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   Abstract:   The development of (nano)materials based on 

the renewable cellulose is a challenge. The present arti-

cle provides a brief overview of the recent research efforts 

carried out at the CICECO Laboratory of the University 

of Aveiro on the development of novel composites based 

on nanofibrillated plant and bacterial cellulose embed-

ded in natural and synthetic polymeric matrices such as 

poly(lactic acid), chitosan, starch, and pullulan. These 

materials have high potential for applications in packag-

ing, paper coating, organic electronics, and biomedical 

products and devices.  
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  Introduction 
 The finiteness of fossil raw materials led in the last 

decades to intense research activities toward a more 

sophisticated utilization of renewable materials, such 

as plant biomass (lignocellulosic feedstock), which are 

subsumed as  “ biorefinery ”  (Fernando et al.  2006 ; Kamm 

et al.  2006 ). The biorefinery concept is analogous to the 

traditional petroleum refinery, which means that biomass 

conversion processes should be improved so that more 

value-added chemicals can be produced aside from heat 

and power. The biorefinery concept is frequently devel-

oped in the context of the well-established pulping indus-

try, with pulp (cellulose and hemicelluloses) as its main 

product and lignin as its byproduct. Also, the University 

of Aveiro met this rewarding challenge and dedicated 

intense research efforts to many aspects of wood chem-

istry, pulping, and bleaching technologies. Frequently, 

 Eucalyptus globulus  is in focus, a tree of large importance 

for pulp production in Portugal. Since the last decade, the 

biorefinery concept is an integrated part of the research 

efforts aiming at better utilization of important forest 

species of Portugal. 

 Concerning  E. globulus , the research has been mainly 

devoted to high-value components from bark residues 

(Freire et  al.  2002 ; Domingues et  al.  2010 ; Santos et  al. 

 2011 ) and to new applications of cellulose fibers (Freire 

et  al.  2005, 2006a,b, 2008 ; Cunha et  al.  2007a,b, 2010 ; 

Fernandes et al.  2011a ; Tom  é  et al. 2011a ). 

 The outstanding properties of cellulose fibers 

(Figure   1  a and b) are well documented (Fengel and 

Wegener  1989 ; Klemm et  al.  1998, 2005 ) in terms of 

mechanical strength, chemical behavior, biocompatibil-

ity, biodegradability, nontoxicity, absorption properties, 

and low density. These properties are the basis for novel 

applications beyond the well-established utilization in 

paper and textile products (Klemm et al.  2005 ). 

 Esterification, etherification, urethane formation, 

and cross-linking or graft copolymerization enlarge the 

application possibilities of cellulose (Klemm et  al.  1998 ; 

Gandini  2008 ; Heinze and Petzold  2008 ; Yu and Chen 

 2009 ). A peculiarity is the controlled heterogeneous modi-

fication of cellulose fibers, where the reaction is limited 

to the most accessible regions of the fibers while its bulk 

mechanical properties are preserved. This is one of the 

strategies for utilization of cellulose as reinforcing ele-

ments in composites (Bledzki and Gassan  1999 ; Schurz 
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 1999 ; Mohanty et  al.  2001 ; Belgacem and Gandini  2005 ; 

Samir et  al.  2005 ; Freire and Gandini 2006; Teeri et  al. 

 2007 ; Dufresne  2008 ). Here, cellulose replaces inorganic 

(mineral) - based fibers (Wang and Zhang  2009 ). Automo-

tive, construction, and packaging are among the largest 

segments for these materials with an exponential growth 

in recent years. 

 More recently, polymer-based nanocomposites 

(multiphase materials) consisting of a polymer matrix 

and a nanofiller, gained particular attention and inter-

est. They have very special properties in comparison 

with conventional polymer composites (Bordes et  al. 

 2009 ), for example, improved mechanical, thermal, and 

barrier properties and transparency (Zimmermann et al. 

 2004 ; Hubbe et al.  2008 ; Nogi and Yano 2008; Azeredo 

 2009 ; Fukuzumi et al.  2009 ; Kim et al.  2009 ). The nano-

composites of this category, in which the micro- and 

nanofibrillated cellulose (MFC and NFC, respectively), 

cellulose whiskers, and bacterial cellulose (BC) play an 

essential role, have a wide range of application domain 

(Nakagaito and Yano  2004, 2005 ; Nakagaito et al.  2005 ; 

Shimazaki et al.  2007 ; Jung et al.  2008 ; Nogi et al.  2009 ). 

The preparation, properties, modification, and applica-

tion of NFC were reviewed extensively (Zimmermann 

et al.  2004 ; Samir et al.  2005 ; Hubbe et al.  2008 ; Chinga -

Carrasco 2011 ; Klemm et  al.  2011 ; Petersen and Gaten-

holm  2011 ; Siqueira et al.  2011 ). 

 The first production of MFC from wood fibers was 

reported by Turbak et  al.  (1983) . Meanwhile, the term 

NFC is more frequently applied. The disintegration of 

cellulose fibrils to nanocellulose is realized by high-

pressure homogenizers combined with chemical or 

enzymatic treatments (Preston  1974 ; Sj  ö str ö m 1981 ; 

Klemm et al.  1998 ; Teeri et al.  2007 ). The obtained NFC 

suspensions (Figure 1c and c ′ ) bear the appearance of 

highly viscous shear-thinning transparent gels and have 

high aspect ratios and specific surface areas combined 

with remarkable strength and flexibility, low thermal 

expansion, high optical transparency, and specific 

barrier properties. MFC and NFC can be incorporated 

in different matrices such as hydroxypropylcellulose 

 (Zimmermann et al.  2004 ), chitosan (CH; Nordqvist et al. 

 2007 ), viscous polysaccharide matrices in the form of 

50/50  amylopectin-glycerol blends (Svagan et al.  2007 ), 
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 Figure 1    Images of cellulose. 

 (a) A glucan chain of cellulose with repeating anhydrocellobiose units. (b) Macroscopic and SEM images of conventional pulp fibers. 

(c and c ′ ) Macroscopic and SEM images of NFC. (d) Image of BC. (d ′ ) SEM image of BC.    
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poly(lactic acid) (PLA; Iwatake et  al.  2008 ; Suryane-

gara et al.  2009 ), polyvinyl alcohol (Zimmermann et al. 

 2004 ), and polyurethanes (Seydibeyoglu and Oksman 

 2008 ). The NFC-based nanocomposites are used for the 

production of transparent materials (Yano et  al.  2005 ; 

Fukuzumi et al.  2009 ) and gas barrier films (Fukuzumi 

et al.  2009 ). 

 BC, also known as microbial cellulose, is produced 

by different bacteria genera, such as  Gluconacetobac-
ter ,  Sarcina , and  Agrobacterium , but  Gluconacetobacter  

 xylinus  is probably the most commonly referred strain 

in this context (Budhiono et al.  1999 ; Shoda and Sugano 

 2005 ; Pecoraro et al.  2008 ). Recently, it was reported by our 

group that  G. sacchari  also produces BC in very high yields 

(Trovatti et  al.  2011 ). These bacteria are Gram-negative 

aerobic and nonphotosynthetic bacteria usually found in 

fruits, vegetables, vinegar, and alcoholic beverages. They 

are capable of converting several substrates into cellulose 

within a few days. Studied substrates comprise glucose, 

glycerol, and other organic materials, including residues 

from agroforest industries (Chawla et  al.  2009 ; Carreira 

et al.  2011 ). BC can be produced as a highly swollen hydro-

gel and, depending on the static or agitated nature of the 

culture media, as a membrane (Figure 1d and d ′ ) or in the 

form of small beads. BC consists of ribbons of microfibrils 

generated at the surface of the bacterial cell. The bacte-

ria first segregate a structurally homogeneous slimy sub-

stance, and after a short time, the cellulose nanofibers are 

formed (Chawla et al.  2009 ). More precisely, BC is a three-

dimensional network consisting of nano- and microfibrils 

with the dimensions of 3 – 4 nm thickness and 70 – 80 nm 

length (Figure 1d ′ ), that is, the fibrils are approximately 

1000 times thinner than typical plant cellulose fibrils. 

These dimensions explain the unique properties of BC. 

Additionally, BC is free of lignin, hemicelluloses, and 

other natural components usually associated with cellu-

lose isolated from the cell wall of plants. BC has a high 

degree of poly merization and crystallinity, extremely high 

water holding capacity, high tensile strength, and high 

surface area (George et al.  2005a,b ). BC is well suited as 

a reinforcing element in nanocomposites in several poly-

meric matrices, namely, cellulose acetate butyrate (Gindl 

and Keckes  2004 ), acrylic thermosetting resins (Yano et al. 

 2005 ; Ifuku et al.  2007 ), phenolic resins (Nakagaito et al. 

 2005 ), poly(ethylene oxide) (Brown and Laborie  2008 ), 

plasticized starch (Wan et al.  2009 ), PLA (Kim et al.  2009 ), 

and epoxidized soybean oil matrix (Retegi et al.  2012 ), just 

to mention a few examples. 

 Recent advances of nanocomposite research with NFC 

and BC as reinforcing elements achieved at the University 

of Aveiro will be reported in the next chapter.  

  Research on cellulose nanocompos-
ites at the University of Aveiro 
 Different strategies were applied to obtain nanocompos-

ites, namely, heterogeneous chemical modification, com-

pounding with synthetic polymers matrices such as PLA, 

and blending with other natural polymers such as CH, 

starch, and pullulan. Polysaccharide matrices are compat-

ible with cellulose because of their structural similarity. 

This is the reason why simple  “ green procedures ”  such as 

casting of water-based suspensions or melting-mixing can 

be applied for the production of composites with polysac-

charides and nanocellulose fibers. The next paragraphs 

will present some examples of these approaches. 

  BC-PLA nanocomposites 

 PLA is a versatile and biodegradable thermoplastic poly-

ester (Figure  2  a), which is produced entirely from renew-

able resources, specifically from starch-enriched raw 

materials such as sugar beet, corn, and wheat (Averous 

 2008 ). The properties of PLA such as high mechanical 

strength and stiffness, UV stability, and gloss open a large 

field of applications in the automotive industry, packag-

ing, and medicine. 

 Nanocomposites with improved properties based on 

PLA matrix and BC were described by Tom  é  et al. (2011b) , 

who prepared such materials by heterogeneous acetyla-

tion of BC followed by simple melting-mixing with PLA. 

The acetylation increases substantially the hydrophobic-

ity of nanofibers and therefore their compatibility and 

adhesion with the PLA matrix. The compatibility was evi-

denced by scanning electron microscopy (SEM) images 

(Figure 2b ′ ). 

 PLA-BC nanocomposites have considerably improved 

mechanical properties as evidenced by the significant 

increase both in the storage modulus (E ′ /Pa; Figure  3  a) as 

well as Young ’ s modulus and in the tensile strength (Tom  é  

et  al. 2011b ). The increments were approximately 100 % , 

40 % , and 25 %  for elastic modulus, Young ’ s modulus, and 

tensile strength, respectively, even when the level of nano-

filler loadings (up to 6 % ) was low. 

 The incorporation of both unmodified and  acetylated 

BC nanofibers in the PLA matrix also resulted in a con-

siderable increase in the thermal properties of the cor-

responding nanocomposites (Figure 3b) and particularly 

those with acetylated BC fillers (PLA-BCAc), observed by 

the increment in both initial and maximum degradation 

temperatures, which reflect their excellent interfacial 
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biocompatibility, antimicrobial activity, biodegradabil-

ity, and excellent film-forming ability (Rinaudo  2006 ; 

Peniche et al.  2008 ), which have attracted scientific and 

industrial interest in biotechnology, pharmaceutics, bio-

medicine, packaging, and wastewater treatment, among 

many other application fields. CH behaves in aqueous 

acidic media as a polycation contrasting with the other 

polysaccharides, which are usually neutral or anionic 

(Rinaudo  2006 ; Peniche et al.  2008 ). 

 The preparation and characterization of nanocom-

posite films (Figure 4b and c) were described based on 

different matrices of CH and BC (Fernandes et  al.  2009, 

2011b ) or NFC (Fernandes et al.  2010 , 2011b). The goal is 

the preparation of CH films with improved mechanical 

properties while keeping their transparency and thermal 

stability. The preparation was carried out by casting NFC 

or BC suspensions in aqueous CH (or chemically modified 

CH). The components are perfectly compatible; moreover, 

CH solutions are an efficient media for stable suspen-

sions of NFC or BC. As a result, the BC (as well as NFC) is 

very homogeneously distributed in the matrix (Figure 4b 
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 Figure 3    Properties of PLA and PLA-BC composites. 

 (a) Storage modulus of PLA and PLA-BC 
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 Figure 2    Images of PLA. 

 (a) Visual aspect of PLA pellets. (b and b ′ ) Optical and SEM images 

of PLA and PLA-BC nanocomposites (PLA-BC).    

compatibility. For example, the incorporation of 6 %  of acet-

ylated BC (PLA-BCAc6) elevated the initial and maximum 

degradation temperatures by 15 ° C and 14 ° C, respectively. 

 Moreover, these nanocomposites also have a low 

hygroscopicity and considerable transparency (Figure 1b). 

For example, their transmittance (measured for specimens 

with a thickness of  ∼ 1 mm) at 580 nm was approximately 

80 %  for PLA, 70 %  for the nanocomposites prepared with 

PLA and 1 %  of acetylated BC (PLA-BCAc1), and 60 %  with 

4 %  and 6 %  of acetylated BC (PLA-BCAc4 and PLA-BCAc6).  

  CH-nanocellulose transparent 
nanocomposites 

 CH (Figure  4  a), obtained from deacetylation of chitin, 

which is the main component of crustacean shells 

and insects’ exoskeletons, is unique concerning 
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normally used as coating or packaging materials for dried 

foods as well as in the pharmaceutical industry. 

 Novel pullulan-BC (PBC) nanocomposite films were 

prepared by Trovatti et  al.  (2012a)  and the material was 

filled with 5 % , 10 % , 20 % , 40 % , and 60 %  (w/w) BC and 

with glycerol as plasticizer. The procedure is similar to 

that described above for the CH nanocomposite films. 

The morphology of the nanocomposites was studied by 

SEM, aiming at the assessment of the dispersion of the 

BC nanofibrils into the pullulan matrix and the interfacial 

adhesion between the two components (Figure 5b and c). 

As visible, the BC is well dispersed in the pullulan matrix, 

without forming considerable aggregates, even for high 

fiber contents (up to 40 % ). 

 Figure  6   displays the stress-strain curves of nanocom-

posites made of pullulan, pullulan-glycerol (PG) films, 

PBC, and PG-BC. The incorporation of BC into the pullulan 

matrix improves considerably both Young ’ s modulus and 

tensile strength, with increments of up to 100 %  and 50 %  

for films without glycerol and up to 8000 %  and 7000 %  

for films plasticized with glycerol. Glycerol as plasticizer 

increases the flexibility of the films, which is an important 

parameter in many applications. 

 The thermal stability of all PBC nanocomposites is con-

siderably improved as a function of the BC content as evi-

denced by an increment in the degradation temperatures. 
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 (a) Chemical structure of pullulan. Pullulan is a polysaccharide 
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 Figure 4    Images to CH and CH-based composites. 

 (a) Chemical structure of a CH chain. (b) Illustration of the transpar-

ency of a CH film (HCH; left) and the SEM image of LCH. (c) Illustra-

tion of the transparency of a CH-BC nanocomposite (HCH-BC  10 %
 
 ; 

left) and the SEM image of LCH-BC  10 %
 
 .    

and  c). The same figure demonstrates that the films are 

highly transparent and flexible. The mechanical prop-

erties of the films are manifested by excellent Young ’ s 

modulus (that can go up to 320 %  improvement for some 

formulations) and tensile strength, and the thermal stabil-

ity of the films is better compared with pure CH films. 

 These films are well suited for the development of 

transparent electronic devices, namely, organic field-

effect transistors (Pereira et  al.  2011 ). Finally, CH- and 

BC-based aqueous formulations can be used successfully 

as surface coating of paper with substantially improved 

properties concerning the surface and printing quality 

and mechanical strength (Fernandes et al.  2011c ).  

  Pullulan-nanocellulose nanocomposites 

 Pullulan is a linear water-soluble homopolysaccharide 

of glucose (Leathers  2003 ) consisting of maltotriose units 

that are integrated in the polymers by  α -(1 – 6) linkages 

(Figure   5  a). Pullulan is produced aerobically by certain 

strains of the polymorphic fungus  Aureobasidium  pullulans.  
It is able to form films that show high oxygen impermeabil-

ity, nontoxicity, edibility, biodegradability, and compatibility 

to humans and the environment and have good mechani-

cal properties (Krochta and DeMulder  1997 ). These films are 
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 The numbers indicate the BC concentration in  % .    

For instance, for PBC nanocomposites, the incorporation 

of 5 %  BC resulted in an increase of approximately 3 ° C and 

7 ° C in the initial and maximum degradation temperatures, 

respectively, whereas the incorporation of 20 %  BC resulted 

in an increment of 9 ° C and 17 ° C of the initial and maximum 

degradation temperatures, respectively (Trovatti et al.  2012a ). 

 Similar nanocomposites were also developed based 

on NFC as reinforcing element (Trovatti et al.  2012b ). As in 

the case of the materials prepared with BC, all pullulan-NFC 

nanocomposites show a good  homogeneity (atomic force 

microscopy images in Figure  7  a and a ′ ) and a high translu-

cency as evidenced by the optical image of nanocomposite 

specimens against a printed background (Figure 7b). The 

image in the corner of Figure 7b demonstrates the consid-

erable flexibility of the films.  Pullulan-NFC nanocompos-

ites also showed considerable improvements in thermal 

stability, which means increments of up to 20 ° C in the deg-

radation temperature  (Trovatti et al.  2012b ); finally, pullu-

lan-NFC nanocomposites showed increments in mechani-

cal properties of up to 5500 %  and 8000 %  in the Young ’ s 

modulus and tensile strength, respectively, for films plas-

ticized with glycerol when compared with the unfilled pul-

lulan films (Trovatti et al.  2012b ).  

  Thermoplastic starch-cellulose 
nanocomposites 

 Starch (Figure  8  a) is one of the most abundant and availa-

ble natural polysaccharides, which is well investigated as 

part of novel biocomposites. The disruption of the molecu-

lar chain interactions in starch granules (Figure 8b) leads 

to a thermoplastic material [thermoplastic starch (TPS)] 

PG PGNFC 20% PGNFC 40%

PGNFC40% PGNFC40%

a a′

b

 Figure 7    Images of nanocomposites based on pullulan and NFC 

(PNFC  40 %  ). 

 (a and a ′ ) Atomic force microscopy images of PNFC  40 %
 
  with 

different enlargements. (b) Optical images to illustrate the 

transparency of films made of PG, PGNFC  20 %
 
 , and PGNFC  40 %

 
 . For 

abbreviations, see also Figure 5.    

under specific conditions and in the presence of a plasti-

cizer, such as water or glycerol. 

 TPS composites are prepared in a single step with 

cornstarch by adding glycerol/water as plasticizer and 

BC (1 %  and 5 % , w/w) as reinforcing agent (Martins et al. 

 2009 ). The BC is well dispersed in the matrix and there is a 

strong adhesion between BC and TPS (Figure 8c). 

 Plant NFC and especially BC proved to be efficient 

reinforcement agents even in low quantities. At 5 %  BC 

loading, the Young ’ s modulus and the tensile strength of 

the composite are elevated considerably (Figure  9  a and b). 

The good performance of BC in comparison with plant 

NFC has to be emphasized (Figure 9a and b). This is prob-

ably due to the high aspect ratio and three- dimensional 

network of the BC. 

 In principle, these materials are promising in appli-

cations of food packaging and biodegradable materials. 

Then again, TPS-based materials are sensitive to humidity. 

The moisture sorption maximum was slightly reduced by 

the incorporation of BC. The interpretation is that starch 

is more hydrophilic than cellulose and nanofibers absorb 
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a part of the glycerol that will be not available to absorb 

humidity (Curvelo et al.  2001 ).   

  Conclusions 
 Novel composites based on nanofibrillated plant cel-

lulose and BC embedded in natural and synthetic poly-

meric matrices such as PLA, CH, starch, and pullulan 

are promising because of the high compatibility of the 

enforcement and the matrix. The physical and thermal 

properties of these materials are unique, which predestine 

them for applications in packaging, electronic devices, 

and  biomedicine. The family of these materials can be 

substantially widened by the combination with inorganic 

nanophases, a topic that has also been addressed by our 

group (Gon  ç alves et al. 2008, 2009 ; Pinto et al.  2008, 2009, 

2012 ; Vilela et  al.  2010 ). The development of cellulose-

based nanocomposites is still a rewarding research field.   
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