
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2015

Mario Car OpenStack Service Function Chaining Interface

Interface para Service Function Chaining do
OpenStack

University of Aveiro

2015.

Department of Electronics,

Telecommunications and Informatics

Mario

Car

OpenStack Service Function Chaining Interface

 Dissertação apresentada à Universidade de Aveiro para
cumprimento dos requisitos necessários à obtenção do grau de
Mestre em Engenharia Electrónica e Telecomunicaçoes, realizada
sob a orientação científica do Doutor Rui Luis Andrade Aguiar,
Professor catedrático do Departamento de Electrónica,
Telecomunicaçoes e Informática da Universidade de Aveiro e
João Paulo Barraca, Professor Assistente Convidado do
Departamento de Electrónica, Telecomunicaçoes e Informática da
Universidade de Aveiro

Dedico este trabalho ao meu Pai, Mãe, irmã e amigos.

o júri / the jury

presidente / the president Professor Doutor Anibal Manuel de Oliveira Duarte,
Professor Catedrático, Universidade de Aveiro

voigas / examiners
commitee

Doutor Pedro Miguel Naia Neves, Gestor Tecnológico,
Portugal Telecom Inovação, S.A.

 Professor Doutor Rui Luís Andrade Aguiar,
Professor Catedrático, Universidade de Aveiro

agradecimentos /
acknowledgments

I would like to thank my supervisor Prof. Doutor Rui L. Aguiar and
my co-supervisor Prof. Doutor João P. Barraca for their guidance,
as well as Igor D. Cardoso and Vitor Cunha for all their help.

palavras-chave

cloud computing, virtualização de redes, openstack, nfv, sfc,
openstack, horizon, gui, neutron

resumo

O OpenStack é uma plataforma livre e open-source de cloud
computing. É visto como uma importante tecnologia no futuro das
telecomunicações. O OpenStack facilita a criação de ambientes
de virtualização e é visto como uma grande tecnologia para o
desenvolvimento da virtualização de funções de rede (NFV).
Atualmente, a fundacão OpenStack está a desenvolver os casos
de uso e o código para a virtualização funções de serviço, mas
os aspectos das camadas mais elevadas de gestão não estão a
ser considerados. Esta dissertação vai enfrentar este desafio, e
vai trabalhar na criação de uma interface para um uso simples do
NFV, permitindo que o operador de rede construa serviços por
concatenação de elementos gráficos. As interfaces de
programação de aplicações que estão actualmente a ser
desenvolvidas serão analisadas e uma interface web simples
para explorar potencialidades das mesmas será criada.

keywords

cloud computing, network virtualization, openstack, nfv, sfc,
openstack, horizon, gui, neutron

abstract

OpenStack is a free and open-source cloud computing software
platform. It is seen as a major technology enabler for the future of
telecommunications. OpenStack eases the creation of
virtualization environments, and is seen as a major technology for
the development of network function virtualization (NFV).
Currently, OpenStack is developing the use cases and the code
for service function virtualization, but the higher layer
management aspects are not being considered. This dissertation
will address this challenge, and will work on the creation of an
interface for a simple usage of the NFV functions, enabling the
network manager to build services by concatenation of graphical
elements. The Application Programming Interfaces that are
currently being developed will be analyzed and a simple web
interface to explore theirs potentialities will be created.

3

Table of content

List of figures .. 7

1 Introduction .. 11

1.1 Objectives .. 12

1.2 Structure ... 12

2 Problem statement .. 13

2.1 Motivation ... 13

2.1.1 IT Aveiro .. 14

3 State of the art ... 17

3.1 Related concepts and technologies .. 17

3.1.1 Virtualization .. 17

3.1.2 Network Virtualization ... 19

3.1.3 Cloud Computing ... 24

3.1.4 Telco Network Architecture ... 26

3.1.5 OpenStack Platform ... 29

3.1.6 OpenStack Neutron .. 35

3.1.7 OpenStack Horizon .. 38

3.2 Related work .. 42

3.2.1 Group Based Policy .. 42

3.2.2 Telco Cloud Environment .. 45

4 A novel GUI for SFC .. 47

4.1 Django ... 47

4.2 Extending the OpenStack Dashboard .. 48

4.2.1 Limitations ... 55

5 Evaluation and results ... 57

5.1 Evaluation .. 60

5.2 Overview ... 61

5.3 Testing ... 61

5.3.1 Task 1: Creating an AP and attaching it to a network .. 62

5.3.2 Task 2: Creating a steering classifier ... 63

5.3.3 Tasks 3 and 4: Creating a SFC ... 65

5.3.4 Survey ... 67

6 Conclusion .. 69

7 References .. 75

4

List of Acronyms

AMQP Advanced Message Queue Protocol

AP Attachment Point

API Application Programming Interface

BNG Boarder Network Gateway

BRAS Broadband Remote Access Server

BSS Business Support Systems

CapEx Capital Expense

CLI Command-Line Interface

CPE Customer Premises Equipment

DETI Departamento De Electrónica Telecomunicações e

Informática

DNAT Dynamic Network Address Translation

DNS Domain Name Server

DPI Deep Packet Inspection

EM Element Manager

ETSI European Telecommunications Standards Institute

FOOS Free and Open-Source Software

FW Firewall

GBP Group Based Policy

GRE Generic Routing Encapsulation

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ICMP Internet Control Message Protocol

IP Internet Protocol

IPsec Internet Protocol Security

ISG Industry Specification Group

IT Information Technology

JS JavaScript

L2 Layer 2

L3 Layer 3

LAN Local Area Network

MAC Media Access Control

5

ML2 Modular Layer 2

MVC Model-View-Controller

NASA National Aeronautics and Space Administration

NAT Network Address Translation

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NIC Network Interface Controller

OpEx Operational Expense

OS Operating System

OSS Operations Support Systems

OVSDB Open Virtual Switch Database

P2P Peer-to-Peer

Paas Platform as a Service

PC Personal Computer

PT Portugal Telecom

PTL Project Team Lead

QoS Quality of Service

R&D Research and Development

RAM Random Access Memory

REST Representational State Transfer

RPC Remote Procedure Call

Saas Software as a Service

SDN Software Defined Networking

SF Service Function

SFC Service Function Chain

SNAT Static Network Address Translation

SOA Service Oriented Architecture

SVG Scalable Vector Graphics

Telco Telecommunications Company

URL Uniform Resource Locator

VE Virtualization Engines

vEPC Virtual Evolved Packet Core

VIM Virtual Infrastructure Management

VLAN Virtual Local Area Network

6

VM Virtual Machine

VNF Virtual Network Function

vNIC Virtual Network Interface Card

VPN Virtual Private Network

VPS Virtual Private Servers

VXLAN Virtual Extensible Local Area Network

WSGI Web Server Gateway Interface

7

List of figures

Figure 1 Current network architecture [2] .. 13

Figure 2 New network architecture [2] .. 14

Figure 3 Neutron-client help .. 15

Figure 4 VLAN .. 20

Figure 5 VPN [7] .. 20

Figure 6 NFV architecture model [10] ... 21

Figure 7 SDN architecture model [12] ... 22

Figure 8 Service Function Chaining [15] ... 23

Figure 9 Cloud computing models [19] ... 25

Figure 10 Classical networks vs. NFV [2] ... 28

Figure 11 OpenStack conceptual architecture [40] .. 32

Figure 12 OpenStack deployment on three nodes [41] .. 33

Figure 13 OpenStack contributing workflow [41] ... 34

Figure 14 Plug-in design [44] ... 36

Figure 15 OpenStack deployment on three nodes [3] .. 37

Figure 16 OpenStack dashboard .. 39

Figure 17 Horizon UI structure [48]... 40

Figure 18 Horizon app structure ... 41

Figure 19 Dashboard class example ... 41

Figure 20 Panel class example ... 42

Figure 21 GBP architecture [50] .. 43

Figure 22 Cloud4NFV platform [16] ... 45

Figure 23 AP display in the Network Topology Panel .. 49

Figure 25 Attachment Points panel .. 50

Figure 24 Attachment Point creation workflow ... 50

Figure 26 Create AP modal .. 50

Figure 27 AP Attach modal .. 51

Figure 28 Create a Steering Classifier modal ... 52

Figure 29 SFC creation workflow .. 52

Figure 30 SFC tab .. 53

Figure 31 Create SFC modal .. 53

Figure 32 Add Port modal .. 54

8

Figure 33 SFC creation via flowchart .. 54

Figure 34 Flowchart Panel ... 55

Figure 35 Create SFC from a flowchart ... 55

Figure 36 Chain of chains .. 56

Figure 37 Demo network topology .. 57

Figure 38 OpenArena ... 58

Figure 39 Firewall blocks Player 1 .. 59

Figure 40 OpenArena connection interrupted .. 60

Figure 41 Task 1: Creating and attaching an AP ... 63

Figure 42 Task 2: Creating a steering classifier ... 64

Figure 43 Task 2 comparison ... 64

Figure 44 Task 3 vs Task 4: Creating a SFC .. 65

Figure 45 Neutron port list ... 66

Figure 46 Task 4: Creating a SFC comparison .. 66

Figure 47 Error distribution .. 67

Figure 48 Survey results .. 67

9

List of tables

Table 1 Essential neutron-client commands ... 16

Table 2 Resources mapping ... 44

Table 3 Network service chaining resources .. 44

Table 4 Developed OpenStack Panels.. 48

11

1 Introduction

Network Function Virtualization (NFV) and Software Defined Networking (SDN) have

emerged as one of the most promising paradigms for revolutionising the way we manage

networks. Although the concept of NFV is quite recent, it is based on technologies that have

proven their validity in Information Technology (IT), and it is the result of careful

experimenting and evaluation by players in the industry and academy in the last years.

A majority of the telecom industrial stakeholders claim that virtualizing network functions

will help their businesses by reducing management and operational costs, without affecting

network performance and service provisioning workflows [1]. In fact, NFV should ease and

automate the management of the network functions. Together with SDN, NFV is foreseen as

the main enabler of the future network operating system. Service Function Chaining is

another concept that is related to SDN and NFV. It uses the composition of network services

in order to create a chain of services that provides the desired functionality.

This work proposes a solution to the problem of managing virtualized network functions

(VNFs) in OpenStack
1
. Specifically, it suggests a solution for managing Service Function

Chaining. The tools that are currently available are not user friendly, and require the usage of

the command line interface (CLI). Furthermore, the administrator has to be familiar with the

system, know the commands and the proper sequence in order to achieve the desired

configuration. Any large scale network configuration is impractical as it requires a lot of

human interaction with a somewhat exhausting command line interface. However this can be

simplified and somewhat automated by creating scripts that configure the whole network, but

it is only helpful in the case of initial configuration of the network. Even though it is not

suitable when some parts of the network have to be reconfigured it is still used because of a

lack of alternatives. This approach isn't changing the paradigm, with the administrator still

using the command line interface. The other approach for managing networks in OpenStack is

via a graphical user interface (GUI). By taking advantage of available APIs it should be

possible to create a graphical user interface for managing virtualized network functions. A

GUI solution for managing networks in OpenStack already exists, but it only provides basic

functionality, e.g., virtual networks and subnetworks provisioning. It does not support Service

Function Chaining management. A graphical user interface for Service Function Chaining

1 https://www.openstack.org/

12

could prove more user friendly and efficient than the command line interface thus making the

job of an administrator easier and more pleasant.

1.1 Objectives

The main objective of this dissertation is to create a graphical user interface that

complements the existing command-line tools, mainly the neutron-client, that provides

functionality for extending the virtualized network segment in OpenStack. The neutron-client

provides some advanced capabilities, as the creation of a Service Function Chain (SFC). This

feature allows the administrator to create network functions using concatenated Virtualized

Network Functions (VNFs). The main goal of this work is providing a GUI that makes the

chaining of VNFs easier, more intuitive and faster. Other objectives include exploring the

OpenStack Neutron and Horizon modules, their APIs and learning how they work. There is

also a possibility of contributing to the OpenStack project.

1.2 Structure

The second chapter defines the scope of the work and proposes the solution. For the reader

to be able to understand this dissertation key principles and technologies are explained in the

third chapter. The third chapter also provides a review of existing solutions for extending the

virtualized network segment and managing VNFs. The chapter that follows The

implementation is discussed in the fourth chapter. In the fifth chapter the solution is discussed

and evaluated. The last chapter contains a conclusion about the work done. Figures and tables

are listed before chapter one, and citations and bibliography are placed at the end of the

document.

13

2 Problem statement

Creating and managing SFCs in OpenStack is currently done through CLI. This work

proposes a dedicated Panel in the OpenStack Dashboard for managing SFCs in order to

provide a GUI to the administrator. Also a new approach to creating SFCs is proposed,

namely the standard OpenStack web GUI could be enhanced by adding custom JavaScript

that would enable a more user friendly workflow, i.e., creating a chain by point and click.

2.1 Motivation

The whole concept is based around the virtualization of the home environment. Currently

operators provide services using backend systems and CPE (Customer Premise Equipment)

devices located in the home network. These devices usually include a RGW (Residential

Gateway) or HGW (Home Gateway) for Internet and VOIP services and a STB (Setup Box)

for Media services (Figure 1). In the figure the home is equipped with a STB and a RGW. All

services are received by the RGW and delivered inside the home. A conversion to private IP

addresses is made by the RGW, which has connectivity to Internet through the BNG, also

referred to as BRAS.

Figure 1 Current network architecture [2]

The new architecture uses virtualization of services and functionality migration from home

devices to the cloud (Figure 2). RGW and STB are replaced by vRGW and vSTB.

14

Figure 2 New network architecture [2]

There are numerous advantages both for the operator and the end customer. First of all the

reduction of CapEx and OpEx for the operator by eliminating the need to deploy, maintain

and upgrade the CPEs. The introduction of new services becomes easier and less dependent of

the CPEs which benefits both the operator and the end customer. Also the quality of

experience increases with new functionality such as multi-screen support, opposed to the

current need for one STB per each TV.

2.1.1 IT Aveiro

The work done in this dissertation is strongly correlated with the work of Igor D. Cardoso,

Vitor Cunha and Carlos Gonçalves. All of them were, or are currently somehow related to the

Instituto de Telecomunicações, Aveiro (IT Aveiro), and DETI, Universidade de Aveiro. In his

MSc dissertation [3] Cardoso discussed the possibility of extending virtual networks with

physical or virtual resources that reside outside the data centre (cloud). He developed a

solution that enables a L2 tunnel between the vHGW the devices that connect to it and the

VNFs running in the cloud. Currently he is working on creating VNFs, e.g., firewall. In this

context VNFs are actually customized OpenStack instances (virtual machines). They can be

provisioned through Horizon. In the scope of his MSc, Cunha is working on enabling

dynamic port creation in OpenStack, with the goal of developing a solution that will enable

automatic creation of a port for a physical device when it connects to the home device, in

other words, it will enable automatic access to operators cloud and to the Internet. In neutron-

client this is represented as a vHGW. Gonçalves developed the traffic steering support for the

neutron-client, which consists of traffic classifiers that enable classification and port chains

15

that enable VNF concatenation. All three solutions are aggregated in the neutron-client.

Neutron-client can be accessed through CLI with the command "neutron". A general pattern

for the usage of neutron-client is: "neutron command -options arguments". There is no

manual for the neutron-client, which makes the usage difficult for someone inexperienced and

not previously acquainted with it. However it must be stated that a list of all commands can be

obtained by executing "neutron -h". A help page for a specific command can be accessed

either by executing the command without any arguments, e.g., "neutron attachment-point-

create" (Figure 3) or by executing the command with the option "-h".

Figure 3 Neutron-client help

The first approach is only useful for experienced users as it doesn't explain any of the

arguments, doesn't provide examples and is only triggered after the specific command is

executed. This presents a problem as some commands don't need any arguments and are

normally executed even if you just want to display the help page without displaying the help,

e.g., "neutron steering-classifier-create". However the second approach provides detail info

about the specific command. One can argue that the commands should be grouped in order to

provide better user experience. The commands dedicated to a certain entity (e.g., attachment

point) are separated, as each command is basically independent, e.g. "neutron attachment-

point-create" and "neutron attachment-point-delete". This could be reorganised so that all the

commands regarding a certain entity are grouped and an action is specified as an argument or

an option, e.g., "neutron attachment-point attach other_args". That way all the commands

related would be available from the same help page, which is more practical. Essential

commands for this work are displayed in Table 1. These solutions were developed in

collaboration with Portugal Telecom (PT) and were confirmed multiple times both by IT

16

Aveiro and by PT. They provide the desired functionality, but they are not user friendly,

because of their CLI nature. The user experience can be improved by introducing a GUI that

will provide the same functionality. The need to know all the commands is eliminated by

using GUI, also it is more intuitive to connect VNFs with a mouse in order to create a chain,

than by typing commands. These services are managed by the administrator, but in the future

the end customer might be able to use some of these or other similar services. It is delusional

to expect that the end user will have the knowledge to use the CLI. During the 80's and 90's

the first GUIs appeared and quickly became popular. New users unfamiliar with the OS prefer

GUI environment, as they find it more intuitive. This is a strong argument for the GUI

approach for managing SFC.

Neutron-client command Description

attachment-point-create Create a new attachment point.

attachment-point-delete Delete a given attachment point.

attachment-point-attach Attach an attachment point to a given network.

attachment-point-detach Detach an attachment point from a network.

attachment-point-list List attachment points that belong to a given tenant.

vhgw-network-create
Register a vHGW and associate a neutron network to its

entry.

vhgw-network-delete Delete a given vHGW.

steering-classifier-create Create a traffic steering classifier.

steering-classifier-delete Delete a given classifier.

steering-classifier-list List traffic steering classifiers that belong to a given tenant.

port-chain-create Create a port chain.

port-chain-delete Delete a port chain.

port-chain-list List port chains that belong to a given tenant.

Table 1 Essential neutron-client commands

17

3 State of the art

This chapter describes the terms, technologies and fields related with the work done in this

dissertation. Virtualization and cloud computing are major trends in IT. Cloud computing is a

prominent technology that is developing at a staggering rate because of the ever increasing

number of users in IT. To emphasise this claim Google Apps
2
 can be mentioned. It's a cloud

based set of services which are available through a web browser. Services like Gmail, Google

Docs, Google Drive, etc. are being used by millions of people every day. Another big cloud

service provider is Amazon, which provides the usage of virtual machines form their cloud

service platform EC2
3
 (IaaS). It also provides cloud data storage on Amazon cloud drive

4
.

3.1 Related concepts and technologies

3.1.1 Virtualization

Virtualization is a technology that uses software to create virtual entities, that can be used

instead of actual hardware. The concept of virtualization has emerged during 1960s in United

States, where IBM logically divided the resources of their mainframe computers into virtual

machines to increase utilization of hardware. The motivation for creating this approach was

the high price of hardware at that time. By using virtualization IBM managed to decrease the

price of their mainframe computers. Since then the term has expanded in meaning, and

different applications have emerged. Nowadays virtualization is used throughout IT systems.

Sometimes we use it even without noticing it (knowing it), e.g., when we use our PCs we

don't realize that our applications use virtual memory that is mapped to part of actual physical

RAM modules. Virtualization applications include:

 Network virtualization

 Data virtualization

 Software virtualization

 Memory virtualization

 Computer systems virtualization

2 https://www.google.com/work/apps/business/
3 http://aws.amazon.com/ec2/
4 https://www.amazon.com/clouddrive/home

18

Data virtualization is a method for data management. It enables the user to retrieve and

manipulate the data without knowing technical details about the data, e.g., how it is formatted

or where it is located [4]. It provides an abstraction layer that is used to manage the data. An

example of data virtualization usage are Facebook
5
 photo albums. When you upload a photo

to Facebook you don't know where it is stored, or in which format, but still you can retrieve it.

Basically data virtualization provides data to an application without the concern for where the

data resides, what the technical interface is, how was it implemented, what platform it uses

and how much of data is available [4].

Software virtualization can be divided into multiple categories like application virtualization,

workspace virtualization, operating-system-level virtualization. Application virtualization is a

technology that encapsulates application software from the underlying operating system on

which it is executed. A fully virtualized application is not installed in the traditional sense,

although it is still executed as if it were. The application behaves at runtime like it is directly

interfacing with the original operating system and all the resources managed by it, but can be

isolated or sandboxed to varying degrees. Workspace virtualization is similar to application

virtualization but it encapsulates and entire workspace, which consists of everything above the

operating system kernel, i.e., applications, data and settings. Operating-system-level

virtualization is a server virtualization method where the kernel of an operating system allows

for multiple isolated user space instances, instead of just one. Such instances may look and

feel like a real server from the point of view of its owners and users. They are called

containers
6
, virtualization engines (VE), virtual private servers (VPS), or jails

7
. Operating-

system-level virtualization is commonly used in virtual hosting environments, where it is

useful for securely allocating finite hardware resources amongst a large number of mutually-

distrusting users.

Memory virtualization is a technology used by operating systems in order to compensate for

the shortage of physical memory (RAM). When the memory requirements can't be met the OS

has to transfer data to disk storage. This process is called paging or swapping. Eventually the

OS will retrieve the data from the disk storage back to the RAM. It also used in clusters to

create a pool of shared memory that all computers can access.

5 https://www.facebook.com/
6 https://wiki.archlinux.org/index.php/Linux_Containers
7 https://www.freebsd.org/doc/handbook/jails.html

19

There are three types of computer systems virtualization: Full virtualization, Partial

virtualization and Paravirtualization. Full virtualization provides the almost complete

simulation of the computer system hardware which allows running unmodified software

(usually a guest OS) on the virtual machine (a term used to describe the simulated computer

system). The difference between the full and partial virtualization lies in the fact that certain

software needs to be modified to run on partially virtualized virtual machines. The original

meaning of virtualization that was introduced by IBM is now called paravirtualization and

describes a scheme were software is being run in isolated domains, as if they were running on

different systems. The benefits of virtualization are: increased utilization, reduced amount of

hardware, smaller demand for space and energy and inherent security. It reduces both Capital

Expense (CapEx) and Operational Expense (OpEx). It also enables easier management and

provides better security due to isolation from the rest of the system.

3.1.2 Network Virtualization

Network virtualization is a concept that allows multiple virtual networks to exist on a

single physical network. It provides flexibility and customization through decoupling the

services from the infrastructure. There are multiple technologies that embrace this approach

like: VLAN, VPN, Overlay networks and Programmable networks. VLAN is an acronym for

Virtual Local Area Network [5]. Using software it enables the coexistence of multiple LANs

in an environment where only one LAN can exist (Figure 4), because of the hardware in use.

This is done by adding tags to the header of each packet.

20

Figure 4 VLAN

A Virtual Private Network (VPN) is a private network that uses a public network (usually the

Internet) to connect remote sites or users together [6]. Instead of using a dedicated, real-world

connection, such as leased line, a VPN uses "virtual" connections routed through the Internet

from the company's private network to the remote site or employees. This is done by creating

a tunnel between the remote site and the specified private network (Figure 5). VPNs have to

provide security, reliability, scalability, network management and policy management. Data

confidentiality is a major issue for any VPN. Since the data is travelling over a public network

it has to be encrypted in order to ensure confidentiality.

Figure 5 VPN [7]

The idea behind Overlay networks is that a virtual topology is created upon another, main

topology, e.g., Peer-to-Peer (P2P) networks. These will not be discussed in detail as they are

not in the focus of this dissertation. Programmable networks provide means to decouple the

network infrastructure from the control software [8]. The latest trends in network

virtualization are SDN and NFV.

3.1.2.1 Network Function Virtualization (NFV)

Network function virtualization is a concept that decouples network functions from

dedicated hardware like routers, firewalls, load balancers, etc. and enables them to be carried

out on virtual machines (VMs). This decoupling requires a new set of management and

orchestration functions and creates new dependencies between them, thus requiring

interoperable standardised interfaces, common information models, and the mapping of such

information models to data models [9]. The problem of vendor lock-in can easily be solved by

applying NFV. Using VMs instead of dedicated hardware enables quick development and

shortens the time-to-market for new services. A Virtualized Network Function is a Network

Function capable of running on an NFV Infrastructure (NFVI) and being orchestrated by a

NFV Orchestrator (NFVO) and VNF Manager [9].

21

Figure 6 NFV architecture model [10]

The NFVO performs orchestration functions of NFVI resources across multiple Virtualized

Infrastructure Managers (VIMs) and lifecycle management of network services. The VNFM

performs orchestration and management functions of VNFs. The VIM performs orchestration

and management functions of NFVI resources within a domain. The NFVO interacts with the

OSS/BSS for provisioning, configuration, capacity management, and policy-based

management [10]. The VNFM interacts with the Element Manager (EM) and the VNF for

provisioning, configuration, and fault and alarm management [10]. The VIM interacts with

the NFVI for the management and orchestration of virtualised resources.

One of the key benefits of NFV is the elasticity provided by the infrastructure for capacity

expansion and the roll out of new network functions. However, to take full advantage of the

elasticity benefits of NFV, higher levels of automation are needed for the provisioning,

configuration, and performance testing of virtualised network functions. NFV is mostly being

nurtured by the ETSI NFV ISG, a group started by nine telecom operators at the beginning of

2013 that has grown up to more than 150 participating organizations since then [11]. The

group foresees the identification of relevant standards necessary for making NFV a reality.

3.1.2.2 Software Defined Networking (SDN)

Software defined networking is a concept that proposes the decoupling of data and control

planes in networks. In classical networks data and control planes are tightly coupled, e.g.,

22

network switches forward packets based on internal decisions. The data plane (sometimes

called the forwarding plane) handles the routing of data packets to its destination, while the

control plane creates routing tables, and determines routes [12]. SDN concept proposes that

the control plane can be logically centralized and taken away from the physical devices. The

separation of the two planes provides a new approach for networking: switches/routers

become simple packet forwarding devices, while a software controller manages the entire

network from a logically single point [13]. The SDN model consists of: controllers,

southbound APIs and northbound APIs (Figure 7). The controller is regarded as the "brains"

of the network. It controls the network and handles as middleware between switches/routers

and applications. It is usually composed of modules that perform different network tasks.

Southbound APIs are used to relay information to switches/routers. The well known protocols

used to communicate with switches/routers are OpenFlow
8
 and open virtual switch database

(OVSDB). Northbound APIs are used for communication with the software and business

logic above. The APIs allow quick network reconfiguration.

Figure 7 SDN architecture model [12]

This model provides flexibility to the network, simplifies the devices, which in return reduces

their cost. Management and maintenance of the network benefit from this approach. SDN

reduces both CapEx and OpEx.

8 https://www.opennetworking.org/sdn-resources/openflow

23

3.1.2.3 Service Function Chaining

Service function chaining is a fairly new concept that proposes a workflow defining and

instantiating an ordered set of service functions and steering the traffic through them. A SFC

defines an ordered set of abstract Service Functions (SFs) and ordering constraints that must

be applied to packets and/or frames and/or flows selected as a result of classification [14]. The

process of classification is rather simple, one or more classifiers, that contain certain criteria

are applied to each packet/frame/flow, in order to check if they match. When identified the

packet/frame/flow is then steered along the SFC. Figure 8 shows two different SFCs,

classification and traffic steering.

Figure 8 Service Function Chaining [15]

A SF can be realized as a virtual element or be embedded in a physical device. They can be

classified as [16]: active or passive. Active SFs are a part of the main course of the chain.

Furthermore there are two sub-types, the ones that drop or forward the packets, but do not

change them (firewall) and functions that modify the packets (IPSec VPN server). Passive

SFs are out of the main course of the chain. Traffic is considered duplicated when having to

reach a passive function. They mainly inspect packets, e.g., deep packet inspection (DPI).

Together with NFV and SDN service function chaining can provide flexibility and elasticity

to the network. Operators can reduce their expenses and shorten the time to market for new

services(network functions).

24

3.1.3 Cloud Computing

All these concepts and technologies have lead to the creation of cloud computing. Cloud

computing is a technology that provides IT resources using virtualization. Cloud computing

refers to both the applications delivered as services over the Internet and the hardware and

systems software in the data centres that provide those services[17]. The idea for cloud

computing emerged because of the increased need for resources in IT. It is widely accepted

that cloud computing has five key characteristics[18]:

 On-demand self-service

 Broad network access

 Resource pooling

 Rapid elasticity

 Measured service

The on-demand self-service means that a user can provision resources as needed, without the

human interaction with the service provider, usually through a web-based service portal.

Resources are available over the network, supporting heterogeneous client platforms. They

are pooled and dynamically assigned to users. Multiple users can utilize the same physical

resource at the same time. They have no knowledge or control of the location of the provided

resources. The resources can be elastically provisioned and released. The user has a delusion

that the resources are unlimited. Resource usage can be monitored, controlled and reported

which provides transparency both for the service provider and the user. This is essential for

the pay-per-use model.

Cloud computing is a large scale virtualization implementation, usually consisting of a set of

computers (and other hardware) combined into one large system which appears to be

monolithic. The actual components of the system are invisible to the user, as if they are

obscured by a cloud. The similarity of this approach with big mainframe computers from the

past can't be overlooked. The services provided by cloud computing can be divided into three

categories (Figure 9): Infrastructure as a service (IaaS), Platform as a service (Paas) and

Software as a service (Saas). IaaS is a model where a service provider provides virtualized

computing resources over the Internet. The user does not manage or control the underlying

cloud infrastructure but has control over operating systems, storage, and deployed

applications; and possibly limited control of select networking components (e.g., host

firewalls). PaaS provides a platform on top of the infrastructure, typically containing an OS, a

25

programming language execution environment, database and a web server is provided. The

user does not manage or control the underlying cloud infrastructure including network,

servers, operating systems, or storage, but has control over the deployed applications and

possibly configuration settings for the application-hosting environment. SaaS provides an

application to the user, e.g., Gmail, Office365, Google, Docs, etc. The user does not manage

or control the underlying cloud infrastructure including network, servers, operating systems,

storage, or even individual application capabilities, with the possible exception of limited user

specific application configuration settings.

Figure 9 Cloud computing models [19]

Cloud computing aims to provide reliable, customized and quality of service (QoS)

guaranteed dynamic environment [20]. The services provided are accessed by simple methods

in a location independent way. The cloud can be automatically reconfigured and orchestrated

before being presented to the user [20]. The main advantages of cloud computing are

scalability, flexibility and on-demand provisioning. It provides a self-service model where the

user is able to request and get resources, without being responsible or a need to know how the

resources are provisioned or where they are located. Providing resources as services is

enabled by using Service Oriented Architecture (SOA). SOA is a paradigm that puts services

in focus. It guides business solutions to create, organize and reuse computing components

[21]. Cloud computing is a flexible platform for building SOA solutions.

Cloud computing has a big impact on the utilization of physical resources. In the traditional

client-server model the servers are usually idle, with some bursts that manifest themselves as

26

peaks in user activity, which means that most of the time the resources aren't used, and are

basically wasted. Cloud computing uses the virtualization to run multiple VMs on one

physical machine (computer), therefore increasing the utilization. The industry provides four

deployment models: Private cloud, Community cloud, Public cloud and Hybrid cloud.

In the private cloud model the infrastructure is used by a single organization. It may be

owned, managed, and operated by the organization, a third party, or some combination of

them, and it may exist on or off premises. A community cloud is similar to private cloud. It is

a multi-tenant infrastructure that is shared among several organizations from a specific group

with common computing concerns. Such concerns may be related to performance

requirements, such as hosting applications that require a quick response time. The goal of a

community cloud is to have participating organizations realize the benefits of a public

cloud such as multi-tenancy and a pay-as-you-go billing structure but with the added level of

privacy, security and policy compliance usually associated with a private cloud. The

community cloud can be either on-premises or off-premises, and can be governed by the

participating organizations or by a third-party. A public cloud is one based on the

standard cloud computing model, in which a service provider makes resources, such as

applications and storage, available to the general public over the Internet. Public cloud

services may be free or offered on a pay-per-usage model. It may be owned, managed, and

operated by a business, academic, or government organization, or some combination of them.

It exists on the premises of the cloud provider. Hybrid cloud is a cloud computing

environment which uses a mix of on-premises, private cloud and public cloud services with

orchestration between the two platforms. By allowing workloads to move between private and

public clouds as computing needs and costs change. Hybrid cloud gives businesses greater

flexibility and more data deployment options.

The IT industry is moving fast towards cloud computing with big steps. Microsoft has already

invested 15 billion dollars [22] for cloud R&D (Research and Development). In September of

2014 Cisco announced that it will invest 1 billion dollars into cloud computing during the

next two years [23].

3.1.4 Telco Network Architecture

Today's networks consist of a large number of different proprietary hardware (Figure 10).

Because of the need for backward compatibility and support of older technologies network

operators are faced with a big challenge when they want to launch a new network service.

27

First they have to find additional space and power for new hardware. There is also the

challenge to integrate the hardware into the existing network, which requires specific skills

that may not be available, or come at high price. The management and maintenance as well as

the capital investment have to be taken into account. With the acceleration of technology and

development of new services the life cycle of hardware is becoming shorter. In such

environments it is possible that the hardware gets replaced even before it returns the

investment. In other words the process of designing, integrating and deploying is repeated

often and with little or no revenue.

NFV aims to address these problems by leveraging standard IT virtualization technology to

consolidate many network equipment types onto industry standard high volume servers,

switches and storage, which could be located in data centres, network nodes and in the end

user premises. ETSI believes network function virtualization is applicable to any data plane

packet processing and control plane function in fixed and mobile network infrastructures [2].

NFV is highly complementary to Software Defined Networking (SDN). They are completely

independent, but can provide each other mutual benefits. It is important to emphasise that

NFV can be deployed without SDN and vice-versa.

In order not to confuse the reader a clear distinction between NFV and VNF must be made.

VNF refers to a network function that is virtualized, while NFV refers to a network

architecture concept. By eliminating the dependency between a network function and its

hardware using VNF operators can achieve higher utilization, because multiple VNFs can

share the same physical machines. This creates new business opportunities analogous to the

cloud computing service models of Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS), e.g., a VNF owner doesn’t necessarily own the NFV

Infrastructure needed for the proper functioning and operation of the VNF. To provide

network services using this approach VNFs have to be organised in an ordered graph. By

concatenating VNFs a SFC is created.

28

Figure 10 Classical networks vs. NFV [2]

The most common practice by telecommunication operators is resource overprovisioning. In

order to cope with specific scenarios like sudden rise in traffic or network failure they are

forced to provision more resources than it is actually needed, to maintain performance and

availability. This could be solved by using the advantages of the cloud, where resources can

be provisioned on-demand.

NFV could potentially offer many benefits including, but not limited to [2]:

 Reduced equipment costs and reduced power consumption through consolidating

equipment and exploiting the economies of scale of the IT industry.

 Increased speed of Time to Market by minimising the typical network operator

cycle of innovation. Economies of scale required to cover investments in

hardware-based functionalities are no longer applicable for software-based

development, making feasible other modes of feature evolution. NFV should

enable network operators to significantly reduce the maturation cycle.

 Availability of network appliance multi-version and multi-tenancy, which allows

use of a single platform for different applications, users and tenants. This allows

network operators to share resources across services and across different customer

bases.

 Targeted service introduction based on geography or customer sets is possible.

Services can be rapidly scaled up/down as required.

29

 Enables a wide variety of eco-systems and encourages openness. It opens the

virtual appliance market to pure software entrants, small players and academia,

encouraging more innovation to bring new services and new revenue streams

quickly at much lower risk.

New trends in the Telco industry suggest that future networks are going to be virtualized, thus

providing service from a cloud. Both fixed line networks and mobile networks will provide

services from the cloud. There are few test implementations already running around the world

like the Terastream developed by Croatian Telecom (a part of Deutsche Telecom group) [24]

and Virtual Evolved Packet Core (vEPC) use case by Telenor Group in Norway [25].

3.1.5 OpenStack Platform

OpenStack is an open source software platform launched by NASA (National Aeronautics

and Space Administration) and Rackspace Hosting in 2010. Currently it is being managed by

OpenStack Foundation, a non-profit organization which promotes OpenStack software and its

community established in 2012. In a survey conducted by Linux.com and The New Stack 8 in

August 2014, OpenStack was voted the top IaaS Free and Open-Source Software (FOSS)

project of 2014 and the overall best FOSS Cloud Computing project [3]. More than 200

companies [26] are involved in the development of OpenStack. The goal of OpenStack is to

produce the ubiquitous open source cloud computing platform that will meet the needs of

public and private clouds regardless of size, by being simple to implement and massively

scalable [27]. This is achieved by the architecture of OpenStack, which consists from multiple

loosely coupled modules (projects), that provide specific services and are developed

separately. OpenStack modules (Juno release 2014.2.3):

 Nova (Compute)

 Neutron (Networking)

 Swift (Object storage)

 Cinder (Block storage)

 Keystone (Identity)

 Glance (Image service)

 Horizon (Dashboard)

 Ceilometer (Telemetry)

 Heat (Orchestration)

 Trove (Database)

 Sahara (Data processing)

 a few others still under development

30

Nova is an OpenStack project designed to provide power massively scalable, on demand, self

service access to compute resources [28]. Nova was originally focused purely on providing

access to virtual servers running on a variety of different hypervisors. The majority of users

use Nova only to provide access to virtual servers from a single hypervisor. It's possible to

have a Nova deployment include multiple different types of hypervisors, while at the same

time offering containers and bare metal servers [29]. Neutron is the networking project and it

will be described in a separate chapter. Swift is a highly available, distributed, eventually

consistent object/blob store. Organizations can use Swift to store lots of data efficiently,

safely, and cheaply [30]. One can create, modify, and get objects and metadata by using the

Object Storage API, which is implemented as a set of Representational State Transfer (REST)

web services. HTTPS protocol is used to interact with Object Storage, and standard HTTP

calls are used to perform API operations [30]. Language-specific APIs, which use the

RESTful API can be used to ease the integration with third party applications. An object

stores data content, such as documents, images, etc. To assert your right to access and change

data in an account, you identify yourself to Object Storage by using an authentication token

[30]. To get a token, you present your credentials to an authentication service. Cinder is a

Block Storage service for OpenStack. It's designed to present storage resources to end users

that can be consumed by the OpenStack Compute Project (Nova). The short description of

Cinder is that it virtualizes pools of block storage devices and provides end users with a self

service API to request and consume those resources without requiring any knowledge of

where their storage is actually deployed or on what type of device [31]. Cinder volumes

provide persistent storage to guest virtual machines (known as instances) that are managed by

OpenStack Compute software [32]. Cinder can also be used independently of other

OpenStack services. Keystone is an OpenStack project that provides Identity, Token, Catalog

and Policy services for use specifically by projects in the OpenStack family [33]. It

implements OpenStack’s Identity API. Keystone is organized as a group of internal services

exposed on one or many endpoints [34]. Many of these services are used in a combined

fashion by the frontend, for example an authenticate call will validate user/project credentials

with the Identity service and, upon success, create and return a token with the Token service

[34]. Glance project provides a service where users can upload and discover data assets that

are meant to be used with other services [35]. This currently includes images and metadata

definitions. Glance image services include discovering, registering, and retrieving virtual

machine images. Glance has a RESTful API that allows querying of VM image metadata as

31

well as retrieval of the actual image. VM images made available through Glance can be stored

in a variety of locations from simple filesystems to object-storage systems like the OpenStack

Swift project [35]. The Horizo project is a web based user interface and it will be discussed in

a separate chapter. Ceilometer project aims to deliver a unique point of contact for billing

systems to acquire all of the measurements they need to establish customer billing, across all

current OpenStack core components with work underway to support future OpenStack

components [36]. Heat is a service to orchestrate multiple composite cloud applications using

the AWS CloudFormation template format, through both an OpenStack-native REST API and

a CloudFormation-compatible Query API [37]. Heat provides a template based orchestration

for describing a cloud application by executing appropriate OpenStack API calls to generate

running cloud applications. The software integrates other core components of OpenStack into

a one-file template system. The templates allow creation of most OpenStack resource types

(such as instances, floating IPs, volumes, security groups, users, etc), as well as some more

advanced functionality such as instance high availability, instance autoscaling, and nested

stacks [37]. Trove is Database as a Service for OpenStack. It’s designed to run entirely on

OpenStack, with the goal of allowing users to quickly and easily utilize the features of a

relational database without the burden of handling complex administrative tasks [38]. Cloud

users and database administrators can provision and manage multiple database instances as

needed. It focuses on providing resource isolation at high performance while automating

complex administrative tasks including deployment, configuration, patching, backups,

restores, and monitoring [38]. Sahara project aims to provide users with simple means to

provision a Hadoop
9
 cluster at OpenStack by specifying several parameters like Hadoop

version, cluster topology, nodes hardware details and a few more [39].

The conceptual architecture can be seen on Figure 11. OpenStack is written in Python
10

.

9 https://hadoop.apache.org/
10 https://www.python.org/

32

Figure 11 OpenStack conceptual architecture [40]

OpenStack enables engineers to deploy a multi-node IaaS, that provides an efficient, flexible

and highly available service. The main three types of nodes are: the cloud controller node, the

network node and the compute node. Figure 12 is showing a typical three node OpenStack

deployment. The controller node is the central node which provides management for

OpenStack. It handles the authentication and sending/receiving messages to other systems via

an Remote Procedure Call (RPC) message queuing system over RabbbitMQ
11

. It can be split

on several nodes to assure high availability of its services, but mostly it is deployed on a

single node.

11 https://www.rabbitmq.com/

33

Figure 12 OpenStack deployment on three nodes [41]

The list of services that the controller node manages is shown below [42]:

• Databases: Track current information about users and instances, e.g., in a

database, typically one database instance is managed per service.

• Message queue services: Advanced Message Queue Protocol (AMQP)

messages for services are received and sent according to the queue broker.

• Conductor services: Provides a proxy service for the access to a database.

• Authentication and authorization for identity management: Indicates which

users can do what actions on certain cloud resources.

• Image-management services: Stores and serves images with metadata, for

launching in the cloud.

• Scheduling services: Indicates which resources to use first, e.g., spreading out

where instances are launched based on an algorithm.

• User dashboard: Provides a web-based front end for users to consume

OpenStack cloud services.

• API endpoints: Offers each service's REST API access, where the API

endpoint catalog is managed by the Identity service.

34

The network node takes care of networking. It runs services like L3 agents that provide virtual

routing entities. Typically it is directly connected to an external network in order to provide

outside connectivity to VMs. Neutron services run on this node. This node can also be

distributed to ensure high availability and better performance.

The compute node hosts VMs managed by Nova, and provides all the resources to run them.

This kind of node is usually distributed to achieve high availability and better performance.

Every piece of code that is contributed to OpenStack passes through a system designed for

reviewing and testing the code. It has to pass all automated tests before it gets reviewed by

other developers. The code is accepted only if it passes all the tests, and if at least two reviews

(from core reviewers) are positive. Reviewing all proposed changes is done by Core

reviewers. Each project has its core team. A new member may be proposed on the openstack-

dev list at any time. A proposal can come from anyone, but typically comes from the project's

PTL (Project Team Lead) or an existing member of the core team. For the proposal to be

accepted five existing members of the core team must vote for it. Any member of the team

can put a veto on the nomination. The core team is consisted of experienced developers that

can provide constructive and high quality reviews. The system uses Gerrit
12

 for reviewing the

code and Jenkins
13

 and Zuul
14

 for automated testing (Figure 13).

Figure 13 OpenStack contributing workflow [41]

12 https://code.google.com/p/gerrit/
13 http://ci.openstack.org/jenkins.html
14 http://ci.openstack.org/zuul.html#zuul

35

3.1.6 OpenStack Neutron

This work is focused on networking, therefore the important OpenStack module regarding

this work is Neutron, which provides "networking as a service" between interface devices

(e.g., vNICs) managed by other OpenStack services (e.g., Nova). Neutron evolved from Nova,

precisely from its networking part, which was used in the early days of OpenStack. It had a

basic networking model supporting VLANs and Linux firewall called iptables. The

OpenStack community realized that there was a need for a new approach. The networking

part should have a separate networking project, enabling the development of new advanced

networking services and features. Other benefits included the simplification of Nova and

increased flexibility of OpenStack. All information about Neutron architecture applies to the

Juno release 2014.2.3
15

. Neutron provides an API that lets you define network connectivity

and addressing in the cloud. It also provides an API to configure and manage a variety of

network services ranging from L3 forwarding and NAT to load balancing, edge firewalls, and

IPsec VPN. Neutron API has virtual network, subnet, and port abstractions to describe

networking resources:

 Network: An isolated L2 segment, i.e. a broadcast domain, analogous to VLAN in

the physical networking world.

 Subnet: A block of v4 or v6 IP addresses associated with a Network. Default

gateways, Domain Name Server (DNS) servers and other L3 specific attributes can

be associated with a Subnet.

 Port: A virtual switch port on a logical network switch. Virtual instances attach

their interfaces into ports. When IP addresses are associated to a port, this also

implies the port is associated with a subnet, as the IP address was taken from the

allocation pool for a specific subnet.

To make Neutron flexible it was designed to support plug-ins [43]. This is analogous to the

concept of drivers for hardware devices in operating systems. There are two main types of

plug-ins [41]: Core (provides L2 networking) and Service (provides additional network

services). One example of core plug-ins can be vendor plug-ins, i.e., software that includes

code to communicate with the specific vendor’s equipment and translate the virtual resources

into real, probably physical, network topologies. An example of a Service plug-in is the L3

plug-in that provides routing, NAT and floating IP functionality in Neutron networks. Other

15 https://wiki.openstack.org/wiki/Releases

36

service plug-ins include Firewall as a Service (FWaaS), Load Balancer as a Service (FWaaS)

and VPN as a Service (VPNaaS). Multiple approaches to designing a plug-in are shown on

Figure 14. A single plug-in (on the left) extends the core and implements L3 and firewall

services. In the centre we have a core plug-in which implements the L3 service, but also has a

distinct plug-in for other services. The last approach uses distinct plug-ins for each extension.

Figure 14 Plug-in design [44]

There are three different types of extensions to Neutron:

 Resources: New entities, like networks, subnets or ports are added to the

Neutron Core Networking API.

 Actions: New operations that can be executed on resources. There are no core

actions, but extensions can define new ones.

 Request : New attributes are added to existing resources. They are called that

way because they extend on what API requests can provide.

The main core plug-in developed by the Neutron group is called ML2 [45], which stands for

Modular Layer 2. It's open, generic and extensible, unlike vendor specific plug-ins. The ML2

plug-in is a framework allowing OpenStack Neutron to simultaneously utilize the variety of

layer 2 networking technologies found in complex real-world data centres [43]. During the

development of ML2 much effort was put into reducing the code. Developers noticed that

every plug-in that is being developed uses similar resources, like data structures that describe

VLANs. Taking this into account they separated the code for data types from the code

responsible for the functionality. This was made possible by specifying two kinds of drivers

[45]. Type Drivers are responsible for handling different network types and their data types.

Mechanism Drivers are responsible for taking the information established by the Type Driver

and ensuring that it is properly applied given the specific networking mechanisms, that have

been enabled. LinuxBridge and Open vSwitch are two examples of a Mechanism Driver.

Network types that are supported by ML2 Type Drivers are [45]:

37

 Local: Network implemented on a single Linux host without recurring to special

technologies.

 Flat: Enables the use of the underlying network on which Neutron is installed.

 VLAN: Networks that are implemented and isolated using VLAN technology,

available at the OS.

 GRE: Networks isolated using GRE tunnel technology available at the OS.

 Virtual Extensible LAN (VXLAN): Networks isolated using VXLAN tunnel

technology available at the OS.

Neutron is already very complex by itself but is a crucial service for the deployment of

modern IaaSs, including the ones that can be used by Telecommunications Operators (NFV).

In order to be able to support the whole OpenStack deployment Neutron maintains multiple

independent networks. An example architecture deployed on three nodes is shown on Figure

15.

Figure 15 OpenStack deployment on three nodes [3]

The Management Network [46] is a private network that connects all OpenStack nodes in the

same broadcast domain. This network is used for administration and monitoring of the

systems. The usage of a separate, isolated network, without access to the Internet was chosen

38

to avoid the disruption of control traffic by tenants' traffic and because of the improved

security that it provides. This network can be further split in other private networks for

dedicated communication between specific internal components of OpenStack, e.g. message

queues. There will usually exist a dedicated network switch to interconnect all nodes’

physical NICs, which may also employ VLANs for the purpose of segregating the private

network into smaller, more specific ones, as mentioned above. The Data Network [46], also

known as the Instance Tunnels Network, is deployed in order to connect different Compute

and Network nodes. This is the case when joint Compute and Network nodes (logical) are

situated on multiple physical nodes. The traffic between VMs running on different Compute

nodes passes through this network. The advantage is again the fact that it doesn't interfere

with other traffic. The External Network [46] is directly connected to Network nodes and

provides access to the Internet. This network is connected to a virtual router running inside

Network Nodes, which then allow tenants’ VMs to access the Internet (or just the external

Network) by having these also connected to the virtual router. This router has the purpose of

enabling the access to the Internet, by providing the instances with public IP addresses.

Basically it does the job of a NAT server, with Dynamic NAT (DNAT) support. It is provided

to Neutron as an L3 plug-in. The Network Node provides a pool of public IP address, known

as floating IPs, which may be assigned to instances, thus supporting Static NAT (SNAT),

enabling them to be accessed from the Internet (if the tenant so desires). Traffic from

instances, having Internet as the destination, will come from the Instance Tunnels Network, as

previously explained, reach the relative Network Node, cross the virtual router, and finally

head out to the External Network. By having a dedicated network to access to exterior of

OpenStack, security concerns in terms of malicious tenants’ attacks can be alleviated. It also

gives space to a dedicated API network, which may or may not reach the Internet as well, but

is secure from tenants’ attacks and or other disadvantages of sharing a network for tenancy

and administration purposes. The API Network is supposed to provide a secure

communication channel for outside API calls.

3.1.7 OpenStack Horizon

Horizon [47] is the project that implements the OpenStack dashboard (Figure 16). It

provides a web based user interface to OpenStack services (projects). It evolved from an app

that was used to manage Nova (compute service). Gradually the support for other projects and

APIs was added. Horizon was designed to be extensible and easily manageable. The main

goal was to support all core projects with a consistent user interface that uses reliable APIs

39

and provides backward compatibility. The OpenStack dashboard provides administrators and

users with a graphical interface to access, provision and automate cloud-based resources. The

extensible design makes it easy to plug in and expose third party products and services, such

as billing, monitoring and additional management tools. The dashboard is also brandable for

service providers and other commercial vendors who want to make use of it. The dashboard is

just one way to interact with OpenStack resources. Developers can automate access or build

tools to manage their resources using the native OpenStack API or the EC2
16

 compatibility

API.

Figure 16 OpenStack dashboard

Horizon is built using Django. The dashboard application is based on the "Dashboard" class

that provides an API for both core OpenStack apps and third party apps. The code is divided

into reusable modules with logic, interaction with APIs, and presentation, to make

customization in different sites easier. The Figure 17 shows the UI structure of Horizon. The

Dashboard class is a top-level navigation item which contains Panel Groups, which contain

different Panels. They are all displayed on the left sidebar. The sidebar functions like a menu,

which displays only the Panel Groups of the currently selected dashboard. Also, only the

Panels from the currently selected Panel Group are displayed to provide better user

experience. Developers can either extend the functionality of existing Dashboards or create a

new Dashboard. There is a simple registration pattern that enables adding a new Panel to a

Panel Group, and respectively a new Panel Group to a Dashboard. Each Panel contains the

16 Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/

40

necessary logic for that interface (views, forms, tables, etc.). This principle of code

organization is used in order to prevent the existence of large files that have thousands of lines

of code and are therefore incomprehensible and had to maintain. The code responsible for

some functionality is easy to find by correlating it directly to navigation. Horizon provides

core classes and templates that accelerate the development and provide consistency across

applications.

Figure 17 Horizon UI structure [48]

The structure of Horizon is a bit different than other OpenStack projects, as it has two main

components: horizon and openstack_dashboard. The horizon directory contains generic

libraries and components that can be used in any Django project. The openstack_dashboard

directory contains a reference Django project that uses horizon. The structure of an

application can be seen on Figure 18, where the tree of the Project Dashboard is shown.

41

Figure 18 Horizon app structure

An example of a Dashboard class is shown in Figure 19. The Dashboard consists of Panel

Groups, which have to be explicitly declared in order to be displayed on the Dashboard.

Following the Django conventions every class has a name and a slug attribute. The name is

rendered and displayed on the web page, while the slug is used in the url.

Figure 19 Dashboard class example

The panel.py file referenced bellow (Figure 20) has a special meaning. Within a Dashboard,

any module name listed in the 'panels' attribute on the dashboard class will be auto-discovered

by looking for the panel.py file in a corresponding directory. In order to enable the display of

the Panel in a Dashboard the Panel has to be registered with that Dashboard. Panels can also

require permissions for running, e.g., to be displayed only to the admin and hidden from

ordinary users.

42

Figure 20 Panel class example

3.2 Related work

This chapter presents a short review of similar technology and existing solutions that are

related to this work. They are explained in the following subchapters.

3.2.1 Group Based Policy

Group Based Policy (GBP) is an OpenStack project that delivers an intent driven model for

describing application requirements in a way that is independent of underlying infrastructure.

GBP introduces a generic “Group” primitive along with a policy model to describe

connectivity, security, and network services between groups [49]. This replaces the network-

centric constructs like Layer 2 domains. A Group is basically a collection of Neutron ports.

Currently it is focused on the networking domain, with the prospect of becoming a generic

framework that extends beyond networking. It was designed to overcome the void between

the application developers and infrastructure teams by capturing requirements of complex

applications and deploying them on OpenStack clouds. GBP introduces a policy model to

describe the relationships between different logical groups or tiers of an application. The

primitives have been chosen in a way that separates their semantics from underlying

infrastructure capabilities. Resources may be public or local to a specific tenant. GBP was

designed to separate out application security requirements (i.e. who can talk to who) from

network-specific requirements (what IP address ranges to use, where to draw network

boundaries, etc.). The separation of these two concerns allows application, security, and

operation teams to operate independently. GBP enables users to specify the relationships

between different tiers of applications. This dependency map acts as documentation for the

security requirements of the application and allows different tiers of the application to evolve

separately. It also makes it extremely easy to scale and automate infrastructure [50]. GBP

offers an abstraction for network services and allows users to describe requirements for

43

chaining multiple network services as part of an application deployment. This corresponds to

the SFC model. Group-Based Policy offers a new policy API through multiple OpenStack

interfaces including Horizon (group-based-policy-ui), Heat (group-based-policy-automation),

and CLI (group-based-policy-client) (Figure 21). It was designed to act as a layer on top of

Neutron (and in the future other OpenStack services).

Figure 21 GBP architecture [50]

Two forms of mapping to underlying infrastructure are supported [50]:

 Neutron Mapping Driver: The Neutron mapping driver converts GBP resources

into existing Neutron API calls. In the

 Table 2 one way to map resources is shown. The resources mapping can be

customized. This allows Neutron to run any existing open source or vendor plug-

in, including ML2. It also allows GBP to be used in any OpenStack environment.

At this time, use of both the GBP and Neutron APIs as end user facing APIs in

parallel is not supported.

 Native Drivers: It is also possible to create drivers that directly render policy

constructs through a separate SDN controller or external entity without first

converting them to Neutron APIs. This is valuable as it gives the controller

additional flexibility on how to interpret and enforce policy without being tied to

L2/L3 behaviours. There are currently four native drivers including Cisco APIC,

Nuage Networks, One Convergence, and OpenDaylight.

44

GBP Resource Neutron

Policy Target Port

Policy Target Group Subnet

L2 Policy Network

L3 Policy Router

Table 2 Resources mapping

Network service chaining is a key capability of GBP. The goal is to describe the requirements

for ordered chains of services by separating out network specific policies from service

specific details. GBP resources related to network service chaining are displayed in Table 3.

GBP Resource Description

Service Chain Nodes
Logical devices providing network services of a

particular type (LB, firewall, etc.)

Service Chain Spec
Ordered grouping of service chain nodes. Specs may

be used in the definition of a “redirect” action.

Service Chain Instance

Specific instantiation of service chain spec between

Policy Groups. Instances are created automatically

when a service chain is activated as part of a Rule

Set.

Table 3 Network service chaining resources

GBP is an important project that has the potential to spread across the OpenStack domain and

provide a solution for provisioning and management of all OpenStack components. Despite

offering a different approach towards provisioning and managing networks (and other

resources), GBP UI doesn't offer anything new and revolutionising that would give it extra

value. Actually the UI is not intuitive, e.g., in the "Firewalls" panel, the tab order doesn't

follow the workflow, i.e., first you have to create a firewall rule, then a firewall policy and in

the end you can instantiate a firewall, but the tabs are arranged in the exactly opposite order.

An addition to the GBP UI could be the implementation of the flowchart approach, which

could prove to be a valuable asset.

45

3.2.2 Telco Cloud Environment

Service Function Chaining and its benefits are discussed in [16]. The authors present a new

architecture for telecom operators based on cloud computing. They describe an approach that

enables the deployment and management of Service Functions in a distributed cloud

environment. The main focus of the paper are Service Functions, particularly virtual SFs. A

Service Function (SF) is responsible for specific treatment of received packets. An example of

a SF is the firewall, which receives packet, inspects them and acts according to the specified

rules by either dropping the packets or letting them through.

The proposed architecture has four planes (Cloud4NFV platform) [16](Figure 22):

 Infrastructure plane: Handles the physical infrastructure.

 Virtual infrastructure management (VIM) plane: Handles the virtual infrastructure.

 Orchestration plane: Handles the provisioning, management and monitoring of

SFs.

 Service plane: Handles the services built on Cloud4NFV.

Figure 22 Cloud4NFV platform [16]

46

The orchestrator and the VIM plane are specially interesting. The orchestrator should provide

an interface for creating, deleting and chaining SFs. The VIM plane and its components

provide support for the orchestrator. OpenStack is used as a Data Centre controller, as well as

the network manager. The authors argue that the OpenStack should provide only the basic

networking tools, whilst advanced service should be deployed as VMs. An OpenDaylight

module integrated into OpenStack Neutron enables the traffic steering between VMs. WAN

controller manages the operator network. Two concepts are used to enable SFC: classification

and traffic steering. Classification is a process of matching packets to a certain specification in

order to correctly identify them and take the appropriate action. Traffic steering enables the

redirection of traffic to a specific destination without modifying the network topology. The

guidelines for a SFC solution are [16]:

• No assumption should be done on how functions are deployed, that is, whether

they are deployed on physical hardware, as one or more VMs, or any

combination thereof.

• An SF can be part of multiple SFCs.

• An SF can be network-transport-independent.

• An SFC allows chaining of SFs that are in the same layer 3 subnet and of those

that are not.

• Traffic must be forwarded without relying on the destination address of

packets.

• Classification and steering policies should not need to be done by SFs

themselves.

47

4 A novel GUI for SFC

The objective is to create a GUI that enables Attachment Points (APs) provisioning and

management as well as SFC provisioning and management. It has to be user friendly, intuitive

and easier to use than the CLI. OpenStack was chosen for the implementation of this work

because it is free, extensible and is driven by a very active community. This work was done

on a machine running Linux, specifically Ubuntu Server 14.10
17

 using the Python Django web

framework. All of the developed components should follow OpenStack guidelines
18

.

4.1 Django

Django
19

 is an open source Python framework for making web applications. It follows the

MVC (model-view-controller) architectural pattern. MVC is a pattern of developing software

so that the code for defining and accessing data (the model) is separate from request-routing

logic (the controller), which in turn is separate from the user interface (the view). In every

Django app there are three base files that provide the usage of the MVC architecture:

models.py, views.py and urls.py. The models.py file contains a description of the database

table, represented by a Python class. This class is called a model. Using it, you can create,

retrieve, update and delete records in your database using simple Python code rather than

writing repetitive SQL statements. The views.py file contains the logic for the page. The

urls.py file specifies which view is called for a given URL pattern. A key advantage of such

an approach is that components are loosely coupled. Each distinct piece of a Django-powered

Web application has a single key purpose and can be changed independently without affecting

the other pieces. For example, a developer can change the URL for a given part of the

application without affecting the underlying implementation. A designer can change a page’s

HTML without having to touch the Python code that renders it. A database administrator can

rename a database table and specify the change in a single place, rather than having to search

and replace through a dozen files.

The fundamental principle embraced by Django is: "Don't repeat yourself". It's designed to

enable rapid development and reusability of the code. It also follows the plug-in architecture

and therefore enables easy integration of third party components (code). It can be run with

17 http://www.ubuntu.com/download/server
18 http://docs.openstack.org/developer/horizon/contributing.html
19 https://www.djangoproject.com/

48

Apache
20

, NGINX
21

, Gunicorn
22

, Cherokee
23

 or other WSGI (Web Server Gateway Interface)

compliant web server. Four database backends are officially supported: MySQL
24

, SQLite
25

,

Oracle
26

 and PostgreSQL
27

. There is a possibility to use Microsoft SQL Server on a Microsoft

operating system with Django. NoSQL databases are supported in a fork called django-

norel
28

.

4.2 Extending the OpenStack Dashboard

In OpenStack, SFCs are created using the neutron-client. It provides means of classifying

traffic via steering classifiers. In OpenStack a SFC is characterized by a port chain and one or

more steering classifiers. A port chain is used to concatenate OpenStack port entities. This

mechanism is used to provide connection between VNFs in OpenStack. The GUI must

provide support for everything mentioned above. The mechanisms that neutron-client uses in

order to achieve the desired functionality will not be explained, as they are not in the focus of

this work. A detail explanation can be found in [3]. It is worth to mention that some minor

additions to the neutron-client API also had to be done. Wrappers for some objects had to be

added, so that the API methods return them in the proper format. The graphical user interface

implementation is based on the Horizon project. Neutron-client API calls are executed

through a web based graphical user interface. A table of developed components (Table 4) is

shown bellow.

Developed Panels Description

Attachment Points Provisioning and management of APs

Service Function Chaining
Provisioning and management of steering classifiers,

port chains and SFCs

Flowchart SFC Drag and drop flowchart driven provisioning of SFCs

Table 4 Developed OpenStack Panels

20 https://httpd.apache.org/
21 http://nginx.org/
22 http://gunicorn.org/
23 http://cherokee-project.com/
24 http://www.mysql.com/
25 http://sqlite.org/
26 https://www.oracle.com/database/index.html
27 http://www.postgresql.org/
28 http://django-nonrel.org/

49

In order to enable the connection to the operators network (according to the network

architecture stated in previous chapter) a panel for managing Attachment Points (APs) had to

be made. An AP is a logical entity that enables the extension of the virtual network segment

that resides in the cloud with virtual or physical devices. Basically an AP will allow the end

customer to connect his own home devices to the network in the cloud and gain access to the

Internet. Some changes to the existing Network Topology panel were made in order to display

the APs alongside the virtual networks that are in the cloud (Figure 23). These changes

consist of modifying the JavaScript code that is used to receive and display network entities,

as well as the backend Python code that delivers the data to the frontend.

Figure 23 AP display in the Network Topology Panel

The AP panel provides the administrator with a simple GUI (Figure 24). The basic feature is

the display of all APs that are shown in a table. The table is actually an instance of OpenStack

DataTable
29

 class which provides convenient, reusable API for building data-driven displays

and interfaces. Actions can be defined and carried out on the entire table or only on the

specific row. This provides simple means for deleting, attaching and detaching APs. The

creation process is rather simple (Figure 25): the administrator has to click on the "Create

Attachment Point" button which triggers a modal that contains a form, that contains fields that

need to be filled (Figure 26). When all the fields are correctly filled the administrator just has

to click on the "Create" button. The form is submitted to the backend were it is processed,

29 http://docs.openstack.org/developer/horizon/ref/tables.html

50

followed by the neutron-client API call which creates the AP. All existing APs are displayed

in the table.

Figure 24 Attachment Points panel

Upon the creation the AP has no actual function, it needs to be associated with a network to

provide the desired functionality. This is process is called attaching. Once the AP is attached

to a network, physical devices can be connected to the virtual network in the cloud. The

attachment of the AP is done from the table using Horizon DataTable Actions. The workflow

for attaching the AP to a network is the same as in the previous case, the administrator clicks

on the action button which trigger a modal. The modal contains the AP data and a dropdown

list, where the network can me chosen (Figure 27).

Figure 25 Attachment Point creation workflow

Figure 26 Create AP modal

51

Figure 27 AP Attach modal

Each end customer has a dedicated virtual network in the tenant virtual environment. A basic

device that can handle L2 traffic and the connection to the operator's cloud is all what the end

customer needs. Two more panels dedicated to SFC were developed. The first one was

conceived to be the centre point for SFC provisioning and management, utilizing the Horizon

tabs to provide multiple views to the administrator. The functionality that the second SFC

panel provides was supposed to be embedded in one of the tabs in the first panel, but because

of the unresolved problems caused by adding custom JavaScript (JS) scripts to the panel the

decision to create a new panel had to be made. In the SFC panel there are two tabs: steering

classifiers tab and port chains. In the first tab steering classifiers are managed according to the

same principle as in the AP panel. The same goes for the second tab and port chains. The

workflow of creating a SFC consists of two steps:

 Create one or more steering classifiers

 Create a port chain and associate it with one or more steering classifiers

Steering classifiers can be very specific, thus a number of parameters has to be taken into

account while creating them. The classifier can specify a protocol, destination and/or source

port, and even source and/or destination IP address. This can be useful for classifying traffic

from a specific device. It is important to state that it is not necessary to fill all of the fields in

the form. The ones that are obligatory are clearly marked (Figure 28).

52

Figure 28 Create a Steering Classifier modal

A SFC is created in the second tab (Figure 30). In order to create a SFC the administrator has

to click the "Create SFC" button and then choose the first two members of the port chain, as

well as one or more steering classifiers (Figure 29).

Figure 29 SFC creation workflow

 If more than two ports are necessary, they can be added to the chain by the "Add Port" action

in the table that displays SFCs. This approach was chosen because of the restrictions of

Horizon. The initial approach was to dynamically add additional fields to the form in the

modal (Figure 31) which is triggered by the "Create SFC" button. All fields in Django forms

that are rendered in modals have to be specified upfront. As the number of ports in the port

chain can't be predicted, the two port configuration was chosen as default. The problem with

adding additional fields dynamically only becomes apparent when the form is submitted.

53

Namely the Python code that handles the form processing, ignores any additional data

provided. It only takes into account the data from the fields that were specified before the

modal was rendered. So the approach with adding port by port to the chain had to be taken

(Figure 32). This approach is somewhat clumsy and impractical for longer chains.

Figure 30 SFC tab

Figure 31 Create SFC modal

54

Figure 32 Add Port modal

The second SFC panel provides a different approach for the creation of SFCs. In order to

simplify and ease the process a flowchart driven approach was taken (Figure 34). The concept

consists of connecting "boxes" that represent VNFs, with the mouse and by that means

creating a SFC. This could revolutionize the job of the administrator. The flowchart was

implemented using the jsPlumb
30

 library. This library provides support for connecting

elements on web pages visually. It uses Scalable Vector Graphics (SVG) in modern web

browsers. A button for creating a steering classifier was added to the panel to enable the

execution of the whole workflow. The panel displays available VNFs as boxes that the user

can drag around the screen. The workflow is displayed on Figure 33. Connection between the

boxes can be made in the drag and drop fashion. The connections can be broken by clicking

on the connection and choosing the option to delete it from the triggered popup. After the

desired chain has been constructed the user has to click on the "Create SFC" button in order

to specify the name of the chain and one or more steering classifiers (Figure 35).

Figure 33 SFC creation via flowchart

30 http://www.jsplumb.org/demo/flowchart/dom.html

55

Figure 34 Flowchart Panel

Figure 35 Create SFC from a flowchart

4.2.1 Limitations

However this implementation has some limitations. VNFs in this implementations are

actually OpenStack instances (VMs), that need to be provisioned before the creation of a SFC,

in other words it is assumed that the instances already exist. There is also a limitation

regarding the existence of an instance in a SFC. Current instances are aware of only one port,

so until the support for multiple ports per instance is added, each instance can only exist in

one SFC. This is a big limitation that has to be resolved in the future. Chaining of chains, i.e.,

adding a SFC inside another SFC is not supported (Figure 36).

56

Figure 36 Chain of chains

The figure above depicts the scenario where a new chain (SFC 2) contains another chain (SFC

1). The packets that match the chosen steering classifier/s (for SFC 2) and go through SFC 1

are steered to VNF 4 and VNF 5 (SFC 2). The creation of such chains is currently not

supported. The developed web interface doesn't support all functionalities of the neutron-

client. These aspects need to be further developed. The problem with custom JavaScript

scripts in tabs should be resolved and the flowchart approach should be implemented in the

SFC panel in one of the tabs.

57

5 Evaluation and results

The objective is to test the developed solution and prove that it provides the desired

functionality and is more user friendly, easier and intuitive than the CLI. To prove the concept

an experiment that involves OpenArena
31

 was devised. Two players connected through the

OpenStack network play a match (multiplayer mode) on an open server running on one of the

machines (Figure 37, Figure 38). In order for the players to be able to connect to the cloud

environment an Attachment Point has to be created. The Attachment Point is associated with a

Raspberry PI device, that is connected to the OpenStack network and acts as a wireless access

point. Both of the players are connected to the Raspberry PI. This game uses UDP packets to

exchange information between all the players and the server. First a steering classifier that

matches the data traffic specific for OpenArena (UDP port 27960) has to be created.

Figure 37 Demo network topology

31 http://www.openarena.ws/smfnews.php

58

Figure 38 OpenArena

 In order to stop a player from playing the game a SFC has to be created. The traffic will be

steered from the players computer through a firewall service (Figure 39). The traffic

originating from a certain players computer is matched according to the classifier. As both

players are connected through the same AP an IP address has to be specified in the steering

classifier in order to block only the traffic from the specific player. The FW is an OpenStack

instance with a predefined Linux system image. It has only the components needed to perform

the function of a firewall. The FW had been preconfigured to drop UDP packets from port

27960. This was done by using the Linux iptables firewall utility. By associating the port

chain with the steering classifier, a SFC is created. The player immediately losses the

connection to the server and is unable to play the game (multiplayer mode) (Figure 40). But

the second player can continue to play the game, despite being connected to the same network

through the same Attachment Point, moreover the player that has seemingly lost the

connection to the Internet can actually access the Internet.

59

Figure 39 Firewall blocks Player 1

By using other network services the player that lost the connection to the server can make

sure that he still has a working connection to the Internet, and that only the OpenArena traffic

is affected. The SFC has to be deleted in order to allow the first player to continue to play the

game. Other experiments like blocking ICMP or HTTP protocol have also been carried out.

60

Figure 40 OpenArena connection interrupted

5.1 Evaluation

To evaluate the developed GUI one must ask and answer a set of questions. First of all

does the GUI provide the same functionality as the CLI solution? Does it have some

constraints? Is it better in some way? How does it change the workflow? Can it be modified?

Can it be used by an inexperienced and untrained user? Does it follow the pattern of Horizon?

How effective is it? How flexible is it? According to Nielsen [51] usability is a quality

attribute that assesses how easy user interfaces are to use. He defines five quality components

by which an UI can be assessed:

 Learnability : How easy is it for users to accomplish basic tasks the first time they

encounter the design?

 Efficiency: Once users have learned the design, how quickly can they perform

tasks?

 Memorability: When users return to the design after a period of not using it, how

easily can they re-establish proficiency?

 Errors: How many errors do users make, how severe are these errors, and how

easily can they recover from the errors?

 Satisfaction: How pleasant is it to use the design?

Some of the well known usability problems like, design inconsistency, unclear step

sequences, ambiguous menus and icons, and inadequate feedback and confirmation were

considered during the evaluation of the GUI [52].

61

5.2 Overview

The first thing that this interface has to accomplish is to provide the administrator with the

means to provision and manage APs. The interface provides the administrator the ability to

create, delete, attach and detach APs. These are the most common operations done with APs,

but it must be stated that not all supported neutron-client functionalities are available through

GUI. That's because this implementation is supposed to explore the prospects of the GUI and

show its possibilities, therefore only the most common operations were implemented. Full

functionality can later be achieved by upgrading the GUI. This goes for all the developed

components and not just for APs. The simplicity of working with the mouse and the visual

representation of all the entities is truly revolutionary. It makes the job of the administrator

more pleasant and interesting. While using the CLI it is common to use the IDs of various

entities in order to properly identify them and accomplish the desired action. As the ID is a

random generated string of 32 characters that presents a real problem. Also some of the

commands that provide the display of data are really impractical and visually bad represented.

Sometimes it is necessary to combine two or more of these in order to get the desired data.

GUI has a clear advantage in the field of displaying the data, which is at most, one click of the

mouse away. Also the details about the data structures and how they are connected are hidden

from the user. All of the developed components follow the guidelines of Horizon. However

some modifications could be made in order to further simplify the usage, e.g., the process of

creating a SFC has a big requirement, as it expects that the instances (VMs) are already

provisioned. One has to first provision instances in the "Instances" tab inside the "Compute"

TabGroup and only after that a SFC can be created. The workflow could be modified so that

one creates a SFC containing abstract VNFs and then the VNFs would be correlated with

instances which would then be provisioned if they already haven't been. The most interesting

part of GUI is the Panel with the flowchart. It provides means to create a SFC with the mouse,

by connecting the VNFs visually. It could also display existing SFCs in a more intuitive

visual way, rather than show a list of names that represent the connected VNFs.

5.3 Testing

A series of testing experiments with users were carried out in order to evaluate the

developed GUI. The participants were given basic instructions describing what they should

do, e.g., you have to create an attachment point and afterwards attach it to a network. In order

to determine the efficiency, time that the participant takes to complete the specified task was

62

measured. These time is then compared with the time it takes to do the same action using the

CLI. Several scenarios were taken into account:

 Creating an AP and attaching it to a network

 Creating a steering classifier

 Creating a SFC using the standard GUI

 Creating a SFC using the flowchart

The times were measured using a standard Android phone stopwatch application, with the

precision of a tenth of a second. The number of mistakes the participants made was recorded.

All the participant were given a short survey
32

 about the user experience (UX). The times

measured are shown on the following figures: Figure 41, Figure 42, Figure 44 and Figure 46.

All of the participants managed to accomplish all the tasks using the GUI.

5.3.1 Task 1: Creating an AP and attaching it to a network

All participants had a problem with completing the first task using the CLI. The CLI

command for creating an AP requires parameters: driver, identifier and technology, that only

a person with technical knowledge and previous experience with the system can know. When

using the GUI these parameters are automatically specified. That was the reason why

participants could not accomplish the task, therefore the measured times will not be

compared. No mistakes were made during the execution of the first task, while using the GUI.

The measured times are shown on Figure 41. Although the first task seems to be the simplest

it proved to be unsolvable in the CLI case. The GUI case shows small variations in the time

needed to solve the task. There are two results that significantly differ from others, because

these participants were examining the whole GUI and not going straight to solving the task.

They were also wondering how to fill the source and destination IP address parameter, and

lost some time there. During this task the IP addresses were not important. They could have

written any valid IP address. The same problem occurs while using the CLI. It's related to the

implementation of the AP and not to the user interface.

32Can be found in Appendix A

63

Figure 41 Task 1: Creating and attaching an AP

5.3.2 Task 2: Creating a steering classifier

The creation of a steering classifier seems to be simple, but it can easily become very

complicated because of the numerous parameters, that can be specified. The results in the

GUI case show big variations in time needed to solve the task (Figure 42). This phenomena

can be easily explained, namely it is correlated with the number of parameters the participant

tried to specify. Only one parameter is required, i.e., the name of the steering classifier. Other

parameters such as: protocol, source IP address, destination IP address, source port range and

destination port range are optional. If not specified the protocol parameters has a default value

of 6, which is the IANA protocol number of TCP. The mistakes made by participants were

related to the protocol specification, namely they didn't read the help text displayed besides

the protocol field, where it is stated that the protocol is specified by the IANA protocol

number. This problem can easily be eliminated by adding a dropdown menu with a list of

protocols. This problem remains unsolved in the CLI case. This shows that the GUI has a

clear advantage. The times on both cases can be seen on Figure 43.

64

Figure 42 Task 2: Creating a steering classifier

Figure 43 Task 2 comparison

As it can be seen on the previous figure the it takes more time to create a steering classifier in

the CLI case. The participants first had to find the appropriate command in the list of

commands, which was fairly easy, but still took some time. The ones that tried to specify

more parameters took longer to accomplish the task. The main conclusion that can be drawn

out of this is that an inexperienced user looses more time while figuring out how to use the

commands in the CLI case, compared to the icons and buttons in GUI case. In average it took

19% more time to complete the task in the CLI case. The mistakes made in the CLI case were

typos.

65

5.3.3 Tasks 3 and 4: Creating a SFC

Task 3 uses the standard GUI, which relies on the standard OpenStack Horizon workflow

using modals, and DataTables. The last task is using the new flowchart approach, where the

user connects the VNFs in a drag and drop fashion. The comparison between the two tasks is

displayed on Figure 44.

Figure 44 Task 3 vs Task 4: Creating a SFC

The results show that it takes less time to use the flowchart approach than the standard GUI

approach. The flowchart approach is 24.5% quicker in average. Different type of mistakes

were made while executing task 3 and task 4. The typical mistake while executing task 3 was

forgetting to specify a steering classifier. Steering classifiers are shown in a list. Each one has

a checkbox next to it. Some participants overlooked that the classifier is required. In the task 4

the participants were a bit confused with the two buttons: "Create a steering classifier" and

"Create a SFC". Instead of going straight for the "Create a SFC" in some cases they

wondered if they should create a new steering classifier. The steering classifier button is there

in order to enable the whole workflow, i.e., creating a steering classifier first (if it doesn't

exist) and creating a SFC (chaining VNFs and choosing a classifier). The CLI case proved to

be a tough nut. The command was a bit harder to find because of the way the list of

commands is displayed in the Linux terminal. Although the command and its parameters

seem simple the task was hard to accomplish due to the nature of CLI. The command requires

parameters: steering classifiers and ports, which have to be specified with their respective IDs.

The problem is that IDs consist of random 32 characters and are therefore unpractical for CLI

usage. Participants first had to find the commands that will display steering classifiers and

66

ports in order to be able to execute the command which creates a SFC. These proved to be

time costly and impractical. Also they had a problem with identifying the right ports in the list

of ports. The ports are displayed with the name, ID, MAC address, subnet ID and IP address,

which isn't helpful if you want to identify which port corresponds to which VNF (Figure 45).

During the execution of this task the ports weren't important, but in a real world scenario it

would be important to chain the ports that match the VNFs you want to chain. The GUI has a

clear advantage over the CLI in this case.

Figure 45 Neutron port list

The CLI case is much slower than both of GUI cases (Figure 46). In average creating a SFC

using the standard GUI is 362% faster than using the CLI. In the flowchart case it is 451%

faster. A lot of mistakes were made in the CLI case. They were caused by the fact that a lot of

commands and a lot of typing needed to be done in order to accomplish the task. The overall

distribution of errors is displayed on Figure 47.

 Figure 46 Task 4: Creating a SFC comparison

67

Figure 47 Error distribution

5.3.4 Survey

Figure 48 Survey results 1

68

Figure 49 Survey results 2

The results of the UX survey are displayed on Figure 48 and Figure 49. The survey shows

that participants prefer the GUI over CLI. In general they are satisfied with the design and the

feedback provided by the GUI. The workflow is considered fairly easy to remember. The

flowchart approach has proved to be more popular than the standard GUI.

69

6 Conclusion

This dissertation offers an insight into the exciting and promising field of network

virtualization. In recent years this field has produced new concepts that have the prospect of

changing the whole Telco industry. A lot of work still has to be done before this technology

will be mature enough to replace the current network technologies, but it shows real promise.

Network Function Virtualization could revolutionize the industry by reducing expenses,

eliminating the need for proprietary hardware and enabling faster development and

deployment of new services. This dissertation focuses on Service Function Chains. SFCs can

take advantage of virtualization and be deployed in a cloud environment, instead of being

embedded in a series of physical devices. This brings new opportunities as a change in the

network topology, or new hardware deployment is no longer necessary in order to provide a

new service. Both the operator and the customers benefit from it. Customers get flexible new

services without the need for any assistance from the technicians (i.e., replacing the hardware

or firmware) and the operator reduces the time-to-market and its expenses. OpenStack seems

to be the platform for these future Telco cloud environments. OpenStack is open-source,

flexible, scalable and easy to deploy. The OpenStack community is growing every day, with

new projects that provide new functionalities. A GUI for managing and provisioning SFCs

was developed in the scope of this dissertation. The developed GUI provides two approaches.

The first one uses modals, data tables and follows standard OpenStack workflows. The second

approach is a new idea that tries to benefit from a point and click flowchart approach. It is

considered more user friendly and intuitive. It could revolutionize the everyday work of a

network administrator. The flowchart model makes the chaining of NFVs and creating SFCs

more intuitive then both the CLI and the GUI solutions that currently exist. This approach

could in the future be used in other use cases. However this solution is far from perfect. Some

features like automated VNF provisioning and creating a chain of composed of other chains,

aren't supported yet. Also it implements only the mostly used functionalities of the CLI

neutron-client tool. The implementation of all the these functionalities is considered as

important future work. A more extensive evaluation of the GUI should be made in order to

improve it and the user experience. A contact with the OpenStack GBP group had been made,

with the prospect of contributing to the GBP UI, i.e., the point and click flowchart approach

could be implemented into the GBP UI. This would present the accomplishment of the

ultimate goal of this dissertation.

71

Apendices

73

Appendix A: GUI evaluation survey

75

7 References

[1] “8. NFV: Implementation and Deployment: European Future Internet Portal - the information

hub for European R&D activities on the Internet of the future.” [Online]. Available:

http://www.future-internet.eu/home/future-internet-assembly/athens-mar-2014/8-nfv-

implementation-and-deployment.html. [Accessed: 02-Jun-2015].

[2] E. G. N. 001 V1.1.1, “Network Functions Virtualisation (NFV); Use Cases,” vol. 1, pp. 1–50,

2013.

[3] I. D. Cardoso, “Departamento de Eletrónica, Universidade de Aveiro Telecomunicações e

Informática 2014,” 2014.

[4] R. van den Lans, Data Virtualization for Business Intelligence Systems. 2012.

[5] “Virtual Local Area Networks.” [Online]. Available: http://www.cse.wustl.edu/~jain/cis788-

97/ftp/virtual_lans/. [Accessed: 30-Jun-2015].

[6] Cisco, “How Virtual Private Networks Work.” [Online]. Available:

http://www.cisco.com/c/en/us/support/docs/security-vpn/ipsec-negotiation-ike-

protocols/14106-how-vpn-works.html. [Accessed: 30-Jun-2015].

[7] “How VPN Works: Virtual Private Network (VPN).” [Online]. Available:

https://technet.microsoft.com/en-us/library/cc779919(v=ws.10).aspx. [Accessed: 30-Jun-2015].

[8] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An Intellectual History of

Programmable Networks,” ACM Sigcomm Comput. Commun., vol. 44, no. 2, pp. 87–98, 2014.

[9] Etsi, “Network Functions Virtualisation (NFV); Architectural Framework,” vol. 1, no. 1, pp. 1–

21, 2013.

[10] V. Network and F. Architecture, “GS NFV-SWA 001 - V1.1.1 - Network Functions

Virtualisation (NFV); Virtual Network Functions Architecture,” vol. 1, pp. 1–93, 2014.

[11] “ETSI - NFV.” [Online]. Available: http://www.etsi.org/technologies-clusters/technologies/nfv.

[Accessed: 02-Jun-2015].

[12] K. Kirkpatrick, “Software-defined networking,” Commun. ACM, vol. 56, no. 9, p. 16, 2013.

[13] H. Kim and N. Feamster, “Improving network management with software defined

networking,” IEEE Commun. Mag., vol. 51, no. 2, pp. 114–119, 2013.

76

[14] C. Pignataro and J. Halpern, “Service Function Chaining (SFC) Architecture draft-ietf-sfc-

architecture-08.” [Online]. Available: https://www.ietf.org/id/draft-ietf-sfc-architecture-08.txt.

[Accessed: 02-Jun-2015].

[15] R. Chirgwin, “Telco heavyweights pass packets in NFV demo • The Register.” [Online].

Available:

http://www.theregister.co.uk/2015/02/16/telco_heavyweights_pass_packets_in_nfv_demo/.

[Accessed: 15-Jun-2015].

[16] J. Soares, C. Gonçalves, B. Parreira, P. Tavares, J. Carapinha, and J. P. Barraca, “Toward a

Telco Cloud Environment for Service Functions,” no. February, pp. 98–106, 2015.

[17] P. Mell and T. Grance, “The NIST Definition of Cloud Computing Recommendations of the

National Institute of Standards and Technology,” Nist Spec. Publ., vol. 145, p. 7, 2011.

[18] J. Votano, M. Parham, and L. Hall, “Essential characteristics of Cloud Computing,” Chem. …,

p. 6, 2004.

[19] “Cloud Computing models.” [Online]. Available: http://www.thoughtsoncloud.com/wp-

content/uploads/2015/04/Cloud-computing-service-models.png. [Accessed: 02-Jun-2015].

[20] L. Wang, G. Von Laszewski, M. Kunze, and J. Tao, “Cloud computing: A Perspective study,”

Proc. Grid Comput. Environ. Work., vol. 28, pp. 1–11, 2008.

[21] W.-T. T. W.-T. Tsai, X. S. X. Sun, and J. Balasooriya, “Service-Oriented Cloud Computing

Architecture,” Inf. Technol. New Gener. (ITNG), 2010 Seventh Int. Conf., pp. 684–689, 2010.

[22] “Microsoft by the Numbers.” [Online]. Available:

http://news.microsoft.com/bythenumbers/index.HTML. [Accessed: 02-Jun-2015].

[23] “Cisco sets $1 billion investment for global cloud computing network | Reuters.” [Online].

Available: http://www.reuters.com/article/2014/09/29/us-cisco-systems-investment-cloud-

idUSKCN0HO13T20140929. [Accessed: 06-Jul-2015].

[24] A. Clauberg, “Deutsche Telekom TeraStream : A Network Functions Virtualization (NFV)

Using OpenStack Case Study,” pp. 4–7, 2014.

[25] P. Grønsund, A. Gonzalez, and T. Asa, “NFV – Main Concepts , Business Perspectives and

Dependability Modeling Use Case Assessment of NFV use cases Dependability modeling and

assessment,” no. March, 2015.

[26] “Companies » OpenStack Open Source Cloud Computing Software.” [Online]. Available:

http://www.openstack.org/foundation/companies/. [Accessed: 02-Jun-2015].

77

[27] “OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Main_Page. [Accessed: 02-

Jun-2015].

[28] “Welcome to Nova’s developer documentation! — nova 12.0.0.0b2.dev110 documentation.”

[Online]. Available: http://docs.openstack.org/developer/nova/#introduction. [Accessed: 08-

Jul-2015].

[29] “Scope of the Nova project — nova 12.0.0.0b2.dev110 documentation.” [Online]. Available:

http://docs.openstack.org/developer/nova/project_scope.html. [Accessed: 08-Jul-2015].

[30] “Welcome to Swift’s documentation! — swift 2.3.1.dev127 documentation.” [Online].

Available: http://docs.openstack.org/developer/swift/. [Accessed: 08-Jul-2015].

[31] “Cinder - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Cinder. [Accessed:

08-Jul-2015].

[32] “What is Cinder (OpenStack Block Storage)? - Definition from WhatIs.com.” [Online].

Available: http://searchstorage.techtarget.com/definition/Cinder-OpenStack-Block-Storage.

[Accessed: 08-Jul-2015].

[33] “Welcome to Keystone, the OpenStack Identity Service! — keystone 8.0.0.0b2.dev52

documentation.” [Online]. Available: http://docs.openstack.org/developer/keystone/.

[Accessed: 08-Jul-2015].

[34] “Keystone Architecture — keystone 8.0.0.0b2.dev52 documentation.” [Online]. Available:

http://docs.openstack.org/developer/keystone/architecture.html. [Accessed: 08-Jul-2015].

[35] “Welcome to Glance’s documentation! — glance 11.0.0.0b2.dev31 documentation.” [Online].

Available: http://docs.openstack.org/developer/glance/. [Accessed: 08-Jul-2015].

[36] “Welcome to the Ceilometer developer documentation! — Ceilometer 5.0.0.0b2.dev52

documentation.” [Online]. Available: http://docs.openstack.org/developer/ceilometer/.

[Accessed: 08-Jul-2015].

[37] “Welcome to the Heat developer documentation! — heat 5.0.0.0b2.dev172 documentation.”

[Online]. Available: http://docs.openstack.org/developer/heat/. [Accessed: 08-Jul-2015].

[38] “Welcome to Trove’s developer documentation! — trove 4.0.0.0b2.dev25 documentation.”

[Online]. Available: http://docs.openstack.org/developer/trove/. [Accessed: 08-Jul-2015].

[39] “Getting Started — Sahara.” [Online]. Available:

http://docs.openstack.org/developer/sahara/userdoc/overview.html. [Accessed: 08-Jul-2015].

78

[40] “Logical architecture - OpenStack Cloud Administrator Guide - current.” [Online]. Available:

http://docs.openstack.org/admin-guide-cloud/content/logical-architecture.html. [Accessed: 08-

Jul-2015].

[41] “Developer Guide — neutron 2015.2.0.dev535 documentation.” [Online]. Available:

http://docs.openstack.org/developer/neutron/devref/. [Accessed: 02-Jun-2015].

[42] “Chapter 3. Designing for Cloud Controllers and Cloud Management - OpenStack Operations

Guide.” [Online]. Available: http://docs.openstack.org/openstack-

ops/content/cloud_controller_design.html. [Accessed: 08-Jul-2015].

[43] R. (Red H. Kukura and K. (Cisco) Mestrey, “ML2-Past-Present-and-Future.” .

[44] “How to write a Neutron Plugin - if you really need to.” [Online]. Available:

http://www.slideshare.net/salv_orlando/how-to-write-a-neutron-plugin-if-you-really-need-

to?qid=2960a06f-4aa7-49d6-9a7b-65f3187667b2&v=qf1&b=&from_search=1. [Accessed: 02-

Jun-2015].

[45] “Neutron/ML2 - OpenStack.” [Online]. Available:

https://wiki.openstack.org/wiki/Neutron/ML2. [Accessed: 01-Jul-2015].

[46] “Developer’s Guide — OpenStack Project Infrastructure Manual 0.0.1.dev143 documentation.”

[Online]. Available: http://docs.openstack.org/infra/manual/developers.html. [Accessed: 02-

Jun-2015].

[47] “Horizon: The OpenStack Dashboard Project — horizon 8.0.0.0b2.dev132 documentation.”

[Online]. Available: http://docs.openstack.org/developer/horizon/. [Accessed: 06-Jul-2015].

[48] D. Lapsley, “OpenStack Horizon : Controlling the Cloud using Django,” 2014.

[49] “GroupBasedPolicy - OpenStack.” [Online]. Available:

https://wiki.openstack.org/wiki/GroupBasedPolicy. [Accessed: 02-Jun-2015].

[50] “Overview — group-based-policy documentation.” [Online]. Available: http://group-based-

policy.readthedocs.org/en/latest/usage.html#what-is-group-based-policy. [Accessed: 02-Jun-

2015].

[51] “Usability 101: Introduction to Usability.” [Online]. Available:

http://www.nngroup.com/articles/usability-101-introduction-to-usability/. [Accessed: 28-Jun-

2015].

[52] Pforzheim Univeristy/Display Lab, “Graphical User Interface: Evaluation,” 2015. [Online].

Available: http://eitidaten.fh-

pforzheim.de/daten/mitarbeiter/blankenbach/vorlesungen/GUI/IT_GUI_Evaluation.pdf.

[Accessed: 15-Jun-2015].

