

determination of alkalinity (mg HCO3-/L), nitrate (mg NO3-/L), silica (mg Si/L), chloride (mg 

Cl-/L), phosphate (mg PO43-/L) and sulphate (mg SO42-/L). Several (from one to every two 

days) in situ measurements of pH, conductivity (µS/cm), and percentage of total dissolved 

oxygen were made using a Multiparameter Probe 3430 WTW throughout the experiment. 

Periphyton samples were randomly retrieved from each channel at two sampling moments: 

day 14 (d14) and day 35 (d35). For a given sampling moment, periphyton samples were 

taken from the same position in each channel; however, the sampling position varied with the 

sampling moment and was always done downstream to upstream to minimize disturbance 

effects. For each sampling moment four subsamples (four tiles) were collected along the 

channel in order to embrace all the possible assemblages variability that can exist within the 

channel. Afterward, these subsamples were all merge in just one sample per channel in each 

sampling moment. 

For the epilithic biofilm (tiles), the upper surface of 4 tiles (80.0 cm2 per channel) was 

scraped with a toothbrush and washed with distilled water into a flask. In epipsammon 

biofilm (sand) sampling, an area of 57.8 cm2 of the upper surface of the sand bed was 

collected into a flask using a syringe. Two distinct samples of each channel were collected at 

each sampling moment, one for diatom analysis and another for chlorophyll determination 

(chl-a, chl-b and chl-c). The area contained in the volume treated was always assured so that 

the results obtained could be expressed per unit area of substrate. 

For the determination of chlorophylls, the total area sampled (80.0 cm2 and 57.8 cm2 for 

epilithic and epipsammom, respectively) of each channel was used. Following Branco et al. 

(2010), the samples were repeatedly centrifuged (2000 rpm) for five minutes until all the 

water was removed and only a pellet remained. Pigments were extracted with 2 mL of 

acetone (90%v) from the pellet; the extract was protected from light and maintained in the 

cold. To break the cells, samples on ice were sonicated in 4 cycles of 15 seconds. The extract 

was stirred for 30 minutes in a refrigerated environment and then centrifuged at 4000 rpm 

for 10 minutes at 4 °C. Chlorophylls-a, b and c were quantified spectrophotometrically and its 

concentration (in µg·cm-2) calculated following the procedure of Jeffrey and Humphrey 

(1975). Chlorophyll-a is used as an indicator of primary production as its found in all algae 

and in Cyanobacteria, chl-c is used as indicator of the presence of diatoms, as its one of its 
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major pigment and chl-b will give us an indication of the biomass from other taxonomic algal 

groups such as Chlorophyta and Euglenophyta.  

For diatom assemblage analysis, a subsample of the total area sampled was oxidised 

with concentrated nitric acid and potassium dichromate for about 24 hours at room 

temperature. The remaining sample was preserved with formaldehyde (5 to 10% final 

concentration). Thereafter, a known volume of the oxidised sample was deposited on a 

coverslip and allowed to dry at room temperature. Permanent slides were mounted using 

Naphrax®. Using a light microscope (100x objective and 1.32 numerical aperture), all the 

unbroken diatom valves for each sample were counted and identified to species or infra-

specific rank mainly using Krammer and Lange-Bertalot’s floras (1986, 1988, 1991a, b) and 

Krammer (2000, 2001, 2009). From those, diatom cell density was determined and 

extrapolated to the unit area (cm2) of each sample; species diversity (H’) and assemblage 

analysis were also derived. The diatom index IPS (Coste in Cemagref, 1982) was also 

calculated with the OMINIDIA software (Lecointe et al., 1993). 

Permanent slides, with the inoculum of biofilm introduced in the channels, were also 

mounted and up to 400 diatom valves counted according to the aforementioned description. 

Prior to oxidation, microscopic identification of all the samples (from the channels and 

inoculum) were also carried out to verify if other group of photosynthetic organisms besides 

diatoms were present and dominating in the samples. 

6.2.4 Selection and calculation of biological traits 

The biological characteristics that enable species to adapt more easily to specific 

substrates (here tile vs. sand) is the capacity to resist dislodgement caused to substrates by 

the stream current and the capacity of moving vertically into or out of the sand depending on 

water velocity. Thus variations in the diatom biological trait life-form were also investigated 

in this study by analysing changes in proportions of categories that have high potential to 

distinguish epipsammic and epilithic diatom assemblages: mobile, planktonic, adnate, and 

pad (Berthon et al., 2011; Rimet and Bouchez, 2011; Rimet and Bouchez, 2012).  

Each species was assigned to all the trait categories that it could display, according to 

Rimet and Bouchez (2012). For each sample, the total number of valves of all the species 

presenting a given trait category was counted. To obtain the total number of valves of each 

trait category in each channel, the average of all the samples from the same treatment was 

calculated. 
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6.2.5 Data analysis 

A completely randomized design was used in the experiment. Statistical differences in 

chlorophyll concentrations, H’, diatom cell density, IPS and biological diatom traits resulting 

from treatment effects were tested with the univariate analysis of variance (equivalent to 

one-way models) PERMANOVA global tests with unrestricted permutations (Euclidean 

dissimilarity measure). Additionally, PERMANOVA pairwise tests with unrestricted 

permutations were performed to assess possible differences between sampling moments 

(d14 and d35), and substrates (S and T). These two sampling moments were selected as we 

consider that at the 7th day differences between substrates were still not evident, and at least 

one month has been recommended for sampling the equivalent of the 'mature’ community 

occurring on natural substrates in the stream (Oemke and Burton, 1986; Kelly et al., 1998).  

To determine if the treatments lead to differences in the diatom assemblages a 

Multidimensional Scaling Analyses, MDS (Bray-Curtis dissimilarity measure; data square root 

transformed) was performed. The statistical differences resulting from the treatment effects 

were tested with a permutational multivariate analysis of variance (MANOVA equivalent) 

PERMANOVA global tests (unrestricted permutations). PERMANOVA pairwise tests 

(unrestricted permutations) were performed to assess at which sampling moments the 

treatments (two substrates) were different and if the differences across treatments were 

consistent over time. SIMPER analysis (data square root transformed, Bray-Curtis similarity) 

was used to determine the most representative taxa (those contributing the most to the 

average similarity within groups) of the different treatments and sampling moments. In 

addition, SIMPER analysis (presence/absence data, Bray-Curtis similarity) was used to 

determine the species that were present in a given substrate and absent from the other at the 

same sampling moment and that contributed more to the group average dissimilarity.  

All the data analyses were performed with PRIMER 6 & PERMANOVA software 

(PRIMER-E Ltd, Lutton, Plymouth, UK). 

6.3 Results 

6.3.1 Physical and chemical parameters 

One of the tile channels was eliminated from the analysis due to difficulties in 

maintaining the water temperature constant. Therefore, the results presented are from six 

channels with sand and five with tiles.  

The water used throughout the experiment showed similar physical and chemical 

characteristics in both treatments (see Table 6.1). The nutrient and conductivity values were 
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relatively high for tap water, e.g., the mean concentration of nitrate found in the channels was 

19.5 mg NO3-/L (Table 6.1). 

Table 6.1 - Mean (±standard deviation) of the abiotic variables measured in the eleven artificial 

channels throughout 35 days of the colonization experiment (from day 0 to 35). BDL-Value below 

detection limit. 

 Sand Tile 

Dissolved Oxygen (%) 101.0±0.9 100.4±0.7 

pH 8.2±0.1 8.2±0.1 

Conductivity (µS/cm) 509.9±72.4 551.7±38.0 

Alkalinity (mg HCO3-/L) 131.6±13.8 137.9±17.4 

Nitrate (mg NO3
-/L) 19.5±4.3 21.0±2.4 

Silica (mg Si/L)a 0.8±0.3 1.0±0.4 

Chloride (mg Cl-/L) 56.8±13.8 61.1±13.2 

Phosphate (mg PO43-/L) < 1.1 (BDL) < 1.1 (BDL) 

Sulphate (mg SO42-/L) 51.1±12.0 54.7±9.9 

6.3.2 Chlorophylls 

The total periphyton biomass, measured as the ubiquitous pigment chlorophyll-a (chl-a), 

did not vary over time (d14 vs. d35) nor between substrates (T vs. S) (Pseudo-F=3.10, 

p(perm)>0.05) (Figure 6.2a). The mean highest chl-a concentration (0.134 µg/cm2) was 

obtained on sand at day 35 while the mean lowest concentration (0.075 µg/cm2) was 

observed on tile at day 14. Chl-c concentration showed statistical differences between 

substrates. In both sampling moments the epipsammic assemblages presented a significantly 

higher concentration of chl-c (Td14 vs. Sd14 t=2.80, p(MC)=0.02; Td35 vs. Sd35 t=2.80, 

p(MC)=0.03) than the epilithic assemblages. The mean highest chl-c value (0.025 µg/cm2) 

was obtained on sand at d35 while the mean lowest concentration (0.007 µg/cm2) was 

obtained on tile at both d14 and d35. This variable did not vary significantly along time for a 

given substrate (Td14 vs. Td35 t=0.18, p(MC)=0.92; Sd14 vs. Sd35 t=1.93, p(MC)=0.08) 

(Figure 6.2b).  

The chl-b concentration values were inferior to the values of the other chlorophylls. The 

mean highest chl-b concentration (0.009 µg/cm2) was obtained on the sand at d14. Chl-b only 

varied along time on the epipsammic assemblages (Td14 vs. Td35 t=2.36, p(MC)=0.05; Sd14 

vs. Sd35 t=8.84, p(MC)<0.01) (Figure 6.2c). Considering sampling moments the epilithic 

assemblages never presented significant higher chl-b concentrations (Td14 vs. Sd14 t=1.90, 

p(MC)=0.12; Td35 vs. Sd35 t=2.77, p(MC)=0.08) (Figure 6.2c). 
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Figure 6.2 - (a) Chlorophyll-a (Chl-a), (b) chlorophyll-c (Chl-c) and (c) chlorophyll-b (Chl-b) 

concentrations (mean±standard deviation) of the algal assemblages developing on tiles (T) and sand 

(S) substrates at day 14 and 35 in the artificial channels. Treatment means labelled with the same 

letter (a, b, c) do not significantly differ (p>0.05; PERMANOVA pairwise test). 

6.3.3 Periphyton assemblages 

The microscopic analyses of the unoxidized samples revealed a clear dominance of 

diatoms on the periphyton assemblages. The other two groups from which we identified 
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more individuals were Chlorophyta (e.g., Scenedesmus, Ankistrodesmus, Coelastrum and 

Monoraphidium) and Cyanobacteria (e.g., Chroococcus).  

The analysis of the inoculum sample used to seed the channels revealed that the most 

abundant species were Staurosira venter (Ehrenberg) Cleve & J. D. Möeller, Achnanthidium 

minutissimum (Kützing) Czarnecki and Asterionella formosa Hassall even though they never 

exceeded 10% abundance. 

In total 174 diatom species were identified during the counting of all the samples 

collected from the channels. The corresponding total number of valves counted ranged from 

568 to 2586. The epipsammic diatom assemblages presented higher cell density in both 

sampling moments when compared to the epilithic assemblages (Td14 vs. Sd14 t=2.59, 

p(perm)=0.03; Td35 vs. Sd35 t=2.39, p(perm)=0.04); however, this variable was not different 

over time within each substrate (Td14 vs. Td35 t=1.44, p(perm)=0.23; Sd14 vs. Sd35 t=1.76, 

p(perm)=0.11) (Figure 6.3).  

 
Figure 6.3 - Diatom density (cells/cm2) (mean±standard deviation) found in the assemblages 

developing on tiles (T) and sand (S) substrates at day 14 and 35 in the artificial channels. Treatment 

means labelled with the same letter (a, b, c) do not significantly differ (p>0.05; PERMANOVA pairwise 

test). 

In terms of diatom taxonomic composition we verified a segregation regarding both the 

sampling moment (Td14 vs. Td35 t=1.74, p(perm)<0.01; Sd14 vs. Sd35 t=1.68, p(perm)<0.01) 

and substrates (Td14 vs. Sd14 t=1.68, p(perm)<0.01; Td35 vs. Sd35 t=1.88, p(perm)<0.01) 

(Figure 6.4). For both substrates, the MDS and SIMPER analysis revealed that the 

assemblages of different channels at day 35 were less similar to each other than at day 14 

(within group average similarity: T14=68.8%, S14=71.6%, T35=66.6%, S35=69.5%) (Figure 

6.4).  

Species analysis (Table 6.2) showed that the species that contributed more to the within 

group average similarity in both sampling moments and substrates were the same but with 

different contributing percentages to in-group similarity: Achnanthidium minutissimum 
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(13.6% to 23.9%), Fragilaria cf. parva (Grunow) A. Tuji & D. M. Williams (6.0% to 11.6%) and 

Navicula notha J. H. Wallace (5.1% to 7.1%) (Table 6.2). The higher contribution of these 

species to the average similarity was verified at day 35 on both substrates. All these three 

species were also found in the inoculum: A. minutissimum presented an abundance of 9%, the 

species F. cf. parva and N. notha presented abundances of 2% and 6%, respectively.  

The differences between the substrates at the same sampling moment were due to less 

abundant taxa and to presence or absence of certain taxa. Comparing both substrates at day 

14, the epipsammic assemblages presented less species of the genus Navicula contributing to 

the group similarity (Table 6.2) and a smaller number of species that were only present in the 

sand assemblages (7 species vs. 18 in the tile) (Table 6.3). Species such as Adlafia minuscula 

var. muralis (Grunow) Lange-Bertalot, Surirella linearis W. Smith and Nitzschia sociabilis 

Hustedt were only found in the epipsammic assemblages while species such as Hippodonta 

capitata (Ehrenberg) Lange-Bertalot, Metzeltin & Witkowski, Reimeria sinuata (W. Gregory) 

Kociolek & Stoermer and Navicula lanceolata Ehrenberg were only present in the epilithic 

assemblages (Table 6.3). However, the diversity was similar between substrates (Td14 vs. 

Sd14 t=1.47, p(perm)=0.16) with mean values of 2.73 and 2.51, epilithic and epipsammic 

assemblages respectively (Figure 6.5). At day 35 the species belonging to the genus Nitzschia 

contributed more to the sand group average similarity (Table 6.2). Once more, the 

epipsammic assemblages presented a smaller number of species that were only present in 

the sand assemblages and that contributed to the group average dissimilarity (3 species vs. 8 

in the tile) (Table 6.3). The species Diadesmis confervacea Kützing, Gomphonema cf. affine 

Kützing and Nitzschia acicularis (Kützing) W. Smith were only found in the epipsammic 

assemblages while species such as Nitzschia fonticola (Grunow) Grunow, Tryblionella 

hungarica (Grunow) Frenguelli and Planothidium lanceolatum (Brébisson ex Kützing) Lange-

Bertalot were only present in the epilithic assemblages (Table 6.3). Despite these differences, 

the diversity was similar between substrates (Td35 vs. Sd35 t=0.98, p(perm)=0.35) with 

mean values of 1.88 and 1.71 for epilithic and epipsammic assemblages, respectively (Figure 

6.5). 

The comparison of the same substrate over time revealed that in both cases the number 

of species contributing to the within group average similarity decreased (up to 80% 

cumulative contribution; Table 6.2) with Achnanthidium minutissimum, Navicula notha and 

Fragilaria cf. parva becoming most relevant at d35. From day 14 to day 35 there was a 

significant decrease in the diversity, independently of the substrate (Td14 vs. Td35 t=5.19, 

p(perm)=0.01; Sd14 vs. Sd35 t=4.94, p(perm)<0.01) (Figure 6.5). 

Despite the different multidimensional patterns of the epilithic and epipsammic 

communities at the same sampling moment, the IPS values among the two substrates had a 

good agreement (Td14 vs. Sd14 t=1.32, p(MC)=0.23; Td35 vs. Sd35 t=0.32, p(MC)=0.76) 
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(Figure 6.6). There was a significant increase in the IPS values over time in both substrates 

(Td14 vs. Td35 t=4.46, p(MC)<0.01; Sd14 vs. Sd35 t=5.07, p(MC)<0.01) (Figure 6.6). 

 

 
Figure 6.4 - Multidimensional Scaling Analysis (MDS) ordination of diatom assemblages at day 14 

(white symbols) and 35 (black symbols) on the tile (triangles) and in the sand (squares). 

Table 6.2 - Diatom species that contributed more to the group average similarity (up to 80% of 

cumulative abundance of the Bray–Curtis similarity) developing on tiles (T) and sand (S) substrates at 

day 14 and 35 obtained by SIMPER analysis. 

 Species contributive % 

Species S14 T14 S35 T35 

Achnanthes ricula Hohn & Hellerman 1.63 1.96 - - 

Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot 3.10 2.66 5.43 7.89 

Achnanthidium minutissimum (Kützing) Czarnecki 14.94 13.55 23.94 22.90 

Asterionella formosa Hassall 2.03 2.12 - - 

Aulacoseira granulata (Ehrenberg) Simonsen 1.77 1.86 - 1.75 

Cyclotella atomus Hustedt 2.18 2.95 2.01 - 

Encyonema minutum (Hilse) D. G. Mann 2.77 2.26 2.30 - 

Eolimna minima (Grunow) Lange-Bertalot & W. Schiller 1.66 - - - 

Fragilaria aff. pectinalis (O. F. Müller) Lyngbye 2.71 2.49 4.05 4.46 

Fragilaria cf. parva (Grunow) A. Tuji & D. M.Williams 6.01 7.79 6.64 11.63 

Geissleria decussis (Østrup) Lange-Bertalot & Metzeltin - 1.46 1.94 2.55 

Gomphonema cf. pseudoaugur Lange-Bertalot 1.42 - - - 

Gomphonema lagenula Kützing 2.88 1.57 2.77 
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Gomphonema parvulum (Kützing) Kützing 1.31 1.36 - - 

Karayevia oblongella (Østrup) Aboal 1.38 1.69 - - 

Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot 2.97 1.59 2.40 2.18 

Melosira varians C. Agardh - 1.39 - - 

Navicula cryptocephala Kützing 1.89 2.15 2.35 2.97 

Navicula gregaria Donkin - 1.69 - - 

Navicula notha J. H. Wallace 6.42 5.06 7.09 5.51 

Navicula veneta Kützing - 1.52 - - 

Nitzschia acidoclinata Lange-Bertalot 3.40 4.42 3.79 3.64 

Nitzschia agnita Hustedt 2.40 1.78 - - 

Nitzschia cf. laccum Lange-Bertalot - 1.25 - - 

Nitzschia cf. palea (Kützing) W. Smith 2.21 1.40 - - 

Nitzschia palea (Kützing) W. Smith 5.50 3.77 4.43 3.13 

Nitzschia palea var. debilis (Kützing) Grunow 3.86 3.23 3.43 2.63 

Planothidium daui (Foged) Lange-Bertalot 2.21 2.58 - 2.71 

Planothidium frequentissimum (Lange-Bertalot) Lange-Bertalot - - - 1.82 

Staurosira construens Ehrenberg - 1.67 - - 

Ulnaria delicatissima var. angustissima (Grunow) Aboal & P. C. 
Silva 

3.49 2.42 6.08 3.10 

Table 6.3 - Diatom species that contributed more to the group average dissimilarity and that were only 

present in one of the substrates at the same sampling moment, day 14 and 35 (up to 80% of 

cumulative abundance of the Bray–Curtis similarity) obtained by SIMPER analysis. 

Day Sand Tile 

14 

Adlafia minuscula var. muralis (Grunow) 
Lange-Bertalot 

 

Surirella linearis W. Smith  

Nitzschia sociabilis Hustedt  

Cymbella tumida (Brébisson) Van Heurck  

Halamphora veneta (Kützing) Levkov  

Nitzschia perminuta (Grunow) M. 
Peragallo 

 

Achnanthidium rivulare Potapova & 
Ponader 

 

 Hippodonta capitata (Ehrenberg) Lange-
Bertalot, Metzeltin & Witkowski 

 Reimeria sinuata (W. Gregory) Kociolek & 
Stoermer 

 Navicula lanceolata Ehrenberg 

 Placoneis protracta (Grunow) 
Mereschkowsky 

 Placoneis clementis (Grunow) E. J. Cox 

 Cymbella microcephala Grunow 

 Eolimna subminuscula (Manguin) Gerd 
Moser, Lange-Bertalot & Metzeltin 
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 Cymbopleura naviculiformis (Auerswald ex 
Heiberg) Krammer 

 Surirella roba Leclercq 

 Tryblionella levidensis W. Smith 

 Nitzschia paleacea (Grunow) Grunow 

 Nitzschia valdestriata Aleem & Hustedt 

 Amphora pediculus (Kützing) Grunow ex A. 
Schmidt 

 Eunotia subarcuatoides Alles, Nörpel & 
Lange-Bertalot 

 Eunotia tenella (Grunow) Hustedt 

 Gomphonema pumilum (Grunow) E. 
Reichardt & Lange-Bertalot 

 Navicula germainii Wallace 

 Neidium ampliatum (Ehrenberg) Krammer 

35 

Diadesmis confervacea Kützing  

Gomphonema cf. affine Kützing  

Nitzschia acicularis (Kützing) W. Smith  

 Nitzschia fonticola (Grunow) Grunow 

 Tryblionella hungarica (Grunow) Frenguelli 

 Planothidium lanceolatum (Brébisson ex 
Kützing) Lange-Bertalot 

 Navicula phyllepta Kützing 

 Sellaphora pupula (Kützing) 
Mereschkovsky 

 Gomphonema pumilum (Grunow) E. 
Reichardt & Lange-Bertalot 

 Sellaphora nana (Hustedt) Lange-Bertalot, 
Cavacini, Tagliaventi & Alfinito 

 Pinnularia cf. acoricola Hustedt 

 
Figure 6.5 - Diatom diversity (H’) (mean±standard deviation) found in the assemblages developing on 

tiles (T) and sand (S) substrates at day 14 and 35 in the artificial channels. Treatment means labelled 

with the same letter (a, b) do not significantly differ (p>0.05; PERMANOVA pairwise test). 
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Figure 6.6 - Diatom-based IPS index (mean±standard deviation) obtained from the assemblages 

developing on tiles (T) and sand (S) substrates at day 14 and 35 in the artificial channels. Treatment 

means labelled with the same letter (a, b) do not significantly differ (p>0.05; PERMANOVA pairwise 

test). 

6.3.4 Biological traits 

In both substrates mobile species were more frequent than planktonic (Figure 6.7a and 

b). Between substrates, the epipsammic assemblages presented higher number of mobile and 

planktonic valves in both sampling moments (day 14 and 35) (Figure 6.7a and b). However, 

the number of mobile and planktonic valves did not change over time in both substrates 

(Figure 6.7a and b). Concerning the form of attachment (pad, stalked or adnate) a higher 

abundance of species with the ability to attach to the substrate by stalk was found (Figure 

6.7c, d and e).  

In both sampling moments (d14 and 35) the sand assemblages presented higher number 

of stalked species than the tile assemblages (Figure 6.7d). Within sand assemblages there was 

a significant increase in the number of stalked diatoms from d14 to d35 (Figure 6.7d). Despite 

the apparent increase in the number of stalked valves in the tile over time, statistical 

differences were not found (Figure 6.7d). The majority of species that contributed to the 

stalked category belonged to the genus Achnanthidium. The number of diatoms with adnate 

habit and pads was similar between substrates and over time (Figure 6.7c and e). 
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Figure 6.7 - Number of valves per cm2 (mean±standard deviation) found in the diatom assemblages 

developing on tiles (T) and sand (S) substrates at day 14 and 35 in the artificial channels with the trait 

life-form categories: (a) Mobile, (b) Planktonic, (c) Pad, (d) Stalk and (e) Adnate. Treatment means 

labelled with the same letter (a, b, c) do not significantly differ (p>0.05; PERMANOVA pairwise test). 

6.4 Discussion 

The results of this mesocosm experiment show that the substrate affects diatom 

assemblage’s composition. This is in agreement with other studies that indicated that the 

composition of diatom assemblages on different substrates was different (Round, 1991; 

Cattaneo et al., 1997; Potapova and Charles, 2005). Yet, contrary to our findings other studies 

have not found differences between substrates (Rothfritz et al., 1997; Bere and Tundisi, 2011; 

Winter and Duthie, 2000). The differences found between the assemblage composition of the 

two substrates might be due to the species which dominated and were common to both 

substrates which is probably related to other factors. For example, both Achnanthidium 
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minutissimum and Navicula notha have high oxygen requirements (polyoxybionte; van Dam 

et al., 1994) which was a condition satisfied by our experimental design.  

We also found a significantly higher number of mobile cells in sand compared with the 

tile substrates, which is in accordance with other studies (Cattaneo et al., 1997; Potapova and 

Charles, 2005). Stalked species were also always significantly more abundant in sand 

compared with the tile, contrary to what we were expecting, as in the sand the majority of the 

species present will be those which have the necessary traits to tolerate the abrasion of 

moving grains (Townsend and Gell, 2005) or be able to move (Soininen and Eloranta, 2004) 

in order to avoid entrapment by the sand grains. However, the species that contributed most 

to the stalk categories were from the genus Achnanthidium, in particular A. minutissimum. 

This species has been found to dominate in highly hydrological disturbed habitats suggesting 

that it may have resistance to the dislodgement induced by current shear forces (Soinine and 

Eloranta, 2004).  

Contrary to what we were expecting (see also Potapova and Charles, 2005), at the same 

sampling moment, the sand assemblages were never more diverse than the tile assemblages. 

It is expected that epilithic diatom assemblages are more stable than epipsammic ones 

because much less disturbance due to moving substrate particles occurs on firm stony 

substrates. Therefore, in natural environments the higher diversities found in natural 

epipsammic assemblages may be also due to the fact that in many occasions the sampled 

assemblage is not an undisturbed mature one. According to Tuji (2000) when a community is 

in the last phase of colonization of a substrate and is affected by a disturbance, the resulting 

community architecture becomes similar to the first phase. Although the epipsammon 

represents a specialized diatom assemblage that seems well adapted to a variable 

environment, disturbance probably plays an important role in structuring the assemblage, 

keeping it in a ‘pioneer’ state (Miller et al., 1987). So, when we allowed the assemblages to 

develop during the 35 days without additional disturbances it resulted in similar 

development states for both substrates and consequently similar diversities. This is in 

agreement with some studies dealing with differences in diatom assemblages among 

different substrates, where the role of factors such as hydrology (Soininen and Eloranta, 

2004) and pollution (Bere and Tundisi, 2011) were found to overcome that of substrates. In 

some situations the diversity differences may also be the result of significant differences at 

the population level often associated with small algal populations that exert little influence on 

density and diversity, and these differences may be an artefact of a chance encounter of a rare 

population during algal enumeration (Lowe et al., 1996). 

Regarding the colonization process, and according to chl-c and diatom density by the 

fourteenth colonization day, diatom assemblages were already stable, independently of the 

substrate as there were no significant differences between sampling moments. In agreement, 
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a study by Oemke and Burton (1986) dealing with diatom colonization dynamics (diatom cell 

densities) growing on glass slides, showed that the rate of increase of diatom density slowed 

after 10 or 14 days with the colonization curves reaching an apparent plateau by day 21 or 

28. Yet, contrary to diatom density, the last 21 days of colonization of our experiment 

contributed to changes in the diatom assemblage’s composition in both sand and tile 

channels. These results suggest a decline of less abundant species and the dominance of a 

small number of species. Oemke and Burton (1986) verified also a gradual decline in 

diversity after an early peak as a result of an increased dominance of few species. In addition, 

changes in traits also occurred over time, with a significant increase of the category ‘stalked’ 

on tiles from d14 to d35.  

Considering the water quality assessment, the IPS values obtained at the same sampling 

moment did not reflect the differences in epipsammic and epilithic diatom assemblages that 

were obtained in terms of multivariate patterns. As in other studies, this suggests that hard 

and soft (sand) substrates can be exchangeable in assessment methods that are based on 

autoecological methods (Soininen and Könönen, 2004; Potapova and Charles, 2005; Mendes 

et al., 2012). Apparently, and considering the IPS results, the sand substrate assemblages 

were not more influenced by the sediment-bound chemicals than the epilithic ones (Kelly et 

al., 1998). 

The significant increase in the IPS values over time in both substrates can be attributed 

to the dominance of sensitive species at day 35, which is the case of Achnanthidium 

minutissimum, in the IPS index. This index is based on weighted average between the relative 

abundance and the sensitivity (tolerance) and indicator value of a group selected species. 

Therefore, the high abundance of a sensitive species, as A. minutissimum, may cause such 

increase. This species has been considered indifferent to nutrient concentrations (van Dam et 

al., 1994); however a laboratory experiment carried out by Manoylov (2009) suggests that A. 

minutissimum is a good competitor for nutrients when they are in low supply compared with 

other taxa. Therefore, this adaptation may have allowed A. minutissimum to outgrow the 

other species by the end of the 35 days of colonization. 

6.5 Conclusions 

We verified that both substrates reached an almost maximum production (diatom cell 

density and chl-c concentration) after two weeks of colonization although we did not find any 

clear patterns among diatom assemblage diversity. The type of colonizing substrate 

influences diatom assemblages (production, density and composition, traits) but not water 

quality assessment. Therefore, we can argue that in streams where the preferential substrate 
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(usually stones or rocks) is not available and sand is the only substrate available this can be 

used as alternative if the aim is to assess water quality using an autoecological index. 

 

Abbreviations 

Chl-a Chlorophyll-a 

Chl-b Chlorophyll-b 

Chl-c Chlorophyll-c 

d14 Periphyton samples retrieved from the channels at day 14 

d35 Periphyton samples retrieved from the channels at day 35 

H’ Shannon-Wiener diversity index 

IPS Indice de Polluosensibilité Spécifique 

MDS non-metric Multidimensional Scaling 

MMS modular mesocosm systems 

S Assemblages growing on sand substrate 

S14 Epipsammic samples retrieved from the channels at day 14 

S35 Epipsammic samples retrieved from the channels at day 35 

M Assemblages growing on tile substrate 

M14 Epilithic samples retrieved from the channels at day 14 

M35 Epilithic samples retrieved from the channels at day 35 
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ABSTRACT 

This study aimed to test whether similar macroclimatic patterns induce similar diatom 

assemblages on different continents, overriding regional environmental differences. We 

compared diatom assemblages (at species, genus and order taxonomic levels) from 227 

rivers and stream sites in regions of Europe (Portugal), North America (USA) and Australia 

belonging to the Csb Mediterranean climate (updated world Köppen-Geiger climate map). At 

all levels, the diatom assemblages within each region were significantly more similar to each 

other than to those of the other regions (Pseudo-Fs: 23.00, 32.25, 28.99; p < 0.01). In 

addition, the Portuguese and USA assemblages were more similar to each other (Bray-Curtis 

dissimilarity 76.1%) than to the Australian ones (84.4 and 85.0%, respectively, at species 

level). Among the species that contributed most to similarity within Portuguese and USA 

rivers were Achnanthidium minutissimum (4.0-10.9 % contribution) and Cocconeis placentula 

(3.1-6.1% contribution) (SIMPER analyses). The species that contributed the most to 

similarity within Australian rivers were Rhoicosphenia abbreviata (13.0%) and Amphora 

pediculus (6.9%) (SIMPER analyses). Climate did not appear to engender similar assemblages 

in the different regions, and the inter-continental differences observed were probably related 

to factors such as biogeography, geology and water chemistry. 
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7.1 Introduction 

Climate, the long-term average weather conditions in an area, is one of the main factors 

controlling the large-scale distribution of species, communities and ecosystems (Lindsay and 

Bayoh, 2004; Bailey, 2009). As the climatic regime changes (e.g., mean annual temperature), 

so does the hydrologic cycle (e.g., evapotranspiration) and consequently the variety of plants 

and animals that can live in a particular region (Bailey, 2009). Several studies have verified 

that climate can be used to map the distribution of insects (Lindsay and Bayoh, 2004) and 

plants (Prentice et al., 1992) and can influence migratory frequencies (Dingle et al., 2000) and 

seed mass (Murray et al., 2004 ).  

The Köppen system developed in 1900 by the climatologist Wladimir Köppen (here 

referred to as Köppen-Geiger classification) is the most widely used climatic classification for 

geographic purposes (Peel et al., 2007; Bailey, 2009). It was constructed on the basis of five 

vegetation groups delineated by the botanist De Candolle, which were in turn based on the 

climate zones of the ancient Greeks (Kottek et al., 2007; Peel et al., 2007). The five groups of 

Köppen-Geiger climates distinguish five broad plant formations: tropical (A), arid (B), 

temperate (C), cold zone (D) and polar (E) (Kottek et al., 2007; Peel et al., 2007; Bailey, 2009). 

The classification has two more levels: a second letter considers precipitation (e.g., Cs for 

temperate and dry summer, also called Mediterranean) and a third considers the air 

temperature (e.g., Csb for temperate, dry and warm summer) (Kottek et al., 2007; Peel et al., 

2007). 

The Mediterranean climate (Cs), although confined to less than 1% of the continental 

area (or up to 4% depending of the definition: see Gasith and Resh, 1999), is widely spread 

through almost all continents, occurring for example in the United States of America, 

countries surrounding the Mediterranean sea, South Africa and Australia (Gasith and Resh, 

1999; Kottek et al., 2007; Peel et al., 2007). Streams and rivers in the Csa climate (temperate, 

dry and hot summer) are physically, chemically and biologically shaped by sequential, 

predictable and seasonal events of flooding and drying over an annual hydrological cycle, and 

are those that are usually called Mediterranean streams (Boix et al., 2010; García-Roger et al., 

2011; Delgado et al., 2012). On the other hand, the streams and rivers experiencing Csb 

climate are not typically so affected by these events of flooding and drying as they are mostly 

perennial streams.  

The long-term regime of natural environmental heterogeneity and disturbance patterns 

may constitute a physical habitat template that constrains the appropriate species attributes 

for local persistence (Poff and Ward, 1990). Due to the strong influence of Mediterranean 

climate on several stream characteristics (e.g., hydrological regime, water temperature and 
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riparian inputs), communities of lotic ecosystems within that climatic region should be more 

similar to one another than those of other climatic regions (Gasith and Resh, 1999). Indeed, 

several studies have found similarities in aquatic macroinvertebrate assemblages and their 

traits among different Csa Mediterranean regions (Bonada et al., 2007; García-Roger et al., 

2013) while the influence of Csb climate remains unstudied.  

Diatoms typically respond to hydromorphological, chemical, and physical changes in the 

environment at small spatial scales (e.g., Potapova and Charles, 2003; Almeida and Feio, 

2012; Feio et al., 2014). However, these local environmental factors depend on and are 

influenced by ultimate factors such as climate, geology and land use (Stevenson, 1997). 

Consequently, climate is an important driver of diatom assemblages, and climatic variables 

may have a stronger association with stream diatom distributions than local environmental 

variables alone (Pajunen et al., 2016). Therefore, diatom assemblages from different Csb 

regions are likely to have similar composition. Although several studies of diatom 

assemblages have been carried out in Csb regions (Almeida and Gil, 2001; Potapova and 

Charles, 2003; Philibert et al., 2006; Feio et al., 2007; Feio et al., 2009), they did not 

specifically assess the influence of climate. 

In the present study we hypothesized that climatic similarity alone can lead to 

consistency in the composition of benthic diatom assemblages, in spite of large-scale (inter-

continental) separation and small-scale differences among rivers. We assessed the similarity 

of diatom assemblage composition from rivers and streams located in different continents 

(Europe, Australia and North America) but having in common the Csb Mediterranean climate, 

aiming to verify whether climate indeed shapes diatom assemblage composition. We 

analysed the similarities among the three regions at species, genus and order levels, in order 

to test the dependence of compositional similarity on taxonomic resolution. 

7.2 Methods 

7.2.1 Study area and site selection 

The study included 227 river and stream sites in Cbs climatic regions: 139 in Europe - 

Portugal (PORT), 42 in North America – United States of America (USA) and 46 in Australia 

(AUS). The PORT sites were all within the northern region of the country, the USA sites were 

from the western states of California and Oregon, and the AUS sites were all in the coastal 

region of the state of South Australia. The selection of Cbs regions followed the updated 

world Köppen-Geiger climate map (Peel et al., 2007) and was done at macroclimatic scale 

(Bailey, 2009), mesoscale differences being ignored (e.g., high mountains were included as 

well as lowland areas). 
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7.2.2 Diatom dataset 

The PORT diatom dataset was obtained from a broad database (AQUAWEB: 

www.aquaweb.pt) of diatom records for the entire country from 2004 to 2012. The USA 

diatom dataset was obtained from the United States Water Quality Portal 

(http://waterqualitydata.us/portal/), which contains diatom counts for benthic river 

samples collected by the USGS National Water Quality Assessment (NAWQA) Program from 

1993 to 2005. The AUS diatom dataset was compiled under the national Monitoring River 

Health Initiative program from 1995 to 1997. In all regions, sites were sampled more than 

once and from more than one substratum and season (mostly from summer to autumn); the 

number of samples per site ranged from one to eighteen.  

Portuguese sampling and sample treatment followed European standards (European 

Committee for Standardisation, 2003, 2004, 2006) and Portuguese official protocols (INAG, 

2008). Samples were collected mostly from hard substrata. Identification to species or infra-

specific rank and enumeration were done with a light microscope (100× objective and 1.32 

numerical aperture) and the floras of Krammer and Lange-Bertalot (1986, 1988, 1991a, 

1991b) and Krammer (2000, 2001, 2009). The USA samples were also collected mostly from 

hard substrata with the methods described by Porter et al. (1993) and Moulton et al. (2002). 

Identification and enumeration were done at the Academy of Natural Sciences of Philadelphia 

with the methods described by Charles et al. (2002). The AUS samples were collected from 

soft and hard substrata, prepared with the methods described by Battarbee (1986) and 

mounted on microscope slides with Naphrax®. Identification and enumeration were done 

with the procedures described in Philibert et al. (2006). The minimum number of valves per 

slide counted varied among countries: 600 in the USA, 400 in PORT and 200 in AUS. 

Several steps were undertaken to ensure the comparability of datasets: (1) taxa not 

identified to species level were eliminated (e.g., Gomphonema sp.); (2) some Achnanthidium 

species that we considered to be morphologically similar to Achnanthidium minutissimum 

(Kützing) Czarnecki and that in the past were not separated from its complex were merged as 

A. minutissimum sensu lato (e.g., Achnanthidium atomoides Monnier, Lange-Bertalot & Ector 

and Achnanthidium caravelense M. E. Novais & L. Ector); (3) the varieties Achnanthes 

subhudsonis var. kraeuselii (Cholnoky) Cholnoky and Achnanthes subhudsonis Hustedt were 

merged at species level as A. subhudsonis; (4) the varieties of Cocconeis placentula Ehrenberg 

(e.g., Cocconeis placentula var. lineata (Ehrenberg) Van Heurck and Cocconeis placentula var. 

euglypta (Ehrenberg) Grunow) were all merged in a single species, C. placentula; and (5) two 

additional datasets at higher taxonomic levels (genus and order) were created from the 

species dataset and the same statistical analyses were performed for the three datasets. 
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7.2.3 Data analyses 

Analyses were performed on presence-absence data for each site at the three taxonomic 

levels (order, genus and species).  

Multidimensional scaling (MDS; Bray-Curtis dissimilarity measure) was performed to 

determine whether diatom assemblages differed among regions. Inter-regional statistical 

differences were tested with permutational multivariate analysis of variance (PERMANOVA) 

global tests (unrestricted permutations). PERMANOVA pairwise tests (unrestricted 

permutations) were performed to assess which regions differed from each other. Similarity 

percentages analysis (SIMPER; Bray-Curtis similarity) was used to determine the most 

representative taxa of each region (those contributing the most to the average similarity 

within groups) and to determine the taxa that contributed the most to Bray-Curtis 

dissimilarity among regions. These analyses were performed with the PRIMER 6 & 

PERMANOVA software (PRIMER-E Ltd., Plymouth, UK; Clarke and Gorley, 2006; Anderson et 

al., 2008). 

The frequencies of the five most representative taxa of each region (from SIMPER 

analyses) were compared among regions through one-way ANOVA tests (SigmaPlot 12.0 

software). When normality and equal-variance tests failed, Kruskal–Wallis one-way ANOVA 

tests (ANOVA on ranks) were used. ANOVAs were followed by pairwise comparisons (Dunn's 

Method) to assess which regions differed in the percentage of sites where the taxa were 

found. 

A graphical representation of the mean number of species per sample was performed to 

assess whether a variable number of samples per site could have contributed to differences 

among regions. Inter-regional statistical differences were assessed with one-way ANOVA 

tests (SigmaPlot 12.0 software) as described above. 

7.3 Results 

7.3.1 Species-level 

The analysis included 634 diatom species. The assemblages of the PORT, USA and AUS 

regions differed significantly overall (Pseudo-F = 23.00, p < 0.01) and in all pairwise 

comparisons (p < 0.01). The USA assemblages were most similar to the PORT ones (average 

similarity of 23.9%), while the AUS assemblages were the most segregated (average 

dissimilarity of 85.0% and 84.4% with PORT and USA, respectively) (Figure 7.1). Diatom 

richness per sample was lower in Australian streams than in the other two regions (Figure 

7.2). 
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Figure 7.1 - Multidimensional scaling analysis (MDS) of the diatom assemblages, at species level, of the 

three regions: Portugal (triangles), United States of America (circles) and Australia (squares). 

The species Achnanthidium minutissimum, Gomphonema parvulum (Kützing) Kützing, 

Cocconeis placentula, Fragilaria vaucheriae (Kützing) J. B. Petersen and Encyonema minutum 

(Hilse) D. G. Mann contributed the most to average assemblage similarity within the PORT 

rivers, with contributions ranging from 5.2 to 10.9% (Table 7.1). A. minutissimum, Eolimna 

minima (Grunow) Lange-Bertalot & W. Schiller, C. placentula, Planothidium frequentissimum 

(Lange-Bertalot) Lange-Bertalot and G. parvulum contributed the most to average similarity 

in the USA (Table 7.1; contributions between 3.0 and 4.0%). These results indicate that these 

two regions were dominated by circumneutral to alkaliphilous, freshwater species (occurring 

at < 500 mg Cl-/L) and by species with high to low oxygen requirements. In AUS, the species 

that contributed most to average similarity were Rhoicosphenia abbreviata (C. Agardh) 

Lange-Bertalot, Amphora pediculus (Kützing) Grunow ex. A. Schmidt, C. placentula, Nitzschia 

inconspicua Grunow and Tabularia fasciculata (C. Agardh) D. M. Williams & Round, with 

percentage contributions ranging from 5.9 to 13.0 (Table 7.1). This list includes alkaliphilous, 

fresh-brackish (< 500 mg Cl-/L) to brackish (1000-5000 mg Cl-/L) species and species with 

fairly high (above 75% saturation) to moderate (above 50% saturation) oxygen 

requirements. In comparison with the other two regions, the USA had small percentage 

contributions from all species and thus more species represented in 90% of cumulative 

contribution (Table 7.1). 
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Figure 7.2 - Mean number (±SD) of species per sample in the three regions (PORT-Portugal, USA-

United States of America, AUS-Australia). Regions with the same letter (a, b) do not differ significantly 

(p > 0.05). 

Of the five species that contributed the most to within-USA similarity, Eolimna minima 

was the only one that was significantly more frequent in the USA (Figure 7.3). None of the five 

species that contributed most to within-PORT similarity was significantly more frequent in 

PORT (Figure 7.3), and all were equally frequent, or more frequent (E. minima) in the USA. Of 

the five species that contributed most to within-AUS similarity, only Tabularia fasciculata was 

significantly more frequent in that region. The remainder were all similarly frequent in the 

AUS and USA regions (Figure 7.3). The species Rhoicosphenia abbreviata, Amphora pediculus 

and Nitzschia inconspicua were more frequent in the USA and AUS than in PORT. From the set 

of species contributing most to within-group average similarity it is possible to verify a 

greater proximity of the USA-AUS and USA-PORT assemblages and a greater distance 

between the PORT and AUS ones.  

The species Achnanthidium pyrenaicum (Hustedt) H. Kobayasi, Fragilaria capucina 

Desmazières, Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot and Fistulifera 

saprophila (Lange-Bertalot & Bonik) Lange-Bertalot were found only in PORT and included in 

those that contributed most to average dissimilarity among regions (Table 7.2). In the USA, 

the unique species that contributed to average dissimilarity were Navicula viridulacalcis 

Lange-Bertalot, Gomphonema subclavatum (Grunow) Grunow and Sellaphora mutata 

(Krasske) Lange-Bertalot. The species Navicymbula (=Cymbella) pusilla (Grunow) Krammer, 

Nitzschia liebethruthii Rabenhorst, Nitzschia perspicua Cholnoky and Rhopalodia musculus 

(Kützing) O. Müller were found only in AUS. The higher average dissimilarity between PORT 
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and AUS was due to differences in species frequencies and to species that were found only in 

PORT (Table 7.2). Rhoicosphenia abbreviata, Tabularia fasciculata, Amphora pediculus and 

Nitzschia inconspicua contributed to the dissimilarity between PORT and AUS (up to 18% 

cumulative) by being more frequent in AUS, while Fragilaria vaucheriae, Encyonema 

minutum, Eolimna minima, Planothidium frequentissimum, Gomphonema parvulum and 

Nitzschia palea (Kützing) W. Smith were more frequent in PORT. The dissimilarity between 

the USA and AUS was also due to differences in species frequencies and to species that were 

found only in the USA (Table 7.2); the species that contributed most (up to 18% cumulative) 

were all more frequent in the USA with the exception of T. fasciculata. Once again, E. minima, 

P. frequentissimum, E. minutum, F. vaucheriae and G. parvulum were among those species. 

These species were not among those that contributed most to the average dissimilarity 

between PORT and USA (e.g., R. abbreviata, Sellaphora pupula (Kützing) Mereschkowksy, N. 

inconspicua, Melosira varians C. Agardh). 

Table 7.1 - Diatom species that contributed most to average assemblage similarity in PORT-Portugal, 

USA-United States of America and AUS-Australia (up to 90% of cumulative contribution, Bray–Curtis 

similarity: SIMPER analysis). The values in bold indicate the species that contributed the most to 

average similarity within each region. 

Species Contribution (%) 

 PORT USA AUS 

Achnanthes subhudsonis Hustedt 0.5 0.7 - 

Achnanthidium minutissimum (Kützing) Czarnecki 10.9 4.0 4.8 

Achnanthidium pyrenaicum (Hustedt) H. Kobayasi 1.2 - - 

Achnanthidium subatomoides (Hustedt) O. Monnier, Lange-Bertalot  

& Ector 1.8 0.3 - 

Amphora copulata (Kützing) Schoeman & R. E. M. Archibald - 1.1 - 

Amphora pediculus (Kützing) Grunow ex. A. Schmidt 0.5 1.3 6.9 

Aulacoseira alpigena (Grunow) Krammer - 0.3 - 

Aulacoseira ambigua (Grunow) Simonsen - 0.3 - 

Aulacoseira granulata (Ehrenberg) Simonsen - 0.3 - 

Bacillaria paxillifera (O. F. Müller) T. Marsson - 0.2 4.3 

Caloneis bacillum (Grunow) Cleve - 0.7 - 

Cocconeis placentula Ehrenberg 6.1 3.1 6.5 

Craticula molestiformis (Hustedt) Mayama - 0.2 - 

Cyclotella meneghiniana Kützing 0.5 0.8 0.8 

Cymbella affinis Kützing - 0.2 - 

Diadesmis contenta (Grunow) D. G. Mann - 0.5 - 

Diatoma mesodon (Ehrenberg) Kützing 0.9 0.3 - 

Diatoma vulgaris Bory - 0.3 - 

Discotella pseudostelligera (Hustedt) Houk et Klee - 0.3 - 

Encyonema minutum (Hilse) D. G. Mann 5.2 2.6 - 
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Encyonema silesiacum (Bleisch) D. G. Mann 0.9 0.5 - 

    

Encyonopsis cesatii (Rabenhorst) Krammer - 0.3 - 

Eolimna minima (Grunow) Lange-Bertalot & W. Schiller 4.7 3.4 - 

Epithemia sorex Kützing - - 1.8 

Eunotia implicata Nörpel, Lange-Bertalot & Alles - 1.2 - 

Eunotia incisa W. Smith ex W. Gregory - 0.9 - 

Eunotia minor (Kützing) Grunow 1.6 - - 

Eunotia tenella (Grunow) Hustedt - 1.3 - 

Fragilaria capucina Desmazières 1.5 - - 

Fragilaria vaucheriae (Kützing) J. B. Petersen 5.8 2.4 - 

Fragilaria gracilis Østrup - 0.4 - 

Fragilaria rumpens (Kützing) G. W. F. Carlson 0.7 1.3 1.5 

Frustulia vulgaris (Thwaites) De Toni - 1.1 - 

Frustulia weinholdii Hustedt - 0.2 - 

Gomphonema angustatum (Kützing) Rabenhorst - 0.4 - 

Gomphonema dichotomum Kützing - 0.3 - 

Gomphonema gracile Ehrenberg - 0.2 - 

Gomphonema kobayasii Kociolek et Kingston - 0.3 - 

Gomphonema parvulum (Kützing) Kützing 7.2 3.0 2.8 

Gomphonema pumilum (Grunow) E. Reichardt & Lange-Bertalot 2.3 2.2 - 

Gomphonema rhombicum Fricke 1.8 0.3 - 

Gomphonema subclavatum (Grunow) Grunow - 0.7 - 

Gyrosigma acuminatum (Kützing) Rabenhorst - 0.3 - 

Halamphora veneta (Kützing) Levkov - 0.2 1.7 

Hannaea arcus (Ehrenberg) R. M. Patrick 0.7 0.4 - 

Hantzschia amphioxys (Ehrenberg) Grunow - 0.2 - 

Hippodonta capitata (Ehrenberg) Lange-Bertalot, Metzeltin & Witkowski - 1.3 2.3 

Karayevia oblongella (Østrup) Aboal 1.1 - - 

Lemnicola hungarica (Grunow) F. E. Round & P. W. Basson - 0.2 - 

Luticola mutica (Kützing) D. G. Mann - 0.3 - 

Melosira varians C.Agardh 0.9 2.5 3.4 

Meridion circulare (Greville) C. Agardh - 0.5 - 

Navicula capitatoradiata H. Germain - 0.2 - 

Navicula cryptocephala Kützing 3.9 2.7 1.9 

Navicula cryptotenella Lange-Bertalot 2.3 2.4 - 

Navicula escambia (Patrick) Metzeltin & Lange-Bertalot - 0.4 - 

Navicula germainii Wallace - 1.1 1.2 

Navicula gregaria Donkin 1.1 2.1 - 

Navicula lanceolata Ehrenberg - 0.5 - 

Navicula menisculus Schumann - 0.5 - 

Navicula notha J. H. Wallace - 0.2 - 

Navicula rhynchocephala Kützing - 0.4 - 

Navicula symmetrica Patrick - 0.4 - 
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Navicula tenelloides Hustedt - 0.2 - 

    

Navicula trivialis Lange-Bertalot - 1.1 - 

Navicula veneta Kützing 1.01 - 5.1 

Navicula viridulacalcis Lange-Bertalot - 0.3 - 

Nitzschia amphibia Grunow 0.6 1.7 - 

Nitzschia archibaldii Lange-Bertalot - 1.6 - 

Nitzschia dissipata (Kützing) Rabenhorst 1.1 2.4 - 

Nitzschia dissipata var. media (Hantzsch) Grunow - 0.3 - 

Nitzschia fonticola (Grunow) Grunow - 0.3 - 

Nitzschia frustulum (Kützing) Grunow - 1.8 1.8 

Nitzschia inconspicua Grunow 0.8 2.4 6.2 

Nitzschia lacuum Lange-Bertalot - - 1.6 

Nitzschia liebethruthii Rabenhorst - - 0.7 

Nitzschia linearis var. subtilis (Grunow) Hustedt - 0.6 - 

Nitzschia linearis var. tenuis (W. Smith) Grunow - 0.5 - 

Nitzschia microcephala Grunow - - 0.5 

Nitzschia palea (Kützing) W. Smith 4.5 1.2 0.9 

Nitzschia paleacea (Grunow) Grunow 1.8 0.2 0.6 

Nitzschia recta Hantzsch ex Rabenhorst - 0.4 - 

Nitzschia sigma (Kützing) W. Smith - - 0.8 

Pinnularia gibba var. linearis Hustedt - 0.2 - 

Pinnularia intermedia (Lagerstedt) Cleve - 0.3 - 

Pinnularia subcapitata W. Gregory 0.8 - - 

Planothidium delicatulum (Kützing) Round & Bukhtiyarova - - 4.8 

Planothidium frequentissimum (Lange-Bertalot) Lange-Bertalot 4.4 3.1 - 

Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot 3.2 2.5 2.6 

Psammothidium helveticum (Hustedt) Bukhtiyarova & Round 0.9 - - 

Reimeria sinuata (W. Gregory) Kociolek & Stoermer 2.2 1.2 - 

Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot - 2.5 13.0 

Rhopalodia gibba (Ehrenberg) O. Müller - - 0.8 

Sellaphora mutata (Krasske) Lange-Bertalot - 0.5 - 

Sellaphora pupula (Kützing) Mereschkowksy - 2.0 - 

Sellaphora seminulum (Grunow) D. G. Mann 1.4 1.5 - 

Stauroneis kriegeri R. M. Patrick - 0.3 - 

Staurosira brevistriata (Grunow) Grunow - 0.3 - 

Staurosira venter (Ehrenberg) Cleve & J. D. Möller - 0.9 - 

Staurosirella pinnata (Ehrenberg) D. M. Williams & Round - 0.8 - 

Surirella angusta Kützing 0.6 0.8 - 

Surirella brebissonii Krammer & Lange-Bertalot - - 1.3 

Surirella minuta Brébisson ex Kützing - 0.7 - 

Surirella ovalis Brébisson - - 0.6 

Surirella tenera W. Gregory - 0.2 - 

Tabellaria flocculosa (Roth) Kützing 0.8 0.4 - 
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Tabularia fasciculata (C. Agardh) D. M. Williams & Round - - 5.9 

    

Tryblionella constricta W. Gregory - - 1.2 

Tryblionella hungarica (Grunow) Frenguelli - - 1.0 

Ulnaria ulna (Nitzsch) Compère 2.3 2.4 1.1 

 

 

 
Figure 7.3 - Percentage of sites in Portugal (triangles), United States of America (circles) and Australia 

(squares) where the species that contributed most to within-region average similarity were found 

(Table 7.1). For each species, the regions inside the rectangle are not significantly different (p > 0.05) 

and are significantly different from the region outside the rectangle (p < 0.05). Cocconeis placentula 

was not significantly different between USA and AUS but the differences were not tested for the other 

two comparisons (PORT-USA and PORT-AUS). 

 

 



Chapter 7 

183 

Table 7.2 - Diatom species that contributed most to average dissimilarity between AUS-Australia, PORT-Portugal and USA-United States of America (up to 

80% of cumulative dissimilarity, Bray–Curtis similarity: SIMPER analysis).The region code opposite a species indicates that the species was found only in that 

region among the two regions being compared. 

Species Comparison 

 

PORT vs. USA PORT vs. AUS USA vs. AUS 

Achnanthes subhudsonis Hustedt - PORT USA 

Achnanthidium deflexum (C. W. Reimer) J. C. Kingston USA - USA 

Achnanthidium pyrenaicum (Hustedt) H. Kobayasi PORT PORT - 

Achnanthidium subatomoides (Hustedt) O. Monnier, Lange-Bertalot  

& Ector - PORT USA 

Amphora ovalis (Kützing) Kützing - - USA 

Asterionella formosa Hassall - - USA 

Aulacoseira alpigena (Grunow) Krammer USA - USA 

Aulacoseira ambigua (Grunow) Simonsen - - USA 

Aulacoseira granulata (Ehrenberg) Simonsen - - USA 

Aulacoseira italica (Ehrenberg) Simonsen USA - - 

Brachysira microcephala (Grunow) Compère - - USA 

Craticula halophila (Grunow) D. G. Mann - - AUS 

Cymbella tumida (Brébisson) Van Heurck - - USA 

Diadesmis contenta (Grunow) D. G. Mann - - USA 

Diatoma mesodon (Ehrenberg) Kützing - PORT USA 

Diatoma vulgaris Bory - PORT USA 

Diploneis oblongella (Nägeli ex Kützing) Cleve-Euler - - USA 

Diploneis puella (Schumann) Cleve USA - - 

Discotella pseudostelligera (Hustedt) Houk et Klee - - USA 

Discotella stelligera (Cleve & Grunow) Houk & Klee - - USA 

Encyonema lunatum (W. Smith) Van Heurck USA - - 
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Encyonema neogracile Krammer PORT - - 

Encyonema prostratum (Berkeley) Kützing USA - - 

Encyonopsis cesatii (Rabenhorst) Krammer - - USA 

Eolimna tantula (Hustedt) Lange-Bertalot USA - USA 

Epithemia turgida (Ehrenberg) Kützing USA - USA 

Eunotia bilunaris (Ehrenberg) Schaarschmidt - PORT USA 

Eunotia exigua (Brebisson ex Kützing) Rabenhorst - PORT USA 

Eunotia implicata Nörpel, Lange-Bertalot & Alles 

 

- USA 

Eunotia incisa W. Smith ex W. Gregory - PORT USA 

Eunotia minor (Kützing) Grunow - PORT USA 

Eunotia monodon Ehrenberg USA - USA 

Eunotia mucophila (Lange-Bertalot, Nörpel-Schempp & Alles)  

Lange-Bertalot - PORT - 

Eunotia naegeli Migula - - USA 

Eunotia perpusilla Grunow USA - USA 

Eunotia tenella (Grunow) Hustedt - - USA 

Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot PORT PORT - 

Fragilaria bicapitata Mayer USA - USA 

Fragilaria bidens Heiberg PORT PORT - 

Fragilaria capucina Desmazières PORT PORT - 

Fragilaria miniscula (Grunow) D. M. Williams & Round USA - USA 

Fragilaria virescens Ralfs - PORT - 

Frustulia amphipleuroides (Grunow) Cleve-Euler USA 

 

USA 

Frustulia erifuga Lange-Bertalot & Krammer - PORT - 

Frustulia weinholdii Hustedt USA - USA 

Geissleria decussis (Østrup) Lange-Bertalot & Metzeltin - - USA 

Gomphonema angustatum (Kützing) Rabenhorst - - USA 

Gomphonema angustatum var. intermedia Grunow USA - - 
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Gomphonema dichotomum Kützing USA - USA 

Gomphonema kobayasii Kociolek et Kingston USA - USA 

Gomphonema lagenula Kützing - - USA 

Gomphonema pumilum (Grunow) E. Reichardt & Lange-Bertalot - PORT USA 

Gomphonema rhombicum Fricke 

 

PORT USA 

Gomphonema subclavatum (Grunow) Grunow USA - USA 

Hannaea arcus (Ehrenberg) R. M. Patrick - PORT USA 

Karayevia oblongella (Østrup) Aboal PORT - - 

Luticola cohnii (Hilse) D. G. Mann - - USA 

Luticola goeppertiana (Bleisch in Rabenhorst) D. G. Mann - PORT - 

Luticola mutica (Kützing) D. G. Mann - - USA 

Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot PORT PORT - 

Meridion circulare (Greville) C. Agardh - - USA 

Meridion circulare var. constrictum (Ralfs) Van Heurck - - USA 

Navicula angusta Grunow PORT PORT - 

Navicula arvensis Hustedt - - USA 

Navicula vandamii Schoeman & R. E. M. Archibald USA - USA 

Navicula concentrica J. R. Carter & Bailey-Watts USA - USA 

Navicula cryptotenelloides Lange-Bertalot PORT PORT - 

Navicula escambia (Patrick) Metzeltin & Lange-Bertalot USA - USA 

Navicula genovefea Fusey USA - USA 

Navicula gregaria Donkin - PORT USA 

Navicula heimansioides Lange-Bertalot PORT PORT - 

Navicula notha J. H. Wallace USA - USA 

Navicula radiosa Kützing - PORT - 

Navicula reichardtiana Lange-Bertalot - - USA 

Navicula tripunctata (O. F. Müller) Bory - PORT USA 

Navicula trivialis Lange-Bertalot - - USA 
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Navicula viridulacalcis Lange-Bertalot USA - USA 

Navicymbula pusilla (Grunow) Krammer - AUS AUS 

Neidium affine (Ehrenberg) Pfitzer USA - - 

Nitzschia angustatula Lange-Bertalot USA - USA 

Nitzschia desertorum Hustedt - - AUS 

Nitzschia dissipata var. media (Hantzsch) Grunow - PORT USA 

Nitzschia intermedia Hantzsch - - USA 

Nitzschia lacuum Lange-Bertalot - - AUS 

Nitzschia liebetruthii Rabenhorst - AUS AUS 

Nitzschia linearis var. subtilis (Grunow) Hustedt - - USA 

Nitzschia linearis var. tenuis (W. Smith) Grunow - - USA 

Nitzschia lorenziana var. subtilis Grunow USA - - 

Nitzschia mediastalsis Hohn et Hellermann USA - USA 

Nitzschia microcephala Grunow 

 

- AUS 

Nitzschia perminuta (Grunow) M. Peragallo PORT - - 

Nitzschia perspicua Cholnoky - AUS AUS 

Nitzschia sigmoidea (Nitzsch) W. Smith - - USA 

Nitzschia similis Hustedt USA - USA 

Nitzschia sociabilis Hustedt - - USA 

Nupela impexiformis (Lange-Bertalot) Lange-Bertalot USA - USA 

Nupela lapidosa (Krasske) Lange-Bertalot - PORT - 

Pinnularia divergens W. Smith USA - USA 

Pinnularia gibba var. linearis Hustedt 

 

- USA 

Pinnularia intermedia (Lagerstedt) Cleve USA - USA 

Planothidium haynaldii (Schaarschmidt) Lange-Bertalot USA - USA 

Platessa conspicua (A. Mayer) Lange-Bertalot - PORT USA 

Psammothidium helveticum (Hustedt) Bukhtiyarova & Round - PORT - 

Pseudofallacia tenera (Hustedt) Liu, Kociolek & Wang USA AUS - 
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Pseudostaurosira parasitica (W. Smith) Morales - - USA 

Pseudostaurosira parasitica var. subconstricta (Grunow) E. Morales - - USA 

Reimeria sinuata (W. Gregory) Kociolek & Stoermer 

 

PORT USA 

Reimeria sinuata f. antiqua (Grunow) Kociolek et Stoermer USA - - 

Rhopalodia gibba (Ehrenberg) O. Müller - AUS - 

Rhopalodia musculus (Kützing) O. Müller - AUS AUS 

Rossithidium lineare (W. Smith) Round & Bukhtiyarova USA - USA 

Sellaphora mutata (Krasske) Lange-Bertalot USA - USA 

Sellaphora rectangularis (Gregory) Lange-Bertalot & Metzeltin USA - USA 

Stauroneis kriegeri R. M. Patrick - - USA 

Stauroneis thermicola (J. B. Peterson) J. W. G. Lund - - USA 

Stephanodiscus minutulus (Kützing) Cleve & Möller USA - USA 

Surirella minuta Brébisson ex Kützing - - USA 

Surirella ovalis Brébisson - - AUS 

Surirella tenera W. Gregory - - USA 

Tabellaria fenestrata (Lyngbye) Kützing - - USA 

Tabularia fasciculata (C. Agardh) D. M. Williams & Round - - AUS 

Thalassiosira visurgis Hustedt USA - USA 
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7.3.2 Genus-level 

The datasets included 98 diatom genera. The assemblages differed significantly among 

regions at genus level (Pseudo-F = 32.25, p < 0.01) and all three regions differed from each 

other (p < 0.01). The AUS assemblages were again most segregated but less so than at species 

level (average dissimilarity of 63.5% and 62.9% from PORT and USA, respectively) (Figure 

7.4). The mean number of genera per site in the USA did not differ significantly from the 

numbers in either PORT or AUS, but PORT had significantly more genera than AUS (Figure 

7.5).  

 
Figure 7.4 - Multidimensional scaling analysis (MDS) of the diatom assemblages, at the genus level, of 

the three regions: Portugal (triangles), United States of America (circles) and Australia (squares). 

The five genera that contributed most to similarity within Portuguese streams were 

Gomphonema, Achnanthidium, Navicula, Nitzschia and Fragilaria, with percentage 

contributions ranging from 10.4 to 8.9 (Table 7.3). Five of the genera that contributed most to 

within-USA similarity were also found in PORT with a higher percentage contribution 

(Gomphonema, Fragilaria, Achnanthidium, Nitzschia and Navicula). The exceptions were the 

genera Encyonema and Eolimna which had similar frequencies in PORT and the USA (Figure 

7.6). The five genera that contributed most to within-AUS similarity were Nitzschia, Navicula, 

Rhoicosphenia, Planothidium and Amphora, two of which (Navicula and Nitzschia) were also 

among those that contributed most to average similarity within other regions. Although 
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Rhoicosphenia, Planothidium and Amphora were not among the five most genera contributing 

most to similarity within the USA (or PORT), they were equally frequent in the USA and AUS 

(Figure 7.6). Frequencies of the selected genera were always significantly different between 

PORT and AUS, except for Planothidium. 

The average dissimilarity was lowest between PORT and the USA (50.7 %), with the 

genera contributing most (up to 18%) to this dissimilarity all more frequent in the USA than 

in PORT (e.g., Rhoicosphenia, Amphora, Melosira, Aulacoseira, Frustulia and Surirella). 

Although AUS had comparable average dissimilarity to each of the other two regions, only 

one genus was present in AUS and absent from PORT, and only one was present in PORT and 

absent from AUS, whereas eight were absent from AUS and present in the USA (e.g., Reimeria 

and Stauroneis) (Table 7.4). The main difference between PORT and AUS (and the USA) was 

in genera frequencies. There was a higher frequency of genera such as Rhoicosphenia, 

Amphora, Tabularia, Bacillaria and Tryblionella in AUS while in PORT there was a higher 

frequency of Encyonema, Fragilaria, Eolimna, Gomphonema and Ulnaria. 

 
Figure 7.5 - Mean number (±SD) of genera per sample in the three regions (PORT-Portugal, USA-United 

States of America, AUS-Australia). Regions with the same letter (a, b) do not differ significantly (p > 

0.05). 

Table 7.3 - Diatom genera that contributed most to average similarity in AUS-Australia, PORT-Portugal, 

and USA-United States of America (up to 90% of cumulative similarity, Bray–Curtis similarity: SIMPER 

analysis). The values in bold indicate the genera that contributed most to average similarity within 

each region. 

Species Contribution (%) 

 PORT USA AUS 

Achnanthes - 0.8 - 

Achnanthidium 10.3 5.1 4.8 
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Amphora - 4.1 7.0 

Aulacoseira - 2.1 - 

Bacillaria - - 3.7 

Caloneis - 1.5 - 

Cocconeis 5.8 4.1 5.7 

Cyclotella - 1.1 - 

Cymbella - 1.2 - 

Diadesmis - 0.8 - 

Diatoma 1.3 1.0 - 

Discotella - 0.8 - 

Encyonema 6.4 5.1 - 

Eolimna 6.3 5.5 - 

Epithemia - - 2.1 

Eunotia 2.7 4.6 - 

Fragilaria 8.9 5.2 1.6 

Fragilaria - 2.2 - 

Gomphonema 10.4 5.9 3.7 

Halamphora - - 1.9 

Hippodonta - 1.8 2.2 

Karayevia 1.6 - - 

Luticola - 1.0 - 

Melosira - 3.2 3.2 

Meridion - 1.2 - 

Navicula 10.3 5.1 11.7 

Nitzschia 10.1 5.1 12.3 

Pinnularia 1.6 1.9 - 

Planothidium 7.8 4.8 8.3 

Reimeria 2.4 1.9 - 

Rhoicosphenia - 3.4 11.5 

Stauroneis - 1.6 - 

Staurosira - 1.6 - 

Staurosirella - 1.1 - 

Surirella 1.5 2.6 1.6 

Tabularia - - 5.3 

Tryblionella - - 3.3 

Ulnaria 3.1 3.5 1.4 
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Figure 7.6 - Percentage of sites in Portugal (triangles), United States of America (circles) and Australia 

(squares) where the genera that contributed most to within-region average similarity were found 

(Table 7.3). For each genus, the regions inside the rectangle are not significantly different (p > 0.05) 

and are significantly different from the region outside the rectangle (p < 0.05). Navicula was 

significantly different between PORT and AUS but the differences were not tested for the other two 

comparisons (PORT-USA and USA-AUS). 

Table 7.4 - Diatom genera that contributed most to average dissimilarity between AUS-Australia, 

PORT-Portugal and USA-United States of America (up to 80% of cumulative dissimilarity, Bray–Curtis 

similarity: SIMPER analysis).The region code opposite a genus indicates that the genus was found only 

in that region among the two regions being compared. 

Genus Comparison 

 

PORT vs. USA PORT vs. AUS USA vs. AUS 

Diadesmis - - USA 

Discotella - - USA 

Geissleria - - USA 

Luticola - - USA 

Meridion - - USA 

Neidium - - USA 

Psammothidium - PORT - 

Reimeria - PORT USA 

Rhopalodia - AUS - 

Stauroneis - - USA 
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7.3.3 Order-level 

The datasets included 19 diatom orders. At order level the assemblages of the three 

regions again differed significantly overall (Pseudo-F = 28.99, p < 0.01) and in all pairwise 

comparisons (p < 0.01). Once more, the diatom assemblages from Australia were segregated 

from the others (Figure 7.7). However, in contrast to the other taxonomic levels, the PORT 

and AUS regions had similar numbers of orders per sample (Figure 7.8) whereas the USA had 

fewer orders per sample than PORT.  

 
Figure 7.7 - Multidimensional scaling analysis (MDS) of the diatom assemblages, at the order level, of 

the three regions: Portugal (triangles), United States of America (circles) and Australia (squares). 

The orders that contributed the most to assemblage similarity within PORT were 

Cocconeidales, Naviculales and Cymbellales with percentage contributions up to 16% (Table 

7.5). The percentage contributions of the orders found in the USA were fairly uniform and the 

orders with greatest contributions were the same in PORT and USA (Table 7.5). Therefore, 

the dissimilarity between PORT and USA was just 27.7%. The orders that contributed the 

most to similarity within AUS were Cymbellales, Naviculales, Bacillarialles, Cocconeidales, 

and Licmophorales (Table 7.5). The order Licmophorales was among those contributing most 

to within-region similarity only in AUS, but was always among those contributing to most the 

dissimilarity among regions. Despite the lack of statistical differences, the PORT assemblages 

had a lower frequency of Licmophorales (Figure 7.9). The order Fragilariales was the only 

order with significantly lower frequency in AUS (Figure 7.9).  
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No order contributed to average dissimilarity by being present in just one region; the 

inter-regional dissimilarities were due only to differences in frequencies. The orders 

contributing up to 10% to the dissimilarity between AUS and the other two regions were 

Thalassiophysales and Tabellariales (AUS-PORT) and Eunotiales and Tabellariales (AUS-

USA). 

 
Figure 7.8 - Mean number (±SD) of orders per sample found in the three regions (PORT-Portugal, USA-

United States of America, AUS-Australia). Regions with the same letter (a, b) do not differ significantly 

(p > 0.05). 

Table 7.5 - Diatom orders that contributed most to average similarity in AUS-Australia, PORT-Portugal, 

and USA-United States of America (up to 90% of cumulative similarity, Bray–Curtis similarity: SIMPER 

analysis). The values in bold indicate the orders that contributed most to average similarity within 

each region. 

Order Contribution (%) 

 POR USA AUS 

Bacillariales 15.1 9.4 15.5 

Cocconeidales 16.7 10.6 15.5 

Cymbellales 16.1 10.6 17.6 

Eunotiales 4.0 8.2 - 

Fragilariales 13.6 9.5 5.7 

Licmophorales 5.0 6.6 9.5 

Melosirales - 6.1 - 

Naviculales 16.5 10.0 16.5 

Surirellales - 5.3 - 

Rhopalodiales - - 4.8 

Tabellariales 5.1 6.9 - 

Thalassiophysales - 7.5 7.7 
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Figure 7.9 - Percentage of sites in Portugal (triangles), United States of America (circles) and Australia 

(squares) where the orders that contributed most to within-region average similarity were found 

(Table 7.5). For each order, the regions inside the rectangle are not significantly different (p > 0.05) 

and are significantly different from the region outside the rectangle (p < 0.05). Cocconeidales was 

significantly different between POR and AUS but the differences were not tested for the other two 

comparisons (PORT-USA and USA-AUS). Licmophorales was not significantly different between USA 

and AUS but the differences were not tested for the other two comparisons (PORT-USA and PORT-

AUS). 

7.4 Discussion 

We expected similar assemblages from rivers with similar climate (Csb) in a large-scale 

comparison among regions on different continents. However, significant differences among 

regions were found even at the lowest level of taxonomic resolution (order). These results 

may suggest that, as stated by Gaston (2000), no single mechanism adequately explains a 

given large-scale pattern of biodiversity. Instead, constraints other than climate are likely to 

have contributed to the inter-regional differences in diatom assemblage composition found at 

all taxonomic levels, e.g., geology, historical biogeographic processes and hydrology 

(Stevenson, 1997; Virtanen and Soininen, 2012). Those other constraints were probably 

large-scale because such marked assemblage differences should not result from constraints 

acting at the local scale (such as micro-habitats), which would be reflected only in variability 
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among sites within each region . Also, if micro-scale factors had a strong effect, the samples 

from the different regions would have been mixed or grouped by similarities in micro-scale 

conditions, which was not observed.  

Diatoms are known to respond strongly to ion concentrations (Potapova and Charles, 

2003) and pH (Almeida and Feio, 2012), and these variables are usually related to catchment 

geology. Therefore, if diatom assemblages of the different regions were structured by 

geology, regional differences in ionic and pH preferences of the assemblages would be 

expected. The environmental preferences of the species that contributed most to dissimilarity 

among regions indicate that the geologies of the Portuguese and USA regions are probably 

similar and different from the geology of the Australian region. The Portuguese and USA 

diatom assemblages were dominated by circumneutral (mainly occurring at pH values about 

7) to alkaliphilous (mainly occurring at pH > 7) and oligohalobous (occurring at >100 to < 

500 mg Cl-/L) species, whereas the Australia diatom assemblages included more alkaliphilous 

(pH >7) and salinity-tolerant species (>100 to 5000 mg Cl-/L; van Dam et al., 1994). For 

example, Tabularia fasciculata, a representative taxon of the Australian assemblages, is 

associated with lowland streams with a pH ranging from 6.8 to 8.6, with relatively high 

salinities (Blinn and Bailey, 2001) and high conductivities (optimum of 719 µS/cm; Potapova 

and Charles, 2003). On the other hand, Rhoicosphenia abbreviata and Nitzschia inconspicua 

were among the species that contributed most to the dissimilarity between Portugal and the 

USA, but were equally frequent in USA and Australian assemblages. These species prefer 

waters with high mineral content, and have conductivity optima around 400 µS/cm 

(Potapova and Charles, 2003; Potapova et al., 2005; Rimet 2009; Feio et al., 2012). The region 

of western Victoria (close to the Australian study region) is known for having several lakes 

with high salinity levels due to saline groundwater and runoff (Gell, 1997).  

Despite this evidence of the likely importance of geology, the observed differences in 

richness and assemblage composition among regions could also be related to biogeographical 

processes. Diatoms, like other microorganisms, have been considered ubiquitous with rare 

species not recorded globally simply because sampling effort has been insufficient (Finlay et 

al., 2002). In contrast to larger organisms such as macroinvertebrates (Heino and Soininen, 

2007), diatoms may be easily distributed via wind, currents and animal vectors (e.g., 

Kristiansen, 1996), resulting in wider distributions than those of metazoans (e.g., Heino and 

Soininen, 2007; Finlay et al., 2002). For example, in a recent study of assemblage variation of 

diatoms, bryophytes and macroinvertebrates across the same set of sites, variation was more 

associated with environmental factors and less associated with geographical distance for 

diatoms than for the other assemblages (Astorga et al., 2012). However, in recent years, some 

large-scale studies (Potapova and Charles, 2002; Soininen, 2004; Soininen et al., 2004) have 

demonstrated that purely spatial factors may also influence diatom distribution patterns 
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(Virtanen and Soininen, 2012), even at the genus level (Vyverman et al., 2007). Also, the 

increasing incidence of apparent regional endemism indicates the prevalence of restricted 

distribution patterns among diatom species (Vyverman et al., 2007; Vanormelingen et al., 

2008; Verleyen et al., 2009; Vyverman et al., 2010). Moreover, human-mediated introductions 

provide a strong indication that geographic dispersal is limited (Vanormelingen et al. 2008). 

Recognised introduced diatom species include Achnanthes subhudsonis in Europe (Coste and 

Ector, 2000), Asterionella formosa in New Zealand (Harper, 2004 in Vanormelingen et al., 

2008) and Didymosphenia geminata in New Zealand (Blanco and Ector, 2009). According to 

Coste and Ector (2000), A. subhudsonis was initially described in East Africa in 1921 and was 

first reported in Europe in 1991 (Galicia, NW Spain). Despite being reported in the Southern 

Hemisphere in 2000 (Coste and Ector, 2000), it is still apparently apparent absent from 

Australia. 

We expected that if dispersal limitation and geographic distance were shaping diatom 

assemblages, the Australian ones would be the most distinct, because Australia is 

geographically distant from the other two regions, and this was indeed the case. Moreover, 

some species were found only in one region, a result suggesting biogeographic patterns. 

However, the great majority of the species that were absent from a region in this study were 

found in the same country by other authors (e.g., Blinn and Bailey, 2001; Chessman et al., 

2007; Potapova and Charles, 2007). Therefore, these species can be considered ubiquitous, 

i.e. organisms without biogeography (Soininen, 2007).  

According to Bouchard et al. (2004), biogeographical patterns are more distinct at the 

genus level. In our study, differences among regions were evident even at the order level, 

with the Australian assemblages being consistently most distinct. However, as the 

ordinations show, distinctions among regions declined from species to genus to order. This 

result is expected because a higher taxon will usually have a broader distribution than each of 

its constituent lower taxa. Our results also show that even small differences among 

assemblages can be detected at the order level. For example, the order Licmophorales 

contributed strongly to dissimilarity among regions and similarity within the Australian 

assemblages despite comprising only the species Tabularia fasciculata.  

Bouchard et al. (2004) have warned that taxonomic richness should be compared among 

studies with caution, as richness depends greatly on search effort and sample size. In our 

study, the databases from each of the three regions comprised a different number of samples 

per site, which could have influenced taxonomic richness. However, Portugal and Australia 

had a similar number of samples per site, yet Portuguese samples had more species (and 

genera). This result suggests that the lower richness found in Australia was not related to the 

number of samples. Species richness has also been related to latitude, with tropical zones 
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supporting more species than temperate ones (Hawkins et al., 2004). However, this issue 

does not apply to our study because the regions we included are at similar latitudes. Regional 

inconsistencies in identification could also have contributed to differences at the species 

level, but the differences remained at genus and order levels where identification problems 

are unlikely. Finally, differences in richness may have been related to the number of valves 

counted per sample in each region. However, a study by Bate and Newall (2002) comparing 

valve counts of 100, 200, 300, 400 and 500 found that 200 were sufficient to characterise the 

diatom assemblage at a site with an efficiency of 80%. 

7.5 Conclusion 

In summary, our study has demonstrated that streams from different regions with 

similar climate (Csb) have diatom assemblages with differing taxonomic composition, and 

that climate cannot be used to map diatom distribution, in contrast to distributions of other 

organisms (Lindsay and Bayoh, 2004). The clear patterns obtained at all taxonomic levels 

suggest that regional differences are related to large-scale constraints. In addition, our results 

confirm that in large-scale studies it is possible to detect statistical differences among diatom 

assemblages at a high taxonomical rank such as genus or even order. 
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Chapter 8 - Final remarks 

‘The river is like an organism; it is internally self-adjusting’ (Leopold, 1977). It is also 

resilient and can absorb changes imposed upon it, but not without limit (Leopold, 1977). The 

limit beyond which a river cannot adjust has been in many situations overcome by man to a 

point that, even to the casual observer, it is rather obvious that undisturbed conditions can no 

longer exist (Birk et al., 2012).  

Streams and rivers exhibit different environmental characteristics from one region to 

another as a consequence of differences in climate, geology, hydromorphology, channel 

substrate, and water chemistry. Even within the small geographic area covered in this work 

(the Portuguese littoral region), it was possible to differentiate three sub-groups of streams 

based on differences in mean annual precipitation, mean annual runoff, slope, altitude, size of 

the drainage area, lithology, and stream substrate (chapter 2). Major anthropogenic 

alterations were, as expected, related to the riparian vegetation, morphological condition, and 

sediment load, as the main pressures in the Portuguese littoral region are agriculture and 

deforestation (chapter 2). Due to this strong anthropogenic influence it was only possible to 

find sites in Least Disturbed Condition (LDC), which corresponded to only 14.7% of the total 

samples collected. Nevertheless, the nutrient concentrations obtained for littoral LDC were 

still high and sites in the larger rivers included in this work were even excluded, due to 

hydromorphological modifications, specifically in the hydrological regime, connectivity, 

and/or morphological alterations. From the selected least disturbed sites, two distinct diatom 

communities (two sub-groups) were found (chapter 2), being differentiated by mean annual 

runoff, slope, mean annual precipitation, substrate (stone vs. sand), and lithology of the 

streams.  

The two sub-groups of diatom communities that were under similar levels of 

anthropogenic disturbance yielded considerable differences in the median values of the 

Portuguese official diatom index (Indice de Polluosensibilité Spécifique - IPS). The sub-group 

of streams with stony substrate showed much higher IPS median value than the group 

corresponding to sandy substrate. Therefore, the use of a single IPS benchmark value for both 

sub-groups to calculate the Ecological Quality Ratio (EQR) values would lead to erroneous 

classifications. The division by a higher median than the official one, which was based in a 

mixture of different littoral sites, results in lower EQRs, and therefore potential erroneous 
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attribution of lower quality to sites with good quality. These Type II errors (false negatives) 

can have important consequences, as they imply a higher investment than the one needed for 

streams’ restoration (Johnson et al., 2006).  

In spite of all efforts to increase the number of LDC sites in the Portuguese littoral 

region, through higher density of sampling sites and the refinement of the benchmark 

criteria, the strong anthropogenic pressures prevent an adequate definition of reference 

conditions for this area based on reference sites. Thus, an alternative procedure to the 

definition of reference conditions was investigated in chapter 3. To address problems of this 

type, Chessman and Royal (2004) proposed an alternative approach (filters approach) 

through which the establishment of biological reference conditions does not rely on reference 

sites. In fact, this approach, in combination with the modelling of the undisturbed condition of 

abiotic reference values, enabled us to propose biological reference conditions for the studied 

region, for both diatoms and macroinvertebrates, with lower dependence on reference sites. 

Yet, some of the abiotic variables that we considered relevant were not possible to model 

based on the existing data through boosted trees. The reference maximum nitrate 

concentration for reference sites was 3.64 mg·L-1, which is within the range of threshold 

values for various river types (2-6 mg·L-1) below which Pardo et al. (2012) considered a site 

to be ‘probably reference’. Feio et al. (2014) set a lower threshold for Mediterranean areas (≤ 

1.15 mg·L-1), but it was based on much a wider geographic region than the lowland area 

considered in this study.  

The use of the abiotic reference values (from models and from the literature) in 

combination with the filter approach allowed the prediction of diatom and macroinvertebrate 

communities statistically different from those that were observed in the streams during this 

study (chapter 3). We also verified that the communities observed in the streams were less 

homogeneous than those predicted (through the filter approach), as would be expected with 

sites having variable levels of change from reference conditions. Macroinvertebrate 

communities were also included in parallel in the analysis as they are the most commonly 

used biotic indicator of streams ecological quality. For both diatoms and macroinvertebrates, 

the median number of taxa predicted was more than the double of the median number of taxa 

observed, probably reflecting the long-term elimination of taxa by anthropogenic pressures 

(chapter 3). In some cases, taxa were observed at a site where they were not predicted to 

occur which could indicate anthropogenic influences turning a stream suitable for taxa that 

would not naturally occur there. However, it could also have resulted from limitations in 

estimating the natural environmental attributes of the sites and the environmental tolerance 

ranges of the taxa (Chessman and Royal, 2004).  
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We argue that this approach (combination of modelling and filter approach) is suitable 

to deal with the implications of global changes on diatoms, and even on macroinvertebrate 

communities, because, among the filters that were most often responsible for exclusions of 

diatom and macroinvertebrate taxa, we found mean annual temperature and runoff. These 

variables were considered to influence both diatom and macroinvertebrate distributions in 

other studies a (e.g., Potapova and Charles, 2002; Rimet et al., 2004; Tison et al., 2005; Feio et 

al., 2007; Rimet, 2009; Hawkins et al., 2010; Almeida and Feio, 2012). As expected, the 

pressure variables treated as filters excluded few taxa when set to normal values in the 

absence of anthropogenic influence (reference values). That is, when we ‘eliminate’ the effect 

of global changes from the environment, less taxa are excluded from streams that have 

natural abiotic characteristics to support those taxa. In spite of their importance, some of our 

filters are not direct determinants of diatom and macroinvertebrate community composition 

but rather surrogate predictors (Clarke et al., 2003). For example, mean annual air 

temperature, as obtained from cartographic sources, was used here as a surrogate of water 

temperature and was responsible for the total exclusion of Frustulia erifuga and frequent 

exclusion of Melosira varians from the diatom reference lowland communities. Direct 

prediction from the annual range of water temperature would have been more desirable, but 

water temperature is also highly dependent on the measurement spot and would require 

temperature loggers to be used continuously (Clarke et al., 2003). 

To test the consequences of the predictions through the filter approach to the ecological 

quality assessment, we developed a new multimetric diatom index (the MDI), following an 

approach similar to the one used for macroinvertebrates. This new index included the IPS as 

a metric and also the number of sensitive taxa and total taxa richness (chapter 3). We verified 

that the MDI produced strong correlations with the pressure variables thus providing a more 

comprehensive assessment of biological quality than the IPS (significant correlations with 

two PCA axes vs. only one axis). Such better performance was probably due to the inclusion of 

the number of sensitive species, as indicated by the high correlation of this metric with the 

PCA axes. In result of the application of the new reference values, the LDC sites decreased 

their EQR values, which was expectable. The comparison of the diatom and 

macroinvertebrate assessment results gave more confidence to our results (chapter 3): the 

results were similar for both communities and the new MDI resulted in similar water quality 

assessment than the already developed and highly used Portuguese multimetric index for 

benthic macroinvertebrates (IPtIs).  

Considering the differences found in chapter 2 regarding the IPS median values for 

sandy and stony streams, it was found important to test the real importance of the colonizing 

substrate (small-scale) on the diatom communities and its implication in bioassessment 

(chapter 6) as diatom communities are influenced by different spatial scales (from single 
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sand grains to across continents) (Biggs, 1996). The results of the mesocosm experiment 

described in chapter 6 showed that the substrate affects diatom communities by changing its 

composition and trait proportions. This is in agreement with other studies which indicate 

differences in the composition of diatom communities among different substrates (Round, 

1991; Cattaneo et al., 1997; Potapova and Charles, 2005). Yet, contrary to these findings, 

other in situ studies have not found differences between substrates (Rothfritz et al., 1997; 

Bere and Tundisi, 2011; Winter and Duthie, 2000). In fact, the differences that we found in 

the epipsammic and epilithic diatom communities in the streams (chapter 2) were more 

evident than the ones found in the mesocosm experiment (chapter 6). Furthermore, 

considering the water quality assessment, the IPS values obtained at the same sampling 

moment in the channels did not reflect the multivariate differences between the epipsammic 

and epilithic diatom communities (chapter 6) neither those verified in the streams (chapter 

2). However, as in other studies, the results of the mesocosm experiments suggest that hard 

and soft (sand) substrates can be exchangeable in assessment methods that are based on 

autoecology (Soininen and Könönen, 2004; Potapova and Charles, 2005; Mendes et al., 2012). 

In chapter 2 it was stated that due to the small number of LDC sites, particularly for 

epipsammic diatom communities, we must be cautious in our interpretations. With the 

results of chapter 6 we verified that in fact under the same physical and chemical conditions 

the IPS differences between substrates disappeared. Therefore, the differences that were 

found in the streams may have been due to other differences in the physical or chemical 

properties of the water that were not detected in the water analyses but were reflected in the 

diatom communities.  

While chapters 2 and 3 focused on the effect of anthropogenic disturbances in aquatic 

communities, particularly diatoms, chapter 4 and 5 dealt with the effect that can be expected 

from future extreme events due to climate changes. We verified that traits, community 

composition and bioassessment classifications of the diatoms and macroinvertebrates were 

all influenced by the complete drying of stream channels caused by an unusual drought event 

affecting the Portuguese littoral region during autumn and winter 2011/2012. However, the 

macroinvertebrates and diatoms differed in their recovery response. The drought led to 

changes in the trait proportions of the diatom and macroinvertebrate communities for at 

least a 6-month period (chapter 4). Diatom trait proportions changed towards proportions 

similar to those found in Mediterranean communities. However, shortly after the return of 

water to the channel, diatom communities’ traits were similar to those observed before the 

drought (chapter 4). The post-drought macroinvertebrate communities were however very 

different from those found before the drought but were also different from the 

Mediterranean ones (chapter 4). These changes in macroinvertebrate communities should 
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lead to an alteration of the ecosystem functioning for a relatively long period. For example, 

primary production may have been higher than normal due to the absence of some grazers 

and scrapers that were not able to resist to drought, as the primary producers recovered 

faster. Therefore, the lack of top-down control may have interfered in transference of energy 

and matter across the food chains.  

The influence of the drought in the water quality was more evident with the 

macroinvertebrate assessment as the IPS index for diatoms was similar over the rewetting 

progression. The stream water quality, given by the macroinvertebrate IPtI index, decreased 

with the drought event, and although it did not attain the pre-drought values within one year, 

the streams gradually recovered during the winter season. Both communities provide 

reliable information on water quality (e.g., Alba-Tercedor et al., 2002; Rimet et al., 2005). 

Diatoms are more sensitive to changes in water chemistry, whereas macroinvertebrates are 

more susceptible to channel morphological changes and habitat conditions (Passy et al., 

2004). Under drought effects, their simultaneous use for bioassessment should be 

considered, as their responses are different and appear to be complementary (Feio et al., 

2007), particularly if one considers responses at different time scales.  

Both chapters 4 and 5 suggest that the predicted drought events due to climatic changes 

influence diatom and macroinvertebrate communities. With increasing anthropogenic 

pressures and climatic alterations, we expect biological communities of temperate streams to 

change through time towards pollution-tolerant taxa with higher resilience to extreme 

drought events. Also, the river habitat characteristics appeared to play an important role in 

the recovery of macroinvertebrate and diatom communities. This study showed that the 

initial condition of streams was important in the recovery process, as the communities of 

streams showing better environmental conditions (e.g., riparian corridors, Habitat Quality 

Assessment) recovered faster and easier from extreme disturbances, which is in agreement 

with other studies (e.g., Sponseller et al., 2001; Elosegi et al., 2010; Thomson et al., 2012). 

In chapter 6 we showed that there are variations in diatom communities in a small 

spatial scale (substrate). Yet, large spatial scales have not been sufficiently explored for 

diatom communities. Thus, in chapter 7 we explored the plausible inter-continental (Europe, 

America and Australia) influence on the diatom communities. Based on the collected data we 

also found that diatom communities are different between regions with the same (temperate) 

climate, suggesting that diatom assemblages are also influenced at the large-scale (chapter 7). 

Initially we expected similar communities from rivers with similar climate (Csb) at a large-

scale level of comparison (inter-continents). However, significant differences between 

regions were found even at the highest level of taxonomical resolution (order). So, other than 

climate constraints should have contributed to the differences found at all taxonomical levels 

in benthic algal communities structure (e.g., geology, historical biogeographic processes and 
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hydrology; Stevenson, 1997; Virtanen and Soininen, 2012). The differences could be due to 

other large-scale factors because such marked dissimilarities should not result from direct 

constrains acting at the local and regional scale (as micro-habitats), which are only reflected 

in the variability between sites within each region. Also, if micro-scale factors had a strong 

effect, the samples from the different continents would be mixed or grouped by similarities in 

micro-scale conditions, but this was not revealed by the collected data. 

 

 

Future work 

How to deal with the implications of global changes and spatial scale in bioassessment 

using diatom communities of temperate rivers has not yet been completely understood. 

Although the effects of these factors on diatom communities and its implication in 

bioassessment were not fully addressed in the present work, our results can be combined in 

different ways to achieve a much better insight over it. The experimental facilities developed 

during this work can be used and/or further developed in the future to investigate a number 

of issues that has emerged. A selection of proposals for future work is: 

Issues based on the experimental facilities (artificial channels): 

-investigate the influence of temperature increase, based in the global warming 

predictions, on the water quality assessment based on diatom communities; 

-investigate the combined effects of the temperature and other important factors whose 

effects on the diatom communities can be potentiated by the temperature increase (e.g., 

temperature/light conditions, temperature/consumers) on the diatom communities; 

Issues based on data obtained for this thesis: 

-investigate if the continental differences that were found at all taxonomical level are 

reflected in the water quality assessment. If these differences are not reflect in the water 

quality assessment streams and rivers from different continents but under reference 

conditions can be used as reference sites for other continents were references sites do no 

longer exist. 

 

Abbreviations 

EQR Ecological Quality Ratios 

IPS Indice de Polluosensibilité Spécifique 

IPtI Índice Português de Invertebrados 

LDC Least Disturbed Condition 
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MDI Multimetric Diatom Index 

PCA Principal Components Analysis 
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Description of the lithology categories found in the Portuguese lowland sites (n=218 

samples from 62 sites). 

Lithology categories Description 

1 Sands, sand dunes, gravels, rolled stones, little consolidated 
sandstones, clays 

2 Glacial deposits 

3 Limestones, dolomitic limestones, marly limestones, marls 

4 Plateau gravel, Beira Baixa arkoses, sandstones, limestones 

5 Conglomerates, sandstones, limestones, dolomitic limestones, 
marly limestones, marls, carbonaceous schist’s, schist’s 

6 Sandstones, more or less marly limestones, sands, gravels, 
claysconglomerates, limestones, dolomitic limestones, marls 

7 Red stoneware, conglomerates, marls, limestones generally 
dolomitic 

8 Metavolcanics 

9 Carbonate rocks 

10 Quartzites 

11 Schists and related rocks 

12 Basaltic mantles and tuffs, basalts 

13 “Teschenitos” (alkaline rocks) 

14 Dolerite 

15 Andesite 

16 Aplite-pegmatite 

17 Granites and related rocks 
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Frequencies (%) with which the filters approach predicted the occurrence of diatoms at 

55 sites in spring, compared with frequencies of collection. PC-taxon was predicted and 

collected, Pc-taxon predicted but not collected, pC-taxon not predicted but collected, pc-taxon 

neither predicted nor collected. 

Taxon PC Pc pC pc 

Achnanthidium minutissimum (Kützing) Czarnecki 85 11 2 2 

Achnanthidium pyrenaicum (Hustedt) H. Kobayasi 7 44 2 47 

Achnanthidium rivulare Potapova & Ponader 11 7 2 80 

Achnanthidium subatomoides (Hustedt) O. Monnier,  

Lange-Bertalot & Ector 9 38 0 53 

Amphora inariensis Krammer 11 45 0 44 

Amphora lybica Ehrenberg 20 42 0 38 

Amphora pediculus (Kützing) Grunow ex A. Schmidt 56 33 0 11 

Aulacoseira granulata (Ehrenberg) Simonsen 5 47 2 45 

Bacillaria paxillifera (O. F. Müller) T. Marsson 9 27 4 60 

Caloneis bacillum (Grunow) Cleve 20 29 4 47 

Cocconeis euglypta Ehrenberg 65 25 2 7 

Cocconeis pediculus Ehrenberg 31 45 0 24 

Cocconeis placentula var. lineata (Ehrenberg)  

Van Heurck 55 31 0 15 

Cocconeis placentula Ehrenberg 25 27 15 33 

Cocconeis pseudolineata (Geitler) Lange-Bertalot 11 31 4 55 

Craticula halophila (Grunow) D. G. Mann 9 35 2 55 

Ctenophora pulchella (Ralfs ex Kützing) D. M. Williams & Round 4 16 0 80 

Cyclotella meneghiniana Kützing 27 65 0 7 

Cymbella affinis Kützing 5 18 0 76 

Cymbella tumida (Brébisson) Van Heurck 4 25 0 71 

Diadesmis contenta (Grunow) D. G. Mann 11 27 5 56 

Diatoma mesodon (Ehrenberg) Kützing 2 9 0 89 

Diatoma vulgaris Bory 9 47 4 40 

Diploneis oblongela (Naegeli) Cleve-Euler 11 29 0 60 

Encyonema minutum (Hilse) D. G. Mann 36 35 4 25 

Encyonema neogracile Krammer 2 7 0 91 

Encyonema silesiacum (Bleisch) D. G. Mann 0 47 2 51 

Eolimna minima (Grunow) Lange-Bertalot 85 9 2 4 

Eolimna subminuscula (Manguin) Gerd Moser Lange-Bertalot  

& Metzeltin 40 45 0 15 

Eunotia bilunaris (Ehrenberg) Schaarschmidt 4 22 2 73 

Eunotia minor (Kützing) Grunow 16 47 2 35 

Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot 15 35 0 51 

Fragilaria bidens Heiberg 2 18 0 80 

Fragilaria capitellata (Grunow) J. B. Peterson 4 20 0 76 

Fragilaria capucina Desmazières 15 45 5 35 
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Fragilaria crotonensis Kitton 7 18 2 73 

Fragilaria gracilis Østrup 25 47 4 24 

Fragilaria rumpens (Kützing) G. W. F. Carlson  9 16 5 69 

Fragilaria vaucheriae (Kützing) J. B. Peterson 31 56 4 9 

Frustulia erifuga Lange-Bertalot & Krammer 0 0 0 100 

Frustulia vulgaris (Thwaites) De Toni 9 55 2 35 

Geissleria decussis (Østrup) Lange-Bertalot & Metzeltin 7 42 4 47 

Gomphonema acuminatum Ehrenberg 5 38 0 56 

Gomphonema exilissimum (Grunow) Lange-Bertalot & E. Reichardt 9 38 0 53 

Gomphonema gracile Ehrenberg 5 51 0 44 

Gomphonema micropus Kützing 2 36 0 62 

Gomphonema minutum (C. Agardh) C. Agardh 27 51 0 22 

Gomphonema olivaceum (Hornemann) Brébisson 16 36 0 47 

Gomphonema parvulum (Kützing) Kützing 71 22 2 5 

Gomphonema pumilum (Grunow) E. Reichardt & Lange-Bertalot 45 45 0 9 

Gomphonema rhombicum Fricke 22 45 0 33 

Gomphonema truncatum Ehrenberg 2 18 2 78 

Halamphora veneta (Kützing) Levkov 11 13 4 73 

Hannaea arcus (Ehrenberg) R. M. Patrick 4 4 4 89 

Hippodonta capitata (Ehrenberg) Lange-Bertalot, Metzeltin &  

Witkowski 29 31 0 40 

Karayevia oblongella (Østrup) Aboal 36 42 2 20 

Lemnicola hungarica (Grunow) F. E. Round & P. W. Basson 5 27 5 62 

Luticola goeppertiana (Bleisch in Rabenhorst) D. G. Mann 13 40 4 44 

Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot 60 29 0 11 

Melosira varians C. Agardh 2 2 69 27 

Meridion circulare var. constrictum (Ralfs) Van Heurck 2 9 2 87 

Navicula angusta Grunow 0 4 0 96 

Navicula antonii Lange-Bertalot 25 31 0 44 

Navicula capitatoradiata H. Germain 11 62 0 27 

Navicula cryptocephala Kützing 53 40 2 5 

Navicula cryptotenella Lange-Bertalot 55 33 0 13 

Navicula cryptotenelloides Lange-Bertalot 11 58 0 31 

Navicula gregaria Donkin 84 11 0 5 

Navicula heimansioides Lange-Bertalot 9 49 2 40 

Navicula lanceolata Ehrenberg 31 24 7 38 

Navicula radiosa Kützing 5 27 2 65 

Navicula reichardtiana Lange-Bertalot 24 22 4 51 

Navicula rhynchocephala Kützing 15 49 5 31 

Navicula tripunctata (O. F. Müller) Bory 40 31 0 29 

Navicula veneta Kützing 40 51 0 9 

Nitzschia amphibia Grunow 33 49 0 18 

Nitzschia capitellata Hustedt 18 47 4 31 

Nitzschia dissipata (Kützing) Grunow var. dissipata 56 31 4 9 
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Nitzschia dissipata var. media (Hantzsch) Grunow 15 49 4 33 

Nitzschia fonticola (Grunow) Grunow 33 42 2 24 

Nitzschia frustulum (Kützing) Grunow 18 60 0 22 

Nitzschia inconspicua Grunow 58 35 0 7 

Nitzschia linearis (Agardh) W. M. Smith var. linearis 27 40 0 33 

Nitzschia linearis var. subtilis (Grunow) Hustedt 11 42 2 45 

Nitzschia microcephala Grunow 0 33 4 64 

Nitzschia palea (Kützing) W. Smith 69 27 2 2 

Nitzschia palea var. debilis (Kützing) Grunow 15 29 5 51 

Nitzschia paleacea (Grunow) Grunow 22 58 4 16 

Nitzschia perminuta (Grunow) M. Peragallo 15 42 2 42 

Nitzschia recta Hantzsch in Rabenhorst 13 56 0 31 

Nitzschia supralitorea Lange-Bertalot 25 24 0 51 

Pinnularia microstauron (Ehrenberg) Cleve 11 36 0 53 

Pinnularia subcapitata W. Gregory 4 13 2 82 

Placoneis clementis (Grunow) E. J. Cox 13 29 2 56 

Planothidium daui (Foged) Lange-Bertalot 24 29 0 47 

Planothidium delicatulum (Kützing) Round & Bukhtiyarova 7 33 2 58 

Planothidium frequentissimum (Lange-Bertalot) Lange-Bertalot 73 20 0 7 

Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot 78 15 2 5 

Planothidium rostratum (Østrup) Lange-Bertalot 7 45 2 45 

Platessa conspicua (A. Mayer) Lange-Bertalot 0 0 9 91 

Psammothidium helveticum (Hustedt) Bukhtiyarova & Round 2 18 0 80 

Reimeria sinuata (W. Gregory) Kociolek & Stoermer 44 35 0 22 

Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot 18 51 4 27 

Sellaphora pupula (Kützing) Mereschkowksy 29 44 0 27 

Sellaphora seminulum (Grunow) D. G. Mann 53 40 0 7 

Staurosira brevistriata (Grunow) Grunow 4 40 4 53 

Staurosira venter (Ehrenberg) Cleve & J. D. Möeller 13 60 0 27 

Surirella angusta Kützing 25 49 0 25 

Surirella brebissonii Krammer & Lange-Bertalot 22 16 7 55 

Tabellaria flocculosa (Roth) Kützing 7 11 2 80 

Tryblionella apiculata W. Gregory 16 25 2 56 

Tryblionella hungarica (Grunow) Frenguelli 11 15 2 73 

Ulnaria biceps (Kützing) Compère 20 49 7 24 

Ulnaria ulna (Nitzsch) Compère 51 40 2 7 

Ulnaria ulna var. acus (Kützing) Lange-Bertalot 4 49 5 42 
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Appendix III – Results of the filters approach, 
macroinvertebrates – Chapter 3 
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Frequencies (%) with which the filters approach predicted the occurrence of 

macroinvertebrate families at 62 sites in spring, compared with frequencies of collection. PC-

taxon was predicted and collected, Pc-taxon predicted but not collected, pC-taxon not 

predicted but collected, pc-taxon neither predicted nor collected. 

Family PC Pc pC pc 

Aeshnidae 31 31 3 35 

Ancylidae 63 29 5 3 

Aphelocheiridae 2 15 2 82 

Asellidae 21 47 8 24 

Athericidae 45 45 3 6 

Atyidae 42 50 2 6 

Baetidae 79 15 6 0 

Brachycentridae 5 60 0 35 

Caenidae 69 23 5 3 

Calamoceratidae 19 53 3 24 

Calopterygidae 40 32 5 23 

Capniidae 10 19 2 69 

Ceratopogonidae 48 35 3 13 

Chironomidae 94 0 6 0 

Chloroperlidae 0 15 0 85 

Coenagrionidae 19 56 3 21 

Cordulegastridae 26 39 3 32 

Corixidae 11 77 3 8 

Dixidae 13 45 2 40 

Dolichopodidae 8 44 2 47 

Dryopidae 44 47 3 6 

Dugesiidae 52 40 2 6 

Dytiscidae 44 34 3 19 

Elmidae 68 24 3 5 

Empididae 45 37 2 16 

Ephemerellidae 42 39 3 16 

Gerridae 21 66 2 11 

Glossosomatidae 15 48 2 35 

Goeridae 5 8 0 87 

Gomphidae 39 32 10 19 

Gyrinidae 10 34 0 56 

Haliplidae 32 48 3 16 

Helophoridae 34 45 2 19 

Heptageniidae 19 45 2 34 

Hirudinea 48 44 5 3 

Hydraenidae 27 47 2 24 

Hydrobiidae 61 34 3 2 

Hydrometridae 2 45 2 52 
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Hydrophilidae 34 52 2 13 

Hydropsichidae 61 31 5 3 

Hydroptilidae 44 48 3 5 

Lepidostomatidae 8 16 2 74 

Leptoceridae 13 60 0 27 

Leptophlebiidae 37 47 5 11 

Leuctridae 29 44 3 24 

Libellulidae 6 39 0 55 

Limnephilidae 10 32 2 56 

Limoniidae 45 48 3 3 

Lymnaeidae 31 58 0 11 

Naucoridae 2 37 0 61 

Nemouridae 19 27 3 50 

Notonectidae 10 40 2 48 

Oligochaeta 89 5 6 0 

Pediciidae 34 23 2 39 

Perlidae 0 27 0 73 

Perlodidae 21 48 2 29 

Philopotamidae 15 47 0 39 

Physidae 61 34 2 3 

Planariidae 3 10 0 87 

Planorbidae 47 47 2 5 

Platycnemididae 11 58 0 31 

Polycentropodidae 16 74 3 6 

Psychodidae 24 37 3 35 

Psychomyiidae 32 52 3 13 

Rhagionidae 10 31 0 60 

Rhyacophilidae 34 48 3 15 

Scirtidae 5 29 0 66 

Sericostomatidae 6 50 2 42 

Simuliidae 79 13 3 5 

Sphaeriidae 32 47 2 1 

Tabanidae 10 71 3 16 

Taeniopterygidae 10 19 0 71 

Tipulidae 45 45 3 6 



Appendix IV 

229 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix IV – Experimental set– Chapter 6 
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Photographs of the mesocosm channels. Detailed view of the substrates used for the 

diatom assemblages colization. 

 

 


