Title: An exploratory mixed methods study of respiratory physiotherapy for patients with Lower Respiratory Tract Infections.

Ana Oliveiraa, Alda Marquesa,b

a School of Health Sciences, University of Aveiro (ESSUA), Campus Universitário de Santiago, Aveiro, Portugal.

b Center for research in health technologies and information systems (CINTESIS), Aveiro, Portugal

Corresponding author:

Alda Marques; School of Health Sciences, University of Aveiro (ESSUA) Edifício 30 Agras do Crasto, 3810-193 Aveiro, Portugal. Telephone: 00351 234 372 462; Fax: 00351 234 401 597; Email: amarques@ua.pt

Word Count: 250 words (Abstract)

3426 words (Introduction, Method, Results, and Discussion)
ABSTRACT

Objectives: To assess the outcomes of respiratory physiotherapy (RP) for patients with Lower Respiratory Tract Infections (LRTI).

Design: Parallel group mixed-methods study.

Setting: Patients were recruited from a general hospital. RP took place at a community setting.

Participants: Fifty-four patients aged ≥18yrs and diagnosed with a LRTI completed the study. Twenty-seven were allocated to the control group (CG -10 male; 53.3±17.4yrs) and twenty-seven to the experimental group (EG -10 male; 58.6±17.2yrs).

Intervention: The CG received conventional medical treatment and the EG conventional medical treatment plus RP during 3 weeks.

Outcome measures: The 6-minute walk test (6MWT), modified Borg Scale (MBS), modified Medical Research Council questionnaire (mMRC), Breathlessness, cough, and sputum scale (BCSS) were collected pre/post-intervention from both groups. Telephone follow-up surveys were also collected three months after hospital visit. Interviews were conducted immediately after the intervention in the EG.

Results: The 6MWT in the EG improved above the MID (p=0.001) and significantly more than the CG (EG: ∆76m (63.2), 95%CI 51 to 101; CG; ∆27m (56), 95%CI 4.9 to 49.2; Mean diff. between groups: 49m 95%CI 16.4 to 81.6; n²=0.15). No differences between groups were observed in the MBS, mMRC and BCSS. The EG reported high levels of satisfaction with the intervention (27/27; 100%) and with the physiotherapist (20/27; 74%). The intervention impacted on patients’ symptoms (19/27; 70%) and on their self-management skills to control/prevent future LRTI (19/27; 70%). The EG presented significantly less hospital visits (p=0.04).

Conclusions: RP seems to be effective in the management of patients with LRTI.

Clinical Trial Registration Number: NCT02053870

Keywords: Respiratory Tract Infections; Physical Therapy; Personal Satisfaction; Self Care
INTRODUCTION

Lower respiratory tract infections (LRTI) are among the most common infectious diseases worldwide[1], affecting 429 million people annually[2]. This persistent and prevalent health problem is accompanied by several respiratory symptoms, such as dyspnoea, cough and sputum[3], and significantly compromises patients’ functioning and quality-of-life[4]. As a result, LRTI are considered a global health problem, responsible for approximately 3.08 working days lost due to disability per patient/per incident, and 23.88€ to 116.47€ spent in each hospital visit[5, 6].

Pulmonary rehabilitation programmes, including respiratory physiotherapy (RP), are recognised as effective for chronic respiratory diseases, improving patients’ independence and function[7], as well as their individual strategies to cope with the disease[8]. These improvements result in fewer days of hospitalisation and decreased healthcare use[9]. Regarding acute respiratory diseases, the implementation of RP is controversial. The British Thoracic guidelines suggests that spontaneous breathing patients with dyspnoea, cough and sputum benefit from physiotherapy[10]. However, a recent systematic review in inpatients with pneumonia reported that RP does not improve patients’ status and thus should not be implemented[11]. Nevertheless, this review addressed inpatients only, and thus the content and structure of the intervention (e.g., techniques, duration and frequency) may not serve the needs of community patients. Moreover, most patients with LRTI are treated in an outpatient basis[12] hence, studies focused in their management are needed.
Preliminary studies conducted in outpatients with LRTI have identified improvements in lung and overall function after RP[13]. Nevertheless, only quantitative measures were used and patients’ perspectives about the outcomes achieved, implications for their future and healthcare use after the intervention were not evaluated. It is known that quantitative outcomes have poor correlation with patient’s satisfaction and healthcare needs[14] and therefore, are insufficient to comprehensively understand the length to which an intervention impacts on patients’ life.

The lack of this integrated knowledge limits the conclusions about the effectiveness of RP as a contributor for addressing LRTI. This study aimed to comprehensively assess the short- (exercise tolerance dyspnoea, cough, sputum and patients’ perspectives) and mid-term (health services use) outcomes of a RP intervention for patients with LRTI living in the community.

METHOD

Design

A parallel group mixed-methods study, part of a larger randomized control trial (NCT02053870), was undertaken with a sample of patients with LRTI living in the community. The study received full approval from the Institutional Ethics Committee (2010-4-14).

Participants

Consecutive patients were recruited from the emergency department of a general Hospital. Patients were eligible if: i) aged ≥18 years old and ii) diagnosed with LRTI by a physician, according to current guidelines[3].
Exclusion criteria were: i) hospital admission (after the physician examination); ii) discrepancies in the speech and/or disorientation at the initial examination; iii) bedridden or dependence on a wheelchair; iv) score >2 in the CURB criteria[15]; and v) presence of comorbidities that could interfere with the tests performed (e.g., past history of pulmonary lobectomy and current history of neoplasia, tuberculosis or other infectious disease).

Patients were randomly assigned to RP (experimental group - EG) or conventional medical treatment (control group - CG). A simple randomization process was performed in Matlab 2009 (The MathWorks, Inc, Natick, MA, USA). The allocation sequence was kept in sealed opaque envelopes by a researcher, not involved in data collection, and provided to the consultants at the emergency department.

Physicians informed eligible patients about the study and asked about their willingness to participate. Interested patients were contacted via telephone by a researcher to schedule an appointment where more detailed information was provided and written informed consent was obtained.

Sample Size Calculations

A sample size estimation with 85% power at 5% significant level determined that a clinically significant difference in six-minute walk test - 6MWT (30.5 m)[16], would be detected with a minimum of 18 subjects (SD 46m) in each group. In respiratory interventions, dropout rates are around 43-50%[17], thus 62 participants were recruited.

Intervention
The intervention consisted of conventional medical treatment (i.e., antibiotic therapy, bronchodilators and rest) for the CG and conventional medical treatment plus RP for the EG. The RP intervention was carried out three times per week for 3 weeks (9 sessions). Each session lasted on average 60±15 minutes and was composed by three main components: i) breathing techniques; ii) exercise training and iii) education. Sessions were held in a well-equipped room in a community setting by one physiotherapist with experience in respiratory interventions. A detailed description of the protocol can be found in the supplementary material.

Outcome measures

Socio-demographics (gender, age and educational level), general clinical data, smoking habits and lung function, assessed with a portable spirometer (MicroLab 3500, CareFusion, Kent, UK), were collected up to 48h after hospital visit. Information on dyspnoea, sputum and exercise tolerance were collected at baseline and repeated in both groups three weeks after. Data were collected by a trained researcher blinded to patients' group allocation and independent from the RP intervention.

Exercise tolerance was chosen as the primary outcome measure and was assessed with the 6MWT, following international guidelines. In our sample, 6MWT presented a standard error of the mean (SE\textsubscript{mean}) of 14.8 meters.

Dyspnoea was assessed with the modified Borg Scale (SE\textsubscript{median}=0.2) and activities limitation resulting from dyspnoea with the modified Medical Research Council questionnaire (SE\textsubscript{median}=0.1).
Self-reported sputum was evaluated using a 5 level qualitative scale which is a domain of the Breathlessness, cough and sputum scale ($SE_{median}=0.1$)[22]: (i) no sputum production; (ii) mild sputum production; (iii) moderate sputum production; (iv) severe sputum production and (v) unquantifiable.

Semi-structured face-to-face interviews were conducted with the EG to explore the impact of the RP intervention on their recovery and overall health status. The interview was guided by open-ended questions formulated based on the literature[23, 24]. Specifically, patients were asked: Can you give us your opinion about the RP intervention?; Can you expand on the impacts that the intervention had on you? How do you think we could improve the intervention?.

The interviews were conducted up to 48h after the last RP session, in a community setting, by two trained researchers (one physiotherapist and one physiotherapy student), not involved in the study and with no relationship with the patients. All interviews were digitally audio-recorded for further transcription and analysis. Data collection ended when saturation was achieved.

Telephone surveys were performed to all patients, by one independent researcher with no previous participation in the study, 3-months after the first hospital visit. The survey followed a structured questionnaire to gather information consistently across patients about health services used due to worsening of respiratory symptoms (LRTI recurrence), duration of the symptoms, need for hospitalisation and length of hospitalisation.

Data analysis
Quantitative data

Descriptive statistics were carried out to describe the socio-demographic and
general clinical data of the sample as well as the follow-up telephone surveys.
Independent t-tests, Mann Whitney U-tests and Chi-square tests were used to
compare baseline measurements and telephone surveys between groups. Two-
way analysis of variance with repeated measurements was used for continuous
measures. For ordinal data, the differences between pre and post assessments
were pooled and then Mann Whitney U-tests were used to compare groups.
Improvements in the 6MWT were compared with the minimally important
difference (MID i.e., 30,5 meters)[16] using the one sample t test. Statistical
analysis was completed with the estimation of effect sizes, via Partial eta-
squared for ANOVA analysis, rank-biserial correlation for Mann Whitney U-tests
and Cohens’ d for one sample t tests. Analyses were performed using IBM
SPSS Statistics version 20.0 (IBM Corporation, Armonk, NY, USA). The level of
significance was set at 0.05

Qualitative data

Interviews were independently analysed and coded by the two researchers who
conducted the interviews, following thematic analysis procedures[25]. Five
steps were followed: i) the transcripts of the interviews were read until
researchers were familiar with the content; ii) codes were attached to the words
of text that represented themes; iii) the information relevant to each theme was
displayed; iv) the information was reduced to its essential concepts and
relationships and v) the core meaning of the data was identified and explained.
The final themes were agreed in a consensus meeting. Consensus was
obtained based on the richness and importance of the theme, rather than on its prevalence alone. If a consensus could not be reached, a third independent researcher was consulted. To assure credibility of qualitative data the peer debriefing technique was performed[26]. Patients’ identification was coded and fictitious names were used to preserve anonymity. The qualitative analysis followed the COREQ checklist, detailed in the supplementary material.

RESULTS

Participants

Figure 1 shows the CONSORT flow diagram for the trial. Of the 64 patients screened, 2 were excluded because they did not meet the inclusion criteria. Therefore, 62 patients were allocated to the intervention (n=31) or control (n=31) group. Fifty-four patients completed the intervention and post-test assessments. There were no significant differences between completers and dropouts with regard to age, gender or diagnosis (p>0.05).

(Please insert fig. 1 about here)

Baseline characteristics of patients are provided in table 1. No significant differences between-groups were noted on baseline characteristics.

(Please insert table 1 about here)

Clinical Data

Both groups experienced significant improvements in the 6MWT (EG: Δ76m (63.2), 95%CI 51 to 101; CG: Δ27m (56), 95%CI 4.9 to 49.2; partial $\eta^2 = 0.44$).
The magnitude of the improvement in the 6MWT was higher in the EG than in the CG (Mean diff. between groups: 49m 95%CI 16.4 to 81.6; partial η^2=0.15). Also, the distance walked by the EG significantly exceed the MID (Mean diff. 46m 95%CI 21 to 71; ES=1.48). No difference was observed in the CG (Mean diff. -3m 95%CI -25.1 to 19.2; ES=0.11). Both groups significantly improved in the modified Borg Scale and self-reported sputum. Only the EG improved in the modified Medical Research Council questionnaire. No other differences between groups were found (Table 2).

(Please insert table 2 about here)

Face-to-face interviews

From the 27 transcripts of the interviews, four different themes were identified regarding the impact of the RP intervention on patients’ recovery and overall health status, these were: *impact on patients’ recovery; patients’ self-management and empowerment; the physiotherapist; organisational aspects of the intervention*. The interviews lasted on average 25±2.4 minutes.

Impact on patients’ recovery

Patients felt that RP sessions were of “great value” [Rose, 45yrs] and “essential” [Vivian, 58yrs] to relieve dyspnoea (9/27; 33%), sputum production (4/27; 15%), fatigue in performing daily activities (4/27; 15%) and wheezing (2/27; 7%).

“This [the RP intervention] was really good for reducing my breathlessness” [Alice, 54yrs]
“(…) The RP intervention helped me to get it all out [sputum] and I became much better. The medication alone probably wouldn’t have been enough.” [Joanna, 40yrs]

“I feel better when I breathe because before (…), I used to feel wheezy. And now, since I started doing the sessions, I don’t feel it anymore”. [John, 80yrs]

“I now get less tired with the same amount of effort.” [Mary, 62yrs].

Patients also reported improvements in their overall health status (19/27; 70%):

“… This helped me to recover faster than I expected. (…) I am better in some points of my health than I would be if I had only taken the medication” [Richard, 34yrs]; and on their personal and family life (5/27; 19%) as it helped them to value themselves more as individuals (2/27; 7%) and involved their family members in the recovery process (3/27; 11%):

“Even in my family life, this has helped me! Now, I value my life and the ones who surround me, more than before.”[Rose, 45yrs].

“My wife used to read the information sheets with me, so we could understand and perform the exercises together.”[Michael, 69yrs].

Eleven patients (11/27, 41%), contacted with RP for the first time and referred to it as a “new experience” (9/27; 33%) that “should be more disclosed to people who have LRTI, so they can have access to professional help as we did.” [Paul, 33yrs].
Patients’ self-management and empowerment

Acquisition of self-management skills to control and prevent future LRTI was the most reported positive outcome of the RP intervention (19/27; 70%). Patients reported that having knowledge on how to perform breathing and airway clearance techniques made them feel more prepared and confident in taking control over their symptoms and dealing with possible future respiratory infections (12/27; 44%).

“It helped me to take control over the disease. Now I know what to do in the next time I have the same problem” [Christian, 30yrs]

“(…) This [programme] helped me (…) to learn exercises to recover from my respiratory problems! It helped me a lot! ” [Richard, 30yrs]

Nevertheless, 2 patients (2/27; 7%) expressed lack of confidence when performing the breathing techniques without the physiotherapist supervision:

“One thing about the sessions is that if we are next to the physiotherapist we have to do it, and at home we don’t do it… Although we start doing it at home, once we feel tired, we stop and there is no one nearby to tell us “let’s do it again/keep going””. [Anna, 74yrs]

“The thing is that, we are dependent because we have the “crutch” by our side saying: “now breathe four times, now three, now two and do it this way…” [Luca, 81yrs]
Empowerment on preventing future infections was reported by 11 patients (11/27; 41%). Patients who presented risk behaviours for LRTI recurrence stated that the information provided in the RP sessions have motivated them to change sedentary lifestyles (5/27; 19%), nutrition habits (3/27; 11%) and quit smoking (2/27; 7%).

“Now I exercise and before I didn’t.” [Martha, 36yrs]

“Since I started to come to the sessions, I have been more careful with what I eat, because now I know what is bad for my health…” [Vivian, 58yrs]

“(…) I was a smoker since I was thirteen … And (…) I was not 100% informed of what smoking could cause. Only after reading the information sheet I started thinking: if I do not quit now, I’ll never will!” [Paul, 33yrs]

The physiotherapist

Patients reported high levels of satisfaction with the physiotherapist’s performance (20/27; 74%). Competent (6/27; 22%) and enlightening (6/27; 22%) were the most used attributes to describe the physiotherapist, followed by careful (4/27; 15%) and patient (2/27; 7%).

“The intervention is really helpful, as well as the physiotherapist who has the closest contact with us.” [Anna, 74yrs]
“I always asked things: “Why are we doing this? What is that for?”… and the physiotherapist always answered me, so I could understand. And only then I would do the tasks.” [Ernest, 58yrs]

Organisational aspects of the intervention

Most patients (15/27; 56%) reported that the duration and length of the intervention/sessions were “perfectly adequate to recover from the disease process.” [Marc, 60yrs]. However, 5 (5/27; 19%) patients considered that the intervention should be extended either in duration (add one or two more weeks) or in frequency (increase from 3 to 4 days a week), to achieve plenitude of their treatment:

“I think that if we had done more [sessions]… one or two more weeks, maybe it would have been better to be completely re-established…” [Anna, 74yrs]

Some patients highlighted the quality and pertinence of the material used during the sessions (12/27; 44%) as well as the adequacy of the sessions’ organisation to their health condition (6/27; 22%).

Telephone surveys

Results on follow-up telephone surveys are presented in table 3. Three months after the first hospital visit, more patients from the CG accessed health services due to worsening of their respiratory symptoms (8/27; 15% vs 2/27; 4%; p=0.04). No significant differences were found regarding the number of health service visits (p=0.67), number of hospitalisations (p=0.75), length of hospitalisation (p=0.50) and days with symptoms (p=0.89).
DISCUSSION

The RP intervention impacted significantly on exercise tolerance of patients with LRTI and on their empowerment to relieve respiratory symptoms and control/prevent future LRTI. These patients also reported significantly less health-care utilisation due to recurrent LRTI, three months after the first hospital visit.

Significant improvements were found in the 6MWT in both groups but especially in EG. It is further important to note that only patients from the EG improved significantly beyond the MID[16]. These results are similar to those achieved by patients with COPD who participate in rehabilitation programs[27, 28] and reflect RP importance to recover functional and aerobic capacities[19].

No significant differences were found in dyspnoea and sputum between groups, which might suggest that the respiratory manoeuvres had little effect on patients’ symptoms. However, the instruments used to assess patients’ symptoms should be taken into consideration. In clinical practice, scales are considered to be simple, non-invasive and economic methods to assess RP interventions[29], but are not sensitive enough to detect small and moderate changes[29]. Within this context, patients’ reports are of great value to fully understand the changes promoted by RP interventions. Specifically, patients valued RP for enhancing their self-management skills to breathe properly, perform air clearance techniques, reduce their breathlessness (19/27; 70%) and prevent future LRTI (19/27; 70%). Furthermore, RP also impacted on having fewer patients visiting health services due to LRTI recurrence in a 3 months
period after the intervention, which has clinical relevance not only for respiratory physiotherapists but for the national health services.

The effectiveness of the RP intervention, when compared with the conventional medical treatment only, can be explained by the improvement of patient’s self-efficacy and confidence towards the disease. These new competencies may have enhanced patients’ efficacy towards an early detection and self-management of the typical symptoms of the disease at home. The importance of self-efficacy for self-management is well reported for patients with chronic respiratory diseases and has been associated with patients’ improved health-related quality-of-life[30] and reduced healthcare use[31]. These results reinforce the need of also empowering patients with acute respiratory diseases.

The physiotherapist attributes were also valued by patients, similar to what has been found in studies conducted with patients with musculoskeletal disorders, where the physiotherapist’s skill, knowledge, professionalism, friendly attitude, and effective communication were highlighted[32]. These factors seem to have a high impact in patients’ perspectives about physiotherapy regardless of the area of intervention.

Overall, the organisational aspects of the intervention were perceived as being adequate to patients’ fully recovery and acquisition of self-management skills. However, older patients reported that they felt more confident when performing the exercises in the RP session than at home and also exhibited the need of having more RP sessions to achieve a full recovery. It is known that self-efficacy is one of the strongest determinants of engagement in an activity in
older people[33]. Thus, if these patients did not feel that they mastered the techniques, they might not perform them at home, delaying their rehabilitation process. Nevertheless, age should not be seen as a limitation in patient’s perceived ability or personal efficacy beliefs[34], but adjustments in the length or structure of the intervention may be required.

This study highlights that additional to conventional medical treatment, patient-centered interventions involving exercise and education are required to improve patients' recovery from the respiratory disease, return to their active life and prevent future LRTI and hospital visits.

Limitations and future work

This study has some limitations that need to be acknowledged.

Firstly, information regarding previous LRTI and treatments were not gathered, which might limit to conclude about the impact of the RP program on patients' rehabilitation. However, physiotherapy is not commonly recommended in LRTI[11] and thus it is not believed that patients were ever enrolled in RP for LRTI. Also, patients from the EG showed more exercise tolerance and less hospital visits due to recurrence of the disease than those from the CG. These results still points towards a better rehabilitation process achieved with physiotherapy than with medication only, independently of previous LRTIs.

Secondly, the RP protocol implemented was not the most suitable for older patients, who required more and/or longer sessions to fully recover. Adjustments in the interventions may be performed using behavioural strategies
or motivational interviews. Behavioural strategies could include home visits and
the involvement of a family member in the RP sessions, as it is known that
positive reinforcement and social support from family is a strong predictor of
activity[33]. Motivational interviewing could also be added during the
educational time of the session. This has been shown to increase adherence to
physiotherapy treatments among individuals with a variety of conditions (e.g.,
heart failure, obesity)[35].

Finally, power calculations for the 6MWT, were performed based on a study
conducted with patients with parenchymal lung disease, as, to the authors best
knowledge, no previous studies exist establishing the MID for LRTI. Although,
LRTI comprises conditions that directly imply an affection of the parenchyma,
such as pneumonia, it also includes other conditions that do not, such as acute
bronchitis. Thus, studies exploring the MID in patients with LRTI are needed.

Acknowledgements

This work was funded by Fundação para a Ciência e Tecnologia, Portugal
(project ref. PTDC/SAU-BEB/101943/2008). The authors would like to
acknowledge to Cátia Pinho for her contributions in qualitative data analysis and
to all institutions, patients and physiotherapists for their participation in this
research study.

Ethical Approval: The study received full approval from the Ethics Committee
of Hospital Infante D. Pedro (2010-4-14).

Funding: This work was funded by Fundação para a Ciência e Tecnologia,
Portugal (project ref. PTDC/SAU-BEB/101943/2008).
Conflict of interest: nothing to declare.
REFERENCES

Figure legends

Figure 1 - Consolidated Standards of Reporting Trials (CONSORT) flow diagram.
1 Tables

2 Table 1 Patients’ socio-demographics, general clinical data, lung function and smoking habits

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Control group (n=27)</th>
<th>Experimental group (n=27)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Male</td>
<td>10 (37)</td>
<td>10 (37)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>17 (63)</td>
<td>17 (63)</td>
<td></td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>53 (17)</td>
<td>59 (17)</td>
<td>0.27</td>
</tr>
<tr>
<td>Academic qualifications</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>No qualifications</td>
<td>1 (4)</td>
<td>4 (15)</td>
<td></td>
</tr>
<tr>
<td>Primary school</td>
<td>16 (59)</td>
<td>13 (48)</td>
<td></td>
</tr>
<tr>
<td>Secondary school</td>
<td>7 (26)</td>
<td>8 (30)</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>1 (4)</td>
<td>2 (7)</td>
<td></td>
</tr>
<tr>
<td>University degree</td>
<td>2 (7)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>Current smokers</td>
<td>4 (15)</td>
<td>3 (11)</td>
<td></td>
</tr>
<tr>
<td>Past smokers</td>
<td>5 (19)</td>
<td>2 (7)</td>
<td></td>
</tr>
<tr>
<td>Non-smokers</td>
<td>18 (67)</td>
<td>22 (82)</td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>9 (33)</td>
<td>6 (22)</td>
<td></td>
</tr>
<tr>
<td>AECOPD</td>
<td>5 (19)</td>
<td>5 (19)</td>
<td></td>
</tr>
<tr>
<td>Acute bronchitis</td>
<td>10 (37)</td>
<td>14 (52)</td>
<td></td>
</tr>
<tr>
<td>AE asthma</td>
<td>3 (11)</td>
<td>2 (7)</td>
<td></td>
</tr>
<tr>
<td>FEV₁ (% predicted), mean (SD)</td>
<td>66 (27)</td>
<td>71.7 (20)</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>0.33</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>FVC (% predicted), mean (SD)</td>
<td>73 (23)</td>
<td>78.4 (19)</td>
<td></td>
</tr>
<tr>
<td>FEV1/FVC, mean (SD)</td>
<td>72 (18)</td>
<td>71.1 (17)</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Data shown as n(%) unless otherwise stated.

Abbreviations: FEV1, forced expiratory volume in one second; FVC, forced vital capacity.
Table 2 Clinical characteristics of patients from control and experimental groups.

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th>Experimental group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=27)</td>
<td>(n=27)</td>
</tr>
<tr>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>6MWT, mean (SD)</td>
<td>371 (112)</td>
<td>398 (101)</td>
</tr>
<tr>
<td></td>
<td>27 (56)</td>
<td>76 (63)</td>
</tr>
<tr>
<td></td>
<td>Diff<sup>a</sup></td>
<td>95% CI 5 to 49</td>
</tr>
<tr>
<td>MBS, median (IQR)</td>
<td>3 (2, 4)</td>
<td>1 (0, 3)</td>
</tr>
<tr>
<td></td>
<td>-2 (-3, 0)</td>
<td>95% CI -2.3 to -0.6</td>
</tr>
<tr>
<td></td>
<td>95% CI -2.6 to -0.7</td>
<td></td>
</tr>
<tr>
<td>mMRC, median (IQR)</td>
<td>2 (1, 4)</td>
<td>2 (1, 3)</td>
</tr>
<tr>
<td></td>
<td>0 (-1, 0)</td>
<td>95% CI -0.7 to 0.1</td>
</tr>
<tr>
<td></td>
<td>95% CI -1.2 to -0.4</td>
<td></td>
</tr>
<tr>
<td>Sputum, median (IQR)</td>
<td>2 (2, 4)</td>
<td>2 (1, 2)</td>
</tr>
<tr>
<td></td>
<td>0 (-1, 0)</td>
<td>95% CI -0.9 to -0.1</td>
</tr>
<tr>
<td></td>
<td>95% CI -1.1 to -0.2</td>
<td></td>
</tr>
</tbody>
</table>

Diff, mean difference; a, control group; b, experimental group; ES, effect size; MBS, Modified Borg scale; mMRC, Modified British Medical Research Council scale; BCSS, Breathlessness, Cough and Sputum scale; 6MWD, six-minute walking distance; SD, standard deviation; CI, confidence interval; IQR, interquartile range.

*P<0.05;
† result of the two-way analysis of variance with repeated measurements
‡ result of the comparison between the pooled differences of pre and post assessments in each group performed with Mann Whitney U-tests.
Table 3 Follow-up telephone surveys performed 3 months after hospital visit to patients of the control and experimental groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group (n=27)</th>
<th>Experimental group (n=27)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients using HS</td>
<td>8 (14.8%)</td>
<td>2 (3.7%)</td>
<td>0.04*</td>
</tr>
<tr>
<td>Health services visits</td>
<td>1 [1, 3]</td>
<td>1 [1-1]</td>
<td>0.67</td>
</tr>
<tr>
<td>No. of patients hospitalised</td>
<td>3 (30%)</td>
<td>1 (10%)</td>
<td>0.75</td>
</tr>
<tr>
<td>Days hospitalised</td>
<td>10 [8.5, 10.5]</td>
<td>3 [3, 3]</td>
<td>0.18</td>
</tr>
<tr>
<td>Days with symptoms</td>
<td>8.5 [10, 15]</td>
<td>7 [11, 15]</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Values shown as Median [interquartile range] or n(%).

Abbreviations: HS, health services; RP, respiratory physiotherapy; *p<0.05.
Online Data Supplement

An exploratory mixed methods study of respiratory physiotherapy for patients with Lower Respiratory Tract Infections.

Ana Oliveira, Alda Marques
Intervention Protocol

Control group: participants were treated with conventional medical treatment, consisting in azithromycin for people with no comorbidities, amoxicillin with clavulanate for people presenting comorbidities (e.g., chronic heart, pulmonary or renal disease and diabetes mellitus, COPD) and an ipratropium bromide inhaler if the person suffered from a long term respiratory disease, such as COPD and asthma. All participants were advised to reduce their physical activity for approximately 10-15 days[1].

Experimental Group: participants were treated with the same medical treatment as the control group plus 9 sessions of respiratory physiotherapy for 3 weeks. The RP sessions were composed by three main components: i) breathing techniques; ii) exercise training and iii) education.

Breathing techniques were performed for approximately 25 minutes and consisted of: breathing retraining to reduce energy costs of breathing and dyspnoea[2]; slow inspiratory techniques, such as incentive spirometry and exercises at inspiratory controlled flow (EDIC) [3] to increase pulmonary expansion[4], prevent atelectasis and aid sputum clearance[5]; and airway clearance techniques, such as the active cycle of breathing techniques, to help mobilising and clearing bronchial secretions[6].

Exercise training consisted of approximately 25 minutes of exercises including a warm up and a cool down period, exercises for thoracic mobility, expansion and flexibility to increase pulmonary volumes (5-10 min)[7] and endurance training.
The training intensity was adjusted according to patient’s symptoms on the modified Borg Scale (4 to 6 on perceived dyspnoea/fatigue was an indicator of adequate training intensity)[2] and heart rate (60-80% of the patient maximal heart rate calculated using the following equation: 206.9 - (0.67 x age))[2].

Ten to fifteen minutes of each session were used to provide education about the disease and its management, self-performance of airway clearance techniques and home exercises. This approach aimed to ensure an on-going intervention and to provide the patient with skills to manage the disease[8]. From session 1 to session 5, an information sheet with relevant information on LRTI was provided and discussed with participants, so they could build a handbook. The protocol was similar to all patients, however, the time spent in each technique was adapted according to patients’ symptoms reported on the modified Borg Scale [2] and their heart rate [2]. Table 1 summarises the respiratory physiotherapy protocol.
Table 1 – Summary of the respiratory physiotherapy intervention.

<table>
<thead>
<tr>
<th>WEEK 1</th>
<th>GOALS</th>
<th>TECHNIQUES (DURATION)</th>
<th>PROGRESSIONS</th>
<th>EDUCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Breathing control and bronchial hygiene</td>
<td>Day 2/3: Diaphragmatic breathing</td>
<td>10 min./session to discuss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↓ Dyspnoea</td>
<td>Day 2/3: 8 cycles – apnoea 4s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↓ Energy cost and work of breathing</td>
<td>Day 2/3: 8 cycles – apnoea 4s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↑ Airway clearance</td>
<td>Day 2/3: 8 cycles – apnoea 4s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prevent atelectasis</td>
<td>Day 2/3: 8 cycles – apnoea 4s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↑ Total Lung Capacity</td>
<td>Day 2/3: 8 cycles – apnoea 4s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↑ Thoracic mobility and expansion</td>
<td>Day 2/3: 8 cycles – apnoea 4s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercise training</td>
<td>Day 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Warm up: upper limbs movements. (2-5 min.)</td>
<td>Exercises performed with therabands.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Upper body: scapula rotations; arms abduction; proprioceptive neuromuscular facilitation techniques (2 series; 10 rep.)</td>
<td>iv) anatomy and physiology of the respiratory system; v) signs and symptoms of LRTI; vi) airway clearance techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cold down: starching exercises (neck and shoulder muscles (2 series; 10s)</td>
<td>Day 3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vii) physical exercise</td>
<td></td>
</tr>
</tbody>
</table>
• Airway clearance maintenance
• ↑ Thoracic mobility and flexibility
• ↑ Physical fitness

WEEK 2

Breathing control and bronchial hygiene
• Purse lips breathing + diaphragmatic breathing (5 cycles – apnoea 5s)
• slow inspiratory techniques: Incentive spirometry + gymnastic ball (5 cycles – apnoea 5s)
• ACBT (3-5 cycles).

Exercise training
• Warm up: upper limbs and trunk movements. (2-5 min.)
• Upper body: scapula retractions; arms abduction and adduction; proprioceptive neuromuscular facilitation techniques (2 series; 10 rep.)
• Trunk: lateral inclination and rotation
• Cold down: stretching exercises (shoulder, arm, trunk, hip and leg muscles (2 rep.; 20s)

Day 4:
 viii) Nutrition
Day 5:
 iv) Smoking habits.

Day 6: 5 min. walking in the treadmill.

10 min./session to discuss
WEEK 3	• ↑ Thoracic mobility and flexibility	**Breathing control and bronchial hygiene**	ACBT should only be performed if informed by pulmonary auscultation
• ↑ Physical fitness	• Pursed lips breathing + diaphragmatic breathing (5 cycles – apnoea 5s)		10 min./session to discuss participants’ doubts and worries.
	• slow inspiratory techniques: Incentive spirometry (5 cycles – apnoea 5s)		

Exercise training

- Warm up: upper/lower limbs and trunk movements. (2-5 min.)
- Upper limbs: shoulder flexion (2 series; 10 rep.)
- Trunk: abdominals, cat arching breathing (2 series, 10 rep.)
- Lower limbs: 10-20 min. walking in the treadmill and 5-10 min. in the cycloergometer.
- Cold down: stretching exercises (trunk, hip, leg and foot muscles (2 rep.; 30s)

Load in the treadmill/cycloergometer increased according:

- Dyspnoea on the modified Borg Scale (4-6);
- Heart rate (60-80% of the patient maximal heart rate)

Abbreviations: ACBT: active cycle of breathing techniques; EDIC: exercises at inspiratory controlled flow; min.: minutes; rep.: repetitions; s: seconds
Qualitative analysis

Consolidated criteria for reporting qualitative studies (COREQ): 32-item checklist[9]

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Guide questions/description</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1: Research team and reflexivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Interviewer/facilitator</td>
<td>Which author/s conducted the interview or focus group?</td>
<td>Oliveira A. Lopes, L (not an author)</td>
<td></td>
</tr>
<tr>
<td>2. Credentials</td>
<td>What were the researcher's credentials? E.g. PhD, MD</td>
<td>Degree in Physiotherapy Physiotherapy Student</td>
<td></td>
</tr>
<tr>
<td>3. Occupation</td>
<td>What was their occupation at the time of the study?</td>
<td>Research fellow Student</td>
<td></td>
</tr>
<tr>
<td>4. Gender</td>
<td>Was the researcher male or female?</td>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>5. Experience and training</td>
<td>What experience or training did the researcher have?</td>
<td>Oliveira A. and Lopes, L. had completed coursework in qualitative methods at their undergraduate studies. Their work was also supervised by Marques, A, an experienced researcher.</td>
<td></td>
</tr>
<tr>
<td>Relationship with participants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Relationship established</td>
<td>Was a relationship established prior to study commencement?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>7. Participant knowledge of the interviewer</td>
<td>What did the participants know about the researcher? e.g. personal goals, reasons for doing the research</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>8. Interviewer characteristics</td>
<td>What characteristics were reported about the interviewer/facilitator? e.g. Bias, assumptions, reasons and interests in the research topic</td>
<td>Information was provided about the role of the interviewer in the investigation, e.g., participants were told that the interviewer was a research fellow.</td>
<td></td>
</tr>
<tr>
<td>Domain 2: study design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical framework</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Methodological orientation and Theory</td>
<td>What methodological orientation was stated to underpin the study? e.g. grounded theory, discourse analysis, ethnography, phenomenology, content analysis</td>
<td>Thematic analysis</td>
<td></td>
</tr>
<tr>
<td>Participant selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Sampling</td>
<td>How were participants selected? e.g. purposive, convenience, consecutive, snowball</td>
<td>Consecutive</td>
<td></td>
</tr>
<tr>
<td>11. Method of approach</td>
<td>How were participants approached? e.g. face-to-face, telephone, mail, email</td>
<td>Face-to-face</td>
<td></td>
</tr>
<tr>
<td>12. Sample size</td>
<td>How many participants were in the</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Domain 2: data collection and processing</td>
<td>Setting</td>
<td>Data collection</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>----------------</td>
<td></td>
</tr>
</tbody>
</table>
| 13. Non-participation | How many people refused to participate or dropped out? Reasons? | Dropouts (n=12) Discontinued follow up assessment for:
- medical reasons (n=3)
- lack of transportation (n=2)
- no reason given (n=7) |
| **Setting** | Where was the data collected? e.g. home, clinic, workplace | Data was collected at well-equipped rooms at the University of Aveiro. |
| 15. Presence of non-participants | Was anyone else present besides the participants and researchers? | No |
| 16. Description of sample | What are the important characteristics of the sample? e.g. demographic data, date | Socio-demographic data, dyspnoea, sputum, lung function and exercise capacity. |
| **Data collection** | Were questions, prompts, guides provided by the authors? Was it pilot tested? | Yes. Based on previous literature:
<p>| 18. Repeat interviews | Were repeat interviews carried out? If yes, how many? | No |
| 19. Audio/visual recording | Did the research use audio or visual recording to collect the data? | Yes. Audio recorders. |
| 20. Field notes | Were field notes made during and/or after the interview or focus group? | No. |
| 21. Duration | What was the duration of the interviews or focus group? | 25±2.4 minutes |
| 22. Data saturation | Was data saturation discussed? | No |
| 23. Transcripts returned | Were transcripts returned to participants for comment and/or correction? | No |
| Domain 3: analysis and findings | | |
| Data analysis | | |
| 24. Number of data coders | How many data coders coded the data? | Two |
| 25. Description of the coding tree | Did authors provide a description of the coding tree? | No. |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26. Derivation of themes</td>
<td>Were themes identified in advance or derived from the data?</td>
</tr>
<tr>
<td>27. Software</td>
<td>What software, if applicable, was used to manage the data?</td>
</tr>
<tr>
<td>28. Participant checking</td>
<td>Did participants provide feedback on the findings?</td>
</tr>
<tr>
<td>29. Quotations presented</td>
<td>Were participant quotations presented to illustrate the themes/findings? Was each quotation identified? e.g. participant number</td>
</tr>
<tr>
<td>30. Data and findings consistent</td>
<td>Was there consistency between the data presented and the findings?</td>
</tr>
<tr>
<td>31. Clarity of major themes</td>
<td>Were major themes clearly presented in the findings?</td>
</tr>
<tr>
<td>32. Clarity of minor themes</td>
<td>Is there a description of diverse cases or discussion of minor themes?</td>
</tr>
</tbody>
</table>
References

[9] Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups 2007 2007-12-01 00:00:00. 349-57 p.