
Universidade de Aveiro Departamento de Matemática
2016

Fábio Daniel
Moreira Barbosa

Lógica Proposicional Probabiĺıstica
Probabilistic Propositional Logic

Universidade de Aveiro Departamento de Matemática
2016

Fábio Daniel
Moreira Barbosa

Lógica Proposicional Probabiĺıstica
Probabilistic Propositional Logic

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Matemática e
Aplicações, realizada sob a orientação cient́ıfica do Doutor Manuel António
Gonçalves Martins, Professor Auxiliar do Departamento de Matemática da
Universidade de Aveiro.

o júri / the jury

presidente / president Doutor Pedro Filipe Pessoa Macedo
Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Doutor Lúıs Manuel Dias Coelho Soares Barbosa
Professor Associado, Universidade do Minho

Doutor Manuel António Gonçalves Martins
Professor Auxiliar, Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Em primeiro lugar agradeço ao meu orientador, Doutor Manuel António
Martins, por todo o apoio e entusiasmo demonstrados desde o ińıcio, a
disponibilidade total e por nunca duvidar das minhas capacidades para a
execução deste trabalho.
Ao diretor do Mestrado, Doutor Agostinho Agra, por toda a paciência e
disponibilidade demonstradas em esclarecer-me nos momentos mais con-
turbados do mestrado. Agradeço também à estrutura interna do Departa-
mento de Matemática da Universidade de Aveiro por me ter facultado as
instalações adequadas para a escrita desta dissertação.
Pelo incentivo, agradeço aos meus pais e irmão, e à Luisa pelo compa-
nheirismo, pela confiança e apoio incondicional.
Agradeço ainda à Diana pela disponibilidade demonstrada na revisão da
dissertação. E a todos aqueles que direta ou indiretamente fizeram parte
da minha formação académica, o meu muito obrigado!

palavras-chave Espaços de Probabilidades, Sistemas Lógicos, Cálculo de Hilbert, Lógica
Proposicional Probabiĺıstica, Correção, Completude, Incerteza, Condicional

resumo O termo Lógica Probabiĺıstica, em geral, designa qualquer lógica que incor-
pore conceitos probabiĺısticos num sistema lógico formal. Nesta dissertação,
o principal foco de estudo é uma lógica probabiĺıstica (designada por Lógica
Proposicional Probabiĺıstica Exógena), que tem por base a Lógica Proposi-
cional Clássica. São trabalhados sobre essa lógica probabiĺıstica a śıntaxe, a
semântica e um cálculo de Hilbert, provando-se diversos resultados clássicos
de Teoria de Probabilidade no contexto da EPPL. São também estudadas
duas propriedades muito importantes de um sistema lógico - correção e
completude. Prova-se a correção da EPPL da forma usual, e a comple-
tude fraca recorrendo a um algoritmo de satisfazibilidade de uma fórmula
da EPPL. Serão também considerados na EPPL conceitos de outras lógicas
probabiĺısticas (incerteza e probabilidades intervalares) e Teoria de Proba-
bilidades (condicionais e independência).

keywords Probability Spaces, Logic Systems, Hilbert Calculus, Probabilistic Proposi-
tional Logic, Soundness, Completeness, Uncertainty, Conditional

abstract The term Probabilistic Logic generally refers to any logic that incorporates
probabilistic concepts in a formal logic system. In this dissertation, the main
focus of study is a probabilistic logic (called Exogenous Probabilistic Propo-
sitional Logic), which is based in the Classical Propositional Logic. There
will be introduced, for this probabilistic logic, its syntax, semantics and a
Hilbert calculus, proving some classical results of Probability Theory in the
context of EPPL. Moreover, there will also be studied two important prop-
erties of a logic system - soundness and completeness. We prove the EPPL
soundness in a standard way, and weak completeness using a satisfiability
algorithm for a formula of EPPL. It will be considered in EPPL concepts
of other probabilistic logics (uncertainty and intervalar probability) and of
Probability Theory (independence and conditional).

Contents

Contents i

List of Tables iii

1 Introduction 1

2 State of the Art 5
2.1 Probability Spaces . 5
2.2 Logic Systems . 6

2.2.1 Hilbert Calculus . 7
2.2.2 Classical Propositional Logic . 8

2.3 Real Closed Fields . 10

3 Probabilistic Propositional Logic 13
3.1 Syntax . 13
3.2 Semantics . 14
3.3 Hilbert Calculus . 22
3.4 Soundness . 32
3.5 Completeness . 34

4 Extending Probabilistic Propositional Logic 41
4.1 Uncertainty . 41
4.2 Interval Probability . 44
4.3 Conditional . 48

4.3.1 Independence of Formulas . 51
4.3.2 Suppositional Logic . 52

4.4 Probabilization of Logic Systems . 56
4.4.1 Probabilization of Classical Propositional Logic 58
4.4.2 Probabilization of Modal Logic . 59

5 Conclusion and Further Work 61

Bibliography 63

i

ii

List of Tables

2.1 CPL Syntax . 8
2.2 Hilbert calculus for CPL . 9
2.3 First-Order Logic Syntax . 10
2.4 Hilbert calculus for First-Order Logic . 10
2.5 RCF first-order language . 11
2.6 RCF Axiomatic System . 12

3.1 EPPL Syntax . 13
3.2 Hilbert Calculus for EPPL . 22
3.3 EPPL Satisfaction Algorithm . 36

4.1 Suppositional Logic Syntax . 52
4.2 Suppositional Deductive System . 53
4.3 EPPLC Syntax . 56
4.4 Modal Logic Syntax . 59

iii

iv

Chapter 1

Introduction

Probability Theory and Logic are two of the main tools in the formal study of reasoning,
and have been intensively applied in a huge amount of different areas. This work aims to
propose a way to combine both of these fields. The topic of probabilistic logic does not appear
in standards neither of Logic nor Probability Theory.

There is a wide variety of studies in the literature which have referred Probabilistic Logic
in different contexts and, because of that, there is not a standard syntax for probabilistic
logic. So, in this work, it will be defined a probabilistic logic without relying on any prior
knowledge of the reader on this subject.

First, it is important to understand what is a probabilistic logic. As its name induce,
probabilistic logics combine the deductive capability of logic systems with the well-founded
Probability Theory. One major issue of this combination of two formal theories is that we
need to accommodate the continuous nature of probabilities with the discrete setting of a
logic system. That issue is probably the most difficult to overcome.

There are several ways to introduce probabilities into a given logic. We can assign proba-
bilities to either formulas or models of a logic. We may modify completely a logic by adding
probabilities creating a new one, or instead, we can introduce probabilities in a meta-level,
leaving the basic logic unchanged. In this work, our idea is to make the probabilization in
the most intuitive way possible, by introducing probabilities in the formulas for the Classical
Propositional Logic (CPL) in a different level (leaving the CPL unchanged).

Initially, we have three central problems to solve. First, how to define the syntax of this
logic in order to accommodate probabilities? Second, how to change the semantics of CPL in
order to produce probabilistic models from CPL models? And finally, how to develop a proof
system that allows reasoning about probabilities and real numbers?

Regarding the syntax of the logic, we will understand, in a way, CPL formulas as proba-
bilistic events which have probabilities associated. Both syntactically and semantically, our
approach will be an exogenous approach, that is, we will keep CPL formulas and models
unchanged, and will further add some relevant probabilistic logic structure over it.

In computer science, there are many applications where reasoning about probabilities
is extremely important. For example, probabilistic programs ([CCFMS07]) and automata
([Rab63], [Sto08]), satisfaction ([AP01]) and model-checking algorithms ([Hen09]). Thus,
because of that, introducing probabilistic concepts in formal logic is necessary.

Nowadays, reasoning about probabilistic systems has a huge importance in many different
fields (security, artificial intelligence, traffic analysis, among others). Probabilistic logics help

1

formalizing (in a logical context) concepts of Probability Theory, so that there can be applied
computational tools of logic to probabilistic problems. For example, in [Nil93] and [FH94] we
could see how probabilistic logic can be applied to Artificial Intelligence. And in [HRWW11],
we can better analyze the computational applicability of probabilistic logic in probabilistic
networks.

Although we might think that probabilistic logics is a recent topic of reasoning, the origin
of this idea goes back to the first half of the last century ([Ram26], [Car50]). Kolmogorov was
the first to axiomatize probabities ([Kol33]) and his axioms are still cited nowadays, even in
this work. Since then, the term probabilistic logic has been getting more attention and has
grown into several different approaches.

Assigning probabilities to formulas (of some logic), without changing its formal language,
has been done in some scientific works (such as in [Nil86], [Nil93]). In addition to assign-
ing probabilities to propositonal formulas, in Adams and Hailperin works ([Ada98], [Hai86],
[Hai96]), we have some ideas on how to get conditional formulas and probabilities in it into
an elementary probabilistic propositional logic. In addition, there are plenty of other authors
who who have studied probabilistic logic by assigning probabilities to formulas (e.g. [Fag90],
[Haj01]).

In literature, there already exists other probabilistic logics. Namely, probabilistic tem-
poral logics (e.g. [BdA95], [ASB+95], [CIN05]), probabilistic dynamic logics (e.g. [Koz85],
[VPKS13]), and even dynamic probabilistic epistemic logics ([Mor11]), among others. In some
works of Mateus and Baltazar ([BMNP07], [BM09]) it is introduced an exogenous probabilis-
tic linear temporal logic (EPLTL) that is obtained by enriching a probabilistic propositional
logic with linear temporal modalities.

A possible generalization of probabilistic logic is Quantum Logic. In general, it consists in
a set of rules for reasoning about propositions that takes the principles of Quantum Theory
into account. In [MS04] and [BRS06], an exogenous quantum proposicinal logic is studied
(EQPL), which is a kind of generalization of EPPL to quantum theory.

Outline

This work is partitioned into several chapters and sections. Chapter 2 aims to make this
text self-contained, i.e. it contains the necessary knowledge to understand this work. There
are defined all the needed concepts of Probability Theory and Logic. In particular, the usual
concepts related to probability spaces (Section 2.1) are defined in this chapter, because our
probabilistic logic will make use of them in their models. In a logical context, first we define
logic systems (Section 2.2), and Hilbert calculus (Subsection 2.2.1), since we want to make
our logic well defined. Soundness and completeness are also defined because one of our goals
is to verify if our logic has these properties. Finally, we define Classical Propositional Logic
(Subsection 2.2.2) and a logic system to real algebraic numbers (Section 2.3) to show that
they may be used in the probabilistic logic.

In Chapter 3, it is defined the probabilistic logic that it is approached in this thesis, i.e.
a probabilistic logic which is based on classical propositional logic together with probability
spaces: Exogenous Probabilistic Propositional Logic (EPPL). It is formulated a syntax for this
logic (Section 3.1), which keeps unchanged the base logic (CPL) and introduces probabilities
at a different level in its syntax. There is indroduced a semantical interpretation (Section

2

3.2) and a Hilbert calculus (Section 3.3), and are proved some interesing results that seem
like the ones that can be proved in Probability Theory. Finally, are analysed the soundness
(Section 3.4) and the completeness (Section 3.5) of this probabilistic logic. We will prove that
EPPL is sound in the standard way, and in order to prove that EPPL is weakly complete, we
will use a satisfaction algorithm that decides the satisfiability of a given EPPL formula. This
algorithm will return an EPPL model that satisfies that formula, if there is such model.

All sections of Chapter 4 (except the last one) aim to study some concepts that exist in
other probabilistic logics and in Probability Theory into the probabilistic propositional logic
that we have worked in previous chapter. We will try to prove some interesting properties
related to this probability features. Namely, in Section 4.3 we introduce the concept of
conditional in EPPL, and there are discussed two ways to do this: the first one consists in
introducing the conditional at the probabilities level (keeping unchanged the base logic); and
the other consists of putting conditional formulas as formulas in the base logic (now designated
by Supposicional logic) and the probabilities at a higher level on this new logic. Finally, in
order to conclude, in Section 4.4 will be presented a generalization of the probabilization
process of propositional logic (done in Chapter 3), but now for any logic system that we want
to make probabilistic.

3

4

Chapter 2

State of the Art

This chapter aims at making this text self-contained and allowing the reader to understand
the remaining chapters of the thesis. With the goal of defining a probabilistic logic, it will
first be necessary to introduce some concepts about Probability Theory and Logic.

2.1 Probability Spaces

This section introduces the topological concept of probability space, and some properties
of that will be necessary in the following chapters. In order to define probability spaces, we
must first define its three constituents: sample space, σ-algebra and probability function.

Definition 2.1.1. The sample space, usually denoted as Ω, is the set of outcomes of an
random experiment (with Ω 6= ∅). An element of the sample space (ω ∈ Ω) is called a sample
point and a subset of the sample space (E ⊆ Ω) is called an event.

Definition 2.1.2. Given a sample space Ω, a σ-algebra F over Ω is a collection of subsets
of Ω with the following properties:

(i) ∅ ∈ F (i.e. emptyset belongs to F);

(ii) if F ∈ F , then (Ω\F) ∈ F (i.e. F is closed under complementation);

(iii) if Fi ∈ F for all i ∈ I , with I a countable set, then (∪i∈IFi) ∈ F (i.e. F is closed under
countable unions).

The most common σ-algebra is the powerset of Ω (denoted as P(Ω)), which contains
every subset of Ω. There are other interesting σ-algebras to be analyzed, but in the context
of this work, we shall focus only on this one.

Definition 2.1.3. Given a σ-algebra over a sample space Ω, a probability function is a
function P : F → R that satisfies the following properties:

5

(i) P(F) ≥ 0, for every F ∈ F ;

(ii) P(Ω) = 1;

(iii) if (Fi)i∈I ∈ F (I countable set) is a countable collection of pairwise disjoint sets (that
is, Fi ∩ Fj = ∅ for all i 6= j), then P(∪i∈IFi) =

∑
i∈I P(Fi).

Definition 2.1.4. A triple (Ω,F ,P) is called a probabitity space, where Ω is a sample
space, F is a σ-algebra over Ω and P is a probability function.

With the propose of define our probabilistic logic (EPPL), we still need to understand
what is a Bernoulli’s random variable, and define the concept of stochastic process.

Definition 2.1.5. Let (Ω,F ,P) be a probability space and S some countable set of real
numbers. A function X : Ω → S is called a random variable (r.v.) if for each A ⊆ S, we
have {ω ∈ Ω : X(ω) ∈ A} ∈ F .

The random variable that will be most used in this work is a Bernoulli random variable,
that is a random variable defined in the set S = {0, 1}. The next definition ends this section
on Probability Theory, and completes all the concepts that we will need in this work.

Definition 2.1.6. Given a probability space (Ω,F ,P) and an arbitrary set T, a stochastic
process is a function X : T × Ω → R, where for each t ∈ T , Xt := X(t, ω) is a random
variable. A stochastic process is represented by X = (Xt)t∈T .

2.2 Logic Systems

Formal logic is a discipline centered in the study of reasoning, inference and, in general,
in the different ways new knowledge can be legitimately acquired from previous knowledge.

In this section will be defined the most elementar concepts related with logic systems.
The main goal is the definition of a probabilistic logic system in Chapter 3. We will begin by
formally define logic systems and satisfaction systems.

Definition 2.2.1. A logic system (or deductive system) is a pair L = (L,`), where
L 6= ∅ is a language and ` ⊆ {0, 1}L×L is a consequence operator, that satisfies the following
conditions:

(i) if δ ∈ ∆, then ∆ ` δ (reflexivity);

(ii) if ∆ ⊆ Γ and ∆ ` δ, then Γ ` δ (weakening);

(iii) if ∆ ` δ1 for all δ1 ∈ Γ and Γ ` δ2, then ∆ ` δ2 (cut).

6

If whenever ∆ ` δ there exists a finite set of formulas ∆0 ⊆ ∆ such that ∆0 ` δ, we
say that the logic is an axiomatizable logic system (i.e. a logic system with the finitary
property).

Definition 2.2.2. A satisfaction relation is a relation � ⊆ M× L, where M is the class
of models , i.e. structures that attribute meaning to formulas of the language, for the logic
system (L,`). Given a model m ∈ M, the expression m � δ will denote that the model m
satisfies the formula δ. The tuple (L,M,�) is called a satisfaction system.

Definition 2.2.3. Let (L,M,�) be a satisfaction system and δ a formula. We say that:

(i) δ is valid (in M), if m � δ for all m ∈M;

(ii) δ is satisfiable (in M), if exists m ∈M such that m � δ;

(iii) δ is a semantical consequence (in M) of the set of formulas ∆ (denoted as ∆ � δ),
if for all m ∈M such that m satisfies each formula in ∆, then m satisfies δ as well.

The properties below in the next definition relate the concept of consequence operator `
with the satisfaction relation �, which have a major importance to any logic.

Definition 2.2.4. Let L = (L,`) be a logic system and consider a semantics where M is
the set of models and � is the satisfaction relation. We say that a logic system, relatively to
the satisfaction system (L,M,�), is:

(i) strongly sound if for every set of formulas ∆, any formula that is provable from ∆,
follows semantically from ∆: if ∆ ` δ then ∆ � δ;

(ii) weakly sound if every provable formula is semantically valid: if ` δ then � δ;

(iii) strongly complete if for every set of formulas ∆, any formula that follows semantically
from ∆, is provable from ∆: if ∆ � δ then ∆ ` δ;

(iv) weakly complete if every semantically valid formula is a theorem: if � δ then ` δ.

2.2.1 Hilbert Calculus

In general words, a Hilbert calculus is a formal deduction system characterized by a large
number of axioms and a few number of inference rules (usually only modus ponens) opposing
to natural deduction systems. The following definitions formalize this deduction system that
will be used throughout this work.

7

Definition 2.2.5. A Hilbert calculus is a pair H = (L,R) where L is a set (of formulas)
and R = {(∆i, δi) : i ∈ I}, where for each i ∈ I, ∆ ⊆ L and δ ∈ L.

Definition 2.2.6. Each pair r = (∆, δ) ∈ R is called an inference rule, and be denoted by
{δ1, ..., δn} ` δ, where ∆ = {δ1, ..., δn}. If ∆ = ∅, r is called an axiom. A Hilbert calculus
system is a collection of axioms and inference rules.

Definition 2.2.7. Let H = (L,R) be a Hilbert calculus and ∆ ⊆ L a set of formulas. We say
that a formula δ ∈ L is provable (or derivable) from ∆ (denoted as ∆ ` δ) if there exists
a finite sequence of formulas δ1, ..., δn ∈ L (called proof), where δ is δn and each formula δi
(i = 1, ..., n) is either in ∆ or is the result of applying an inference rule (∆0, δ0) ∈ R such that
∆0 ⊆ {δ1, ..., δi−1} and δi is δ0.

Moreover, we say that δ is a theorem if it is provable from ∅, and we write ` δ.

We will write δ1, ..., δn `H δ instead of {δ1, ..., δn} `H δ to simplify the notation. It is
easy to check that any segment of the proof of a provable formula is also a provable formula.

The most common notation to denote that δ is provable from ∆ in H = (L,R) is ∆ `H δ.
A Hilbert calculus H = (L,R) will always induce the logic system (L,`H) (see Definition
2.2.1), that is, a Hilbert calculus is a particular case of an axiomatizable logic system.

2.2.2 Classical Propositional Logic

This subsection introduces Classical Propositional Logic (usually denoted as CPL) that
will be used as a base logic over which will be further developed a probabilistic logic. In this
work, this logic will be denoted as B = (B,`B). This is not the standard notation for CPL
but, in this context, this notation makes sense because it will denote the base logic of the
probabilistic system.

In the first place, the language (i.e. the syntax) of this logic system has to be described
and some axioms and inference rules will be defined.

Definition 2.2.8. We will denote the set of formulas of CPL as Form(B) =
⋃∞
k=0Bk, where:

• B0 = V ar(B) = {p, p1, p2, ...}

• Bn+1 = Bn ∪ {(∼φ) : φ ∈ Bn} ∪ {(φ1 → φ2) : φ1, φ2 ∈ Bn}

In a logic context, this is described grammatically as follows.

φ := p | (∼φ) | (φ→ φ) , p ∈ V ar(B)

Table 2.1: CPL Syntax

8

Note that it is only necessary to have in the language these two connectives (∼ and →),
because any other classical connective can be written resorting to these two, as follows:
• > := φ→ φ
• ⊥ := ∼> = ∼(φ→ φ)
• φ1 ∨ φ2 := (∼φ1)→ φ2

• φ1 ∧ φ2 := ∼
(
(∼φ1) ∨ (∼φ2)

)
= ∼

(
φ1 → (∼φ2)

)
• φ1 ↔ φ2 := (φ1 → φ2) ∧ (φ2 → φ1) = ∼

(
(φ1 → φ2)→ ∼(φ2 → φ1)

)
Table 2.2 gives an example of a Hilbert calculus for classical propositional logic. This

inference system is present in [AR02].

Axioms:
[Ax1] `B φ1 → (φ2 → φ1)
[Ax2] `B

(
φ1 → (φ2 → φ3)

)
→
(
(φ1 → φ2)→ (φ1 → φ3)

)
[Ax3] `B (∼φ2 → ∼φ1)→

(
(∼φ2 → φ1)→ φ2

)
Inference Rules:

[MP] φ1, φ1 → φ2 `B φ2

Table 2.2: Hilbert calculus for CPL

After having an inference system, our aim is now to introduce a semantics for this logic,
i.e. to assign meaning to the symbols of this system. In CPL, meanings are truth values: 0
and 1 (false and true, respectively).

Definition 2.2.9. A valuation in CPL is a mapping v : V ar(B) → {0, 1}, that can be
naturally extended to v̄ : Form(B)→ {0, 1} by v̄(p) = v(p) if p ∈ V ar(B), v̄(∼φ) = 1− v̄(φ)
and v̄(φ1 → φ2) = max{1− v̄(φ1), v̄(φ2)}.

Usually, v̄ is abbreviated to v because it is a more intuitive notation. In order to put these
semantical definitions like Definition 2.2.2 of satisfaction system, we can see each valuation v
as a model for CPL, and the satisfaction relation �B is recursively defined as:
• v �B p iff v(p) = 1;
• v �B (∼φ) iff v 2B φ;
• v �B (φ1 → φ2) iff (v 2B φ1 or v �B φ2).

The set V :=
{
v | v : V ar(B)→{0, 1}

}
will represent all models, i.e. all valuations, in

CPL. Given φ ∈ Form(B), the subset mod(φ) := {v ∈ V : v �B φ} will denote all CPL
models that satisfy the formula φ.

The concept of CPL tautology is also important because it will be usefull to define the
propositional probabilistic logic in Chapter 3 (namely, its Hilbert calculus).

Definition 2.2.10. We say that φ ∈ Form(B) is a tautology if and only if v(φ) = 1 for
every valuation v ∈ V .

9

The following Theorem is very important for any logic system, and in the context of this
work, it is necessary so that the base logic (CPL) of our probabilistic logic has such properties.

Theorem 2.2.11. CPL is strongly sound and complete.

In this work, the proof of this result will be not analyzed because our focus is the study
of probabilistic logics (namely EPPL). Moreover, the soundness and completeness of CPL is
studied in [Woj84] and [PW08]. Nonetheless, Theorem 2.2.11 has a major importance in the
probabilistic logic studied in Chapter 3.

2.3 Real Closed Fields

In order to add probability concepts to CPL, first we need to define a logical structure
to represent the real numbers over which probabilities will be defined. For that, we will
follow the decidable first-order logic of real closed fields (RCF) over non-logical symbols
{=,+,×, <, 0, 1}, proposed in [Tar56] and simplified in [Bal10].

Next it will be define a first-order logic, to further introduce the RCF concepts.

Definition 2.3.1. Given a countable set X = {x1, x2, ...} of variables, a family F = (Fn)n>0

of function symbols and a family R = (Rn)n>0 of relation symbols, we define a first-order
logic with the language in Table 2.3 and the Hilbert calculus in Table 2.4.

t := x | f(t, ..., t) , f ∈ F

α := r(t, ..., t) | (¬α) | (α A α) | (∀xα) , r ∈ R

Table 2.3: First-Order Logic Syntax

Although there are two well-known first-order quantifiers for real numbers, the existen-
tial quantifier can be defined with recourse to the universal quantifier as usual: (∃xφ) :=
¬
(
∀x(¬φ)

)
.

Axioms:
[Ax1] ` ∀x(α1 A α2) A (∀xα1 A ∀xα2)
[Ax2] ` (α A ∀xα), if x is not free in α
[Ax3] `

(
(∀xα) A φ[x← t]

)
, if t is free for x in α

Generalization inference rule:
[GIF] α ` ∀xα

Table 2.4: Hilbert calculus for First-Order Logic

10

Real Terms:
t := 0 | 1 | x | (t+ t) | (t× t) , x ∈ X

First-Order Real Formulas:
α := (t = t) | (t < t) | (¬α) | (α A α) | (∀xα)

Table 2.5: RCF first-order language

Then, given X = {x1, x2, ...} a countable set (possibly infinite) of variables, the first-order
language for RCF is given by:

Given an assignment to real variables ρ : X → R, the interpretation of real terms is
defined as:

• [0]ρ = 0; [1]ρ = 1;
• [x]ρ = ρ(x);
• [t1 + t2]ρ = [t1]ρ + [t2]ρ;
• [t1 × t2]ρ = [t1]ρ × [t2]ρ;

A satisfaction relation �RFC(ρ) is defined by:
• �RFC(ρ) (t1 = t2) iff [t1]ρ = [t2]ρ;
• �RFC(ρ) (t1 < t2) iff [t1]ρ < [t2]ρ;
• �RFC(ρ) (¬α) iff 2RFC(ρ) α
• �RFC(ρ) (α1 A α2) iff (2RFC(ρ) α1 or �RFC(ρ) α2);
• �RFC(ρ) (∀xα) iff �RFC(ρ′) α for all assignments ρ′ such that ρ′ agrees with ρ in the

values of all variables different from x.

Together with the axiomatic systems of CPL (Table 2.2) and first-order logic (Table 2.4),
we will define the remaining axioms necessary in order to have an axiomatic formal system
for RCF (Table 2.6).

It is possible to prove that the axiomatic system of RCF is strongly sound and weakly
complete. To end this section, we will make a remark about algebraic real numbers and
first-order logic.

Definition 2.3.2. A real number r ∈ R is an algebraic real number if it is a root of a
non-zero polynomial in one variable, with rational coefficients.

We will denote as Alg(R) the countable set of all algebraic real numbers. An important
fact is that we can add algebraic real numbers to our logic because it is possible to prove that
any r ∈ Alg(R) can be represented as a RCF formula (see [BPR03]).

For each r ∈ Alg(R), we will consider the RCF existential formula φr(x), with exactly one
free variable x ∈ X such that for each assignment ρ : X → R, we have that ρ �RCF φr(x) if
and only if ρ(x) = r.

11

Field Axioms:
[F1] ∀x∀y∀z(((x+ y) + z) = (x+ (y + z)))
[F2] ∀x(x+ 0 = x)
[F3] ∀x∃y(x+ y = 0)
[F4] ∀x∀y(x+ y = y + x)
[F5] ∀x∀y∀z(((x× y)× z) = (x× (y × z)))
[F6] ∀x(x× 1 = x)
[F7] ∀x((x 6= 0) A (∃y(x× y = 1)))
[F8] ∀x∀y(x× y = y × x)
[F9] ∀x∀y∀z(x× (y + z) = (x× y) + (x× z))
[F10] (0 6= 1)

Linear Order Axioms:
[LO1] ∀x(¬(x < x))
[LO2] ∀x∀y∀z(((x < y) u (y < z)) A (x < z))
[LO3] ∀x∀y((x < y) t (x = y) t (y < x))

Ordered Fields Axioms:
[OF1] ∀x∀y∀z((x < y) A ((x+ z) < (y + z)))
[OF1] ∀x∀y(((0 < x) u (0 < y)) A (0 < x× y))

Closed Fields Axioms:
[CF1] ∀x((0 < x) A (∃y(y × y = x)))

[CF2] ∀x1...∀x2n∃y(y2n+1 +
∑2n

i=0 xi × yi = 0)

Table 2.6: RCF Axiomatic System

12

Chapter 3

Probabilistic Propositional Logic

In the previous chapter, we defined a logical structure that we will use as a base (CPL) and
a logical structure for real numbers (RCF). We are now able to formally define a probabilistic
propositional logic.

In this chapter, we will follow some of the ideas in [MSS05], [BRS06], [BMNP07] and
[BM09]. Taking into account the creators of this logic, we will keep, in this dissertation, its
original designation - Exogenous Probabilistic Propositional Logic (EPPL).

The exogenous semantics approach to enriching a logic system (in this case, CPL) consists
in defining each model in the enrichment as a set of models in the original logic plus some
relevant structure, preserving both the syntax and semantics of the base logic.

In the following sections first it will be defined a syntax for EPPL, that has all the formulas
from CPL as atoms (Section 3.1). Then it will be defined a semantics (Section 3.2) and a
Hilbert calculus (Section 3.3). Some interessing results adapted from Probability Theory to
EPPL will be proved. Finally, in this chapter will be analysed soundness and completeness
for this probabilistic logic.

3.1 Syntax

In this section, we will define the syntax of this logic, by describing what does each symbol
represent. The complete and minimal syntax of the EPPL is presented in Table 3.1.

Local Formulas:
φ := p | (∼φ) | (φ→ φ) , p ∈ Var(B)

Real Probabilistic Terms:
t := x | 0 | 1 |

´
φ | (t+ t) | (t× t) , x ∈ Var(R)

Global Formulas:
δ := �φ | (t ≤ t) | (¬δ) | (δ A δ) .

Table 3.1: EPPL Syntax

13

In very general terms, the language of EPPL consists of propositional formulas at two
different levels: local and global formulas. The local ones are formulas from CPL and the
global formulas allow reasoning about real probabilistic terms.

The real probabilistic terms (t, t1, t2, ...) denote elements of the algebraic real closed field,
i.e. real numbers used for quantitative reasoning. The term

´
φ denotes the probability

of the events described by the local formula φ. In the literature, these terms are usually
called measure terms. The global formulas (δ, δ1, δ2, ...) are constituted by universal formulas
�φ, comparisons between terms (t1 ≤ t2), and two connectives: global negation and global
implication (¬ and A, respectively).

The global universal formula (�φ) imposes that all elements of the probability space satisfy
the local formula φ. In EPPL, the box symbol has to be interpretated not as a classical
modality (e.g. �(�φ) is not a well defined formula), but instead as a unary symbol that
allow a local formula to be interpretated in a global context. We can use (♦φ) to abbreviate
¬
(
�(∼φ)

)
, and this formula impose that there is at least one sample point that satisfies φ.

In a certain way, we can see these global formulas as propositional formulas where uni-
versal formulas and comparisons between terms are the atomic formulas of this logic. As it
happens in CPL, there will be other connectives for global formulas which are introduced in
the syntax as standard abbreviations from global negation and global implication:

• T := δ A δ
• F := ¬T
• δ1 t δ2 := (¬δ1) A δ2

• δ1 u δ2 := ¬
(
(¬δ1) t (¬δ2)

)
• δ1 ≡ δ2 := (δ1 A δ2) u (δ2 A δ1)

Analogously, all notation for comparisons between real terms can be abbreviated as global
formulas:

• (t1 = t2) := (t1 ≤ t2) u (t2 ≤ t1)
• (t1 6= t2) := ¬(t1 = t2)
• (t1 > t2) := ¬(t1 ≤ t2)
• (t1 ≥ t2) := (t1 > t2) t (t1 = t2)
• (t1 < t2) := ¬(t1 ≥ t2)

In the following sections of this work, this language will be developed, namely by defining
its semantics (Section 3.2) and a Hilbert calculus (Section 3.3). In these sections some clas-
sical results of Probability Theory will be proved in the context of EPPL (both semantically
and in the calculus defined) and, finally will be discussed both soundness (Section 3.4) and
completeness (Section 3.5) for EPPL.

3.2 Semantics

Here we will define a satisfaction system for EPPL and then we will study some properties
of this semantics that will be useful later to prove the soundness of EPPL. In order to define a
model of EPPL, we will make use of the concepts of probability space and stochastic process
previously defined.

14

Definition 3.2.1. Let (Ω,F ,P) be an arbitrary probability space. A model of EPPL is a
tuple m = (Ω,F ,P,X) where X = (Xp)p∈V ar(B) is a stochastic process over this probability
space. Each Xp represents a Bernoulli random variable, i.e. Xp : Ω→ {0, 1}.

The purpose of the next example is two illustrate how an EPPL model represents a
probabilistic random experiment.

Example 3.2.2. Consider the random experiment of a dice roll. The EPPL model associated
ism = (Ω,F ,P,X), where Ω = {1, 2, 3, 4, 5, 6} is the sample space, F = P(Ω) and P(ω) = 1/6
for each ω ∈ Ω compose the probability space. X = (Xp)p∈V ar(B) is a stochastic process over
this probability space, namely Xp : Ω→ {0, 1} is a Bernoulli random variable.

Suppose that, for example, p describes the event even number occurs. This Bernoulli r.v.
associates each p ∈ Var(B) with 1 if and only if the sample point ω is consistent with the
meaning of p. That is, Xp(ω) = 1 iff ω is an even number (ω ∈ {2, 4, 6}).

Note that every local formula φ will induce a new Bernoulli r.v. Xφ : Ω→ {0, 1}, defined
recursively as follow:

X∼φ(ω) = 1−Xφ(ω) and Xφ1→φ2(ω) = max{1−Xφ1(ω), Xφ2(ω)}.

Then any local formula φ will be represented in the probability space as a subset of the
sample set Ω, i.e. Ωφ = {ω ∈ Ω : Xφ(ω) = 1}. We can intuitively observe that each sample
point ω ∈ Ω will induce a valuation vω(p) in the local CPL, as defined in 2.2.9, such that
vω(p) = Xp(ω), for all propositions p ∈ V ar(B).

Reciprocally, the local logic will induce a probability space (Ω,F ,P) :=
(
V,P(V),P

)
where the sample points are valuations of CPL with some probability P({v}) associated and
each local formula φ will induce this time a Bernoulli r.v. such that Xφ(v) = v(φ).

The next proposition shows how this Bernoulli random variables behaves according to the
abbreviations defined in CPL (see Subsection 2.2.2).

Proposition 3.2.3. Let φ1 and φ2 be two local formulas and ω ∈ Ω an arbitrary sample
point. Considering the abbreviations defined for local formulas in Subsection 2.2.2, we have
that:

(i) X>(ω) = 1 ;

(ii) X⊥(ω) = 0 ;

(iii) Xφ1∨φ2(ω) = max{Xφ1(ω), Xφ2(ω)} ;

(iv) Xφ1∧φ2(ω) = min{Xφ1(ω), Xφ2(ω)} ;

(v) Xφ1↔φ2(ω) =

{
1, if Xφ1(ω) = Xφ2(ω)

0, otherwise
.

Proof.

(i) X>(ω) = Xφ→φ(ω) = max{1−Xφ(ω), Xφ(ω)} = 1, because Xφ(ω) ∈ {0, 1}.

15

(ii) X⊥(ω) = X∼>(ω) = 1−X>(ω) = 1− 1 = 0.

(iii) Xφ1∨φ2(ω) = X(∼φ1)→φ2(ω) = max{1−X∼φ1(ω), Xφ2(ω)}
= max

{
1−

(
1−Xφ1(ω)

)
, Xφ2(ω)

}
= max{Xφ1(ω), Xφ2(ω)}.

(iv) Xφ1∧φ2(ω) = X∼((∼φ1)∨(∼φ2))(ω) = 1−X(∼φ1)∨(∼φ2)(ω) = 1−max{X∼φ1(ω), X∼φ2(ω)}
= 1−max{1−Xφ1(ω), 1−Xφ2(ω)} = min{Xφ1(ω), Xφ2(ω)}.

(v) Xφ1↔φ2(ω) = X(φ1→φ2)∧(φ2→φ1)(ω) = min{Xφ1→φ2(ω), Xφ2→φ1(ω)}
= min

{
max{1−Xφ1(ω), Xφ2(ω)}, max{1−Xφ2(ω), Xφ1(ω)}

}
.

If Xφ1(ω) = Xφ2(ω), then:
Xφ1↔φ2(ω) = min

{
max{1−Xφ2(ω), Xφ2(ω)}, max{1−Xφ2(ω), Xφ2(ω)}

}
= max{1−Xφ2(ω), Xφ2(ω)} = 1, because Xφ2(ω) ∈ {0, 1};

On the other hand, if Xφ1(ω) = 1−Xφ2(ω), then:
Xφ1↔φ2(ω) = min

{
max{Xφ2(ω), Xφ2(ω)}, max{1−Xφ2(ω), 1−Xφ2(ω)}

}
= min{Xφ2(ω), 1−Xφ2(ω)} = 0, because Xφ2(ω) ∈ {0, 1}.

Now our aim is to define a satisfaction relation (see Definition 2.2.2) for global formulas.
Let m = (Ω,F ,P,X) be an EPPL model and ρ : Var(R)→ Alg(R) an assignment to the real
variables (i.e. an assignment of real variables to algebraic numbers). The interpretation of
probabilistic real terms [t](m,ρ) is as follows:

• [0](m,ρ) := 0, [1](m,ρ) := 1;

• [x](m,ρ) := ρ(x), for all x ∈ Var(R)

• [t1 + t2](m,ρ) := [t1](m,ρ) + [t2](m,ρ)

• [t1 × t2](m,ρ) := [t1](m,ρ) × [t2](m,ρ)

• [
´
φ](m,ρ) = P(Xφ = 1) = P({ω ∈ Ω : Xφ(ω) = 1}) = P(Ωφ)

When a real term t does not have any real variable, we will abbreviate the notation as
[t]m := [t](m,ρ), since the assignment ρ has no contribution to the final outcome. Note that
this condition implies that [r](m,ρ) := r, for all r ∈ Alg(R).

The following proposition shows that there exists a duality between the CPL connectives
and the connectives of set theory behind probability spaces. This results will be used later in
this work, for example in order to prove EPPL weak soundness.

Proposition 3.2.4. Let m = (Ω,F ,P,X) be an EPPL model and φ, φ1, φ2 ∈ Form(B).

(i) [
´

(∼φ)]m = P(Ω\Ωφ)

(ii) [
´

(φ1 ∨ φ2)]m = P(Ωφ1∪ Ωφ2)

(iii) [
´

(φ1 ∧ φ2)]m = P(Ωφ1∩ Ωφ2)

16

Proof.

(i) [
´

(∼φ)]m = P(Ω∼φ) = P({ω ∈ Ω : X∼φ(ω) = 1})
= P({ω ∈ Ω : 1−Xφ(ω) = 1}) = P({ω ∈ Ω : Xφ(ω) = 0})
= P(Ω\{ω ∈ Ω : Xφ(ω) = 1}) = P(Ω\Ωφ)

(ii) [
´

(φ1 ∨ φ2)]m = P(Ωφ1∨φ2) = P({ω ∈ Ω : Xφ1∨φ2(ω) = 1})
= P({ω ∈ Ω : max{Xφ1(ω), Xφ2(ω)} = 1})
= P({ω ∈ Ω : Xφ1(ω) = 1 or Xφ2(ω) = 1})
= P({ω ∈ Ω : Xφ1(ω) = 1} ∪ {ω ∈ Ω : Xφ2(ω) = 1}) = P(Ωφ1∪ Ωφ2)

(iii) [
´

(φ1 ∧ φ2)]m = P(Ωφ1∧φ2) = P({ω ∈ Ω : Xφ1∧φ2(ω) = 1})
= P({ω ∈ Ω : min{Xφ1(ω), Xφ2(ω)} = 1})
= P({ω ∈ Ω : Xφ1(ω) = 1 and Xφ2(ω) = 1})
= P({ω ∈ Ω : Xφ1(ω) = 1} ∩ {ω ∈ Ω : Xφ2(ω) = 1}) = P(Ωφ1∩ Ωφ2)

We can now define the satisfaction relation (see Definition 2.2.2) for our probabilistic logic,
that is, define the satisfaction system for EPPL.

Definition 3.2.5. Given an EPPL model m = (Ω,F ,P,X) and an assignment to the real
variables ρ : Var(R)→ Alg(R), the satisfaction of a global formula δ, denoted as (m, ρ) � δ,
is recursively defined as follow:

• (m, ρ) � �φ iff (Xφ(ω) = 1 for all ω ∈ Ω) iff (Ωφ = Ω)

• (m, ρ) � (t1 ≤ t2) iff [t1](m,ρ) ≤ [t2](m,ρ)

• (m, ρ) � (¬δ) iff (m, ρ) 2 δ

• (m, ρ) � (δ1 A δ2) iff
(
(m, ρ) 2 δ1 or (m, ρ) � δ2

)
If (m, ρ) � δ for every real assignment ρ, then we will abbreviate the notation to m � δ.

Moreover, if m � δ for every EPPL model m, we simply write � δ, and δ is called a valid
EPPL formula.

The next proposition shows how global connective defined as abbreviations behave con-
cerning to this satisfaction relation.

Proposition 3.2.6. Let m = (Ω,F ,P,X) be an EPPL model and ρ : Var(R) → Alg(R) an
assignment to the real variables. Given two EPPL formula δ1 and δ2, and considering the
abbreviations previously defined, we have that:

(i) (m, ρ) � T always ;

(ii) (m, ρ) � F never ;

(iii) (m, ρ) � (δ1 t δ2) iff
(
(m, ρ) � δ1 or (m, ρ) � δ2

)
;

17

(iv) (m, ρ) � (δ1 u δ2) iff
(
(m, ρ) � δ1 and (m, ρ) � δ2

)
;

(v) (m, ρ) � (δ1 ≡ δ2) iff
(
(m, ρ) 2 δ1 and (m, ρ) 2 δ2

)
or
(
(m, ρ) � δ1 and (m, ρ) � δ2

)
.

Proof.

(i) (m, ρ) � T iff (m, ρ) � (δ1 A δ1) iff
(
(m, ρ) 2 δ1 or (m, ρ) � δ1

)
, which is always true

because these two statements are complementary.

(ii) (m, ρ) � F iff (m, ρ) � ¬T iff (m, ρ) 2 T, which is always false by (i).

(iii) (m, ρ) � (δ1 t δ2) iff (m, ρ) � (¬δ1 A δ2) iff
(
(m, ρ) 2 ¬δ1 or (m, ρ) � δ2

)
iff
(
(m, ρ) � δ1 or (m, ρ) � δ2

)
.

(iv) (m, ρ) � (δ1 u δ2) iff (m, ρ) � ¬(¬δ1 t ¬δ2) iff (m, ρ) 2 (¬δ1 t ¬δ2)
iff is false that {(m, ρ) � (¬δ1) or (m, ρ) � (¬δ2)}
iff
(
(m, ρ) 2 (¬δ1) and (m, ρ) 2 (¬δ2)

)
iff
(
(m, ρ) � δ1 and (m, ρ) � δ2

)
.

(v) (m, ρ) � (δ1 ≡ δ2) iff (m, ρ) � (δ1 A δ2) u (δ2 A δ1)
iff
(
(m, ρ) � (δ1 A δ2) and (m, ρ) � (δ2 A δ1)

)
iff
(
(m, ρ) 2 δ1 or (m, ρ) � δ2

)
and

(
(m, ρ) 2 δ2 or (m, ρ) � δ1

)
iff
(
(m, ρ) 2 δ1 and (m, ρ) 2 δ2

)
or
(
(m, ρ) 2 δ1 and (m, ρ) � δ1

)
or
(
(m, ρ) � δ2 and (m, ρ) 2 δ2

)
or
(
(m, ρ) � δ2 and (m, ρ) � δ1

)
iff
(
(m, ρ) 2 δ1 and (m, ρ) 2 δ2

)
or
(
(m, ρ) � δ1 and (m, ρ) � δ2

)
.

Proposition 3.2.7. Let m = (Ω,F ,P,X) be an EPPL model and ρ : Var(R) → Alg(R) an
assignment to the real variables. Given two real probabilistic terms t1 and t2, and considering
the abbreviations previously defined, we have that:

(i) (m, ρ) � (t1 = t2) iff [t1](m,ρ) = [t2](m,ρ) ;

(ii) (m, ρ) � (t1 6= t2) iff [t1](m,ρ) 6= [t2](m,ρ) ;

(iii) (m, ρ) � (t1 > t2) iff [t1](m,ρ) > [t2](m,ρ) ;

(iv) (m, ρ) � (t1 ≥ t2) iff [t1](m,ρ) ≥ [t2](m,ρ) ;

(v) (m, ρ) � (t1 < t2) iff [t1](m,ρ) < [t2](m,ρ) .

Proof.

(i) (m, ρ) � (t1 = t2) iff (m, ρ) � (t1 ≤ t2) u (t2 ≤ t1)
iff
(
(m, ρ) � (t1 ≤ t2)

)
and

(
(m, ρ) � (t2 ≤ t1)

)
iff ([t1](m,ρ) ≤ [t2](m,ρ)) and ([t2](m,ρ) ≤ [t1](m,ρ)) iff [t1](m,ρ) = [t2](m,ρ).

(ii) (m, ρ) � (t1 6= t2) iff (m, ρ) � ¬(t1 = t2) iff (m, ρ) 2 (t1 = t2)

18

iff is false that ([t1](m,ρ) = [t2](m,ρ)) iff [t1](m,ρ) 6= [t2](m,ρ).

(iii) (m, ρ) � (t1 > t2) iff (m, ρ) � ¬(t1 ≤ t2) iff (m, ρ) 2 (t1 ≤ t2)

iff is false that ([t1](m,ρ) ≤ [t2](m,ρ)) iff [t1](m,ρ) > [t2](m,ρ).

(iv) (m, ρ) � (t1 ≥ t2) iff (m, ρ) � (t1 > t2) t (t1 = t2)

iff
(
(m, ρ) � (t1 > t2)

)
or
(
(m, ρ) � (t1 = t2)

)
iff ([t1](m,ρ) > [t2](m,ρ)) or ([t1](m,ρ) = [t2](m,ρ)) iff [t1](m,ρ) ≥ [t2](m,ρ).

(v) (m, ρ) � (t1 < t2) iff (m, ρ) � ¬(t1 ≥ t2) iff (m, ρ) 2 (t1 ≥ t2)

iff is false that ([t1](m,ρ) ≥ [t2](m,ρ)) iff [t1](m,ρ) < [t2](m,ρ).

Proposition 3.2.8. Let m = (Ω,F ,P,X) be an EPPL model and ρ1 : Var(R) → Alg(R)
and ρ2 : Var(R) → Alg(R) two assignments to the real variables. If δ is an EPPL formula
with no occurrences of real variables, then (m, ρ1) � δ if and only if (m, ρ2) � δ.

In this case, we will simplify the notation by omitting ρ. Note that, in general, we do
not have that m � �(p1 ∨ p2) (because (p1 ∨ p2) is not a CPL tautology), but in some EPPL
models (as in the following example) is a valid formula.

Example 3.2.9. Consider the EPPL model in Example 3.2.2. Suppose that p1 describes
the event even number occurs, and p2 describes the event odd number occurs. We have that
m � �(p1 ∨ p2), because Ω(p1∨p2) = Ωp1 ∪ Ωp2 = {2, 4, 6} ∪ {1, 3, 5} = {1, 2, 3, 4, 5, 6} = Ω.

The following results are two of the most popular results known in Probability Theory.
We may clearly see the connection between Probability Theory and the probabilistic propo-
sitional logic defined here.

Proposition 3.2.10. �
´

(∼φ) +
´
φ = 1

Proof. Let m = (Ω,F ,P,X) be an EPPL model. First note that Ωφ = {ω ∈ Ω : Xφ(ω) = 1}
and Ω∼φ = {ω ∈ Ω : X∼φ(ω) = 1} = {ω ∈ Ω : 1 − Xφ(ω) = 1} = {ω ∈ Ω : Xφ(ω) = 0} are
two complementary sets over Ω. Then, P(Ω) = P(Ω∼φ ∪ Ωφ) = P(Ω∼φ) + P(Ωφ). And, by
definition of probability function, P(Ω) = 1. Then P(Ω∼φ) + P(Ωφ) = 1 and:

P(Ω∼φ) + P(Ωφ) = 1 iff [
´

(∼φ)]m + [
´
φ]m = [1]m iff [

´
(∼φ) +

´
φ]m = [1]m

iff m �
´

(∼φ) +
´
φ = 1.

Proposition 3.2.11. �
´
φ1 +

´
φ2 =

´
(φ1 ∨ φ2) +

´
(φ1 ∧ φ2)

Proof. Let m = (Ω,F ,P,X) be an EPPL model. By Proposition 3.2.4, we have that:

[
´
φ1]m = P(Ωφ1) = P({ω ∈ Ω : Xφ1(ω) = 1}) ;

[
´
φ2]m = P(Ωφ2) = P({ω ∈ Ω : Xφ2(ω) = 1}) ;

19

[
´

(φ1 ∨ φ2)]m = P(Ωφ1∨φ2) = P(Ωφ1∪ Ωφ2) ;
[
´

(φ1 ∧ φ2)]m = P(Ωφ1∧φ2) = P(Ωφ1∩ Ωφ2) .

(i) Ωφ1∨φ2 = Ωφ1 ∪ Ωφ2 = Ω ∩ (Ωφ1 ∪ Ωφ2) = (Ω∼φ1 ∪ Ωφ1) ∩ (Ωφ1 ∪ Ωφ2)
= (Ω∼φ1 ∩ Ωφ1) ∪ (Ω∼φ1 ∩ Ωφ2) ∪ (Ωφ1 ∩ Ωφ1) ∪ (Ωφ1 ∩ Ωφ2)
= ∅ ∪ (Ω∼φ1 ∩ Ωφ2) ∪ Ωφ1 ∪ (Ωφ1 ∩ Ωφ2)
= (Ω∼φ1 ∩ Ωφ2) ∪ Ωφ1 , because Ωφ1 ∩ Ωφ2 ⊆ Ωφ1 .

Then, P(Ωφ1∨φ2) = P
(
(Ω∼φ1 ∩ Ωφ2) ∪ Ωφ1

)
= P(Ω∼φ1 ∩ Ωφ2) + P(Ωφ1), because Ω∼φ1 ∩ Ωφ2

and Ωφ1 are two disjoint sets.

(ii) Ωφ2 = (Ω∼φ1 ∪ Ωφ1) ∩ Ωφ2 = (Ω∼φ1 ∩ Ωφ2) ∪ (Ωφ1 ∩ Ωφ2) = (Ω∼φ1 ∩ Ωφ2) ∪ Ωφ1∧φ2
Then, P(Ωφ2) = P((Ω∼φ1 ∩ Ωφ2) ∪ Ωφ1∧φ2) = P(Ω∼φ1 ∩ Ωφ2) + P(Ωφ1∧φ2), since Ω∼φ1 and
Ωφ1∧φ2 = Ωφ1 ∩ Ωφ2 are two disjoint sets.

Therefore, putting together the equations (i) and (ii), we have that:
P(Ωφ1) + P(Ωφ2) = P(Ωφ1∨φ2) + P(Ωφ1∧φ2)
iff [
´
φ1]m + [

´
φ2]m = [

´
(φ1 ∨ φ2)]m + [

´
(φ1 ∧ φ2)]m

iff [
´
φ1 +

´
φ2]m = [

´
(φ1 ∨ φ2) +

´
(φ1 ∧ φ2)]m

iff m �
´
φ1 +

´
φ2 =

´
(φ1 ∨ φ2) +

´
(φ1 ∧ φ2).

In our language, there are set two formulas that can represent the logical equivalent to
the certain event: �φ and (

´
φ = 1). The next proposition shows that one of these formulas

is stronger than the other (that is, the later is a semantical consequence of the first).

Proposition 3.2.12. Let φ be a local formula such that � (�φ). Then � (
´
φ = 1).

Proof. Let m = (Ω,F ,P,X) be an EPPL model, and suppose that m � (�φ). By definition,
we have thatm � (�φ) if and only if Ωφ = Ω. Thus, P(Ωφ) = P(Ω) = 1. Since [

´
φ]m = P(Ωφ)

and [1]m := 1, we conclude that [
´
φ]m = [1]m, which is equivalent to m � (

´
φ = 1).

Note that the reciprocal (of the result in Proposition 3.2.12) is not true in general because
of problems with null probabilities. The next example easily shows that fact.

Example 3.2.13. Consider a coin tossing in which the coin is handled to always give heads.
This experiment can be described by the following probability space:

Ω = {H,T}, F = P(Ω) = {∅, {H}, {T},Ω}, P({H}) = 1 and P({T}) = 0.
The propositional local formula p will represent the statement coin flip gives heads. Then, we
can associate the respective Bernoulli random variable Xp : Ω→ {0, 1} such that Xp(H) = 1
and Xp(T) = 0. Given m the EPPL model described by this probability space, we have that
m � (

´
p = 1) because P(Ωp) = P({H}) = 1, but m 2 (�p) because Xp(T) 6= 1.

However, as it is showed in the next proposition, under some conditions, the equivalence
result holds in the semantical contex of EPPL.

20

Proposition 3.2.14. Let m = (Ω,F ,P,X) be an EPPL model such that P({ω}) > 0 for each
sample-point ω ∈ Ω. Then, for each local formula φ, m � (�φ) if and only if m � (

´
φ = 1).

Proof.
(⇒) Follows from Proposition 3.2.12.
(⇐) Suppose now that m � (

´
φ = 1), which is equivalent to P(Ωφ) = 1. We want to prove

that m � (�φ), i.e., that Ωφ = Ω. Consider (by reductio ad absurdum) that Ωφ 6= Ω. Then
exists ω0 ∈ Ω such that ω0 /∈ Ωφ, and P(Ωφ ∪ {ω0}) = P(Ωφ) + P({ω0}) = 1 + P({ω0}) >
1, because P({ω0}) > 0, which is a contradiction to the definition of probability space.
Therefore, Ωφ = Ω.

In [BMN10], it is assumed that the probability space does not have impossible events.
Here we do not assume that because our aim is to work with a logic as close as possible
to Probability Theory. Besides, under the conditions of Proposition 3.2.14, the box symbol
could be removed from the syntax of EPPL because we could see it as an abbreviation of
(
´
φ = 1) (as it was in [MSS05]).

The following proposition aims to show that the global true formula T has a similar be-
havior to the globalization of the local true formula �>. An analogous for the false formulas.
Further, in the weak soundness theorem (see Theorem 3.4.1), it is proved that in fact they
are equivalent formulas.

Proposition 3.2.15. Let δ be an arbitrary EPPL formula. Then:

(i) � δ A (�>)

(ii) � δ A T

(iii) � (�⊥) A δ

(iv) � F A δ

Proof. Let m = (Ω,F ,P,X) be an arbitrary EPPL model and ρ : Var(R)→ Alg(R).

(i) (m, ρ) � δ A (�>) iff
(
(m, ρ) 2 δ

)
or
(
(m, ρ) � �>

)
iff
(
(m, ρ) 2 δ

)
or
(
X>(ω) = 1 for

all ω ∈ Ω
)
. X>(ω) = 1 is proved proved in Proposition 3.2.3 (i). Thus, the result holds.

(ii) (m, ρ) � δ A T iff
(
(m, ρ) 2 δ

)
or
(
(m, ρ) � T

)
. And (m, ρ) � T is already proved

in Proposition 3.2.6 (i).

(iii) (m, ρ) � (�⊥) A δ iff
(
(m, ρ) 2 �⊥

)
or
(
(m, ρ) � �δ

)
iff

(
(m, ρ) � �δ

)
or is

false that
(
(m, ρ) � �⊥

)
. By Proposition 3.2.3 (ii), X⊥(ω) = 0 for each ω ∈ Ω. Then, Ω⊥ =

{ω ∈ Ω : X⊥(ω) = 1} = ∅ and it is proved that it is false that (m, ρ) � �⊥.

(iv) (m, ρ) � F A δ iff
(
(m, ρ) 2 F

)
or
(
(m, ρ) � δ

)
. And (m, ρ) 2 F is already proved

in Proposition 3.2.6 (ii).

21

3.3 Hilbert Calculus

Following the work in [MSS05], [BRS06], [BMNP07] and [BM09], we adopted, in the
context of this thesis, a Hilbert calculus for this logic, that is represented in Table 3.3. This is
the one which has the most elementary axioms and, starting from these, we will prove some
basic properties of Probability Theory.

First, it will be defined the concept of a global tautological formula which is a kind of
globalization of a CPL tautology (note that L designate EPPL system).

Definition 3.3.1. We say that an EPPL formula δ is a (global) tautological formula if
there exists a local tautology φ and a mapping f : Var(B)→ Form(L) such that δ = f̄(φ),
where f̄ is the naturaly extension of f to f̄ : Form(B) → Form(L), defined recursively as
follow: f̄(∼φ1) = ¬f̄(φ1) and f̄(φ1 → φ2) = f̄(φ1) A f̄(φ2), for all φ1, φ2 ∈ Form(B).

The following table presents the Hilbert calculus for EPPL that we will use in this work,
consisting of axioms for tautologies, axioms for universal formulas and global connectives,
axioms for comparison between real terms, probabilistic Kolmogorov axioms and the Modus
Ponens inference rule.

Axioms:
[LTaut] ` �φ , if φ is tautology in CPL
[GTaut] ` δ , if δ is a tautological formula
[Imp] ` �(φ1 → φ2) A (�φ1 A �φ2)
[EqF] ` (�⊥) ≡ F
[Kol1] `

´
> = 1

[Kol2] `
(´
∼(φ1 ∧ φ2) = 1

)
A
(´

(φ1 ∨ φ2) = (
´
φ1) + (

´
φ2)
)

[Kol3] ` �(φ1 → φ2) A (
´
φ1 ≤

´
φ2)

[Real] ` (t1 ≤ t2) , for each valid analytical real inequality

Inference Rule:
[GMP] δ1, (δ1 A δ2) ` δ2

Table 3.2: Hilbert Calculus for EPPL

The first axiom ([LTaut]) allows to bring into this calculus every tautology of our local
logic, CPL. Analogously, [GTaut] says that all global tautological formulas are theorems.

The next two axioms, [Imp] and [EqF], are intended to connect the local formulas with
the global ones. They are truly necessary to prove the completeness of this logic.

The Kolmogorov axioms ([Kol1],[Kol2] and [Kol3]), also known as the probability ax-
ioms, bringing into the EPPL calculus all the properties of probabilities. These axioms can be
seen originally in [Kol33], and here are adapted to EPPL the probabilistic axioms written in
current language in [Ada98]. The axiom [Real] is also an important one because this axiom
inserts in the calculus all properties of the Real Closed Fields.

In this type of deduction system, we only need the Modus Ponens inference rule because,
together with the axioms, we can prove the other inference rules. The concepts of theorem,
proof, and others, are as defined in Chapter 2. Note that the formulas in the calculus denote

22

generic formulas that may be replaced by any local formula (in φ, φ1 and φ2) or global formula
(in δ, δ1 and δ2). To show how this system works, we will now derive Modus Tollens rule.

Example 3.3.2. We can prove using only the axiom [GTaut] and the primary inference rule
[GMP], the derivate inference rule, Modus Tollens:

[GMT] δ1 A δ2 ` (¬δ2) A (¬δ1)

1. δ1 A δ2 [Hyp]

2. (δ1 A δ2) A
(
(¬δ2) A (¬δ1)

)
[GTaut]

3. (¬δ2) A (¬δ1) [GMP(2,1)]

The next theorem is the key to all of the results in this section because it connects the
concepts of provable formulas and global implication. The first theorem that we will prove is
a simplified version of the Deduction Theorem (the complete proof of this theorem for CPL
can be seen in [AR02]).

Theorem 3.3.3. Let δ1 and δ2 be arbitrary global formulas. Then,

δ1 ` δ2 if and only if ` δ1 A δ2 .

Proof.

(⇒) Suppose that δ1 ` δ2, i.e. there exists a finite proof (with n steps) of δ2 from {δ1}. This
can be proved using induction over the length of the proof as in classic calculus.

Base step: if n = 1 (the proof has just one step), then by definition of proof, δ2 can be
just one of two thing: δ2 is an axiom or δ2 is δ1.

(i) If δ2 is an axiom:

1. ` δ2 [Axiom]

2. ` δ2 A (δ1 A δ2) [GTaut]

3. ` δ1 A δ2 [GMP(1,2)]

(ii) If δ2 is δ1:

1. ` δ1 A δ1 [GTaut]

2. ` δ1 A δ2 [Subs(1)]

Induction step: assume that whenever there is a proof with length n ≤ k of δ2 from {δ1},
there is a proof of ` δ1 A δ2. Now suppose that there is a proof with n = k + 1 steps of
δ2 from {δ1}. Because our system only has one inference rule by definition, the last step is

23

always either an application of this rule, an axiom or δ1. The last two are demonstrated in
the base step. Without loss of generality, if the last step is a consequence of the primate rule
[GMP], the proof can be generically represented by:

1. δ1 [Hyp]

...

i . δ3

...

k . δ3 A δ2

(k+1). δ2 [GMP(i,k)]

By induction hypothesis, because there is a proof with length k of (δ3 A δ2) from {δ1}, there
is a proof of ` δ1 A (δ3 A δ2). And, because there is a proof with length i < k of δ3 from
{δ1}, there is a proof of ` δ1 A δ3. Then:

1. ` δ1 A (δ3 A δ2) [Ind-Hyp]

2. ` δ1 A δ3 [Ind-Hyp]

3. `
(
δ1 A (δ3 A δ2)

)
A
(
(δ1 A δ3) A (δ1 A δ2)

)
[GTaut]

4. ` (δ1 A δ3) A (δ1 A δ2) [GMP(1,3)]

5. ` δ1 A δ2 [GMP(2,5)]

(⇐) Suppose now that ` δ1 A δ2. We have to prove that δ1 ` δ2. This proof is trivial:

1. δ1 A δ2 [Supp]

2. δ1 [Hyp]

3. δ2 [GMP(2,1)]

In other words, this theorem says that ` δ1 A δ2 if and only if δ2 is provable from {δ1}.
The next theorem is very useful because it allows us to split a global conjunction in its two
components, and vice versa. Here, we get two new derived inference rules that we are going
to apply on the next results.

Theorem 3.3.4. Let δ1 and δ2 be arbitrary global formulas. Then,
[GCi] (δ1 u δ2) ` δ1 ; (δ1 u δ2) ` δ2

[GCii] δ1, δ2 ` (δ1 u δ2)

Proof.

24

[GCi] Proof of δ1 and δ2 from {δ1 u δ2}:

1. δ1 u δ2 [Hyp]

2. (δ1 u δ2) A δ1 [GTaut]

3. (δ1 u δ2) A δ2 [GTaut]

4. δ1 [GMP(1,2)]

5. δ2 [GMP(1,3)]

[GCii] Proof of δ1 u δ2 from {δ1, δ2}:

1. δ1 [Hyp]

2. δ2 [Hyp]

3. δ1 A
(
δ2 A (δ1 u δ2)

)
[GTaut]

4. δ2 A (δ1 u δ2) [GMP(1,3)]

5. δ1 u δ2 [GMP(2,4)]

The next derived inference rule that we will demonstrate is a version of Modus Ponens,
this time applied only to local formulas but in a global context.

Proposition 3.3.5. [LMP] �φ1,�(φ1 → φ2) ` �φ2

Proof. We have the following proof of �φ2 from {�φ1,�(φ1 → φ2)}:

1. �φ1 [Hyp]

2. �(φ1 → φ2) [Hyp]

3. �(φ1 → φ2) A (�φ1 A �φ2) [Imp]

4. �φ1 A �φ2 [GMP(2,3)]

5. �φ2 [GMP(1,4)]

In some articles, this derived inference rule belongs to the calculus system but, because
we can prove it from the system in Table 3.3, this local Modus Ponens rule is redundant,
hence does not need to be considered as a primary rule (as is, for example, in [MSS05] and
[BMNP07]).

In the next proposition it is shown that the global formulas �(φ1∧φ2) and (�φ1)u (�φ2)
are equivalent.

Proposition 3.3.6. [Conj] ` �(φ1 ∧ φ2) ≡
(
(�φ1) u (�φ2)

)

25

Proof. In order to prove this global equivalence, considering that this equivalence is a syntac-
tical abbreviation of a global conjunction of two implications, and also considering Theorem
3.3.4, we need to prove both global implications. And, because the result previously showed
in Theorem 3.3.3, we can prove the following:

(i) Prove that �(φ1 ∧ φ2) `
(
(�φ1) u (�φ2)

)
:

1. �(φ1 ∧ φ2) [Hyp]

2. �
(
(φ1 ∧ φ2)→ φ1

)
[LTaut]

3. �
(
(φ1 ∧ φ2)→ φ2

)
[LTaut]

4. �φ1 [LMP(1,2)]

5. �φ2 [LMP(1,3)]

6. (�φ1) u (�φ2) [GCii(4,5)]

(ii) Prove that (�φ1) u (�φ2) ` �(φ1 ∧ φ2):

1. (�φ1) u (�φ2) [Hyp]

2. �φ1 [GCi(1)]

3. �φ2 [GCi(1)]

4. �(φ1 → (φ2 → (φ1 ∧ φ2))) [LTaut]

5. �(φ2 → (φ1 ∧ φ2)) [LMP(2,4)]

6. �(φ1 ∧ φ2) [LMP(3,5)]

All the results so far demonstrated are necessary to prove the following theorem that says
that if two local formulas are equivalent, then their probabilities must be the same.

Theorem 3.3.7. [Eqv] �(φ1 ↔ φ2) ` (
´
φ1 =

´
φ2)

Proof. Note that �(φ1 ↔ φ2) is an abbreviation of �(φ1 → φ2 ∧ φ2 → φ1), and that the
equality (

´
φ1 =

´
φ2) is an abbreviation of (

´
φ1 ≤

´
φ2) u (

´
φ2 ≤

´
φ1). Then, we have the

following derivation:

1. �(φ1 → φ2 ∧ φ2 → φ1) [Hyp]

2. �(φ1 → φ2 ∧ φ2 → φ1) A
(
�(φ1 → φ2) u�(φ2 → φ1)

)
[Conj]

3. �(φ1 → φ2) u�(φ2 → φ1) [GMP(1,2)]

4. �(φ1 → φ2) [GCi(3)]

5. �(φ2 → φ1) [GCi(3)]

6. �(φ1 → φ2) A (
´
φ1 ≤

´
φ2) [Kol3]

7. �(φ2 → φ1) A (
´
φ2 ≤

´
φ1) [Kol3]

8.
´
φ1 ≤

´
φ2 [GMP(4,6)]

9.
´
φ2 ≤

´
φ1 [GMP(5,7)]

26

10. (
´
φ1 ≤

´
φ2) u (

´
φ2 ≤

´
φ1) [GCii(8,9)]

It is easy to check (semantically) that the opposite direction is not vaild. For example,
considering

´
p = 1/2, we have that

´
p =
´

(∼p), although p↔ (∼p) is not valid in CPL.

Now our goal is to demonstrate that the probability operator of this calculus, such as it
happens in Probability Theory, gives values between 0 and 1. The upper bound is the easiest
to show and its proof is below.

Theorem 3.3.8. [UB] `
´
φ ≤ 1

Proof.

1. ` �(φ→ >) [LTaut]

2. ` �(φ→ >) A (
´
φ ≤
´
>) [Kol3]

3. `
´
φ ≤
´
> [GMP(1,2)]

4. `
´
> = 1 [Kol1]

5. `
´
φ ≤ 1 [Real(3,4)]

The following two propositions are extremely important in this calculus and essential to
prove not only the lower bound result but also a large number of other properties. Note
that this part of the dissertation is only intended to show how EPPL behaves similarly to
Probability Theory.

Proposition 3.3.9. [Box] (�φ) ` (
´
φ = 1)

Proof. We have the following proof of (
´
φ = 1) from {�φ}:

1. �φ [Hyp]

2. �
(
φ→ (> → φ)

)
[LTaut]

3. �(> → φ) [LMP(1,2)]

4. �(> → φ) A (
´
> ≤

´
φ) [Kol3]

5.
´
> ≤

´
φ [GMP(3,4)]

6.
´
> = 1 [Kol1]

7. 1 ≤
´
φ [Real(5,6)]

8.
´
φ ≤ 1 [UB]

9.
´
φ = 1 [GCii(7,8)]

27

Proposition 3.3.10. [Neg] `
´

(∼φ) = 1−
´
φ

Proof.

1. ` �
(
∼(∼φ ∧ φ)↔ >

)
[LTaut]

2. `
´
∼(∼φ ∧ φ) =

´
> [Eqv(1)]

3. `
´
> = 1 [Kol1]

4. `
´
∼(∼φ ∧ φ) = 1 [Real(2,3)]

5. `
(´
∼(∼φ ∧ φ) = 1

)
A
(´

(∼φ ∨ φ) =
´

(∼φ) +
´
φ
)

[Kol2]

6. `
´

(∼φ ∨ φ) =
´

(∼φ) +
´
φ [GMP(4,5)]

7. ` �(∼φ ∨ φ) [LTaut]

8. `
´

(∼φ ∨ φ) = 1 [Box(7)]

9. ` 1 =
´

(∼φ) +
´
φ [Real(6,8)]

10. `
´

(∼φ) = 1−
´
φ [Real(9)]

An immediate consequence of this Proposition, considering that⊥ is an abbreviation of
(∼>), is that: [Fal] `

´
⊥ = 0.

Given that, we can now prove the lower bound result, i.e. the probability of local formula
φ is greater than or equal to zero.

Theorem 3.3.11. [LB] ` 0 ≤
´
φ

Proof.

1. ` �(⊥→ φ) [LTaut]

2. ` �(⊥→ φ) A (
´
⊥ ≤

´
φ) [Kol3]

3. `
´
⊥ ≤

´
φ [GMP(1,2)]

4. `
´
⊥ = 0 [Fal]

5. ` 0 ≤
´
φ [Real(3,4)]

Now joining the two previous Theorems, we have the following EPPL theorem:

[Int] ` (0 ≤
´
φ) u (

´
φ ≤ 1) .

The next result can be generalizated to any finite number of formulas n. Here it is only
proved to n = 3.

Proposition 3.3.12.
�
(
∼(φ1 ∧ φ2)

)
,�
(
∼(φ1 ∧ φ3)

)
,�
(
∼(φ2 ∧ φ3)

)
`
´

(φ1 ∨ φ2 ∨ φ3) =
´
φ1 +

´
φ2 +

´
φ3 .

28

Proof.

1. �
(
∼(φ1 ∧ φ2)

)
[Hyp]

2. �
(
∼(φ1 ∧ φ3)

)
[Hyp]

3. �
(
∼(φ2 ∧ φ3)

)
[Hyp]

4.
´ (
∼(φ1 ∧ φ2)

)
= 1 [Box(1)]

5.
´

(φ1 ∨ φ2) =
´
φ1 +

´
φ2 [Kol2+GMP(4)]

6. �
(
∼(φ1 ∧ φ3) ∧ ∼(φ2 ∧ φ3)

)
[Conj(2,3)]

7. �
(
(∼(φ1 ∧ φ3) ∧ ∼(φ2 ∧ φ3))→ ∼((φ1 ∨ φ2) ∧ φ3))

)
[LTaut]

8. �
(
∼((φ1 ∨ φ2) ∧ φ3))

)
[LMP(7,8)]

9.
´

(∼((φ1 ∨ φ2) ∧ φ3))) = 1 [Box(8)]

10.
´ (

(φ1 ∨ φ2) ∨ φ3)
)

=
´

(φ1 ∨ φ2) +
´
φ3 [Kol2+GMP(9)]

11.
´

(φ1 ∨ φ2 ∨ φ3) =
´
φ1 +

´
φ2 +

´
φ3 [Real(5,10)]

Finally, to end this section of EPPL calculus proofs, we will prove another common result
of Probability Theory that is the probability of φ1 ∨ φ2 plus the probability of φ1 ∧ φ2 equals
to the sum of probabilities of φ1 and φ2.

First, we will demonstrate two lemmas that will help us on the proof of our main result.

Lemma 3.3.13. [Aux1] `
´

(φ1 ∨ φ2) =
´
φ1 +

´
(∼φ1 ∧ φ2)

Proof.

1. ` �
(
(φ1 ∨ φ2)↔ (φ1 ∨ (∼φ1 ∧ φ2)

)
[LTaut]

2. `
´

(φ1 ∨ φ2) =
´ (
φ1 ∨ (∼φ1 ∧ φ2)

)
[Eqv(1)]

3. ` �
(
∼(φ1 ∧ (∼φ1 ∧ φ2))

)
[LTaut]

4. `
´ (
∼(φ1 ∧ (∼φ1 ∧ φ2))

)
= 1 [Box(3)]

5. `
´ (
φ1 ∨ (∼φ1 ∧ φ2)

)
=
´
φ1 +

´
(∼φ1 ∧ φ2) [Kol2+GMP(4)]

6. `
´

(φ1 ∨ φ2) =
´
φ1 +

´
(∼φ1 ∧ φ2) [Real(2,5)]

Lemma 3.3.14. [Aux2] `
´
φ2 =

´
(φ1 ∧ φ2) +

´
(∼φ1 ∧ φ2)

Proof.

1. ` �
(
φ2 ↔ ((φ1 ∧ φ2) ∨ (∼φ1 ∧ φ2))

)
[LTaut]

2. `
´
φ2 =

´ (
(φ1 ∧ φ2) ∨ (∼φ1 ∧ φ2)

)
[Eqv(1)]

3. ` �
(
∼((φ1 ∧ φ2) ∧ (∼φ1 ∧ φ2))

)
[LTaut]

4. `
´ (
∼((φ1 ∧ φ2) ∧ (∼φ1 ∧ φ2))

)
= 1 [Box(3)]

5. `
´ (

(φ1 ∧ φ2) ∨ (∼φ1 ∧ φ2)
)

=
´

(φ1 ∧ φ2) +
´

(∼φ1 ∧ φ2) [Kol2+GMP(4)]

6. `
´
φ2 =

´
(φ1 ∧ φ2) +

´
(∼φ1 ∧ φ2) [Real(2,5)]

29

Therefore, by joining these two Lemmas it is possible to prove the sum theorem using
only properties from real numbers (as follows).

Theorem 3.3.15. [Sum] `
´
φ1 +

´
φ2 =

´
(φ1 ∨ φ2) +

´
(φ1 ∧ φ2)

Proof.

1. `
´

(φ1 ∨ φ2) =
´
φ1 +

´
(∼φ1 ∧ φ2) [Aux1]

2. `
´
φ2 =

´
(φ1 ∧ φ2) +

´
(∼φ1 ∧ φ2) [Aux2]

3. `
´

(φ1 ∨ φ2)−
´
φ1 =

´
φ2 −

´
(φ1 ∧ φ2) [Real(1,2)]

4. `
´
φ1 +

´
φ2 =

´
(φ1 ∨ φ2) +

´
(φ1 ∧ φ2) [Real(3)]

The next example illustrates how this Hilbert calculus can be used in factual problems.
Perhaps EPPL greatest advantage is the ability of bringing into the Probability Theory the
formal logical reasoning. This example was adapted from an example of probabilistic linear
temporal logic in [BRS06], and here it is considered a simpler version adapted to EPPL.

Example 3.3.16 (Zero-Knowledge Protocol [MSS05]). In cryptography, zero-knowledge pro-
tocol is a method that allows a Prover to show to some Verifier that he knows a secret, without
revealing it. There are three important properties of a zero-knowledge protocol:

(i) Completeness: the Verifier always accepts the proof if the Prover knows the secret;

(ii) Soundness: the Verifier cannot always accept the proof if the Prover does not know the
secret;

(iii) Zero-Knowledge: Verifier cannot learn the secret.

To illustrate, we will considerer the Ali Baba cave example (simplified to EPPL). Alice
(Prover) and Bob (Verifier) get in a cave that has only two paths, and those are connected
inside the cave by a locked door. Alice wants to show that she knows the secret to open that
door, deep inside the cave, but without telling Bob how she did it.

Initially, Alice chooses one of the paths (without Bob seeing which path she chose). Then,
Bob enters the cave and asks Alice to exit for one of the paths (Bob chooses a random path).
If Alice knows the secret, she can always get out for the path that he chose. If not, she has to
exit from the same path that she picked initially. Bob would only not accept that she knows
the secret if she came out from the path that he did not ask. This problem is illustrated in
the Figure 3.1 (from wikipedia).

Let {p1, p2, p3} be the CPL propositional symbols for this problem, where:
p1 - Alice knows the secret ;
p2 - Alice gets out for the path that Bob asked ;
p3 - Bob accepts that she knows the secret.

30

Figure 3.1: Graphical illustration of Ali Baba cave problem (wikipedia).

The specification ∆ of this zero-knowledge protocol is the following:
[Hyp1] �

(
(p1 ∧ p2)→ p3

)
[Hyp2] �

(
(p1 ∧ ∼p2)→ p3

)
[Hyp3] �

(
(∼p1 ∧ p2)→ p3

)
[Hyp4] �

(
(∼p1 ∧ ∼p2)→ ∼p3

)
[Hyp5]

´
p2 = 0.5

Proof of ∆ ∪ {�p1} ` �p3 (Protocol Completeness):

1. �p1 [Hyp]

2. �((p1 ∧ p2)→ p3) [Hyp1]

3. �((p1 ∧ ∼p2)→ p3) [Hyp2]

4. �(((p1 ∧ p2)→ p3)→ (((p1 ∧ ∼p2)→ p3)→ (p1 → p3))) [LTaut]

5. �(((p1 ∧ ∼p2)→ p3)→ (p1 → p3)) [LMP(2,4)]

6. �(p1 → p3) [LMP(3,5)]

7. �p3 [LMP(1,6)]

Proof of ∆ ∪ {�(∼p1)} ` ¬(�p3) (Protocol Soundness):

1. �(∼p1) [Hyp]

2. �((∼p1 ∧ p2)→ p3) [Hyp3]

3. �((∼p1 ∧ ∼p2)→ ∼p3) [Hyp4]

4.
´
p2 = 0.5 [Hyp5]

5. �(((∼p1∧p2)→p3)→(((∼p1 ∧∼p2)→∼p3)→(∼p1→(p3→p2)))) [LTaut]

6. �(((∼p1 ∧ ∼p2)→ ∼p3)→ (∼p1 → (p3 → p2))) [LMP(2,5)]

7. �(∼p1 → (p3 → p2)) [LMP(3,6)]

8. �(p3 → p2) [LMP(1,7)]

9. �(p3 → p2) A (
´
p3 ≤

´
p2) [Kol3]

10.
´
p3 ≤

´
p2 [GMP(8,9)]

31

11.
´
p3 ≤ 0.5 [Real(4,10)]

12. ¬(
´
p3 = 1) [Real(11)]

13. �p3 A (
´
p3 = 1) [Box]

14. ¬(
´
p3 = 1) A ¬(�p3) [GMT(13)]

15. ¬(�p3) [GMP(12,14)]

We verify the third property of the zero-knowledge protocol by the way that that protocol
was defined (and assuming that the Verifier follows the protocol). These and other concepts
and properties of zero-knowledge proof systems are approached in [GO94].

3.4 Soundness

The objective in this section is to show the soundness of the Hilbert calculus defined in
Table 3.3. In the next Theorem it is proved the weakly sound version of EPPL.

Theorem 3.4.1 (Weak Soundness). Let δ be an EPPL formula. If ` δ then � δ.

Proof. Let m = (Ω,F ,P,X) be an arbitrary EPPL model. We want to prove that the axioms
and the inference rule defined in Table 3.3 are semantically valid, i.e. the arbitrary model m
satisfies each one.

[LTaut] ` �φ, if φ is tautology in CPL:
If φ is tautology in CPL, then v(φ) = 1 for any valuation v in CPL. In particular, for

each ω ∈ Ω, the valuation induced by the Bernoulli random variable associated to φ is such
that Xφ(ω) = vω(φ) = 1. Then, Ωφ = {ω ∈ Ω : Xφ(ω) = 1} = Ω and this is, by definition,
equivalent to m � �φ.

[GTaut] ` δ, if δ is global tautological formula:
Suppose that δ is a tautological formula, and consider ρ an assignment to real variables.

Then there exists a CPL tautology φ and a mapping f : V ar(B) → Form(L) (in the
conditions of Definition 3.3.1) such that δ = f(φ).

Let vm be a CPL valuation defined as: vm(p) = 1 iff (m, ρ) � f(p). We will prove now
that vm(φ) = 1 iff (m, ρ) � f(φ) (by induction over CPL formulas):
• If φ := ∼φ1 (with φ1 ∈ Form(B)):
v(φ) = 1 iff v(∼φ1) = 1 iff v(φ1) = 0 iff (m, ρ) 2 f(φ1)

iff (m, ρ) � ¬f(φ1) iff (m, ρ) � f(∼φ1) iff (m, ρ) � f(φ);
• If φ := φ1 → φ2 (with φ1, φ2 ∈ Form(B)):
v(φ) = 1 iff v(φ1 → φ2) = 1 iff

(
v(φ1) = 0 or v(φ2) = 1

)
iff
(
(m, ρ) 2 f(φ1) or (m, ρ) � f(φ2)

)
iff (m, ρ) � f(φ1) A f(φ2)

iff (m, ρ) � f(φ1 → φ2) iff (m, ρ) � f(φ);
Since φ is a local tautology, then vm(φ) = 1. Therefore, we have that (m, ρ) � f(φ) and,

consecutively, (m, ρ) � δ.

[Imp] ` �(φ1 → φ2) A (�φ1 A �φ2):

32

m � �(φ1 → φ2) A (�φ1 A �φ2)
iff m 2 �(φ1 → φ2) or m � (�φ1 A �φ2)
iff m 2 �(φ1 → φ2) or (m 2 �φ1 or m � �φ2)
iff m 2 �φ1 or m 2 �(φ1 → φ2) or m � �φ2

If
(
m 2 �φ1 or m 2 �(φ1 → φ2)

)
, then it is done.

Otherwise, if m � �φ1 and m � �(φ1 → φ2):
m � �φ1 iff

(
Xφ1(ω) = 1 for each ω ∈ Ω

)
m � �(φ1 → φ2) iff

(
Xφ1→φ2(ω) = 1 for each ω ∈ Ω

)
Given any ω ∈ Ω, we have that Xφ1(ω) = 1 and Xφ1→φ2(ω) = max{1−Xφ1(ω), Xφ2(ω)} = 1.
Then, 1 = max{1−Xφ1(ω), Xφ2(ω)} = max{1−1, Xφ2(ω)} = max{0, Xφ2(ω)} = Xφ2(ω) and
therefore Ωφ2 = {ω ∈ Ω : Xφ2(ω) = 1} = Ω, which is equivalent to m � �φ2.

[EqF] ` (�⊥) ≡ F:
m � (�⊥) ≡ F iff

(
m � (�⊥) A F

)
and

(
m � F A (�⊥)

)
.

Both of this statements are already proved in Proposition 3.2.15 for an arbitrary formula
δ. On one hand,

(
m � (�⊥)AF

)
is proved in (iii); on the other hand,

(
m � F A (�⊥)

)
is

proved in (iv).

[Kol1] `
´
> = 1:

m � (
´
> = 1) iff [

´
>]m = [1]m iff P(Ω>) = 1.

Since X>(ω) = Xφ→φ(ω) = max{1 −Xφ(ω), Xφ(ω)} = 1 for every ω ∈ Ω, then Ω> = Ω,
and we have that P(Ω>) = P(Ω) = 1.

[Kol2] `
(´
∼(φ1 ∧ φ2) = 1

)
A
(´

(φ1 ∨ φ2) =
´
φ1 +

´
φ2

)
:

m �
(´
∼(φ1 ∧ φ2) = 1

)
A
(´

(φ1 ∨ φ2) =
´
φ1 +

´
φ2

)
iff m 2

´
∼(φ1 ∧ φ2) = 1 or m �

´
(φ1 ∨ φ2) =

´
φ1 +

´
φ2

If m 2
´
∼(φ1 ∧ φ2) = 1, then the result holds.

Otherwise, if m �
´
∼(φ1 ∧ φ2) = 1), then

m �
´
∼(φ1 ∧ φ2) = 1 iff [

´
∼(φ1 ∧ φ2)]m = [1]m

iff [1]m − [
´

(φ1 ∧ φ2)]m = [1]m iff [
´

(φ1 ∧ φ2)]m = 0
Since [

´
φ1]m+[

´
φ2]m = [

´
(φ1∨φ2)]m+[

´
(φ1∧φ2)]m, then [

´
(φ1∨φ2)]m = [

´
φ1]m+[

´
φ2]m

which is equivalent to [
´

(φ1 ∨φ2)]m = [
´
φ1 +

´
φ2]m, and thus m �

´
(φ1 ∨φ2) =

´
φ1 +

´
φ2.

[Kol3] ` �(φ1 → φ2) A (
´
φ1 ≤

´
φ2):

m � �(φ1 → φ2) A (
´
φ1 ≤

´
φ2)

iff m 2 �(φ1 → φ2) or m �
´
φ1 ≤

´
φ2

iff is false that
(
Xφ1→φ2(ω) = 1 for each ω ∈ Ω

)
or
(
[
´
φ1]m ≤ [

´
φ2]m

)
iff
(
Xφ1→φ2(ω) = 0 for some ω ∈ Ω

)
or
(
P(Ωφ1) ≤ P(Ωφ2)

)
iff
(
max{1−Xφ1(ω), Xφ2(ω)} = 0 for some ω ∈ Ω

)
or
(
P(Ωφ1) ≤ P(Ωφ2)

)
If P(Ωφ1) ≤ P(Ωφ2), then the result follows.
Otherwise, if P(Ωφ1) > P(Ωφ2), then there exists ω0 ∈ Ω such that ω0 ∈ Ωφ1 and ω0 /∈ Ωφ2 .
Thus, max{1−Xφ1(ω0), Xφ2(ω0)} = max{1− 1, 0} = 0.

[Real] ` (t1 ≤ t2), for each valid analytical real inequality:
m � (t1 ≤ t2) iff [t1]m ≤ [t2]m, which is immediately true because it is a valid inequality.

[GMP] δ1, (δ1 A δ2) ` δ2:

33

Suppose that m � δ1 and m � δ1 A δ2. The latter is equivalent to (m 2 δ1 or m � δ2) and,
together with the first assumption, follow immediately that m � δ2.

Furthermore, we can easily show that EPPL is in fact strongly Sound using the Weak
Soundness Theorem.

Theorem 3.4.2 (Strong Soundness). Let δ be an EPPL formula and ∆ a set (possibly
infinite) of global formulas. If ∆ ` δ then ∆ � δ.

Proof. Suppose that ∆ ` δ. By definition of axiomatizable logic system (see Definition 2.2.1),
there is a finite set ∆0 = {δ1, ..., δn} ⊆ ∆ such that ∆0 ` δ. Then, by the Deduction Theorem
(Theorem 3.3.3), it is possible to deduce that ` δ1 A (δ2 A (... A (δn A δ))). Since EPPL is
weakly Sound (by Theorem 3.4.1), it follows that � δ1 A (δ2 A (... A (δn A δ))). Therefore,
by definiton of the EPPL semantical relation �, we conclude that {δ1, ..., δn} � δ, and this
implies that ∆ � δ.

3.5 Completeness

This section is intended to discuss the Completeness of EPPL defined in the previous
sections of this chapter. In fact, although it is possible to prove weak Completeness, unfortu-
nately it is not possible to prove the strong Completeness version (see Definition 2.2.4) because
EPPL is not a compact logic. The example below illustrates this with a counterexample.

Example 3.5.1. (This example is in [MSS05] with a similar syntax and semantics for a
probabilistic logic, and here it is adapted to our logic.)

On one hand, it is possible to show that {(r ≤ xk) : r < 0.5} � (0.5 ≤ xk), but since there
not exists a finite subset S ⊂ {(r ≤ xk) : r < 0.5} such that S � (0.5 ≤ xk), then EPPL is not
a compact logic. Therefore, it is impossible to prove that {(r ≤ xk) : r < 0.5} ` (0.5 ≤ xk)
because the rules in Hilbert calculus are finitary, and then EPPL is not strongly complete.

However, although it is very difficult to show, it is possible to prove that EPPL is weakly
complete. The main goal of this section is to prove that, but first we need to give some
attention to some results presented and demonstrated in [BMN10].

Lemma 3.5.2 (Small Model Theorem). If δ is a satisfiable EPPL formula, then it has a
finite model using at most 2|δ| + 1 algebraic real numbers, where |δ| represents the number
of symbols required to write the formula.

Proof. See Theorem 2.8 in [BMN10].

We now mention several sets related to a global formula δ, in order to formulate a satisfi-
ability algorithm to δ, that is, an algorithm that returns an EPPL model that satisfies δ (see
Definition 2.2.3)

34

• prop(δ) - set of all CPL propositional symbols that occur in δ;

• var(δ) - set of all real logical variables that occur in δ;

• iq(δ) - set of all inequalities (t1 ≤ t2) that occur in δ;

• bf(δ) - set of all universal subformulas �φ that occur in δ;

• at(δ) = iq(δ) ∪ bf(δ) - set of all global atoms of δ;

• εδ = δ1 u ...u δk - exhaustive conjunction of literals of at(δ), where δi is either a global
atom or its negation (i = 1, ..., k, where k = |at(δ)|);

• φδ - CPL formula obtained by replacing in δ, each global atom δi with a fresh proposi-
tional symbol pi (for i = 1, ..., k) and the global connectives (¬,A) by the local connec-
tives (∼,→);

• vεδ - CPL valuation over propositional symbols p1, ..., pk, such that vεδ(pi) = 1 if and
only if δi occurs positively in εδ;

• lbf(εδ) - set of CPL formulas φ such that (�φ) occurs positively in εδ;

• nlbf(εδ) - set of CPL formulas φ such that (�φ) occurs negatively in εδ;

• δa0 - denote the analytical formula where all terms (
´
φ) are replaced in subformula

δ0 ∈ iq(εδ), by ∑
v∈V :v(φ)=1

xv

where xv is a fresh real variable.

As defined in Chapter 2, a global formula δ is satisfiable if there exists an EPPL model
m and a real assignment ρ such that (m, ρ) � δ. The purpose of this algorithm is to find a
model that satisfies δ. Obviously, because of this, the input of this algorithm is a formula δ,
and the output will be an EPPL model and a real assignment if δ is satisfiable, and no model
otherwise.

The idea behind this algorithm is trying to solve this EPPL problem using the base logic,
i.e. make the global formulas being interpreted, in a certain way, as CPL formulas. First,
we will separate the atoms of δ into two distinct sets: iq(δ) (inequalities that occur in δ) and
bf(δ) (universal subformulas that occur in δ).

Then, we considered all exhaustive conjunction of literals εδ = δ1 u ... u δk of at(δ) such
that vεδ �B φδ, where φδ is a CPL formula obtained by replacing in δ, each global atom
δi with a fresh propositional symbol pi (for i = 1, ..., k) and the global connectives by the
corresponding local connectives; and vεδ is a valuation over this propositional symbols, such
that vεδ(pi) = 1 if and only if δi occurs positively in εδ.

For each εδ under these conditions, we will determine lbf(εδ) (set of CPL formulas φ such
that (�φ) occurs positively in εδ) and nlbf(εδ) (CPL formulas which occur negatively).

In this step of the algorithm, we will consider all sets of valuations V ⊆ 2prop(δ), in the
conditions of the Small Model Theorem, such that for each valuation v ∈ V , we have that
v �B φ1 for all φ1 ∈ lbf(εδ), and v 2B φ2 for all φ2 ∈ nlbf(εδ).

35

Algorithm SatEPPL(δ)
In EPPL formula δ
Out (V,P) (denoting EPPL model m = (V,P(V),P,X)) and assignment ρ

or no model

1. compute bf(δ), iq(δ) and at(δ)
2. for each exhaustive conjunction εδ of literals of at(δ) s.t. vεδ �B φ

δ, do:
3. compute lbf(εδ) and nlbf(εδ)

4. for each V ⊆ 2prop(δ) s.t. 0 < |V | ≤ 2|δ|+ 1, V �B ∧lbf(εδ) and
V 2B φ for all φ ∈ nlbf(εδ), do:

5. κ←−
(∑

v∈V xv = 1
)
u
(
uv∈V (0 ≤ xv)

)
6. for each δ0 ∈ iq(δ), do:
7. κ←− κ u δa0
8. end
9. R = SatReal(κ)
10. if R is real model,
11. P←− R|{xv :v∈V }
12. ρ←− R|var(δ)
13. return (V,P) and ρ
14. end
15. end
16. end
17. return no model

Table 3.3: EPPL Satisfaction Algorithm

For any set of CPL valuations V (under the previous conditions), we consider a real formula
κ :=

(∑
v∈V xv = 1

)
u
(
uv∈V (0 ≤ xv)

)
. These conditions characterize a probability space

(the sum of all probabilities of sample points is one, and each probability is not negative).
Note that V will be returned as the sample space of the EPPL model.

Moreover, for each δ0 ∈ iq(δ), we will add the analytical formula δa0 where all terms (
´
φ)

are replaced by the sum of all xv (with v ∈ V) such that v �B φ.

We now make use of a satisfaction algorithm for real numbers (SatReal). If this algorithm
returns a real model for κ, then we return the EPPL model m =

(
V,P(V),P,X

)
and the

real assignment ρ given by SatReal(κ). Otherwise, we will try other set of CPL valuations V
in the conditions referred above. In case the algorithm runs until the end without returning
any EPPL model, we conclude that δ is not satisfiable and the algorithm give us no model.

The following examples show us how this algorithm works.

Example 3.5.3. Consider the EPPL formula δ := �(p ∨ q) A
(
(
´
p ≤ 0.5) u (x ≤ 1)

)
.

The first step of the algorithm gives us the following sets of subformulas of δ:

• bf(δ) = {�(p ∨ q)};
• iq(δ) = {(

´
p ≤ 0.5), (x ≤ 1)};

• at(δ) = bf(δ) ∪ iq(δ) = {�(p ∨ q), (
´
p ≤ 0.5), (x ≤ 1)}.

Moreover prop(δ) = {p, q}, and an exhaustive conjunction of literals over at(δ) is εδ =
γ1uγ2uγ3, where γ1 is δ1 = �(p∨ q) (or its negation), γ2 is δ2 = (

´
p ≤ 0.5) (or its negation)

and γ3 is δ3 = (x ≤ 1) (or its negation).

36

We have to analyze when is the valuation vεδ of the CPL formula φδ = p1 → (p2 ∧ p3)
such that vεδ �B φ

δ. There are five cases that satisfy it. Those are:

• ε1 = δ1 u δ2 u δ3;

• ε2 = (¬δ1) u δ2 u δ3;

• ε3 = (¬δ1) u δ2 u (¬δ3);

• ε4 = (¬δ1) u (¬δ2) u δ3;

• ε5 = (¬δ1) u (¬δ2) u (¬δ3).

For ε1 = δ1uδ2uδ3, we have that lbf(ε1) = {(p∨q)} and nlbf(ε1) = ∅. In the next step of
the algorithm, we have to find a CPL set of valuations V ⊆ 2{p,q} such that V �B (p∨q). There
exists seven sets

(
we will denote each valuation as a pair where

(
v(p), v(q)

))
: V1 = {(1, 1)},

V2 = {(1, 0)}, V3 = {(0, 1)}, V4 = {(1, 1), (1, 0)}, V5 = {(1, 1), (0, 1)}, V6 = {(1, 0), (0, 1)} and
V7 ={(1, 1), (1, 0), (0, 1)}. The algorithm will now test each set.

For example, to V5 = {(1, 1), (0, 1)} (x1 and x2 represent x(1,1) and x(0,1), respectively),
the algorithm first assigns: κ = (x1 + x2 = 1) u (0 ≤ x1) u (0 ≤ x2).

Now, replacing (
´
p) by

∑
v∈V5:v(p)=1 xv = x1, the algorithm will assign to κ the inequality

atoms: κ = (x1 + x2 = 1) u (0 ≤ x1) u (0 ≤ x2) u (x1 ≤ 0.5) u (x ≤ 1).

In this step, this algorithm makes use of an algorithm of Satisfaction in reals that gives us
a real solution that satisfies κ (or no solution). For this κ, we have that, for example, x = 1,
x1 = x2 = 0.5 is a solution.

Then, an EPPL model that satisfies δ is m =
(
Ω,P(Ω),P,X

)
, where Ω = {(1, 1), (0, 1)},

P
(
{(1, 1)}

)
= P

(
{(0, 1)}

)
= 0.5, and ρ is an assignment such that ρ(x) = 1.

In fact, it is easy to show that this model satisfies semantically the EPPL formula δ:

m � �(p ∨ q) A
(
(
´
p ≤ 0.5) u (x ≤ 1)

)
iff m 2 �(p ∨ q) or m �

(
(
´
p ≤ 0.5) u (x ≤ 1)

)
iff m 2 �(p ∨ q) or

(
m � (

´
p ≤ 0.5) and m � (x ≤ 1)

)
iff m 2 �(p ∨ q) or

(
[
´
p]m ≤ [0.5]m and [x]m ≤ [1]m

)
iff m 2 �(p ∨ q) or

(
[
´
p]m ≤ [0.5]m and [x]m ≤ [1]m

)
iff m 2 �(p ∨ q) or

(
P({ω ∈ Ω : Xp(ω) = 1}) ≤ 0.5 and ρ(x) ≤ 1

)
iff m 2 �(p ∨ q) or

(
P({(1, 1)}) ≤ 0.5 and ρ(x) ≤ 1

)
iff m 2 �(p ∨ q) or

(
0.5 ≤ 0.5 and 1 ≤ 1

)
, which is a logically true statement.

Example 3.5.4. Considerer now the EPPL formula δ := (�p) u (
´
p ≤ 0.5).

The first step of the algorithm gives us the following sets of subformulas in δ:

• bf(δ) = {�p};
• iq(δ) = {

´
p ≤ 0.5};

• at(δ) = bf(δ) ∪ iq(δ) = {�p, (
´
p ≤ 0.5)}.

Moreover, prop(δ)={p}, and an exhaustive conjunction of literals over at(δ) is εδ = γ1uγ2,
where γ1 is δ1 = �p (or its negation) and γ2 is δ2 = (

´
p ≤ 0.5) (or its negation). We have

to analyze when is the valuation vεδ of the respective local formula φδ = (p1 ∧ p2) such that
vεδ �B φ

δ. There is only one conjunction of literals that makes this valid: ε1 = δ1 u δ2.

For this ε1, we have that lbf(ε1) = {p} and nlbf(ε1) = ∅. In the next step of the algorithm,
we have to find a CPL set of valuations V ⊆ 2{p} such that V �B p. In this case, V = {v1},
where v1 is a valuation such that v1(p) = 1.

The algorithm first assigns: κ := (xv1 = 1) u (0 ≤ xv1).

37

Now, replacing (
´
p) by

∑
v∈V :v(p)=1 xv = xv1 , the algorithm will assign to κ the inequality

atoms, that is: κ := (xv1 = 1) u (0 ≤ xv1) u (xv1 ≤ 0.5).
In this step, this algorithm makes use of an algorithm of Satisfaction in reals that gives

us a real solution that satisfies κ (or gives no solution). For this κ, will give us no solution.
Since εδ is the only exhaustive conjunction of literals that we have to consider, the algo-

rithm returns no model.

In the first example δ is a satisfiable EPPL formula, and in the second δ is not satisfiable.
The following Lemma says that the algorithm is Table 3.3 give us an EPPL model that
satisfies a formula δ if and only if there exists such EPPL model.

Lemma 3.5.5. The algorithm in Table 3.3 decides the satisfiability of an EPPL formula.

Proof. See Theorem 2.9 in [BMN10].

The main purpose of including this algorithm in this work is to show that EPPL is weakly
complete. Since it is not possible to prove the strong version of completeness, this result has
a vital importance for EPPL.

Theorem 3.5.6 (Weak Completeness). The Hilbert calculus defined in Table 3.2 is a weakly
complete axiomatization of EPPL, that is, if � δ then ` δ.

Proof. Our goal is prove that, given δ a global formula, if � δ then ` δ. In this proof, it
will be used a contrapositive argument, i.e. suppose that 0 δ. We want to prove that 2 δ:

A formula δ0 is called consistent if 0 ¬δ0. Observe that if 0 δ then 0 ¬(¬δ), that is, ¬δ
is consistent. If ¬δ is consistent and it has a model, then 2 δ. Therefore, we need to prove
that every consistent formula has a model.

Suppose that δ is consistent and, by contradiction, the EPPL Satisfaction algorithm re-
turns no model.

Let E = {ε : ε is an exhaustive conjunction of literals such that vεδ �B φ
δ}.

The CPL formula φ := ∨ε∈E(φε) ↔ φδ is a tautology and, by the completeness of CPL,
we have that `B ∨ε∈E(φε) ↔ φδ. And by [GTaut], we have that ` tε∈E(ε) ≡ δ. If δ is
consistent then there is an exhaustive conjunction of literals ε which is also consistent, and if
δ has no EPPL model, then ε has no EPPL model as well. If when running this consistent ε
in the satisfaction algorithm (in Table 3.5), it returns no model, then it has to be for one of
the following two reasons:

(a) it can not find V (line 4);
(b) for all viable V , the SatReal algorithm returns no model (line 9).

In both cases, it is possible (see below) to contradict the consistency of δ and then it is
proved the weak completeness of EPPL.

Case (a): even if we remove the upper bound to |V | (given by Small Model Theorem), the
algorithm has to fail. We consider all possible sets of CPL valuations. In particular, if we take
V = 2prop(δ), we have that V 2B ∧lbf(ε) or V �B φ for some φ ∈ nlbf(ε). If V 2B ∧lbf(ε),
then V 2B φ for some φ ∈ lbf(ε), which is equivalent to �B (φ →⊥). By [LTaut], we have
that ` �(φ →⊥). With the axioms [Imp] and [EqF] and the inference rules [GMP] and
[GMT], we can derivate that ` ¬(�φ), and then 0 ¬ε (contradiction!). And if V �B φ

38

for some φ ∈ nlbf(ε), then ` �φ by [LTaut] and considering that φ is a formula such that
¬(�φ) occurs in ε, we have that 0 ¬ε (contradiction!).

Case (b): we need to prove that the algorithm will also fail for all viable sets V , that
is, for all sets of CPL valuations V such that V �B ∧lbf(ε) or V 2B φ for all φ ∈ nlbf(ε).
We can see that the sets of valuations in this conditions are closed under unions, and then
there exists a set Vmax under this condition that contains all the others, and for this set Vmax

the algorithm would fail at line 9. Let V c = 2prop(δ) \ Vmax. Since ε is consistent, then the
formula ε0 := ε u

(
uv∈V c �(∼ φv)

)
is also consistent, where φv is a CPL formula that is

satisfied only by the valuation v ∈ V c. Therefore, ` ε0 A ε. Moreover, for each v ∈ V c,
`B ∧lbf(ε) → (∼ φv), and we can derive that `

(
uφ∈lbf(ε) �φ

)
A
(
uv∈V c �(∼ φv)

)
, and

so ` ε A ε0, from which we conclude that ` ε0 ≡ ε. Thus, since ε is also consistent, then
ε0 is consistent, and if there is no model for ε then there is no model for ε0 as well, and the
algorithm must fail (i.e. return no model) in the line where it returns a model (that is, line
9). It is possible to prove that ε0 is not consistent (see details in [BMN10]), and then ε is not
consistent (contradiction!).

39

40

Chapter 4

Extending Probabilistic
Propositional Logic

Considering the entire Chapter 3, we now assume all the results previously showed.
Namely, the theorems of Soundness and weakly Completeness of EPPL.

In this chapter, we will discuss some more concepts and properties of Probability Theory
and of other probabilistic logics that, in the context of EPPL, as far as we know have not yet
been considered. Namely, we will adapt the concepts of uncertainty (see [Ada98]) and interval
probability (see [Hai96]) to EPPL, and prove some features about it. Next we introduce
the concept of conditional in EPPL, and discusse two ways to do this: the first consists of
introducing the conditional at a higher level (keeping unchanged the base logic); and the
other consists of putting conditional formulas in the base logic (called Supposicional logic).
Finally, we will present a generalization of the probabilization process of propositional logic,
but now for any satisfaction logic system that we want to make probabilistic.

4.1 Uncertainty

The uncertainty of a local formula will represent the probability of the formula being false,
which is 1 minus its probability. The uncertainty of φ will be written as

ffl
φ := 1−

´
φ. It is

not quite a new concept, instead it is more an abbreviation.
Some results with uncertainty follow directly from the ones proved in Chapter 3. The

statements below illustrate some of these results (the proof is immediate considering the
similar previous results).

[EqvU] �(φ1 ↔ φ2) ` (
ffl
φ1 =

ffl
φ2)

[BoxU] (�φ) ` (
ffl
φ = 0)

[IntU] ` (0 ≤
ffl
φ) u (

ffl
φ ≤ 1)

[SumU] `
ffl
φ1 +

ffl
φ2 =

ffl
(φ1 ∨ φ2) +

ffl
(φ1 ∧ φ2)

Considering that EPPL is a sound logic, the following results will be proved using the
Hilbert calculus for EPPL, but they are also valid in a semantical context (for every EPPL
model).

This concept of uncertainty and the following results are discussed in [Ada98], but within
a context not so formal as EPPL and from a slightly more philosophical point of view.

41

The following theorem says that the uncertainty of a conjunction of CPL formulas is, at
most, the sum of their uncertainties.

Theorem 4.1.1. [AndU] `
ffl

(φ1 ∧ ... ∧ φn) ≤
ffl
φ1 + ...+

ffl
φn, for n ≥ 2.

Proof. In this proof we will use induction over natural numbers.
Base step (n = 2):

1. `
ffl
φ1 +

ffl
φ2 =

ffl
(φ1 ∨ φ2) +

ffl
(φ1 ∧ φ2) [SumU]

2. `
(
0 ≤
ffl

(φ1 ∨ φ2)
)
u
(ffl

(φ1 ∨ φ2) ≤ 1
)

[IntU]

3. ` 0 ≤
ffl

(φ1 ∨ φ2) [GCi(2)]

4. `
ffl

(φ1 ∧ φ2) ≤
ffl
φ1 +

ffl
φ2 [Real(1,3)]

Inductive step (n = k): suppose that `
ffl

(φ1 ∧ ... ∧ φk−1) ≤
ffl
φ1 + ...+

ffl
φk−1. Then:

1. `
ffl (

(φ1 ∧ ... ∧ φk−1) ∧ φk
)
≤
ffl

(φ1 ∧ ... ∧ φk−1) +
ffl
φk [BaseStep]

2. `
ffl

(φ1 ∧ ... ∧ φk−1) ≤
ffl
φ1 + ...+

ffl
φk−1 [IndHyp]

3. `
ffl

(φ1 ∧ ... ∧ φk−1 ∧ φk) ≤
ffl
φ1 + ...+

ffl
φk−1 +

ffl
φk [Real(1,2)]

Contrary to the previous result, the next proposition is a curiosity which says that if the
CPL formulas {φ1, ..., φn} are incompatible, then the sum of their uncertainties cannot be
less than one.

Proposition 4.1.2. [IncU] �
(
(φ1 ∧ ... ∧ φn)↔⊥

)
`
ffl
φ1 + ...+

ffl
φn ≥ 1, for n ≥ 2.

Proof.

1. �
(
(φ1 ∧ ... ∧ φn)↔⊥

)
[Hyp]

2.
ffl

(φ1 ∧ ... ∧ φn) =
ffl
⊥ [EqvU]

3.
´
⊥ = 0 [Fal]

4.
ffl
⊥ = 1 [Real(3)]

5.
ffl

(φ1 ∧ ... ∧ φn) = 1 [Real(2,4)]

6.
ffl

(φ1 ∧ ... ∧ φn) ≤
ffl
φ1 + ...+

ffl
φn [AndU]

7.
ffl
φ1 + ...+

ffl
φn ≥ 1 [Real(5,6)]

The next Theorem relates the uncertainty of the conclusion to the uncertainty of the
premises of a valid inference in CPL. This gives an upper bound to the uncertainty of the
conclusion that only depends of the uncertainties

ffl
φi. We will see further that this upper

bound can be improved to a better one.

42

Theorem 4.1.3 (Uncertainty Sum Theorem). Let φ, φ1, ..., φn be CPL formulas such that
{φ1, ..., φn} �B φ. Then `

ffl
φ ≤
ffl
φ1 + ...+

ffl
φn .

Proof. Suppose that φ, φ1, ..., φn ∈ Form(B) such that {φ1, ..., φn} �B φ. This implies that
(φ1 ∧ ... ∧ φn) �B φ, and then �B (φ1 ∧ ... ∧ φn)→ φ. Thus, ` �

(
(φ1 ∧ ... ∧ φn)→ φ

)
.

1. ` �
(
(φ1 ∧ ... ∧ φn)→ φ

)
[Hyp]

2. ` �
(
(φ1 ∧ ... ∧ φn)→ φ

)
A
(´

(φ1 ∧ ... ∧ φn) ≤
´
φ
)

[Kol3]

3. `
´

(φ1 ∧ ... ∧ φn) ≤
´
φ [GMP(1,2)]

4. `
ffl
φ ≤
ffl

(φ1 ∧ ... ∧ φn) [Real(3)]

5. `
ffl

(φ1 ∧ ... ∧ φn) ≤
ffl
φ1 + ...+

ffl
φn [AndU]

6. `
ffl
φ ≤
ffl
φ1 + ...+

ffl
φn [Real(4,5)]

Since EPPL is weakly sound (Theorem 3.4.1), it follows immediatly that for every EPPL
model m, we also have that m �

ffl
φ ≤
ffl
φ1 + ...+

ffl
φn.

Example 4.1.4. Consider the following CPL inferences:

• {p1, p1 → p2} �B p2:

Suppose that m is an EPPL model such that [
ffl
p1]m = [

ffl
(p1 → p2)]m = 0.1. Then, by

Theorem 4.1.3, we have that [
ffl
p2]m ≤ 0.2.

• {p1, p2, p3, p4} �B p1 ∧ (p2 ∨ p3):

Suppose in this case thatm is an EPPL model such that [
ffl
pi]m = 0.1 (with i = 1, 2, 3, 4).

Then, the Uncertainty Sum Theorem, for this CPL inference, give to the uncertainty of
the conclusion the upper bound: [

ffl (
p1 ∧ (p2 ∨ p3)

)
]m ≤ 0.4.

In the first case, both premises are required for the inference to be a valid CPL inference.
However, in the second case, there is some redundancy in the premises (for example, p4 does
not appear at all in the conclusion, and it makes no sense that its uncertainty interferes with
the uncertainty of the conclusion).

The upper bound given by Theorem 4.1.3 of a CPL inference can be more refined, i.e. usu-
ally there will be a gap between

ffl
(φ1∧...∧φn) and (

ffl
φ1+...+

ffl
φn), and then (

ffl
φ1+...+

ffl
φn)

is not the best upper bound to
ffl
φ. But, usually

ffl
(φ1 ∧ ... ∧ φn) is unknown and we have to

try to find a better bound that only considers the uncertainties of the premises φi. The next
definition and the following theorem give an idea of how this could be done.

Definition 4.1.5. Given a valid CPL semantical consequence {φ1, ..., φn} �B φ, the degree
of essentialness of each premise φi is e(φi) = 1/ki, where ki is the size of the smallest
essential set of premises (set whose omission would make the inference invalid) to which φi
belongs; and e(φi) = 0 if φi does not belong to any essential set of premises.

43

Example 4.1.6. The following sentences examplifies the concept in the previous definition.

• {p1, p1 → p2} �B p2 : e(p1) = e(p1 → p2) = 1;

• {p1, p2} �B (p1 ∧ p2) : e(p1) = e(p2) = 1;

• {p1, p2} �B (p1 ∨ p2) : e(p1) = e(p2) = 1/2;

• {p1, p1 → p2, p1 ∧ p2} �B p2 : e(p1) = e(p1 → p2) = e(p1 ∧ p2) = 1/2;

• {p1, p1 → p2, p1 ∧ p2} �B (p1 ∨ p2) : e(p1) = e(p1 ∧ p2) = 1/2, e(p1 → p2) = 1/3.

• {p1, p2, p3, p4} �B p1 ∧ (p2 ∨ p3) : e(p1) = 1, e(p2) = e(p3) = 1/2, e(p4) = 0;

The following theorem improves the upper bound of Theorem 4.1.3 by removing some
redundancy from the premises.

Theorem 4.1.7 (Essentialness Sum Theorem). If {φ1, ..., φn} �B φ is a valid CPL semantical
consequence, then `

ffl
φ ≤ e(φ1)×

ffl
φ1 + ...+ e(φn)×

ffl
φn.

Proof. This proof is by using methods of Linear Programming in [AL75].

Example 4.1.8. Consider the same examples of CPL inference as before:

• {p1, p1 → p2} �B p2: e(p1) = e(p1 → p2) = 1

Suppose that m is an EPPL model such that [
ffl
p1]m = [

ffl
(p1 → p2)]m = 0.1. Then, by

Theorem 4.1.7, we have that [
ffl
p2]m ≤ 0.2 (same result give by Theorem 4.1.3 because

both premises are essential to the conclusion).

• {p1, p2, p3, p4} �B p1 ∧ (p2 ∨ p3):

Suppose in this case thatm is an EPPL model such that [
ffl
pi]m = 0.1 (with i = 1, 2, 3, 4).

Then, the Essencialness Sum Theorem, for this CPL inference, give to the uncertainty of
the conclusion that: [

ffl
(p1∧(p2∨p3))]m ≤ 0.1+0.5×0.1+0.5×0.1+0×0.1 = 0.2, which

is better than the upper bound found previously, because it eliminates some redundancy
in the premises.

4.2 Interval Probability

This section aims to make this dissertation a little more multidisciplinary, showing how
Linear Optimization concepts can be used in the context of probabilistic logics. First, we will
consider one more abbreviation in EPPL, that represents that a real number r belongs to a
real interval [r1, r2], that is: r ∈ [r1, r2] := (r1 ≤ r) u (r ≤ r2).

Clearly, given an arbitrary EPPL model m, we have that m �
(
r ∈ [r1, r2]

)
if and only

if m � (r1 ≤ r) and m � (r ≤ r2).

44

The same notation will be used for the probabilistic operator, i.e. given φ a CPL formula,
we have the same abbreviation:

´
φ ∈ [r1, r2] := (r1 ≤

´
φ) u (

´
φ ≤ r2).

In the following propositions we will consider that k1 = P(Ωφ1∧φ2), k2 = P(Ωφ1∧(∼φ2)),
k3 = P(Ω(∼φ1)∧φ2) and k4 = P(Ω(∼φ1)∧(∼φ2)). Observe that:

P(Ω) = P(Ωφ1∧φ2) + P(Ωφ1∧(∼φ2)) + P(Ω(∼φ1)∧φ2) + P(Ω(∼φ1)∧(∼φ2)) = 1

⇔ k1 + k2 + k3 + k4 = 1.

Proposition 4.2.1. �
(
(
´
φ1 = r1) u (

´
(φ1 → φ2) = r2)

)
A
´
φ2 ∈ [r1 + r2 − 1, r2]

Proof. Let m = (Ω,F ,P,X) be an EPPL model. We want to prove that if [
´
φ1]m = r1 and

[
´

(φ1 → φ2)]m = r2, then [
´
φ2]m ≥ r1 + r2− 1 and [

´
φ2]m ≤ r2. Considering some results of

previous chapter, we have that:

[
´
φ1]m = P(Ωφ1) = P(Ωφ1∧φ2) + P(Ωφ1∧(∼φ2)) = k1 + k2;

[
´

(φ1 → φ2)]m = P(Ωφ1→φ2) = P(Ωφ1∧φ2)+P(Ω(∼φ1)∧φ2)+P(Ω(∼φ1)∧(∼φ2)) = k1 +k3 +k4;

[
´
φ2]m = P(Ωφ2) = P(Ωφ1∧φ2) + P(Ω(∼φ2)∧φ1) = k1 + k3.

We want to solve the following linear optimization problem:

min/max k1 + k3

s.t. k1 + k2 = r1

k1 + k3 + k4 = r2

k1 + k2 + k3 + k4 = 1

k1, k2, k3, k4 ≥ 0

(4.1)

k1 + k2 = r1

k1 + k3 + k4 = r2

k1 + k2 + k3 + k4 = 1

⇔

k1 + k2 = r1

k1 + k3 + k4 = r2

k3 + k4 = 1− r1

⇔

k1 + k2 = r1

k1 = r1 + r2 − 1

k3 + k4 = 1− r1

⇔

k1 = r1 + r2 − 1

k2 = 1− r2

k3 = 1− r1 − k4

Together with nonnegative conditions, we have that:
r1 + r2 − 1 ≥ 0

1− r2 ≥ 0

1− r1 − k4 ≥ 0

k4 ≥ 0

⇔

r1 + r2 − 1 ≥ 0

r2 ≤ 1

1− r1 ≥ 0

0 ≤ k4 ≤ 1− r1

⇔

r1 + r2 ≥ 1

r1 ≤ 1

r2 ≤ 1

0 ≤ k4 ≤ 1− r1

Then, [
´
φ2]m = k1 + k3 = (r1 + r2 − 1) + (1− r1 − k4) = r2 − k4 ⇔ k4 = r2 − [

´
φ2]m.

Therefore, since 0 ≤ k4 ≤ 1− r1, we conclude that:

0 ≤ r2 − [
´
φ2]m ≤ 1− r1 ⇔ r1 + r2 − 1 ≤ [

´
φ2]m ≤ r2.

45

Proposition 4.2.2. �
(
(
´
φ1 =r1)u(

´
φ2 =r2)

)
A
´

(φ1∧φ2) ∈ [max{0, r1+r2−1},min{r1, r2}]

Proof. Let m = (Ω,F ,P,X) be an EPPL model. We want to prove that if [
´
φ1]m = r1 and

[
´
φ2]m = r2, then [

´
(φ1 ∧ φ2)]m ≥ max{0, r1 + r2 − 1} and [

´
(φ1 ∧ φ2)]m ≤ min{r1, r2}.

[
´
φ1]m = P(Ωφ1) = P(Ωφ1∧φ2) + P(Ωφ1∧(∼φ2)) = k1 + k2;

[
´
φ2]m = P(Ωφ2) = P(Ωφ1∧φ2) + P(Ω(∼φ2)∧φ1) = k1 + k3;

[
´

(φ1 ∧ φ2)]m = P(Ωφ1∧φ2) = k1.

The resulting linear optimization problem is as follows:

min/max k1

s.t. k1 + k2 = r1

k1 + k3 = r2

k1 + k2 + k3 + k4 = 1

k1, k2, k3, k4 ≥ 0

(4.2)

k1 + k2 = r1

k1 + k3 = r2

k1 + k2 + k3 + k4 = 1

⇔

k2 = r1 − k1

k1 + k3 = r2

k3 + k4 = 1− r1

⇔

k2 = r1 − k1

k3 = r2 − k1

k4 = 1− r1 − r2 + k1

Together with nonnegative conditions, we have that:
k1 ≥ 0

r1 − k1 ≥ 0

r2 − k1 ≥ 0

1− r1 − r2 + k1 ≥ 0

⇔

k1 ≥ 0

k1 ≤ r1

k1 ≤ r2

k1 ≥ r1 + r2 − 1

Therefore, since [
´

(φ1 ∧ φ2)] = k1, we conclude what we wanted to prove.

Proposition 4.2.3. �
(
(
´
φ1 =r1) u (

´
φ2 =r2)

)
A
´

(φ1 ∨ φ2) ∈ [max{r1, r2},min{1, r1 + r2}]

Proof. Let m = (Ω,F ,P,X) be an EPPL model. We want to prove that if [
´
φ1]m = r1 and

[
´
φ2]m = r2, then [

´
(φ1 ∨ φ2)]m ≥ max{r1, r2} and [

´
(φ1 ∨ φ2)]m ≤ min{1, r1 + r2}.

[
´
φ1]m = P(Ωφ1) = P(Ωφ1∧φ2) + P(Ωφ1∧(∼φ2)) = k1 + k2;

[
´
φ2]m = P(Ωφ2) = P(Ωφ1∧φ2) + P(Ω(∼φ2)∧φ1) = k1 + k3;

[
´

(φ1 ∨ φ2)]m = P(Ωφ1∨φ2) = P(Ωφ1∧φ2) + P(Ω(∼φ1)∧φ2) + P(Ωφ1∧(∼φ2)) = k1 + k2 + k3.

min/max k1 + k2 + k3

s.t. k1 + k2 = r1

k1 + k3 = r2

k1 + k2 + k3 + k4 = 1

k1, k2, k3, k4 ≥ 0

(4.3)

46

k1 + k2 = r1

k1 + k3 = r2

k1 + k2 + k3 + k4 = 1

⇔

k2 = r1 − k1

k1 + k3 = r2

k3 + k4 = 1− r1

⇔

k1 = r1 + r2 − 1 + k4

k2 = 1− r2 − k4

k3 = 1− r1 − k4

Together with nonnegative conditions, we have that:
r1 + r2 − 1 + k4 ≥ 0

1− r2 − k4 ≥ 0

1− r1 − k4 ≥ 0

k4 ≥ 0

⇔

k4 ≥ 1− r1 − r2

k4 ≤ 1− r2

k4 ≤ 1− r1

k4 ≥ 0

Then, [
´

(φ1 ∨ φ2]m = k1 + k2 + k3 = 1 − k4 ⇔ k4 = 1 − [
´

(φ1 ∨ φ2)]m, and since
max{0, 1− r1 − r2} ≤ k4 ≤ min{1− r1, 1− r2}, we conclude that:

max{0, 1− r1 − r2} ≤ 1− [
´

(φ1 ∨ φ2)]m ≤ min{1− r1, 1− r2}
⇔ max{−1,−r1 − r2} ≤ −[

´
(φ1 ∨ φ2)]m ≤ min{−r1,−r2}

⇔ max{r1, r2} ≤ [
´

(φ1 ∨ φ2)]m ≤ min{1, r1 + r2}.

Proposition 4.2.4. �
(´

(φ1 → φ2) = r1

)
u
(´

(φ2 → φ3) = r2

)
A
´

(φ1 → φ3) ∈ [r1+r2−1, 1]

Proof. This result was shown in a similar way to previous proposition, but now will have
eight real variables ki because, in this result, are involved three local formulas.

These results are examples of how probabilities propagate in a CPL inference. However,
the premises have a real value associated. Instead, it could be associated a range to each one.
The following result ilustrates how probabilities are transmitted through modus ponens.

Theorem 4.2.5. �
(´
φ1 ∈ [r1, s1]

)
u
(´

(φ1 → φ2) ∈ [r2, s2]
)
A
´
φ2 ∈ [r1 + r2 − 1, s2]

Proof. Let m = (Ω,F ,P,X) be an EPPL model. Suppose that (r1 ≤
´
φ1) u (

´
φ1 ≤ s1) and(

r2 ≤
´

(φ1 → φ2)
)
u
(´

(φ1 → φ2) ≤ s2

)
. As before, we have that:

[
´
φ1]m = P(Ωφ1) = P(Ωφ1∧φ2) + P(Ωφ1∧(∼φ2)) = k1 + k2;

[
´

(φ1 → φ2)]m = P(Ωφ1→φ2) = P(Ωφ1∧φ2)+P(Ω(∼φ1)∧φ2)+P(Ω(∼φ1)∧(∼φ2)) = k1 +k3 +k4;
[
´
φ2]m = P(Ωφ2) = P(Ωφ1∧φ2) + P(Ω(∼φ2)∧φ1) = k1 + k3.

We need to solve the following linear optimization problems:

min/max k1 + k3

s.t. r1 ≤ k1 + k2 ≤ s1

r2 ≤ k1 + k3 + k4 ≤ s2

k1 + k2 + k3 + k4 = 1

k1, k2, k3, k4 ≥ 0

(4.4)

47

Corollary 4.2.6. � (
ffl
φ1 ≤ ε1) u

(ffl
(φ1 → φ2) ≤ ε2

)
A
ffl
φ2 ≤ ε1 + ε2

Proof. We only need to observe that
´
φ ∈ [1− ε, 1] is the same as (0 ≤

ffl
φ) u (

ffl
φ ≤ ε).

Note that the generated linear optimization problems become increasingly complicated,
and therefore it would be more interesting to use computational tools to solve them.

The following Theorem was originally written in the context of a probabilistic proposi-
tional logic with a slightly different syntax, and is adapted here to EPPL. It is a generalization
of the previous propositions, that is, the construction of the Linear Optimization problem de-
scribed in this theorem is already illustrated in the propositions.

Theorem 4.2.7. ([Hai96]) Let {φ1, ..., φn} �B φ be a valid CPL inference, and ri, si real
algebraic numbers such that 0 ≤ ri ≤ si ≤ 1 (i = 1, ..., n). Then,

�
(´
φ1 ∈ [r1, s1] u

´
φ2 ∈ [r2, s2] u ... u

´
φn ∈ [rn, sn]

)
A
´
φ ∈ [rLB, sUB]

where the optimal set [rLB, sUB] is a real interval whose end points are the minimum and
maximum (respectively) of a linear optimization problem.

Proof. Theorem 4.61 in [Hai96] (the idea of this proof is below).

For any φi, consider that K(φi) the set of its constituients kj (j = 1, ..., 2n). The linear
programming problems that we need to solve in order to find the interval [rLB, sUB] are the
following:

min/max z =
∑

kj∈K(φ)

kj

s.t. ri ≤
∑

kj∈K(φi)

kj ≤ si , i = 1, ..., n

2n∑
j=1

kj = 1

kj ≥ 0 , i = 1, ..., 2n

(4.5)

To conclude this proof, the idea is to show that no feasible point can lie outside the interval
[min z,max z] (as shown in [Hai96]).

4.3 Conditional

In Probability Theory, conditional probability refers to the probability of an event E2

given that another event E1 has occurred. Usually, we denote as P(E2|E1), and it is read as
probability of E2 given E1.

In this section, we aim at adapting this probabilistic concept into EPPL. In order to not
change neither local logic (CPL) or global logic (EPPL), we will introduce the conditional
probability as a real probabilistic term, with the syntax

´
(φ2|φ1).

In a semantic context, given m = (Ω,F ,P,X) an arbitrary EPPL model, the interpreta-
tion of a condicional term is defined as in probability theory, as follows:

[
´

(φ2|φ1)]m =
[
´

(φ1 ∧ φ2)]m
[
´
φ1]m

, if [
´
φ1]m 6= 0; and [

´
(φ2|φ1)]m = 1 otherwise.

48

Moreover, in order to make EPPL with conditional terms still weakly sound and complete,
we will consider the same Hilbert calculus system (defined in Table 3.3), with the addition of
these two axioms:

[C0] ` (
´
φ1 = 0) A

(´
(φ2|φ1) = 1

)
[C1] `

´
(φ1 ∧ φ2) =

´
φ1 ×

´
(φ2|φ1)

The next result is important because it proves that the defined conditional axioms are
well-defined (taking into account the conditional semantics), and for example proves that the
chain rule (in Proposition 4.3.2) is also valid in a semantical context.

Theorem 4.3.1. This Hilbert calculus for EPPL with conditionals is weakly sound.

Proof. Let m = (Ω,F ,P,X) be an arbitrary EPPL model. Whereas that it has been proved
the soundness of EPPL, we need to prove that both conditional axioms are semantically valid:

[C0] `
(´
φ1 = 0

)
A (
´

(φ2|φ1) = 1):

m � (
´
φ1 = 0) A

(´
(φ2|φ1) = 1

)
iff m 2

´
φ1 = 0 or m �

´
(φ2|φ1) = 1

iff [
´
φ1]m 6= 0 or [

´
(φ2|φ1)]m = 1.

If [
´
φ1]m 6= 0 it is done. Otherwise, i.e. if [

´
φ1]m = 0, then follows immediatly that

[
´

(φ2|φ1)]m = 1 by definition.

[C1] `
´

(φ1 ∧ φ2) =
´
φ1 ×

´
(φ2|φ1):

m �
´

(φ1 ∧ φ2) =
´
φ1 ×

´
(φ2|φ1) iff [

´
(φ1 ∧ φ2)]m = [

´
φ1]m × [

´
(φ2|φ1)]m.

If [
´
φ1]m = 0, then [

´
(φ1 ∧ φ2)]m = 0, because 0 ≤ [

´
(φ1 ∧ φ2)]m ≤ [

´
φ1]m = 0 since

Ωφ1∧φ2 ⊆ Ωφ1 . Otherwise, that is, if [
´
φ1]m 6= 0, then we have that:

[
´

(φ1 ∧ φ2)]m = [
´
φ1]m ×

[
´

(φ1 ∧ φ2)]m
[
´
φ1]m

,

which is easily checked to be true by real properties, and the result is proved.

In the study of conditionals in Probability Theory, one of the most known and used rules
is the called Chain Rule. The next proposition fits this rule into EPPL conditional formulas
as defined here.

Proposition 4.3.2. Given φ1, ..., φn ∈ Form(B) (with n ≥ 2), we have that:

[CR] `
´

(φ1∧ ...∧φn) =
´
φ1×

´
(φ2|φ1)×

´ (
φ3|(φ1∧φ2)

)
× ...×

´ (
φn|(φ1∧ ...∧φn−1)

)
Proof. We will prove this result using induction over natural numbers.
Base step: If n = 2, the result is proved directly by [C1].
Inductive step: Suppose that this result is verified for n=k−1. Then:

1. `
´

(φ1 ∧...∧ φn−1) =
´
φ1 ×

´
(φ2|φ1)×...×

´ (
φn−1|(φ1 ∧...∧ φn−2)

)
[Ind-Hyp]

2. `
´

((φ1 ∧...∧ φn−1) ∧ φn) =
´

(φ1 ∧...∧ φn−1)×
´ (
φn|(φ1 ∧...∧ φn−1)

)
[C1]

3. `
´

(φ1 ∧ ... ∧ φn) =
´
φ1 ×

´
(φ2|φ1)× ...×

´ (
φn|(φ1 ∧ ... ∧ φn−1)

)
[Real(1,2)]

49

Note that in Probability Theory there is no notion of logical implication, that is, when we
referred to the probability of if E1 then E2, we associate to this the conditional probability
P(E2|E1). However, in a probabilistic logic with conditional, it is clear that

´
(φ1 → φ2) and´

(φ2|φ1) define completely different probabilities.
Given a sentence if φ1 then φ2, there is no agreement in the literature in which one of

the two previously probabilities associated to it. In a logical context, it is more intuitive to
associate

´
(φ1 → φ2); but in a probability context, usually it is associated to the conditional´

(φ2|φ1). The following example shows to us that, in general, they are completely different.

Example 4.3.3. Let m = (Ω,F ,P,X) be the EPPL model that represent a roll-dice (as in
Example 3.2.2). Consider that p1 represents outcome is even, and p2 represents outcome is a
prime number. That is, Ωp1 = {2, 4, 6} and Ωp2 = {2, 3, 5}. Then:

• [
´

(p1 → p2)]m = P(Ω∼p1 ∪ Ωp2) = P({1, 3, 5} ∪ {2, 3, 5}) = P({1, 2, 3, 5}) = 2
3 ;

• [
´

(p2|p1)]m =
[
´

(p1 ∧ p2)]m
[
´

(p1)]m
=

P(Ωp1∩ Ωp2)

P(Ωp1) = P({2})
P({2,4,6}) = 1

3 .

The following theorem give us a sufficient and necessary condition to
´

(φ1 → φ2) and´
(φ2|φ1) be equal probabilities.

Theorem 4.3.4. �
(´

(φ1 → φ2) =
´

(φ2|φ1)
)
≡
(´
φ1 = 1 t

´
(φ1 → φ2) = 1

)
.

Proof. We need to show that, given an arbitrary EPPL model m = (Ω,F ,P,X),
m �

´
(φ1 → φ2) =

´
(φ2|φ1) if and only if m �

´
φ1 = 1 t

´
(φ1 → φ2) = 1

Considering the definition of [
´

(φ2|φ1)]m, we will divide the proof into two cases:
If [
´
φ1]m = 0, then [

´
(φ2|φ1)]m = 1 always by definition; and [

´
(φ1 → φ2)]m = P(Ωφ1→φ2)

= P(Ω∼φ1∪ Ωφ2) ≥ P(Ω∼φ1) = 1−P(Ωφ1) = 1− 0 = 1. Then [
´

(φ1 → φ2)]m = 1.
Otherwise, that is, if [

´
φ1]m 6= 0, then:

m �
´

(φ1 → φ2) =
´

(φ2|φ1) iff [
´

(φ1 → φ2)]m = [
´

(φ2|φ1)]m
iff P(Ωφ1→φ2)=P(Ωφ1∧φ2)/P(Ωφ1) iff P(Ω∼φ1∨φ2)=

(
P(Ωφ1)−P(Ωφ1∧∼φ2)

)
/P(Ωφ1)

iff 1−P(Ωφ1∧∼φ2) = 1−P(Ωφ1∧∼φ2)/P(Ωφ1) iff P(Ωφ1) = 1 or P(Ωφ1∧∼φ2) = 0
iff P(Ωφ1) = 1 or P(Ωφ1→φ2) = 1 iff [

´
φ1]m = 1 or [

´
(φ1 → φ2)]m = 1

iff m �
´
φ1 = 1 t

´
(φ1 → φ2) = 1 .

Furthermore, we can prove that the probability of CPL implication is one if and only if
the probability of the conditional is also one and, despite the differences between them, this
two concepts are related in a way.

Theorem 4.3.5. �
(´

(φ2|φ1) = 1
)
≡
(´

(φ1 → φ2) = 1
)

.

Proof. Let m = (Ω,F ,P,X) be an EPPL model. We want to prove that [
´

(φ1 → φ2)]m = 1
if and only if [

´
(φ2|φ1)]m = 1. Considering the semantical definition of [

´
(φ2|φ1)]m, we will

divide this prove into two cases:
If [
´
φ1]m = 0, it is already proved in the previous theorem.

50

Otherwise, that is, if [
´
φ1]m 6= 0, then:

[
´

(φ2|φ1)]m = 1 iff [
´

(φ1 ∧ φ2)]m/[
´

(φ1)]m = 1 iff [
´

(φ1 ∧ φ2)]m = [
´

(φ1)]m
iff P(Ωφ1 ∩ Ωφ2) = P(Ωφ1) iff P(Ωφ1 ∩ Ωφ2) = P(Ωφ1 ∩ Ωφ2) + P(Ωφ1 ∩ Ω∼φ2)
iff P(Ωφ1 ∩ Ω∼φ2) = 0 iff P

(
Ω \(Ωφ1 ∩ Ω∼φ2)

)
= 1 iff P(Ω∼φ1 ∪ Ωφ2) = 1

iff P(Ω(∼φ1)∨φ2) = 1 iff P(Ωφ1→φ2) = 1 iff [
´

(φ1 → φ2)]m = 1 .

4.3.1 Independence of Formulas

In Probability Theory, we say that two events are (statistically) independents if the oc-
currence of one does not affect the probability of the other. This section aims to bring into
EPPL a similar independence concept.

The formal definition in Probability Theory is that two events E1 and E2 are independent
if P(E1 ∩E2) = P(E1)×P(E2). Given that, we will use this idea to introduce independence
of formulas in EPPL.

Syntactically, the global formula (φ1 � φ2) will represent that the CPL formulas φ1 and
φ2 are independent. We will introduce it in EPPL semantics and Hilbert calculus in a very
standard way. Given an EPPL model m = (Ω,F ,P,X), we have that:

m � (φ1 � φ2) iff [
´

(φ1 ∧ φ2)]m = [
´
φ1]m × [

´
φ2]m.

Considerer the EPPL Hilbert calculus in Table 3.3, we will be adding a new axiom to it:
[Indep] ` (φ1 � φ2) ≡

(´
(φ1 ∧ φ2) =

´
φ1 ×

´
φ2

)
In some articles (e.g. [BM09] and [BMN10]) this feature is considered as belonging to

EPPL syntax. However, the global formula (φ1 �φ2) is semantically equivalent to the following
EPPL formula:

(´
(φ1 ∧ φ2) ≤

´
φ1 ×

´
φ2

)
u
(´
φ1 ×

´
φ2 ≤

´
(φ1 ∧ φ2)

)
.

Because of that, we decide not to include the independence formulas in the definition of
EPPL, in order to initially have the simplest possible probabilistic propositional logic, and
then adding other probabilistic concepts in that logic.

Now we want to analize the existing duality with Probability Theory in the relations be-
tween independence and conditionals. In [IG10], the concept of conditional independence in
probabilistic logics is studied, and here we want only to show that we can write the indepen-
dence of formulas in terms of conditional formulas (as it happens in probability theory).

When the probability of the event that we are conditioning is not zero, the notion of inde-
pendence can be rewritten with conditionals. We can also rewrite the notion of independent
formulas using formulas with conditional, as shown in the following theorem.

Theorem 4.3.6. [CI] (
´
φ1 > 0) ` (φ1 � φ2) ≡

(´
(φ2|φ1) =

´
φ2

)
Proof. Considerer the definition of ≡ and Theorems 3.3.3 and 3.3.4, prove this theorem is
equivalent to demonstrate the following two results:

(i) (
´
φ1 > 0), (φ1 � φ2) `

´
(φ2|φ1) =

´
φ2:

1.
´
φ1 > 0 [Hyp]

2. (φ1 � φ2) [Hyp]

3. (φ1 � φ2) A
(´

(φ1 ∧ φ2) =
´
φ1 ×

´
φ2

)
[Indep]

4.
´

(φ1 ∧ φ2) =
´
φ1 ×

´
φ2 [GMP(2,3)]

5.
´

(φ1 ∧ φ2) =
´
φ1 ×

´
(φ2|φ1) [C1]

6.
´

(φ2|φ1) = φ2 [Real(1,4,5)]

51

(ii) (
´
φ1 > 0),

(´
(φ2|φ1) =

´
φ2

)
` (φ1 � φ2)

1.
´

(φ2|φ1) = φ2 [Hyp]

2.
´

(φ1 ∧ φ2) =
´
φ1 ×

´
(φ2|φ1) [C1]

3.
´

(φ1 ∧ φ2) =
´
φ1 ×

´
φ2 [Real(1,2)]

4.
(´

(φ1 ∧ φ2) =
´
φ1 ×

´
φ2

)
A (φ1 � φ2) [Indep]

5. (φ1 � φ2) [GMP(4,5)]

4.3.2 Suppositional Logic

Instead of putting conditional on our probabilistic logic as a real term, alternatively, we
can change the basic logic (CPL) to a new logic where the conditional formulas belong to
basic logic syntax - at this new local logic we will call suppositional logic (denoted as S).

ψ := φ | (φ|φ) , φ ∈ Form(B)

Table 4.1: Suppositional Logic Syntax

We will start by defining a semantics for this logic. The idea is to make an extension
of the CPL concepts (of valuations, semantical consequences and tautologies) for this new
language, in the sense that if we do not have conditional formulas, this semantics coincide
with the CPL satisfaction system (defined in Subsection 2.2.2).

Definition 4.3.7. An u-valuation is a mapping v : V ar(B) → {0, 1} (⊂{0, u, 1}), that
can be naturaly extended for v̄ : Form(S) → {0, u, 1} by v̄(p) = v(p) if p ∈ V ar(B),
v̄(∼φ) = 1 − v̄(φ), v̄(φ1 → φ2) = max{1 − v̄(φ1), v̄(φ2)} and v̄(φ2|φ1) = u if v̄(φ1) = 0 and
v̄(φ2|φ1) = v̄(φ2) otherwise.

As it happens in CPL, we will abbreviate v̄ to v. Note that an u-valuation of a formula
without conditional behaves as in CPL, that is, v(φ) ∈ {0, 1}. In the following definitions we
will introduce a satisfaction relation for this logic.

Definition 4.3.8. Given an u-valuation v and a set of suppositional formulas Ψ = {ψ1, ..., ψn},
we will say that v confirms Ψ if and only if:

• v(ψi) 6= 0, for all i ∈ {1, ..., n};
• and exists j ∈ {1, ..., n} such that v(ψj) = 1.

Moreover, we say that v falsifies Ψ if and only if v(ψj) = 0, for some j ∈ {1, ..., n}.

Definition 4.3.9. Let Ψ = {ψ1, ..., ψn} be a set of suppositional formulas (premises) and ψ
other suppositional formula (conclusion). We say that ψ is a semantical consequence of
Ψ = {ψ1, ..., ψn} (Ψ �S ψ) if and only if both of following conditions are satisfied:

52

• v(ψ) 6= 0, for all u-valuations v that do not falsify Ψ;
• there exists an u-valuation that confirms Ψ and v(ψ) = 1.

Moreover, we say that ψ is u-valid (denoted as �S ψ) if and only if v(ψ) 6= 0 for all
u-valuation v, and exists an u-valuation v such that v(ψ) = 1.

This satisfaction system for supposicional logic results of a combination between the se-
mantics presented for conditional formula in [Hai96], which is based on the existence of a
third truth value u, and semantics presented in [Ada98] based only in truth tables.

Lemma 4.3.10. A formula φ ∈ Form(B) (that is, without conditional occurences) is u-valid
if and only if is valid in CPL.

Proof. Straightforward, by definition of CPL valuation and u-valuation to formulas without
conditionals (that is, they are defined in the same way).

The idea is to define an axiomatic system for this logic (Table 4.2), so that we can at
least establish weak soundness. The proposed system for this conditional logic is adapted for
an existing inference system in [Ada98], together with the axiomatization of CPL previously
defined in Table 2.2. Note that, in the following table, φ1, φ2 and φ3 can not be conditional
formulas, but always be CPL formulas.

Axioms:
[Ax1] `S φ1 → (φ2 → φ1)
[Ax2] `S (φ1 → (φ2 → φ3)→ ((φ1 → φ2)→ (φ1 → φ3))
[Ax3] `S (∼φ2 → ∼φ1)→ ((∼φ2 → φ1)→ φ2)

Inference Rules:
[MP] φ1, (φ1 → φ2) `S φ2

[LC] (φ1 → φ2) `S φ2|φ1

[CE1] φ1 `S φ1|>
[CE2] φ1|> `S φ1

[EA] φ1 ↔ φ2, φ3|φ1 `S φ3|φ2

[DA] φ3|φ1, φ3|φ2 `S φ3|(φ1 ∨ φ2)
[RT] φ2|φ1, φ3|(φ1 ∧ φ2) `S φ3|φ1

[AR] φ2|φ1, φ3|φ1 `S φ3|(φ1 ∧ φ2)

Table 4.2: Suppositional Deductive System

In the following theorem we will show that suppositional logic is sound, i.e. this means
that this conditional inference rules are valid in sense that each conclusion is a semantical
consequence of their respective premises (see Definition 4.3.9).

Theorem 4.3.11. Suppositional Logic is sound.

Proof. We need to show that all axioms and inference rules in Table 4.3.2 are semantically
valid in suppositional logic (considering all previous definitions).

First, by Lemma 4.3.10, the axioms [Ax1], [Ax2], [Ax3] and the inference rule [MP]
are already sound, because these are instances of axioms and inference rule of CPL, and the
latter is already sound.

All other inference rules will be proved using truth-tables for suposicional logic (that is,
exploring each one of all possible u-valuations).

53

[LC] (φ1 → φ2) `S φ2|φ1 :

φ1 φ2 φ1→φ2 φ1|φ2

1 1 1 1 X
1 0 0 0
0 1 1 u
0 0 1 u

[CE1] φ1 `S φ1|> and [CE2] φ1|> `S φ1 :

> φ1 φ1|>
1 1 1 X
1 0 0

[EA] φ1 ↔ φ2, φ3|φ1 `S φ3|φ2 :

φ1 φ2 φ3 φ1↔φ2 φ3|φ1 φ3|φ2

1 1 1 1 1 1 X
1 1 0 1 0 0
1 0 1 0 1 u
1 0 0 0 0 u
0 1 1 0 u 1
0 1 0 0 u 0
0 0 1 1 u u
0 0 0 1 u u

[DA] φ3|φ1, φ3|φ2 `S φ3|(φ1 ∨ φ2) :

φ1 φ2 φ3 φ3|φ1 φ3|φ2 φ3|(φ1∨φ2)
1 1 1 1 1 1 X
1 1 0 0 0 0
1 0 1 1 u 1 X
1 0 0 0 u 0
0 1 1 u 1 1 X
0 1 0 u 0 0
0 0 1 u u u
0 0 0 u u u

54

[RT] φ2|φ1, φ3|(φ1 ∧ φ2) `S φ3|φ1 :

φ1 φ2 φ3 φ2|φ1 φ3|(φ1∧φ2) φ3|φ1

1 1 1 1 1 1 X
1 1 0 1 0 0
1 0 1 0 u 1
1 0 0 0 u 0
0 1 1 u u u
0 1 0 u u u
0 0 1 u u u
0 0 0 u u u

[AR] φ2|φ1, φ3|φ1 `S φ3|(φ1 ∧ φ2) :

φ1 φ2 φ3 φ2|φ1 φ3|φ1 φ3|(φ1∧φ2)
1 1 1 1 1 1 X
1 1 0 1 0 0
1 0 1 0 1 u
1 0 0 0 0 u
0 1 1 u u u
0 1 0 u u u
0 0 1 u u u
0 0 0 u u u

In order to exemplify how this deductive system works, we will prove a derived inference
rule that corresponds to a kind of modus ponens for conditional formulas.

Proposition 4.3.12. [CMP] φ1, φ2|φ1 `S φ2

Proof.

1. φ1 [Hyp]

2. φ2|φ1 [Hyp]

3. φ1|> [CE1(1)]

4. φ1 ↔ (> ∧ φ1) [Taut]

5. φ2|(> ∧ φ1) [EA(4,2)]

6. φ2|> [RT(3,5)]

7. φ2 [CE2(6)]

55

We can easily see that this derived inference rule is semantical valid, i.e. there is just one
u-valuation that confirms {φ1, φ2|φ1}, and this valuation gives 1 to the conclusion φ2.

φ1 φ2|φ1 φ2

1 1 1 X
1 0 0
0 u 1
0 u 0

Remember that the idea would be to replace in EPPL (defined in Chapter 3) our local
logic (i.e. CPL) by suppositional logic - this new probabilistic logic we will designate by EP-
PLC (EPPL with Conditional). For this, first we will need to prove that suppositional logic is
also a complete logic system according to its semantics. In the following table lies the syntax
of this new logic, that is almost equal to the EPPL syntax, changing only in the basic formulas.

Local Conditional Formulas:
ψ := φ | (φ|φ) , φ ∈ Form(B)

Real Probabilistic Terms:
t := x | 0 | 1 |

´
ψ | (t+ t) | (t× t) , x ∈ Var(R)

Global Formulas:
δ := �ψ | (t ≤ t) | (¬δ) | (δ A δ) .

Table 4.3: EPPLC Syntax

With this EPPLC syntax, formulas like �(φ1|φ1) and
´

(φ2|φ1) ≤
´

(φ3) were defined in
this new probabilistic logic, but not formulas like �

(
φ1|(φ2|φ1)

)
. Now that we set a syntax to

EPPLC, the next steps would be define a semantic and a Hilbert calculus for EPPLC (which
would be identical to the defined previously in sections 3.2 and 3.3 for EPPL), and study
some properties of this logic, namely its Soundness and Completeness.

4.4 Probabilization of Logic Systems

In the previous chapter, we worked in one probabilization of the CPL. Now, our interest is
to study a way to generalize this probabilization process, i.e. we want to make probabilistic
any arbitrary logic system.

In general, a logic system aims at formally reasoning about a wide range of entities such
as actions, knowledge, belief, probabilities, among many others. When we want to reason
about to completely different entities, it is evident that we need of combine two (or more)
logic systems. The combination of Logics is a topic widely studied in Logic (e.g. [She73]

56

and [SSC05]). Combining logics consists in the combination of two (or more) logic systems
(or satisfaction systems) to a single logic system (or a satisfaction system), using some kind
of technique. An example for that is fibring logics ([CSS05]), that consists in merging two
(or more) axiomatic systems into a new one with the axioms and inference rules of both
systems. Alternatively, we can use asymmetric combinations of logics ([RSS13]) that consists
in defining one of the systems in a higher level than the other, keeping the first unchanged.
Recently, some scientifical works ([MNM16], [MNBM16]) have been done on context of the
dynamisation and hybridization process, which are examples of asymmetric combinations.
The process of probabilization of logics is very similar to both of these processes, but in this
we put probabilities in a higher level (creating a new probabilistic logic).

Given a logic system, it is understood by probabilization the enrichment of this system
with probability features. This section defines an operator that combines any satisfaction
system with a probabilistic propositional logic (see [Bal10] for more details in the process) in
two distict levels (as it happens in EPPL). This operator uses an exogenous approach, i.e.
we fix the satisfaction system that we want to probabilize (keeping its syntax and semantics
unchanged), and introduce probabilistic formulas at a higher level.

Definition 4.4.1. Let L = (L,M,�) be any satisfaction system. The probabilization
operator transforms L in the system L p = (Lp,Mp,�p), defined as follows:

• Lp is defined by:

t := r | (
´
φ) | (t+ t) | (t× t)

δ := (t ≤ t) | (¬δ) | (δ A δ) , with φ ∈ Form(L) and r ∈ Alg(R).

• Mp is the class of all tuples m = (Ω,F ,P, V), where (Ω,F ,P) is a probability space,
and V : Ω →M is a measurable valuation, in the sense that for all φ ∈ Form(L), we
have that V −1(φ) := {ω ∈ Ω : V (ω) � φ} ∈ F .

• the satisfaction relation �p is recursively defined as:

– [r]m := r, for each r ∈ Alg(R);

– [
´
φ]m = P

(
V −1(φ)

)
;

– [t1 + t2]m := [t1]m + [t2]m;

– [t1 × t2]m := [t1]m × [t2]m;

– m �p (t1 ≤ t2) iff [t1]m ≤ [t2]m;

– m �p (¬δ) iff m 2p δ;

– m �p (δ1 A δ2) iff (m 2p δ1 or m �p δ2),

with m ∈Mp and δ ∈ Form(L p).

57

4.4.1 Probabilization of Classical Propositional Logic

Let L = (L,M,�) be CPL satisfaction system (as defined in subsection 2.2.2). The
probabilization operator defined previoulsy transforms CPL in the satisfaction probabilistic
system L p = (Lp,Mp,�p), defined by:

• Lp is defined by:

t := r | (
´
φ) | (t+ t) | (t× t)

δ := (t ≤ t) | (¬δ) | (δ A δ) , with φ ∈ Form(L) and r ∈ Alg(R).

• Mp is the class of all models m = (Ω,F ,P, V), where (Ω,F ,P) is a probability space,
and V : Ω→M is a measurable valuation (that atributes for each sample-point ω ∈ Ω
a CPL valuation V (ω)), where for all φ ∈ Form(L), we have that V −1(φ) := {ω ∈ Ω :
V (ω)(φ) = 1} ∈ F .

• the satisfaction relation �p is recursively defined as:

– [r]m := r, for each r ∈ Alg(R);

– [
´
φ]m = P

(
V −1(φ)

)
= P

(
{ω ∈ Ω : V (ω)(φ) = 1}

)
;

– [t1 + t2]m := [t1]m + [t2]m;

– [t1 × t2]m := [t1]m × [t2]m;

– m �p (t1 ≤ t2) iff [t1]m ≤ [t2]m;

– m �p (¬δ) iff m 2p δ;
– m �p (δ1 A δ2) iff (m 2p δ1 or m �p δ2),

with m ∈Mp and δ ∈ Form(L p).

We can see a lot of similarities with the probabilization made in Chapter 3. The only thing
that is not clear to be equivalent to EPPL is how models are defined and how probabilities
are determined.

In EPPL, each model was associated to X = (Xp)p∈Var(B) a stochastic process over the
probability space, where Xp : Ω → {0, 1} is a Bernoulli random variable, and for each φ ∈
Form(B) induces a new Bernoulli r.v. Xφ recursively defined in an analogously way as CPL
valuations.

In the CPL probabilization presented above, each model is associated to a measurable
valuation V that for ω ∈ Ω associates a CPL valuation V (ω). In order to obtain a semantical
equivalent structure, we only need to have: V (ω)(p) = 1 if and only if Xp(ω) = 1, for all
p ∈ Var(B) (the equivalence to all non-atomic CPL formulas is guaranteed because recursively
Xφ(ω) and V (ω)(φ) are defined in the same way).

Moreover, the probabilities are equaly defined: in EPPL, [
´
φ]m = P({ω ∈ Ω : Xφ(ω) =

1}); and in the probabilization of CPL, [
´
φ]m = P({ω ∈ Ω : V (ω)(φ) = 1}). The conditions

are equivalent, and therefore [
´
φ]m is equal in both cases.

58

4.4.2 Probabilization of Modal Logic

In this section, we will give an idea of how to probabilize the Kripke modal logic ([HC96],
[vB10]) using the probabilization operator defined in this section, and compare it with other
existing probabilistic modal logics in literature (e.g. [SA07]). The syntax will be as usual, and
to simplify, we will not consider the modal operator ♦ because it can be written as (∼�∼).

φ := p | (∼φ) | (φ→ φ) | (�φ) , p ∈ Var(L)

Table 4.4: Modal Logic Syntax

Definition 4.4.2. A Kripke Model is a tuple m = (W,R, f) where:

• W - set (called set of worlds);

• R ⊆W×W - binary relation between worlds (called acessibility relation);

• f : W → P
(
Var(L)

)
(called labelling function).

Example 4.4.3. Let m = (W,R,L) be a Kripke model, where:
◦ W = {x1, x2, x3, x4, x5};
◦ R = {(x1, x2), (x1, x4), (x2, x2), (x2, x3), (x3, x2), (x3, x4), (x5, x2), (x5, x4), (x5, x5)};
◦ f(x1) = {p, q, r}, f(x2) = {p}, f(x3) = {p, r}, f(x4) = {r}, f(x5) = ∅.

Figure 4.1 representes graphically this Kripke model, where the arrow (xi, xj) is in the
graph if and only if (xi, xj) ∈ R (with i, j ∈ {1, 2, 3, 4, 5}).

Figure 4.1: Graphic illustration of this Kripke model.

In this example, we can already see that putting probabilities in the arrows of this graph
(that is, in the acessibility relation), we can define a probabilistic modal logic that in Proba-
bility Theory may correspond to Markov chains. Next, we will define the satisfaction relation
to this logic as usual.

59

Definition 4.4.4. Let m = (W,R, f) be a Kripke model and x ∈W a world. The satisfaction
relation �m for modal logic is recursively defined as follows:

• x �m p iff p ∈ f(x) ;

• x �m (∼φ) iff x 2m φ ;

• x �m (φ1 → φ2) iff x 2m φ1 or x �m φ2 ;

• x �m �φ iff for all y ∈W if (x, y) ∈ R then y �m φ .

If x �m φ, we say that the modal formula φ is satisfied in the world x (in the Kripke model
m). Moreover, we say that m satisfies φ, denoted as �m φ, if for each x ∈ W , we have that
x �m φ. And, we will denote as � φ when φ is valid (that is, if �m φ for all models m).

Now, considering the probabilization operator defined before, we will apply it to this
modal satisfaction system L = (L,M,�). The probabilization operator defined previoulsy
transforms L in the satisfaction probabilistic system L p = (Lp,Mp,�p), defined by (here
we will only mention the parts of the probabilization that change due to modal logic):

• Mp is the class of all models m = (Ω,F ,P, V), where (Ω,F ,P) is a probability space,
and V : Ω→M atributes for each sample-point ω ∈ Ω a Kripke model V (ω), where for
all modal formulas φ ∈ Form(L), we have that V −1(φ) := {ω ∈ Ω : �V (ω) φ} ∈ F .

• [
´
φ]m = P

(
V −1(φ)

)
= P

(
{ω ∈ Ω : �V (ω) φ}

)
= P

(
{ω ∈ Ω : x �V (ω) φ, for all x ∈W}

)
Translating this into words, with this probabilization of modal logic, the probabilities are

associated with sets of Kripke models, i.e. to each sample-point is associated a modal Kripke
model and the probability of a modal formula φ is calculated on the sets of Kripke models
that satisfy this formula. Therefore, the probabilities are not associated with a fixed Kripke
model (e.g. in its worlds or in it acessibility relation), and then this probabilization does not
have the applicability that we were looking for.

Our interests with this probabilization would be given a Kripke model, we want to asso-
ciate probabilities to something in this model. But to what would we associate the probability
space? Our idea was to associate probabilities with the arrows (i.e. acessibility relation), but
we must not associate one probability space to all the arrows because we want that for each
world the sum of the probabilities associated to arrows that begins in this world is 1. Cleary,
this probabilization does not do anything like that. In the last decades (since [Koz85]) prob-
abilistic modal logics, like the one that we are looking for, have been a significant research
topic.

Here we only try to probabilize modal logic (in general), but it would be interesting to
study how to probabilize other logics, such as linear temporal logics ([Lic91]) and dynamic
logics ([HKT00]).

60

Chapter 5

Conclusion and Further Work

Combining Logic with other areas of Mathematics is nowadays a very appealing topic of
research. The main goal of this dissertation was to show that Probability Theory and Logic
are two fields of knowledge not so far away from each other as we might think at first place.

Probabilistic logics join together two completely different areas of reasoning: Logic and
Probability Theory. Chapter 2 serves as the basis for this work. It introduces the main topics
necessary in order to understand the combination of logic with probabilities.

This dissertation is about the development of an Exogenous Probabilistic Logic, which was
based on Classical Propositional Logic. In Chapter 3, we were able to prove Soundness and
a weak version of Completeness of EPPL, and we actually proved that EPPL is not strongly
complete (by given a counterexample). These properties (soundness and completeness) of a
logic system plus its semantics presented are fundamental to make it an interesting system
to explore.

Chapter 4 discusses some possible evolutions of EPPL. We introduced into EPPL se-
mantics and Hilbert calculus other concepts that exist in other probabilistic logics and in
Probability Theory. Namely, we introduced the concept of uncertainty that given a local
formula corresponds to the probability of its negation. We also adapted a very important
concept of Probability Theory: conditional (in this context, conditional between formulas).

We studied two ways of how to deal with conditional in EPPL. The first consisted in
keeping the base logic unchanged, and introduce the conditional only as a probability (that is,
as a real probabilistic term), and we defined two new axioms and proved that they are sound.
A major challenge here will be to prove that EPPL with these conditionals is still weakly
complete. Our idea is to modify the satisfaction (SAT) algorithm so that it incorporates
these new terms, and adapt the proof of Theorem 3.5.6 for this new SAT algorithm. The
second way was to introduce conditional as a local formula by changing CPL into a new logic
with these conditional formulas - Suppositional logic. We defined a semantics and a deductive
system for this logic, and we were actually able to prove its soundness. Again, a big challenge
will be to prove that this suppositional logic is complete (at least, weakly complete).

We have also presented the idea of a language for a new probabilistic logic with these
conditional formulas as local formulas, which we designated as EPPLC. Its semantics and
Hilbert calculus will be similar to those of EPPL, but instead of considering the CPL defini-
tions of valuation and tautology, we will consider now the concepts of u-valutions and u-valid
formulas, which are extensions of CPL to a logic with three truth values ({0,u, 1}). Our goal,
in the future, will be to prove that at least for one of these approaches we have a complete

61

logic (ideally, prove that both approaches that introduce conditionals in EPPL are complete).
In some works of Mateus, Baltazar and Nagarajan ([BMNP07], [BM09]) it is introduced

a probabilistic linear temporal logic (EPLTL) that is obtained by enriching a probabilistic
propositional logic with linear temporal modalities. An interesting approach is to include
in this logic conditional formulas (as we did in EPPL), and try to understand how these
temporal modalities behave with conditionals.

In this dissertation, we analyze several issues of probabilistic logics. The most challenging
one was how to take an arbitrary logic system, and make it a probabilistic one. In Section
4.4, we defined an abstract way to do this for any satisfaction system. Future work could be
to consider a first-order logic or a modal logic as our base logic, develop a probabilistic global
logic (construct its semantics and Hilbert calculus) and study some applications.

In [RSS16], it is made a slightly different approach that consists of assigning probabilities
not to CPL formulas, but to CPL valuations. In fact, it is referred that assigning probabilities
to formulas or to valuations is equivalent (in terms of EPPL).

Theoretically, although Probabilistic logic can be applied to a large number of real prob-
lems, in practice, it is rarely so. The idea of this work was to develop a strong theoretical base,
leaving open the practical applicability of our logic. In particular, we could try to develop an
automatic prover for EPPL.

Another attractive idea is to use this EPPL in some mathematical software, e.g. PRISM.
This is a programming language intended for symbolic-statistical modeling. PRISM is a logical
program in which facts have a parameterized probability distribution so that the program can
be seen as a parameterized statistical model. In [RS13] is an idea on how to put a probabilistic
logic into PRISM, and it consists of doing the same thing we did to EPPL (and possibly, with
conditionals).

In Section 3.5, we present a satisfaction algorithm to EPPL formulas in order to prove its
weak completeness. At first we thought about trying to implement the algorithm, however
this implementation is not as trivial as it may seem. The probabilistic satisfibiability (PSAT)
problem (we can see it in detail in [AP01]) is another topic related to this logic, and it is one of
the biggest problems nowadays of artificial intelligence, logic and computational complexity
([HJdA+99], [FD04], [dBCF13]).

One issue that was not considered in this work, but that we intend to, in the future, was
the model checking problem for our probabilistic logic, that is, how to develop an algorithm
that given a model m, an assignment ρ and an EPPL formula δ, returns a boolean value
corresponding to the value of (m, ρ) � δ. In the context of EPPL, Baltazar already studied
this issue (see [BM09], [BMN10]), and he proved that his model checking algorithm takes
O(|δ|.|Ω|) time to decide if (m, ρ) satisfies δ. EPPL model checking is studied in more detail
in [Hen09].

62

Bibliography

[Ada98] Ernest W. Adams. A Primer of Probability Logic. Center for the Study of
Language and Informations Publications - Stanford, California, 1998.

[AL75] E. W. Adams and H. Levine. On the Uncertainties Transmitted from Premisses
to Conclusions in Deductive Inferences. Synthese, Vol.30 No.3:429–460, 1975.

[AP01] Kim Allan Andersen and Daniele Pretolani. Easy cases of probabilistic satisfia-
bility. Annals of Mathematics and Artificial Intelligence, 33(1):69–91, 2001.

[AR02] Jorge Almeida and Hugo Ribeiro. Introdução à Lógica. Departamento de
Matemática Pura, Universidade do Porto, 2002.

[ASB+95] Adnan Aziz, Vigyan Singhal, Felice Balarin, Robert Brayton, and Alberto Vin-
centelli. It Usually Works: The Temporal Logic of Stochastic Systems. Computer
Aided Verification, pages 155–165, 1995.

[Bal10] Pedro Baltazar. Probabilization of Logic Systems. PhD thesis, Instituto Superior
Técnico - Universidade Técnica de Lisboa, December 2010.

[BdA95] Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and non-
deterministic systems. 15th Conference on Foundations of Software Technology
and Theoretical Computer Science, 1026:499–513, 1995.

[BM09] Pedro Baltazar and Paulo Mateus. Temporalization of probabilistic propositional
logic. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 5407 LNCS:46–60,
2009.

[BMN10] Pedro Baltazar, Paulo Mateus, and Rajagopal Nagarajan. Fixpoint Logics for
Reasoning about Probabilistic Systems. Preprint, SQIG - IT and IST - TU
Lisbon, pages 1–19, 2010.

[BMNP07] Pedro Baltazar, Paulo Mateus, Rajagopal Nagarajan, and Nikolaos Papaniko-
laou. Exogenous Probabilistic Computation Tree Logic. Electronic Notes in
Theoretical Computer Science, 190(3):95–110, 2007.

[BPR03] Saugata Basu, Richard Pollack, and Marie Roy. Algorithms in Real Algebraic
Geometry. Algorithms and Computation in Mathematics 10. Springer Berlin
Heidelberg, 2nd ed edition, 2003.

63

[BRS06] Pedro Baltazar, Jaime Ramos, and Cristina Sernadas. Probabilistic and quantum
institutions revisited. Preprint, CLC, Department of Mathematics, IST, Lisbon,
2006.

[Car50] Rudolf Carnap. Logical Foundations of Probability. The University of Chicago
Press, 1st edition, 1950.

[CCFMS07] R. Chadha, L. Cruz-Filipe, P. Mateus, and A. Sernadas. Reasoning about prob-
abilistic sequential programs. Theoretical Computer Science, 379(1-2):142–165,
2007.

[CIN05] Rance Cleaveland, S. Purushothaman Iyer, and Murali Narasimha. Probabilistic
temporal logics via the modal mu-calculus. Theoretical Computer Science, 342(2-
3):316–350, 2005.

[CSS05] C. Caleiro, A. Sernadas, and C. Sernadas. Fibring logics: past, present and
future. We will show them! Essays in Honour of Dov Gabbay, Vol. I, pages
363–388, 2005.

[dBCF13] Glauber de Bona, Fabio G. Cozman, and Marcelo Finger. Generalized Proba-
bilistic Satisfiability. 2013 Brazilian Conference on Intelligent Systems, pages
182–188, 2013.

[Fag90] R Fagin. A logic for reasoning about probabilities. Information and Computation,
87(1-2):78–128, 1990.

[FD04] Marcelo Finger and Glauber De Bona. Probabilistic Satisfiability: Logic-Based
Algorithms and Phase Transition. Department of Computer Science, Institute
of Mathematics and Statistics, University of São Paulo, Brazil, 2004.

[FH94] Alan M. Frisch and Peter Haddawy. Anytime deduction for probabilistic logic.
Artificial Intelligence, 69(1):93 – 122, 1994.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 7(1):1–32, 1994.

[Hai86] Theodore Hailperin. Boole’s Logic and Probability. Studies in Logic and the
Foundations of Mathematics 85. Elsevier Science Ltd, 2 sub edition, 1986.

[Hai96] Theodore Hailperin. Sentential Probability Logic. Bethlehem: Lehigh University
Press and London: Associated University Presses, 1996.

[Haj01] Alan Hajek. Probability, Logic, and Probability Logic. The Blackwell Guide to
Philosophical Logic, pages 362–384, 2001.

[HC96] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Rout-
ledge, 1996.

[Hen09] David Henriques. Model Checking Probabilistic Systems. Master’s thesis, Insti-
tuto Superior Técnico Lisboa, 2009.

64

[HJdA+99] Pierre Hansen, Brigitte Jaumard, Marcus Poggi de Aragão, Fabien Chauny, and
Sylvain Perron. Probabilistic Satisability with Imprecise Probabilities. Interna-
tional Journal of Approximate Reasoning, 24(2):171–189, 1999.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. Foundations of
Computer Science, 2000.

[HRWW11] Rolf Haenni, Jan-Willem Romeijn, Gregory Wheeler, and Jon Williamson.
Probabilistic Logic and Probabilistic Networks. The centre piece of Progicnet,
Springer, 2010, 2011.

[IG10] Magdalena Ivanovska and Martin Giese. Probabilistic Logic with Conditional
Independence. The CODIO project, 2010.

[Kol33] A. Kolmogorov. Foundations of the theory of probability. Chelsea Publishing
Co., 1st edition edition, 1933.

[Koz85] Dexter Kozen. A probabilistic PDL. Journal of Computer and System Sciences,
30(2):162–178, 1985.

[Lic91] Orna Lichtenstein. Decidability, Completeness, and Extensions of Linear Tem-
poral Logic. PhD thesis, Weizmann Institute of Science, 1991.

[MNBM16] Alexandre Madeira, Renato Neves, Lúıs S. Barbosa, and Manuel A. Martins.
A method for rigorous design of reconfigurable systems. Science of Computer
Programming, 2016.

[MNM16] Alexandre Madeira, Renato Neves, and Manuel A. Martins. An exercise on
the generation of many-valued dynamic logics. Journal of Logical and Algebraic
Methods in Programming, 2016.

[Mor11] Andreia Mordido. Dynamic probabilistic epistemic logic towards information
security. Master’s thesis, Instituto Superior Técnico Lisboa, 2011.

[MS04] P. Mateus and A. Sernadas. Exogenous Quantum Logic. CLC, Department of
Mathematics, IST, pages 1–11, 2004.

[MSS05] P. Mateus, A. Sernadas, and C. Sernadas. Exogenous semantics approach to
enriching logics. Essays on the Foundations of Mathematics and Logic, 1:165–
194, 2005.

[Nil86] Nils J. Nilsson. Probabilistic Logic. Artificial Intelligente, 28:71–87, 1986.

[Nil93] Nils J. Nilsson. Probabilistic Logic (revisited). Artificial Intelligente, 59:39–42,
1993.

[PW08] Witold A. Pogorzelski and Piotr Wojtylak. Completeness Theory for Proposi-
tional Logics. Studies in universal logic. Birkhäuser, 1st edition, 2008.

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230 –
245, 1963.

65

[Ram26] Frank Plumpton Ramsey. Truth and Probability. University Archive for the
History of Economic Thought, 1926.

[RS13] Fabrizio Riguzzi and Terrance Swift. Probabilistic Logic Programming Under
the Distribution Semantics. Preprint submitted to Elsevier, December 2013.

[RSS13] J. Rasga, A. Sernadas, and C. Sernadas. Fibring as biporting subsumes asym-
metric combinations. IST - UL and SQIG - IT, Lisbon, Portugal, 2013.

[RSS16] Joao Rasga, Cristina Sernadas, and Amilcar Sernadas. On probability and logic.
IST - UL and SQIG - IT, Lisbon, Portugal, pages 1–43, 2016.

[SA07] Afsaneh Shirazi and Eyal Amir. Probabilistic modal logic. Proceedings of the
22nd AAAI Conference on Artificial Intelligence, 22:489–495, 2007.

[She73] V. B. Shekhtman. Two-dimensional modal logic. Mathematical Notes of the
Academy of Sciences of the USSR, 23:417–424, 1973.

[SSC05] A. Sernadas, C. Sernadas, and C. Caleiro. Fibring of logics as a categorial
construction. Journal of Logic and Computation, 2005.

[Sto08] Marielle Stoelinga. An introduction to probabilistic automata. Department of
Cumputer Engineering, University of California at Santa Cruz, 2008.

[Tar56] A Tarski. Logic, Semantics, Metamathematics. Papers from 1923 to 1938. Ox-
ford Univ. Press, first edition, 1956.

[vB10] Johan F. A. K. van Benthem. Modal Logic for Open Minds. Chart, 199:1–390,
2010.

[VPKS13] Evgenii E. Vityaev, Leonid I. Perlovsky, Boris Ya Kovalerchuk, and Stanislav O.
Speransky. Probabilistic dynamic logic of cognition. Biologically Inspired Cog-
nitive Architectures, 6:159–168, 2013.

[Woj84] Ryszard Wojcicki. Lectures on Propositional Logic. Ossolineum, The Publishing
House of the Polish Academy of Sciences, 1984.

66

	Contents
	List of Tables
	Introduction
	State of the Art
	Probability Spaces
	Logic Systems
	Hilbert Calculus
	Classical Propositional Logic

	Real Closed Fields

	Probabilistic Propositional Logic
	Syntax
	Semantics
	Hilbert Calculus
	Soundness
	Completeness

	Extending Probabilistic Propositional Logic
	Uncertainty
	Interval Probability
	Conditional
	Independence of Formulas
	Suppositional Logic

	Probabilization of Logic Systems
	Probabilization of Classical Propositional Logic
	Probabilization of Modal Logic

	Conclusion and Further Work
	Bibliography

