
Universidade de Aveiro Departamento de Engenharia Mecânica
2016

Lúıs Miguel
Martins Almeida

Interação Humano-Robô para a Transferência de
Objetos

Human-Robot Interaction for Object Transfer

Universidade de Aveiro Departamento de Engenharia Mecânica
2016

Lúıs Miguel
Martins Almeida

Interação Humano-Robô para a Transferência de
Objetos

Human-Robot Interaction for Object Transfer

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Mecânica, realizada sob a orientação cient́ıfica de V́ıtor Manuel Ferreira
dos Santos, Professor Associado do Departamento de Engenharia Mecânica
da Universidade de Aveiro e sob co-orientação de Filipe Miguel Teixeira
Pereira da Silva, Professor Auxiliar do Departamento de Eletrónica Teleco-
municações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Jorge Augusto Fernandes Ferreira
Professor Auxiliar da Universidade de Aveiro

vogais / committee Prof. Doutor João Paulo Morais Ferreira
Professor Adjunto do Instituto Superior de Engenharia de Coimbra (arguente)

Prof. Doutor V́ıtor Manuel Ferreira dos Santos
Professor Associado da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Agradeço em primeiro lugar ao Professor V́ıtor Santos pela orientação, mo-
tivação e por todo o apoio dado na realização deste trabalho.
Agradeço à minha faḿılia pelo apoio e ajuda incondicional nesta jornada.
Não menos importante, agradeço também aos meus amigos por todos os
momentos inesquećıveis que passámos juntos.

palavras-chave Interação Humano-Robô, sensor 3D, sensor de força, pré-interação, in-
teração por contacto, transferência, braço robótico, ROS.

resumo Os robôs entram em contacto f́ısico com os humanos sob uma variedade
de circunstâncias para realizar trabalho útil. Esta dissertação tem como
objetivo o desenvolvimento de uma solução que permita um caso simples
de interação f́ısica humano-robô, uma tarefa de transferência de objetos.
Inicialmente, este trabalho apresenta uma revisão da pesquisa corrente na
área da interação humano-robô, onde duas abordagens são distingúıveis,
mas simultaneamente necessárias: uma aproximação pré-contacto e uma
interação pós-contacto. Seguindo esta linha de pensamento, para atingir
os objetivos propostos, esta dissertação procura dar resposta a três grandes
problemas: (1) O controlo do robô para que este desempenhe os movimen-
tos inerentes à tarefa de transferência, (2) a pré-interação humano-robô e
(3) a interação por contacto. As capacidades de um sensor 3D e de sensores
de força são exploradas com o objetivo de preparar o robô para a trans-
ferência e de controlar as ações da garra robótica, correspondentemente. O
desenvolvimento de arquitetura software é suportado pela estrutura Robot
Operating System (ROS). Finalmente, alguns testes experimentais são re-
alizados para validar as soluções propostas e para avaliar o desempenho do
sistema. Uma posśıvel transferência de objetos é alcançada, mesmo que
sejam necessários alguns refinamentos, melhorias e extensões para melhorar
o desempenho e abrangência da solução.

keywords Human-Robot Interaction, 3D sensor, force sensor, pre-interaction, interac-
tion by contact, handover, robotic arm, ROS.

abstract Robots come into physical contact with humans under a variety of cir-
cumstances to perform useful work. This thesis has the ambitious aim of
contriving a solution that leads to a simple case of physical human-robot in-
teraction, an object transfer task. Firstly, this work presents a review of the
current research within the field of Human-Robot Interaction, where two
approaches are distinguished, but simultaneously required: a pre-contact
approximation and an interaction by contact. Further, to achieve the pro-
posed objectives, this dissertation addresses a possible answer to three ma-
jor problems: (1) The robot control to perform the inherent movements of
the transfer assignment, (2) the human-robot pre interaction and (3) the
interaction by contact. The capabilities of a 3D sensor and force/tactile
sensors are explored in order to prepare the robot to handover an object
and to control the robot gripper actions, correspondingly. The complete
software development is supported by the Robot Operating System (ROS)
framework. Finally, some experimental tests are conducted to validate the
proposed solutions and to evaluate the system’s performance. A possible
transfer task is achieved, even if some refinements, improvements and ex-
tensions are required to improve the solution performance and range.

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem Formulation and Approach . 1

1.3 Objectives . 1

1.4 Dissertation Structure . 2

2 State-of-the-Art 3

2.1 Human-Robot Interaction . 3

2.1.1 Pre-Contact Systems . 3

2.1.2 Contact Systems . 4

2.2 Robotic Manipulators . 4

2.2.1 PR2 . 4

2.2.2 Domo . 5

2.2.3 NAO . 5

2.3 Related Work . 6

2.4 Overview . 6

3 Experimental Setup 7

3.1 Cyton Manipulator Arm . 7

3.2 Servo Motors . 9

3.3 Kinect Sensor . 10

3.4 Force Sensors . 12

3.4.1 ATI Mini 40 . 12

3.4.2 Force-Sensing Resistor . 12

3.5 Software Development Tools . 13

3.5.1 Robot Operating System . 13

3.5.2 MoveIt! . 14

3.5.3 KDL . 14

3.5.4 OpenNI . 15

3.6 Proposed System Architecture . 15

i

4 Robot Control 17
4.1 Joint Controller . 17
4.2 Robotic Arm Description in ROS . 18
4.3 MoveIt! Cyton Configuration . 19
4.4 Kinematic Analysis . 20

4.4.1 Forward Kinematics . 20
4.4.2 Inverse Kinematics . 23
4.4.3 Control Mode: Implementation . 25

4.5 Evaluations . 25
4.5.1 Workspace Analysis . 25
4.5.2 Reachability Analysis . 27

5 Pre-contact Approximation using 3D Vision 29
5.1 Human Hand Tracking . 29
5.2 Kinect-Robot Frame Transformation . 31
5.3 Object Detection . 32
5.4 Evaluations . 33

5.4.1 Accuracy Analysis . 33
5.4.2 Frame Transformation Analysis . 34
5.4.3 Object Detection Success . 34

6 Contact and Force-based Interaction 37
6.1 ATI Mini40 Integration . 37

6.1.1 Signal Converter . 37
6.1.2 Code Implementation . 39
6.1.3 Sensor Installation . 39
6.1.4 Signal Overview . 41

6.2 FSR Integration . 42
6.2.1 FSR’s Overall Assembly . 43
6.2.2 Algorithm Implementation . 44

6.3 Evaluations . 45
6.3.1 Force Evolution in a Object Transfer Task 46
6.3.2 Repeatability Analysis . 47
6.3.3 Transfer Algorithm Success Rate . 50

6.4 Overall System Architecture . 51
6.5 Overall ROS Architecture . 51

7 Conclusions and Future Work 53
7.1 Conclusions . 53
7.2 Future Work . 53

Bibliography 55

A Developed Components to Install the Sensor in the Arm 59

B User Guide 61

ii

List of Figures

2.1 PR2 Robot [14]. 4

2.2 Humanoid robot Domo [16]. 5

2.3 Humanoid robot NAO [19]. 5

3.1 Cyton Gamma 1500 manipulator. 7

3.2 Cyton Gamma 1500 dimensions1. 8

3.3 Cyton servo motors models. 9

3.4 Dynamixel servos PID control structure [28]. 10

3.5 Microsoft Kinect Xbox 360. 11

3.6 Illustration of Kinect depth measurement [29]. 11

3.7 F/T sensor. 12

3.8 FSR adapter [32]. 13

3.9 FSR 402 Short. 13

3.10 OpenNI joint map [39]. 15

3.11 Proposed integrated system architecture. 16

4.1 3D Cyton gamma 1500 model in rviz. 19

4.2 Coordinate frames of Cyton Gamma 1500. 20

4.3 Overall ROS nodes and topics of Cyton foward kinematics calculation. 22

4.4 Overall ROS nodes and topics of Cyton inverse kinematics calculation. 24

4.5 Limited workspace to decrease inverve kinematics calculation time. 26

4.6 Global limited workspace to decrease inverse kinematics calculation time. . . 26

4.7 Robotic manipulator reachability test. 27

4.8 Robotic manipulator joint performance. 28

5.1 Kinect reference axis. The 3D axis colour red, green and blue refer to XYZ
sequentially. 29

5.2 User hand tracking. Note: The skeleton joint map is horizontally inverted to
facilitate the visualization. 30

5.3 Hand tracking ROS structure. 30

5.4 Kinect and robotic arm layout. R - Robot; K - Kinect. 31

5.5 Red cube. 32

5.6 Colour based object detection. 32

5.7 Experimental procedure to evaluate 3D sensor accuracy. 33

6.1 Force measurement hardware. 37

6.2 Signal conditioning circuit to interface the ATI Sensor. 38

6.3 Electric conditioning operating principle. 38

6.4 Support blueprint to integrate the sensor with the arm. 40

6.5 ATI Sensor assembly into the robot arm. 40

iii

6.6 Overall signal flow from transducer to force and torque values. 41
6.7 Example of resulting force and torque reading. 42
6.8 Diagram with states and transitions modeling the objet transfer between a

human and the robot. 43
6.9 Overall assembly of the force sensitivity resistors. 43
6.10 Force-based interaction software ROS architecture. 45
6.11 Objects used in the transference. Note: The objects are not represented to scale. 46
6.12 Force evolution for each object in a transference. 46
6.13 Illustrations, using the object B, corresponding to the phases (I, II, III and

IV) marked on the force evolution graphs. 47
6.14 Repeatability test using object A. 48
6.15 Repeatability test using object B. 48
6.16 Repeatability test using object C. 49
6.17 Repeatability test using object D. 49
6.18 Integrated system architecture. 51
6.19 Final overall ROS structure. 52

A.1 Support blueprint to integrate the sensor with the arm. 59

iv

List of Tables

3.1 Cyton Gamma 1500 general technical specifications. 9
3.2 Cyton Gamma 1500 joint specifications. 9
3.3 Dynamixel servos specifications. 10
3.4 Microsoft Kinect 3D-depth sensor . 11
3.5 Analog output range and sensitivity of ATI mini40 transducer. 12

4.1 DH parameters of 7 DOF cyton arm. 21
4.2 EE coordinates and Joint angles deviation. 27

5.1 3D sensor average and max error. 34
5.2 Frame transformation methods comparison. 34
5.3 Object detection success rate. 35

6.1 Transference success rate. 50

v

vi

Chapter 1

Introduction

1.1 Context and Motivation

Research in robotics has been playing a relevant role in Human-Robot Interaction (HRI)
field. Robots are designed and built to complement human abilities. In countless future joint-
action scenarios, humans and robots will have to interact physically in order to profitably
collaborate. Ideally, this interaction should be intuitively simple for humans, yet it requires
some degree of learning and adaptation [1]. In many operations, it is desirable to exploit the
force capabilities of robots by directly combining them with the human skills, hence leading
to human enhancement. This challenge requires a great perception of human environment
and intentions in order to respond to them intuitively, competently and harmlessly [2]. The
transfer of objects between humans and robots is a major way to coordinate activity and
cooperatively perform advantageous work [3]. The task of handing an object to a robot
presents a unique set of challenges for fluent human-robot interaction [4].

This dissertation aims to design and evaluate robotic systems for use by or with humans,
involving technical and scientific knowledge in numerous areas of engineering such as robotics,
mechanics, electronics, control and programming. This work considers an object transfer task
between a robotic manipulator and a human collaborator.

1.2 Problem Formulation and Approach

This work requires both the human and the robot to be aware of the handover situation.
The robot is considered to be static and waiting, in a favorable position, so the user can give
an object to it or take an object from it. Firstly, a robotic arm motion control is necessary to
enable the robot to perform the inherent movements of the transfer assignment. Secondly, a
visual servoing system is required to enable the robot to adaptively approach the human hand,
using common vision functions for robotic applications, such as object detection and human
tracking. Furthermore, a contact and force-based interaction system has to be implemented
to empower the robot to grasp and also release the object based on the force/tactile sensors
feedback.

1.3 Objectives

The main objective of this dissertation is the interaction between a human and a robot
with the specific purpose to transfer objects from one to another. In order to reach this
purpose, this work is organized in the following major sub-goals:

1

1. Hardware and software infrastructure installation and familiarization required to per-
ceive the interaction between a robotic arm and a human being.

2. Study of management mechanisms of pre-contact approximation between a robotic arm
and a human arm using 3D vision.

3. Study and development of interaction mechanisms by contact between a robotic manip-
ulator and a human being, with the concrete goal of object handover between human
hand and robot gripper.

1.4 Dissertation Structure

This dissertation is divided in seven chapters, including the present chapter. Chapter 2
presents a review of modern developments connected to this work, such as HRI approaches,
robotic manipulators acting in Human environments and object transfer methodologies.
Chapter 3 provides an overview of the experimental set-up, describing some specifications
of the Cyton Gamma 1500, the 3D sensor and the force sensors used for the proposed task.
Additionally, the required software tools are detailed, and a view of the proposed overall
system architecture is addressed. Chapter 4 presents the required steps to execute the robot
motion control. The Cyton Gamma 1500 kinematics is also analysed and evaluated in this
chapter. Chapter 5 is dedicated to the study and analysis of vision system for human hand
tracking, as well as object detection. Chapter 6 describes the force-based controller devel-
opment, implementation and evaluation. Additionally, a brief overview of the final overall
system and ROS architecture is presented. Finally, in chapter 7 the conclusions and future
work are presented.

2

Chapter 2

State-of-the-Art

This chapter introduces a brief study of modern developments related to this work, such
as Human-Robot Interaction (HRI) approaches, robotic manipulators acting in Human envi-
ronments and object transfer methodologies. Understanding current anthropomorphic robots
that usually work in complex environments, side by side with Humans, it is really helpful to
gather general information that leads to a better solution for the stated problem.

2.1 Human-Robot Interaction

”The HRI problem is to understand and shape the interactions between one or more
humans and one or more robots” [5]

To promote HRI with the goal to transfer objects, it is important to study two different
approaches: pre-contact and post-contact interaction. Pre-contact is based on 3D vision
systems, with the intention of detecting any target in the surrounding environment (e.g.,
people, objects...), and then adjust robot End-Effector (EE) to further the contact. Contact
itself requires hardware that allows the robot to ”feel” the contact/touch.

Like humans, robots typically use the sensory information linked to the senses of vision
and touch in order to interact with the objects in their environment. The sense of vision is
usually implemented in robotics through cameras, and the sense of touch is achieved with
force and tactile sensors. Vision grants the global information which is needed to locate the
objects in the environment and compute their relative spatial relations. Still, touch provides
the local information which is required to characterize the way the robot contacts the objects.
By mixing the global information with the robot controller, it is possible to avoid undesired
obstacles or to reach the target objects. On the other hand, local information can be used to
manipulate the contacting object or to explore it so that its surface properties are extracted
for its identification [6].

2.1.1 Pre-Contact Systems

Commonly in robotics, a motion capture system is used to perceive the pre-contact ap-
proximation between a robot and his surroundings. This system consists of a mechanism
that is able to measure the position and orientation of an object in the environment. The
well-known and most used systems to capture human motion are: mechanical, magnetic and
optical systems [7]. Opposite to mechanical and magnetic systems that usually require the
target to have special equipment attached to its structure, the optical system can allow the
capture of motion done completely via software. RGB-D sensors such as the Microsoft Kinect

3

or the Asus Xtion revolutionized the pre-contact research scene, since the sensor produces
a dense 3D point cloud in a plausible quality at a low cost [8]. The visual information ex-
tracted from the sensor promotes the motion of the robot, combining techniques such as
image processing, computer vision and control theory [6].

2.1.2 Contact Systems

To perceive the interaction by contact a force system is required. Usually the force
system uses the wrist force/torque sensor and/or tactile sensors or load cells at the gripper
fingertips as the feedback devices [9], [10], [11]. These are commonly used to enable robots to
perform numerous and diversified tasks, such as object manipulation and object handover.
Additionally, sensors are the key to allow a robot to act safely while interacting with humans,
which is the first concern in this matter.

2.2 Robotic Manipulators

In this section the most relevant assistive robots for the purpose of this dissertation,
such as PR2, Domo and NAO robot are outlined. These manipulators are used in many
studies involving the collaboration between Humans and Robots. The main purpose here is
to review these works by highlighting the relevant characteristics and technologies linked to
transference.

2.2.1 PR2

The PR2, presented in Figure 2.1, is a two-armed wheeled robot of size similar to a
human, developed by Willow Garage, designed for both navigation and manipulation. This
robot combines the mobility to navigate human environments and the dexterity to grasp and
manipulate objects in those environments. It has two 7 DOF arms with a payload of 1.8 kg.
PR2 has a head-mounted Kinect, that is used in conjunction with the Point Cloud Library,
increasing the abilities to sense the environment. The PR2 robot is fully integrated with
ROS, providing the power of all the ROS developer tools and out-of-the-box functionality for
everything from full system calibration to manipulation [12].

Jim Mainprice et al [13] studied the motion planning of handovers in cluttered workspaces
using a PR2 robot. The tactile information acquired by the pressure-sensors installed in its
fingertips helps them to discuss the problem of finding good object handover configurations.

Figure 2.1: PR2 Robot [14].

4

2.2.2 Domo

Domo, pictured in Figure 2.2, is an experimental robot made by MIT designed to interact
with humans. It has a total of 29 active degrees of freedom (DOF), of which 22 DOF use force
controlled and compliant series elastic actuators, providing the robot with the proprioceptive
sense of joint torque. This allows the robot to safely act in several complex environments,
being capable of many different grasps and movements. Also, thanks to the two cameras
mounted on its head and the visual processing system, Domo is able to analyse the size and
shape of an object to prepare for interaction [3].

Aaron Edsinger [15] developed an application that enables Domo to help a user to place
objects on a shelf. Domo’s hands modular force sensing compliant actuators allows it to gain
force knowledge during the transfer task.

Figure 2.2: Humanoid robot Domo [16].

2.2.3 NAO

NAO Robot (illustrated in Figure 2.3), developed by Aldebaran Robotics, is a biped
robot with 25 DOF with the ability to move, feel, hear and speak, see and connect to the
internet. Its humanoid shape and inertial unit enables it to move and adapt to the world
around maintaining the balance. It is equipped with two cameras that help recognize shapes
and objects. The plentiful sensors and sonar installed enables it to perceive the environment
and get its demeanour [17].

Judith Müller et al [18] presented a object manipulation system for the NAO robot that
is capable of grasp and/or give an object to a human. To grasp an object, NAO tries to fully
close its hand. The difference between the expected and the actual finger position indicates
if the object has been grasped. In a object releasing task, unlike other robots, NAO does not
use force sensors in its fingers to detect the traction force. By reducing the stiffness of the
arm joints, it is possible to detect this force by an unexpected motion of the arm joints.

Figure 2.3: Humanoid robot NAO [19].

5

2.3 Related Work

HRI for object transfer solutions have been proposed over the years. Papanikolopoulos
and Khosla [20] studied the task of a human handing an object to a robot. The experimental
results show that human subjects naturally control the objects orientation and position,
without any special preparation, to match the robots gripper configuration. The human
instinctively adapts to simplify the task of the robot. Shibata et al [21] conducted a research
on cooperative object handovers by studying the trajectories of the hands of the human
collaborators. Maya Cakmak [22] implemented a hand-over action in three phases: approach,
signal and release. In the first phase, the robot navigates towards the receiver, in the second,
it makes a signal meaning that it is ready to hand-over. The release phase refers to the
moment when it senses the object being pulled. Maya Cakmak [22] also studied different
hand-over configurations so that robot can choose the one that fits humans best. The robot
should try to transfer objects in the default orientation (object orientation commonly viewed
in everyday environments), without compromising safety, visibility and comfort. Sato et
al [23] have proposed a robot system capable of imitating human task trajectories by making
use of human data for several daily object transfer tasks. Nagata et al [24] have studied the
task of object handovers using contact point information by using the force torque data on
a multi-fingered robot hand. They described a robust adaptive grasping strategy. Patrizia
Basili [25] investigated two experimental set-ups in order to define a better human approach
criteria. The object transfer mostly occurs at the midpoint between both subjects and the
object is lifted approximately 1.2 s before the actual hand-over.

2.4 Overview

To successfully achieve the major goal of this dissertation, some gains from this state of
art study have to be considered. It is important to adapt and ease the robot work, performing
a large collaboration and adaptation while transferring the objects with it. The task has to
profitably accomplish two dominant phases: pre-interaction employing vision systems and
post-contact applying force-based interaction systems. The capabilities of a 3D sensor have
to be explored in order to prepare the robot to handover an object. Relatively to physical
interaction, many concepts must be taken in account (e.g. user safety, easy-to-understand and
design, robot performance and limitations, and force hardware capabilities.). To significantly
improve the performance of human-robot object handover task, gripper orientations can be
pre-defined. In addition, a signal or order must be implemented to dictate when to enter in
the transfer state. Normally, to transfer objects between a human and a robot by contact,
the robotic arm is installed with tactile sensors in its gripper fingers and/or a force sensor in
its last joint, usually the wrist joint. For this work to be possible, the diversity of objects to
be transferred have to be limited and appropriate to use with the available hardware.

6

Chapter 3

Experimental Setup

This chapter presents the hardware and software technologies required to achieve the pro-
posed goals of this dissertation. It is of crucial importance to know and understand available
technologies and means, so it becomes possible to take full advantage of them throughout
their implementation. The main hardware components consist of an anthropomorphic robotic
arm (Figure 3.1), a Kinect sensor, an ATI mini40 transducer, two FSR and a central pro-
cessing unit (PC-based). The software architecture is based on the Indigo version of Robot
Operating System (ROS) framework under Linux, using C/C++ and python programming
environment. ROS provides a wide list of libraries and tools to support the development of
new robot applications. Few tools, such as MoveIt!, KDL and OpenNI, are briefly explained,
since they are necessary to detect what is happening in the environment and how the robot
is moving so that the robot’s behaviour can be adapted accordingly [6]. Additionally, a high
level proposed system architecture is illustrated to clarify how both hardware and software
tools communicate and interact with each other.

Figure 3.1: Cyton Gamma 1500 manipulator.

3.1 Cyton Manipulator Arm

Introduced by Robai corporation, cyton gamma 1500 offers increased joint torques com-
pared to other models. Cyton robot has 7 degrees of freedom and also a servo to control the
gripper. With more than six axes, this robot is considered kinematically redundant, allowing
it to place the end effector at a position and orientation in a limitless number of ways. Al-

7

though it makes the kinematics of the arm more difficult, it enables the arm to reach around
obstacles with a fluid motion and higher accuracy. Figure 3.2 shows a representation of the
cyton gamma 1500 joints and also its dimensions.

(762)

(149)

150

177

(122)

(174.50)

(71.80)

(97)

(115.80)

(125.80)

(103.50)

(74)

Joint 0

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Figure 3.2: Cyton Gamma 1500 dimensions1.

Table 3.1 describes some technical specifications of the cyton gamma 1500 manipula-
tor [26]. The specifications are mainly related to robot physical properties, performance and
control.

1Image adapted from http://www.robai.com/assets/Cyton-Gamma-1500-Arm-Specifications_2015.pdf

8

http://www.robai.com/assets/Cyton-Gamma-1500-Arm-Specifications_2015.pdf

Table 3.1: Cyton Gamma 1500 general technical specifications.

Specifications

Total weight 3 Kg
Payload at full range 1200 g
Reach 68 cm
Maximum linear speed 45 cm/sec
Maximum speed (free move) 70 cm/sec
Repeatability ±0.5 mm
Gripper opening range 3.5 cm
Input voltage 100-240 V AC
Control interface USB or RS485

Table 3.2 describes joint type, angle and velocity limits, as well as the correspondent servo
model [26].

Table 3.2: Cyton Gamma 1500 joint specifications.

Joint Name Joint type
Angle limits

(degrees)
Velocity limits

(degrees/s)
Servo model

Shoulder roll (Joint 0) Spin -150 to 150 75 MX-64
Shoulder pitch (Joint 1) Articulate -105 to 105 75 MX-64
Shoulder yaw (Joint 2) Articulate -105 to 105 75 MX-64
Elbow pitch (Joint 3) Articulate -105 to 105 65 MX-28
Wrist yaw (Joint 4) Articulate -105 to 105 110 MX-28
Wrist pitch (Joint 5) Articulate -105 to 105 330 MX-28
Wrist roll (Joint 6) Spin -150 to 150 330 MX-28

3.2 Servo Motors

The servo motors and their controllers are responsible for all robot movements. Cyton
gamma 1500 has two different servo models developed by Dynamixel, MX-64 (Figure 3.3a)
and MX-28 (Figure 3.3b).

(a) MX-642. (b) MX-283.

Figure 3.3: Cyton servo motors models.

9

These servos are connected using a daisy chain mechanism and are queried and controlled
with an advanced serial protocol. Over 50 read/write parameters are available including
position, temperature, load, input voltage feedback and PID tuning. The dynamixel MX
series servos feature a contactless (Magnetic) position encoder and PID control for superior
accuracy and reliability. It also offers 12bit (4096) position resolution and can operate in the
360 degrees range with 0.088o resolution [27]. The servos specifications are described in table
3.3.

Table 3.3: Dynamixel servos specifications.

Model Gear Ratio Network Interface Position Sensor
Stall Torque

(N.m)

MX-64 200:1
TTL / RS-485

Contactless Absolute
Encoder

(12bit, 360 degrees)

6.0 (at 12V,
4.1A)

MX-28 193:1
2.5 (at 12V,

1.4A)

Figure 3.4 presents an overall PID structure of dynamixel controller. Equation 3.1 shows
how the proportional, integral and derivative gain are calculated correspondingly.

Figure 3.4: Dynamixel servos PID control structure [28].

Kp =
PGain

8
; Ki =

IGain× 1000

2048
; Kd =

DGain× 4

1000
(3.1)

3.3 Kinect Sensor

The Kinect sensor, shown in Figure 3.5, is a composite device consisting of a colour camera
(RGB) and a depth sensor which contains an infrared (IR) projector and an IR camera.

2http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm
3http://support.robotis.com/en/product/dynamixel/mx_series/mx-28.htm

10

http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm
http://support.robotis.com/en/product/dynamixel/mx_series/mx-28.htm

Figure 3.5: Microsoft Kinect Xbox 360.

The estimation of depth is based on an internal triangulation process [8]. The IR projector
casts an IR speckle dot pattern into the 3D scene while the IR camera captures the reflected
IR speckles. The geometric relation between the IR projector and the IR camera is obtained
through an offline calibration procedure. The depth of a point can be deduced from the
relative left-right translation of the dot pattern of projected dots. This translation changes,
depending on the distance of the object to the camera-projector plane [29]. Figure 3.6
illustrates this procedure.

Figure 3.6: Illustration of Kinect depth measurement [29].

The main nominal specifications are shown in Table 3.4.

Table 3.4: Microsoft Kinect 3D-depth sensor

Property Value

Field of Application Indoor
Field of View 57◦ horz.. 43◦ vert
Frame rate 30 Hz
Resolution, colour stream VGA (640x480)
Resolution, depth stream QVGA (320x240)
Nominal depth range 0.8 m - 3.5 m
Mechanized tilt range ±28◦

Interface USB

11

3.4 Force Sensors

Force sensors work as communication media of force interaction between robots and hu-
mans or environment. In this section the sensors used to gather force contact between one
or more objects and one robot arm are described.

3.4.1 ATI Mini 40

ATI mini40 transducer (shown in Figure 3.7a) has a compact, low profile design and is
typically applied to robotic-hand research. This force and torque (F/T) sensor uses silicon
strain gages to sense forces. The transducer’s silicon strain gages provide high noise immunity
and allow high overload protection [30].

(a) ATI Mini40 transducer. (b) Applied force and torque vector.

Figure 3.7: F/T sensor.

This device measures the outputting forces and torques in 3 directions around three axes,
as can be seen in Figure 3.7b. Table 3.5 presents the analog output range and sensitivity of
mini40 transducer within the operating range of ±10V.

Table 3.5: Analog output range and sensitivity of ATI mini40 transducer.

Analog Output Range Analog Sensitivity

Fx,Fy (N) Fz (N) Tx,Ty,Tz (N.m) Fx,Fy (N) Fz (N) Tx,Ty,Tz (N.m)
±80 ±240 ±4 8 24 0.4

3.4.2 Force-Sensing Resistor

Force-sensing resistors (FSR) consist of a conductive polymer, thin and flat which changes
resistance in a predictable manner subsequent of force or pressure applied to its surface, taking
into account that increasing the force results in a lower resistance [31]. This variation is caused
by non-conducting particles touching the conducting electrodes of the film. These sensors are
relatively easy to use and inexpensive, however, their low precision leads to a measurement
error up to 25% [31]. Commonly, a voltage divider (Figure 3.8a) is implemented to use an
FSR’s output. This simple circuit (Figure 3.8b) turns a large voltage into a smaller one using
only 2 series resistors and an input voltage.

12

(a) FSR adapter (voltage divider). (b) FSR adapter circuit scheme.

Figure 3.8: FSR adapter [32].

In this work two FSR 402 short (Interlink Electronics, Figure 3.9) are implemented. This
device has a force sensitivity range of ∼0.2 - 20N with a continuous (analog) force resolution.

Figure 3.9: FSR 402 Short.

3.5 Software Development Tools

In this section the main software tools used throughout this work are highlighted. Firstly,
ROS is briefly introduced emphasizing its packages. Secondly, tools like MoveIt! and KDL are
referred, given their importance to robot inverse kinematics calculations. Additionally, the
operability of OpenNI package is explored, since this has a great impact on the pre-contact
approach.

3.5.1 Robot Operating System

The ROS framework is the unifying element of this dissertation. It has revolutionized
the developers community, providing it with a set of tools, infrastructures and best practices
to build new applications and robots. A key pillar of the ROS effort is the notion of not
re-inventing the wheel by providing easy to use libraries for different capabilities like naviga-
tion, manipulation, control (and more) [33]. The core software is provided and maintained
by Willow Garage and the open-source community. In the matter of this work it defines the
interaction between the Cyton Gamma 1500 manipulator, the Kinect sensor and two Force
Sensitive resistors, using the functionality already present on the ROS platform and other
software personally developed.

ROS Communication

Communication is based on the TCP/IP protocol with each node connecting to a socket.
The server is administrated by a master that handles all the connection and addressing de-
tails. To better understand ROS communication, there are a few crucial concepts that the
user must know: packages, nodes, master, messages, topics and services [34].

13

Packages : Software in ROS is organized in packages. A package structure commonly
contains stored source code, libraries, binaries, a ”manifest.xml” file which is a declaration of
the package’s dependencies and also information about the package sustainer. Additionally,
each package incorporates a CMakeList.txt file with instructions for standard CMake compi-
lation.

Nodes : Processes that can perform computation, execute tasks and communicate. An
executed node has a unique id and a list of topics and services that are used to send or
receive messages, as well as some additional connection parameters. Nodes can be written
using C++ or Pyton languages provided by ROS libraries.

Master : A unique node that is launched when the network starts. It handles registra-
tions, subscriptions and disconnections of every node. It also links all topics and/or services
in order to make sure that all the messages reach their target successfully.

Messages : A message is simply a data structure containing typed fields. Although ROS
has some standard types of fields (e.g. boolean, (un)signed int, float, string..), additional types
can be found in many personal packages, resulting from combinations of these standard types.

Topics : Topics are used to send messages using a publish and subscribe semantic. A
node can attach to a topic by its name, either as a publisher in order to send data or as a
subscriber to receive these data. It is not possible to send different data kind from the one
defined in the message template.

Services : Uses a request/response model. Services can only be advertised by one node,
and receives data in response to the query it made.

ROS Visualization Tool (RVIZ)

Rviz is a 3D visualizer for displaying sensor data and state information from ROS. It is
feasible to use this tool to simulate robot motion and compare those with the real robot move-
ments. With the information extracted from RVIZ, it is possible to figure out if something
went wrong.

3.5.2 MoveIt!

MoveIt! is an agnostic robot software for mobile manipulation, incorporating advances
in motion planning, manipulation, 3D perception, kinematics, control and navigation. It
provides an easy-to-use platform for developing advanced robotics applications [35]. Given
the robot arm complexity, this tool, connected with kinematics and dynamics library (KDL)
is used in this work to solve the inverse kinematics of the cyton gamma 1500.

3.5.3 KDL

The kinematics and dynamics library (KDL) is a numerical method based solver. It
develops an application independent framework for modelling and computation of kinematic
chains, such as robots and machine tools. It provides class libraries for kinematic chains, and
also their motion specification and interpolation [36].

14

3.5.4 OpenNI

Open Natural Interaction (OpenNI) is an industry-led non-profit organization and open
source software project focused on certifying and improving interoperability of natural user
interfaces and organic user interfaces for Natural Interaction (NI) devices, applications that
use those devices and middleware that facilitates access and use of such devices [37].

OpenNI Tracker

OpenNI tracker allows a user to track his own or others skeleton using a 3D sensor [38]. It
provides the position, relative to the camera frame, of 15 human joints (illustrated in Figure
3.10, such as head, torso, elbows, hands and knees. This tracker combined with the kinect
sensor is used in this work to track the user hand. The tracked coordinates are published as
a set of transforms and used to send the robot to a place closer to the user’s hand to promote
the transference between them. The process to detect a user skeleton is fully automatic: it
only requires the user to be standing in front of the camera with the majority of his body
detectable.

Right shoulder
Right elbow

Right hand

Right hip

Right knee

Right foot

Head
Neck

Left shoulder
Left elbow

Left hand

Left hip

Left knee

Left foot

Torso center

Figure 3.10: OpenNI joint map [39].

3.6 Proposed System Architecture

The study and knowledge of the available resources allow, at this stage, the development
of a proposed system architecture. The proposed system architecture presents a succinct
integration of the hardware and software required for this dissertation. This architecture, at
hardware levels, contains a 3D sensor, a robotic manipulator and one or more force/tactile
sensors. The software architecture is based on the Indigo version of the ROS framework
under ubuntu 14.04. The necessary packages to reach the objectives use C/C++ and python
programming languages. Figure 3.11 illustrates the proposed integrated system architecture.

15

Figure 3.11: Proposed integrated system architecture.

16

Chapter 4

Robot Control

This chapter describes the arm motion control. Its main goal is to explore the 7DOF
manipulator arm in terms of forward and inverse kinematics in synchronous mode. Given the
complexity of this manipulator, the arm motion control solution is not found analytically. The
method implemented creates a 3D robot model for Cyton gamma 1500 arm, and then creates
a configuration file to integrate cyton with MoveIt!. To find the inverse kinematics solution
a numerical solver that handles the process of finding joint values for a given end-effector
position and orientation (KDL) and MoveIt! are used. The chapter starts by presenting how
Cyton gamma 1500 arm joints are controlled.

4.1 Joint Controller

In this work, the Cyton gamma 1500 joints controller is fully based on the dynamixel motor

package. The ROS stack dynamixel motor contains packages that are used to interface with
the Robotis Dynamixel line of servo motors. This stack contains 3 main packages:
dynamixel driver, dynamixel controllers and dynamixel msgs.

The driver package of Robotis Dynamixel servos, dynamixel driver, provides low level
IO (Input/Output) communication between motors and PC. As a low level package, ROS
users don’t usually use this package directly, unless there is a need to re-write motors speci-
fications, like rotation limits (CW and CCW angles), ID, baud rate, to name a few. Higher
level specific robot joint controllers, as well as dynamixel controllers, make use of this
package.

dynamixel controllers package works parallely with dynamixel driver package and it
is used to control every single Cyton servo. It incorporates a node that can be configured,
services and a spawner script to start, stop and restart one or more controller plugins. It
is possible to set the speed and torque for each motor making use of the available services
inside this package. All configurable parameters can be loaded via a YAML1file.

dynamixel msg package contains the messages that are used throughout this stack. In
this work, these dynamixel messages are used to set goals for each joint and also receive
feedback from them.

By making use of this stack, the developed package launches and starts controlling all

1Human-readable data serialization language.

17

Cyton arm servos. Listing 4.1 and 4.2 illustrate a generic structure for roslaunch files to
launch and start the controll of cyton dynamixel servos.

Listing 4.1: Roslaunch structure to launch the Cyton servos.

<!-- -*- mode: XML -*- -->

<launch >

<node name="dynamixel_manager" pkg="dynamixel_controllers" type="

↪→ controller_manager.py" required="true" output="screen">

<rosparam >

namespace: dxl_manager

serial_ports:

pan_tilt_port:

port_name: "/dev/ttyUSB0"

baud_rate: 1000000

min_motor_id: 0

max_motor_id: 24

update_rate: 20

</rosparam >

</node>

</launch >

Listing 4.2: Roslaunch structure to start the Cyton servos.

<!-- -*- mode: XML -*- -->

<launch >

<!-- Start tilt joint controller -->

<rosparam file="$(find my_dynamixel_tutorial)/tilt.yaml" command="

↪→ load"/>

<node name="tilt_controller_spawner" pkg="dynamixel_controllers"

↪→ type="controller_spawner.py"

args="--manager=dxl_manager

--port pan_tilt_port

shoulder_roll_controller

shoulder_pitch_controller

shoulder_yaw_controller

elbow_pitch_controller

elbow_yaw_controller

wrist_pitch_controller

wrist_roll_controller

gripper_controller"

output="screen"/>

</launch >

4.2 Robotic Arm Description in ROS

ROS has a meta package called robot model, which contains several relevant packages
that help build the 3D robot model. This section describes the most crucial packages used to
create a 3D robot model for Cyton gamma 1500. This 3D robot model is used with Moveit!
to find kinematics solutions and it is uploaded to the ROS parameter server using the launch
utility. All the important packages inside robot model meta package that are used to build
the Cyton 3D model are as follows [40]:

URDF: The Unified Robot Description Format (URDF) package contains a C++ parser,
which is an XML format for representing a robot model. This XML contains specifications for

18

robot model state, link, joint, transmission, sensors, scenes and other required specifications.

joint state publisher: This node, inside the URDF package, reads the robot model
description, finds all joints, and publishes joint values to all non-fixed joints using graphical
user interface (GUI) sliders.

kdl parser: Kinematic and Dynamics Library (KDL) is a ROS package that contains
parsing tools to build a KDL tree from the URDF description. The kinematic tree is used to
publish the joint states and also to get the forward and inverse kinematics of the robot.

robot state publisher: Robot state publisher reads the current robot joint states and
publishes the 3D poses of each robot link using the kinematics tree previously built from
URDF. Each pose is published as ROS tf (transform), which is the relationship amid coordi-
nate frames of a robot.

xacro: Xacro stands for XML Macros. It contains some add-ons to make URDF read-
able, briefer, and can be used for building complex robot descriptions. ROS has tools that
allow to convert xacro to URDF.

By making use of these packages and the Cyton CAD model, it is possible to create the
3D Cyton model. Figure 4.1 shows the 3D cyton gamma 1500 arm model represented in rviz.

Figure 4.1: 3D Cyton gamma 1500 model in rviz.

4.3 MoveIt! Cyton Configuration

To use MoveIt! with the Cyton arm, it is necessary to generate compatible configuration
files for MoveIt!, by using MoveIt! Setup Assistant. These configuration files are generated
from the URDF file and, despite their several applications, in this work they are mainly used
for kinematics calculations. The relevant files generated for this purpose are the following:

Controllers configuration file: List of Cyton arm controllers.

SRDF file: SRDF is the compact term for Semantic Robot Description Format. This
format represents Cyton structure information that is not in the URDF file, and has a se-
mantic aspect. SDRF is a complete description for everything from the world level down to
the robot level.

19

Joint limits file: This file allows the dynamics properties specified in the URDF to be
overwritten or augmented as needed, such as velocity and acceleration limits.

Joint names file: Specifies all cyton joint names to be used in MoveIt! for all calcula-
tions.

Kinematics file: Main configuration file for cyton kinematics. Here the kinematics
solver plugin (KDL plugin), solver search resolution, solver time-out and solver attempts are
specified.

4.4 Kinematic Analysis

To control a robotic manipulator it is essential to know its kinematics. This section
addresses the Forward Kinematics (FK) and Inverse Kinematics (IK) of the 7 DOFs robotic
arm.

4.4.1 Forward Kinematics

The Direct Kinematics (DK) of a robotic arm is the determination of end-effector posi-
tion and orientation as a function of the joint angles. Denavit and Hartenberg developed a
convention to obtain the transformation matrix that represents the end-effector related to the
global reference. From the DH parameters it is possible to determinate the Cartesian position
of the end-effector in terms of joint angles (θ1, θ2, ..., θ7). Figure 4.2 presents the coordinate
frame for Cyton Gamma 1500 and table 4.1 presents the DH-parameters for Cyton Gamma
1500.

Figure 4.2: Coordinate frames of Cyton Gamma 1500.

20

Table 4.1: DH parameters of 7 DOF cyton arm.

Link θi Li di αi

0 θ1 + π
2 0 L1

π
2

1 θ2 + π
2 L2 0 π

2
2 θ3 + π L3 0 π

2
3 θ4 + π -L4 0 π

2
4 θ5 + π L5 0 π

2
5 θ6 − π

2 0 0 -π2
6 θ7 0 L6 0

Synchronous Movement

To reduce Cyton’s vibrations and overload problems it is necessary to have a synchronous
movement. This synchronized method of joint control allows smoother motion and precise
control, which provides better performance of the robotic arm. In order to have a synchronous
movement, a node is created to subscribe the joint states. With these joint states (jαs) and
the new desired joint angles (jαd), it is possible to calculate the velocity for each joint. To
calculate these velocities, first, using the joint states and desired angles the displacement
(disp(i)) is calculated. By mixing a pre-defined max velocity (ωpre) for each joint and the
maximum displacement (dispm), it is possible to get the time of execution (te). Dividing
each joint displacement by the time of execution, joints are now synchronized, meaning that
they will start and finish at the same instant.

Being [n] = {1, 2, ..., 7} , the velocity for each joint (ω(i)) can be calculated as expressed
by the following equations (4.1, 4.2 and 4.3):

dispm = max
i∈[n]

(|jαdi − jαsi|) (4.1)

te =
dispm
ωpre

(4.2)

ω(i) =
disp(i)

te
(4.3)

Foward Kinematics ROS Structure

Figure 4.3 presents an overall ROS structure of forward kinematics for Cyton arm. Cy-
ton JS node subscribes all joint states and publishes them into the CJS D topic. Cyton FK
node subscribes from this topic, and publishes the joint angles and the calculated velocities
for each joint. Dynamixel manager node is then responsible to make the joints move syn-
chronously to the desired positions.

21

Figure 4.3: Overall ROS nodes and topics of Cyton foward kinematics calculation.

22

4.4.2 Inverse Kinematics

Inverse Kinematics (IK) is the method of determining a set of joint angles that will sat-
isfy a given end-effector pose in the Euclidean space. Joint angle values are needed by the
robot’s motion controller in order to move the end- effector of a robot to a desired point in
space, or through multiple points, in case of a trajectory. The IK implementation is based
on the least squares solution. This method is a standard approach in regression analysis to
the approximate solution of overdetermined systems. ”Least squares” means that the overall
solution minimizes the sum of the squares of the errors made in the results of every single
equation.

Least Squares Solution

Consider an n-jointed kinematic chain. Each Cartesian coordinate is a function of each
of the joint angles. This can be represented in matrix form by equation 4.4,

Y = F (X), (4.4)

where Y represents the vector of Cartesian coordinates and X the vector of joint values.
The partial derivatives of each Cartesian coordinate with respect to each joint angle lead, in
matrix form, to the equation 4.5

Ẏ = J(X)Ẋ, (4.5)

where J(X) is the Jacobean of F . The solution of this equation is that of a linear least

squares problem that minimizes
∥∥∥Ẏ − J(X)Ẋ

∥∥∥.

KDL Implementation

To implement the inverse kinematics for Cyton gamma 1500, Kinematics and Dynamics
(KDL) library of the Open Robotics Control Software (OROCOS) is used. KDL solves the
linear least squares problem described above. This is done over a number of iterations, using
Newton-Raphson (NR) for gradient descent minimization. The pseudo-inverse of the Jaco-
bian is determined using Singular Value Decomposition (SVD).

Since this task has a practical use, joint limits have to be taken into account. For joint
limits, the solver simply assigns the limiting value to the joint whose value increases beyond
its limit as a result of the inverse kinematic solution.

Inverse Kinematics ROS Structure

Figure 4.4 presents an overall ROS structure to calculate the inverse kinematics for Cyton
arm. The node Cyton JS subscribes the joints state and the desired goal for EE position, and
publishes the information on a topic. The Cyton IK node reads from that topic, calculates a
solution for each joint, and publishes it into the topic IKCJ D.

23

Figure 4.4: Overall ROS nodes and topics of Cyton inverse kinematics calculation.

24

4.4.3 Control Mode: Implementation

For this work, point-to-point or position control mode is used to control the arm motion.
This mode is commonly used when the goal is to move the end-effector to a specified position
regardless of the path, as intended for the object transfer task. The inverse kinematics
algorithm implemented with MoveIt! calculates the desired joint angles to be sent to the
robot, to satisfy the position where the user intends to transfer objects with it.

4.5 Evaluations

This section presents two main analysis. Firstly, a workspace analysis, given the need to
find a solution in a workable time. Secondly, to evaluate the manipulator arm’s motion in
terms of reachability of the end-effector.

4.5.1 Workspace Analysis

Cyton gamma 1500 arm has a large workspace which leads to a large, not-suitable for
inverse kinematics, calculation time. It is not reliable to look for all the solutions inside its
workspace. To decrease the required time, it is necessary to limit the number of orientations
for the end-effector. For this particular task, 4 orientations are used to improve the robot
workspace, as well as the interaction between robot and user. These orientations are defined
by the following rotation matrices (4.6, 4.7, 4.8 and 4.9).

R1 =

1 0 0
0 1 0
0 0 1

 (4.6)

R2 =

 0.7071 0 −0.7071
−0.7071 0 −0.7071

0 1 0

 (4.7)

R3 =

0.7071 0 0.7071
0.7071 0 −0.7071

0 0 1

 (4.8)

R4 =

1 0 0
0 0.7071 −0.7071
0 0.7071 0.7071

 (4.9)

By using Cyton MoveIt! forward kinematics it is possible to calculate the workspace gener-
ated for these orientations. Figure 4.5, shows the available workspace for these 4 end-effector
orientations considering a resolution of 0.01 m in Cyton’s gripper x,y and z coordinates.

25

−0.4 −0.2 0
0.2

0.4−0.4
−0.2

0
0.2

0.40.4

0.6

0.8

x/m
y/m

z
/m

(a) Gripper orientation (R1).

−0.4 −0.2
0

0.2 −0.4

−0.2

0
0.2

0

0.2

0.4

0.6

x/m
y/m

z
/m

(b) Gripper orientation (R2).

−0.2
0

0.2
0.4−0.4

−0.2

0
0.2

0

0.2

0.4

0.6

x/m
y/m

z
/m

(c) Gripper orientation (R3).

−0.2 0
0.2 −0.4

−0.2

0
0.20

0.5

x/m
y/m

z
/m

(d) Gripper orientation (R4).

Figure 4.5: Limited workspace to decrease inverve kinematics calculation time.

The global workspace for robot-user interaction is presented in figure 4.6. This workspace
results from the combination of the previous 4 end-effector orientations.

−0.4 −0.2 0
0.2 0.4−0.4

−0.2

0
0.2

0.4
0

0.5

x/m
y/m

z
/m

Figure 4.6: Global limited workspace to decrease inverse kinematics calculation time.

26

The maximum run rate for the inverse kinematics algorithm, in these conditions, is 10Hz.
The time necessary to calculate Cyton inverse kinematics with this analysis is approximately
10 times better than the previous required time. Additionally, these orientations make the
transfer task easier, since they allow the user to make contact with the sensor, using the
object, without considerable manipulation.

4.5.2 Reachability Analysis

To evaluate the manipulator arm’s behaviour, a reachability analysis is done. For this
analysis, 11 random points inside Cyton workspace are used. In figure 4.7 it is possible to
see how the arm behaves according to Cyton’s gripper x,y and z coordinates.

−0.2
0

0.2 −0.2

0
0.2

0.4

0.5

0.6

x/m y/m

z
/
m

desired EEc
real EEc

Figure 4.7: Robotic manipulator reachability test.

Figure 4.8 shows the joint performance for the points shown above.
EE coordinates and joint angles deviations are presented in Table 4.2. The EE average

error is approximately 1% being that joint 1, 6 and 0 are the ones that contribute the most.

Table 4.2: EE coordinates and Joint angles deviation.

Average percentage error of deviations

x y z Joint 0 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
1.02 1.06 1.08 1.77 4.36 0.50 0.87 0.34 0.32 2.91

The results show that the accuracy of the robot control is very high.

27

−1 0 1 2 3 4 5 6 7 8 9 10 11

−2

0

2

Joint 0

t/s

a
n
g
le
/r
a
d Joint angle Solution

Real Joint angle

−1 0 1 2 3 4 5 6 7 8 9 10 11
−2
−1

0
1

Joint 1

t/s

a
n
g
le
/
ra
d

−1 0 1 2 3 4 5 6 7 8 9 10 11
−1

0

1

Joint 2

t/s

a
n
g
le
/r
a
d

−1 0 1 2 3 4 5 6 7 8 9 10 11

0

0.5

1
Joint 3

t/s

a
n
g
le
/r
a
d

−1 0 1 2 3 4 5 6 7 8 9 10 11

−1

0

1
Joint 4

t/s

a
n
g
le
/r
a
d

−1 0 1 2 3 4 5 6 7 8 9 10 11
−2
−1

0
1 Joint 5

t/s

a
n
g
le
/r
a
d

−1 0 1 2 3 4 5 6 7 8 9 10 11

−2

0

2 Joint 6

t/s

a
n
g
le
/
ra
d

Figure 4.8: Robotic manipulator joint performance.

28

Chapter 5

Pre-contact Approximation using
3D Vision

This chapter presents all the work related to vision, using a Kinect sensor (RGB-D cam-
era). Figure 5.1 presents the 3D sensor, with the corresponding axis, used throughout this
work.

Figure 5.1: Kinect reference axis. The 3D axis colour red, green and blue refer to XYZ
sequentially.

Firstly, vision system algorithms are implemented to allow the robot to move closer to
the user, in order to promote the object transference. It can be seen as the pre-contact
interaction between human and robot. Secondly, a object is detected so that robot knows
when the user intends to enter in a transfer state. Two Kinect-Robot frame transformation
approaches are calculated, implemented and compared so as to use the one that best fits
the problem. Additionally, some experimental results are discussed. The performance of the
implemented systems, such as 3D sensor accuracy analysis and object detection success rate
are also evaluated in the end of this chapter.

5.1 Human Hand Tracking

The human hand tracking is based on openNI tracker package and NITE middleware
library mentioned on chapter 3. Figure 5.2a illustrates the user skeleton joints, acquired
with Rviz, in a particular position. Figure 5.2b represents, both at RGB and depth levels,
the position from which is the skeleton joint tracked. For this work, only the left hand is
tracked, and it is without considering its orientation. The user plays the role of adapting the
orientation to better match the robot configuration, similar to what is done between humans.

29

(a) User skeleton joints.

(b) RGB and depth levels user images.

Figure 5.2: User hand tracking. Note: The skeleton joint map is horizontally inverted to
facilitate the visualization.

The position of the hand is published as a tf transform and it is subscribed by a node
(Kinect HT) that handles the transformation of these coordinates from kinect to robot frame,
and advertises them at the /EES D topic. This topic containing the desired robot EE position
is later used as the input for the inverse kinematic calculation. The ROS structure of the
hand tracking is presented in Figure 5.3.

Figure 5.3: Hand tracking ROS structure.

30

5.2 Kinect-Robot Frame Transformation

To make robot end-effector position match the human hand, with the appropriated offset,
it is required to transform the points read by kinect. Two methods to transform the kinect
frame to the robot frame are implemented in order to evaluate the best solution. The first
method (method 1) is done manually with a measurement tape. By measuring the transla-
tions and rotations along the three axes, the transformation is calculated. The second method
(method 2) uses two point clouds: one for the kinect frame and the other for the robot frame.
To feed the point clouds, the user hand has to match with the end-effector position. By using
openNI tracker and robot forward kinematics, these points are recorded. The last step is to
use the function ”estimateRigidTransformation” to estimate the transformation.

Figure 5.4 illustrates how the Kinect is placed relatively to the robotic arm. Positioning
the 3D sensor in this place leads to a better detection of the user hand. The workspace is
within the 3D sensor field of view and nominal depth range. The layout also ensures that
the robotic arm does not block the human hand relatively to the sensor.

Figure 5.4: Kinect and robotic arm layout. R - Robot; K - Kinect.

Transform methods 1 and 2 between these two frames are represented by expressions 5.1
and 5.2 correspondingly .

RTK =


0 0 −1 1.560
−1 0 0 −0.700

0 1 0 0.788
0 0 0 1

 (5.1)

RTK =


0.028 0.019 −0.999 1.561
−1 0.007 −0.028 −0.652
0.007 1 0.019 0.763

0 0 0 1

 (5.2)

31

5.3 Object Detection

Object detection is a challenging task in the field of computer vision. The algorithms for
detection have some limitations caused by illumination, occlusion, scales and background.
The method implemented uses OpenCV features to handle image colour processing to detect
the object. In order to distinguish the object from the background, they should have a
significant colour difference. Hue, Saturation and Value (HSV) is a cylindrical coordinate
representation of points in an RGB colour model. The object to be detected is the red cube
presented in Figure 5.5.

Figure 5.5: Red cube.

Colour Based Detection

To detect the cube, a colour image is taken and converted to HSV colour-space using the
limits corresponding to the object colour. In this particular case the values are within the
following range: 140 ≤ H ≤ 179; 179 ≤ S ≤ 255; 126 ≤ V ≤ 191. These limits range take into
account environmental changes, namely luminosity shifts, which can lead to the emergence
of spurious white pixels in the threshold image. Some morphological operations, like opening
and closing operations (openCV functions: ”cv::erode” and ”cv::dilate”), are implemented to
eliminate these unnecessary pixels as well as the noise produced by the sensor. Figure 5.6
presents a colour image of the 3D scene with the detected object (Figure 5.6a) and illustrates
the treated threshold image (Figure 5.6b).

(a) Colour image of the 3D scene. (b) Thresholded image.

Figure 5.6: Colour based object detection.

32

The implemented algorithm can be described by the following pseudo code:

Algorithm 1 Colour based detection.

for each RGB frame do
threshold using HSV;
morphological operations (erode and dilate) and area boundaries;
if object detected then

transfer state = true;
else

transfer state = false;
end if

end for

5.4 Evaluations

This section has the objective to present some experimental results and evaluate the
performance of the implemented systems.

5.4.1 Accuracy Analysis

In order to evaluate how accurate this algorithm works and to settle an offset between
human hand and robot gripper (to avoid collisions), five fixed points inside robot workspace
are marked and measured using a tape with an error of ± 0.5∗10−3 m. To ease the marking,
the points are aligned with the 3D sensor and spaced by 0.2 m along the Z axis, as illustrated
in figure 5.7.

Figure 5.7: Experimental procedure to evaluate 3D sensor accuracy.

For each point, 100 readings of the hand positioned on those points are recorded. Table
5.1 presents the absolute average and max error of these readings.

33

Table 5.1: 3D sensor average and max error.

Average error [m] Max error [m]

x 0.0358 0.0647
y 0.0395 0.0571
z 0.0283 0.0477

To have a safe human-robot interaction, the offset must be settled according to the ob-
tained absolute max error. Since this is a sensitive subject and the method implemented lacks
precision, a research is made in order to support these results. Akansel et al [41] analysed the
joint tracking errors of openNI using as ground truth data: the data extracted from Vicon
motion capture system. The average joints errors showed up as usually more than 5 cm.
According to these results and to the workspace in use, the offset must be larger than 7 cm
in robot y axis to avoid collisions.

5.4.2 Frame Transformation Analysis

It is necessary to evaluate the two methods implemented to relate the kinect and the
robot frames in order to choose the one that best fits the problem. A set of coordinates well
known to the robot are used as the input for the transformation. Using the matrices given
above (section 5.2) the coordinates are transformed and then compared with the expected
ones. From table 5.2 it is clear that the method using a measurement tape gives better results
than the point-cloud based method.

Table 5.2: Frame transformation methods comparison.

Average error [m]

Method 1 Method 2
x 0.0546 0.0715
y 0.0567 0.0635
z 0.0495 0.0673

Concerning the first method, the average error showed up as approximately 5.36%, on
average less 1.38% when compared with the second transform approach.

5.4.3 Object Detection Success

This evaluation indicates how practical the implemented method is to detect the object. It
is well known that luminosity conditions change from one day to another, which is a problem
when vision is concerned. Although the algorithm allows a user to manually change the HSV
parameters, quite easily, the success rate is measured with fix parameters. The data was
recorded 5 times daily for 10 days taking into consideration three conditions (50 samples for
each condition):

(i) Only the environment luminosity changes are considered. Objects with a colour similar
to the cube are removed from the 3D sensor field of view.

(ii) Environment luminosity changes plus red objects in the environment (such as: red
clothes, red figures in wallpapers and red writing material).

34

(iii) The HSV parameters are adapted daily and the objects with a colour similar to the
cube are removed from the 3D sensor field of view.

Table 5.3, presents the object detection success rate.

Table 5.3: Object detection success rate.

Object detection success [%]

(i) (ii) (iii)
80 45 92

Using the HSV range presented above (subsection 5.3), and considering only the environ-
ment luminosity changes (condition (i)), the object is detected 80% of the time. One of the
biggest issue is, if a user wears red clothes and/or there is red objects in the environment,
which leads to a significantly lower sucess rate, 45%, even considering area boundaries. Be-
ing aware of not having red objects in the environment and changing the HSV parameters
once a day, the success rate rises to approximately 92%. This method has the disadvantage
proven with the results stated above, but shows up as a enough solution for this work. Else,
if the environment conditions don’t significantly change, this algorithm can always detect the
object.

35

36

Chapter 6

Contact and Force-based
Interaction

This chapter aims to present the work done to enable the transfer of objects by contact,
between a human and a robot. Force-based actions are based on the processing of the
forces and torques which are transmitted between the robot and the objects when they
come into contact. These force/torque values, which are registered by force/torque sensors
installed in the robot, are usually used as inputs for control laws which guarantee that contact
force/torque are regulated towards a predefined reference suitable for the development of the
robotic task [6].

The force/torque sensor ATI mini40 (figure 6.1a) fell during the installation in the arm,
resulting in a damaged sensor. Although collecting data was an impossibility from then on,
the study and work developed before the damage is briefly presented next. Additionally,
two FSR’s (figure 6.1b) are implemented to fulfil the need to fill the object between gripper’s
fingers. The chapter ends with a succinct experimental results discussion and a brief overview
of the final overall system and ROS architecture.

(a) F/T ATI mini40. (b) FSR.

Figure 6.1: Force measurement hardware.

6.1 ATI Mini40 Integration

In order to use the ATI mini40 transducer it is necessary to use a device to acquire the
signals sent by the sensor and then send it to a PC for later conversion into forces and torques.
Additionally, a support is required to install the sensor in the robotic arm.

6.1.1 Signal Converter

An Arduino with Ethernet Shield is used to acquire the signals. Since the Arduino
available can only read analogue inputs within a range of 0V-5V, a proper method to convert
these signals is needed. A dedicate circuit was developed to perform signal conditioning, using
EAGLE software. Figure 6.2 presents the developed schematic and board to convert these

37

signals. This circuit accepts as the input a plug DB26 where the wires, with the amplified
signals, are set up. The output will link directly with the Arduino.

(a) Signal converter schematic.

(b) Signal converter board.

Figure 6.2: Signal conditioning circuit to interface the ATI Sensor.

The operating principle of the developed circuit is described in Figure 6.3. For each signal,
when the input is +10V, the output voltage is 5V. On the other hand, -10V input results in
a 0V output voltage. Anywhere in between, the input voltage maps linearly to the output.

Figure 6.3: Electric conditioning operating principle.

38

6.1.2 Code Implementation

Since the Arduino board can now read the analogue signals, the next step is the code
development. Firstly, an Arduino works as a TCP/IP server that accepts a connection from
the client computer, and sends messages to it with the received signals. A Ethernet Shield
is incorporated in the Arduino to be possible to communicate through TCP/IP. Secondly,
the client computer receives the messages, decodes them and converts them into force and
torques. Converting these signals into forces and torques is the most challenging task related
to this force/torque sensor. Each gauge does not match a single force or torque in a single
direction, which means that each of them depends on all six gauges. A complex matrix is
implemented to assure a correct output. ATIDAQ provides a library that can be adapted
for this particular assignment. This code library uses standard C to read calibration files,
configure the transducer system, and convert voltages from data acquisition system into
forces and torques, to name a few. The required matrix to transform voltages into forces and
torques for this sensor is presented in equation 6.1.

TM =



0.15294 0.06576 −0.45575 12.04803 0.46830 −12.41577
0.39540 −14.52394 −0.25924 7.05382 −0.47846 7.08434
20.69524 −0.07941 20.91555 −0.42487 20.78888 −0.80079
0.00139 −0.08124 0.29133 0.03347 −0.30289 0.04973
−0.33941 0.00082 0.17312 −0.06970 0.16798 0.06230

0.00138 −0.17895 0.00772 −0.17225 0.01091 −0.17652

 (6.1)

Multiplying the transform matrix by a vector of gauges readings (V), it is possible to find
the forces and torques values for these readings, as highlighted in the equation 6.2.

Ft> = TM × V >, (6.2)

where Ft> is the transpose vector of Ft = [Fx Fy Fz Tx Ty Tz], and V > is the transpose
vector of V = [G0 G1 G2 G3 G4 G5].

6.1.3 Sensor Installation

The last step to install this sensor is the integration with the arm. In order to enable
the installation of the sensor in the arm, it is required to create two special components.
Firstly, using a CAD software, the prototype is created and secondly a CNC machine is used
to contrive the support. Figure 6.4 presents the CAD prototype developed using CATIA V5
software (mounting side adapter, Figure 6.4a and tool side adapter, Figure 6.4b). The entire
sheet of the developed components is presented in apendix A.

39

(a) Mounting side adapter. (b) Tool side adapter.

Figure 6.4: Support blueprint to integrate the sensor with the arm.

Figure 6.5 illustrates the real assembly of the sensor in the cyton gamma 1500 manipula-
tor. This adapter concerns the robot global axes, which means the sensor axes are align with
the robot ones.

Tool side adapter

Mounting side adapter

ATI Sensor

Figure 6.5: ATI Sensor assembly into the robot arm.

40

6.1.4 Signal Overview

Figure 6.6 presents the global flow of signal processing. The transducer is powered up
through the supply box and receives the forces and torques. These signals, treated by the
dedicate circuit, follow to the arduino that sends them through TCP/IP to the client com-
puter. Finally, the created node in the client PC converts the signals into forces and torques.

Force

Transducer

Signals

Supplies power

Interface power

Supply box

Signals, ±10V

Signal

conditioning

circuit

Signals, 0-5V

Signals, via TCP/IP

Arduino,

as server

Client PC,

using ATI DAQ Forces and

TorquesLibrary

Figure 6.6: Overall signal flow from transducer to force and torque values.

Signal Reading Example

As mentioned above, the sensor got damaged during the installation, leading to the im-
possibility to get readings while transferring objects with the robot. Despite this misfortune,
Figure 6.7 illustrates a qualitative reading example where it is feasible to detect two phases:

41

Phase A - In this phase a non-constant force is applied matched with the Z-axis of the
sensor. It can be seen that this generated almost only force and no torque.

Phase B - Here a random force is applied. It can be seen that the applied force was not
matching with any axis, since it generated some force and torque.

F
r

[N
]

A
B

Time [s]

T
r

[N
.m

]

Figure 6.7: Example of resulting force and torque reading.

6.2 FSR Integration

Although the ATI transducer got damaged throughout the work, it is noticeable that the
F/T sensor would not be enough, since there is a need to feel the object between gripper’s
fingers. Additionally, it is also necessary to detect the starting and ending phases of the
object transference. To fulfil these needs, two FSR are installed in Cyton’s gripper. The idea
is to observe FSR’s feedback and use it to dictate gripper actions. Using an Arduino with an
implementation similar to the one already described in a previous section (only by changing
the message to be sent to the client) and two voltage dividers it is possible to do the readings.

Figure 6.8 presents a finite-state machine (FSM) for the object transfer task. This FSM
has 4 states (nodes) and 5 conditions that affect these states. The FSM starts through the
”Opened Waiting” state, where the gripper is fully opened and waiting for a user to start
transfering an object. When the user starts touching the gripper installed FSR with the
object, the gripper starts closing and the state changes (”Closing” state). If the sensors
reach a similar force, it means that the robot is holding the object and the state machine
moves into the ”Closed Waiting” state. On the other hand, if the transference fails, the
gripper will reach its minimum position (fully enclosed) and the state machine goes to the
”Opening” state instead of the ”Closed Waiting” state. To move from the ”Closed Waiting”
state to the next state it is necessary that the user starts extracting the object from the
robot gripper. This action results in a force disparity (the force feedback from each sensor
is not equal) that leads the state machine to the ”Opening” state. Once in the ”Opening”
state, when the robot gripper reaches its maximum position, the state machine moves to the
”Opened Waiting” state.

42

Opened
Waiting

start

Closing

Opening

Closed
Waiting

Force disparity Force balance

Min position

Max position Force disparity

Figure 6.8: Diagram with states and transitions modeling the objet transfer between a human
and the robot.

6.2.1 FSR’s Overall Assembly

Figure 6.9 presents the overall assembly of the force sensitivity resistors. The FSR’s are
glued in the center of the gripper’s fingers. These are connected to a box (illustrated in the
right side of the figure), containing the Arduino plus shields and the voltage dividers, through
flex cable. The Arduino is connected through Ethernet to the client computer.

2 FSR

Flex cable

Arduino + Ethernet shield + Proto shield

2 Voltage divider

Figure 6.9: Overall assembly of the force sensitivity resistors.

43

6.2.2 Algorithm Implementation

The algorithm presented in this subsection results from many experiments leading to the
optimization of the transference action. The algorithm foresees a transference where the user
object gets in touch with one of the sensors and the robotic arm gripper is forced to close
to its last position. If both the gripper installed sensors reach a pre-defined force, within
a range of 15% difference between them, the gripper stops closing and stays in the current
position. This force must be enough to hold the object weight. The friction of the objects is
not considered in this work. The gripper velocity is directly proportional to the force applied
by the user to the gripper, as described by the following equation:

ω = f × 0.2, (6.3)

where ω is the gripper velocity in rad/s, and f is a dimensionless variable with magnitude
equal to the average force (last 50 reads, force range magnitude [0-20]).

This implementation facilitates the user’s job, since it also considers the possibility of the
user not making the object touching one or both the sensors during all the transference. In
this approach, the force readings are based on the last 50 readings.

To streamline the process, avoid conflicts and further the control, a node is developed to
control the system phases. This system is divided into gripper closure and opening phases:

Gripper closure phase: The gripper is wide-open and there is no object between
it. The user decides to transfer an object, in this case the gripper will often end holding an
object1.

Gripper opening phase: The robot is holding an object and waiting for the user to
grab it.

This implementation starts in the gripper closure phase. The following two pseudo codes
(algorithm 2 and 3) shows how the gripper is controlled in each phase for the approach ex-
plained before:

Algorithm 2 Closure phase

while gripper closure phase do
if average of the last 50 reads > pre-defined force then

set speed proportionally to average force;
send gripper to is last position (fully enclosed);
if FSRA & FSRB force read approximately equal then

send gripper to its current position;
gripper opening phase = true;
gripper closure phase = false;

end if
end if

end while

1If the user fails to transfer the object and the gripper reaches its last position, it moves back to the position
where it is fully open. The state here is preserved.

44

Algorithm 3 Opening phase

while gripper opening phase do
if FSRA & FSRB force read outside threshold range then

set speed;
send gripper to is 1st position (fully open);
gripper closure phase = true;
gripper opening phase = false;

end if
end while

Action Controller ROS Architecture

Figure 6.10 shows the force-based interaction software ROS architecture. The first node
Cyton GA receives the force values from the Arduino server and publishes them into the
topic FSR val. Cyton FC node subscribes from this topic and from the Fcontrol topic that
contains the feedback from another node (Cyton FC control) responsible for managing the
transfer states. Cyton FC node uses this information to dictate the gripper actions, pub-
lishing the gripper positions and velocities into the gripper controller/comand topic. Dy-
namixel manager node is then responsible to make the gripper move to the desired position.

Figure 6.10: Force-based interaction software ROS architecture.

6.3 Evaluations

The object transfer task mainly consists of 4 objects being handed over from the user to
the robot gripper, and vice versa. Since the robot arm stiffness is reduced, which affects the
force propagation between the object and the sensor, the experimental tests are done with
symmetric objects. Spherical geometry also showed as a solution for this issue, since it is
easier to make contact between the sensors and the objects. The gripper’s fingers are fixed
in a pre-selected position for the following experimental tests. The success rate evaluation
is independent of the gripper orientation. Despite the low precision of these sensors, it is
possible to analyse the differences and the required force to transfer each object.

Figure 6.11 shows the objects in use: a card, a ping pong ball, a soft blue ball and a water
bottle.

45

(a) A. (b) B. (c) C. (d) D.

Figure 6.11: Objects used in the transference. Note: The objects are not represented to scale.

6.3.1 Force Evolution in a Object Transfer Task

This subsection illustrates (Figure 6.12) a force evolution graph for each object. Each
graph contains both FSR’s readings. To start the transference, in order to standardize the
results and ease the evolution analyses, the user starts transferring the object, always making
contact between the object and the sensor named FSR1.

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

7

8

9

I

II

III

IV

Time /s

F
or

ce
/N

FSR1
FSR2

(a) A.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0

1

2

3

4

5

6

7

8

I

II
III

IV

Time /s

F
or

ce
/N

FSR1
FSR2

(b) B.

0 0.5 1 1.5 2 2.5

0

2

4

6

8

10

12

14

I

II III

IV

Time /s

F
or

ce
/N

FSR1
FSR2

(c) C.

0 0.5 1 1.5 2 2.5 3

0

2

4

6

8

10

12

14

I

II
III

IV

Time /s

F
or

ce
/N

FSR1
FSR2

(d) D.

Figure 6.12: Force evolution for each object in a transference.

46

The phases I to IV marked on the graphs match the following illustrations (figure 6.13):

(a) I. (b) II.

(c) III. (d) IV.

Figure 6.13: Illustrations, using the object B, corresponding to the phases (I, II, III and IV)
marked on the force evolution graphs.

The first distinguished phase (phase I) in all the graphics is the approximation between
the object and the sensor where the first contacts are made. This phase is distinct between
the objects and, as it can be seen in the next subsection, it is always distinct regardless the
object in use. The second distinguished phase (phase II) happens when both sensors readings
are the same within a 15% range. The gripper stops in that current position and the object is
now being hold by the robot. The decreasing forces visible in the graphics (phase III), result
of the user extracting back the object, it is the gripper opening phase. Consequently, the last
phase (phase IV) occurs when the gripper is fully opened and there is nothing between its
fingers.

It is visible that for different objects, despite the similarity in weights, the force required
to hold each object is different. In order to take some accurate conclusions a repeatability
test is done next.

6.3.2 Repeatability Analysis

The repeatability experimental tests consists of each object being transferred between
the user and the robotic manipulator 10 times. Next figures (6.14, 6.15, 6.16 and 6.17) show
those 10 transferences of each object.

47

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

1

2

3

4

5

6

7

8

9

10

Time /s

F
or

ce
/N

FSR1
FSR2

Figure 6.14: Repeatability test using object A.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0

1

2

3

4

5

6

7

8

Time /s

F
or

ce
/N

FSR1
FSR2

Figure 6.15: Repeatability test using object B.

48

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

2

4

6

8

10

12

14

Time /s

F
or

ce
/N

FSR1
FSR2

Figure 6.16: Repeatability test using object C.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

2

4

6

8

10

12

14

16

Time /s

F
or

ce
/N

FSR1
FSR2

Figure 6.17: Repeatability test using object D.

49

First, regardless the initial phase stated above, the forces required to hold the objects
are approximately 9, 7, 13 and 14 Newton respectively from object A to object D. These
force differences are mainly caused by the objects different properties and geometries. These
differences affect the way the contact occurs between object and sensor. It is visible that for
a stiffer object (e.g. object A and B when compared with object C and D), the contact arises
with some facility, resulting in a lower required force. On the other hand, the force required
to hold the blue ball and the empty water bottle is higher. This higher force is noticed when
the objects are slightly crushed by the gripper’s fingers. In fact, the gripper is more closed
than what would be normally required to hold these objects, because it is when the FSR
feel the object. In this step, these objects are deforming more the resistors, which leads to a
lower resistance and consequently a higher force.

6.3.3 Transfer Algorithm Success Rate

Each object is transferred 100 times in order to analyse the success rate. One successful
transfer corresponds to the fulfillment of the four phases described on section 6.3. Table 6.1
shows the results of the transference success rate.

Table 6.1: Transference success rate.

Success rate [%]

A B C D
98 99 90 78

The success rate for the objects A and B is quite good, 98% and 99% respectively, given
the facility to feel the contact between those objects and the sensors. The soft blue ball
properties affect the success rate, which is 90%. The water bottle object is the one presenting
the lower success rate, 78%, because not only its properties affect the transference, but its
surface irregularities makes the contact even more difficult.

Given these objects, the results are the expected ones and quite successful; however the
use of only 2 FSR limits the diversity of objects that can be handed with the robot (e.g. a
non symmetric object may cause more problems to this set up, since one of its sides may not
have contact with the sensor).

50

6.4 Overall System Architecture

The overall system architecture presents a succinct integration of the hardware and soft-
ware used in this dissertation. Relative to hardware, this includes one Cyton gamma 1500
arm, two force-sensitive resistors, one Arduino with an Ethernet shield, and a Kinect sensor.
Cyton arm and kinect are connected with the main computer through USB interface. On the
other hand, the Arduino establishes a communication through Ethernet. The USB controller
that binds the arm with the computer is set on TTL mode with a baudrate of 1 Mbps. The
software architecture is based on the Indigo version of the ROS framework under ubuntu
14.04. The necessary packages to reach the objectives use C/C++ and python programming
languages. Figure 6.18 illustrates the integrated system architecture.

Figure 6.18: Integrated system architecture.

6.5 Overall ROS Architecture

The final overall ROS architecture illustrated in figure 6.19 shows a brief overview of all
the developed software. The main nodes and topics related to vision are represented with
the colour red. A node to manage the user hand position to be sent to the robot with the
appropriate frame transformation, and a node to detect the object that works as a signal to
start the object transfer task. The corresponding nodes and topics adorned with the colour
green are related to the force readings and gripper actions based on those reads. There is a
node to manage the opening and closing phases and a node to control gripper actions inside
each phase. The manipulator control developed nodes and topics are represented with the
colour blue. One node contains all the information about the servos and there is also a node
for Cyton foward kinematics and one for Cyton inverse kinematics.

51

Figure 6.19: Final overall ROS structure.

52

Chapter 7

Conclusions and Future Work

This chapter presents the final conclusions of the work and perspectives of future devel-
opments.

7.1 Conclusions

In the field of Human-Robot Interaction, in endless future joint-action scenarios humans
and robots will have to interact physically in the interest of a profitable collaboration. This
dissertation makes a contribution to this topic by accomplishing a human-robot object trans-
fer task. The transfer of objects between humans and robots is a major way to coordinate
activity and cooperatively perform advantageous work. The main objective of this work is
to develop algorithms to control the Cyton Gamma 1500 robotic arm to achieve this task.
This work is divided into three fundamental parts: low level control of the robotic arm,
pre-interaction approach using vision and interaction by contact using force sensors. The low
level control of the robotic arm is accomplished by making use of the dynamixel packages and
the MoveIt! software incorporated with a kinematic and dynamic library. The pre-interaction
approach using vision is successfully achieved using a 3D sensor. This sensor allows a user’s
hand to be detected as well as an object to be used as a signal for the transition between
pre-interaction and interaction phases. The 3D sensor accuracy has proved to be sufficient,
and the obtained small error is compensated by the user adaptation. Concerning the inter-
action by contact approach, despite the misfortune occurred with the ATI sensor mini 40,
the implementation of force sensitive resistors made it possible to achieve the proposed goal.
Although all the chosen objects have been transferred, the object properties and geometries
affected the success rate.

At software levels, ROS proved to be very powerful and useful, being the link between
different thematics. It highly supports in the implementation, control and management of
several processes. Although the hardware limitations and the lack of maintenance of the
robot led to various difficulties throughout the work, the goals proposed are successfully ac-
complished, even if some refinements, improvements and extensions are required to improve
the system’s performance and ability to cover a wider range of similar tasks.

7.2 Future Work

Throughout the execution of this project it was noticed that the system could be improved
by addressing new features or improving the implemented ones. Given the current state of
development, perspectives of future work point in the following directions:

53

1. A better robotic manipulator should be used for this kind of task, because the current
arm is not stiff enough, which leads to a bad performance of the force propagation
between human, object and force sensor;

2. A torque/force sensor should be implemented in the wrist joint of the manipulator arm
to have a better perception of the force propagation;

3. The gripper’s fingers should have more force sensitive resistors to improve the diversity
of objects that can be handed over, and also to look forward to new possible conclusions,
such as objects dimensions, objects geometry reconstruction based on the contacts made
and multiple objects handed over at once;

4. A complete force analysis, taking into consideration object friction and weight;

5. A database with different objects properties, so that the 3D sensor can recognize the
objects and thus adjust the gripper position, orientation and force required to hold
these objects.

54

Bibliography

[1] Markus Huber et al. “Human-robot interaction in handing-over tasks”. In: Proceedings
of the 17th IEEE International Symposium on Robot and Human Interactive Commu-
nication, RO-MAN (2008), pp. 107–112. issn: 1944-9445. doi: 10.1109/ROMAN.2008.
4600651.

[2] Alexandre Campeau-Lecours et al. “A time-domain vibration observer and controller
for physical human-robot interaction”. In: Mechatronics 36 (2016), pp. 45–53. issn:
09574158. doi: 10.1016/j.mechatronics.2016.04.006. url: http://linkinghub.
elsevier.com/retrieve/pii/S0957415816300277.

[3] Aaron Edsinger and Charles C. Kemp. “Human-robot interaction for cooperative ma-
nipulation: Handing objects to one another”. In: Proceedings - IEEE International
Workshop on Robot and Human Interactive Communication (2007), pp. 1167–1172.
issn: 1944-9445. doi: 10.1109/ROMAN.2007.4415256.

[4] Justin W Hart et al. “Predictions of Human Task Performance and Handover Tra-
jectories for Human-Robot Interaction [Extended Abstract]”. In: HRI Workshop on
Timing in Human-Robot Teaming (2015), p. 4.

[5] Michael A. Goodrich and Alan C. Schultz. “Human-Robot Interaction: A Survey”. In:
Foundations and Trends R© in Human-Computer Interaction 1.3 (2007), pp. 203–275.
issn: 1551-3955. doi: 10.1561/1100000005. arXiv: arXiv:1011.1669v3. url: http:
//www.nowpublishers.com/article/Details/HCI-005.

[6] Gabriel J. Garcia et al. “Survey of visual and force/tactile control of robots for physical
interaction in Spain”. In: Sensors 9.12 (2009), pp. 9689–9733. issn: 14248220. doi:
10.3390/s91209689.

[7] Tiago Moura. “Development of a Dual-Arm Robotic System for Gesture Imitation”.
Master Thesis. University of Aveiro, 2015.

[8] Faraj Alhwarin, Alexander Ferrein, and Ingrid Scholl. “IR stereo kinect: Improving
depth images by combining structured light with IR stereo”. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 8862 (2014), pp. 409–421. issn: 16113349. doi: 10.1007/978-
3-319-13560-1.

[9] C. S. Lovchik and M. A. Diftler. “The Robonaut hand: a dexterous robot hand for
space”. In: 2 (1999), 907–912 vol.2. issn: 1050-4729. doi: 10.1109/ROBOT.1999.772420.

[10] H. Kawasaki, T. Komatsu, and K. Uchiyama. “Dexterous anthropomorphic robot hand
with distributed tactile sensor: Gifu hand II”. In: IEEE/ASME Transactions on Mecha-
tronics 7.3 (2002), pp. 296–303. issn: 1083-4435. doi: 10.1109/TMECH.2002.802720.

[11] Aaron Ladd Edsinger. “Robot Manipulation in Human Environments”. In: Organiza-
tion 1994 (2007), pp. 102–109. issn: <null>. doi: 99.2007/edsinger.thesis.

55

http://dx.doi.org/10.1109/ROMAN.2008.4600651
http://dx.doi.org/10.1109/ROMAN.2008.4600651
http://dx.doi.org/10.1016/j.mechatronics.2016.04.006
http://linkinghub.elsevier.com/retrieve/pii/S0957415816300277
http://linkinghub.elsevier.com/retrieve/pii/S0957415816300277
http://dx.doi.org/10.1109/ROMAN.2007.4415256
http://dx.doi.org/10.1561/1100000005
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.nowpublishers.com/article/Details/HCI-005
http://www.nowpublishers.com/article/Details/HCI-005
http://dx.doi.org/10.3390/s91209689
http://dx.doi.org/10.1007/978-3-319-13560-1
http://dx.doi.org/10.1007/978-3-319-13560-1
http://dx.doi.org/10.1109/ROBOT.1999.772420
http://dx.doi.org/10.1109/TMECH.2002.802720
http://dx.doi.org/99.2007/edsinger.thesis

[12] Willow Garage. PR2 Overview. url: http://www.willowgarage.com/pages/pr2/
overview (visited on 05/21/2016).

[13] Jim Mainprice et al. “Sharing effort in planning human-robot handover tasks”. In:
Proceedings - IEEE International Workshop on Robot and Human Interactive Commu-
nication (2012), pp. 764–770. issn: 1944-9445. doi: 10.1109/ROMAN.2012.6343844.

[14] e-Tech Gadget. url: http://www.e-techgadget.com/tag/pr2 (visited on 06/10/2016).

[15] Aaron Edsinger and Charles C. Kemp. “Manipulation in human environments”. In:
Proceedings of the 2006 6th IEEE-RAS International Conference on Humanoid Robots,
HUMANOIDS (2006), pp. 102–109. doi: 10.1109/ICHR.2006.321370.

[16] Aaron Edsinger. Domo Robot. url: http://people.csail.mit.edu/edsinger/domo.
htm (visited on 06/11/2016).

[17] Aldebaran Robotics. Robot NAO. url: https://www.ald.softbankrobotics.com/
en/cool-robots/nao/find-out-more-about-nao (visited on 06/12/2016).

[18] Florian Röhrbein, Germano Veiga, and Natale Ciro. “Gearing Up and Accelerating
Cross-Fertilization between Academic and Industrial Robotics Research in Europe:
Technology Transfer Experiments from the ECHORD Project ABC”. In: Springer
Tracts in Advanced Robotics 94 (2014), pp. 177–195. issn: 1610742X. doi: 10.1007/
978-3-319-02934-4.

[19] Aldebaran Robotics. Robohub. url: http://robohub.org/robots-the-nao-humanoid/
(visited on 06/12/2016).

[20] N.P. Papanikolopoulos and P.K. Khosla. “Shared and traded telerobotic visual control”.
In: IEEE International Conference of Robotics and Automation April (1992), pp. 878–
885.

[21] S. Shibata et al. “An Analysis of the Process of Handing Over An Object and Its
Appliction to Robot Motions”. In: Proc. of the International Conference on Systems,
Man and Cybernetics (1997).

[22] Maya Cakmak et al. “Using spatial and temporal contrast for fluent robot-human hand-
overs”. In: Proceedings of the 6th international conference on Human-robot interaction
- HRI ’11 (2011), p. 489. doi: 10.1145/1957656.1957823. url: http://portal.acm.
org/citation.cfm?doid=1957656.1957823.

[23] T. Sato et al. “Robot Imitation of Human Motion based on Qualitative Description
from Multiple Measurement of Human and Environmental Data”. In: Proc. of the In-
ternational Conference on Intelligent Robots and Systems (2003).

[24] K. Nagata et al. “Delivery by Hand between Human and Robot based on Fingertip
Force-Torque Information”. In: Proc. of the International Conference on Intelligent
Robots and Systems (1998).

[25] Patrizia Basili et al. “Investigating Human-Human Approach and Hand-Over”. In: Hu-
man Centered Robot Systems: Cognition, Interaction, Technology. Ed. by Helge Ritter
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 151–160. isbn: 978-3-
642-10403-9. doi: 10.1007/978-3-642-10403-9_16. url: http://dx.doi.org/10.
1007/978-3-642-10403-9_16.

[26] Robai. “Cyton Gamma 1500 Arm Specifications”. In: (2015).

[27] Robotis. Characteristics of Dynamixel. url: http://www.robotis.com/xe/dynamixel_
en (visited on 05/28/2016).

56

http://www.willowgarage.com/pages/pr2/overview
http://www.willowgarage.com/pages/pr2/overview
http://dx.doi.org/10.1109/ROMAN.2012.6343844
http://www.e-techgadget.com/tag/pr2
http://dx.doi.org/10.1109/ICHR.2006.321370
http://people.csail.mit.edu/edsinger/domo.htm
http://people.csail.mit.edu/edsinger/domo.htm
https://www.ald.softbankrobotics.com/en/cool-robots/nao/find-out-more-about-nao
https://www.ald.softbankrobotics.com/en/cool-robots/nao/find-out-more-about-nao
http://dx.doi.org/10.1007/978-3-319-02934-4
http://dx.doi.org/10.1007/978-3-319-02934-4
http://robohub.org/robots-the-nao-humanoid/
http://dx.doi.org/10.1145/1957656.1957823
http://portal.acm.org/citation.cfm?doid=1957656.1957823
http://portal.acm.org/citation.cfm?doid=1957656.1957823
http://dx.doi.org/10.1007/978-3-642-10403-9_16
http://dx.doi.org/10.1007/978-3-642-10403-9_16
http://dx.doi.org/10.1007/978-3-642-10403-9_16
http://www.robotis.com/xe/dynamixel_en
http://www.robotis.com/xe/dynamixel_en

[28] ROBOTIS. ROBOTIS e-Manual v1.27.00. url: http://support.robotis.com/en/
product/dynamixel/mx_series/mx-64.htm (visited on 05/28/2016).

[29] Jungong Han et al. “Enhanced computer vision with Microsoft Kinect sensor: A re-
view”. In: IEEE Transactions on Cybernetics 43.5 (2013), pp. 1318–1334. issn: 21682267.
doi: 10.1109/TCYB.2013.2265378.

[30] ATI Industrial Automation. F/T sensor: Mini40. url: http://www.ati-ia.com/
products/ft/ft_models.aspx?id=Mini40 (visited on 03/12/2016).

[31] Automation and Robotics. Tactile sensing. url: http://www.southampton.ac.uk/

~rmc1/robotics/artactile.htm (visited on 03/18/2016).

[32] Phidgets. 1121 User Guide. url: http://www.phidgets.com/docs/1121_User_Guide
(visited on 03/19/2016).

[33] A. Koubaa. Robot Operating System (ROS): The Complete Reference. Studies in Com-
putational Intelligence vol. 1. Springer International Publishing, 2016. url: https:

//books.google.pt/books?id=wY2RCwAAQBAJ.

[34] Simon Puligny and Mondada Francesco. “ROS interface and URDF parser for Webots”.
In: Master@EPFL February (2014).

[35] A. Sucan Ioan and Chitta Sachin. MoveIt! url: http://moveit.ros.org (visited on
05/10/2016).

[36] R. Smits. KDL: Kinematics and Dynamics Library. url: http://www.orocos.org/kdl
(visited on 04/11/2016).

[37] OpenNI organization. User Guide. url: http://www.openni.org/documentation
(visited on 05/18/2016).

[38] Marcus Liebhardt. openni tracker. url: http://wiki.ros.org/openni_tracker

(visited on 05/19/2016).

[39] F. Han et al. “Space-Time Representation of People Based on 3D Skeletal Data: A
Review”. In: (2016), pp. 1–21. arXiv: arXiv:1601.01006v1. url: http://arxiv.org/
pdf/1601.01006.pdf.

[40] Lentin Joseph. Mastering ROS for Robotics Programming. 2015, p. 451. doi: 10.1007/
s13398-014-0173-7.2. arXiv: arXiv:1011.1669v3.

[41] Akansel Cosgun, B Martin, and Henrik I Christensen. “Accuracy Analysis of Skeleton
Trackers for Safety in HRI”. In: (2013), p. 2013.

57

http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm
http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm
http://dx.doi.org/10.1109/TCYB.2013.2265378
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini40
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini40
http://www.southampton.ac.uk/~rmc1/robotics/artactile.htm
http://www.southampton.ac.uk/~rmc1/robotics/artactile.htm
http://www.phidgets.com/docs/1121_User_Guide
https://books.google.pt/books?id=wY2RCwAAQBAJ
https://books.google.pt/books?id=wY2RCwAAQBAJ
http://moveit.ros.org
http://www.orocos.org/kdl
http://www.openni.org/documentation
http://wiki.ros.org/openni_tracker
http://arxiv.org/abs/arXiv:1601.01006v1
http://arxiv.org/pdf/1601.01006.pdf
http://arxiv.org/pdf/1601.01006.pdf
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://arxiv.org/abs/arXiv:1011.1669v3

58

Appendix A

Developed Components to Install
the Sensor in the Arm

Figure A.1 presents the entire sheet of the developed components.

(a) Mounting side adapter.

(b) Tool side adapter.

Figure A.1: Support blueprint to integrate the sensor with the arm.

59

60

Appendix B

User Guide

In this appendix is outlined the procedure required to use the packages developed through-
out this work. The packages have been used and developed under Ubuntu 14.04 and ROS
indigo.

1. Download the packages: The packages can be downloaded from the following repository:
https://github.com/Luis93A/cyton1500.git;

2. Compile the packages;

3. Launch the packages and run the nodes as explained in the ”readme” file.

61

https://github.com/Luis93A/cyton1500.git

	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Problem Formulation and Approach
	Objectives
	Dissertation Structure

	State-of-the-Art
	Human-Robot Interaction
	Pre-Contact Systems
	Contact Systems

	Robotic Manipulators
	PR2
	Domo
	NAO

	Related Work
	Overview

	Experimental Setup
	Cyton Manipulator Arm
	Servo Motors
	Kinect Sensor
	Force Sensors
	ATI Mini 40
	Force-Sensing Resistor

	Software Development Tools
	Robot Operating System
	MoveIt!
	KDL
	OpenNI

	Proposed System Architecture

	Robot Control
	Joint Controller
	Robotic Arm Description in ROS
	MoveIt! Cyton Configuration
	Kinematic Analysis
	Forward Kinematics
	Inverse Kinematics
	Control Mode: Implementation

	Evaluations
	Workspace Analysis
	Reachability Analysis

	Pre-contact Approximation using 3D Vision
	Human Hand Tracking
	Kinect-Robot Frame Transformation
	Object Detection
	Evaluations
	Accuracy Analysis
	Frame Transformation Analysis
	Object Detection Success

	Contact and Force-based Interaction
	ATI Mini40 Integration
	Signal Converter
	Code Implementation
	Sensor Installation
	Signal Overview

	FSR Integration
	FSR's Overall Assembly
	Algorithm Implementation

	Evaluations
	Force Evolution in a Object Transfer Task
	Repeatability Analysis
	Transfer Algorithm Success Rate

	Overall System Architecture
	Overall ROS Architecture

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Developed Components to Install the Sensor in the Arm
	User Guide

