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Abstract. We consider second order nonlinear Dirichlet systems driven by a nonlinear nonhomogeneous differential operator.
The reaction term consists of a maximal monotone map A(·) plus a multivalued perturbation F depending also on the deriva-
tive. Using tools from multivalued analysis and from the theory of nonlinear operators of monotone type, we prove existence
theorems both for the ”convex” (F convex-valued) and the ”nonconvex” (F nonconvex-valued) problems. We also present an
example of a system with unilateral constraints.
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1. INTRODUCTION

In this paper, we study the following second order nonlinear differential inclusion{
(a(u′ (t)))′ ∈ A(u(t))+F (t,u(t) ,u′ (t)) for a.a. t ∈ T := [0,b] ,
u(0) = u(b) = 0.

(1.1)

In this problem, a :RN→RN is a monotone homeomorphism, which includes as a special case the vector
p-Laplacian, A : RN → 2R

N
is a maximal monotone map and F : T ×RN → 2R

N\{∅} is a set-valued
nonlinearity.

Analogous second order systems were studied by Aizicovici-Papageorgiou-Staicu [1], Erbe-Krawcewicz
[5], Frigon [6], Frigon-Montoki [7], Halidias-Papageorgiou [10], Kyritsi-Matzakos-Papageorgiou [12],
Manasevich-Mawhin [13], Pruszko [16]. In all the above works either A ≡ 0 or the multifunction F
is independent of u′ or the conditions on F are more restrictive. The presence of the map A(·) in our
problem and the fact that in general D(A) 6= RN , enables us to incorporate in our framework differential
variational inequalities.

Our approach uses tools and results from multivalued analysis and from the theory of nonlinear op-
erators of monotone type. In the next section, for the convenience of the reader, we recall the basic
definitions and facts from these theories which we will use in the sequel.
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2. MATHEMATICAL BACKGROUND-HYPOTHESES.

We start with multivalued analysis. Further details can be found in Hu-Papageorgiou [11]. So, let
(Ω,Σ) be a measurable space and (X ,‖.‖) be a separable Banach space. We will use the following
notation:

P f (c) (X) = {A⊆ X : A is nonempty, closed, (and convex)} ,

P(w)k(c) (X) = {A⊆ X : A is nonempty, (weakly-) compact, (and convex)} .

We will use the symbol w−→ to designate weak convergence.
For a multifunction (set-valued map) F : Ω→ 2X\{∅} , the graph of F is the set

Gr F = {(ω,x) ∈Ω×X : x ∈ F (ω)} .

We say that F (.) is graph measurable if Gr F ∈ Σ×B (X) where B (X) is the Borel σ−field of X .

If F (.) is graph measurable and if µ is a σ−finite measure on Σ, then from the Yankov-von Neumann-
Aumann selection theorem (see Hu-Papageorgiou [11], pp.158-159), we know that we can find a se-
quence of Σ−measurable selections fn : Ω→ X (n ∈ N) of F (·) such that

F (ω)⊆ { fn (ω)}
n≥1

for µ− a.a. ω ∈Ω.

For a Pf (X)−valued multifunction F (·) , we say that F (·) is measurable, if for every u ∈ X , the
function

ω → d (u,F (ω)) := inf{‖u− x‖ : x ∈ F (ω)}

is Σ−measurable. For P f (X)−valued multifunctions, measurability implies graph measurability and
the converse is true if there is a complete σ−finite measure µ (·) on Σ.

Now suppose that (Ω,Σ,µ) is a σ−finite measure space, 1≤ p≤ ∞ and F : Ω→ 2X\{∅} is a multi-
function. We define

Sp
F = { f ∈ Lp (Ω,X) : f (ω) ∈ F (ω) µ− a.e.} .

If F (·) is graph measurable, then using the Yankov-von Neumann-Aumann selection theorem, we see
that Sp

F 6=∅, if and only if ω → inf{‖x‖ : x ∈ F (ω)} belongs to Lp (Ω) .

The set Sp
F is decomposable, in the sense that if (A, f1, f2) ∈ Σ×Sp

F ×Sp
F , then

f1χA + f2χΩ\A ∈ Sp
F .

Here, for any B ∈ Σ, χB denotes the characteristic function of B.
Let Y, V be Hausdorff topological spaces and G : Y → 2V\{∅} a multifunction. We say that G(·) is

”upper semicontinuous” (”usc” for short) if for every open set U ⊂V, G+ (U) := {y ∈ Y : G(y)⊂U} is
open. G(·) is said to be ”lower semicontinuous” (”lsc” for short) if for every open set U ⊂V, G− (U) :=
{y ∈ Y : G(y)∩U 6=∅} is open.

If V is regular space, then an usc multifunction has closed graph. The converse is true if G has closed
values and is locally compact (that is, for every y ∈ Y we can find U, a neighborhood of y such that
G(U) is compact in V ). Also, if V is a metric space, then a P f (V )−valued multifunction G : Y →
2V\{∅} is lsc if and only if for all v ∈ V, the function y→ d (v,G(y)) := inf{‖v− x‖ : x ∈ G(y)} is
upper semicontinuous.

Now we present some basic definitions and facts for nonlinear operators of monotone type. For further
details we refer to Gasinski-Papageorgiou [8]. So, let X be a reflexive Banach space and X∗ its topological
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dual. By 〈·, ·〉 we denote the duality brackets for the pair (X∗,X) . A multivalued map A : X→ 2X∗ is said
to be monotone if for all (x,x∗) , (u,u∗) ∈ GrA, we have

〈u∗− x∗,u− x〉 ≥ 0.

If 〈u∗− x∗,u− x〉= 0 =⇒ x = u, then we say that A is strictly monotone. The set

D(A) :=
{

x ∈ RN : A(x) 6=∅
}

is the domain of A. We say that a monotone map A(·) is maximal monotone if

[〈u∗− x∗,u− x〉 ≥ 0 for all (x,x∗) ∈ GrA] =⇒ (u,u∗) ∈ GrA,

that is, Gr A is not properly contained in the graph of a monotone map.
Let Xw (resp. X∗w) denote the space X (resp. X∗) endowed with the weak topology. We can easily see

that for a maximal monotone map A : X → 2X∗ , Gr A is closed in Xw×X∗ and in X×X∗w..
Let X = H be a Hilbert space and identify H with its dual by the Riesz-Frechet theorem (that is

H = H∗). Let A : H→ 2H be a maximal monotone map.
For λ > 0, we define the following single valued maps

Jλ := (I +λA)−1 (the resolvent of A),

Aλ :=
1
λ
(I− Jλ ) (the Yosida approximation of A).

The next proposition summarizes the properties of these two operators.

Proposition 2.1. If A : H→ 2H is a maximal monotone map and λ > 0, then:

(a) Jλ : H→ H is nonexpansive (that is, Lipschitz continuous with Lipschitz constant 1);
(b) Aλ (x) ∈ A(Jλ (x)) for all x ∈ H;
(c) Aλ (.) is monotone and Lipschtz continuous with Lipschitz constant 1

λ
(therefore Aλ (.) is maxi-

mal monotone too);
(d) ‖Aλ (x)‖ ≤

∥∥A0 (x)
∥∥= min{‖x∗‖ : x∗ ∈ A(x)} and Aλ (x)→ A0 (x) as λ → 0+ for all x ∈D(A) ;

(e) D(A) is convex and Jλ (x)→ pD(A) (x) as λ → 0+ for all x ∈ H.

Remark 2.1. The maximal monotonicity of A(·) implies that for all x ∈ D(A) , A(x) ∈ Pf c (H) and so
A0 (x) is well defined as the element of minimal norm in A(x) (see Proposition 2.1 (d)). Also pD(A) (·)
denotes the metric projection on the closed convex set D(A) (see Proposition 2.1 (e)). According to part
(e) , Jλ (.) can be viewed as an approximation of the identity map. Note that if D(A) =H, then Jλ (x)→ x
for all x ∈ H.

Let Y, V be two Banach spaces and K : Y →V. We say that:

(a) K is completely continuous, if

yn
w−→ y in Y =⇒ K (yn)→ K (y) in V.

(b) K is compact, if it is continuous and maps bounded sets into relatively compact sets.
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In general, these two notions are distinct. However, if Y is reflexive, then ”complete continuity” im-
plies ”compactness”. If Y is reflexive and K ∈L (Y,V ), then ”complete continuity” and ”compactness”
of K are equivalent.

A multifunction G : Y → 2V\{∅} is said to be compact if it is usc and maps bounded subsets of Y
into relatively compact subsets of V.

Suppose G : Y →Pwkc (V ) is upper semicontinuous from Y into Vw, K : V → Y is completely contin-
uous and Q = K ◦G. The following generalization of the Leray-Schauder Alternative Theorem (see [9],
Theorem 4.93, p. 642), is due to Bader [2].

Proposition 2.2. If Y, V, Q are as above and Q is compact, then one and only one of the following
properties holds:

(a) S := {y ∈ Y : y ∈ tQ(y) for some 0 < t < 1} is unbounded;
(b) Q(·) has a fixed point.

In what follows, by |·| we denote the norm of RN and by (·, ·)RN we denote the usual inner product on
RN . By ‖·‖ we denote the norm of the Sobolev space W 1,p

0

(
(0,b) ;RN

)
and by ‖·‖p we denote the norm

of the space Lp
(
(0,b) ;RN

)
. From the Poincare inequality, we have

‖u‖=
∥∥u′
∥∥

p for all u ∈W 1,p
0

(
(0,b) ;RN) , 1 < p < ∞.

Recall that (
W 1,p

0

(
(0,b) ;RN))∗ =W−1,p′ ((0,b) ;RN) , where

1
p
+

1
p′

= 1.

By 〈·, ·〉 we denote the duality brackets for this dual pair.
In the sequel, for notational simplicity, we write W 1,p

0 for W 1,p
0

(
(0,b) ;RN

)
, W−1,p′ for

W−1,p′ ((0,b) ;RN)= (W 1,p
0

(
(0,b) ;RN))∗

(with 1
p +

1
p′ = 1), and Lq for Lq

(
T,RN

)
, where T = [0,b] and 1≤ q≤ ∞.

We will also need some information about the spectrum of the vector Dirichlet p−Laplacian. So, we
consider the following nonlinear vector eigenvalue problem

(
−|u′ (t)|p−2 u′ (t)

)′
= λ̂ |u(t)|p−2 u(t) for a.a. t ∈ T := [0,b] ,

u(0) = u(b) = 0,
(2.1)

where 1 < p < ∞. We know (see Gasinski-Papageorgiou [8], Theorem 6.3.10, p.768) that (2.1) has a
sequence of eigenvalues

{
λ̂n

}
n≥1
⊂ (0,+∞) such that

λ̂n =
(n

b

)p
(p−1)

2
1∫

0

dt

(1− t p)
1
p

p

for all n≥ 1.

So, λ̂n→+∞ as n→+∞. The corresponding eigenfunctions are

ûn (t) = ξ un (t) for all t ∈ T, all n≥ 1,
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where ξ ∈ RN and un (·) is the corresponding scalar eigenfunction. Also recall the following variational
characterization of λ̂1 (see [8], p. 761)

λ̂1 = inf

{
‖u′‖p

p

‖u‖p
p

: u ∈W 1,p
0 (0,b),u 6= 0

}
. (2.2)

These facts lead to the following useful result (see Motreanu-Motreanu-Papageorgiou [15], Lemma
11.3, p.305):

Proposition 2.3. If η ∈ L∞ (T ) , η (t)≤ λ̂1 for a.a. t ∈ T and η 6= λ̂1, then there exists C1 > 0 such that

∥∥u′
∥∥p

p−
b∫

0

η (t) |u(t)|p dt ≥C1 ‖u‖p for all u ∈W 1,p
0 .

Now we introduce our hypotheses on the data of (1.1) .

H(a) : a : RN → RN is of the form a(x) = k (x)x or a(x) = (km (x)xm)
N
m=1 with k : RN → R+ or km :

R→ R+ continuous and such that
(i) a(·) is strictly monotone;
(ii) (a(x) ,x)RN ≥C0 |x|p for all x ∈ RN some C0 > 0 and with p≥ 2.

Remark 2.2. These conditions on a(·) are a little more restrictive than those employed by Manasevich-
Mawhin [13]. However, they are general enough to incorporate in our analysis many differential opera-
tors of interest. For example, let

a(x) = |x|p−2 x or a(x) =
(
|xm|p−2 xm

)N

m=1
for all x = (xm)

N
m=1 ∈ RN , p≥ 2.

Then these maps satisfy hypotheses H(a) and correspond to different versions of the p−Laplacian (see
Zhang [17]). We stress that we do not impose any growth conditions on a(·) . So, if β (x)= 1

p

(
Ce|x|

p
−1
)

with C > 1, 2≤ p < ∞, then

a(x) = ∇β (x) =
(

Ce|x|
p
−1
)
|x|p−2 x, x ∈ RN

satisfies hypotheses H(a) . Another possibility for a(·) is

a(x) = ξ (|x|) |x|p−2 x, p≥ 2,

with ξ : R+ → R+ continuous, 0 < C0 ≤ ξ (r) for all r ≥ 0 and r→ ξ (r)rp−1 strictly increasing on
(0,+∞) . For example, let ξ (r) = r+1

r+2 .

Note that a(·) is a homeomorphism and
∣∣a−1 (x)

∣∣→+∞ as |x| →+∞.

H(A) : A : RN → 2R
N

is a maximal monotone map such that 0 ∈ A(0) .

Remark 2.3. We stress that we do not assume that D(A) =RN . This way we incorporate in our analysis
differential variational inequalities (that is, systems with unilateral constraints).

H(F) : F : T ×RN×RN →Pkc
(
RN
)

is a multifunction such that
(i) for a. a. x, y ∈ RN , t→ F (t,x,y) is graph measurable;
(ii) for a. a. t ∈ T, (x,y)→ F (t,x,y) has closed graph;
(iii) for a.a. t ∈ T, all x,y ∈ RN and all v ∈ F (t,x,y) , we have

|v| ≤ γ1 (t, |x|)+ γ2 (t, |x|) |y|p−1 ,
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where γi : T ×R+→ R+ satisfy

sup{γ1 (t,r) : 0≤ r ≤ k} ≤ η1,k (t) , η1,k ∈ Lp′ (T )+

and

sup{γ2 (t,r) : 0≤ r ≤ k} ≤ η2,k (t) , η2,k ∈ L∞ (T )+ ;

(iv) if m(t,x,y) := inf{(v,x)RN : v ∈ F (t,x,y)} , then

liminf
|x|→+∞

inf
{

m(t,x,y) : y ∈ RN
}

|x|p
≥−θ (t) uniformly for a.a. t ∈ T,

where θ ∈ L∞ (T )+ , θ (t)≤C0λ̂1 for a.a. t ∈ T, θ 6=C0λ̂1 with C0 > 0 as in hypothesis H(a)(ii) .

Remark 2.4. Note that t → F (t,x,y) is measurable and for a.a. t ∈ T, F (t, ·, ·) is usc. Hypothesis
H(F)(iv) is a kind of nonresonance condition. Indeed, if a(x) = |x|p−2 x (the vector p-Laplacian opera-
tor, hence C0 = 1), A≡ 0 and F is single valued and independent on y ∈ RN , then hypothesis H(F)(iv)
is a nonuniform nonresonance condition employed quite often in problems of variational character (see
Zhang [17]).

3. AUXILIARY RESULTS

Throughout the remainder of the paper, p ∈ [2,∞) is the same as in assumption H(a)(ii) .
We start by considering the following auxiliary Dirichlet system{

−(a(u′ (t)))′+ |u(t)|p−2 u(t) = g(t) for a.a. t ∈ T := [0,b] ,
u(0) = u(b) = 0.

(3.1)

with g ∈ Lp′
(
T,RN

)
(recall that 1

p +
1
p′ = 1).

Proposition 3.1. If hypotheses H(a) hold, then problem (3.1) has a unique solution u ∈C1
(
T,RN

)
.

Proof. For every h ∈ Lp′
(
T,RN

)
, the Dirichlet system{
−(a(u′ (t)))′ = h(t) for a.a. t ∈ T := [0,b] ,
u(0) = u(b) = 0

(3.2)

has a unique solution. To see this, note that from (3.2) after integration over [0, t] , we obtain

a
(
u′ (t)

)
= α−H (h)(t) for a.a. t ∈ T,

where α ∈ RN and H : Lp′
(
T,RN

)
→C

(
T,RN

)
is defined by

H (h)(t) =
t∫

0

h(s)ds.

So, we have

u′ (t) = a−1 (α−H (h)(t)) for a.a. t ∈ T, u(0) = u(b) = 0.

Integrating over [0, t] , we obtain

u(t) =
t∫

0

a−1 (α−H (h)(s))ds.
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Note that u(b) =
b∫

0

a−1 (α−H (h)(s))ds = 0. From Proposition 2.2 (i) of Manasevich-Mawhin [13],

we know that the equation
b∫

0

a−1 (α−H (h)(s))ds = 0 in α ∈RN , has a unique solution α = σ (H (h)) .

Therefore problem (3.2) has a unique solution

u(t) =
t∫

0

a−1 (σ (H (h))−H (h)(s))ds. (3.3)

Now let K : Lp′ →W 1,p
0 be the map which to each h ∈ Lp′

(
T,RN

)
assigns the unique solution (3.3) for

problem (3.1) .

Claim 1: K : Lp′ →W 1,p
0 is completely continuous.

Let hn
w−→ h in Lp′ and set un = K (hn) ∈W 1,p

0 for any n ∈ N. We have

−
(
a
(
u′n (t)

))′
= hn (t) for a.a. t ∈ T, all n ∈ N. (3.4)

Taking the inner product with un (t) , integrating over T = [0,b] and performing an integration by parts,
we obtain

C0
∥∥u′n
∥∥p

p ≤ ‖hn‖p ‖un‖p

(see hypothesis H(a)(ii)). Hence {un}n≥1 ⊆W 1,p
0 is bounded (by Poincare’s inequality). Also, directly

from (3.4) we have that {(
a
(
u′n (t)

))′}
n≥1
⊆ Lp′ is bounded. (3.5)

From (3.3) , we know that

u′n (t) = a−1 (α−H (h)(t)) for a.a. t ∈ T, all n ∈ N. (3.6)

From Proposition 2.2 (ii) of Manasevich-Mawhin [13] we know that the solution map σ : C
(
T,RN

)
→

RN is continuous and bounded (that is, maps bounded sets to bounded sets). Also, H : Lp′ →C
(
T,RN

)
is linear continuous. Moreover, if N1 : C

(
T,RN

)
→C

(
T,RN

)
is defined by

N1 (y)(·) = a−1 (y(·)) ,

then N1 is continuous and maps bounded sets to bounded sets. So, from (3.6) it follows that we can find
C2 > 0 such that ∣∣u′n (t)∣∣≤C2 for all t ∈ T, all n ∈ N.

hence ∣∣a(u′n (t))∣∣≤C3 for some C3 > 0, all t ∈ T, all n ∈ N,

therefore {
a
(
u′n (·)

)}
n≥1 ⊆W 1,p′ is bounded,

and we conclude that {
a
(
u′n (·)

)}
n≥1 ⊆C

(
T,RN) is relatively compact,
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(recall that W 1,p′ ↪→C
(
T,RN

)
compactly). The continuity of N1 (·) implies that {u′n}n≥1 ⊆C

(
T,RN

)
is

relatively compact. Therefore, we can say that

{un}n≥1 ⊆C1 (T,RN) is relatively compact.

So, we may assume that
un→ u in C1 (T,RN) .

Passing to the limit as n→ ∞ in (3.4) we have

−
(
a
(
u′ (t)

))′
= h(t) for a.a. t ∈ T, u(0) = u(b) = 0,

hence u ∈ K (h) , therefore K is completely continuous. This proves Claim 1.
Next, let N2 : W 1,p

0 → Lp′ be the map defined by

N2 (u)(·) =−|u(·)|p−2 u(·)+g(·) .

Evidently, N2 (·) is continuous and bounded. A solution of (3.1) is a fixed point of the composition
K ◦N2. We shall produce such a fixed point using the classical Leray-Schauder alternative theorem.

Claim 2: The set S =
{

u ∈W 1,p
0 : u = β (K ◦N2)(u) for some β ∈ (0,1)

}
is bounded.

Let u ∈ S. We have

−
(

a
(

1
β

u′ (t)
))′

+ |u(t)|p−2 u(t) = g(t) for a.a. t ∈ T, u(0) = u(b) = 0.

Taking the inner product with u(t) , integrating over T = [0,b] and using as before integration by parts,
we obtain

C0

β p−1

∥∥u′
∥∥p

p +
1

β p−1 ‖u‖
p
p ≤ ‖g‖p′ ‖u‖p

(see hypothesis H(a)(ii)), hence

‖u‖p−1 ≤C4 ‖g‖p′ for some C4 > 0,

therefore S⊆W 1,p
0 is bounded. This proves Claim 2.

We apply the Leray-Schauder alternative theorem and obtain û∈C1
(
T,RN

)
such that û=(K ◦N2)(û) .

Then û ∈C1
(
T,RN

)
is a solution of (3.1) . In fact the solution is unique on account of the strictly mono-

tonicity of RN 3 x→ |x|p−2 x. �

Consider the operator V : D(V )⊆ Lp→ Lp′ defined by

V (u)(·) =−a
(
u′ (·)

)
for all u ∈ D(V ) =

{
u ∈C1

(
T,RN

)
: a(u′ (·)) ∈W 1,p′ , u(0) = u(b) = 0

}
.

Proposition 3.2. If hypotheses H(a) hold, then V : D(V )⊆ Lp→ Lp′ is maximal monotone.

Proof. Let J : Lp → Lp′ be the continuous, strictly monotone (hence maximal monotone, too) coercive
map, defined by

J (u)(·) = |u(·)|p−2 u(·) for all u ∈ Lp.

According to Proposition 3.1, we have
R(V + J) = Lp′ . (3.7)

We show that (3.7) implies the maximal monotonicity of V (·) .
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In what follows, let (·, ·)pp′ denote the duality brackets for the dual pairs
(

Lp′ ,Lp
)
, that is,

(h,u)pp′ =

b∫
0

(h(t) ,u(t))RN dt for all h ∈ Lp′ , all u ∈ Lp.

Evidently, V (·) is monotone. Suppose that for some y ∈ Lp and some v ∈ Lp′ we have

(V (u)− v,u− y)pp′ ≥ 0 for all u ∈ D(V ) . (3.8)

Exploiting the surjectivity of V + J (see (3.7)), we can find u1 ∈ D(V ) such that

V (u1)+ J (u1) = v+ J (y) .

We use this in (3.8) to obtain

(V (u1)−V (u1)− J (u1)+ J (y) ,u1− y)pp′ ≥ 0,

hence

(J (u1)− J (y) ,u1− y)pp′ ≤ 0,

therefore y = u1 ∈ D(V ) and v =V (u1) . This proves the maximality of V (.) . �

Now we consider the following approximation of problem (1.1) :{
(a(u′ (t)))′ ∈ Aλ (u(t))+F (t,u(t) ,u′ (t)) for a.a. t ∈ T := [0,b] ,
u(0) = u(b) = 0, λ > 0.

(3.9)

We prove the existence of solutions for problem (3.9) .

Proposition 3.3. If hypotheses H(a) , H(A) , H(F) hold, then problem (3.9) has a solution uλ ∈C1
(
T,RN

)
.

Proof. Let Aλ : Lp→ Lp′ be the Nemitsky operator corresponding to Aλ (·) , that is,

Aλ (u)(·) = Aλ (u(·)) for all u ∈ Lp.

This map is continuous, monotone, hence maximal monotone. Let Eλ =V +J+Aλ : D(V )⊆ Lp→ Lp′.

Proposition 3.2 and Theorem 3.2.41 of Gasinski-Papageorgiou ([8], p. 328) imply that Eλ is maximal
monotone. Also, for u ∈ D(V ) we have

(Eλ (u) ,u)pp′ = (V (u) ,u)pp′+(J (u) ,u)pp′+(Aλ (u) ,u)pp′

≥C0
∥∥u′
∥∥p

p +‖u‖
p
p

(see hypothesis H(a)(ii) and note that Aλ (0) = 0), hence Eλ is coercive.
But a maximal monotone, coercive map, is surjective (see Gasinski-Papageorgiou ([8], Corollary

3.2.31, p.319). Also Eλ is strictly monotone (since J (·) is), and so it is injective, therefore Eλ is a
bijection.

Consider the map E−1
λ

: Lp′→ D(V )⊆W 1,p
0 .

Claim 3: E−1
λ

: Lp′ →W 1,p
0 is completely continuous.

Let gn
w−→ h in Lp′ and set un = E−1

λ
(gn) for all n ∈ N. We have

Eλ (un) = gn for all n ∈ N,
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and so {
−(a(u′n (t)))

′+ |un (t)|p−2 un (t)+Aλ (un (t)) = gn (t) for a.a. t ∈ T,
un (0) = un (b) = 0.

(3.10)

As before, we take the inner product with un (t) , integrate over T = [0,b] , use integration by parts and
hypothesis H(a)(ii), and recall that for all x ∈ RN , (Aλ (x) ,x)RN ≥ 0 (since Aλ (0) = 0). So, we obtain

C0
∥∥u′n
∥∥p

p +‖un‖p
p ≤ ‖gn‖p′ ‖un‖p ,

hence {un}n≥1 ⊆ W 1,p
0 is bounded, therefore {un}n≥1 ⊆ C

(
T,RN

)
is relatively compact (recall that

W 1,p
0 ↪→C

(
T,RN

)
compactly). Then from (3.10) and Proposition 2.1, we see that{(

a
(
u′n (·)

))′}
n≥1
⊆ Lp′ is bounded.

Also, from (3.10) we have(
a
(
u′n (t)

))′
= |un (t)|p−2 un (t)+Aλ (un (t))−gn (t) for a.a. t ∈ T,

hence

a
(
u′n (t)

)
= a

(
u′n (0)

)
+

t∫
0

[
|un (s)|p−2 un (s)+Aλ (un (s))−gn (s)

]
ds

for all t ∈ T, all n ∈ N.

Set
k̃ (un)(t) :=−|un (t)|p−2 un (t)−Aλ (un (t))+gn (t) .

Then k̃ (un)(·) ∈ Lp′ for all n ∈ N and we have

u′n (t) = a−1
(

a
(
u′n (0)

)
−H

(
k̃ (un)

)
(t)
)
, for all t ∈ T.

Since
b∫

0

u′n (t)dt = 0 (by the Dirichlet boundary condition), we have

a
(
u′n (0)

)
= σ

(
H
(

k̃ (un)
))

for all n ∈ N

(see Manasevich-Mawhin [13], Proposition 2.2 (i) and the proof of Proposition 3.1).
Therefore

u′n (t) = a−1
(

σ

(
H
(

k̃ (un)
))
−H

((
k̃ (un)

)
(t)
))

, for all t ∈ T. (3.11)

Note that ∥∥∥H
(

k̃ (un)
)∥∥∥

C(T,RN)
≤C5 for some C5 > 0, all n ∈ N.

Also, we know that σ : C
(
T,RN

)
→ RN is continuous and bounded (i.e., maps bounded sets to bounded

sets). Similarly, recall that N1 : C
(
T,RN

)
→C

(
T,RN

)
defined by

N1 (u) = a−1 (u(·)) for all u ∈C
(
T,RN)

is continuous and bounded. Therefore from (3.11) it follows that we can find C6 > 0 such that∣∣u′n (t)∣∣≤C6 for all n ∈ N, all t ∈ T,

hence ∣∣a(u′n (t))∣∣≤C7 for some C7 > 0,all n ∈ N, all t ∈ T
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(recall that a(·) is continuous). So, finally we conclude that {a(u′n)}n≥1 ⊆W 1,p′ is bounded, hence
{a(u′n)}n≥1 ⊆ C

(
T,RN

)
is relatively compact, and we derive that {u′n}n≥1 ⊆ C

(
T,RN

)
is relatively

compact. Therefore we have proved that {un}n≥1 ⊆C1
(
T,RN

)
is relatively compact. We may assume

that

un→ u in C1 (T,RN) as n→ ∞.

For every ψ ∈C1
0
(
(0,b) ,RN

)
, we have

b∫
0

(
a
(
u′n (t)

)
,ψ ′ (t)

)
RN dt +

b∫
0

|un (t)|p−2 (un (t) ,ψ (t))RN dt

+

b∫
0

(Aλ (un (t)) ,ψ (t))RN dt =
b∫

0

(gn (t) ,ψ (t))RN dt, for all n ∈ N.

Passing to the limit as n→+∞, we obtain

b∫
0

(
a
(
u′ (t)

)
,ψ ′ (t)

)
RN dt +

b∫
0

|u(t)|p−2 (u(t) ,ψ (t))RN dt

+

b∫
0

(Aλ (u(t)) ,ψ (t))RN dt =
b∫

0

(g(t) ,ψ (t))RN dt.

Since ψ ∈C1
0
(
(0,b) ,RN

)
is arbitrary, it follows that{

−(a(u′ (t)))′+ |u(t)|p−2 u(t)+Aλ (u(t)) = g(t) for a.a. t ∈ T,
u(0) = u(b) = 0,

hence u = E−1
λ

(g) . This proves Claim 3.

Next, let N3 : W 1,p
0 → 2Lp′

be the multifunction defined by

N3 (u) = Sp′

−F(·,u(.),u′(.))+ J (u) for all u ∈W 1,p
0 .

Claim 4: N3 is Pwkc

(
Lp′
)
−valued and is usc from W 1,p

0 into Lp′ with the w-topology (denoted hereafter

by Lp′
w ).

First we show the nonemptiness of the values of N3. Hypotheses H(F)(i) , (ii) do not imply that
F (t,x,y) is superpositionally measurable (see Hu-Papageorgiou [11], Example 7.2, p.227). So we cannot
use directly in F (·,u(·) ,u′ (·)) the Yankov-von Neumann-Aumann selection theorem. To overcome this
difficulty, we proceed as follows. Given u ∈W 1,p

0 let {sn}n≥1 , {rn}n≥1 be two sequences of RN−valued
step functions such that sn (t)→ u(t) and rn (t)→ u′ (t) for a.a. t ∈ T, as n→ +∞ and |sn (t)| ≤ |u(t)| ,
|rn (t)| ≤ |u′ (t)| , a.e. on T (note that u, u′ ∈ Lp). See Dinculeanu ([4] , p.99).

Then, for every n∈N, hypothesis H(F)(i) implies that t→F (t,sn (t) ,rn (t)) is Lebesgue measurable.
So, for this multifunction we can use the Yankov-von Neumann-Aumann selection theorem (see Hu-
Papageorgiou [11], p.158) and for each n ∈ N, we obtain fn : T → RN , measurable functions such that

fn (t) ∈ −F (t,sn (t) ,rn (t)) for almost all t ∈ T.
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On account of hypothesis H(F)(iii) , we see that { fn}n≥1 ⊆ Lp′ is bounded. So, we may assume that

fn
w−→ f in Lp′ as n→+∞.

Invoking Proposition 3.9 of Hu-Papageorgiou ([11], p. 694), we obtain

f (t) ∈ conv limsup
n→∞

(−F (t,sn (t) ,rn (t)))⊆−F
(
t,u(t) ,u′ (t)

)
for a. a. t ∈ T.

The last inclusion follows from hypothesis H(F)(ii) . So, we see that

f ∈ Sp′

−F(·,u(·),u′(·)).

Therefore we have established the nonemptiness of the values of N3 (·) .
It is clear that N3 (·) has bounded, closed, convex values. Hence, N3 (u)∈Pwkc

(
Lp′
)

for all u∈W 1,p
0 .

To show the upper semicontinuity of N3 (·) , note that N3 (·) is bounded (that is maps bounded sets to
bounded sets). Recall that bounded sets in Lp′ with the relative weak topology are metrizable. So, ac-
cording to Proposition 2.23 of Hu-Papageorgiou ([11], p. 43), to prove the claimed upper semicontinuity
of N3 (·) it suffices to show that GrN3 ⊆W 1,p

0 ×Lp′
w is sequentially closed (see also Section 2). To this

end consider {(un,gn)}n≥1 ⊆ GrN3 such that

un→ u in W 1,p
0 and gn

w−→ g in Lp′ as n→+∞.

Using the compact embedding of W 1,p
0 into C

(
T,RN

)
, we have

un (t)→ u(t) for a.a. t ∈ T, as n→ ∞.

Also, we can say that
u′n (t)→ u′ (t) for a.a. t ∈ T, as n→ ∞.

Then, as before, we have

g(t) ∈ conv limsup
n→∞

(
−F
(
t,un (t) ,u′n (t)

)
+ |un (t)|p−2 un (t)

)
⊆−F

(
t,u(t) ,u′ (t)

)
+ |u(t)|p−2 u(t) for a. a. t ∈ T,

hence g ∈ N3 (u) . This proves Claim 4.
We next consider the set

S =
{

u ∈W 1,p
0 : u ∈ βE−1

λ
N3 (u) , 0 < β < 1

}
.

Claim 5: S⊆W 1,p
0 is bounded.

Let u ∈ S. We have

Eλ

(
1
β

u
)
∈ N3 (u) ,

hence 
−
(

a
(

1
β

u′ (t)
))′

+ 1
β
|u(t)|p−2 u(t)+Aλ

(
1
β

u(t)
)

= f (t)+ |u(t)|p−2 u(t) for a.a. t ∈ T
u(0) = u(b) = 0, f ∈ Sp

−F(·,u(·),u′(·))

(3.12)

Hypothesis H(F)(iv) implies that given ε > 0, we can find M1 = M1 (ε)> 0 such that for a.a. t ∈ T, all
|x| ≥M1, all y ∈ RN and all v ∈ −F (t,x,y) , we have

(v,x)RN ≤ [θ (t)+ ε] |x|p .
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From hypothesis H(F)(iii) we see that for a. a. t ∈ T, all |x| < M1, all y ∈ RN and all v ∈ −F (t,x,y) ,
we have

|v| ≤ η1,M1 (t)+η2,M1 (t) |y|
p−1

therefore

(v,x)RN ≤M1η1,M1 (t)+M1η2,M1 (t) |y|
p−1 .

Consequently, finally, for a. a. t ∈ T, all x, y ∈ RN and all v ∈ −F (t,x,y) we have

(v,x)RN ≤ (θ (t)+ ε) |x|p +C8 |y|p−1 +µ (t) (3.13)

for some C8 > 0 and µ ∈ L1 (T )+ . Returning to (3.12) , taking the inner product with u(t) , integrating
over T = [0,b] , performing an integration by parts and using (3.13) , we obtain

C0

β p−1

∥∥u′
∥∥p

p +

(
1

β p−1 −1
)
‖u‖p

p ≤
b∫

0

(θ (t)+ ε) |u|p dt +C8

b∫
0

∣∣u′∣∣p−1 dt +‖µ‖1 .

Employing (2.2) and Holder’s inequality, we arrive at

C0
∥∥u′
∥∥p

p−
b∫

0

θ (t) |u|p dt− ε

λ̂1

∥∥u′
∥∥p

p ≤C9
∥∥u′
∥∥p−1

p +‖µ‖1

for some C9 > 0. Therefore(
C10−

ε

λ̂1

)∥∥u′
∥∥p

p ≤C9
∥∥u′
∥∥p−1

p +‖µ‖1 for some C10 > 0 (3.14)

(see hypothesis H(F)(iv) and Proposition 2.3). Choosing ε ∈
(

0,C10λ̂1

)
, from (3.14) we have∥∥u′

∥∥p
p ≤C11

(∥∥u′
∥∥p−1

p +1
)

for some C11 > 0. (3.15)

From (3.15) and Poincare’s inequality it follows that

‖u‖ ≤C12 for some C12 > 0, all u ∈ S,

and we conclude that S⊆W 1,p
0 is bounded. This proves Claim 5.

Now Claims 3, 4, and 5 permit the use of Proposition 2.2. So, we can find uλ ∈ D(V ) such that

uλ ∈ E−1
λ

N3 (uλ ) .

Evidently uλ ∈C1
(
T,RN

)
and it is a solution of problem (3.9) . �

Eventually we will let λ → 0+, to produce a solution of problem (1.1) . To do this, we need an
additional auxiliary result.

Let 1 < r, r′ < ∞, 1
r +

1
r′ = 1 and let A : Lr→ 2Lr′

be the lifting (realization) of A(·) defined by

A (u) =
{

h ∈ Lr′ : h(t) ∈ A(u(t)) for a.a. t ∈ T
}

for all u ∈ D(A ) , where

D(A ) =
{

y ∈ Lr : y(t) ∈ D(A) for a.a. t ∈ T, Sr′
A(u(·)) 6=∅

}
.

Since 0 ∈ D(A ) , it follows that D(A ) 6=∅.
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The next Proposition is known for Hilbert spaces (see Brezis [3], p.25). However, our proof here is
different and can be easily extended to Banach spaces.

Proposition 3.4. If hypotheses H(a) hold, then A : Lr→ 2Lr′
is maximal monotone.

Proof. Let e : RN → RN be defined by e(x) = |x|r−2 x. This map is continuous and strictly monotone
(hence maximal monotone). The Nemitsky operator corresponding to e(·) is the map J : Lr→ Lr′ defined
by

J (u)(·) = |u(·)|r−2 u(·) for all u ∈ Lr.

From the proof of Proposition 3.2, we know that to prove the maximality of A (·) it suffices to show that

R(A + J) = Lr′ . (3.16)

We know that x → (A+ e)(x) is maximal monotone and coercive (recall that 0 ∈ A(0)). Therefore
R(A+ e) = RN (see Gasinski-Papageorgiou [8], Corollary 3.2.31, p. 319).

Let h ∈ Lr′ and consider the multifunction L : T → 2R
N

defined by

L(t) =
{

x ∈ RN : A(x)+ e(x) 3 h(t)
}
.

From the surjectivity of (A+ e)(·) , we see that L(t) 6= ∅ for a.a. t ∈ T. Consider the function η :
T ×RN → RN×RN defined by

η (t,x) = (x,h(t)− e(x)) .

Then η is a Carathéodory function (that is, for all x ∈ RN , t → η (t,x) is measurable and for almost all
t ∈ T, x→ η (t,x) is continuous). Therefore η (·, ·) is jointly measurable (see Hu-Papageorgiou [11],
Proposition 1.6, p. 142). We have

GrL =
{
(t,x) ∈ T ×RN : η (t,x) ∈ GrA

}
= η

−1 (GrA) .

Recall that GrA⊆ RN×RN is closed (since A is maximal monotone). Then the joint measurability of η

implies that
GrL = η

−1 (GrA) ∈LT ×B
(
RN) ,

where LT is the Lebesgue σ−field of T and B
(
RN
)

is the Borel σ−field of RN . We can apply Yankov-
von Neumann-Aumann selection theorem and produce a measurable map u : T → RN such that u(t) ∈
L(t) for a.a. t ∈ T. Then we have

h(t) ∈ A(u(t))+ e(u(t)) for a.a. t ∈ T.

We take the inner product with u(t) ∈ RN and obtain

|u(t)|r ≤ |h(t)| |u(t)| for a.a. t ∈ T

(recall that 0 ∈ A(0)), hence
|u(t)|r−1 ≤ |h(t)| for a.a. t ∈ T,

and it follows that u ∈ Lr. Therefore, finally we have A (u)+J (u) 3 h with h ∈ Lr′ , and so, (3.16) holds,
implying that A (·) is maximal monotone. �

Remark 3.1. In fact the result is true if RN is replaced by a reflexive Banach space X. The same proof
with minor changes works in this more general case.
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4. EXISTENCE THEOREMS

In this section we prove several existence theorems for problem (1.1) . First we prove an existence
theorem under slightly stronger hypotheses on the multivalued perturbation F (t,x,y) (”convex” problem,
since F is convex valued). Specifically, we assume:

H(F)1 : F : T ×RN×RN →Pkc
(
RN
)

satisfies H(F)(i) ,(ii) ,(iv) as well as H(F)(iii) where the expo-

nent p−1 is replaced by q = max
{

1, p−1
2

}
and η1,k ∈ L2 (T )+ .

Theorem 4.1. If hypotheses H(a) , H(A) , H(F)1 hold, then problem (1.1) has a solution u∈C1
(
T,RN

)
.

Proof. Let λn→ 0+ and let un = uλn ∈C1
(
T,RN

)
be a solution of (3.9) with λ = λn, n ∈ N (see Propo-

sition 3.3). We have

{
−(a(u′n (t)))

′ = Aλn (un (t))+ fn (t) for a.a. t ∈ T,
un (0) = un (b) = 0,

(4.1)

with fn ∈ Sp′

F(·,un(·),u′n(·))
for all n ∈ N. As before, acting on (4.1) with un (t) we obtain

C0
∥∥u′n
∥∥p

p ≤
b∫

0

(− fn (t) ,un (t))RN dt for all n ∈ N. (4.2)

From (3.13) , we have

(− fn (t) ,un (t))RN ≤ [θ (t)+ ε] |un (t)|p +C8
∣∣u′n (t)∣∣p−1

+µ (t) for a.a. t ∈ T.

Using this in (4.2) , as in the proof of Proposition 3.3, and invoking Proposition 2.3, we deduce that

{un}n≥1 ⊆W 1,p
0 is bounded.

So, we may assume that

un
w−→ u in W 1,p

0 and un→ u in C
(
T,RN) . (4.3)

We return to (4.1) and take the inner product with Aλnun (t) . Integrating over T = [0,b] , we have

b∫
0

(
−
(
a
(
u′n (t)

))′
,Aλn (un (t))

)
RN

dt +
∥∥Aλn (un)

∥∥2
2 (4.4)

≤
b∫

0

| fn (t)|
∣∣Aλn (un (t))

∣∣dt.
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Note that Aλn (un) = Aλn (un) ∈ C
(
T,RN

)
. Performing an integration by parts in the first integral, we

have
b∫

0

(
−
(
a
(
u′n (t)

))′
,Aλn (un (t))

)
RN

dt

=−
((

a
(
u′n (b)

))′
,Aλn (un (b))

)
RN

+
((

a
(
u′n (0)

))′
,Aλn (un (0))

)
RN

+

b∫
0

(
a
(
u′n (t)

)
,

d
dt

Aλn (un (t))
)

RN
dt

=

b∫
0

(
a
(
u′n (t)

)
,

d
dt

Aλn (un (t))
)

RN
dt

(since un (b) = un (0) = 0 and Aλn (0) = 0).
Recall that for n ∈ N, Aλn : RN → RN is Lipschitz continuous (see Proposition 2.1). So, by the

Rademacher’s theorem (see, for example Gasinski-Papageorgiou [8], Theorem 1.5.8, p. 56), we know
that Aλn (·) is differentiable at every x ∈ RN\S1 with |S1|N = 0 (here |.|N denotes the Lebesgue measure
on RN). Then, for all x ∈ RN\S1, all h ∈ RN and all τ > 0, we have(

h,
Aλn (x+ τh)−Aλn (x)

τ

)
RN
≥ 0 (since Aλn is monotone),

hence sending τ → 0+ we get (
h,A′

λn
(x)h

)
RN ≥ 0. (4.5)

From the chain rule of Marcus-Mizel [14], we have

d
dt

Aλn (un (t)) = A′
λn
(un (t))u′n (t) for a.a. t ∈ T. (4.6)

If a(x) = k (x)x (cf. H(a)), then

b∫
0

(
−
(
a
(
u′n (t)

))′
,Aλn (un (t))

)
RN

dt (4.7)

=

b∫
0

(
a
(
u′n (t)

)
,

d
dt

Aλn (un (t))
)

RN
dt

=

b∫
0

k
(
u′n (t)

)(
u′n (t) ,A

′
λn
(un (t))u′n (t)

)
RN dt

≥ 0 (see (4.6) and (4.5))

Similarly if a(x) = (km (x)xm)
N
m=1 .

Let M1 = sup‖un‖C(T,RN) . Then hypothesis H(F)1 (iii) implies that

| fn (t)| ≤ η1,M1 (t)+η2,M1 (t)
∣∣u′n (t)∣∣q for a.a. t ∈ T, all n ∈ N (4.8)

with η1,M1 ∈ L2 (T ) , η2,M1 ∈ L∞ (T ). Since u′n ∈C
(
T,RN

)
(recall that un ∈ D(V ) for all n ∈ N) we see

that fn ∈ L2
(
T,RN

)
for all n ∈ N. Moreover, by (4.3) and (4.8) it follows that { fn}n≥1 is bounded in



STRONGLY NONLINEAR MULTIVALUED DIRICHLET SYSTEMS 19

L2
(
T,RN

)
. Then

b∫
0

| fn (t)|
∣∣Aλn (un (t))

∣∣dt ≤ ‖ fn‖2

∥∥Aλn (un)
∥∥

2 ≤M2
∥∥Aλn (un)

∥∥
2 (4.9)

for some M2 > 0, all n ∈ N. Returning to (4.4) and using (4.7) and (4.9) , we have∥∥Aλn (un)
∥∥2

2 ≤M2
∥∥Aλn (un)

∥∥
2 ,

hence {
Aλn (un)

}
n≥1 ⊆ L2 ⊆ Lp′ is bounded (recall that p′ ≤ 2≤ p).

So, we may assume that

Aλn (un)
w−→ g in L2 and Lp′ as n→ ∞. (4.10)

As in the proof of Proposition 3.3 (see Claim 3), we obtain that {un}n≥1 ⊆ C1
(
T,RN

)
is relatively

compact. We may assume that

un→ u in C1 (T,RN) and so a
(
u′n (t)

)
→ a(u(t)) for all t ∈ T. (4.11)

Also, we have

fn
w−→ f in Lp′ (T,RN) with f ∈ Sp′

F(·,u(·),u′(.)). (4.12)

For every ψ ∈C1
0
(
(0,b) ,RN

)
, we have

b∫
0

(
−a
(
u′n (t)

)
,ψ ′ (t)

)
RN dt =

b∫
0

(
Aλn (un (t)) ,ψ (t)

)
RN dt +

b∫
0

( fn (t) ,ψ (t))RN dt

for all n ∈ N. Passing to the limit as n→ ∞, we obtain
b∫

0

(
−a
(
u′ (t)

)′
,ψ ′ (t)

)
RN

dt =
b∫

0

(g(t) ,ψ (t))RN dt +
b∫

0

( f (t) ,ψ (t))RN dt

(see (4.10) and (4.11) . Since ψ ∈C1
0
(
(0,b) ,RN

)
is arbitrary, it follows that(

a
(
u′ (t)

))′
= g(t)+ f (t) for a.a. t ∈ T,u(0) = u(b) = 0,

with f ∈ Sp′

F(·,u(·),u′(.)) (see (4.12)). Clearly u(·) will be a solution of (1.1) if we show that g ∈ A (u) .
This follows easily from (4.3) , (4.10) , Proposition 2.1 and Proposition 3.4 (applied to the special case
r = 2). �

We also prove an existence theorem for problem (1.1) in the case where F is nonconvex valued
(”nonconvex” problem). Now the hypotheses on the multivalued perturbation F are:

H(F)2 : F : T ×RN×RN →Pk
(
RN
)

is a multifunction such that
(i) (t,x,y)→ F (t,x,y) is graph measurable;
(ii) for a. a. t ∈ T, (x,y)→ F (t,x,y) is lsc;
(iii) same as hypothesis H(F)1 (iii) ;
(iv) same as hypothesis H(F)(iv) .

Theorem 4.2. If hypotheses H(a) , H(A) , H(F)2 hold, then problem (1.1) has a solution u∈C1
(
T,RN

)
.
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Proof. Let N : W 1,p
0 →P f

(
Lp′
)

be the multifunction defined by

N (u) = Sp′

F(·,u(·),u′(.)) for all u ∈W 1,p
0 .

We claim that N (·) is lsc. According to Proposition 2.26 of Hu-Papageorgiou ([11], p.45) it suffices
to show that for every v ∈ Lp′ , the function u → dp′ (v,N (u)) = inf

{
‖v− f‖p′ : f ∈ N (u)

}
is upper

semicontinuous. From Theorem 3.24 of Hu-Papageorgiou ([11], p.183), we have

dp′ (v,N (u)) =

 b∫
0

[
d
(
v(t) ,F

(
t,u(t) ,u′ (t)

))]p′ dt

 1
p′

. (4.13)

We need to show that for every ξ > 0, the superlevel set

Uξ =
{

u ∈W 1,p
0 : dp′ (v,N (u))≥ ξ

}
is closed. So, suppose that {un}n≥1 ⊆Uξ and assume that un→ u in W 1,p

0 . Using (4.13) we have

b∫
0

[
d
(
v(t) ,F

(
t,un (t) ,u′n (t)

))]p′ dt ≥ ξ
p′ for all n ∈ N.

We may assume that

un (t)→ u(t) for all t ∈ T and u′n (t)→ u′ (t) for a. a. t ∈ T. (4.14)

From Fatou’s lemma, we have
b∫

0

limsup
n→∞

[
d
(
v(t) ,F

(
t,un (t) ,u′n (t)

))]p′ dt ≥ ξ
p′ .

Hypothesis H(F)2 (ii) implies that (x,y)→ dp′ (v(t) ,F (t,x,y)) is upper semicontinuous. So,

b∫
0

limsup
n→∞

[
d
(
v(t) ,F

(
t,u(t) ,u′ (t)

))]p′ dt ≥ ξ
p′

(see (4.14)) hence

dp′ (v,N (u))≥ ξ ,

that is, u ∈Uξ , and N (·) is lsc. Also N (·) has decomposable values. Therefore we can apply Theorem
8.7 of Hu-Papageorgiou ([11], p.245) and obtain a continuous map d : W 1,p

0 → Lp′ such that

d (u) ∈ N (u) for all u ∈W 1,p
0 .

Then, as in the proof of Proposition 3.3, we show that for every λ > 0 the problem(
a
(
u′ (t)

))′
= Aλ (u(t))+d (u)(t) for a.a. t ∈ T,u(0) = u(b) = 0

admits a solution uλ ∈ C1
(
T,RN

)
. Passing to the limit as λ → 0+ and reasoning as in the proof of

Theorem 4.1, we produce a solution u ∈C1
(
T,RN

)
for the nonconvex problem. �

We can relax the condition on the map a(·) at the expense of strengthening the condition on A(·) . The
new hypotheses on a(·) and A(·) are:
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H(a)′ : a : RN → RN is a continuous map such that
(i) a(·) is strictly monotone;
(ii) (a(x) ,x)RN ≥C0 |x|p for all x ∈ RN , some C0 > 0, and with p≥ 2.

H(A)′ : A : RN → 2R
N

is a maximal monotone map such that D(A) = RN and 0 ∈ A(0) .

Remark 4.1. The hypothesis that D(A) = RN precludes from considerations maps of the form A = ∂ iC
where iC is the indicator function of a set C ∈P f c

(
RN
)
. Such maps arise in problems with unilateral

constraints (variational inequalities).

Theorem 4.3. If hypotheses H(a)′ , H(A)′ , H(F) hold, then problem (1.1) has a solution u∈C1
(
T,RN

)
.

Proof. The particular structure of a(·) considered in hypothesis H(a) (namely that a(x) = k (x)x or that
a(x) = (km (x)xm)

N
m=1 was only used in the proof of Theorem 4.1 in order to show the L2−boundedness

of
{
Aλn (un)

}
n≥1 . So, Propositions 3.1, 3.2, 3.3 are still valid in the present setting. Moreover, if

{un}n≥1 ⊆ C1
(
T,RN

)
are as in the proof of Theorem 4.1, from the first part of that proof we know

that {un}n≥1 ⊆W 1,p
0 is bounded, hence {un}n≥1 ⊆C

(
T,RN

)
is relatively compact (recall that W 1,p

0 ↪→
C
(
T,RN

)
compactly). Therefore, we can find M3 > 0 such that

‖un‖C(T,RN) ≤M3 for all n ∈ N.

Since Jλn (0) = 0 and Jλn (·) is nonexpansive (see Proposition 2.1), we have∥∥Jλn (un (·))
∥∥

C(T,RN)
≤M3 for all n ∈ N.

Then we have

Aλn (un (t)) ∈ A
(
Jλn (un (t))

)
⊆ A

(
BM3 (0)

)
, (4.15)

where BM3 (0) =
{

v ∈ RN : |v| ≤M3
}
. But, from Theorem 1.28 of Hu-Papageorgiou ([11], p. 308) we

know that A(·) is usc with Pkc
(
RN
)
−values. So, by Corollary 2.20 of Hu-Papageorgiou ([11], p. 42)

we have that A
(
BM3 (0)

)
∈Pk

(
RN
)
. Hence∣∣Aλn (un (t))
∣∣≤M4 for some M4 > 0, all n ∈ N, all t ∈ T

(see (4.15)). Now the rest of the proof proceeds as the corresponding part of the proof of Theorem
4.1. �

We can derive a ”nonconvex” version of this existence theorem, as well. The hypotheses on the
multivalued perturbation are the following:

H(F)′2 : F : T ×RN×RN →Pk
(
RN
)

is a multifunction satisfying H(F)2 (i) ,(ii) and H(F)(iii) ,(iv) .

Theorem 4.4. If hypotheses H(a)′ , H(A)′ , H(F)′2 hold, then problem (1.1) has a solution u∈C1
(
T,RN

)
.

Proof. We just combine the proofs of Theorems 4.2 and 4.3. �
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5. AN EXAMPLE

In this section, we present an example of a differential variational inequality (a problem with unilateral
constraints) to which our general existence theory applies.

Let RN
+ be the usual positive cone of RN (that is, RN

+=
{

x = (xm)
N
m=1 ∈ RN : xm ≥ 0

}
. This is a closed,

convex cone. Let iRN
+
(·) be the indicator function of RN

+, that is,

iRN
+
(x) =

{
0 if x ∈ RN

+,

+∞ if x /∈ RN
+.

It is easily seen that iRN
+
(·) ∈ Γ0

(
RN
)
, the space of all proper, convex, lower semicontinuous functions

on RN (See Gasinski-Papageorgiou [8], Definition 4.21, p. 488). We set

A(x) = ∂ iRN
+
(x) = NRN

+
(x) = the normal cone to RN

+ at x,

where ”∂” stands for the subdifferential in the sense of convex analysis. We know that for x = (xm)
N
m=1 ∈

RN
+ we have

NRN
+
(x) =

{
0 if xm > 0 for all m = 1, ...,N,

−RN
+∩{x}

⊥ if xm = 0 for at least one m = 1, ...,N.

So, D(A) = RN
+. Then problem (1.1) reduces to the following multivalued differential variational in-

equality 

(a(u′ (t)))′ ∈ F (t,u(t) ,u′ (t)) a.e. on
{t ∈ T : um (t)> 0 for all m = 1, ...,N}

(a(u′ (t)))′ ∈ F (t,u(t) ,u′ (t))−h(t) a.e. on
{t ∈ T : um (t) = 0 for some m = 1, ...,N}

h(t) ∈ RN
+,(h(t) ,u(t))RN = 0 for a.a. t ∈ T,

u = (um)
N
m=1 ∈C1

(
T,RN

)
um (t)≥ 0 for all t ∈ T, all m = 1, ...,N,

u(0) = u(b) = 0.

(5.1)

If F satisfies hypotheses H(F) or H(F)2, then (5.1) admits a solution (see Theorems 4.1, 4.2).
If F (t,x,y) = f (t,x,y) is single-valued, then (5.1) has the following more familiar form (recall that

on RN , x≤ y⇐⇒ y− x ∈ RN
+) :

(a(u′ (t)))′ = f (t,u(t) ,u′ (t)) a.e.
on {t ∈ T : um (t)> 0 for all m = 1, ...,N}

(a(u′ (t)))′ ≤ f (t,u(t) ,u′ (t)) a.e.
on {t ∈ T : um (t) = 0 for some m = 1, ...,N}(

f (t,u(t) ,u′ (t))− (a(u′ (t)))′ ,u(t)
)
RN = 0 for a.a. t ∈ T,

u = (um)
N
m=1 ∈C1

(
T,RN

)
,u(t)≥ 0 for all t ∈ T,

u(0) = u(b) = 0.
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