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Fuzzy logic is the base for fuzzy controllers. The fuzzy logic is a concept that 
defies the normal boolean logic, used mostly everywhere, where everything 
belongs to a defined state and jumps to other state. The fuzzy logic confines that 
“middle” space, undefined for the usual logic. In fuzzy logic, there is a continuous 
growth in the variable between states, and that continuous path is defined and 
interpreted.   

This concept is applied to digital controllers and, with the strong development of 
microcontrollers and digital control overall, the fuzzy theory can be applied with 
great performance results. Through digital control it is simple to converge both 
fuzzy logic and mathematics methods, like PID, into the same system, improving 
the performance of the control mechanism. 

In this dissertation, there is an approach to the basics of fuzzy theory and fuzzy 
controllers and the development of this area in digital control for microcontrollers. 
To achieve several control requirements, it was implemented using real-time 
methods. The tests were made on a DC motor, for velocity control, and 
compared with default tests using a PID controller.  
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Palavras-chave                     Lógica difusa, Controlo Digital, Microcontroladores 

 

 

 

Resumo                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lógica difusa é a base dos controladores difusos. A lógica difusa é um 
conceito que desafia a lógica Boleana, onde tudo pertence a um estado 
definido e salta para outro estado. A lógica difusa define e interpreta este 
espaço entre estados, não definido pela lógica boleana, onde não existe um 
crescimento contínuo das váriáveis entre estados.  

 Este conceito é aplicado em controladores digitais e, com o forte 
desenvolvimento na área dos microcontroladores e controlo digital, a lógica 
difusa pode ser aplicada para atingir melhores desempenhos. Através do 
controlo digital é possível juntar a lógica difusa e métodos matemáticos, como 
PID, no mesmo sistema, aumentando o desempenho do mecanismo de 
controlo. 

Nesta dissertação é feita uma introdução à lógica difusa e controladores 
difusos e o seu desenvolvimento na área de controlo digital para 
microcontroladores. Todo o sistema foi implementado utilizando ferramentas 
de sistemas de tempo real. Os testes foram realizados num motor DC, com o 
objectivo de controlar a sua velocidade e comparado com testes utilizando 
um controlador PID.  
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1 Introduction 
 

1.1 Motivation 

 

Since the beginning of development of computer systems and processing units the 

idea of using these to control systems has been a constant achievement. In modern times, 

with the proliferation of microprocessors, digital control systems offer a wide range of new 

possibilities for almost every system in the world. It became an opportunity to research 

alternative control methods and developing new digital control systems to better adjust 

with the reality. This new challenge will be addressed at this dissertation, using fuzzy 

control logic in these new microprocessors and compare its results with the so-far 

dominant PID approach.   

 

1.2 Objectives 

 

Introduce fuzzy logic theory with its implementation and development on a digital 

controller.  

Develop a fuzzy controller based on an ARM Cortex M3 processor for velocity control 

using a DC motor as test and comparison with a PID controller. Infer the quality of the 

controllers using active load changes with several setups. 

Develop the controller software using free RTOS tools.  

Create a Matlab interface between the hardware and the software that 

communicates with the microcontroller monitoring the whole structure. It should be able 

to perform the basic operations on the controller, change the system input (set point), 

enable and control the active load and show the real time plot of both the motor speed 

and control signal. 

 

1.3 Structure 

 

This document is organized in five chapters: 

 Introduction; 

 Fuzzy Control; 
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 Fuzzy Controller design; 

 Results; 

 Conclusion and future work. 

 

In the first chapter it is presented the dissertation objectives, its structure and the 

motivation towards the theme. 

In the second chapter there is an overview on fuzzy logic and its implementation on 

fuzzy control. Then the fuzzy control method is present with constant discussion for better 

insight about the theme.  

In the third chapter the fuzzy control design applied to the dissertation is presented. 

It starts with an overview of the control design for the work environment, explaining the 

selected microcontroller and the controllable object – a DC motor. It follows by explaining 

the thought process in the construction of the fuzzy controller, explaining each phase and 

decision and summing up with the integration of the whole process in digital control on 

microcontrollers.  

In the fourth chapter are presented the results for each controller built. The results 

are discussed based on the performance, complexity and possible improvements. There is 

also a comparison to a standard PID controller. 

In the fifth chapter the dissertation concludes with an overall discussion of the 

dissertation results and future work to be developed on the fuzzy control area. 

 

1.4 Methodology 

 

The dissertation consists in developing a fuzzy controller based on an ARM Cortex M3 

processor. The fuzzy system is applied to control the velocity of a DC motor.  

The work developed in this dissertation follows a previous dissertation work (2), 

which developed all the conditions for a controllable system. It included a power control 

module and a DC motor coupled to another motor working as generator. Starting at this 

point, the workflow began with adapting the power control module into the 

microprocessor and retrieving the input of the fuzzy controller, the velocity. 

 The next step used the selected microprocessor, an LPC1957 with ARM Cortex M3, 

which is a unique unit specialized to work with motor control (3). Both the velocity and 

position are measured by the Quadrature Encoder Interface of the microcontroller. The 
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output, duty cycle of a PWM wave, is directed to the power control module using the motor 

control PWM module. For optimal reasons and better control guarantees the developed 

code used free RTOS (4). The fuzzy control logic was developed in the microcontroller, 

followed by testing both systems and a PID controller for results comparison.  

Finally it was built an interface using Matlab to isolate the hardware from the 

software, granting the option to operate the control system and overview the system data 

in real time.  
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2 Fuzzy Control 
 

2.1 Introduction 

 

“Fuzzy control provides a formal methodology for representing, manipulating and 

implementing human’s heuristic knowledge about how to control a system” (1 p. 10). Fuzzy 

logic is a technique to embody human like thinking into a control system. A fuzzy controller 

can be designed to emulate human deductive thinking, that is, the process people use to 

infer conclusions from what they know. Traditional control approach requires formal 

modeling of the physical reality. Fuzzy Logic Control has proven to be an excellent choice 

for many control systems applications since it mimics human control logic. It can be built 

into anything from small, handmade products to large computerized process control 

systems. Fuzzy basic control has become highly competitive due to its better performance, 

high reliability and robustness. The thinking process involved in the fuzzy realm is not 

complex; it is simple, elegant and easy to apply. 

Fuzzy logic control is one of the methodologies for solving control system problems. 

Its implementation in control systems ranges from simple, small, embedded micro 

controllers to large, networked, multi-channel PC or workstation-based data acquisition 

and control systems. It can be implemented in hardware, software or a combination of 

both. 

Fuzzy logic controllers provide a simple way to reach at a definite conclusion based 

upon vague, ambiguous, imprecise, noisy, or missing input information. Fuzzy logic 

controllers approach to control problems mimics how a person would make decisions at a 

faster rate. It is inherently robust since it does not require precise noise free inputs. The 

output control is a smooth control function despite a wide range of input variations. This 

also allows a different approach to control complex systems. Fuzzy logic focuses on what 

the systems should do rather than trying to model how it works. One can concentrate on 

solving the problem rather than trying to model the system mathematically, if that is even 

possible. On the other hand, the fuzzy approach requires a sufficient expert knowledge for 

the formulation of some of the fuzzy controller main structure parts - the rule base, the 

combination of the sets and the defuzzification. “If you can't explain it to a six year old, you 

don't understand it yourself” (5). 

The fuzzy controller block diagram is represented in Figure 2.1. It is a fuzzy controller 

applied in a closed-loop control system. The plant outputs are denoted by y(t), its inputs 

are denoted by u(t), and the reference input to the fuzzy controller is denoted by r(t). 
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Figure 2.1: Fuzzy controller architecture (1 p. 11) 

The fuzzy controller consists of four major phases/blocks. The first phase is the 

fuzzification, which works as an interface for the fuzzy logic. It simply transforms the inputs 

so that they can be interpreted by the inference mechanism and related to the rules in the 

rule-base block.  

The second phase is the inference mechanism, which evaluates the content in the 

rule-base block and decides which control rules are relevant based on the information 

gathered from the inputs and then decides what the input to the plant should be.  

The third is the rule-base that contains the knowledge required to control the system, 

in the form of a ruled-set.  

The last phase is the defuzzification. It is an interface that converts the conclusions 

inferred from the rule-base into the inputs of the plant. Basically, the fuzzy controller acts 

as an artificial decision maker that operates in a closed-loop system in real time. It gathers 

the plant output data y(t), compares it to the reference input r(t), and then decides what 

the plant input u(t) should be in order to achieve the performance objectives.  

To design the fuzzy controller, the control engineer must gather information on how 

the artificial decision maker should act in the closed-loop system. Depending on the 

controllable system, this information can come from a human expert at the controllable 

task. It must be the control engineer to understand the plant dynamics and formulate a set 

of rules about how to control the system. This quantification process of the knowledge 

gathered from the controllable system to the rules is of major importance. It is quite natural 

to realize that how much better the expert on the controllable task is, the better 

performance it is to expect from the fuzzy controller. The importance of the control 

engineer is still very much as relevant, as it is on his own skills the ability to correctly import 
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the information gathered to the system from the expert. It is a crucial task, because only 

the control engineer knows both sides, and his ability to correctly pass the information 

gathered from an expert to the fuzzy controller and knowing the controller limitations can 

be a very hard task to perform.  

As this information is loaded into the rule-base, and an inference strategy is chosen, 

then the system is ready to be tested to see if the closed-loop performance objectives are 

met. Knowing this, the ability to create a fuzzy controller is very much different for every 

designer.  

Fuzzy control system design essentially selects the fuzzy controller inputs and 

outputs, choose the preprocessing that is required for the controller inputs and possibly 

post processing that is required for the outputs and finally designing each of the four 

components of the fuzzy controller explained above.  

 

2.2 Fuzzy inputs and outputs 

 

There are several important aspects to keep in mind when choosing the correct 

inputs for a fuzzy system. In general, the inputs should grant enough information about the 

current state of the system that allows the fuzzy controller to correctly decide which action 

to take that best serves the performance objectives. In a fuzzy system, it is wise to carefully 

choose the number of inputs. If the expert on the controllable task only bases his 

predictions on a single reference, then adding more inputs would only cause potential 

unexpected results. When the expert relies on many inputs, even if some are not of major 

importance, it is really important to keep them. The fuzzy controller can easily adapt 

different scales of importance due to its inference process. It is really important to keep in 

mind that sometimes the human expert does not know correctly how many aspects he is 

evaluating to make his decisions, and therefore sometimes it is a hard choice for the control 

engineer to choose the inputs. In a simple example, a motor velocity can be evaluated by 

its sound. Naturally you could assume that the correct input for a motor velocity control 

would be the error or change of error. But as a fuzzy controller it is really important to keep 

the correct input that better relates the knowledge gathered from the expert to the rules. 

It could still be possible to use the error of the velocity if you could relate it to the sound it 

makes, but that is much harder than choosing to implement a sensor that evaluates the 

sound.  

The thought process behind choosing an output follows the same reasons, while its 

importance might not be of such value as the inputs, it is still optimal for the defuzzification 
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process if the chosen output can relate with the controller rule-set and the controller 

actuator in a simple way. 

 

2.3 Linguistic variables 

 

To better define the knowledge given by the expert, fuzzy control uses a set of 

linguistic variables. These variables describe each of the time-varying fuzzy inputs and 

outputs. There are many choices of the linguistic description of variables. Often the control 

engineer can choose for a more complete description of the variable and use long linguistic 

descriptions, but these choices do not reflect in any way in how the controller operates. It 

is simply a notation that helps the construction of the fuzzy controller using fuzzy logic. 

These linguistic variables change dynamically over time, so after defining those, some sort 

of dynamic identification is also required. For instance, for the input “e(t)” the linguistic 

variable “error” can be used and to identify its dynamics “negative small” , “zero”, “positive 

small”. Other kind of descriptions can be used, even numbers, but they only act as a 

representation of its dynamic value and not the value itself. An example is shown in the 

figure 2.2.  

The input “height” represents the height of the senior human population, which 

ranges from 1.25m to 2.25m. So “height” is the linguistic variable that represents the input 

of the fuzzy system. The crisp values are fuzzified to three dynamic variables Short, Medium 

and Tall. Each one defining a specific part of the input and together covering the entire 

input range.  

                  

Figure 2.2: Fuzzy linguistic variables representation 

This linguistic variables and dynamic values provide a language for the expert to 

express his knowledge about the decision-making process established in the fuzzy 

     

0.5 

1 

   Short  Med   Tall 

0     0.25   0.5    0.75     1       1.25   1.5    1.75     2      2.25       meters 
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controller, given by its inputs and outputs. Basically the linguistic variables are a 

representation of the inputs and linguistic values the quantification of dynamics. This 

aggregate created by the control engineer to fuzzify the system is called universe of 

discourse, which also includes the way these variables relate to each other, expressed in 

the fuzzy rules. 

 In the classic approach, the difficulty of correctly defining the margins between sets 

is an evident problem. Defining tall as two meters and not tall as less than two meters 

means people with 1.75 meters aren’t tall, but people with 1.76 meters are. This is a very 

weak approach as ‘objects’ with such a small difference are labeled so differently and, as 

such, treated differently. This also means in the same set we have a wide array of values 

that are treated in the same way, which might be imprecise and worse, it makes it very 

weak towards errors near the set margins, known as rigid boundaries. In contrast, fuzzy 

sets have soft boundaries.  

 

2.4 Rules 

 

Using the linguistic variables, it is possible to create a set of rules that mimics the 

decision-making of the expert. The process relies on creating a rule for each possible state 

of fuzzy inputs, so that the control system always knows how to best perform at each 

situation to achieve the system objectives. These rules are called the linguistic rules, since 

they are created based only on linguistic variables. The figure 2.3 shows an example of 

linguistic variables for a fuzzy system that tries to predict the best position for each person 

based on two inputs, height and reaction time.   

              

Figure 2.3: Fuzzy linguistic variables 

     

1 
       Short  Med   Tall 

1.25    1.5    1.75     2     2.25  meters 

      

       Fast Average Slow 

1 

0       50    100     150    200      mS 

Height input Reactions input 
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With three dynamic variables (Short, Medium, Tall) for the linguistic variable 

“Height” and three dynamic variables (Fast, Average, Slow) for the “reaction time” inputs, 

there is a possible number of nine different rules that govern the entire possibility of inputs 

combination. 

The form that the inputs relate to each other to generate an output is shown below. 

It is up to the designer to select the best logic to relate the inputs, in many systems the 

logic “or” is best suited for instance. The nine different rules for the fuzzy set represented 

in the figure 2.3 can be described as: 

If the height is “short” and the reaction time is “fast”, then the control output is 

“Defender”. 

If the height is “short” and the reaction time is “average”, then the control output is 

“Midfielder”. 

If the height is “short” and the reaction time is “slow”, then the control output is 

“Support”. 

If the height is “med” and the reaction time is “fast”, then the control output is 

“Midfielder”. 

If the height is “med” and the reaction time is “average”, then the control output is 

“Midfielder”. 

If the height is “med” and the reaction time is “slow”, then the control output is 

“Support”. 

If the height is “tall” and the reaction time is “fast”, then the control output is “Striker”. 

If the height is “tall” and the reaction time is “average”, then the control output is 

“Defender”. 

If the height is “tall” and the reaction time is “slow”, then the control output is 

“Defender”. 

These rules offer an abstract level that humans are often comfortable with in terms 

of specifying how to control a process, but these rules are not yet the precise 

representation of the quantities used to actually control the system. These rules are used 

to build the rule-based table, which is the representation of every possible case of inputs 

and its expected output. 

Since the fuzzy logic controller processes user defined rules governing the target 

control systems, it can be modified and tweaked easily to improve or alter the system 
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performance drastically. New sensors can easily be incorporated into the systems simply 

by generating appropriate governing rules. Because of the rule-based operation, any 

reasonable number of inputs can be processed and numerous outputs can be generated.  

As it is possible to understand from the example bellow, defining the rules becomes 

complex if too many inputs and outputs are chosen for a single implementation. In those 

cases it is better to break the control systems into smaller parts and use several smaller 

fuzzy logic controllers that can be distributed through the system. 

 

2.5 Fuzzy quantification of knowledge 

 

At this point, the system inputs and control logic is fuzzified and the generic concept 

of how to control the system has been done. The next step is to quantify the universe of 

discourse created in this fuzzification process in order to automate and control the system, 

using fuzzy logic. The linguistic values are represented/quantified using membership 

functions. These functions must confine the certainty of a linguistic variable in a continuous 

manner and can take many shapes, usually triangles, trapezoids or bell-shaped functions 

(6). This continuous manner can relate to a probability that varies from each membership 

function shape.   

An example of two active triangular membership functions is shown in the figure 2.4.  

 

Figure 2.4: Selection of two membership functions 

A system with 5 membership functions defines the linguistic variable “error”. For the 

input “error”, both the membership functions ‘negative small’ (NS) and ‘Zero’ are active 

and µx represents the certainty level of that membership function. Since triangular 

µ(e) µ(e) 

Error input 

  -6      -4       -2    e  0       2        4        6                             -4       -2    e  0       2               

1 1 
  NS 

µZero(e) 

µ
NS

(e) 

µ
Zero

(e) 

µ
NS

(e) 

  NL  Zero   PS   PL   NS  Zero 

µ
Zero

(e) = 1 - µ
NS

(e) 
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membership functions represent a linear change of certainty, for the input e, that activates 

both ‘NS’ and ‘Zero’, µZero (e) (certainty of membership function ‘Zero’ for the input e) is 2/3 

and µNS (e) is 1/3. 

Each linguistic variable is represented by membership functions and for a stated input 

it specifies which membership function that input is a member of. A good definition of the 

shape of the membership function is a crucial step to a good fuzzy controller.  

Creating a basic and simple shape that quantifies in a manner that makes sense for 

the designer is always the best step. In later stages, to achieve high performance objectives 

it can be required to tune the shapes of the membership functions, but usually they only 

recreate a subjective approach.  

 

2.6 Inference process 

 

The inference process involves two important steps, the matching process and the 

conclusions. 

In the matching process the premises of all the rules are compared to the controller 

inputs in order to determinate which rules are valid to the current situation. This matching 

process requires knowledge about the certainty of each rule, so that the more relevant the 

rule, the more impact it has in the current situation. Again, the process to match the rules 

can be very complex, there is a wide array of choices for the designer to match the rules, 

the simplest way is using the logic “and”/”or”, but in the fuzzy universe, it is up to the 

designer to choose the best for each situation. The figure 2.6 shows the quantification of 

the “and” operation as an example of the matching process for a fuzzy system with 2 inputs, 

e and de, each with five triangular membership functions as shown in figure 2.5. 

 

 Figure 2.5: Set of membership functions for error (left) and change of error (right) 
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  The matching process is identifying which rule is active. As shown in figure 2.6, 

there are four active membership functions, two for the error input ‘Negative Small, Zero’ 

and two for the change of error ‘Positive Small, Positive Large’. These active membership 

functions ‘match’ in the fuzzy rule table, highlighted in red, selecting four different rules. 

The variable uf represents a generic output membership function variable, for instance in 

motor speed control it can be “power”.   

 Notice that, depending of the number of active membership functions, the number 

of rules can go from one to four.   

Figure 2.6: Fuzzy matching process 

After the matching process is complete, the conclusion process starts. The matching 

process goes through the active membership functions and returns a set of rules. It is now 

required to analyze these rules and set a single conclusion for the output. For this, each 

rule must be analyzed independently. In the end, all single rules recommendations are 

combined to conclude the final output.  

The figure 2.7 represents the conclusion process for each rule, using the product 

between matched membership functions values.  

   E  
dE NL NS Z PS PL 

NL C00 C01 C02 C03 C04 

NS C10 C11 C12 C13 C14 

Z C20 C21 C22 C23 C24 

PS C30 C31 C32 C33 C34 

PL C40 C41 C42 C43 C44 

Fuzzy Inference and Output: 

Rule 1: error is NegativeSmall and de is PositiveSmall 

then uf is C31 

Rule 2: error is NegativeSmall and de is PositiveLarge 

then uf is C41 

Rule 3: error is Zero and de is PositiveSmall then uf is 

C32 

Rule 4: error is Zero and de is PositiveLarge then uf is 

C42 

Fuzzy Rule Table 
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Figure 2.7: a) conclusion phase, b) membership function certainty 

The µ represents the change of certainty of the respective membership function and 

in this particular shape it matches the probability. As it is possible to see in the figure 2.7 

b), the µZero(e) is 2/3 and µNS(e) is 1/3. Each rule contribution is calculated separately (figure 

2.7 a)) to a value Dx that represents the implied fuzzy set for that rule.  

At this point, the fuzzy system has taken information from the inputs, quantified it to 

fuzzy logic, applied knowledge from the expert to it by using the fuzzy rules and got its 

conclusions in terms of fuzzy outputs. The only step left is to defuzzify these conclusions. 

 

2.7 Defuzzification 

 

The defuzzification phase uses the information produced by the inference process 

into numeric fuzzy controller outputs. Some authors relate the defuzzification part to the 

conclusion phase of the inference process. The ambiguity is clear, since most of the times, 

if the outputs are chosen correctly, the final value returned from the conclusion process is 

often the direct value to be applied to the system under control, and, when so, the 

defuzzification process is “hidden” in the conclusion phase.  

The idea about the defuzzification phase is to know that while all the values inside 

the fuzzy controller work with fuzzy logic, at the end of the defuzzification process, all 

values in the output must be specific (crisp values) and without fuzzy logic implied.  
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The most usual defuzzification method is the COG (Center of Gravity) (7). The COG is 

calculated manually, since the membership functions used (2.8 b)) are simple. The COG 

method can be described as:  

𝑢 =
∑ i 𝐶i ∗  ∫ 𝜇(i)

∑ i  ∫ 𝜇(i)
   

Ci represents the output value, as shown in the fuzzy rule table in the figure 2.6. ʃ µi is the 

area under the membership function.  

 For the example at the figure 2.7, the defuzzification using the COG method is: 

  

 𝑢 =
C31 ∗  D13 + C41 ∗ D14 + C32 ∗ D23 + C42 ∗ D24

D13 +  D14 +  D23 +  D24
 

 

2.8 Tuning the fuzzy controller 

 

Often the designer comes to a point where the basic structure of the fuzzy controller 

is completed and the next step is to improve performance or test for better results. In a 

fuzzy controller, there are many ways to change the way that the controller works and 

therefore its results.  

 

2.8.1 Tuning via scaling the universe of discourse 

 

The more intuitive way to tune a fuzzy controller is to look at the fuzzy logic 

interpretations. The universe of discourse the designer built, using fuzzy logic, often 

provides soft boundaries between fuzzy sets. The designer can change these boundaries, 

for instance scale the fuzzy definition of linguistic variable or adapt the fuzzy boundaries. 

The designer should always be aware to keep the basic fuzzy rules applied, in this case, 

keep the entire input range defined. The figure 2.8 represents a fuzzy controller with 

different scaling gains for the inputs and output. 

(2.1) 

(2.2) 
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Figure 2.8: Fuzzy controller with scaling gain G1, G2 and h 

It is really important to notice that scaling the gain via G1 has the same effect of 

changing the derivative axis membership function axis. In fact, choosing a scaling gain G1 = 

0.5 is equivalent to have the change observed in the figure 2.9.  

 

Figure 2.9: Scaling the input 

The figure 2.9 shows that the choice of a scaling gain G1=0.5 results in scaling the 

horizontal axis of the membership functions by 1 / G1. In general, it is possible to get some 

conclusions about scaling G1 and its effects on the membership functions.  

If the scaling gain G1 < 1, the membership functions are uniformly spread out by a 

factor of 1/G1, like the figure 2.10 represents. The opposite effect happens when the 

scaling gain G1 > 1 as the membership functions are uniformly contracted. The same effect 

would occur to the other input (error) for the G0 gain. However, the effect on the meaning 

of the linguistics that form the definition of the fuzzy controller change when scaling their 

respective input gains. In particular, when G1 <1, as the membership functions are 

uniformly spread out, it changes the relative meaning of the linguistics so that, for example 

“ high” is now a membership function that represents higher values. The opposite happens 

when G1 > 1 as the membership functions contract, “high” now represents smaller values 

then before.  

r e 

𝑑

𝑑𝑡
 

 

G0 

G1 

Fuzzy 

Controller 
h Process 

u 
y - 

∑ 

  

1 

      Small   Med   High 

   0      0.5        1      1.5       2            

  

1 

     Small      Med        High 

   0        0.5*2         1*2     1.5*2         2*2                

        

  G1 = 0.5 



37 

 

 Similar statements can be made for all the other membership functions and 

respective associated linguistic values. The input scaling factors have an inverse 

relationship in terms of their effect on the scaling. A G1 factor greater than 1 corresponds 

of changing the meaning of the linguistics so that they quantify smaller numbers. While this 

inverse relationship exists for the input, scaling the output gain has the opposite effect as 

it is shown in the figure 2.10:  

 

Figure 2.10: Scaling the output 

 There is a proportional effect between scaling h and the output membership 

functions. If h<1, the output membership functions contract, hence making the meaning of 

their associated linguistic quantify smaller numbers. If h>1, the output membership 

functions spread out, hence making the meaning of their associated linguistics quantify 

larger numbers.  

 

2.8.2 Tuning membership functions 

 

Sometimes it is not possible to achieve the desired performance tuning only the 

scaling gains. Often, it is required a more careful consideration of how to specify additional 

rules or better membership functions. The major problem is that there are often too many 

parameters to tune like membership function shapes, positioning, number and type of 

rules. In fact, for most cases there is not a clear connection between the design objectives 

(rise-time, overshoot) and a reasonable method that should be used to tune these 

parameters. 

A simple method to tune output membership functions is to change their positioning. 

To do so, it is required to move their center. An easy and understandable example to tune 

membership functions is shown in the next figure 2.11:  
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Figure 2.11: Nonlinear output membership functions 

In the figure 2.11 a) it is represented a common linear equally spread set of output 

membership functions. Imagine the fuzzy system described in the figure 2.8. When the 

inputs error and change of error are small, likely the system is close to its set point, the 

output values are near zero. For the figure 2.11 a), even if the inputs change, they linearly 

increase or decrease the response from the output membership functions. If the designer 

feels that the system, for instance, should keep a linear and close to zero response when 

close to the set point and a much stronger output when far away from the set point. This 

change is represented in the figure 2.11 b), by replacing the centers of the output 

membership functions, using Ci = sign(i)i2, where Ci is the center of the respective 

membership function. 

If the systems inputs are near where they should be, then the signal applied to the 

system is small, but if the inputs change, then the signal applied to the system is much 

higher.  

While there are some methods for tuning the logic premises used in the inference 

process (‘and/or’) or in the conclusion phase (‘product/minimum’), these methods often 

do not provide insights into how these parameters affect the performance that we are 

trying to achieve (hence it is difficult to know how to tune them to get the desired 

performance). It often lends to a process of trial and error, which results must be carefully 

validated and interpreted by the designer.  

The tuning process overall should be an interactive process after the first fuzzy 

requirements are met. The designer should feel that the tuning process should be adding 

more knowledge to the system or to better work with the knowledge it already has. 

Generally, if the designer is having difficulties building a good fuzzy controller, he probably 

needs more knowledge of the physics of the process to control, and then get that 

knowledge to properly affect the plant dynamics into the fuzzy controller. 
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3 Fuzzy Controller Design 
 

3.1 Introduction 

 

In order to implement the fuzzy controller it was chosen a DC motor RS210L (8) with 

the objective to control its velocity. It is a permanent magnet DC motor from Parvex (8 p. 

2), using 24V supply and definition speed of 3000rpm. The tests setup used a previous work 

from Luís Terra that includes the LPC1759 and the power control module (2 p. 61) (figure 

3.1).  

 

Figure 3.1: Power control module  

Luís Terra developed two boards, one for the LPC2129 used in his work and the 

LPC1759 after its release that year. The LPC1759 (2 p. 106) (figure 3.2) is a significant 

advance from the LPC2129, doubling its performance. It also provides a Motor Control 

PWM (MCPWM) and a Quadrature Encoder Interface (QEI) module.  

 

Figure 3.2: LPC1759 

The DC motor is mechanically coupled with a parallel excited motor (load), as shown 

in the figure 3.3. This motor, unlike the permanent magnet DC motor has a very nonlinear 

behaviour and, even at open loop, behaves like a load that increases with velocity. If there 

is a constant current supply at the terminals of the generator, this current will not imply a 

constant torque for different velocities, different from the permanent magnet DC motors. 

This behavior is used to test the quality of the controllers.  
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Figure 3.3: DC-motor (right) and generator (left) 

The power supply was connected to the power control module with 3A maximum 

current and a 24V supply voltage.  

A generic overview of the controller environment is shown in the figure 3.4. The fuzzy 

inputs are the velocity error and the error rate. These signals were provided by using the 

incremental encoder attached to the motor and the Quadrature Encoder Interface 

provided by the selected microcontroller (3 p. 554). The signal consisted in two phase 

signals and an index. The index counted revolutions while the phase signals were used to 

know the motor speed and direction. The selected output for the fuzzy controller is the 

PWM duty cycle, using the MCPWM module provided that generates a square wave with a 

programmed duty-cycle. The PWM is then directed to the power control module, which 

converts it to a DC voltage and applies it to the DC-motor. The microcontroller used two 

different UART units, one for programming the memory and other for communicating with 

Matlab.  

Each module was tested separately, the QEI used to get information about the motor 

speed was compared with the tachometer values, and the MCPWM was compared with a 

square wave form created using the DAC.  
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Figure 3.4: Controller environment  

 

3.2 Interface 

 

The methodology to operate the whole system had some problems. To better check 

and validate the system performance it was required to power externally the 

microcontroller, connect it to one PC using RS232, change the program, flash it to the 

processor memory, send the data using serial communication and print it to a file in the PC. 

Then the user could read the file using Matlab, plot the variables and take offline 

conclusions on the fuzzy controller performance. This workflow was not optimal for several 

reasons. The whole process was slow, the code was developed in Virtual machine Linux 

operating system so the serial communication used to flash the processor memory and 

then to write the data (system output, control signal, etc.) could not use the same 
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communication port, as one was only accessible on each operating system at once (Matlab 

was running on Windows). When the user was evaluating the data, it was an offline view 

of the motor performance, which limits the fuzzy controller designer options. 

In order to solve these problems and add new functionalities to the whole system, 

it was developed an interface using Matlab. It separated the programming of the memory, 

using different UARTs for the data communication and program flash. The microcontroller 

power supply was provided directly from the PC-Com.  

From the system interface the user could select the input wave, start/stop the 

controller, watch the real time plot of the system output and the control signal, save any 

plot at any given time and change the active load value. These options allowed a faster 

tuning and evaluation of the fuzzy controller, which majorly improved the fuzzy control 

development.  

 

Figure 3.5: Fuzzy Interface 

An image of the current fuzzy interface is shown at the figure 3.5. If the user wants 

to save a specific plot, it must be selected previously by clicking on the plot then pressing 

save. The start/stop buttons only affect the communication between the microcontroller 

and the fuzzy interface, it does not shut down the motor. The moddedwave button is the 

standard input created for testing the controllers. The random button creates a random 10 

step square wave as it is represented in the figure.  
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The membership function form is only available with triangular shape and Gaussian 

shape, but it could not be implemented since it required floating point. The number of 

membership function actually changes the number of both inputs, and it ranges from 3 to 

21. This also allows the construction of the rule set table, which will not be tuned, and it 

will follow a base gain between the numbers of membership function, for instance, it would 

be something like the figure 3.6.  

 

Figure 3.6: Automatic rule set table 

 The interface really helped the development of the controllers due to the real time 

plot of the system variables and changing the set point. However, there were a lot of 

significant improvements that could be done to help the designer to build better fuzzy 

controllers. Some options were still tested and disabled after, due to some complexity 

problems with the time restrains the program in the microcontroller had.   

 

3.3 Knowledge gathering 

 

The amount of information the designer possesses about the controllable system 

majorly dictates his success on developing a controller. Some basic performance tests were 

made to the motor in that sense. The first test (figure 3.7) evaluates the motor response to 

a 0 to 100% duty-cycle variation and after reaching the maximum speed, back to 0% duty-

cycle. The motor vein was attached to another DC motor working as generator but without 

load applied to it. The velocity was measured using the QEI module. 
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Figure 3.7: a) DC-Motor velocity (rpm), b) 0-100% Duty-cycle c) 100-0% Duty-cycle   

This test insights the controller designer about the motor behavior at maximum 

power. It is possible to identify several different slopes that define the rate of change of 

the motor speed. It takes around 130ms to make the first 1500rpm and then 150ms to 

reach 3000rpm. Over the 3000rpm mark the motor slows a lot the rate of change taking 

120ms to reach the maximum speed. This information is important to get a reference about 

the maximum rate of change possible for this setup. Since the motor is receiving the 

maximum power, this times reflect the minimum times for rpm variations.  

Over to the other side, when stopping, the motor follows a close to linear slope, 

taking around 500ms to stop. This difference should be important and reflect in different 

gains in the rule-set table for the membership functions that define negative error.     

The second test (figure 3.8) was made under the same setup and is a one second 

paced increment of the PWM wave duty-cycle that controls the motor velocity.  

a)  

b)  c)  
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Figure 3.8: Paced increment of the PWM wave 

The main goal of this test is to better tune the controller response when near the set 

point. This graphic shows the different rpm “jumps” of the motor speed. This was achieved 

by keeping the duty-cycle increment fixed (1%) and evaluating the response during the 60-

100% duty-cycle range.  

The graphic only shows the variation between 60-100% duty-cycle since the 

acquisition of the motor speed at lower speeds was imprecise due to error. This error is 

due to the counting of the phase edges on the QEI on the microcontroller which at lower 

rates a difference of 1-2 phase edges would be significant.  

 

Having the basic information about the motor, having the hardware design ready, the 

inputs and the output selected, the next step is to create the fuzzy control system. 

 

3.4 Fuzzy design 

 
The controller environment shown in the figure 3.4 represents the overview of the 

hardware. The fuzzy design however, relates to the hardware in the form of the output it 

provides to the system, in this case, the PWM wave sent to the power control module and 

the inputs it receives, the wave form from the incremental encoder attached to the motor. 
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The motor speed was calculated in the LPC1759 QEI module after counting the phase edges 

from the incremental encoder in a period of time. 

 The difference from the set point and the actual speed (error) was the primary input 

for the fuzzy system. It was the most natural way to gather information from the 

controllable system and by selecting the error as an input, it can be easily extracted 

knowledge from the membership functions to the inference system and use it in the fuzzy 

rules.  

For the second input it was selected the change of error. It is a source of information 

from the first input and also simple to interpret to better tune the fuzzy controller 

performance.  

The reasons for the output selection of the fuzzy controller are quite natural, as it 

needed to be a variable that could closely relate the knowledge gathered in the fuzzy rules 

from the membership functions and the actual objective of the system – velocity control. 

Therefore the duty-cycle provides a way to relate with the motor velocity, as it controls the 

voltage applied. It is also important to note the way that the system changes the output, 

the duty-cycle percentage. The microcontroller changes the duty cycle by dividing two 32 

bits register (3 p. 518), one representing the processor frequency and the other the 

frequency of the PWM wave. In order to keep a high velocity resolution, this is, the least 

incremental gain possible from the controller change the motor velocity in the smallest 

way, the frequency of the PWM wave needed to be inside the human ear frequency sound. 

Since the software used fixed point, the resolution required for the duty-cycle constant to 

change 1rpm should be around 15000. To diminish the error from the fixed point, it was 

used 100000 to represent 100% duty-cycle. Since the processor frequency is 120MHz, the 

maximum frequency for the PWM wave is 1200Hz. Even using the constant at 15000 to 

represent 100% duty-cycle, it would mean 8000Hz. This options bring some noise. To better 

accommodate both, the frequency was set to 20 000 Hz, giving a much more smooth 

rotation to the motor, with a small noise and with a resolution of three rpm.  

The sampling period was set to 20ms. With the information from the figure 3.7, the 

maximum velocity change for 20ms is around 250rpm. Since the motor speed can go up to 

3300rpm and further tests should be realized with active loads, that lower this rate, the 

20ms sampling period should prove sufficient for this motor behavior. To guarantee the 

sampling time, the whole software was built upon FreeRTOS. The FreeRTOS scheduler (9) 

used only two tasks. The highest priority task, that sets the controller increment to the 

motor, ran at 20ms. The other task, at the same rate, computed all the controller arithmetic 

and the communication with the Matlab. This way, the variation of time that the controller 

arithmetic took to run did not affect the controller output step.  
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The whole system used fixed point, avoiding the floating point unit. This was the only 

computationally viable choice, since the fuzzy controller arithmetic consumed a lot of time 

resources plus the communication with the interface, reading sensors, etc. However, it set 

a maximum precision value, since all numbers had to be multiplied to bring some sort of 

precision to the system. Other consequence of using fixed point is that without the floating 

point unit, for instance, it was not possible to build bell shaped membership functions.  

It was developed a startup process lasting 0.1 seconds to start up the motor at its 

minimal PWM command in open loop. As in digital control, this action prevents a lot of 

unwanted factors and the first measurements for the inputs were only done after this 

startup, so that the control system already deals with a functional controllable system. The 

basic control design idea is to have the fuzzy controller built based on proportional, 

derivative and integral components.  

The next sub-chapter explains the construction of the fuzzy controller and the 

thought process behind it. 

 

3.5 Fuzzy structure 

 

3.5.1 Membership functions 

 

Membership functions are more subjective than objective. This means that the 

information they quantify reflect the engineer view of the system and others might 

quantify it in a different manner.  

3.5.1.1 Number 

 

The selection of the number of membership functions was not an obvious choice 

from the start. Since the primary source of information was the first input (error) it seemed 

reasonable to emphasize that choice on the number of membership functions. The choice 

ended up being eleven membership functions for the error and three for the change of 

error. 

The eleven functions divided the possible range of error, having one centered at zero 

error, and the other five symmetrically represent high error and small error, positive and 

negative. For the change of error, one centered in zero and one representing positive 

change of error and the other one negative.  
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The number of membership functions to use in this design was by far the most 

important and most conscious decision between complexity/simplicity, execution time and 

performance. The thought process behind it is explained separately since most of the 

problems came across during the fuzzy design implementation, the performance tuning 

and testing.  

The first approach towards the number of membership functions is to look at the 

inputs. The error input, range [-3000, +3000] rpm and the change of error [-1000, +1000] 

rpm/step, represent the fuzzy inputs and must be divided by membership functions. Each 

of these membership functions will confine a part of the input range and interpret the input 

in a way to be used in the rule set table. The number of membership functions then reflects 

how many different phases the controller will have and the boundaries between each.  The 

first problem adjacent to this decision is the input range versus actual input.  

In most fuzzy logic controllers, initial membership functions are normally laid evenly 

all across the universes of discourse that represent fuzzy control inputs. However, for 

evenly distributed membership functions, there might be a problem that may adversely 

affect the control performance. If the actual inputs are not equally distributed, but instead 

concentrated within a certain interval that is only part of the entire input area, this will 

result in two negative effects. On one hand, the membership functions in the dense input 

area will not be sufficient for a precise response to the inputs, because these inputs are too 

close to each other compared to the membership functions in this area. The same fuzzy 

control output could be triggered for several different inputs.  

On the other hand, some of the membership functions assigned for the sparse-input 

area are never active or just trigger once, being technically a waste of resources.  

Both these problems are quite difficult to solve, especially in the early stages of a 

fuzzy control system. The first problem could be solved by adding more membership 

functions which would decrease the operating range of each, making them more precise. 

But this is not really a valid solution. In this system, having 11 membership functions would 

result in 500rpm difference between each. To change this value by half, it would be 

necessary to increase the number of membership functions to 23. It is important to 

remember that for the motor speed, evaluating high error, should only happen a few times 

between set point changes, and only on large set point changes. Usually the controller will 

have much more effort for the near to zero error membership functions, where the 

controller should require a more clustered zone of membership functions.  

The other problem is the fact that by increasing the number of membership 

functions, the complexity of the rule set table also increases to a maximum of n x n. If both 

the inputs increase from 3 membership functions to 5, then the rule set table will grow 
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from 3 x 3 to 5 x 5. In fact, these choices proved even more challenging when trying to 

improve the controller performance.  

The final number of membership functions ended up being 11 for the error input, 

spacing the error for 500rpm between each function, from Positive Very High to Negative 

Very High. For the change of error, only 3 membership functions were built, enough to 

identify positive, zero and negative change of error. These choices would create 33 

different phases of action in the rule set table which, by analyzing the figures 3.7 and 3.8, 

is a bit low. The main problem of using 11x3, is that often the same membership function 

will be active for several consecutive controller steps, which is not optimal when reaching 

the set point (zero error) value. In the change of error input, this is even more highlighted, 

where the central membership function will always be active.  

 

3.5.1.2 Shape 

 

The fuzzy controller used triangular shape of membership functions with interception 

at half curve. This way the conception about the certainty of the linguistic variable became 

linear by phases, which not only simplifies the through process and analysis of the 

membership functions as it makes more sense after the information gathered in the figure 

3.7. It is possible to identify several linear phases of the motor speed during the tests. More 

complex shapes of membership functions would require floating point, which is out of this 

controller capabilities, so when using fixed point, the triangular membership functions are 

simple to implement and computationally fast.  

The fuzzy controller number and shape of the input membership functions is shown 

in the figure 3.9. The change of error membership functions range from [-1000, 1000] 

rpm/step. The data from the figure 3.7 shows that without external interference with the 

system, the velocity cannot change quicker than 350 rpm/step. Even so, it was selected 

1000, as the system would be tested using active load changes. These loads when 

applied/detached will drastically change the motor speed. By having a larger range in the 

membership functions, the controller can have a better response. The downside of this 

larger range is that in the setup without active load the controller could be less precise in 

the [-350, 350] rpm range. This actually happens because of the linear change behavior of 

the triangular membership functions. Since the change of error only uses three 

membership functions, expanding their range forces the linear behavior of the left and right 

membership functions to continue for a larger change of error, which is the good part. The 

downside is that the central membership function is now always active [-500, 500] 

rpm/step.  
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Figure 3.9: Fuzzy Controller input membership functions 

 

During the development of the fuzzy controller it was quite difficult to have the 

perception when would a different shape of membership function, this is, a different 

change of certainty, be required or optimal for speed control on the motor. In fact, many 

times, the simplistic and linear approach that the triangular membership functions offered 

the system was often a safe liability. Maybe due to the lack of experience, it proved easier 

to add nonlinear behavior to the fuzzy control by adapting the rule-base set than changing 

the shape of the membership functions.  

 

3.5.2 Inference mechanism and defuzzification 

 

The inference mechanism starts by identifying all active membership functions for 

the respective input and their certainty level. The software always finds the (active) most 

left membership function first and calculates its probability (P0). Then, as the system uses 

triangular membership functions evenly spaced and the edges of each function are equal 

to the centers of its adjacent functions, the next membership  function is always active and 
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with probability 1-P0. The software proceeds to match the rules using “and” implication. 

With only two inputs, there can only be 1, 2 or 4 active rules. It will be selected only one 

rule if both the inputs have a membership function with 100% probability, two rules if one 

of the inputs membership function have a probability of 100% and four rules if both inputs 

have two active membership functions with probabilities different than 100%.  

The software always assumes there are four active rules but, when the probability is 

0% their contribution is 0, as it is possible to see in the expressions bellow, where µMf 

represents the probability associated with its respective membership function. 

 

In the conclusion phase, the software uses the matched information (Dxx) and the rule 

set table to get the conclusions for the COG method in the defuzzification process.  

The rule set table is shown in the figure 3.10, where the value “k” represents a 

constant to multiply since the software uses fixed point.  

      e  
de 

Mfe0 Mfe1 Mfe2 Mfe3 Mfe4 Mfe5 Mfe6 Mfe7 Mfe8 Mfe9 Mfe10 

Mfde0 -165k -135k -125k -120k -75k -45k -75k -120k -125k -135k -165k 

Mfde1 -110k -90k -57k5 -42k5 -25k 0 25k 42k5 57k5 90k 110k 

Mfde2 165k 135k 125k 120k 75k 45k 75k 120k 125k 135k 165k 

 

Figure 3.10: Rule-set table with the inference and defuzzification phases 

 This is an example of the rule-set table used in control the motor speed. The error 

membership functions are on top and the change of error on the side. The relation between 

the gains presented and the output PWM is 10k = 1% duty-cycle. With the information from 

the figure 3.8, 1% DC is around 100 rpm. 

As it is possible to see, looking only to the error membership functions, the 

incremental gain between functions is around 20k to 30k, which represents a careful 

approach, especially when reaching some kind of stationary speed.  

 µMfe1(e) * µMfde1(de) = D11  µ
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The change of error is 3 times more aggressive, especially at Mf5-Mde0/2. It is really 

important to note that like it was previously explained, the range of membership in the 

change of error input it is quite large. This forces most of the inputs to be in the central 

membership function and with high probability, making its attached rules more influent.  

One way to decrease this effect is to force the attached rule for the Mfde0/2 to be more 

impactful, making it so that even with low probability, they still influence the system 

enough.  

 

3.6 Performance 

 

It is possible to evaluate beforehand the expected performance of a designed fuzzy 

controller. Knowing its basic structure allows the designer to predict in a certain way how 

the control mechanism will behave under specific circumstances that are always very 

helpful for further tuning or understanding the results given.   

The overall performance of a fuzzy controller can be measured by analyzing the 

membership functions. Their shape defines the certainty they influence the output value 

and the inferred value the way they reflect it. With multiple membership functions, it is 

possible to define different control behaviors to better adapt for different plant behaviors. 

This way, the fuzzy controller performance can change between membership functions and 

its actual expected behavior is a match between one or more membership functions, 

depending on the number of active membership functions.  

For this specific design, there are some very important aspects to mention, that are 

relevant for understanding the performance analysis. The fuzzy controller uses an integral 

of the control variable in the output, which means that every new plant input will be the 

sum of the current output value given by the fuzzy controller plus the last output. Looking 

at the fuzzy rule set table at figure 3.10, it is possible to make some further conclusions on 

how the incremental gain will affect the system. As the figure 3.9 shows, the membership 

functions are spaced by 500rpm. Imagine that the set point changes 1000rpm, making it so 

that the error is 1000, selecting Mf7 and Mfde2. The output would then be 120k, which 

from the knowledge gathered from the motor behavior at the figure 3.8 will be enough (if 

given time) to change the speed around  12*83 = 996rpm (1%DC = 83rpm). This increment 

would be sufficient to reach the desired new set point but, as the figure 3.7 shows, the 

motor dynamics will not allow such high speed variation in one step time. At maximum 

power it would still take around 6 steps for the motor to change 1000rpm. The next time 

steps, the controller will continue to reinforce the control signal, but at a much lower rate, 

still, all the increments after the first should only try to improve the rise time and then 

softening down the gain towards a stationary point.  
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This kind of analysis is always possible but it gets difficult to predict with the ongoing 

change of speed towards the set point. For this reason it is really important to have a good 

source of information about the plant behavior, in this case, the motor. If it would be 

possible to know the effects of each increment at each speed, it would be possible to make 

a model for the motor using the membership functions and the rule set table that would 

inherit the motor dynamics. 

Other point that helps this kind of analysis is the shape of membership function. 

With triangular shape, the change of certainty is linear and, if the rule set table uses linear 

gains then the controller would be linear and would only require a minimum number of 

membership functions to perform. Since the DC-motor-Generator setup has a nonlinear 

response, it is wise to tune nonlinear gains for each membership function on the rule-set 

table that better represent the motor behavior.  

To control the motor speed using error and change of error inputs, the central 

membership function gains increased importance. It represents the last increments of 

power to control the motor and which the control model converges to, since it is the only 

membership function that will always be active at some point in this type of control. While 

this perspective of the central membership function is important, the practical design can 

change it. There will always be a combination of two membership functions that define the 

controller output for each input and this combination, or at least the grade of influence of 

each membership function, is directly given by the range of each function.  

Outside of the fuzzy control performance there are general control measurements 

that are useful for comparison between controllers. In the results chapter the following 

metric (9) will be used to compare the fuzzy controller and the PID.   

Integral of the Absolute Error (IAE) where:  

𝐼𝐴𝐸 = ∑| 𝑒(𝑘ℎ)|

𝑛

𝑘=1

 

gives basic information about the overall error of the system. 

Integral of the Square Error (ISE) where:  

𝐼𝑆𝐸 = ∑ 𝑒2(𝑘ℎ)

𝑛

𝑘=1

 

gives enhanced information about greater errors, since errors are squared.  

 

(3.1) 

(3.2) 
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Integral of the Time -Weighted Absolute Error (ITAE) where: 

𝐼𝑇𝐴𝐸 = ∑ 𝑘 |𝑒(𝑘ℎ)|

𝑛

𝑘=1

 

improves the information given by IAE, adding more importance towards errors that persist 

over time. 

Integral of the Time-Weighted Square Error or Mean Square Error (MSE) where: 

𝑀𝑆𝐸 = ∑ 𝑘 𝑒2(𝑘ℎ)

𝑛

𝑘=1

 

Mean square error is really important, since it prioritizes large errors, normal in the 

initial system response but since it multiplies with time, large errors that persist for long 

will be more relevant (10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.3) 

(3.4) 
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4 Results 
 

4.1 Introduction 

 

The velocity control was tested using the developed fuzzy controller explained 

previously and a PID controller which will be explained further in this chapter. Since there 

were no specified performance objectives, it was opted to build a generic fuzzy controller. 

 This dissertation objectives are based on understanding the digital control towards 

fuzzy controllers, being aware of which parts could improve the controller performance, 

what to do to make the controller more precise and understanding the problems that each 

step revealed.  

 The precision of the controller was the first evident problem. From the hardware 

perspective, being able to gather the velocity by counting the phase edges directly from 

the incremental encoder mounted on the motor shaft proved to be a significant increase 

in the input resolution. The other option of using the tachometer had a resolution of 

6Volts/1000rpm. This meant a 0.6mV for each rpm that was highly susceptible of error. 

Even so, counting the phase edges from the phase signal in the QEI for a step time (20ms) 

brought some problems at lower speed. For instance, if the motor is rotating at 500rpm, a 

single edge count means a variation of 4rpm. This means that even if the control signal 

does not change, there might be a slight velocity variation due to that. At higher speed, 

over 2000rpm, a single phase edge count will barely be noticed.  

 For the software of the controller, the precision was majorly dictated by the use of 

fixed point. By only using integers there is always a precision loss. In fact, as it will be shown 

in the subchapter 4.3, the minimal increment to the system was of 3rpm.  

  

4.2 PID Controller 

 

 To compare and validate the fuzzy controller performance and results it was 

selected the PID controller for comparison. To develop the PID controller it was selected 

the Matlab PID Tuner toolbox with plant identification.  

The plant identification required the data from a step command, like the one shown 

in the figure 3.7. After identifying the plant it was possible to estimate the PID parameters 

and tune them towards slower-faster behaviors.  
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After some modest selection of the PID parameters it was tested on the 

microcontroller. The control results were far from optimal, with around 50% overshoot. 

The system was further manually tuned to reach the set point without overshoot and the 

final results are shown in the next subchapter. 

 

4.3 Experimental Results 

 

The experimental results shown in this subchapter all used the same reference 

signal. It is a square wave that ranges from 1500rpm to 3000rpm with several different size 

steps used in between as it is shown in the figure 4.1. The main purpose of using the square 

wave form is that it emulates a perfect variation, only digitally possible, which can be 

reflected as the best case possible.  

The close loop output should be analyzed as it tries to follow this input wave as 

closely as possible, in all its different steps, each separated by 3 seconds.  

 

Figure 4.1 Tests reference signal 
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4.3.1 PID and Fuzzy controllers without load applied 

 

The first tests with the controllers used the setup shown in the figure 4.2. The DC 

motor has it vein attached to the other motor (used as generator) but without any load 

applied to its terminals. At the right of the motor is the power control module that receives 

the PWM wave from the microcontroller using the MCPWM module. The reference signal 

is received through RS232 from the Matlab, using the Uart1. 

 

Figure 4.2: Motor speed set up without load 

The figure 4.3 represents the output for the PID controller for the figure 4.1 

reference signal. The signal repeats twice, for the course of 60 seconds. The PID controller 

has no overshoot. High errors are quickly recovered but without overshoot the controller 

is slower at small errors, taking some time to reach the steady state value.  

At lower speed the motor tends to have a small oscillation, which comes in line with 

the way the motor speed input is gathered. At lower velocity, there are fewer impulses 

counted, whereas the difference between few impulses can generate a resolution error in 

speed that does not reflect the actual state of the motor. It is possible to notice this effect 

gradually getting nullified as the motor speed increases, being quite noticeable at 1500rpm, 

slightly noticeable at 2000rpm and barely seen at 3000rpm. This effect is shared between 

both controllers due to its source being from the input and not from the respective 

controller influence.  
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Figure 4.3: Motor speed for the PID Controller 

 The control signal for this output is shown in the figure 4.4, where it is possible to 

notice the usage of the controller signal the duty-cycle wave sent to the power control 

module. When the set point changes the control signal goes close to 100%, responding to 

the large error input. When the set point changes from 1500rpm to 3000rpm, the control 

signal actually reaches 100% and as the motor speed approaches the set point value, the 

control signal drops and, to avoid overshoot, even drops slightly more than the final value. 

In the 1000rpm set point changes this behavior is barely noticeable.   

 

Figure 4.4: PID Control signal  
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 The next figure shows the output signal for the fuzzy controller.  

 

Figure 4.5: Motor speed for the Fuzzy Controller  

 At the figure 4.5 it is possible to notice the overall fuzzy controller time performance 

for the set point wave shown at figure 4.1. The system output follows the input really 

closely, with barely any overshot. The rise time (0%-100%) for the 1500rpm to 3000rpm is 

0.42s, for the 2000rpm to 3000rpm is 0.34s. The time for the 3000rpm to 2500rpm is 0.2s, 

for the 2500rpm to the 1500rpm is 0.28s and from 3000rpm to 2000rpm is 0.3s. The fuzzy 

controller approach towards every new set point is slightly different. While in PID controller 

it follows a predictable variation towards the various input changes, the fuzzy controller 

can have slight differences. Since the triangular membership functions offer a linear by 

phases change of certainty but the rule set table values change non linearly, depending on 

which membership functions are active and  which percentage, it can generate different 

behaviors.   

 The control signal behavior, presented in the figure 4.6 is not as aggressive as the 

PID control signal when the set point changes, which slows down the fuzzy controller at the 

start. When both control signals reach its peak value, the fuzzy control signal decreases 

until the set point while the PID control signal decreases to the actual speed control signal 

value and raises form there to the set point.  
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Figure 4.6: Fuzzy Control Signal 

 To take more conclusions on both controllers behavior it is shown a closer look at 

the 2000rpm to 3000rpm set point variation.  

 

Figure 4.7: Fuzzy controller response to a set point variation  
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The figure 4.7 shows a closer look to the fuzzy controller behavior. Several 

important aspects should be addressed, the initial small oscillation at 2000rpm, which is a 

problem addressed in the figure 4.11, the less than 5% overshoot and the rise time.  

Even though the output actually shows a small overshoot, it is barely noticeable as 

it is less than 3% of the final value. The rise time achieved was 0.34 seconds. This time 

represents 17 controller time steps to reach the final value. From the knowledge gathered 

for the motor, it was possible to change the motor speed from 2000rpm to 3000rpm in 0.14 

seconds. Having in mind that the controller objective is to change set points in the least 

time possible without overshoot and with some degree of precision, the overall 

performance towards the maximum possible in terms of rise time was quite good. This 

value could be better if it was not the problem shown in the control signal for this same 

output, at the figure 4.8: 

 

Figure 4.8: Fuzzy control signal  

 The fuzzy controller control signal was actually raising at a very high rate, but due 

to the fact the derivative component was so aggressive it held down the control signal 

loosing 3 control steps correcting that. It then resumes increasing the control signal at a 

slower rate since it was closer to the set point. The main reason this happens is because 

the fuzzy system was only using three membership functions for the change of error input, 

which represents the derivative gain. When using the active load setup this effect 

disappears, which reinforces this statement. Back in the chapter 3 it was explained how the 
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change of error membership functions were centered, to improve the system response in 

an active load setup and, due to that choice, decreasing the quality of the controller 

response on this setup.  

The choice of using only three membership functions for the change of error limits 

the number of control options. If more membership functions were used, it would be 

possible to tune a less aggressive behavior when the error was large and the change of 

error was low – medium, and a more aggressive impact when the error was low and the 

change of error was high, which happens for faster control systems. Given that only three 

membership functions were used to the change of error, it was preferred to keep the no 

overshoot performance objective over the rise time and, as such, the aggressive behavior 

on the derivative gain.  

 The PID controller response for the same variation is how in the figure 4.9. 

 

Figure 4.9: PID controller response to a set point variation 

 The PID controller shows no overshoot and the rise time is similar of the fuzzy 

controller. The more impactful difference is at the initial behavior towards the set point 

change. The PID controller changes 750 rpm in 0.12s while the fuzzy controller takes 0.18s. 

This represents a difference of 3 controller steps between the controllers, which confirms 

the previous analysis on the fuzzy control signal. The PID controller then slows significantly, 
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taking a very cautious approach to the set point, completely avoiding any overshoot. The 

fuzzy controller is then slightly faster on the last 250rpm.   

 

Figure 4.10: PID control signal  

The figure 4.10 shows the PID control signal behavior. The initial response to the set 

point variation uses up to 98% of the control signal which is almost optimal. As expected 

from the careful approach towards the set point shown in the figure 4.9, the control signal 

changes slowly near the set point. 
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 Figure 4.11: PID versus Fuzzy  

 The figure 4.11 represents the comparison of the PID and Fuzzy controllers.  

The figure 4.12 shows the effects of the imprecision caused by the minimum 

increment of the controller. 

With the minimum increment to be held at 3 rpm there is a random problem. When 

the control gains that add up to the final membership function do not make it possible to 

reach the actual correspondence of the control gain – controller speed at the desired set 
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point, the controller will oscillate around the minimal incremental value around the set 

point but never reaching it.  

 

Figure 4.12: Controller imprecision at the set point 

 

4.3.2  PID and Fuzzy Controllers with active load applied 

 

To check both controllers quality it was used a setup with an active load applied to 

the motor working as generator. It is the same setup as the figure 4.2, with the following 

changes on the generator (figure 4.13): 
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Figure 4.13: Active load setup 

The current was set using a reference voltage, which was controlled by the 

microcontroller using an external DAC. The current supply had a factor of 1:1, so that the 

current in amperes passing through the power transistor is equal to the reference voltage 

from the DAC module. 

The electric schematic of the controlled current supply is shown in the figure 4.14 

and the figure 4.15 shows the power transistor with the respective dissipater.  

 

 

 

 

DC Motor Generator 
Power 

Transistor 

Error 

𝑑

𝑑𝑡
 

  

- 

∑ 

LPC1759 

Quadrature Encoder Interface 

Uart1 

Velocity 

Reference 

Controller 

e 

de 

MCPWM 

Duty-Cycle 

SPI 

DAC 

Controlled 

Current 

Supply 

ʃ 



67 

 

 

Figure 4.14: Electric schematic of the controlled current supply 

 

 

 

 



68 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Power transistor 

To check the impact and the operating range of the motor speed with the load 

applied it was first tested with a constant current applied of 0.5A (current that the fixed 

current supply pulls from the generator).  

 

Figure 4.16: Fuzzy controller response 
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Figure 4.17: PID controller response 

The figure 4.16 and 4.17 shows both controllers results in controlling the motor 

speed (reference signal) with a constant load of 0.5A. Both controllers cannot reach the 

3000rpm, since the control signal is already at 100%, as shown at the figures 4.18 and 4.19.  

Both controllers show a similar response as without static load (figures 4.3 and 4.5), 

with the PID controller being slightly slower. The control signals shown at the figures 4.18 

and 4.19 help understand this behaviour.  

 

Figure 4.18: Fuzzy control signal  
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Figure 4.19: PID control signal  

The control signals are much higher when compared with the precious setup and 

the PID controller struggles more with that. The PID controller had a response towards the 

set point change that used 98% of the control signal even though it would fall back a few 

iterations after. Even so, the PID controller when dropping the control signal would have 

the error diminish, being closer to the set point. Now, since the control signals are higher, 

that early gain is lower.   

The figure 4.20 shows the comparison of the PID and Fuzzy controllers for the static 

load setup in the same graphic. The small gap in the top of the graphic between both 

controllers is due to a small offset variation on the external DAC that indirectly controlled 

the current that was being pulled from the generator.  
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Figure 4.20: PID versus Fuzzy (static load)  

 The response of the controllers to the motor active load variations is shown in the 

figures 4.21 and 4.23 and their respective control signals in 4.22 and 4.24.  

 The set point was fixed at 2000rpm. During 10 seconds it was applied 3 different 

loads and cancelled before the next load being applied with 2 seconds interval. The first 

load is around 250mA, the second 500mA and the last 1A, like the next table shows: 

Table 4.1: Active load variation profile 

Time(s) 0 0.5 2.5 4.5 6.5 8.5 10.5 

Current(A) 0 0.25 0 0.5 0 1 0 
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Figure 4.21: PID Controller response for active load variations 

 

Figure 4.22: PID control signal for active load variations 
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The PID controller response for the active load variations showed in the figure 4.19 

reflects a decrease of the controller quality in this setup. By analysing the control signal at 

the figure 4.20, it is possible to notice how the control signal increases slowly. This effect 

make the PID response slower, taking nearly 0.6s to recover from the 1A variation.  

The fuzzy controller response if shown in the figure 4.21. It is possible to see that 

the fuzzy controller keeps a close behaviour to the previous setups. By analysing the control 

signal shown in the figure 4.22, it is possible to see the similarities with the figure 4.8 but 

without the control signal setback. This time, the fuzzy control signal went up to 98% and 

then decreased until reaching the set point value. 

 

Figure 4.23: Fuzzy Controller for Active load variations 
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Figure 4.24: Fuzzy control signal for active load variations 

 

Figure 4.25: PID versus Fuzzy (active load) 
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 The figure 4.25 shows the comparison of the PID and Fuzzy controllers on the active 

load setup. 

 

4.3.3 Controllers performance 

 

 To measure the controllers performance it was used the metric IAE, ISE, ITAE and 

MSE. The first results on both controllers use a setup without load applied to the generator, 

with a set point variation of 750rpm (table 4.3). The measurements for the static load used 

500mA and a set point variation of 750 rpm (table 4.4). For the active load variation is was 

used a single measurement with 1A variation at 2250rpm (table 4.5). 

In addition to the two controllers explained it was also used one extra fuzzy 

controller with a different configuration.  

 The additional fuzzy controller used triangular membership functions in a 

configuration with 5 membership functions for each input. The rule-set table is presented 

in the table 4.3. The fuzzification and defuzzification methods were the same used on the 

previous fuzzy controller setup. The gains presented in the rule set table are the duty-cycle, 

whereas 1000 = 1% duty-cycle.  

 The new fuzzy controller will be denoted as fuzzy2 and it will be displayed the 

graphics for the fuzzy2 response on the tests used to calculate the metric IAE, ISE, ITAE and 

MSE 

e  
de 

Negative 
high 

Negative 
small 

Zero Positive 
small 

Positive 
high 

Negative 
high 

-200000 -180000 -140000 -50000 0 

Negative 
small 

-150000 -140000 -75000 0 50000 

Zero -100000 -75000 0 75000 100000 

Positive 
small 

-50000 0 75000 140000 150000 

Positive 
high 

0 50000 140000 180000 200000 

Table 4.2: Rule set table fuzzy2 

 The fuzzy2 response towards the first metric setup is shown in the figure 4.26 and 

its respective control signal in the figure 4.27. 
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 Figure 4.26: Fuzzy2 response for the first setup 

The fuzzy2 controller had a faster response than the first fuzzy setup, majorly 

because of the addition of two more membership functions in the change of error input. 

Even with the error input passing from 11 membership functions to 5, it was not as 

relevant. This is explained because most of the error membership functions were in an 

error input range that was almost never used. The number of active membership functions 

on the error input almost did not change with this. It is also now possible to see the control 

signal following two different behaviours, as each control signal figure show (figures 4.27, 

4.29 and 4.31.  

 

Figure 4.27: Fuzzy2 control signal for the first setup 
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 The figure 4.28 shows a similar behaviour with the figure 4.26 as the control signals 

are mostly equal. 

 

 Figure 4.28: Fuzzy2 response for the second setup 

 

 

Figure 4.29: Fuzzy2 control signal for the second setup 

 For the last setup, the fuzzy2 response is shown in the figure 4.30. 
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Figure 4.30: Fuzzy2 response for the third setup 

 

 

Figure 4.31: Fuzzy2 control signal for the third setup 

 The results on all controllers to the metrics is shown on the tables bellow. 
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 The first setup results: 

 ITAE IAE ISE MSE 

Fuzzy 571 3843 1658251 58025 

PID 476 3258 1425766 33957 

Fuzzy2 677 3208 1192054 30236 

Table 4.3: Performance for PID and Fuzzy controllers without load  

 The second setup results: 

 ITAE IAE ISE MSE 

Fuzzy 1089 4938 2091448 97588 

PID 
793 

 
4843 1848247 83821 

Fuzzy2 830 3844 1482982 47787 

Table 4.4: Performance for PID and Fuzzy controllers with Static load 

The third setup results: 

 ITAE IAE ISE MSE 

Fuzzy 1129 4719 1568853 167080 

PID 1323 5226 1252296 198400 

Fuzzy2 1448 3228 590634 65343 

Table 4.5: Performance for PID and Fuzzy controllers to active load variations  

 Based on this results the PID controller showed better results than the first fuzzy 

controller except in the last setup, where the fuzzy controller showed better results except 

in the ISE. The second fuzzy controller meanwhile showed better results in every setup, 

with the exception of the ITAE index. This means the second fuzzy controller had more 

small errors over time since the MSE index was normally very good, that reflects a very 

good response towards large errors and the initial response. 
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5 Conclusion and Future Work 
 

5.1 Conclusion 

 

The work developed granted a very insightful experience in fuzzy control, digital 

control and embedded programming. It was possible to realize that fuzzy controllers offer 

a wide array of opportunities in digital control to achieve very good performances 

objectives. In comparison with the general PID controllers, the fuzzy systems can achieve 

better results and still offer more control options. The simplicity of PID controllers stands 

as a relevant fact in this comparison but even a simple fuzzy system can have very good 

performance results. The more complex fuzzy controllers can achieve and outpace the 

performance of the PID controllers, given the versatility that the fuzzy systems have that 

the PID systems does not. A very important fact is that every digital fuzzy controller can be 

upgraded, without changing the hardware. The amount of tuning process that can be 

applied in the fuzzy systems is immense, which is a very good remark to acknowledge when 

choosing between the two types of controllers. This options and the fact that the fuzzy 

controllers can easily adapt to nonlinear systems, since fuzzy controllers can have nonlinear 

change of certainty in the membership functions shape or have a nonlinear rule set table,   

makes the fuzzy controller a choice to be acknowledge.  

The selected microcontroller – NXP LPC1759, which stands in a new type of 

microcontrollers that specific offer better solutions for embedded controllers, proved to 

be a valuable option. Both the Quadrature Encoder Interface and the Motor Control PWM 

modules offered a very good option to simplify the hardware and still grant very good 

results. The tests on the QEI velocity reading versus the tachometer attached to the motor 

only had a slight difference of 1% maximum.  The MCPWM could be slightly better, as if it 

is required a frequency higher than 20000Hz, the resolution for the PWM constant gets 

really low, which can become a problem.  

Using FreeRTOS also proved to be an excellent choice. In digital control is very 

important to keep a perfect notion on every action, when each segment of code happens 

and, most of all, to be able to control that. FreeRTOS tools offered this possibility with great 

results and also being simple to use and to control.  

The workflow was full of step backs with practical problems that took a long time 

to overcome. The path towards a functional controller involved a lot of choices that mostly 

were an agreement between something good and something bad. Some examples of this 

is the choice between fixed point and floating point or the number and shape of 

membership functions,  This process was of extreme importance, as it made possible to 
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acknowledge at least some problems and solutions methods that might be important in 

the years ahead.   

 

5.2 Future Work 

 

Following the conclusions of this work, the next step should be to evaluate the 

advantages of fuzzy systems over other controllers. It would be interesting to build an 

adaptive fuzzy controller. As it was discussed previously, it is very hard for the designer to 

know which membership functions or rule-sets to pick to achieve a certain level of 

performance. By giving the controller the ability to adapt these and automatic tune to 

achieve certain levels of performance it is a great improvement overall. In many cases, even 

if the performance is achieved, there could be always some new factors that could change 

the system in a way that a non-adaptive controller ca not answer. For this type of project 

it would be recommended to use C++ to interpret the membership functions as objects to 

have move options and better processing times.  

There are various improvements that can be made to the fuzzy controller interface 

as well. The interface has its basics abilities but it is far from achieving great versatility. The 

most important factor could be adding the ability to directly make or change the rule set 

table form the interface. Adding the ability to make different number of membership 

functions and more shapes and even selecting the number of inputs should be possible. It 

would be recommended to use a more powerful processor for this case and being able to 

work with floating point would vastly increase the controller performance.  
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