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Digital Chromatic Dispersion Equalization in

Optical Coherent Transmission Systems

Dissertação apresentada à Universidade de Aveiro para cumprimento
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palavras-chave deteção coerente, dispersão cromática, fibra ótica, modulação por deslo-

camento de fase e quadratura, processamento digital de sinal, sistema de

comunicação ótico

resumo A crescente procura de largura de banda tem obrigado a área de comu-

nicações óticas a explorar diferentes soluções, de forma a evitar a ”crise de

capacidade” [1]. O investigadores têm trabalhado no sentido de atingir o

equiĺıbrio entre os vários compromissos, repensando a forma como o sinal

ótico é enviado e recebido, para que a perda de informação seja ḿınima ao

longo do canal de propagação. No ińıcio desta década, começaram a ser

adotados formatos de modulação avançada, os quais apresentam elevada

eficiência espetral, bem como deteção coerente, que permite extrair a

informação da amplitude e da fase do campo ótico. Estas técnicas são

complementadas pelo pós-processamento digital de sinal, que é atualmente

muito importante na mitigação das distorções do sinal e imperfeições do

recetor. As distorções do sinal podem ser causadas, por exemplo, pela

dispersão cromática na fibra.

Esta dissertação engloba o estudo e simulação de um sistema de transmissão

coerente PM-QPSK, bloco-a-bloco, fazendo uma abordagem detalhada dos

conceitos supramencionados. O sistema foi então simulado na presença

de dispersão cromática e de rúıdo, alternada e simulataneamente. Os

resultados mostram que o sinal recebido apresenta uma distribuição quase

Gaussiana em todos os casos. Com vista a recuperar o sinal transmitido, e

no caso em que só se considerou o efeito da dispersão cromática, aplicou-se

um filtro linear de resposta impulsional inversa à da fibra, conseguindo

assim uma equalização digital perfeita do sinal recebido. Também foi

implementado um filtro adaptado no receptor para minimizar o efeito do

rúıdo, obtendo não uma equalização perfeita, mas ótima.





keywords chromatic dispersion, coherent detection, digital signal processing, optical

communication system, optical fibre, quadrature phase-shift keying

abstract The crescent demand on high bandwidth has been compelling the optical

communications area to explore different solutions, in order to avoid

the “capacity crunch” of the optical fibres [1]. Researchers have been

working towards reaching the best tradeoffs balance, rethinking the way

as the optical signal is sent and received, so the loss of information is

minimum throughout the propagation channel. Advanced modulation

formats became adopted in the beginning of this decade, presenting high

spectral efficiency, as well as coherent detection, which allows extracting

information from the amplitude and phase of the optical field. These

techniques are complemented by post-digital signal processing, which

is nowadays very important at mitigating signal distortions and receiver

imperfections. Those impairments result, for instance, of the chromatic

dispersion at the fibre.

This dissertation covers the study and simulation of a PM-QPSK transmis-

sion system, block-by-block, approaching in detail the concepts mentioned

above. The system was then simulated with chromatic dispersion and with

noise, alternately and simultaneously. The results show that the received

signal presents an almost Gaussian distribution in every case. In order

to retrieve the transmitted signal, and in the case that only chromatic

dispersion’s effect was considered, a linear filter was applied with an inverse

impulse response of the fibre, achieving such a perfect digital equalization

of the received signal. A matched filter was also implemented in the

receptor to minimize the noise effect, obtaining not a perfect equalization,

but an optimal one.
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Chapter 1

Introduction

I
n a first stage, the first Chapter approaches the motivation followed by the objectives of

the current dissertation, in Sections 1.1 and 1.2, respectively. Right after, Section 1.3 has

a description of the dissertation structure as well as Section 1.4 has a listing of the major

achievements. At last, Section 1.5 presents the state-of-the-art that explores the historical

perspective of coherent transmission systems and also explains all the preliminary concepts

necessary to understand the PM-QPSK optical transmission systems. Those concepts include

modulations formats, coherent detection, and an overview on DSP, highlighting the dispersion

equalization.

1.1 Motivation

Optical communications are based on the transmission of information carried by optical

signals, which are high-frequency electromagnetic waves. Optical fibre is the more usual

medium chosen for the propagation of these waves. Due to its huge bandwidth potential, this

type of waveguides quickly became favourite regarding the transmission in telecommunication

networks. Thanks to the usage of optical fibres, telecommunication networks have increased

their capacity and distance, year after year. This increase aims to respond to the high traffic

demand imposed by the society.

Over the last years, optical communications have suffered a fast evolution in terms of

transmission technologies and signal detection. Services like cloud computing, file-sharing or

high-definition television distribution were prompters of such an evolution because they have

demanded a greater amount of data traffic. This data traffic increase meant a bandwidth

overloading on the optical links implemented so far. There was the need of restructuring the

optical networks as well as the transmitter and receiver.

Previously, the transmission systems were using intensity modulation which were replaced

1



by quadrature amplitude modulation. The later systems started to implement coherent detec-

tion rather than direct detection. Therefore, digital processing of the detected signal became

achievable. The post-DSP (digital signal processing) allows to equalize the distorted signal

often caused by signal propagation [3]. This process increases the score and range of optical

links and, consequently, reduces the complexity of optical networks. These reasons together

led to consider DSP as a key technology of the present generation optical transmission sys-

tems. All those changes allowed the increase of optical channel bit-rates from 10 Gb/s to

40/100 Gb/s [4]. According to the actual researching, it is expected that the next generation

systems may support bit-rates of 400 Gb/s and 1 Tb/s per channel.

1.2 Objectives

The main purpose of this dissertation is based on the post-compensation of the received

signal in a PM-QPSK transmission system, particularly at CD (chromatic dispersion) level.

This fact leads to make the proper study of that system, so the objectives also pass through

the full understanding of the optical coherent transmission parts: transmitter and receptor

as well as the propagation medium, i.e. the optical fibre where CD occurs.

The subject demands then several computer-aided simulations around the propagation of

an optical signal IQ-modulated, associated to a numerical model of CD. Those simulations

may demonstrate the deterministic behaviour of such phenomenon for any scenario of optical

channel: any fibre length, with or without noise. Similarly, the simulations may demonstrate

the capability of equalizing the CD by inverting its numerical model, once it is linear. This

allows yielding a perfect retrieval of the transmitted signal, in an ideal system.

1.3 Dissertation Structure

The dissertation is divided into five Chapters, plus Appendices. It begins with the current

Chapter 1 which introduces the optical coherent transmission systems by doing an historical

contextualization and discussing the main concepts associated to the dissertation subject such

as modulation formats, coherent detection and digital post-processing. Chapter 2 describes in

detail a PM-QPSK optical transmission system. The Chapter 3 contains simulation results,

obtained in MATLABr, from different scenarios of propagation. Those results show the

chromatic dispersion and noise effects. Posteriorly, the Chapter 4 focus on solving both

undesired effects. It covers the digital equalization and matched filtering applied to the

simulations of Chapter 3 and contains the respective results, also using MATLABr. Finally,

Chapter 5 presents the main conclusions about the dissertation and proposals of future work.
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1.4 Major Achievements

It is reasonable to enumerate some points as the major achievements of this dissertation:

� Study in detail of PM-QPSK optical transmission systems;

� Proof of the signal Gaussianization in the presence of chromatic dispersion and in the

presence of white noise;

� Implementation of a digital filter for chromatic dispersion equalization and noise filter-

ing.

1.5 State-of-the-art

Research and development of optical fibre communication systems started in the second

half of the 60s. Those systems were characterized by using intensity modulation of semicon-

ductor lasers as well as photodiodes of square-law detection of the optical signal transmitted

through the fibre. This combination, designated by IM/DD (intensity modulation & direct de-

tection) scheme, became the receiver sensitivity independent of carrier phase and SOP (state

of polarization) of the incoming signal [5].

In 1970, DeLange [6] proposed, for the first time, a coherent optical communication system

using heterodyne detection, but it was not successful against the IM/DD scheme. Later,

in 1980, two scientific teams, Okoshi and Kikuchi [7], and Fabre and LeGuen [8], found

an advantage on optical heterodyne detection over direct detection. Both independently

demonstrated precise frequency stabilization of semiconductor lasers. There was the need of

narrowing their spectral linewidths since they caused a random carrier phase fluctuation due

to their large phase noise [5]. That contributed a lot for spreading the coherent systems over

the optical communications field. While in IM/DD scheme was no need of adaptive control, in

the coherent scheme it was necessary feedback the system with carrier phase and SOP. That

meant the configuration of coherent systems was more complicated than IM/DD systems.

The most complex aspect in a coherent receiver was the fact of synchronizing the phases of

the incoming and the LO (local oscillator) signals. This required very complex and expensive

hardware such as OPLL (optical phase-locked loop) in addition to lasers with high spectral

purity [9]. Even so, there was more advantages related to the coherent scheme, e.g. the use

of the carrier phase to modulate the incoming signal. During 80’s decade, coherent detection

was seen as a potential implementation. It increased the propagation range due to the better

sensibility of the receptor [10]. With the rising of optical amplifiers, at the beginning of the

90s, the coherent detection has lost its potential and became second plan.
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During the first 00’s decade, the main concern at optical communications field was about

optimization of the spectral efficiency. The chosen format to modulate the optical signal

started to be relevant for the transmission optimization. The motivation led to find a meeting

point between the ever-increasing bandwidth demand and multi-level modulation formats

[11]. Coherent technologies emerged again later in the history, with the transmission capacity

increase [5]. The demonstration of digital carrier-phase estimation in coherent receivers in

2005 stimulated a widespread interest in that subject [12]. Such a receiver added the fact

of enabling the employment of various modulation formats such as M -ary phase-shift keying

(PSK) and quadrature amplitude modulation (QAM) similar to radio communications [5].

Below, it is presented the table 1.1 describing the evolution of the optical systems, section-

ing it according to the technologies used [2]. By observing the table, it is possible to conclude

the evolution followed the best relation between the several factors, such as low attenuation,

low cost, high range and high bit-rate.

Generation First Second Third Fourth Fifth

Fibre Innovation MMF SMF DSF SMF+DCF SMF/LEAF
Wavelength 0.8 - 0.85 µm 1.3 µm 1.55 µm 1.55 µm 1.55 µm

Fibre Attenuation 3 dB/km 1 dB/km 0.2 dB/km 0.2 dB/km 0.2 dB/km
Bit-rate/channel 45 Mb/s 2 Gb/s 10 Gb/s 2.5 - 10 Gb/s 40 - 100 Gb/s

Repeater distance 10 km 50 km 60 - 70 km 100 km 100 km

Table 1.1: Physical values throughout optical communications history. [2]

The first generation, commercially available from 1980, set the beginning of optical fibres,

replacing coaxial lines which the spacing between repeaters was limited to 1 km [2]. From

1987, the second generation arise and the big new was the replacement of multi-mode fibres

by single-mode fibres, less sensitive to the dispersion effects. Third generation’s main achieve-

ment was the wavelength migration to 1.55 µm to transmit optical signals, for which the fibre

loss has its minimum, i.e. 0.2 dB/km [13]. This wavelength value has been used up to the

modern times. On the other hand, this wavelength order led to the usage of DSF (dispersion-

shifted fibre), in order to minimize the dispersion. However, the usage of DSF was abandoned

because it did not support WDM (wavelength-division multiplexing) transmission systems

due to high nonlinear interaction (mainly four-wave mixing) between the optical channels.

The third generation was available on the market from 1990. Later in this decade, the fourth

generation came up and set the appearance of optical amplifiers namely EDFA (Erbium doped

fibre amplifier) that reduced the need of signal regeneration [14], sharply increasing the spac-

ing between repeaters. Adding this new to the use of DCF (dispersion-compensating fibre),

the WDM systems became feasible since it was possible to control accumulated dispersion
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and nonlinear interaction between channels, simultaneously [15]. The transmission was per-

formed on up to 128 channels. Finally, fifth generation appeared on the market in the early

00s, introducing DWDM systems, as transmission was supported on 250 channels. By this

time, the starkest limitation was over PMD and nonlinear effects.

The revival of coherent optical communications research was prompted by the modula-

tion/demodulation experiment featuring optical in-phase (I ) and quadrature (Q) modulation

and optical delay detection [16]. On the other hand, polarization sensitivity was a serious

disadvantage of conventional coherent receivers, but it was promptly overcome by introduc-

ing polarization diversity techniques [5]. Next stage of the revival of coherent technologies

had to do with high-speed digital processing [12]. The high-speed digital integrated circuits

offered the possibility of treating the electrical signal in a DSP core and retrieving the I and

Q components of the complex amplitude of the optical carrier in a very stable manner. While

an OPLL that locked LO phase to the signal phase was difficult to achieve, DSP circuits were

increasingly faster and provided simple and efficient means of estimating the carrier phase [5].

Therefore, programmable devices started to be used for digital compensation of the optical

signal, turning the coherent detection profitable and less complex.

As any long distance communication system needs to modulate a carrier signal to trans-

mit information, optical communication systems also modulate a high-frequency carrier signal,

which is particularly optical. Basically, in an optical transmission system, the binary signal

which contains the information must be carried by a wave with an optical wavelength. The

way as the optical carrier is modulated can be classified as direct modulation (figure 1.1a) or

external modulation (figure 1.1b). Proceeding to direct modulation, the optical source (typi-

cally a laser) is modulated inside of its cavity. It consists of turning the laser on and off with

an electrical drive current, yielding the “chirp” effect, which leads to a spectral linewidth en-

largement. The “chirp” phenomenon is defined by a slightly shift in wavelength caused every

time the laser is turned on. In the case of external modulation, the process is accomplished

outside of the laser cavity, and it allows to eliminate the “chirp”.

(a) Direct (b) External

Figure 1.1: OOK direct and external modulations of the laser. [17]
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The modulation process can be done through different modulation formats. According

to the way the signal information is modulated in the optical carrier wave, those digital

modulation formats can be classified in four groups: intensity or amplitude modulation (ASK

- amplitude-shift keying); phase modulation (PSK - phase-shift keying); frequency modulation

(FSK - frequency-shift keying); polarization modulation (PolSK - polarization-shift keying).

FSK is rarely used in optical communication systems [18]. Due to the shape of the

optical carrier, the binary ASK can also have the OOK (on-off keying) designation, or simply

intensity modulation. There are two possible versions for the use of OOK format, in terms of

pulse format: optical pulse occupying the whole bit period (NRZ - nonreturn-to-zero), and

optical pulse occupying only a fraction of the bit period (RZ - return-to-zero). The ASK,

as a multi-level format (M -ASK), codes M symbols for M different amplitudes. M -ASK

did not prove to be profitable since the distance between symbols is smaller and it does not

compensate for the higher spectral efficiency achieved by the encoding of multiple bits in one

symbol. The PSK bases on the optical carrier phase modulation, keeping the amplitude as

constant. PolSK can be used combined with both ASK and PSK because it allows maximizing

the amount of information encoding. This takes to a higher spectral efficiency [19], which is

the information rate that is possible to transmit in a certain bandwidth and it is measured

in bit/s/Hz. However, ASK and PSK modulation formats are limited in terms of spectral

efficiency and robustness to signal distortions. There was the need of using most advanced

modulation formats such as QPSK.

Figure 1.2: Device structure and phasor diagram of three different modulation formats. [5]

Optical PM (phase modulation) is simply achieved by a phase modulator, but for achieve

optical AM (amplitude modulation), it is required the use of two phase modulators in an MZ

(Mach-Zehnder) configuration, which is driven in a push-pull mode of operation [20]. Optical
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IQ modulation, on the other hand, can be realized with MZ-type push-pull modulators in

parallel, between which a π/2-phase shift is given [21]. Figure 1.2 compares phase, amplitude,

and IQ modulations, in terms of device structure and phasor diagram.

While the spectral efficiency of binary modulation formats is limited to 1 bit/s/Hz per

polarization, which is called the Nyquist limit, multi-level modulation formats, i.e., with

M bits of information per symbol, can achieve up to spectral efficiency of M bit/s/Hz per

polarization [5]. Although optical delay detection has been employed to demodulate the QPSK

signal (M =2), a further increase in multiplicity was hardly achieved with such a format. As

example, figure 1.3 shows 4 different modulation formats, transmitting 1 bit, 2 bits, 3 bits,

and 4 bits per symbol [5].

Figure 1.3: Four constellation maps regarding phase modulation. [5]

Also known by 4-QAM, the QPSK modulation format is the leading candidate for high

speed fibre networks due to its high performance, spectral efficiency and its relatively low

complexity of implementation [22]. It presents a four-point constellation on the complex plane.

Using such a modulation format, one symbol carries two bits and that enables doubling the

bit rate while keeping the symbol rate or, on the other hand, keep the bit rate with the halved

spectral width [5]. This means the bandwidth of a QPSK signal is half of the bandwidth of

an ASK/PSK signal (which equals the double of the baseband if the pulse format is NRZ).

So the spectral efficiency of a QPSK is twice greater than a simple ASK/PSK.

QPSK is nothing but a two-dimensional modulation format spanned by the in-phase and

quadrature components of the optical field. The polarization states are considered two inde-

pendent channels where the modulation format can be transmitted to double the throughput

[23]. QPSK is also considered a linear modulation format since the resulting modulated sig-

nal is a linear combination of the symbols being sent. I and Q together offer two degrees of

freedom over which to distribute the symbol alphabet. QPSK distributes four points on the

unit circle, equidistant from each other [24].
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Since coherent systems allow access to the full optical field, they offers the possibility to

use more spectrally efficient and/or more sensitive formats, such as PM-QPSK (polarization-

multiplexed quadrature phase-shift keying), which is a QPSK version. Good sensitivity and

low complexity in terms of hardware and receiver DSP led to consider this modulation format

as the most studied one on coherent fibre optical communication systems [25]. PM-QPSK

presents independent constellations for each polarization state. Note that a PM-QPSK signal

is obtained by a system based on two IQ-modulators, one for each polarization, driven by

binary drive signals with a typical voltage swing of 2Vπ. The two optical signals are combined

with orthogonal polarization states using a PBC (polarization beam combiner) [23]. However,

this dissertation refers most of the time to the simple QPSK modulation format since it is

considered only one polarization as example.

Additionally to the advanced modulation formats, the coherent detection came up to

replace the direct detection, in order to enhance the usage of post-DSP in optical reception.

Despite the low complexity and low cost of IM/DD systems, these ones only allow detecting

the information modulated in amplitude. Direct detection is incompatible with advanced

modulated formats and it limits the sensibility itself, beyond that it does not encourage the

spectral optimization of the optical system. This turns the DSP unsuitable and it demands

the usage of an alternative and more efficient detection type: optical coherent detection.

Figure 1.4: Overall coherent detector schematic.

The main characteristic of the coherent detection is the equality between the polariza-

tion of the incoming signal and the LO [4]. The fields of the signal and LO are of constant

amplitude over the surface of the detector. A coherent detector enables the detection of the

information modulated also in phase [19]. This way, as well as compatible with advanced

modulation formats, it turns possible the post-DSP of the detected signal, which the per-

formance takes to a more robust optical system. Both the amplitude and the relative phase
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information between the conjugate signals can be extracted via differential detection and

DSP. Moreover, in a coherent receiver system, the preservation of the optical phase can be

used to cost effectively compensate optical transmission impairments in the electrical domain.

Beyond the maximization of spectral efficiency and power efficiency, the coherent detection

presents other advantages such as higher receiver sensitivity, lower channel crosstalk and still

ensures a more secure communication.

The receiver front-end can present two different configurations, according to the down-

conversion process: heterodyne shown in figure 1.5a, and homodyne shown in figure 1.5b.

(a) heterodyne design [19] (b) homodyne design [19]

Figure 1.5: Downconverter employing both designs, regarding a single polarization.

Basically, the two configurations above define the way as the downconversion from optical

passband to electrical baseband is achieved. For the heterodyne downconverter, the LO and

transmitter lasers differ by an intermediate frequency, and an electrical LO is used to down-

convert that intermediate frequency signal to baseband. In the homodyne downconverter,

the frequency of the LO laser is tuned to that of the transmitter laser so the photodetector

output is at baseband [19].

The adopted downconversion for the current QPSK receiver corresponds to the homodyne

configuration, once it is the one used in the lab of Optics. A major advantage of the homo-

dyne front-end over a heterodyne one is the fact of each photodetector needs less bandwidth

than a photodetector placed in a heterodyne front-end. On the other hand, the homodyne

one requires twice the number of balanced photodetectors.

With the data rates increase as well as fibre lengths increase, limitations due to disper-

sion had to be avoided somehow. Hereupon, to get around the dispersion problems, it was

proceeded to optical compensation which in coherent transmission systems is evolved into

digital terms. Digital coherent receivers allow equalization of fibre dispersion in the electrical

domain [3] and have become the most promising alternative approach to DCFs [26].

Digital post-processing allowed the usage of free-running LOs where the phase-tracking

is done in the digital domain rather than with complex implementation in hardware such
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as phase-locked loop circuits [23]. So DSP consists of a set of algorithms aiming the digital

equalization of the incoming signal in the optical coherent receiver. Those algorithms must

be adapted to the used modulation format, because the impairments they are supposed to

compensate depends, mostly, on the imperfections of the modulator, located in the transmit-

ter, and demodulator, located in the receiver. On QPSK modulation case, the transmitted

optical signal can be distorted by imperfections such as non-ideal bias for the I and Q signals

as well as the 90°-phase shift in the IQ-modulator, imperfect splitting ratio of the optical

signal, different amplitude of the RF driving signals or different gain of the drive-amplifiers

as well as non-ideal polarization splitting can distort the signal. On the receiver side, the

impairments are mainly due to 90° hybrid imperfections and differing responsivities of the

photodetectors.

Figure 1.6: DSP stages in an optical coherent receiver. [27]

The first two stages of digital post-processing aim to compensate for eventual impairments

of the optical demodulator. Deskew is the stage which compensates for the impairments

caused by time delays and orthonormalization solves phase and amplitude impairments. Both

occur as a result of the two branches of optical hybrid outputs.

The third and fourth stages consist of static and dynamic equalizations for deterministic

and stochastic effects, respectively. The static equalization compensates for the CD linear

effects, which can be eventually non-linear. The dynamic equalization is required by PMD

due to its random behaviour, i.e. resulting in non-linear effects.
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There is an unavoidable time deviation of the optimum sampling instant due to ADC de-

fects. This behaviour demands the implementation of clock recovering functions that involve

interpolation stages and re-sampling (designated by timing recovery).

Also, the frequency and phase suffer deviations due to the free operation of the LO in

coherent receivers. Finally, the digital post-processing ends with symbol identification and

decoding [4].

As it was said so far, DSP is responsible for a great progress in coherent systems, once it

allows mitigating the signal distortions. This progress increased the efficiency of the optical

transmission systems, enabling transmission with higher bit-rates and higher ranges. The

stages of DSP in coherent receivers involve the tasks of clock recovery, carrier recovery, and

symbol decoding, which are achievable using several digital techniques, including equaliza-

tion. The digital equalization is nowadays implemented by software, under algorithm forms,

performing linear or adaptive filtering of the digital signal, by resorting to FIR (finite impulse

response) [28] and IIR (infinite impulse response) [29] filters. This means the equalization

process can be static or dynamic, according to the impairments that are supposed to com-

pensate. The impairments sources can be classified as linear (e.g. CD - chromatic dispersion)

or nonlinear (e.g. PMD - polarization mode dispersion). However, this chapter is focused

exclusively on the digital CD equalization, that means the static strand.

Dispersion can be compensated without penalty either in the time or frequency domain [3],

but the computational complexity of an FIR filter convolution surpasses a frequency domain

approach already for a small number of taps [30] [31]. In a frequency-based approach, the

signal has to be transformed by an FFT (fast Fourier transform) and multiplied by the inverse

of the transfer function of the dispersive channel in the FDE (frequency-domain equalizer).

Algorithms like LMS (least mean square) [32] or the CMA (constant-modulus algorithm) [33]

can be adapted to the frequency domain as well.

The requirements of the CD compensation rely on using narrow spectral width optical

sources, i.e. high precision lasers, using external modulation and NRZ [34]. The NRZ pulse

format is used rather than, for instance, the 50% RZ because NRZ takes to obtain a higher

dispersion length. It still allows decreasing the spectral linewidth and that results in a lower

dispersion effect.
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Chapter 2

PM-QPSK Optical Transmission

Systems

T
he second Chapter aims to describe an end-to-end PM-QPSK optical transmission sys-

tem. Section 2.1 is dedicated to the transmitter, where each block is described in the

following Subsections, in order to understand the task of each one within the transmission

circuit. Beyond the building blocks description, there are presented some results obtained

from a simulation environment, which help to understand how the transmitter behaves in

reality. Section 2.2 refers to the optical channel furthering the relevant issues for the later

simulations in the Chapters 3 and 4. Section 2.3, similarly to the Section 2.1, describes each

receptor’s building block, just does not contain any simulation results.

2.1 Transmitter

This Section may contextualize the research work, introducing the first stage of an overall

optical transmission system: the transmitter. In order to approximately represent such a

circuit, there were considered several blocks. Since this optical signal is associated to the

modulation format QPSK, that means the existence of the two components I and Q which

are processed separately, reason why the block diagram in figure 2.1 presents two branches.

A partial simulation environment of the QPSK transmission system was taken at this

point, in order to get some simulation results of each building block. This simulation envi-

ronment, implemented by C++ code, has been developed among the students from Optical

Communications group, using the web hosting repository GitHubr. The idea was to adjust

the code in order to create an environment that might serve as a replication of the physical

transmitter set up in the lab of Optics in Instituto de Telecomunicações. Moreover, it allows

to run very large binary sequences (up to 226 − 1 bits) fast.
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Figure 2.1: Block diagram of an overall QPSK transmitter.

Once the optical channel and the QPSK reception system were not developed yet, within

the mentioned simulation environment, these parts were just simulated using MATLABr

instead, whose results are presented in the Chapters 3 and 4. Otherwise, these parts of the

QPSK transmission systems would take a lot of time to be developed and then simulated.

Below, there are presented the user’s adjustable settings for each block of the QPSK

transmitter, which are explained in detail in the further Subsections. Beyond containing the

theoretical explanation of each block, each Subsection is followed by the respective results

obtained from the transmitter’s simulation. Those results are based on a simulation settling

the presented values, which are simply illustrative. There were also made some code adjust-

ments, with more emphasis on PRBS generator, i.e. first transmitter’s block (in 2.1.1). It is

important to add that the blocks correspond to “classes”, in programming terms.

Binary Source DAC Pulse Shaper

Mode ‘PseudoRandom’ Samples per symbol 5 Rolloff factor 0.09

Pattern length 5 Number of taps 24

Bit stream ‘00101’

Bit period 1/50e9

Number of bits 10000

Table 2.1: Settings and respective chosen values for simulating.
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The proposed values in the table 2.1 regard a PRBS generator with the initial sequence

‘00101’. It generates full sequences of 25−1 bits, up to 10000 bits. The bit rate is 25 Gb/s and

since this transmission system regards a QPSK format, each 2 bits correspond to one symbol,

then the symbol rate is 12.5 Gb/s. The number samples per symbol is set to 5, meaning a

sample rate of 5 times the symbol rate, so 62.5 Gb/s1. Finally, the rolloff factor for the pulse

shaper is 0.09 and its number of taps is 24. The block diagram in figure 2.2 represents the

code structure of the simulation environment for the QPSK transmitter.

Figure 2.2: Block diagram of the transmitter implemented in C++, with signals and blocks
represented numerically.

2.1.1 Data Generator

The data generator transmits the optical information signal according to a cycle set by an

external clock signal. The data generator corresponds then to a PRBS (pseudo-random binary

sequence) which consists of a deterministic binary sequence repeated infinitely, the reason why

is pseudo-random. This is the way as it is possible to recreate a real data sequence, which is

random in fact. A random binary sequence is a statistically independent sequence of 0’s and

1’s, each occurring with a probability of 50% [35].

One of the upgrades in the C++ transmitter consisted of adding a feature that allows the

user to make the bitstream setting, in other words, make the manual initialization for the

PRBS. That feature was added to the class Binary Source (block B1 in figure 2.2). Obviously,

the introduction of such feature implied a validation and error functions, both presented in

Appendix A. The other upgrade consisted of improving and ensure the proper functioning of

the PRBS generator.

1These values of bit and sample rates are the proper ones to simulate a sequence in the lab, due to AWG’s
bandwidth constraints.
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Pseudo-Random Test Patterns

In order to validate the algorithm which simulates the PRBS generator, there were made

several tests over it, such as sequences validation and periodicity test.

A pseudo-random binary sequence is supposed to be a periodic binary sequence with

an autocorrelation function that resembles the autocorrelation function of a random binary

sequence. This PRBS is generated by an LFSR (linear feedback shift register), represented on

figure 2.3), whose arrangement consists of binary storage elements and feedback logic. Binary

sequences are shifted through the shift register in response to clock pulses. The contents are

logically combined by an XOR, in this case, to produce the input to the first stage, which

means the initial contents and feedback logic determine the successive contents of the shift

register [35].

Figure 2.3: M -stage linear feedback shift register for generating PRBS.

For simulation effects, the considered initial contents consisted on a sequence with at least

one state set to ‘1’. If an LFSR contains all zeros at any time, it will be stuck in that state

forever. Since there are exactly 2m − 1 non-zero states, the maximum period cannot exceed

2m − 1, as well [35]. Moreover, the number of distinct states in an m-state shift register is

2m, so the sequence of states and the output sequences must be periodic, for a period of at

most 2m. This characteristic had to be verified through a function developed in MATLABr

that is presented in Appendix B.

The following table 2.2 is the result of various simulations in order to find the respective

feedback polynomials to each sequence pattern length, which equals the LFSR length, or the

number of stages. The polynomial coefficients were taken from [35] and [36].

Right after, it is presented an exampling table 2.3 with some binary sequences generated

by applying the previous polynomials. The table includes the pattern length, m, the period

length of the binary sequence, 2m− 1, and also the data length, 2m +m− 2, which equals the

period length plus the necessary margin to ensure the validation of the last sequence values.
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m Feedback polynomial Ref. m Feedback polynomial Ref.

1 [1] [35] 14 [2,12,13,14] [36]

2 [1,2] [35] 15 [1,15] [36]

3 [1,3] [35] 16 [2,3,5,16] [36]

4 [1,4] [35] 17 [14,17] [36]

5 [1,2,4,5] [35] 18 [1,2,5,18] [36]

6 [2,3,5,6] [35] 19 [1,2,5,19] [36]

7 [1,7] [36] 20 [8,9,17,20] [37]

8 [2,3,4,8] [35] 21 [19,21] [36]

9 [3,4,6,9] [35] 22 [1,22] [36]

10 [3,10] [35] 23 [5,23] [36]

11 [2,5,8,11] [35] 24 [1,3,4,24] [36]

12 [1,4,6,12] [35] 25 [3,25] [36]

13 [1,3,4,13] [35] 26 [8,24,25,26] [37]

Table 2.2: Feedback polynomials for each shift register stage.

m 2m − 1 2m +m− 2 Binary sequence

1 1 1 1

2 3 4 0110

3 7 9 101001110

4 15 18 000111101011001000

5 31 35 00101111101100111000011010100100010

6 63 68 10000111000001011111100101010001100...
...

...
...

...

26 67108863 67108888 ...

Table 2.3: Binary sequences generated for different pattern lengths, from 1 to 26.

Finally, it was proceeded to the implementation of a MATLAB function, also presented in

Appendix B, which validates a binary sequence of any length. The table 2.4 exemplifies the

validation process, presenting all the possible values inside a binary sequence generated with

a certain pattern length. In this case, pattern length equals 5, whose feedback polynomial is

(x5 + x4 + x2 + x1 + 1) according to table 2.2.
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State Binary value Decimal value

1 00101 5

2 01011 11

3 10111 23

4 01111 15

5 11111 31

6 11110 30

7 11101 29

8 11011 27

9 10110 22

10 01100 12

11 11001 25

12 10011 19

13 00111 7

14 01110 14

15 11100 28

16 11000 24

17 10000 16

18 00001 1

19 00011 3

20 00110 6

21 01101 13

22 11010 26

23 10101 21

24 01010 10

25 10100 20

26 01001 9

27 10010 18

28 00100 4

29 01000 8

30 10001 17

31 00010 2

Table 2.4: Validation for generated sequence with pattern length of 5.
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In order to corroborate the validation MATLAB function present in Appendix B and the

chosen feedback polynomials, it was made the same validation for the same pattern length

values but this time using the PN Sequence Generator block in Simulinkr. This block is

a pseudo-noise generator that belongs to Communications System Toolbox� of MATLABr.

Figure 2.4 shows an example of the settings window for a pattern length of 5. The whole

transmission system was also simulated in Simulinkr and its block diagram can be consulted

in the figure 2.5.

Figure 2.4: Settings window of the PN Sequence Generator block in Simulinkr.

Figure 2.5: Block diagram of a QPSK transmitter in Simulinkr.
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At last, figure 2.6 shows a time domain graph2 of the data generator output signal (S1

in figure 2.2) resulting from a simulation where it is considered a pattern length of 5 as well.

The logical values observed in the graph corresponds to the binary sequence in table 2.3, for

the same pattern length. The sequence period is 0.62 ns, once the bit rate was set to 50 Gb/s,

meaning a bit period of 20 ps:

(2m − 1)bits = 31bits, with m = 5, (2.1)

Tseq = Tbit × 31bits = 0.62ns, with Tbit = 20ps. (2.2)

Figure 2.6: PRBS output signal in time domain.

2.1.2 M -QAM Mapper

In this specific case, the M -QAM mapper is a QPSK mapper as it is shown in figure

2.1. The binary sequence is grouped in sets of two bits which will correspond to one of the

four symbols placed in the constellation map, where each one has 2D coordinates associated.

This block represents the mapping process (block B2 in figure 2.2), digitally performed by

mapping the binary sequence from data generator using a QPSK constellation map, previ-

ously defined: Gray-scaled or binary-scaled. It was chosen the Gray encoding for the current

QPSK mapper, since it allows the minimization of bit errors by causing adjacent symbols to

only be one bit off from their neighbours. In case of binary encoding, the adjacent symbols

on the positive real plan of the constellation map (figure 2.7a) differ by two bits unlike the

Gray-coded signal constellation (figure 2.7b), where each symbol differs by only one bit from

its direct neighbours, which leads to a better BER (bit error rate) performance.

2This graph and the following ones, regarding each signal of the QPSK transmitter, were obtained with the
program tool Visualizer�, developed in MATLABr, that works as a virtual oscilloscope.
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(a) Binary-coded (b) Gray-coded

Figure 2.7: Constellations of signals coded by different scales.

In the figures 2.8a and 2.8b, it is possible to observe the mapping result from the con-

stellation mentioned above through figure 2.7b. The mapping process leads to having two

signals, which the period corresponds to the symbol period and it equals the double of the

bit period, so 40 ps because each symbol is composed of two bits.

(a) In-phase (b) Quadrature

Figure 2.8: Discrete time - discrete amplitude real signal outputted by M -QAM mapper.

In-phase + - - - - - + - - + + - - - + +

Quadrature + + - - + - + - + + - + + + - +

Symbol 00 10 11 11 10 11 00 11 10 00 01 10 10 10 01 00

Table 2.5: Coordinates signs and respective symbols.

Table 2.5 presents the coordinates sign (in-phase and quadrature), read from the figures

2.8, as well as the respective symbols. Following the order of the obtained symbol sequence, in

the last row of table 2.5, it is possible to conclude that it corresponds to the binary sequence

of table 2.3, once again. The matching made in table 2.5 faces the constellation implemented,

whose diagram is described in detail by figure 2.9 and by table 2.6.

21



Figure 2.9: QPSK constellation diagram.

Coordinates (I, Q) Symbol(√
2
2 ,
√
2
2

)
00(

−
√
2
2 ,
√
2
2

)
10(

−
√
2
2 ,−

√
2
2

)
11(√

2
2 ,−

√
2
2

)
01

Table 2.6: Coordinates and respective symbols.

2.1.3 Digital-to-Analog Converter

DAC block regards the conversion of the signal from the digital domain to the analog

domain over time, i.e. the inverse operation for oversampling. In this stage of the transmitter

system, there are two branches because of the mapping, so there are two DAC blocks (B3 and

B4 in fig. 2.2): one for the in-phase branch, another one for quadrature branch. In fact, these

blocks implemented in C++ do not turn the discrete signal in a continuous one, since they

are digitally processed. They make a signal upsampling, by adding ‘0’s, in order to simulate

a continuous signal.

The figures 2.10 present the DAC result over the digital in-phase and quadrature signals,

which is a set of Dirac pulses. Comparing with the figures 2.8, it is possible to see that

the amplitude values over symbol period multiple instants are exactly the same. The only

difference is about the increase of the number of samples per symbol. The value of this

number is adjustable by the user and, in this case, was set to 16.
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(a) In-phase (b) Quadrature

Figure 2.10: Continuous time - discrete amplitude real signal outputted by DAC.

2.1.4 Pulse Shaper

This block shapes the DAC output signal in amplitude domain, then it goes something like

the inverse operation for quantization. The symbol pulse shaping process is performed in order

to obtain a zero-ISI characteristic and a filter which maintains this characteristic is often called

a “Nyquist filter”. The pulse shaper aims to solve two conflicting requirements: the demand

for high data rates, and the need for narrower bandwidth, consequently resulting in the need

of more transmitting channels in the optical link with less noise. One possible solution is to

use an ideal LPF (low-pass filter), which corresponds to a rectangular shape in the frequency

domain. But this filter is physically unrealisable and difficult to approximate since it requires

extreme precise synchronization and jitter might be detrimental in the system. This led to

an alternative solution: the raised cosine filter. This filter type is physically feasible hence it

is the one used in the majority of real communication systems and it is based on a Nyquist

principle. Such principle states that if the frequency characteristic has odd symmetry at the

cutoff frequency, the impulse response will have zeros at uniformly spaced intervals [38].

The following equations, taken from [38], show the difference between the previous de-

scribed filters, firstly in terms of bandwidth, and secondly in terms of pulse function:

B = fc =
1

2T
, (2.3)

B = (1 + β) fc =
1 + β

2T
, (2.4)

h(t) =
sin
(
πt
T

)
πt
T

=⇒ h(t) = sinc

(
πt

T

)
, (2.5)
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h(t) =
sin
(
πt
T

)
πt
T

cos
(
πβt
T

)
1−

(
4β2t2

T 2

) , (2.6)

where T is the sampling time, β is the rolloff factor (further explained) and fc is the cutoff

frequency. The equation 2.3 regards the baseband transmission bandwidth using an ideal LPF

that equals the Nyquist band (B = 1/2T ) whereas the equation 2.4, regarding the baseband

bandwidth using a raised cosine filter, the Nyquist bandwidth times (1 + β). Therefore, the

raised cosine filter is more bandwidth efficient than rectangular shaping [38]. Referring the

pulse functions below, the equation 2.5 is a sinc function and it yields a rectangular pulse

shape whereas the pulse represented by equation 2.6 presents a first term with the previous

sinc, that ensures the roots as like ideal LPF, and a second term which decays in time, that

leads to a reduction of the jitter impact [38].

The raised cosine filter has the shape of the filter transition band, in frequency domain,

which follows a half-cycle of a raised cosine shape. A useful characteristic of this filter response

is that it is infinitely adjustable and represents a family of responses [39]. The adjustment

characteristic is the EBW (excess bandwidth), or often referred as “rolloff factor”. This

characteristic describes how far the transition band extends as a percent of the distance to

the cosine inflection point in the centre of the transition band. The rolloff factor selection

allows to trade off various system design considerations [39]. Lower EBW gives narrower

bandwidth. However, the side lobes of its shape increase so attenuation in stop band is

reduced [38]. Beyond the occupied bandwidth increase with EBW, there are other tradeoffs

associated with the choice of this parameter. A low EBW means a high PAPR (peak-to-average

power ratio) as well as the length of the impulse response necessary to be computed in digital

processing without losing significant performance. On the other hand, a low percentage of

EBW may be advantageous in communications systems that need closely spaced carriers in

order to maximize the number of channels in a band. The PAPR decrease with EBW increase

is observable through an eye diagram: the higher the EBW, more stretched and open is the

eye diagram, i.e. the eye diagram opens up. This results on a system less sensitive to jitter

in the symbol recovery clock since a deviation from the zero-ISI sampling point will generate

a smaller potential error than it would with a low EBW pulse [39]. In a case of no bandwidth

restrictions, it would be easier on the receiver if it would be used a high EBW. However, in

terms of bandwidth efficiency, EBW should be lower [38].
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Figure 2.11: Illustrative impulse response of a raised cosine filter, with rolloff factor = 0.3.

Beyond rolloff factor, another adjustable pulse shaper’s setting in the developed QPSK

transmitter is the number of taps. This parameter regards the amount of memory required

to implement the filter as well as the number of calculations required. More taps mean more

stop-bandwidth attenuation, less ripple, and a narrower filter. The example of figure 2.11

regards an ideal raised cosine filter and that means an infinite number of taps. In the C++

transmitter, the pulse shaping blocks implement raised cosine filters, corresponding to B5

and B6 in figure 2.2, whose rolloff factor was set to 0.09 and whose number of taps was set

to 24.

In the figures 2.12 and 2.13, regarding the in-phase and quadrature branches respectively,

it is possible to observe the pulse shaper’s output in the time domain as well as its eye diagram.

(a) Signal in time domain
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(b) Respective eye diagram

Figure 2.12: Continuous time - continuous amplitude real signal outputted by the in-phase
branch of pulse shaper.
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(a) Signal in time domain
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(b) Respective eye diagram

Figure 2.13: Continuous time - continuous amplitude real signal outputted by quadrature
branch of pulse shaper.

The time domain graphics 2.12a (signal S6 ) and 2.13a (signal S7 ) show the shaping result

on the S4 and S5 signals, that only had two possible amplitudes. As it was said before, pulse

shaper’s rolloff factor was set to 0.09 and number of taps was set to 24. Considering these

values, the yielded eye diagrams 2.12b and 2.13b present a proper layout, with zero-ISI.
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Figure 2.14: Impulse response of pulse shaper.

The figure 2.14, also obtained with the Visualizer�, represents the impulse response of

the pulse shaper. Observing the figure it is possible to reach two relevant facts. In the first

figure, the central lobe corresponds to a time band which equals twice the duration of the

transmission of one sequence, i.e. 2×0.62 ns.

2.1.5 IQ-Modulator

This last stage of the transmission system is responsible for turning the electrical into an

optical one. IQ modulation can be realized with MZ-type push-pull modulators in parallel,

between which a π/2-phase is given [21], shown by figure 2.15. The two input baseband
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signals are orthogonal and therefore transmitted simultaneously and fully recovered at the

receiver side. This sort of modulation fits in the external modulation, already explained above.

Figure 2.15: IQ-modulator schematic. [17]

The equations below, associated to figure 2.16, give an analytical view of this modulation

type, which is valid for radio-frequencies:

it(t) = i(t) cos (2πfot) , (2.7)

qt(t) = q(t) cos
(

2πfot+
π

2

)
= q(t) sin (2πfot) , (2.8)

yt(t) =
√

i2(t) + q2(t) cos (2πfot+ θ(t)) , with− π < θ < π, (2.9)

where i(t) and q(t) are the I and Q baseband signals, fo is the optical carrier, it(t) and qt(t)

are I and Q transmitted signals, yt(t) is the sum of the two transmitted signals thereupon

forwarded through the fibre, and finally θ(t) = tan−1 q(t)i(t) .

Figure 2.16: Analytical schematic of the IQ-modulator.
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The QPSK modulated signal is obtained from the binary amplitude modulation of an

optical carrier by the in-phase (I channel) and quadrature (Q channel) waveforms. The

optical signal, provided by an ideal laser, is divided into two branches to be phase modulated

between the symbols ‘0’ and ‘π’. Then, it is added a ‘π/2’ delay to one of the MZ-modulators

output. The interference result between the modulator branches is the set of symbols {−π/4;

−3π/4; +3π/4; +π/4} [17].

For optical frequencies, the previous equations are not applicable. Therefore, the MZ

modulator’s transfer function (without considering insertion loss) has to be given by:

Eout(t)

Ein(t)
=

1

2

(
eiϕ1(t) + eiϕ2(t)

)
, (2.10)

whose the phase shifts of the upper arm, ϕ1(t), and the lower arm, ϕ2(t), are given by:

ϕ1(t) =
u1(t)

Vπ1
π, ϕ2(t) =

u2(t)

Vπ2
π, (2.11)

where u1(t), u2(t) are the driving signals of both arms, and Vπ1, Vπ2 are the driving voltages

to obtain a phase shift of π. In a dual-drive MZ modulator, the phase modulators in both

arms can be driven independently [40]. The push-pull mode means that an identical phase

shift is induced in both arms, then ϕ(t) = ϕ1(t) = ϕ2(t). If ϕ1(t) = −ϕ2(t), whereupon

u1(t) = −u2(t) = u(t)/2, it also operates in push-pull mode but obtaining a “chirp”-free

amplitude modulation:

Eout(t)

Ein(t)
= cos

(
∆ϕmz(t)

2

)
= cos

(
u(t)

2Vπ
π

)
. (2.12)

The incoming light (laser) is equally split into two arms (I and Q). In each arm, there is

an MZ-modulator operating in push-pull mode. A relative phase shift of π/2 is adjusted in

one arm, for instance by a phase-modulator: uPM = −Vπ
2 as driving voltage.

IQ-modulator’s transfer function (neglecting any insertion loss) [40]:

Eout(t)

Ein(t)
=

1

2
cos

(
∆ϕI(t)

2

)
+ i

1

2
cos

(
∆ϕQ(t)

2

)
, (2.13)

∆ϕI(t) =
uI(t)

Vπ
π, ∆ϕQ(t) =

uQ(t)

Vπ
π, (2.14)

where ∆ϕI(t) and ∆ϕQ(t) correspond to the phase shifts of both arms.
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Lastly, figure 2.17 presents the squared amplitude and phase of the complex signal S8

given by I + iQ, i.e. S6 for the real part and S7 for the imaginary part.
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Figure 2.17: Amplitude squared and phase of the continuous time - continuous amplitude
complex signal outputted by IQ-modulator.

2.2 Optical Channel

The communication channel may transport the signal from transmitter to receiver. The

typical communication channels for transmission of the optical signals are optical fibres made

of silica glass, whose principle is the total internal reflection. They allow transmitting with

losses as small as 0.2 dB/km, which means an optical power reduction of only 1% after 100

km. For long-haul optical systems typically span lengths of 50-120 km are used, where the

optical signal is amplified after each span.

Beyond attenuation, an important issue to consider along the optical fibres is dispersion.

This phenomenon can spread significantly the optical pulses outside their allocated bit slot

and, consequently, degrade the signal severely [2]. There are three dispersion types likely

to happen in the optical links. They are modal, chromatic (CD) and polarization mode

(PMD). It is important to make clear that this dissertation deals only with SMFs and

therefore modal dispersion, which occurs only in MMFs, is not considered. The same for

PMD, which is not considered. SMFs only support the fundamental mode of the fibre. The

group velocity associated with that fundamental mode is frequency dependent because of

chromatic dispersion. It results of different spectral components of the pulse travelling at

slightly different group velocities (GVD) [2].
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2.2.1 Chromatic Dispersion

Chromatic dispersion that arises along the optical fibre is considered a non-desired effect

because it limits the bandwidth and the bit-rate, beyond the propagation range. It also takes

to a higher ISI. All these effects occur linearly, in the case of an SMF. CD is caused by

different wavelengths travelling at different speeds through the fibre, even within the same

mode [41]. This dispersion type, also known by intra-modal, is responsible for the broadening

and phase shifting in the optical fibres and depends on the laser’s spectral linewidth of the

pulse [42]. Figure 2.18 allows a visual understanding of the CD phenomenon, where it is

possible to observe the broadened pulse after cross the fibre.

Figure 2.18: Illustration of the chromatic dispersion occurrence. [43]

Every laser oscillates within a range of wavelengths. In turn, the propagation medium, i.e.

the optical fibre (fused silica), presents a refractive index varying with the signal wavelength

travelling through it [41]. The higher is the signal wavelength, the lower is the refraction

suffered by that signal, so longer wavelengths travel faster. Since a pulse of light from the

laser usually contains several wavelengths, they tend to get spread out in time after travelling

some distance across the fibre. In result, the received pulse is wider than the transmitted

one, or more precisely, is a superposition of the variously delayed pulses at the different

wavelengths [41].

The equation 2.15, taken from [34], is a Taylor series which affords an analytical rep-

resentation for the CD phenomenon occurring at the fibre: different frequency components

of an optical pulse travelling at different velocities, hence leading to the spreading of the pulse.

β(ω) = n(ω)
ω

c
= β0 + β1∆ω +

1

2
β2∆ω

2 +
1

6
β3∆ω

3 + ..., (2.15)

with βm =
dmβ

dωm

∣∣∣∣
ω=ω0

, (2.16)
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where β(ω) corresponds to the expansion of the mode propagation constant (also called “wave

number”), ω is the angular optical carrier, and n(ω) represents the frequency-dependent

refractive index of the fibre. The phase constant β0 is inversely related with the phase velocity

of the optical carrier, whose expression is υp = ω0
β0

= c
n(ω0)

. β1 is the inverse of the group

velocity that is given by υg = 1
β1

=

(
dβ
dω

∣∣∣
ω=ω0

)−1
, with β of the guided mode. The terms

equal and greater than β2 are the ones responsible for the dispersion. β2 corresponds to the

derivative of the group velocity with respect to frequency, the so-called GVD (group velocity

dispersion). Finally, β3 is the second order GVD and contributes to the calculations of the

dispersion slope dD
dλ , which is an essential factor for high-speed DWDM transmission [34].

CD results of the group velocity dependence upon the frequency, applicable only to single

mode waveguides. Hereupon, the CD factor of an SMF is closely related to the GVD β2,

presented in equation 2.17.

D = −2πc

λ2
β2, (2.17)

where λ is the operating wavelength. The typical values ofD are in the range 15-18 ps/nm/km

near 1550 nm, which is the wavelength region of most interest since is where the fibre loss

is minimum [2], according to what was said in chapter 1. For a typical CD factor of 17

ps/nm/km, β2 is approximately -21.6 ps2/km @ 1550 nm. This exemplary case regards a

fibre exhibiting anomalous dispersion because the value of β2 is negative. The fibre exhibits

normal dispersion for β2 > 0 or anomalous dispersion for β2 < 0 [34].

A pulse having the spectral width of ∆ω is broadened by ∆T = β2L∆ω [34], which takes

to the equation 2.18, a very common analytical way to take into account the CD.

∆tchr = L ·D ·∆λ0 =
1√

2πfmax
, (2.18)

where ∆tchr represents the RMS pulse width at the fibre output, L the fibre length, D the

dispersion parameter (whose units are ps/nm/km), ∆λ0 is spectral width, and fmax the

maximum modulation frequency, which multiplying by L gives the signal bandwidth. Hence,

the CD effect can be described as a delay of an impulse relatively to consecutive one. In

physical terms, the central wavelength, λ0, is displaced by 1 nm, after 1 km fibre propagated.

The CD is generated both from the material dispersion and waveguide dispersion. Material

dispersion happens due to colours go through different speeds because the fibre refractive

index varies with the wavelength. It is related to the frequency dependence of the refractive

index and leads to the pulse broadening, which is typically < 0.1 ns/km, and can be reduced

further by controlling the spectral width of the laser. Material dispersion sets the ultimate

31



limit on the bit-rate and the transmission distance. On the other hand, waveguide dispersion

depends on fibre parameters such as the core radius and the index difference, ∆ [2]. This one

arises from the distribution of light between core and cladding [34]. The equation 2.20 refers

the chromatic dispersion, which results of summing the equations 2.19.

Dm = −λ0
c

d2n1
dλ20

, Dw = −n1∆
cλ0

ν
d2(bν)

dν2
, (2.19)

D = −λ0
c

d2n1
dλ20

− n1∆

cλ0
ν
d2(bν)

dν2
, (2.20)

where Dm is the material dispersion, λ0 is the central wavelength, c is the light velocity,

n1 is the refractive index of the fibre core, Dw is the waveguide dispersion, ∆ is the index

difference given by n1−n2
n1

(n2 - index of the fibre cladding), ν is the normalized frequency

given by 2πa
λ0

√
n21 − n22 (a - fibre ray), and finally D is the total/chromatic dispersion.

Figure 2.19: Chromatic dispersion @ 1.55 µm zero dispersion-shifted fibre. [43]

Another parameter to govern CD effects is the dispersion length LD that corresponds

to the distance after which a pulse has broadened by one bit interval. The inequation 2.21

presents the fibre length dependence upon the inverse of the squared baud-rate, B2, upon the

inverse of the squared λ0, and upon the inverse of the absolute value of CD factor, |D|.

L ≤ c

2B2λ20|D|
⇒ LD =

c

2B2λ20|D|
(2.21)

The dispersion length decreases with the bit-rate, as it is possible to conclude observing

table 2.7, which regards the QPSK modulation format where the baud-rate is half of the

bit-rate.
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B LD

10 Gb/s 146.8 km

20 Gb/s 36.8 km

40 Gb/s 9.2 km

Table 2.7: Dispersion variation with bit-rate @ 1550 nm.

These lengths are much smaller than the lengths limited by ASE (amplified spontaneous

emission) noise accumulation. For that reason, CD becomes one of the most crucial con-

straints for the modern high-capacity and ultra long-haul transmission optical systems.

Figure 2.20: Chromatic dispersion in several fibre types. [43]

The chromatic dispersion effect, or simply GVD effect, can be mitigated in different ways

such as inline compensation, following each span of the optical link by a DCF or at the

receiver, digitally equalizing the accumulated dispersion of the whole optical link.

2.2.2 Amplified Spontaneous Emission

The noise is also a noteworthy constraint of a signal transmission. In optical channels,

the noise is introduced by the optical amplifiers existent throughout the link. Those optical

amplifiers are typically EDFAs, with gains in the region of 1550-1565 nm (C-band). As

any other amplifier, EDFA adds noise and this particular case is originated from the excited

Erbium ions, the so-called ASE (amplified spontaneous emission) [23]. The expression 2.22

is an analytical representation of that noise into an optical link and is directly associated to

the figure 2.21.
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No = NA

(
eαLA − 1

)
hνnsp, (2.22)

N = 2×NoB, (2.23)

where No is the noise spectral density per SOP, NA is the number of amplifiers, α is the fibre

loss coefficient (0.2 dB/km), LA is the distance among amplifiers, h is the Planck constant

(6.626070040 (81)× 10−34J · s), ν is the signal frequency, and nsp is the spontaneous emission

factor. Hereupon, the expression 2.22 refers to a chain of NA amplifiers periodically spaced

by the fibre spans of length LA which yields a gain of eαLA like is shown in figure 2.21. The

expression 2.23 regards the noise power density, N , which is doubled due to the noise be

double-sided white noise.

Figure 2.21: Outline of an optical communication system whose optical link consists of NA

EDFAs plus fibre spans.

The AWGN (additive white Gaussian noise) channel, provided by MATLABr, is a good

approximation of the optical link, if the optical power launched into each span is low. Oth-

erwise, the channel would become nonlinear and AWGN would no longer fit as a good ap-

proximation [23]. The AWGN adds white Gaussian noise to the signal with a specified SNR,

which corresponds to the signal-to-noise ratio per sample. The SNR is the ratio between

the average signal power and average noise power and it is given in dB. As the input signal

coming from the transmitter is complex, it is added complex noise, considering the signal

power which is previously measured.

SNR = Eb/No + 10 log10 (k)− 10 log10 (Tsymb/Tsamp) , (2.24)

where Eb/No is the ratio of bit energy to noise spectral density, 10 log10 (k) regards the Es/No

which is the ratio of symbol energy to noise spectral density, whose k = log2M
3. Finally,

the term 10 log10 (Tsymb/Tsamp) is subtracted because the AWGN’s input signal is complex,

and Tsymb/Tsamp represents the number of samples per symbol. The figure 2.22 shows the

complex low-pass equivalent of the noise PSD (power spectral density), Sn(f), of a band-pass

white noise process. In the graph, B is the noise bandwidth and No is the white noise power.

3M values 4 in the case of QPSK modulation format.
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Figure 2.22: Complex low-pass noise PSD.

2.3 Receiver

The recent researching in optical communications uses optical receivers suitable to process

signals modulated with complex formats and, of course, performing coherent detection. In

order to approximately represent such optical circuits, it is shown in figure 1.4 a block diagram

of a basic optical coherent receiver. The represented receiver circuit is once more associated

to single polarization.

First of all, the receiver front-end regards the coherent detection and it is constituted

by the first block, the 90° optical hybrid, plus photodetectors. The 90° optical hybrid de-

modulates both the received optical signal and an LO signal. Since the received signal is

modulated by the modulation format QPSK, there are two components, the in-phase and

quadrature, reason why the block diagram presents two branches. Photodetectors convert

the two components from optical band to baseband. Then those electrical signals go through

an LPF, the optical filter, and soon after through an ADC (analog-to-digital converter) to

be oversampled, in order to become suitable for digital processing. The last three blocks

(clock recovery, carrier recovery and symbol decoding) regard the digital processing which

makes a complementary work of the coherent detection, compensating the impairments and,

consequently, increasing the OSNR of the whole optical communication system.

Figure 2.23: Block diagram of an overall QPSK receiver.
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2.3.1 90° Optical Hybrid

In this theoretical approach of the optical receptor, it was considered a single polarization

90° optical hybrid, which is the simplest case. This device enables to extract phase and

amplitude from a single polarization signal by performing four 90° phase stepped interferences

between the received optical signal and an LO. It also features a phase tunability option,

i.e., the 90° phase shift of the hybrid depends slightly on the wavelength being used. A

90° optical hybrid is traditionally constructed using two 50/50 beam splitters and two beam

combiners, plus one 90° phase shifter. Should be noted that this component is suitable for

either heterodyne and homodyne detection [44].

Figure 2.24: Input-output schematic of a 90° optical hybrid. [44]

As it is possible to observe in figure 2.24, a 90° optical hybrid has two inputs: one is the

optical received signal (S ); the other one is a local oscillator (L), used to beat or mix with

the incoming signal S on the photodetector. The four outputs result of mixing the signals S

and L.

2.3.2 Photodetectors

The photodetectors, or photodiodes, belong to the coherent optical receiver front-end, as

well as the 90° optical hybrid. Their function is to detect the received optical signal. This

stage of the reception system is responsible for turning the optical signal into an electrical

one, oppositely to the IQ-modulator at the transmission side.

As figure 2.23 shows, there are considered two optical beams mixing on a photodiode

(square-law detector). The used photodetectors in a receiver system can be balanced PIN

photodiodes. In a PIN, it is added an intrinsic region between p and n. The intrinsic region

presents a high resistivity that leads to low inverse polarizations needed for extending the

depletion zone, which in turn also leads to a larger bandwidth, comparing with the simple

p-n junction.
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The following equations represent each photodetector output signal:

PD1 =
1

4
|S|2 +

1

8
|L|2 +

1

2
√

(2)
SL cos

[
(ωS − ωL) t+ φ(t)− π

2

]
, (2.25)

PD2 =
1

4
|S|2 +

1

8
|L|2 − 1

2
√

(2)
SL cos

[
(ωS − ωL) t+ φ(t)− π

2

]
, (2.26)

PD3 =
1

4
|S|2 +

1

8
|L|2 +

1

2
√

(2)
SL cos [(ωS − ωL) t+ φ(t)] , (2.27)

PD4 =
1

4
|S|2 +

1

8
|L|2 − 1

2
√

(2)
SL cos [(ωS − ωL) t+ φ(t)] , (2.28)

where S and ωS are the optical received signal and respective angular frequency, L and ωL

are the local oscillator signal and respective angular frequency, and finally φ(t) is phase added

upon the time.

2.3.3 Low-Pass Filter

The low-pass filter placed after the balanced photodiodes, according to the proposed re-

ception system in [45], exists to reduce the signal bandwidth in the receiver and may have

a cutoff frequency (fcBessel) much higher than the baud-rate and much lower than the simu-

lation bandwidth. The relation is given by 2.29 and figure 2.25 represents graphically both

bandwidths. In the next Chapters’ simulations, the chosen filter for this purpose was a Bessel

filter, which has the particularity of having a maximally flat phase delay.

Bsignal
2

<< fcBessel <<
Bsimulation

2
(2.29)

Figure 2.25: Spectrum of the signal bandwidth overlaped with the simulation bandwidth.
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2.3.4 Analog-to-Digital Converter

ADC block regards the conversion of the signal from the analog domain to the digital

domain, i.e. the very known sampling operation. As it was mentioned in DAC’s description

within the QPSK transmitter structure (Section 2.1), in computational terms, there is no

continuous signal to convert, once it is not possible to digitally process continuous data.

What actually happens is a signal downsampling.

2.3.5 Clock Recovery

This block is digital, i.e. belongs to the DSP part. Its goal is to synchronize the trans-

mitter clock and receiver clock, compensating the phase and frequency shifts between them.

Clock recovery block proceeds to frequency error estimation, where the error between clocks’

frequency is compensated, and then proceeds also to phase adjustment, where the sampling

instant of the received signal is adjusted to the ideal instant.

The clock recovery algorithm involves firstly sending the received signal into an interpo-

lator block to smooth it, in order to facilitate the adjustment for the ideal sampling instant.

After interpolation, the signal is sent to a timing estimator which, through the Gardner al-

gorithm, yields a timing error due to its carrier independence, simple implementation and

the modest oversampling requirements of two samples per symbol. The obtained error signal

is then sent to a proportional integrator filter, whose proportional gain and integrator gain

accommodate variations in clock phase and clock frequency, respectively. Then, an NCO

(numerically controlled oscillator) block integrates the loop filter output in order to feedback

the interpolator, returning the estimated time delay [46].

2.3.6 Carrier Recovery

Since in coherent receivers there is no phase or frequency lock in the optical domain,

the transmitter and receiver lasers do not present exactly the same phase nor the same

frequency. This fact yields a complex rotation of the received samples, which must be resolved

through a carrier recovery block. This second block of DSP aims to compensate for the

frequency shift and the phase noise between the transmitter and receiver lasers. There are

various synchronization algorithms for carrier recovery, which must ensure that the complex

demodulator is perfectly synchronized with the modulator. The implemented algorithms

for carrier phase recovery are founded on estimator and detectors derived from maximum

likelihood approach [46]. In the case of feedback structure, a temporal error provides error

information of the parameter to estimate and correct it using a feedback system. On the other

hand, for feedforward structure, the parameters to be corrected are estimated using a block

38



of observed samples and the correction is carried out on the delayed signal [47]. According to

the process followed to find the algorithms, we can divide them in Non-Data-Aided ones and

Decision Directed ones. In both cases, only the type of modulation must be known by the

receiver. While the Non-Data-Aided algorithms are obtained simply by the maximization of

the marginal likelihood function, the Decision Directed algorithms consist of estimation of the

symbols by hard decisions on the received signal, then introducing them into the likelihood

function beyond its maximization [46]. The maximization of the likelihood function means

to get the estimator and detector expressions.

2.3.7 Symbol Decoding

The last DSP block regards the recovery of transmitted symbols from the received sym-

bols by the application of various algorithms such as Gardner, Early-Late Gate, and Muller

& Muller [48][49]. All these algorithms aim for estimating the optimal sampling instants.

Similarly to carrier recovery stage, symbol timing recovery is based on maximum likelihood

estimation, the only difference between the considered algorithms is the way they deal with

TED, to approximate the adapted filter derivative [46].
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Chapter 3

Chromatic Dispersion and Noise

T
his Chapter aims to demonstrate the impact of group velocity dispersion on a transmitted

signal as well as the noise generated by the optical amplifiers. The Section 3.1 presents

end-to-end simulation results of a system with CD and without noise, whereas the Section

3.2 presents simulation results for the opposite case, i.e. with noise and without CD. Then,

Section 3.3 joins both channel constraints (CD and noise) in the simulations and presents their

results too. All the simulations were performed in MATLABr and the respective pseudocode

excerpts lie among the graphical results. The Chapter ends in Section 3.4 with the conclusions

about the results obtained, specially in a probabilistic perspective of the symbols distribution

for each effect.

3.1 Propagation with CD and without Noise

This Section is exclusively dedicated to the chromatic dispersion effect over the transmit-

ted signal. Therefore, there was considered the analytical representation of such phenomenon.

The GVD of an optical fibre results of a parabolic phase profile on its frequency response.

Hc(ω) = e−
iω2β2L

2 , (3.1)

where β2 is the GVD and L is the fibre length.

In spite of being an optical system, the signal never gets to be processed at an optical-

band because it is intended to have an ideal system. So the transmitter does not simulate

the modulation of an optical carrier and that means the signal remains at baseband, i.e.

radio-frequency. Without IQ-modulation, it is possible to have an ideal signal once it does

not suffer attenuation from the modulator. Consequently, at the receiver side, the optical

front-end is not simulated too, because the received signal is already at baseband. The signal
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that goes into the optical fibre is complex, whose conversion is made soon by the mapper

block. The optical channel is simulated through the linear response, represented by equation

3.1, which is based on [2].

Below, it is presented the result of an exemplifying simulation of a propagation affected

by CD, considering D = 17 ps/nm/km, the value of the dispersion parameter at 1550 nm in

a standard SMF. The figure 3.1 allows visualizing the CD effect in the constellation of the

received signal for different fibre lengths against the original constellation. Right after, it is

the pseudocode that produced that set of figures.

In-Phase
-4 -2 0 2 4

Q
ua

dr
at

ur
e

-4

-3

-2

-1

0

1

2

3

4
Scatter plot

Received Constellation
Original Constellation

(a) Back-to-back

In-Phase
-4 -2 0 2 4

Q
ua

dr
at

ur
e

-4

-3

-2

-1

0

1

2

3

4
Scatter plot

Received Constellation
Original Constellation

(b) 10 km

In-Phase
-4 -2 0 2 4

Q
ua

dr
at

ur
e

-4

-3

-2

-1

0

1

2

3

4
Scatter plot

Received Constellation
Original Constellation

(c) 100 km

In-Phase
-4 -2 0 2 4

Q
ua

dr
at

ur
e

-4

-3

-2

-1

0

1

2

3

4
Scatter plot

Received Constellation
Original Constellation

(d) 1000 km

Figure 3.1: Constellations resulting of different optical fibre lengths.

D = 17*1e−6;
L = [0 10*1 e+3 100*1 e+3 1000*1 e +3] ;

lambda = 1550*1e−9;
c = 299792458;

Hc = exp ( (1 i *2*pi*D*L* lambdaˆ2* f . ˆ 2 ) / c ) ;

r xS i gna l = Hc .* txS i gna l ;
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First of all, it is important to make a brief description of the general simulation, which is

used in this and also in the next Sections, in order to state the simulation input values.

The PM-QPSK transmission system is simulated considering a bit-rate of 100 Gb/s, then

50 Gb/s per SOP. As QPSK modulation format is applied, the symbol-rate per SOP is 25

Gsymb/s, to which one is added 3 Gsymb/s exclusively for FEC, resulting of 28 Gsymb/s.

In every simulation it is considered only one polarization, so the transmission system is in

fact a QPSK transmission system whose signal presents a symbol-rate of 28 Gsymb/s(1 +β),

where β (rolloff factor of the pulse shaper) values 0. The goal is to simplify the system

as much as possible in order to focus merely on the GVD effect. The number of samples

per symbols to simulate system is 32, which results of 896 GHz of simulation bandwidth -

32samp/symb × 28Gsymb/s. In the receiver, this fact takes to have a low-pass filter with a

cutoff frequency that lies between 14 GHz and 448 GHz, and still sufficiently far from each

of the two values, according to the relation in 2.29. The chosen value for the Bessel filter’s

cutoff frequency was then 100 GHz.

Figure 3.2: Block diagram of a transmission system whose optical channel is composed only
by an L length SMF - propagation with CD and without noise.
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Figure 3.3: Normal PDF for in-phase and quadrature data components correspondent to the
simulation of figure 3.1d (1000 km fibre).

I x r e c e i v e d = real ( rxS i gna l ) ; % In−phase symbols

Qx rece ived = imag( rxS i gna l ) ; % Quadrature symbols

normIx = normpdf ( sort ( I x r e c e i v e d ) , 0 , std ( I x r e c e i v e d ) ) ;

normQx = normpdf ( sort ( Qx rece ived ) , 0 , std ( Qx rece ived ) ) ;
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By the figure 3.3 it is possible to observe that their distribution probability for both com-

ponents tend to a Bell curve, which is the shape of a Gaussian function, and analytically

proved later in this Chapter. In statistics, Gaussian function corresponds to the PDF (proba-

bility density function) of the normal distribution and it is given by the next equation, where

x is the vector of samples, σ is the standard deviation, µ is the mean, and σ2 is the variance:

fG(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2). (3.2)

The next simulation results were yielded by a MATLAB script whose the code is in C.1

and regards a propagation set-up represented by figure 3.2, where the fibre length L takes

several values: 0 km, 1 km, 10 km, 100 km, 1000 km. The constellation diagrams show how

the chromatic dispersion increase, resulting of the fibre length increase, affects the symbols

distribution.
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Figure 3.4: L = 0 km - back-to-back.
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Figure 3.5: L = 1 km.
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Figure 3.6: L = 10 km.
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Figure 3.7: L = 100 km.
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Figure 3.8: L = 1000 km.
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%%%%%%%%%%%%%%% Sca t t e r p l o t %%%%%%%%%%%%%%%

h = s c a t t e r p l o t ( rxSymbols , numSamplesPerSymbol , 0 , ’ g . ’ ) ; % In−phase symbols

s c a t t e r p l o t ( txSymbols , numSamplesPerSymbol , 0 , ’ r+ ’ ,h ) ; % Quadrature symbols

%%%%%%%%% Histogram f i t p l o t %%%%%%%%%

I x r e c e i v e d = real ( rxS i gna l ) ; h i s t f i t ( I x r e c e i v e d ) ; % In−phase symbols

Qx rece ived = imag( rxS i gna l ) ; h i s t f i t ( Qx rece ived ) ; % Quadrature symbols

The graphs existent on the right side of each constellation are histograms fitted by a

normal density function regarding the symbols distribution. If the red line curve have a bell

shape, it means the symbols come from a normal distribution.

In order to evaluate the distribution probability of the symbols on the complex plan, there

were taken the variance values of each component, σ2
I

and σ2
Q

for all the fibre lengths. The

variance results of:

σ2 =
∑
i

(xi − x)2

N
, (3.3)

where x =
∑
i

xi
N

. (3.4)

Thereby, both previous equations are statistical parameters. Equation 3.3 corresponds to

the variance of a dataset, whereas equation 3.4 corresponds to its mean value.

L σ2
I

σ2
Q

0 km 0.5000 0.5000
1 km 0.4999 0.5001
10 km 0.5008 0.4992
100 km 0.4977 0.5022
1000 km 0.4971 0.5019

Table 3.1: Variances of I and Q components upon fibre lengths.

Posteriorly, it was proceeded to the Kolmogorov-Smirnov test, which provides the good-

ness of fit of a cumulative distribution regarding to a specified one. This test basically

measures how much does the symbols distribution fit in a normal plot, i.e. how much do the

symbols come from a normal distribution. The cumulative of a random sample of N elements

is expected to be fairly close to a specified distribution function, which in this case is a Gaus-

sian function. If it is not close enough, then the cumulative distribution of the random sample

is not Gaussian. The Kolmogorov-Smirnov test bases on the maximum difference between

the empirical and the hypothetical cumulative distribution [50].
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The respective MATLAB function KS-Test returns the ‘h-value’ as a test decision for the

null hypothesis that the data come from a standard normal distribution. Null hypothesis is a

type of hypothesis used in statistics that proposes that no statistical significance exists in a set

of samples. Thereby, the null hypothesis assumes that any kind of difference or significance

observed in a set of data is due to chance. The conjecture works for a certain significance level

that, in the case of KS-Test function, is set to 5% by default. The MATLAB function can

return a second value, ‘p-value’, that is the level of marginal significance within a statistical

hypothesis test, such as the Kolmogorov-Smirnov test. The ‘p-value’ represents the smallest

level of significance at which the null hypothesis would be rejected in favour to the alternative

hypothesis. The ‘p-value’ must be higher than 0 and lower than 1. The test returns ‘h=1’ for

a significance level higher than ‘p-value’, otherwise it returns ‘h=0’ that means the KS-Test

fails to reject the null hypothesis at the set significance level.

[ h , p ] = k s t e s t ( I x r e c e i v e d ) ; % de f a u l t s i g n i f i c a n c e l e v e l : 0 .05

[ h , p ] = k s t e s t ( Qx rece ived ) ; % de f a u l t s i g n i f i c a n c e l e v e l : 0 .05

L
σ2
I

σ2
Q

h p h p

0 km 1 0 1 0
1 km 1 0 1 0
10 km 1 0 1 0
100 km 1 4.45e-260 1 1.99e-263
1000 km 1 3.55e-304 1 2.11e-299

Table 3.2: Results from the KS-Test for the all scenarios of fibre length.

L
σ2
I

σ2
Q

h p h p

0 km 1 0 1 0
1 km 1 0 1 0
10 km 1 0 1 0
100 km 1 ∼ 0 1 ∼ 0
1000 km 1 ∼ 0 1 ∼ 0

Table 3.3: Same results from table 3.2.

There is ‘p=0’ for the whole cases, which deprecates completely the Kolmogrov-Smirnov

test for these simulation scenarios, once there is no significance level associated.
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Finally, there were observed the eye diagrams of signal before and after the fibre for the

last scenario, when the GVD is mostly noted.
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Figure 3.9: Eye diagrams of the transmitted signal and the received signal after cross a 1000
km fibre, with linear GVD effect.

i n i t i a l = span/2*numSamplesPerSymbol+1;

f i n a l = i n i t i a l + 200*numSamplesPerSymbol ;

eyediagram ( txS i gna l ( i n i t i a l : f i n a l ) , numSamplesPerSymbol *2 ) ;

eyediagram ( rxS i gna l ( i n i t i a l : f i n a l ) , numSamplesPerSymbol *2 ) ;

3.2 Propagation with Noise and without CD

This Section treats the noise effect throughout the optical channel, without considering

the GVD. Thereby, it is supposed to simulate exclusively the optical amplifiers, i.e. without

the SMF spans. For than reason, and as it was mentioned in the Section 2.2.2, several EDFAs

can be simulated by only one AWGN channel MATLAB function. This block allows defining

the noise level through the Eb/No: ratio of bit energy to noise spectral density. This ratio

represents a normalized SNR measure, where Eb is the energy per bit and No is the noise

spectral density.
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Figure 3.10: Block diagram of a transmission system whose optical channel is composed only
by an AWGN channel - propagation with noise and without CD.

The next simulation results were yielded by a MATLAB script whose the code is in C.2

and regards a propagation set-up represented by figure 3.10, where the AWGN channel takes

several values for Eb/No: 15 dB, 10 dB, 5 dB, 0 dB, -5 dB. The constellation diagrams show

how the noise increase affects the symbols distribution at the receiver side.
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Figure 3.11: Eb/No = 15 dB.
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Figure 3.12: Eb/No = 10 dB.
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Figure 3.13: Eb/No = 5 dB.
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Figure 3.14: Eb/No = 0 dB.
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Figure 3.15: Eb/No = -5 dB.
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EbNo = [15 10 5 0 −5]; % dB

SNR = EbNo + 10* log10 ( k ) − 10* log10 ( numSamplesPerSymbol ) ; % dB

rxS i gna l = awgn( txS igna l , SNR, ’ measured ’ ) ;

Similarly to the received symbols distribution resulting of GVD, also the noise causes

a Gaussian symbols distribution as figure 3.16 shows. Right after, it is presented also the

variances table 3.4 for each simulated scenario, for both in-phase and quadrature components,

as well as the eye diagrams (figure 3.17).
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Figure 3.16: Normal PDF for in-phase and quadrature data components correspondent to the
simulation of figure 3.15 (-5 dB of Eb/No).

Eb/No σ2
I

σ2
Q

15 dB 0.0182 0.0180
10 dB 0.0304 0.0303
5 dB 0.0689 0.0685
0 dB 0.1905 0.1922
-5 dB 0.5820 0.5784

Table 3.4: Variances of I and Q components upon Eb/No values.

Eb/No
σ2
I

σ2
Q

h p h p

15 dB 1 0 1 0
10 dB 1 0 1 0
5 dB 1 0 1 0
0 dB 1 0 1 0
-5 dB 1 0 1 0

Table 3.5: Results from the KS-Test for the all scenarios of Eb/No.

Once again, there is ‘p=0’ for the whole cases which means that any scenario fails the

KS-Test.
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(b) Received signal

Figure 3.17: Eye diagrams of the transmitted signal and the received signal after cross an
AWGN channel where Eb/No = −5dB.

3.3 Propagation with CD and Noise

In this case, the goal consists of observing the GVD and the ASE simultaneously. The

equation 2.22, previously mentioned in the Section 2.2.2, is the basis to the current simulation

propagation, represented by figure 3.18.

Figure 3.18: Block diagram of a transmission system whose optical channel is composed by
NA EDFAs splitting LA length SMF spans - propagation with CD and with noise.

The next simulation results were yielded by a MATLAB script whose the code is in C.3 and

regards a propagation set-up where the number of optical amplifiers, also called regenerators

takes several values: 0, 1, 5, 10, 50. The regenerators split SMF spans of 100 km. The

constellation diagrams show how the chromatic dispersion combined with the noise increase

affects the symbols distribution.
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Figure 3.19: NA = 0.
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Figure 3.20: NA = 1.
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Figure 3.21: NA = 5.
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Figure 3.22: NA = 10.
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Figure 3.23: NA = 50.

D = 17*1e−6; % s/nm/m

L = [0 100 e3 500 e3 1000 e3 5000 e3 ] ; % Total l e n g t h

La = 100 e3 ; % Span l en g t h

Na = L/La ; % Number o f EDFAs/ spans

alpha = 0 .2 e−3; % Loss c o e f f i c i e n t

gain = 10ˆ( alpha *La /10 ) ; % Linear gain

hP = 6.62607004*1 e−34; % Planck cons tant

nsp = 1 ; % Spontaneous emiss ion f a c t o r

lambda = 1550*1e−9; % m

c = 299792458; % m/s

v = c/lambda ; % Hz

Hc = exp ( (1 i *2*pi*D*L* lambdaˆ2* f . ˆ 2 ) / c ) ;

r xS i gna l = Hc .* txS i gna l ; % GVD
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NSD = Na*( ga in − 1)*v*hP*nsp ; % Noise s p e c t r a l s e n s i t y

N opt ica l power = 2*NSD * f s ; % Noise power den s i t y

n o i s e I = sqrt ( N opt i ca l power / 2 ) ;

noise Q = sqrt ( N opt i ca l power / 2 ) ;

no i s e = n o i s e I + 1 i * noise Q ; % ASE

rxS i gna l = rxS igna l + no i s e ;

Once again, there are presented the PDF graphs for in-phase and quadrature components

taken from the most Gaussian distribution obtained. There are also presented the variances

tables whose results were taken with the purpose of evaluating the distribution evolution

across the different number of fibre spans. The first one, 3.6, contains the variances results

from the propagation affected by GVD and ASE separately, while the third one, 3.8, contains

the variances from the same propagation affected by both effects simultaneously. The second

table, 3.7, contains the sum of the variances from the table 3.6, to which it is subtracted

‘0.5000’, represented by σ2ini. This value corresponds to the initial variance of the symbols

distribution, i.e. without suffering any effect, so it has to be accounted only once. For better

understanding, the standard deviation of the symbols, σini, equals the module of their original

coordinates for each component.

σini =

√
2

2
=⇒ σ2ini =

1

2
(3.5)

NA σ2
IGVD

σ2
QGVD

σ2
IASE

σ2
QASE

0 0.5000 0.5000 0.5000 0.5000
1 0.4977 0.5022 0.5000 0.5000
5 0.5029 0.4966 0.5000 0.5001
10 0.4971 0.5019 0.5002 0.5002
50 0.5002 0.4947 0.5007 0.5007

Table 3.6: Variances upon number of amplifiers for separated simulations of GVD and ASE
respectively.

σ2
IGVD

+ σ2
IASE

- σ2ini σ2
QGVD

+ σ2
QASE

- σ2ini
0.5000 0.5000
0.4977 0.5022
0.5029 0.4967
0.4973 0.5021
0.5009 0.4954

Table 3.7: Sum of the variances from the previous table for both components I and Q,
subtracting σ2ini.
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NA σ2
I

σ2
Q

0 0.5000 0.5000
1 0.4978 0.5002
5 0.5029 0.4967
10 0.4974 0.5021
50 0.5009 0.4951

Table 3.8: Variances of I and Q components upon number of amplifiers.
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Figure 3.24: Normal PDF for in-phase and quadrature data components correspondent to the
simulation of figure 3.23 (50 regenerators).
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(b) Received signal

Figure 3.25: Eye diagrams of the transmitted signal and the received signal after cross an
optical channel with 50 EDFAs splitting 100 km fibre spans.
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3.4 Conclusions

After simulating the three propagation scenarios and taking the respective evaluation

graphics and values, it is possible to compare them in order to get some conclusions about

the behaviour of the received signal. The GVD value increases with the fibre length, whereas

the noise increases with the SNR value decrease.

As it was mentioned already throughout the Chapter, the received signal for each one of

the three propagations presents a symbols distribution with Gaussian characteristics. Both

the GVD and ASE yield signals whose symbols distribution tend to a Gaussian distribution.

This conclusion is suitable for the case when the two phenomenons occur separately, but also

when they occur simultaneously. The Gaussian distribution can be graphically proved by

the constellations, histograms and normal plots. On the other hand, the Gaussian symbols

distribution is mathematically complemented by the KS-Test, whose results are given in each

propagation scenario. It is not possible in any case to achieve a measurable value for goodness

of fit. That means that the yielded symbols distribution is not Gaussian enough to take into

account the goodness of fit concept in any propagation scenario. Regarding the eye diagrams,

in the case of the GVD effect it is obtained an eye digram with ISI, which can be considered

one more evidence of signal distortion by chromatic dispersion. By comparison of the tables

3.8 and 3.7, it is possible to conclude that a propagation affected by GVD and ASE at the

same time generates a symbols distribution with variance approximate to the sum of the

variances of the symbols distributions generated by GVD and ASE affecting the propagation

in a single way.

σ2
I
≈ σ2

IGVD
+ σ2

IASE
− σ2ini (3.6)

σ2
Q
≈ σ2

QGVD
+ σ2

QASE
− σ2ini (3.7)
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Chapter 4

Digital Equalization and Filtering

I
n this Chapter, there is a simultaneous concern about the chromatic dispersion mitigation

and about trying to eliminate the noise from the received signal as much as possible, so

the binary signal can be received with the lowest number of errors. The structure of the

current Chapter is organized into four Sections in parallel with the Sections of the Chapter 3.

So Section 4.1 covers the digital CD equalization of a system that does not consider noise. In

turn, Section 4.2 deals with the noise filtering of a system that does not feature CD. These

performances were simulated once again with MATLABr. The graphical results are followed

by pseudocode excerpts likewise the previous Chapter. The Section 4.3 joins both digital

blocks (equalization and filtering) as in Section 3.3. At last, Section 4.4 lists the conclusions

taken from the simulation results obtained throughout the current Chapter.

4.1 Linear Equalization of a Propagation without Noise

In this Section, it is presented the CD equalization of the propagation treated in Section

3.1. Once the signal propagated is affected by a linear effect and its response is known, it is

proposed the application, at the receiver, a filter with the inverse response of equation 3.1,

which is given by:

H1(ω) = [Hc(ω)]−1 =
1

e−
iω2β2L

2

. (4.1)

Below, there are placed the figures 4.4 resulting from the same simulations from 3.1, but

now applying the linear equalizer H1. This linear filter is represented in figure 4.2, taking

part of the DSP context in the receiver. The respective code lies in the Appendix C.4.
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Figure 4.1: Block diagram of a transmission system whose receiver performs CD equalization.

Figure 4.2: Block diagram of the receiver in detail, containing the filter H1(ω).
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(d) 1000 km

Figure 4.3: Constellations resulting of different optical fibre lengths before linear equalization
is applied.
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(b) 10 km
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Figure 4.4: Same constellations after linear equalization is applied.

4.2 Matched Filtering of a Propagation with Noise and with-

out CD

Following the same line of though than the previous Section, it is proposed a linear filter

to compensate the noise in the propagation studied in 3.2. The taken solution was then the

matched filter, because it is the optimal detection scheme in the maximum-likelihood sense.

This type of filter is capable of producing the maximum achievable instantaneous SNR at its

output when a signal plus additive noise corresponds to the input, and the noise does not

need to be Gaussian [51]. The respective code of the simulation is in Appendix C.5.

Figure 4.5: Block diagram of a transmission system whose receiver performs matching filter-
ing, in order to eliminate part of the noise.
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Figure 4.6: Block diagram of the receiver in detail, containing the filter H2(ω).

The matched filtering was made using the RRC filter whose impulse response corresponds

to equation 2.5, presented in the Chapter 2. Noteworthy that the rolloff factor used for these

propagations was always ‘0’ (β = 0), so the pulse shape response corresponds to the rectan-

gular one. The following constellation diagrams show the signal enhancement with the usage

of this digital processing.
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Figure 4.7: Constellations resulting of different values of ratio of bit energy to noise spectral
density before matched filtering is applied.
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Figure 4.8: Same constellations after matched filtering is applied.

4.3 Linear Equalization and Matched Filtering

This last simulation aims to join the linear equalization and the matched filtering to solve

the impairments resulting of a propagation affected by GVD and ASE, respectively. Thereby,

the same set-up from Section 3.3 in order to apply both filters H1(ω) and H2(ω), resulting

of an only one filter H3(ω) that joins their responses. The MATLAB code regarding this

simulation can be consulted in Appendix C.6.

Figure 4.9: Block diagram of a transmission system whose receiver performs linear equaliza-
tion and matching filtering simultaneously.
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Figure 4.10: Block diagram of the receiver in detail, containing the filter H3(ω).
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(b) NA = 1
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(c) NA = 10

In-Phase
-4 -2 0 2 4

Q
ua

dr
at

ur
e

-4

-3

-2

-1

0

1

2

3

4
Scatter plot

Received Constellation
Original Constellation

(d) NA = 50

Figure 4.11: Constellations resulting of different number of regenerators before linear equal-
ization and matched filtering are applied.
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Figure 4.12: Same constellations after linear equalization and matched filtering are applied.

4.4 Conclusions

In a parallel approach relatively to the previous Chapter, there were used the same three

propagation scenarios in order to extract the undesired effects from the received signal. Ob-

serving the results, it is possible to conclude that the chromatic dispersion effect is possible

to eliminate completely, unlike the noise effect. This is because the GVD is given by a linear

and deterministic model and for compensate its response, the solution is simple as use an

inverse model of the propagation. In the case of the white Gaussian noise, it is impossible to

predict its model once it is random, then the compensation is performed by an approximate

inverse model of the propagation, i.e. by a matched filter. So when both effects are present

in a propagation the solution can be the application of a third filter to the received signal,

which is proposed in the Section 4.3. This digital filter joins the linear equalization and the

matched filtering responses.
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Chapter 5

Conclusions

F
ibre impairments severely impacts the performance of high-speed optical transmission

systems, as it is affirmed in [2]. The current dissertation aims to demonstrate that fact

through different simulations and under different conditions. It aims to demonstrate DSP

solutions to solve those impairments likewise. Focusing on the GVD impact, the main target

throughout the work was to understand this optical fibre phenomenon in order to mitigate

it combined with other channel constraints, such as ASE. The solution approach consisted

of linear equalization, proving that using only linear filtering, given an ideal system, it is

possible to retrieve the transmission system performance totally.

As object of study, a QPSK coherent transmission system was used with ideal charac-

teristics, i.e. with no components attenuation and with no external noise. The fact of the

transmission system being coherent is related to the detection of the signal phase beyond the

signal amplitude, which allows receiving both components in-phase and quadrature differen-

tiated. Each block of the transmission system as well as the reception system was studied in

detail before proceeding to any simulation. That study allowed taking the knowledge of the

system into a more precise level and simulate it closely from the reality, but also suitable in

the ideal model. In the case of the pulse shaper simulation, for instance, the rolloff factor and

also the number of spans must be adjusted to the ideal conditions values. The rolloff was set

to the minimum value and the number of spans was set to the maximum value respecting a

computational effort limit.

Regarding the propagation channel, a linear model of GVD was used for simulation pur-

poses. The three propagations simulated in the Chapter 3 yielded a signal whose symbols

distribution tends to a normal distribution. Those results allow concluding whether chromatic

dispersion whether noise causes a similar behaviour into the propagated signal. However, the

signal retrieval process for both cases was not successful in the same way. While the GVD

is a deterministic phenomenon, and even representable by a linear model, the noise is ran-
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dom and unpredictable. This statement was proved in the Chapter 4 using the same three

propagations than before. The CD effect can be completely mitigated using an equalizer that

corresponds to a filter with an inverse response of the linear model for GVD, which is known

in advance. In the case of the noise effect, the best solution is filtering the received signal

with a matched filter based on its response. Throughout the simulations was still proved that

the overlapping of the two effects generates independent distributions into the received signal.

5.1 Future Work

Once the current dissertation focused on the theory related to digital chromatic dispersion

equalization, it makes sense that the next step be a more practical approach on the subject.

So the following topics list should be a proposal for future work:

� Complete and test the simulation environment developed in C++;

� Implementation of the digital chromatic dispersion equalization in hardware language;

� Validation of the hardware implementation offline for a system at 100 Gb/s;

� Validation of the hardware implementation in real-time (FPGA) for a system at 10

Gb/s.
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Appendix A

C++ Functions

The first Appendix regards the C++ functions implemented in the PRBS level, in order

to add and validate features to it. All the three functions belong to the BinarySource class

which corresponds to PRBS in the QPSK transmitter’s programming code. Firstly, valid-

BitStream(int pLength, vector<char>& values) aims the validation of the bitstream given

by the user, verifying if its length matches the pattern length (also given by the user), if it

contains only ‘0’s and ‘1’s and at least one ‘1’. Then error(int errorType) typifies one of the

possible three errors described and, lastly Log(char *message) receives the error type, writing

the matching error message in a log file, which is automatically created in current directory.

bool BinarySource : : va l idBitStream ( int pLength , vector<char>& va lues )

{
patternLength = pLength ;

int va l u e sS i z e = va lues . s i z e ( ) ;

i f ( va l u e sS i z e != pLength ) {
i f ( va l u e sS i z e > pLength )

e r r o r ( 1 ) ;

else

e r r o r ( 2 ) ;

va lue s . r e s i z e ( pLength + 1 ) ;

for ( int j = va l u e sS i z e ; j < pLength + 1 ; j++)

va lue s [ j ] = ’ 0 ’ ;

}

bool one = fa l se ;

for ( int i = 0 ; i < pLength ; i++){
i f ( va lue s [ i ] != ’ 0 ’ && va lues [ i ] != ’ 1 ’ ) {

e r r o r ( 3 ) ;
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return fa lse ;

}
i f ( va lue s [ i ] == ’ 1 ’ )

one = true ;

}
i f ( ! one )

e r r o r ( 4 ) ;

return one ;

} ;

void BinarySource : : e r r o r ( int errorType )

{
s t r i n g mError ;

switch ( errorType ){
case 1 :

mError = ”WARNING: Bit s t r i n g l ength g r e a t e r than pattern

l ength ! Last b i t va lue s are d i s carded . ” ;

break ;

case 2 :

mError = ”WARNING: Bit s t r i n g l ength sma l l e r than pattern

l ength ! ZERO b i t va lue i s added at the end . ” ;

break ;

case 3 :

mError = ”WARNING: Bit va lue s must be ZERO or ONE! Bit va lue s

changed to ’ 1 0 0 . . . ’ ” ;

break ;

case 4 :

mError = ”WARNING: At l e a s t one b i t must have the value ONE!

Bit va lue s changed to ’ 1 0 0 . . . ’ ” ;

break ;

}

std : : vector<char> message (mError . begin ( ) , mError . end ( ) ) ;

Log(&*message . begin ( ) ) ;

Log ( ”\n” ) ;
} ;

# define LOGFILE ” g l . l og ” // a l l Log ( ) ; messages appended to t h i s f i l e

extern bool LogCreated = fa l se ;

void BinarySource : : Log (char *message )

{
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FILE * f i l e ;

i f ( ! LogCreated ) {
f i l e = fopen (LOGFILE, ”w” ) ;

LogCreated = true ;

}
else

f i l e = fopen (LOGFILE, ” r ” ) ;

i f ( f i l e == NULL) {
i f ( LogCreated )

LogCreated = fa l se ;

return ;

}
else

{ f pu t s (message , f i l e ) ;

f c l o s e ( f i l e ) ;

}

i f ( f i l e )

f c l o s e ( f i l e ) ;

} ;
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Appendix B

MATLAB Functions: PRBS

This second Appendix presents the MATLAB functions implemented in order to validate

the sequences resulting of the PRBS block using the QPSK transmitter’s simulation environ-

ment. Therefore, these functions may read an ‘S1.sgn’, yielded by C++ code, and require the

pattern length which must match the pattern length used to generate the signal in C++.

The first function, PRBSTest(), validates the existence of the whole bit combinations

within a sequence (all zeros’ sequence not included). The second function, PeriodicityTest(),

validates the periodicity of the sequence, i.e. if the sequence is repeating over the same period.

Finally, OpenBinarySignal(fileName, dataLength) is an auxiliary function of both that may

convert the ‘.sgn’ into a MATLAB vector.

function [ ] = PRBSTest ( ˜ )

PATH = ’ c :\ Users \Ut i l i z ado r \Desktop\ s i g n a l s \ ’ ;

m = input ( ’ I n s e r t the pattern l ength : ’ ) ;

per iodLength = 2ˆm−1;
dataLength = periodLength+m−1;

% i t opens the s i g n a l and l oads i t f o r dataBinary vec t o r

dataBinary = OpenBinarySignal ( [PATH ’S1 . sgn ’ ] , dataLength ) ;

c on f i rVec to r = in t8 ( zeros (1 , per iodLength ) ) ;

for k=1: per iodLength

aux = dataBinary (k : k+m−1);

dec = 0 ;

for l =1:m

dec=dec+aux ( l )*2ˆ(m−l ) ;
end
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i f ( dec > 0) \&\& ( dec<=periodLength )

con f i rVec to r ( dec )=1;

end

end

i f (sum( c on f i rVec to r)==periodLength ) && ( length ( c on f i rVec to r)==periodLength )

disp ( ’OK! ’ ) ;

else

disp ( ’Wrong ! ’ )

end

save dataBinary

end

function [ ] = Pe r i od i c i t yTe s t ( ˜ )

PATH = ’ c :\ Users \Ut i l i z ado r \Desktop\ s i g n a l s \ ’ ;

m = input ( ’ I n s e r t the pattern l ength : ’ ) ;

per iodLength = 2ˆm−1;
dataLength = periodLength+m−1;

% i t opens the s i g n a l and l oads i t f o r dataBinary vec t o r

dataBinary = OpenBinarySignal ( [PATH ’S1 . sgn ’ ] , 2* dataLength ) ;

decim=zeros (1 ,2* periodLength ) ;

for i =1:(2* periodLength )

aux = dataBinary ( i : i+m−1);

dec = 0 ;

for l =1:m

dec=dec+aux ( l )*2ˆ(m−l ) ;
end

decim ( i )=dec ;

end

count = 0 ;

for j =1: per iodLength

i f decim ( j ) == decim ( j+periodLength )

count=count+1;

end

end
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i f count == periodLength

disp ( ’ Pe r i od i c ’ ) ;

else

disp ( ’Non p e r i o d i c ’ ) ;

end

end

function data = OpenBinarySignal ( f i leName , dataLength )

% Open f i l e

f i d = fopen ( f i leName ) ;

[ ˜ , ˜ , ˜ , ˜ ] = readSignalHeader ( f i d ) ;

data = fread ( f i d , dataLength , ’ u int32 ’ ) ;

fc lose ( f i d ) ;

end
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Appendix C

MATLAB Scripts Code:

End-to-End Simulations

Each Section of this Appendix contains the MATLAB script code for each simulation

set-up of both Chapters 3 and 4, as the titles indicate.

C.1 Propagation with CD and without Noise

%%%%%%%%%%%%%%%%%%%%%%%%%%% Binary Source %%%%%%%%%%%%%%%%%%%%%%%%%%%

M = 4; % Number o f symbols

phOf f set = pi /4 ; % Phase o f f s e t

k = log2 (M) ; % Number o f b i t s per symbol

numBits = 1e5 ; % Number o f b i t s to proces s

SymbolRate = 28 e9 ; % Symbol ra t e

rng d e f au l t % Defau l t random number genera tor

dataIn = randi ( [ 0 1 ] , numBits , 1 ) ; % Generate v e c t o r o f b inary data

%%%%%%%%%%%%%%%%%%%%%%%%%%% QPSK Mapper %%%%%%%%%%%%%%%%%%%%%%%%%%%

dataInMatrix = reshape ( dataIn , length ( dataIn )/k , k ) ; % Reshape in t o b inary 4

dataSymbolsIn = bi2de ( dataInMatrix ) ; % Convert to i n t e g e r s

dataMod = pskmod( dataSymbolsIn , M, phOffset , ’Gray ’ ) ; % QPSK mapping

%%%%%%%%%%%%%%%%%%%%%%%%%%% Pulse Shaper (TX) %%%%%%%%%%%%%%%%%%%%%%%%%%%

numSPS = 32 ; % Oversampling f a c t o r

f s = SymbolRate*numSPS ; % Sample ra t e

span = 20000 ; % F i l t e r span in symbols

r o l l o f f = 0 ; % Ro lo f f f a c t o r
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r r c F i l t e r = r co sde s i gn ( r o l l o f f , span , numSPS, ’ s q r t ’ ) ; % RRC

txS i gna l = upf i rdn (dataMod , r r cF i l t e r , numSPS, 1 ) ; % Upsample & f i l t e r

%%%%%%%%%%%%%%%%%%%%% Opt i ca l Fibre (CD e f f e c t ) %%%%%%%%%%%%%%%%%%%%%

lambda = 1550*1e−9; % m

c = 299792458; % m/s

D = 17*1e−6; % s/nm/m

L = [0 1e3 10 e3 100 e3 1000 e3 ] ; % m

for v=1: length (L)

tx = f f t sh i f t ( f f t ( txS i gna l ) ) ; % Convert to f requency domain

N = length ( txS i gna l ) ;

f= − f s /2 : f s /N: f s /2− f s /N;

H c = exp ( (1 i *2*pi*D*L(v )* lambdaˆ2* f . ˆ 2 ) / c ) ; % CD frequency response

rx = transpose (H c ) . * tx ;

rxS i gna l = i f f t ( i f f t s h i f t ( rx ) ) ; % Convert to time domain

%%%%%%%%%%%%%%%%%%%%% Besse l Low−Pass F i l t e r %%%%%%%%%%%%%%%%%%%%%

Bandwidth = 200 e9 ;

[B,A] = b e s s e l f (1 , Bandwidth ) ;

H bes s e l = f r e q z (B,A, length ( rxS i gna l ) , ’ whole ’ ) ;

LowPass Fi l ter = f f t sh i f t (abs ( H bes s e l ) ) ;

LPF shi f ted = LowPass Fi l ter .* f f t sh i f t ( f f t ( rxS i gna l ) ) ;

r xF i l t = i f f t ( i f f t s h i f t ( LPF shi f ted ) ) ;

%%%%%%%%%%%%%%%%%%%%% Pulse Shaper (RX) %%%%%%%%%%%%%%%%%%%%%

r x S i g n a lF i l t = upf i rdn ( rxF i l t , r r cF i l t e r , 1 ,numSPS ) ;% Downsample & f i l t e r

r x S i g n a lF i l t = r xS i g n a lF i l t ( span+1:end−span ) ; % Account f o r de lay

%%%%%%%%%%%%%%%%%%%%% QPSK Demapper %%%%%%%%%%%%%%%%%%%%%

dataSymbolsOut=pskdemod ( rxS i gna lF i l t ,M, phOffset , ’Gray ’ ) ;% QPSK demapp .

dataOutMatrix = de2bi ( dataSymbolsOut , k ) ;% Convert symbols i n t o b inary

dataOut = dataOutMatrix ( : ) ; % Return data in column vec to r

end
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C.2 Propagation with Noise and without CD

%%%%%%%%%%%%%%%%%%%%%%%%%%% Binary Source %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% QPSK Mapper %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% Pulse Shaper (TX) %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%%AWGN (Noise e f f e c t ) %%%%%%%%%%%%%%%%%%%%%%%%%%%

EbNoVector = [−10 −5 0 5 1 0 ] ;

for v = 1 : length (EbNoVector )

EbNo = EbNoVector ( v ) ;

snr = EbNo + 10* log10 ( k ) − 10* log10 (numSPS ) ; % Signa l no i se r a t i o

rxS i gna l = awgn( txS igna l , snr , ’ measured ’ ) ; % AWGN channel

%%%%%%%%%%%%%%%%%%%%% Besse l Low−Pass F i l t e r %%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%% Downsample (ADC) %%%%%%%%%%%%%%%%%%%%%

rxDnSignal = upf i rdn ( rxF i l t , 1 , 1 ,numSPS ) ; % Downsample

rxS i gna l = rxDnSignal ( 1 :end−span ) ; % Account f o r de lay

%%%%%%%%%%%%%%%%%%%%% QPSK Demapper %%%%%%%%%%%%%%%%%%%%%

. . .

end
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C.3 Propagation with CD and Noise

%%%%%%%%%%%%%%%%%%%%%%%%%%% Binary Source %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% QPSK Mapper %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% Pulse Shaper (TX) %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% Opt i ca l Channel %%%%%%%%%%%%%%%%%%%%%%%%%%%

D = 17*1e−6; % s/nm/m

L = [0 100 e3 500 e3 1000 e3 5000 e3 ] ; % Total l e n g t h

La = 100 e3 ; % Span l en g t h

alpha = 0 .2 e−3; % Loss c o e f f i c i e n t

hP = 6.62607004*1 e−34; % Planck cons tant

nsp = 1 ; % Spontaneous emiss ion f a c t o r

lambda = 1550*1e−9; % m

c = 299792458; % m/s

for v=1: length (L)

tx = f f t sh i f t ( f f t ( txS i gna l ) ) ; % Convert to f requency domain

N = length ( txS i gna l ) ;

f=−f s /2 : f s /N: f s /2− f s /N;

Hc = transpose (exp ( (1 i *2*pi*D*L(v )* lambdaˆ2* f . ˆ 2 ) / c ) ) ;

rx = Hc .* tx ;

rxS i gna l = i f f t ( i f f t s h i f t ( rx ) ) ; % Convert to time domain

Na = L(v )/La ; % Number o f EDFAs

gain = 10ˆ( alpha *La /10 ) ; % Linear gain

NSD = Na*( ga in − 1)* c/lambda*hP*nsp ; % Noise s p e c t r a l d en s i t y

N opt ica l power (u) = 2*NSD* f s ; % Linear no i se

n o i s e I = sqrt ( N opt i ca l power /2)*randn( length ( txS i gna l ) , 1 ) ;

noise Q = sqrt ( N opt i ca l power /2)*randn( length ( txS i gna l ) , 1 ) ;

no i s e = n o i s e I + 1 i * noise Q ;

rxS i gna l = rxS igna l + no i s e ;

%%%%%%%%%%%%%%%%%%%%% Besse l Low−Pass F i l t e r %%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%% Pulse Shaper (RX) %%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%% QPSK Demapper %%%%%%%%%%%%%%%%%%%%%

. . .

end
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C.4 CD Equalization of a Propagation without Noise

%%%%%%%%%%%%%%%%%%%%%%%%%%% Binary Source %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% QPSK Mapper %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% Pulse Shaper (TX) %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%% Opt i ca l Fibre (CD e f f e c t ) %%%%%%%%%%%%%%%%%%%%%

. . .

for v=1: length (L)

tx = f f t sh i f t ( f f t ( txS i gna l ) ) ; % Convert to f requency domain

N = length ( txS i gna l ) ;

f= − f s /2 : f s /N: f s /2− f s /N;

H c = exp ( (1 i *2*pi*D*L(v )* lambdaˆ2* f . ˆ 2 ) / c ) ; % CD frequency response

rx = transpose (H c ) . * tx ;

rxS i gna l = i f f t ( i f f t s h i f t ( rx ) ) ; % Convert to time domain

%%%%%%%%%%%%%%%%%%%%% Besse l Low−Pass F i l t e r %%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%% Pulse Shaper (RX) %%%%%%%%%%%%%%%%%%%%%

r x S i g n a lF i l t = upf i rdn ( rxF i l t , r r cF i l t e r , 1 , 1 ) ; % RRC f i l t e r

r x S i g n a lF i l t = r xS i g n a lF i l t (1+span/2*numSPS : end−span /2*numSPS ) ;

%%%%%%%%%%%%%%%%%%%%% CD Equa l i z e r (DSP) %%%%%%%%%%%%%%%%%%%%%

H1 = (1 . /Hc ) ;

rxSignalEq= i f f t ( i f f t s h i f t (H1 .* f f t sh i f t ( f f t ( r x S i g n a lF i l t ) ) ) ) ;

rxSignalEq = upf i rdn ( rxSignalEq , 1 , 1 ,numSPS ) ; % Downsample

rxSignalEq = rxSignalEq (1+span /2 :end−span /2 ) ; % Account f o r de lay

%%%%%%%%%%%%%%%%%%%%% QPSK Demapper %%%%%%%%%%%%%%%%%%%%%

. . .

end
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C.5 Matched Filtering of a Propagation with Noise and with-

out CD

%%%%%%%%%%%%%%%%%%%%%%%%%%% Binary Source %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% QPSK Mapper %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% Pulse Shaper (TX) %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%%AWGN (Noise e f f e c t ) %%%%%%%%%%%%%%%%%%%%%%%%%%%

EbNoVector = [−5 0 5 10 1 5 ] ;

for v = 1 : length (EbNoVector )

EbNo = EbNoVector ( v ) ;

snr = EbNo + 10* log10 ( k ) − 10* log10 (numSPS ) ; % Signa l no i se r a t i o

rxS i gna l = awgn( txS igna l , snr , ’ measured ’ ) ; % AWGN channel

%%%%%%%%%%%%%%%%%%%%% Besse l Low−Pass F i l t e r %%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%% Matched F i l t e r /RRC (DSP) %%%%%%%%%%%%%%%%%%%%%

H2 = rco sde s i gn ( r o l l o f f , span , numSPS, ’ s q r t ’ ) ; % RRC f i l t e r

r xF i l t S i g n a l = upf i rdn ( rxF i l t ,H2 , 1 ,numSPS ) ; % Downsample & f i l t e r

r xF i l t S i g n a l = r xF i l t S i g n a l (1+span : end−span ) ; % Account f o r de lay

%%%%%%%%%%%%%%%%%%%%% QPSK Demapper %%%%%%%%%%%%%%%%%%%%%

. . .

end
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C.6 CD Equalization and Matched Filtering

%%%%%%%%%%%%%%%%%%%%%%%%%%% Binary Source %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% QPSK Mapper %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% Pulse Shaper (TX) %%%%%%%%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%%%%%%%%%%%%%%%%%%% Opt i ca l Channel %%%%%%%%%%%%%%%%%%%%%%%%%%%

for v = 1 : length (L)

tx = f f t sh i f t ( f f t ( txS i gna l ) ) ; % Convert to f requency domain

N = length ( txS i gna l ) ;

f=−f s /2 : f s /N: f s /2− f s /N;

Hc = transpose (exp ( (1 i *2*pi*D*L(v )* lambdaˆ2* f . ˆ 2 ) / c ) ) ;

rx = Hc .* tx ;

rxS i gna l = i f f t ( i f f t s h i f t ( rx ) ) ; % Convert to time domain

Na = L(v )/La ; % Number o f EDFAs

gain = 10ˆ( alpha *La /10 ) ; % Linear gain

NSD = Na*( ga in − 1)* c/lambda*hP*nsp ; % Noise s p e c t r a l d en s i t y

N opt ica l power (u) = 2*NSD* f s ; % Linear no i se

n o i s e I = sqrt ( N opt i ca l power /2)*randn( length ( txS i gna l ) , 1 ) ;

noise Q = sqrt ( N opt i ca l power /2)*randn( length ( txS i gna l ) , 1 ) ;

no i s e = n o i s e I + 1 i * noise Q ;

rxS i gna l = rxS igna l + no i s e ;

%%%%%%%%%%%%%%%%%%%%% Besse l Low−Pass F i l t e r %%%%%%%%%%%%%%%%%%%%%

. . .

%%%%%%%%%% Di g i t a l Equa l i z e r & Matched F i l t e r (DSP) %%%%%%%%%%

r x S i g n a lF i l t = upf i rdn ( rxF i l t ,H2 , 1 , 1 ) ; % RRC f i l t e r

r x S i g n a lF i l t = r xS i g n a lF i l t (1+span/2*numSPS : end−span /2*numSPS ) ;

rxSignalEq= i f f t ( i f f t s h i f t (H1 .* f f t sh i f t ( f f t ( r x S i g n a lF i l t ) ) ) ) ;

rxSignalEq = upf i rdn ( rxSignalEq , 1 , 1 ,numSPS ) ; % Downsample

rxSignalEq = rxSignalEq (1+span /2 :end−span /2 ) ; % Account f o r de lay

%%%%%%%%%%%%%%%%%%%%% QPSK Demapper %%%%%%%%%%%%%%%%%%%%%

. . .

end
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