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A novel room-temperature white light emitter amide-cross linked alkyl/siloxane hybrid material (amidosil A) was produced by self-

organization through the rational design of the precursor. This hybrid displays a highly complex hierarchical architecture composed of 

two lamellar bilayer structures, the relative spatial arrangement of which yields a multiplicity of ordered nanodomains with variable 

shapes and sizes, some of them persisting at the microscale. Macroscopically A was obtained as clusters of hydrophobic hemispherical 10 

and spherical micro-objects exhibiting a lettuce coral-like pattern, which represent unprecedented pieces of evidence illustrating the 

principles of self-similarity and demonstrating that the time scale of biomimetic morphogenesis in this non-bridged silsesquioxane is 

similar to that in biological systems. Heating metastable A above the order/disorder phase transition acted as an external quake driving 

the material to another metastable state, which has persisted for more than 12 months, and was manifested as a marked change of all the 

macroscopic properties. The occurrence of the self-organization process operating on A, instead of a self-directed assembly, is primarily 15 

associated with the formation/rupture of hydrogen bonds, therefore supporting that these interactions are critical factors dictating on what 

side of the self-assembly/self-organization boundary will a non-bridged silsesquioxane system evolve. 

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 

DOI: 10.1039/b000000x 20 

1. Introduction

In the last few years biomimetic strategies have been 

extensively adopted by the community of materials science with 

the goal of designing innovative materials exhibiting the 25 

extraordinary features offered by materials in Nature: high 

sophistication, intricate architectures and patterns, hybrid 

synergy, miniaturization, integration and adaptability.1 Materials 

from the natural world are known to be complex systems2,3 which 

provide plenty of inspiring examples of hierarchical 30 

arrangement,2,4,5 self-similarity growth6 and emergent 

phenomena.7  

Currently self-assembly stands as one of the few available 

practical approaches for organizing matter on large scales and the 

key driving force in the integration of natural and synthetic 35 

materials.8-13 It is not straightforward to define “self-assembly”. 

While this term has been often used imprecisely, some authors 

prefer to use the term “self-organization” instead. Indeed self-

assembly and self-organization are concepts that have been 

employed indiscriminately by numerous scientific disciplines, 40 

including biology, chemistry and physics, with different 

highlights in each. Although both terms refer to mechanisms 

generating collective order from small-scale interactions, they 

may be distinguished on the basis of thermodynamic arguments.14 

Self-assembly concerns non-dissipative structural order on a 45 

macroscopic level owing to collective interactions between 

multiple components (often microscopic) which retain their 

character when integrated in the self-assembled structure.14,15

Self-assembly is a spontaneous process, since the energy of the 

components is higher than that of the self-assembled structure, 50 

which is in static equilibrium and remains as such in the absence 

of energy input. In contrast, self-organization regards dissipative 

non-equilibrium order at macroscopic levels, as a result of 

collective, non-linear interactions between multiple microscopic 

components.14,15 In this case order is promoted by the interchange 55 

between intrinsic and extrinsic factors, but collapses upon 

cessation of the energy input. 

Following the general trend driving materials science 

research, in recent years the community of organic/inorganic 

hybrids shifted its interests to the creation of organized systems 60 

exhibiting multi-scale order.16,17 To achieve this challenging goal 

researchers have combined classical sol-gel reactions18 with self-

assembly routes which in general require the presence of a 

structure directing agent (template).11 
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We have been particularly interested in the development of 

ordered hybrid materials by means of self-directed assembly,19 a 

self-assembly process governed by weak interactions (e.g., van 

der Waals, hydrogen bonding, π−π) in which the growing 

supramolecular architecture plays itself the role of internal 5 

template. Most of the hybrids produced in the framework of this 

approach have been bridged silsesquioxanes.19-21 The early 

reports of ordered non-bridged silsesquioxanes lacking any cross-

links regarded lamellar materials derived from n-

alkyltriethoxysilanes22 and n-alkyltrichlorosilanes.23
10 

Nanostructured hybrids with lamellar or two-dimensional (2D) 

hexagonal structures24,25 were obtained later from precursors 

incorporating pendant alkyl chains and branched trimethoxysilyl 

groups. Three-dimensional mesostructured mesophases were later 

developed from a branched heptasiloxane precursor.26 The first 15 

organized non-bridged silsesquioxane synthesized via self-

directed assembly and incorporating a cross-link was a highly 

organized hierarchically structured lamellar bilayer hybrid 

obtained by our group from a n-

hexadecanoylamidepropyltriethoxysilane precursor.27 This 20 

material, called mono-amidosil and noted as m-A(14) (where 14 

is the number of CH2 repeat units), represents the first example 

of a photoluminescent bilayered suprastructure displaying 

nanoscopic sensitivity. In m-A(14) self-assembly is driven by 

intermolecular hydrogen bonding between amide groups, van der 25 

Waals interactions between all-trans alkyl chains assuming a 

partially interdigitated packing mode, and an entropic term 

related to the phase separation between the alkyl chains and the 

siloxane nanodomains. The operating self-assembly driving 

forces determine the emergence of a thermally-actuated optical 30 

memory effect (hysteretic behaviour of the emission energy) 

activated by the reversible order/disorder phase transition of the 

alkyl chains with onset at 92 ºC. The recovery of the emission 

energy follows a logarithmic time dependence, demonstrating 

hierarchically constrained dynamics without any characteristic 35 

microscopic time. 

To generate other bilayer suprastructures displaying similar 

thermally activated photoluminescence memory effects and 

especially to lower the hysteretic range and thus yield materials 

mechanically more resistant to consecutive heating/cooling 40 

cycles, several methodologies were subsequently adopted: (1) 

Changing the nature of the cross-link;28 (2) Incorporating mono-, 

di- and trivalent salts;29,30 (3) Adding dye compounds

(monomethinecyanines31 and Rhodamines32). The replacement of

the amide group by an urethane group resulted in a series of 45 

lamellar bilayer hierarchically structured analogues named mono-

urethanesils (noted as m-Ut(Y)-ac with Y = 14, 16 and 22, where 

Y is the number of CH2 repeat units and ac represents acid 

catalysis) with intricate morphologies that resemble cabbage 

leaves or the desert rose.28 The order/disorder phase transitions of 50 

m-Ut(14)-ac and m-Ut(16)-ac occur at lower temperatures than in

that of m-A(14) and, although reversible, they are time-

independent. We also succeeded in decreasing the order/disorder

phase transition temperature through the addition of K+, Mg2+ and

Eu3+ ions incorporated as triflate salts.30 In these materials, at55 

moderate salt concentration, the original lamellar structure of m-

A(14) coexists with a new lamellar phase with lower

interlamellar distance. The morphology of the resulting materials

mimics cabbage leaves, foliated schist and sea sponges, 

respectively. The structural changes undergone by the alkyl 60 

chains of selected K+-, Mg2+- and Eu3+-containing mono-

amidosils in a heating/cooling cycle are also reversible and time-

independent. Interestingly, these materials exhibit two distinct 

hysteresis domains, one associated with the order/disorder phase 

transition of the original lamellar bilayer structure of m-A(14) 65 

and the second one associated with the order/disorder phase 

transition of the new lamellar bilayer structure which is formed in 

the presence of the guest salts.  

In the present work the strategy adopted relied on the 

introduction of a ramification in the pendant alkyl chain of the 70 

precursor of m-A(14). The new dipodal alkoxysilane molecule 

synthesized (P) includes a secondary amide group and a tertiary 

amide group both linked to pendant alkyl chains with 13 carbon 

atoms (Scheme 1). With this change in the precursor architecture 

we pursued a more ambitious goal than in previous studies. Here 75 

we hoped to be able to capture for the first time intermediate 

steps of the morphogenesis process in a non-bridged 

silsesquioxane, by slowing down considerably the crystallization 

rate, forcing the resulting material to be far from equilibrium and 

making it evolve via self-organization instead of self-assembly. 80 

Scheme 1. Chemical structure of the hybrid precursor P. 

85 

2. Experimental Section

2.1 Materials and synthetic procedure: 

Synthesis of P. A volume of 1 mL (3.790 mmol) of myristoyl 

chloride (ClC(=O)-(CH2)12CH3, MC, Aldrich) was added to a 90 

solution prepared through the addition of 0.500 mL (1.849 mmol) 

of N-[3-(trimethoxysilyl)propyl]ethylenediamine 

((CH3O)3Si(CH2)3NH(CH2)2NH2, TMSPED, Aldrich) to a 20 mL 

tetrahydrofuran (THF, Merck) solution containing 60 µL (0.740 

mmol) of pyridine (py, Aldrich, 99.8%) and 0.944 g (4.440 95 

mmol)) of Amberlyst A-21 Ion-Exchange Resin (4.7 meq/g, 

Aldrich) which was washed with THF and stored in an oven at 80 

ºC prior to being used. The molar ratio TMSPED:MC:py:resin 

was 1:2.4:0.4:2.4. The resulting mixture was sealed and stirred at 

room temperature during one day. The intensity of the FT-IR 100 

band attributed to the stretching vibration of the C=O group of 
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the chloride acid, at 1800 cm-1 was progressively reduced, until it 

disappeared upon completion of the reaction. In parallel, a series 

of new bands, associated with the vibrations of the amide group, 

appeared in the 1760-1530 cm-1 region. The solution was filtrated 

and the solvent evaporated. The solution was filtrated and the 5 

solvent evaporated. The final material, obtained as a yellow oil, 

was dried under vacuum for several hours. Its structure was 

confirmed by means of 1H NMR (CDCl3, 400 MHz) (Figure S1):
1H NMR (CDCl3, 400 MHz)27 (3.66 (m, 2H, NH-CH2), 3.55 (s,

9H, (CH3O)3Si), 3.46 (m, 2H, N-CH2), 3.20 (m, 2H, N-CH2), 10 

2.34 (m, 4H, C(=O)-CH2), 2.17 (m, 2H, C(=O)-CH2), 1.60 (m, 

6H, Si-CH2CH2 and C(=O)-CH2CH2), 1.29-1.26 (m, 40H, CH2), 

0.88 (t, 6H, CH2CH3) and 0.58 (t, 2H, Si-CH2) ppm; and 13C

NMR (CDCl3, 600 MHz)27: 175.13 (NHC=O), 174.00 (NC=O),

51.43, 50.63 and 50.56 (NCH2 and OCH3), 36.73, 34.23 and 15 

34.13 (CH2-C(=O)N, CH2-C(=O)NH and CH2-NH-C(=O)), 32.00 

(CH2CH2CH3), 29.71, 29.62, 29.59, 29.56, 29.44, 29.41, 29.27, 

29.2 (CH2CH2CH2), 25.07 (CH2), 22.73 and 22.26 (Si-CH2CH2 

and CH2CH2CH3), 14.14 (CH2CH3) and 6.6 (Si-CH2) ppm and 

FT-IR: 3499cm-1 (νNH), 2980 cm-1 (νasCH3), 2932 cm-1 (νasCH2),20 

2866 cm-1 (νsCH2), 1739 cm-1 (νC=O), 1650 (νC=O) and 1543

cm-1 (νNH). 

2.2 Synthesis of H. Precursor P was first dissolved in 

dimethyl sulfoxide (DMSO, Riedel-deHaën, dried max. 0.03% 25 

H2O). Bidistilled water and hydrochloric acid (HCl, 37%, 

Pronalab) 1M were then added (molar ratios of 

P:H2O:HCl:DMSO = 1:600:0.4:138). The oily mixture was kept 

in static conditions during one week in an oil bath (80 ºC). 

Ethanol was added to the resulting slurry solution and the latter 30 

was left standing during two days at room temperature to 

precipitate the solid. The solid was then filtered and washed with 

water until neutral pH was attained and again washed with 

ethanol and acetone. The white solid was dried at 50 ºC during 1 

day. 35 

2.3 Experimental methods:  

The liquid 1H and 13C Nuclear Magnetic Resonance (NMR) 

spectra were recorded in deuterated chloroform (CDCl3) on a 

Bruker Avance III spectrometer (400 MHz) equipped with a TXI 40 

probe-head with inverse detection. Chemical shifts (δ) are 

reported in parts per million (ppm) relative to tetramethylsilane 

(TMS) and splitting multiplicities are described as s = singlet; t = 

triplet or m = multiplet. Coupling constants (J values) are 

reported in Hertz (Hz). 45 

29Si MAS and 13C CP/MAS NMR spectra were recorded on a 

Bruker Avance 400 (9.4 T) spectrometer at 79.49 and 100.62 

MHz, respectively. 29Si MAS NMR spectra were recorded with 

2 µσ (θ ≈30 ) rf pulses, and recycle delay of 60 s and at a 5.0 kHz 

spinning rate. 13C CP/MAS NMR spectra were recorded with 4 50 

µs 1H 90º pulse, 2 ms contact time, a recycle delay of 4 s and at a 

spinning rate of 8 kHz. The δ are quoted in ppm from TMS. 

The XRD patterns were recorded with a Philips X'Pert MPD 

powder X-ray diffractometer, using monochromated CuKα

radiation (λ=0.154 nm) over a q range between 0.77 and 25 nm-1. 55 

POM images were recorded using an OPTIKA B-600POL 

microscope equipped with a 8 Mpixel digital Photo Camera. The 

images were analyzed using the OPTIKA Vision Pro software.  

AFM images were recorded in a Veeco Metrology 

Multimode/Nanoscope IVA equipment (CEMUP-Porto contract 60 

REEQ/1062/CTM/2005), in tapping mode using a super sharp 

silicon tip, curvature radius 10 nm, and frequency resonance 

equals to ≈300 KHz. Flattening and elimination of line noise 

tools and a Lowpass filter provided by the WSXM software33 

were used to improve the quality of the images. 65 

The microstructure, surface morphology and chemical 

composition distribution were obtained using a field-emission 

scanning electron microscope (FEG-SEM Hitachi SU-70 

equipped with a Bruker EDS and transmitted electron detector) 

and TEM (Hitachi H-9000 operating at 300 kV). The sample was 70 

previously deposited onto a carbon-coated Cu grid. Elemental 

analyses on microscopic sections of the sample were performed 

by Energy Dispersive Spectroscopy (EDS). The analysis of the 

morphology of hybrid A after the thermal treatment was 

determined at 20 kV on a Hitachi Field Emission S-2700 75 

microscope at low vacuum. The sample was first coated with 

gold (Au). 

The surface wettability of the samples was assessed by means 

of static contact angle (θ) measurements using the sessile drop 

method. The θ  values were measured at room temperature with 80 

ultra-pure distilled water using a Contact Angle OCA+15 device 

(DataPhysics) and SCA-20 software. The samples were analysed 

as pellets. The volume of the liquid droplets was kept constant at 

2 µL. The results reported correspond to the average value of 

eight measurements. 85 

ATR/FT-IR spectra were collected on a Thermoscientific 

Nicolet iS10: smart iTR, equipped with a diamond ATR crystal. 

For ATR data acquisition, approximately 2 mg of the sample 

were placed onto the crystal and the spectrum was recorded. An 

air spectrum was used as reference in absorbance calculations. 90 

The sample spectra were collected at room temperature in the 

4000-400 cm-1 range by averaging 64 scans at a spectral 

resolution of 1 cm-1. 

The FT-Raman spectra were recorded at room temperature 

with a Bruker Spectrometer, Model RFS100/S and the laser 95 

radiation emitted by the Nd:YAG with wavelength at 1064 nm. 

The spectra were collected over 4000-50 cm-1 at a resolution of 4 

cm-1, 400 scans (about 20 minutes) and 300 mW (laser power). 

To evaluate complex band FT-IR and FT-Raman envelopes and 

to identify underlying spectral components, the iterative least-100 

squares curve-fitting procedure in the PeakFit software (version 

4)34 was used extensively throughout this study. The best fit of 

the experimental data was obtained by varying the frequency, 

bandwidth and intensity of the bands. Because of the morphology 

of material under investigation, we employed Voight functions.  105 

DSC measurements were performed using a DSC 204 

Netzsch Differential Scanning Calorimeter. A mass of 2-5 mg 

was placed in 40 µl aluminum can and stored in a desiccator over 

phosphorous pentoxide for one week at room temperature under 

vacuum. After the drying treatment the can was hermetically 110 

sealed and the thermogram was recorded. The sample was heated 

from 20 to 100 ºC at 10 ºC min-1. The purge gas used in all 

experiments was high purity nitrogen supplied at a constant 25 

cm3 min-1 flow rate. 

ATR/FT-IR spectra recorded as function of temperature were 115 

obtained with a SPECAC temperature controller in an ATR 
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configuration using a High Temperature Golden GateTM MkII 

ATR Accessory. The spectra were collected in 4000–500 cm-1 

range by averaging 64–200 scans and a resolution of 1 cm-1.  

The photoluminescence spectra were recorded at room 

temperature with a modular double grating excitation 5 

spectrofluorimeter with a TRIAX 320 emission monochromator 

(Fluorolog-3, Horiba Scientific) coupled to a R928 Hamamatsu 

photomultiplier, using a front face acquisition mode. The 

excitation source was a 450 W Xe arc lamp. The emission spectra 

were corrected for detection and optical spectral response of the 10 

spectrofluorimeter and the excitation spectra were corrected for 

the spectral distribution of the lamp intensity using a photodiode 

reference detector. The emission decay curves at acquired at 12 K 

were measured with the setup described for the luminescence 

spectra using a pulsed Xe–Hg lamp (6 µs pulse at half width and 15 

20–30 µs tail). The room-temperature emission decay curves 

were measured with a TCSPC spectrofluorometer (Horiba 

Scientific) coupled to a TBX-04 photomultiplier tube module 

(950 V), 200 ns timeto-amplitude converter and 70 ns delay. The 

exciting source was a Horiba-Jobin-Yvon pulsed diode, 20 

(NanoLED-390, peak at 381 nm, 1.2 ns pulse duration, 1 MHz 

repetition rate, and 150 ns synchronization delay). The emission 

quantum yields were measured using the C9920-02 measurement 

system (Hamamatsu) with a 150 W Xe lamp coupled to a 

monochromator for wavelength discrimination, an integration 25 

sphere as sample chamber and a multichannel analyzer for signal 

detection. Three measurements were made for each sample and 

the average values obtained are reported with accuracy within 

10% according to the manufacturer. 

30 

3. Results and discussion
Seeking the creation of a metastable system, we anticipated to 

produce a highly temperature-sensitive material. After being 

synthesized its structure and morphology were characterized in 

depth in the subsequent weeks and care was taken to register the 35 

exact time and temperature at which each of the measurements 

were performed.  

The 13C CP/ MAS NMR data (Figure S2a and Table S1) 

confirm the integrity of the organic functional groups of P (alkyl 

chains and amide cross-links) in A. A prominent peak around 33 40 

ppm reveals that the great majority of the pendant alkyl chains 

adopt highly ordered all-trans zigzag conformations.23,35 A 

significantly weaker signal at 30 ppm indicates that the all-trans 

conformers coexist with a population of gauche conformers. The 

superposition of the characteristic resonances of the OCH3 and 45 

NCH2 moieties prevent any conclusions regarding the completion 

of the hydrolysis reaction. The 29Si MAS NMR spectrum of A 

(Figure S2b and Table S1) exhibits signals at -50.1 ppm (5.6 %), 

-58.5 ppm (48.2 %) and -68.1 ppm (46.1 %), assigned to T1

(CH2-Si(OSi)(OR)2), T2 (CH2-Si(OSi)2(OR) and T3 (CH2-50 

Si(OSi)3) sites, respectively, where R is CH3 or H. The

polycondensation degree c (where c = 1/3 (%A(T1) + 2 %A(T2) +

3 %A(T3))×100, A being the integral area) calculated was 80 %.

This value, higher than reported for m-A(14) (74 % 27), suggests

that the introduction of a ramification in the alkyl chain promoted 55 

condensation, thus disfavouring the tendency for the formation of 

a 2D siloxane network. The empirical formula deduced for A was 

R’Si(OR)0.5(O)1.2. 

At q > 10 nm-1 (where q = 4π sinθ/λ, 2θ being the scattering 

angle) the XRD pattern of A exhibits an intense, broad peak 60 

centred near 15 nm-1 (Figure 1a) which was decomposed into 

three components assuming Gaussian band shapes: (1) A peak at 

14.3 nm-1 (d1 = 0.44 nm, with d = 2π/q) corresponding to amide-

amide spacings;36 (2) A peak at 15.0 nm-1 (d2 = 0.42 nm) due to

ordering within the siliceous domains;37 (3) A peak at 16.0 nm-1 65 

(d3 = 0.39 nm) assigned to chain-chain distances.21 At q < 10 nm-1

the dominating peak at 1.33 nm-1 (Figure 1a) corresponds to the 

1storder reflection of a lamellar structure with an interlamellar 

spacing l1 = 4.72 nm (where l = n2π/qn) (black vertical lines in 

Figure 1b). This distance is slightly smaller than that reported for 70 

m-A(14) (5.0 ± 0.2 nm).27 The peak detected at 2.04 nm-1 (Figure

1) is attributed to the occurrence of a second lamellar
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Figure 1. Room temperature XRD patterns of hybrid A in the low-to-high q (a) and low-q (b) ranges recorded before a heating/cooling 75 

cycle between room temperature and 70 ºC. The vertical black and blue lines in (b) represent the two lamellar bilayer structures initially 

formed in A (LB1 and LB2, respectively).  
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structure with a spacing l2 = 3.14 nm (blue vertical lines in Figure 

1b). The spacings l1 and l2 are correlated with the length of chains 

1 and 2 linked to the pyramidal N atom, respectively (Scheme 1). 

The distance l1 is related with the separation between the 

siliceous domains of the lamellar bilayer structure LB1, whereas 5 

l2 is associated with the separation between the siliceous domains 

of the lamellar bilayer structure LB2 (Figure 1a). While the self-

assembly driving forces in LB1 are associated with hydrophobic 

interactions between the alkyl chains and by hydrogen bonding 

interactions between neighbour amide groups (chain 1 has a 10 

hydrogen donor group and a hydrogen acceptor group), in LB2 

self-assembly relies essentially on hydrophobic interactions 

(chain 2 has solely a hydrogen acceptor group). As the estimation 

of the theoretical distances by means of ChemBioOffice 11.01 

software was not conclusive, the degree of interpenetration of the 15 

alkyl chains in LB1 and LB2 remains unknown. In the schematic 

tentative representation of Figure 2a a very low degree of 

interdigitation was assumed. The lack of SAXS data prevented 

the calculation of the coherent lengths L1 and L2, respectively. 

The submicrometer birefringence evidenced by POM under 20 

crossed polarizers (Figure 2b) confirms the anisotropic character 

of A. The birefringent entities are organized along a square-

shaped pattern. The AFM image recorded in tapping mode shows 

that the surface of A at the nanometer scale (Figure 2c) resembles 

closely that observed at the micrometer scale (Figure 2b). 25 

The HR-SEM images demonstrate that A consists essentially 

of irregular clusters of closed microspheres (Figure 3a) with a 

texture that mimics lettuce corals (Figure 3c), together with a few 

hemispheres exhibiting in the core a self-similar branching that 

reminds closely that of starbust dendrimers (Figure 3b). To the 30 

best of our knowledge similar findings were only reported before 

in the field of hybrid materials by Busch et al.38 in a study dealing 

with the biomimetic fractal growth of fluorapatite in gelatin 

matrices. These unprecedented results unequivocally demonstrate 

that we succeeded, as sought, in producing a non- bridged 35 

l1

l2

100 µm

Figure 2. The scheme reproduced in (a) is a tentative representation of one of the possible spatial arrangements of the lamellar structures 

of hybrid A. The POM (crossed polarizers) (b) and AFM (c) images of hybrid A evidence the occurrence of a square-shaped pattern at 40 

the micro- and nanoscales, respectively. 

a 

b c 
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20 µµµµm 10 µµµµm

20 µm

2 µµµµm 500 nm

Figure 3. HR-SEM images of hybrid A obtained before the heating/cooling cycle from room temperature up to 70 ºC. The synthesized 

sample formed clusters of closed and broken microspheroids (a). The lettuce coral-like texture of the surface (b-d) and the branching of 

the core (fractal growth) (b) illustrate the general principles of self-similarity.  

5 

silsesquioxane material in which the time scale of the 

morphogenesis is such that we were able to capture two different 

types of shapes and morphologies that correspond to two distinct 

stages of the process: the hemispheres, which represent an 

advanced stage of self-similar branching (fractal growth), and the 10 

closed spherocrystals, which correspond to its termination. The 

nature of the seeds from which growth began and progressed by 

successive branchings to end up with the closed spheres is 

unknown. However, considering that the surface of the latter 

consists of nanoplatelets following the general principles of self-15 

similarity (Figures 3c and 3d), we may speculate that the seed 

may well have been a nanoplatelet. The formation of dumbbell-

shaped objects, such as those observed in the fluorapatite/gelatin 

composite system,38 would explain the presence of hemispheres 

in A. The progressive upgrowths of platelets occurring 20 

anisotropically at the ends of the seed must have led to the 

formation of two hemispherical aggregates, then a dumbbell 

structure and finally a closed sphere. This growth mechanism, 

extended to the whole sample, would explain the cauliflower-type 

cluster seen in Figure 3a. 25 

TEM measurements provided evidence that the presence in A 

of a tetrahedral N atom with its characteristic umbrella-like 

environment (bond angles of ca. 109 º) promoted a quite unusual 

organization at the nanoscopic level comprising different ordered 

nanodomains with variable shape and size. These nanoregions 30 

range from typical straight lamellar (arrow in Figure 4a) to z-type 

lamellar (left upper corner of Figure 4b) arrangements and 

ultimately to a square-like lamellar pattern (arrow in Figure 4b). 

The latter ordering geometry is the same as those detected in 

Figures 2b and 2c and schematically represented in Figure 2a. 35 

The interlamellar distance retrieved from the TEM image (left 

upper corner of Figure 4a, silica-rich domains are observed as 

dark regions) and the spacings deduced from XRD are of the 

same order of magnitude.  

The static water contact angle (θ) deduced for hybrid A was 40 

105 ± 3 º (Figure S3). The possibility of a preferential distribution 

of C atoms (i.e., alkyl chains) at the surface of the micro-objects 

formed to account for the hydrophobic character was discarded 

on the basis of the X-ray mapping data (Figure S4). This result 

strongly suggests that the high θ value of A should be associated 45 

with the roughness of the surface topography of the sample.39,40 

The frequency, intensity and fwhm (19 and 14 cm-1, 

respectively) of the two medium intensity features at 2915 cm-1

(very strong, vS) and 2849 cm-1 (strong, S) in the ATR/FT-IR 

spectrum of A (Figure S5a), assigned to the symmetric and 50 

asymmetric CH2 stretching vibration modes (νsCH2 and νaCH2, 

respectively),41-43 indicate that a great proportion of the alkyl
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Figure 4. TEM images of hybrid A reveal the formation of multinanodomains in which lamellar structures adopt different size and 

shape. 

chains of A are fully stretched (all-trans conformations), ordered 5 

and tightly packed. 41-43 In the FT-Raman spectrum the νaCH2 and

νsCH2 bands at 2880 cm-1 (vS) and 2847 cm-1 (S) (Figure S5b),

respectively, are characteristic of all-trans conformers.43-46 The 

value found for the intensity ratio of these bands (r = 1.32),47 

demonstrates that a significant proportion of the alkyl chains of A 10 

adopt, however, gauche conformations. The ATR/FT-IR CH2 

bending (δCH2) band at 1467 cm-1 (Figure S6) confirms the

presence of a high fraction of gauche conformers48 and the 

shoulder at 1470 cm-1 reveals that ordering of a fraction of the 

alkyl chains in the all-trans crystalline state occurs 15 

simultaneously.49 At last, in the skeletal C–C stretching (νC-C) 

region of the FT-Raman spectrum, in addition to the bands 

characteristic of all-trans conformations at 1127 and 1062 cm-1, 

the band at 1084 cm-1 typical of chain randomization (interruption 

of all-trans conformations), due to the occurrence of gauche 20 

conformers, is also seen (Figure S7).44 The ATR/FT-IR and FT-

Raman results are thus in perfect agreement with the 13C 

CP/MAS NMR data. 

The wavenumber difference between the amide I and amide 

II intensity maxima in the room temperature ATR/FT-IR 25 

spectrum of A (94 cm-1) indicates that globally the hydrogen-

bonded array formed in A is weaker than that of m-A(14) (89 cm-

1).27 The amide I band of A was resolved into four components at 

(Figure S8): (i) 1722 cm-1 (very weak, fwhm = 24 cm-1), 

attributed to free C=O groups50 and absent in m-A(14)27. This 30 

component could be related exclusively with chain 2 (Scheme 1); 

(ii) 1664 cm-1 (weak, fwhm = 27 cm-1), attributed to hydrogen-

bonded C=O groups of disordered amide-amide aggregates48

weaker than those found in m-A(14) (1654 cm-1)27; (iv) 1641 and

1618 cm-1 (strong, fwhm = 34 cm-1), assigned to hydrogen-35 

bonded C=O groups in ordered amide-amide aggregates.50 The

amide II components are located at 1558 and 1540 cm-1 (Figure 

S8), suggesting the presence of hydrogen-bonded aggregates with 

two distinct degrees of order. We recall that the amide-amide 

hydrogen-bonded aggregates are formed exclusively in the LB1 40 

structure. 

Figure 5a shows the room-temperature emission spectra of A 

under different excitation wavelengths. All the spectra are 

composed of a broad band (fwhm, ≈ 140 nm) peaking at 460 nm 

for excitation wavelengths between 250 and 330 nm and deviates 45 

towards the red (from 470 to 595 nm) as the excitation 

wavelength increases from 370 to 440 nm, respectively. Such 

emission features resemble those previously reported for m-

A(14)27 (see circles in Figure 5a) and other amorphous analogous 

hybrids, being attributed to the overlap between two components: 50 

one ascribed to the presence of electron-recombination that occur 

in oxygen related defects within the siliceous backbone and 

within the amide cross linkages.27,28,37,51-55 The excitation spectra 

were monitored along the emission spectra (Figure 5b), revealing 

a main component in the UV/blue region (320-460 nm) and a 55 

low-relative intensity one within 240-290 nm. 

Similarly to the situation found for the emission features, the 

excitation spectra resemble those already observed for analogous 

organic-inorganic hybrids.28,35,51,52 Upon increasing the 

monitoring wavelength between 420 and 550 nm, the spectral 60 

peak position and fwhm of the low intensity UV component 

remained unaltered, whereas the main UV/blue component 

enlarged and deviated towards the red. The component at short 

wavelengths (250–280 nm) and the low- wavelength region of the 

main band may be preferentially ascribed to the excitation of the 65 

siliceous-related states, whereas the high-wavelength component 

(above 400 nm) is attributed to the preferential excitation of the 

amide-related emission.28,35,51,52 

a b 
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Figure 5. Room-temperature emission (a) and excitation (b) 

spectra of hybrid A excited at (1) 300 nm, (2) 330 nm, (3) 

370 nm, (4) 400 nm, (5) 440 nm, and monitored at (6) 420 nm, 5 

(7) 480 nm, (8) 550 nm, respectively. The emission spectrum of

m-A(14)11 excited at 370 nm is also shown (circles),

demonstrating that the emission and excitation peak position

deviates as the excitation and monitoring wavelengths are varied,

respectively. 10 

The emission features were quantified through the 

measurement of the absolute emission quantum yield (Φ) as a 

function of the excitation wavelength (270-440 nm). The higher 

Φ values were measured under preferential excitation with the 15 

amide-related emission (0.08±0.01 excited within 360-440 nm). 

Under preferential excitation with the Si-related emission lower 

Φ values were measured (0.02±0.01 excited at 300 nm and

0.04±0.01 excited at 330 nm). The fact that the cross-links-related

emission has a higher contribution for the overall emission was 20 

already demonstrated for amorphous urea- and urethane-derived 

organic/inorganic hybrids.53,54.Comparison of the values obtained 

with those reported in the literature for several lamellar 

organic/inorganic hybrids allows concluding that the Φ values of 

A are smaller than those measured for the AC-m-A(8) mono-25 

amidosil (0.15±0.02 excited within 360-360 nm),54 for bridged 

silsesquioxanes (0.14±0.01 excited within 360-360 nm),56 and for 

the m-Ut(CY)-AC (Y = 14 and 16) mono-alkyl-urethanesils 

(0.11±0.01, excited within 350–380 nm),28 being, however 

identical to that measured for the m-Ut(C22)-AC mono-alkyl-30 

urethanesil (0.08±0.01).28 Moreover, we should also notice that 

the Φ value of A is significantly higher than that of m-A(14) 

(0.03±0.01).27 We may thus establish that in lamellar 

organic/inorganic hybrids both the magnitude of the hydrogen-

bonded array formed and the relative polymer weight may impact 35 

on Φ. 

Further quantitative assessment was performed measuring the 

time-resolved emission spectra and the emission decay curves at 

12 and 300 K (Figures 6a-6c) excited at 320 and 380 nm to 

maximised the relative emission intensity the siliceous and 40 

amide-related emission components, respectively. At higher 

excitation wavelengths (380 nm, Figure 6b) the spectra are 

essentially composed of a broad component at around 525 nm, 

ascribed to the electron–hole recombinations within the amide 

cross-linkages.54.Upon decreasing the excitation wavelength to 45 

320 nm (preferential excitation within the siliceous-related 

component, Figure 6c), the broad component deviated towards 

the blue (500 nm) and a series of narrower components, marked 

with a vertical line in Figures 6b-6c, are superimposed, being 

ascribed to the presence of the siliceous domains.54 The 50 

observation of such peaks can be associated with the low 

condensation ratio (80 %) when compared with the typical values 

found for analogous amorphous54 and lamellar hybrids. The 

lifetime of the amide-cross linkages- and siliceous-related 

emissions were monitored at 480 nm (excited at 320 nm) and at 55 

530 nm (excited at 380 nm) to minimize the spectral overlap. 

Both emission decay curves are well described by an exponential 

function yielding lifetime values of 103.0±8.5 ms and 

75.5±4.9 ms. We should note that, while the lifetime value of the 

amide-related emission is of the same order of that found in other 60 

similar hybrids, the lifetime value of the siliceous-related 

component is one order of magnitude higher.54,55 An increase in  
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Figure 6. Time-resolved emission spectra of hybrid A acquired at 65 

room temperature excited at 390 nm (a) and at 12 K excited at 

380 nm (b) and at 320 nm (c). The starting delay (SD) values 

were 0.5×10-9 s (1) , 5.0×10-9 s (2), 20.0×10-9 s (3), 0.05×10-6 s 

(4), 10.00×10-6 s (5), 50.00×10-6 s (6), and 100.00×10-6 s (7). The 

emission intensity dependence on the SD values enables the 70 

selective identification of the siliceous and NH-related emission 

components due to their distinct time scales. 
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the lifetime value of the siliceous-related component was also 

reported for a model compound (containing tetraethoxysilane 

(TEOS) and propyltrimethoxysilane (PTMOS)) that reproduced 

the siliceous emission in the absence of the amide-related 

component.55 Therefore, we may suggest that the high lifetime 5 

value found for the siliceous related component in A indicates 

that the energy transfer processes (siliceous-to-amide) are less 

efficient than those observed in analogous materials.55 

At room temperature the emission timescale behind the 

emission components significantly decreased (curve 1 of 10 

Figure 6). The emission spectrum resembles that acquired in 

steady-state regime (Figure 5a) being formed of a broad 

component (fwhm ∼ 120 nm) peaking at 480 nm, independently 

of the SD value within 0.5-20.0×10-9 s. The emission decay 

curves were monitored along the band, displaying a non-15 

exponential behaviour. Therefore, an experimental lifetime value 

for which the emission intensity is reduced to 1/e of its maximum 

intensity was considered, yielding a value of ≈15 ns. 

To determine the temperature of the order/disorder phase 

transition of the alkyl chains of A the DSC curve was recorded 20 

between room temperature and 90 ºC. The DSC data of alkyl 

chains are known to provide rich information: while the enthalpy 

change (∆H) observed during the fusion of alkyl chains is 

associated with a large cohesive van der Waals energy term, the 

entropy change (∆S) involves a conformational term, an excluded25 

volume term and a dominating volume expansion term.57 The 

thermogram of A, reproduced in Figure 7b (black DSC curve), 

exhibits a single endothermic peak centred at 54 ºC (Tonset = 42 

ºC, ∆H = 13.85 J g-1, ∆S = 0.265 J g-1ºC-1), a value significantly 

lower than that found for m-A(14).27 30 

The analysis of the ATR/FT-IR νaCH2 and νsCH2 bands of A 

in a heating/cooling cycle (Figures 7a and 7b, respectively) 

followed with the goal of monitoring the changes undergone by 

the alkyl chains involved in the formation of lamellar structures 

LB1 and LB2 during their order/disorder transitions. Upon 35 

heating A from 23 to 85 ºC, the νaCH2 and νsCH2 bands 

shiftedfrom 2914 cm-1 (fwhm = 19 cm-1) and 2848 cm-1 (fwhm = 

13 cm-1) to 2922 and 2853 cm-1, respectively. These upshifts, 

whichwere accompanied by band intensity loss and broadening 

(fwhm = 25 and 18 cm-1, respectively, at 85 ºC), confirm that the 40 

population of alkyl chains in gauche conformations progressively 

increased, until they became disordered, resembling the liquid n-

alkanes phase.41 Upon subsequent cooling down to room 

temperature, the frequency and fwhm of the ATR/FT-IR νaCH2 

and νsCH2 bands were not restored after approximately 12 45 

months, demonstrating that, unlike in m-A(14), in which the 

bands fully recovered the initial values after 72 h,27 the structural 

changes to which the alkyl chains in A were subject upon heating 

were not reversible in the period of time indicated.  

Motivated by this observation, we examined the structural 50 

evolution of A in a heating/cooling cycle between room 

temperature and 70 ºC by means of XRD. The XRD pattern 

recorded 2 months after performing this thermal treatment 

demonstrates dramatic changes (Figure 8): (1) The most 

prominent peak at 1.33 nm-1 (black vertical lines in Figures 8b), 55 

associated with lamellar structure LB1, was shifted to 1.24 nm-1 
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Figure 7. Temperature dependence of the frequency of the 

ATR/FT-IR νaCH2
 (a) and νsCH2

 (b) bands (left axis) of hybrid A 

during heating (blue squares) and cooling (red squares). The red 60 

and blue lines drawn are just guides for the eyes. The black 

squares, which represent the values of the intensity maxima of the 

νaCH2
 and νsCH2

 bands measured regularly during 12 months 

after the heating/cooling cycle, reveal that after this period of 

time the alkyl chains of A remained in a metastable state. The 65 

DSC curves (right axis) in (b) represent the thermograms 

recorded before (black line) and 6 months after (red line) heating. 

The changes in the endotherm produced by heating show that the 

energetics of A changed dramatically.  

70 

(red vertical lines in Figure 8b), indicating the formation of a new 

lamellar structureLB3 with an interlamellar distance slightly 

larger (l3 = 5.06 nm) than that of LB1 (l1 = 4.72 nm). (2) The 

peaks related with lamellar structure LB2 are no longer observed, 

a proof that heating A up to 70 ºC led to the destruction of this 75 

crystalline phase. (3) The intensity of the band centred at 15 nm-1 

suffered a marked reduction.  

The HR-SEM images of hybrid A obtained 6 months after 

this heating/cooling cycle beautifully corroborate the XRD data. 

Indeed Figure 9b shows that after this period of time A exhibits a 80 

typical lamellar structure instead of clusters of microspheres and 

micro-hemispheres (Figure 3a). In the thermogram of A recorded 

also 6 months after heating (red DSC curve in Figure 7b) the 

endotherm is centered at much lower temperature (33 ºC, Tonset = 

26 ºC). In addition the corresponding values of ∆H and ∆S 85 

suffered a marked reduction (1.29 J g-1 and 0.049 J g-1ºC-1, 

respectively), a clear evidence that, as expected, the energetics of 

the material were significantly modified by the thermal treatment. 
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Figure 8. Room temperature XRD patterns of hybrid A in the low-to-high q range recorded 2 months after a heating/cooling cycle 

between room temperature and 70 ºC (a). The low-q range shown in (b) reveals that after the thermal treatment one of the two lamellar 

bilayer structures initially formed in A is no longer present (LB2, vertical blue lines), whereas LB1 (vertical black lines) is slightly 

modified and transformed into structure LB3 (vertical red lines). 5 
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Figure 9. HR-SEM images of hybrid A obtained after the 

heating/cooling cycle from room temperature up to 70 ºC. After 10 

being subject to a heating/cooling cycle the morphology of A 

changed into a typically lamellar one (not shown). This texture 

remained unchanged after leaving the sample at room 

temperature for 6 months (b).

15 

The emission spectra excited at 365 nm were also studied as 

function of heating/cooling cycles with a maximum temperature 

value of 54 °C. The overall emission spectrum acquired at 20 °C 

(black line in Figure 10) underwent a red-shift after heating up to 

54 °C (red line in Figure 10) due to a decrease in the relative 20 

intensity of the low-wavelength region. After cooling, the 

emission spectrum remained essentially identical to that acquired 

at 54 °C. The non-reversibility of the emission features after the 

heating/cooling cycle is illustrated in Figure 10, where the 

emission spectrum acquired ∼350 h after the end of the thermal 25 

cycle is reproduced (blue line). The emission dependence of the 

photoluminescence on heating/cooling cycles was previously 

studied for m-A(14).27 Similarly to the situation found for the 

latter hybrid,27 in A the siliceous-related component is 

approximately independent of the variation of temperature, 30 

whereas the NH-related emission deviates towards the red (Figure 

10). In m-A(14) the reversal of the NH-related emission energy at 

the end of the thermal cycle back to the initial value was 

complete after ca. 300 h, demonstrating that the rate of 

conformational recovery of the alkyl chains was much faster than 35 

the rate of rebuilding of the amide-amide hydrogen-bonded 

network.27 Here the emission features after the end of the thermal 

cycle did not recover the properties measured prior to the thermal 

cycle (energy and fwhm). These findings provide additional 

support to the explanation that the ramification of the pendant 40 

alkyl chain of m-A(14) impacted negatively on the reversibility 

of the order/disorder phase transition of A. 
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Figure 10. Emission spectra of hybrid A excited at 365 nm as 

function of heating-cooling cycle and acquired prior to heating at 

20 °C (1), at the end of the thermal cycle at 54 °C (2) and 350 h 

after the end of the heating cycle at 20 °C (3), demonstrating the 5 

non-reversibility of the emission features after the 

heating/cooling cycle. 

Let us now recall the dynamics of complexity of m-A(14), a 

stable material obtained via self-directed assembly.27 The 10 

energetics of its order/disorder transition involves a synergy 

between van der Waals interactions and hydrogen bonding, the 

order/disorder transition of the pendant alkyl chains controlling, 

but being simultaneously governed by the destruction/formation 

of the amide–amide hydrogen-bonded array. In this material each 15 

pendant alkyl chain grafted to the siliceous network contains an 

amide group which easily interacts with two neighbour amide 

groups, thus forming highly directional hydrogen bonds. 

Understandably, the annihilation of the hydrogen bonds at 

increasing temperature leads to major structural changes, 20 

inducing in particular the randomization of the alkyl chains. After 

cooling m-A(14) remains in a metastable state until it recovers 

the initial state. Two processes with rather different rates operate 

at this stage: the conformational recovery of the polymer chains 

(terminated after 72 h) and the rate of reformation of the 25 

hydrogen-bonded array (complete after 300 h). The latter process 

clearly relies on the efficient self-association occurring between 

neighbour amide groups.  

The inclusion of a ramification in the pendant alkyl chain of 

m-A(14) changed dramatically the entire scenario. In A the 30 

arrangement of the two pendant alkyl chains is dictated by a 

tetrahedral N atom which imposes angles of ca. 109 º and 

therefore introduces severe steric restrictions for the formation of 

a highly directional amide-amide hydrogen-bonded array 

involving exclusively chains 1. Hence the rate of crystallization 35 

of A was deeply reduced, explaining the substantial changes 

observed in the global properties as a function of time. For 

instance, close monitoring of the endothermic peak associated 

with the order/disorder phase transition of the alkyl chains by 

DSC measurements demonstrated the time-dependence of the all-40 

trans/gauche conformational ratio. As expected, a shift of the 

endotherm towards higher temperatures occurred with time (not 

shown), corresponding to an increase in the proportion of all-

trans conformers as crystallization progressed. As a result of this 

combined effect (i.e., restricted hydrogen bond formation and 45 

constrained conformational evolution of the alkyl chains) the 

complex system dynamics are substantially more complicated 

than those described for m-A(14). In contrast with m-A(14), as-

prepared material A is a metastable state in which dominating all-

trans conformers coexist with gauche conformers. At the end of a 50 

heating cycle between room temperature and 85 ºC, metastable A 

contained disordered alkyl chains 1 and 2, and a high 

concentration of free (non-bonded) amide groups resulting from a 

major breakdown of the amide-amide aggregates. During cooling 

the reformation of the hydrogen bonds and the recovery of the 55 

conformational state of the alkyl chains to rebuild structures LB1 

and LB2 was severely limited by the steric constraints. The self-

association between amide groups of chains 1 was favoured and a 

new lamellar structure (LB3) with an interlamellar distance 

similar to that of LB1 emerged. The crystallization of phase LB2 60 

did not occur, however, in the period of time analysed, a result 

that is consistent with the fact that after 12 months a great 

proportion of alkyl chains have still not adopted all-trans 

conformations. Therefore after heating A reached another 

metastable state, different from the initial one. This effect led to 65 

the substantial changes in the global properties of A. 

In conclusion, both stable m-A(14) and metastable A share in 

common the fact that upon being perturbed (i.e., heated) they 

become highly frustrated and stressed.58 However the subsequent 

dynamics which aim at relaxing and optimizing the system are 70 

different. In the case of m-A(14), the system is able to find within 

a measurable amount of time combined dynamical moves 

between the components that collectively lead to the 

improvement of the distribution of configurations.58 The system 

progressively releases the strain, yielding consecutive metastable 75 

configurations with increasing stability and taking around 300 h 

to reach the most stable configuration. This time-dependent 

evolution displays a logarithmic nature,27 closely reminding the 

Tangled Nature model of evolutionary ecology.58 Hybrid A, in 

which the number of degrees of freedom is much higher, is 80 

clearly less efficient in fulfilling the constraints dictated by the 

mutual interactions which take place between the various 

components. Heating simply sends the system into a metastable 

state different and less stable than that present prior to the thermal 

treatment After 12 months the stability has not been reached. It is 85 

of interest to refer at this stage that Anderson et al.58 introduced 

the notion of quakes to explain the evolution of complex systems. 

According to these authors, the dynamics of these systems do not 

act always in a coherent and constructive way and a significant 

number of intermediate metastable states will have to be reached 90 

before the system becomes stable. The inbuilt strain of the initial 

configuration exerts a directed push on all the components and 

will once in a while lead to coherent rearrangements of parts of 

the system. These essential events (quakes) will act as 

earthquakes in a geological fault, inducing irreversible changes in 95 

the properties of the system. In the case of A, heating may be 

viewed as an external quake.  
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Thus it may be stated that in practice the two materials 

basically differ in their temporal evolution. The present study, 

spanning 12 months, has enabled us to push the formation of an 

ordered non-bridged silsesquioxane system from self-assembly to 

self-organization conditions simply through a judicious design of 5 

the precursor. This has made possible the detection in the new 

hybrid material of unprecedented evidences of intermediate steps 

of morphogenesis manifested as fractal growth. The study of the 

structural changes induced in the system upon heating above the 

order/disorder phase transition of metastable A allowed us 10 

demonstrating how sensitive this material is to thermal 

treatments. 

Conclusions 

We report a new member of the amidosil family of hybrids, 15 

termed A, which differs chemically from the parent lamellar 

bilayer m-A(14) material by the fact that the pendant alkyl chain 

has been ramified into two alkyl chains with about the same 

length via a tertiary amide group. The modification introduced in 

the precursor design gave rise to two lamellar bilayer structures, 20 

which induced the formation of a series of unique nanoregions, 

some of which were manifested at the microscale. Because of its 

particularly rough texture, mimicking lettuce corals, A is 

hydrophobic. The hybrid system A has complex dynamics and 

undergoes a self-organization process instead of the self-directed 25 

assembly which led to the formation of m-A(14). Because of the 

slow evolution of this non-bridged silsesquioxane material it 

became possible to detect unprecedented proofs of intermediate 

steps of fractal growth. The order/disorder phase transition of the 

alkyl chains of metastable A occurs at lower temperature than in 30 

m-A(14). Heating above this temperature pushed A into another

state of metastability which could be described through several

macroscopic measurements. As we write the system is still

evolving, i.e., relaxing its strain towards greater stability at a

longer time scale. In addition this work raises an important issue. 35 

It strongly suggests that ordered non-bridged silsesquioxane 

hybrids may be extremely sensitive to temperature (e.g., day-to-

night temperature changes) and that consequently 

characterization analyses of this type of materials should be 

repeated several times at different periods to avoid misleading 40 

conclusions about their apparent stability. 
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A complex metastable room temperature white light emitter non-bridged silsesquioxane 

exhibiting hierarchical structure, fractal crystallinity and a texture mimicking lettuce 

corals was produced by self-organization. 
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