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Abstract. The emergence of real temporal applications under non-
stationary scenarios has drastically altered the ability to generate
and gather information. Nowadays, under dynamic scenarios, poten-
tially unbounded and massive amounts of information are generated
at high-speed rate, known as data streams. Dealing with evolving
data streams imposes the online monitoring of data in order to detect
changes. The contribution of this paper is to present the advantage
of using fading histograms to compare data distribution for change
detection purposes. In an windowing scheme, data distributions pro-
vided by the fading histograms are compared using the Kullback-
Leibler divergence. The experimental results support that the detec-
tion delay time is smaller when using fading histograms to represent
data instead of standard histograms.

1 INTRODUCTION

Nowadays, a massive amount of information is gathered at high-
speed rate, known as data streams. When dealing with data streams
in dynamics environments, besides remembering discarded data, it
is also necessary forgetting outdated data. To accomplish such as-
signments, this paper advances fading histograms, which weight data
examples according to their age. Thus, while remembering the dis-
carded data, fading histograms gradually forget old data.

Moreover, dynamic environments raise the need of online detect-
ing changes and the delay between the occurrence of a change and its
detection must be minimal. Widely used in the data stream context
[4, 3, 1, 9, 8], windowing approaches for detecting changes in data
consist of monitoring distributions over two different time-windows,
performing tests to compare distributions and decide if there is a
change. This paper proposes a windowing model for change detec-
tion, which evaluates, through the Kullback-Leibler divergence, the
distance between data distributions provided by fading histograms.

This paper is organized as follows. It start introducing fading his-
tograms and Section 3 presents a windowing model to compare data
distributions for detecting changes. Next, in Section 4, the perfor-
mance of the proposed model for detecting changes is evaluated on
an artificial data set and is compared with the Page-Hinkley Test
(PHT) when detecting distribution changes on a real data set. Fi-
nally, Section 5 presents conclusions on the proposed approach and
advances directions for further research.
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2 FADING HISTOGRAMS
A histogram is a synopsis structure that allows accurate approxi-
mations of the underlying data distribution and provides a graphi-
cal representation of a random variable. A standard histogram at-
tributes the same importance to all observations. However, in dy-
namic scenarios, recent data is usually more important than old data.
Therefore, outdated data can be gradually forgotten attributing dif-
ferent weights to data observations. Following an exponential forget-
ting, data distribution can be computed with fading histograms [10].
In this sense, data observations with high weight (the recent ones)
contribute more to the fading histogram than observations with low
weight (the old ones). With the recursive form, the fading histograms
counts (FHC)can be constructed in the flow:

FHCt = α ∗FHCt−1;FHCt(k) = FHCt(k)+1; (1)

where k is the correspondent bin of the actual observation and α is
an exponential fading factor, such that 0� α < 1.

3 ADAPTIVE CUMULATIVE WINDOWS
MODEL (ACWM)

A windows-based change detection method considers two time win-
dows and the data distribution on both windows is monitored and
compared to detect changes [1, 4, 8].

The ACWM for change detection evaluates the distance be-
tween data distributions (provided by fading histograms) through the
Kullback-Leibler divergence (KLD) [5]. Considering two discrete
distributions, from a reference window with probabilities PRW (i) and
from a current sliding window with probabilities PCW (i), the KLD of
PRW with respect to PCW is defined by:

KLD(PRW ||PCW ) = ∑i PRW (i)log PRW (i)
PCW (i) .

Due to the asymmetric property of the KLD, if the distribu-
tions are similar, the difference between KLD(PRW ||PCW ) and
KLD(PCW ||PRW ) is small. The ACWM decision rule for de-
tecting changes in based on the KLD asymmetry of KLD:
|KLD(PRW ||PCW )−KLD(PCW ||PRW )|> δ , where δ is a user defined
threshold. In the ACWM, the reference window (RW) has a fixed
length and reflects the data distribution observed in the past. The cur-
rent window (CW) is cumulative and it is updated sliding forward
and receiving the most recent data. The evaluation step length is de-
termined automatically depending on the data similarity: increases if
the distance between distributions is small and decreases otherwise.
More details on ACWM and the pseudo-code can be found in [8].

4 EXPERIMENTAL EVALUATION
This Section presents an evaluation of the advantage of using fading
histograms to compare data distributions.



Experiments on Artificial Data
Different kinds of changes were simulated varying the mean and

the standard deviation of normal distributions. Details on the artifi-
cial data design can be found in [8]. Data distributions, within the
reference and the current windows, were computed using fading his-
tograms with different values of fading factors: 1 (no forgetting at
all), 0.9994, 0.9993, 0.999, 0.9985 and 0.997. The ACWM-fh is also
suitable to detect changes on data streams with different amounts of
noise and with different lengths of stationary phases [8].

Table 1 presents a summary of the detection delay time, showing
that detection delay time decreases by decreasing the fading factor.
The increase of false alarms when using a fading histogram with α =
0.997 suggests that it is over reactive, therefore α ≤ 0.997 are not
suitable for use in this data set. A Wilcoxon signed rank test was
performed, at a significance level of 5%. Considering the very low p-
values obtained, there is strong statistical evidence that the detection
delay time of ACWM-fh is smaller than of ACWM.

Table 1: Detection delay time (average and standard deviation of 30
runs) of ACWM-fh. The number of runs, if any, where the ACWM-
fh misses detection or signals a false alarm are in the form (Miss;
False Alarm).

Parameter Mag. Rate Fading Factor
changed 1 0.9985 0.997

Mean

Abrupt
Low 260 ± 57 233 ± 77 226 ± 70 (0;5)

Medium 153 ± 24 (1;1) 140 ± 32 (0;2) 125 ± 36 (0;2)
Sudden 19 ± 4 (0;1) 16 ± 6 (0;1) 13 ± 6 (0;1)

Medium
Low 410 ± 131 (0;1) 365 ± 148 (0;2) 311 ± 96 (0;5)

Medium 242 ± 125 (0;1) 205 ± 58 (0;3) 186 ± 54 (0;5)
Sudden 36 ± 22 (0;1) 22 ± 9 (0;1) 36 ± 110 (0;2)

Smooth
Low 516 ± 171 (7;2) 448 ± 173 (2;2) 369 ± 150 (0;9)

Medium 371 ± 233 (5;0) 289 ± 168 250 ± 151 (0;4)
Sudden 233 ± 229 (1;0) 138 ± 180 66 ± 76 (0;1)

STD

Abrupt
Low 240 ± 34 204 ± 45 186 ± 52

Medium 168 ± 16 143 ± 25 138 ± 40
Sudden 71 ± 10 42 ± 19 23 ± 18

Medium
Low 368 ± 87 294 ± 79 249 ± 92

Medium 213 ± 28 159 ± 35 140 ± 40
Sudden 65 ± 15 43 ± 13 39 ± 14

Smooth
Low 517 ± 158 380 ± 145 316 ± 113 (0;2)

Medium 362 ± 127 260 ± 85 204 ± 52
Sudden 162 ± 60 (1;0) 87 ± 46 62 ± 40

Experiments on Real Data
This industrial data set was obtained within the scope of the work

presented in [2], with the objective of designing different machine
learning classification methods for predicting surface roughness in
high-speed machining. Data was obtained by performing tests in a
Kondia HS1000 machining center equipped with a Siemens 840D
open-architecture CNC. These tests were done with different cutting
parameters, using sensors for registry vibration and cutting forces.
For change detection purposes, the measurements of the cutting
speed on X axes from 7 tests were joined sequentially in order to
have only one data set with 6 changes with different magnitudes and
sudden and low rates. The ability for detecting changes in data distri-
bution of the ACWM-fh (α = 0.997 and α = 1) was compared with
the Page-Hinkley Test (PHT)[7], which is a sequential analysis tech-
nique typically used for monitoring change detection in the average
of a Gaussian signal [6].

Table 2 presents the results. The ACWM-fh is able to detect the
6 changes in the data with smaller detection delay time than when
using histograms constructed over the entire data. Moreover, with
both approaches for data representations, the model did not miss any
change. Although data has different kinds of changes, both ACWM
and ACWM-fh presented a performance which was highly resilient
to false alarms. The same is not true for the PHT, which presented 18
false alarms in this experiment. Moreover, the average detection de-
lay time obtained with the PHT is greater than when performing the
ACWM-fh. Considering the detection delay, the false alarms and the

miss detection rates, the ACWM-fh outperforms the ACWM and the
PHT. Although ACWM-fh presents smaller detection delay times,
the Wilcoxon signed rank test results do not support statistical evi-
dence of that. However, it must be pointed out that this conclusion is
based on a very small number of cases (6).

Table 2: Detection delay time on the industrial data set.

True Change 4500 9000 21000 25500 37500 42000 Average

Method
ACWM 240 84 328 2410 284 128 3474

ACWM-fh 170 14 258 499 348 192 1481
PHT 19 27 706 450 889 50 2141

5 CONCLUSIONS AND FURTHER RESEARCH
This paper presents the advantage of using fading histograms to com-
pare data distribution for change detection purposes. The experimen-
tal results show that when using fading histograms to represent data
instead of standard histograms, the time to detect a change is sig-
nificantly reduced. The proposed ACWM-fh but does not provide
insights on the description of changes and further research must
address change analysis. Moreover, fading histograms must be ex-
tended to a multidimensional perspective.
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