
1

 Universidade de Aveiro

2014

Departamento de Eletrónica, Telecomunicações e
Informática

Daniel Valente Valentim

Controlador Fuzzy baseado em ARM Cortex M3

Fuzzy Controller based on ARM Cortex M3

2

3

 Universidade de Aveiro

2014

Departamento de Eletrónica, Telecomunicações e
Informática

Daniel Valente Valentim

Controlador Fuzzy baseado em ARM Cortex M3

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia Eletrónica
e Telecomunicações, realizada sob a orientação científica do Professor Dr.
Alexandre Manuel Moutela Nunes da Mota e do Professor Dr. Telmo Reis
Cunha, ambos do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro.

4

5

agradecimentos /
acknowledgements

Dedico este trabalho à minha família e amigos, por me orientarem e auxiliarem
em todo este trajeto.

6

7

the jury

Presidente / President Professora Doutora Pétia Georgieva Georgieva

Professora Auxiliar, Universidade de Aveiro

Vogais / Examiners Committee Prof. Doutor José António Barros Vieira

Professor Adjunto, Instituto Politécnico de Castelo Branco

 Prof. Doutor Alexandre Manuel Moutela Nunes da Mota

Professor Associado, Universidade de Aveiro

8

9

Key-words

Abstract

Fuzzy Logic, Digital Control, Microcontrollers

Fuzzy logic is the base for fuzzy controllers. The fuzzy logic is a concept that
defies the normal boolean logic, used mostly everywhere, where everything
belongs to a defined state and jumps to other state. The fuzzy logic confines that
“middle” space, undefined for the usual logic. In fuzzy logic, there is a continuous
growth in the variable between states, and that continuous path is defined and
interpreted.

This concept is applied to digital controllers and, with the strong development of
microcontrollers and digital control overall, the fuzzy theory can be applied with
great performance results. Through digital control it is simple to converge both
fuzzy logic and mathematics methods, like PID, into the same system, improving
the performance of the control mechanism.

In this dissertation, there is an approach to the basics of fuzzy theory and fuzzy
controllers and the development of this area in digital control for microcontrollers.
To achieve several control requirements, it was implemented using real-time
methods. The tests were made on a DC motor, for velocity control, and
compared with default tests using a PID controller.

10

11

Palavras-chave Lógica difusa, Controlo Digital, Microcontroladores

Resumo

Lógica difusa é a base dos controladores difusos. A lógica difusa é um
conceito que desafia a lógica Boleana, onde tudo pertence a um estado
definido e salta para outro estado. A lógica difusa define e interpreta este
espaço entre estados, não definido pela lógica boleana, onde não existe um
crescimento contínuo das váriáveis entre estados.

 Este conceito é aplicado em controladores digitais e, com o forte
desenvolvimento na área dos microcontroladores e controlo digital, a lógica
difusa pode ser aplicada para atingir melhores desempenhos. Através do
controlo digital é possível juntar a lógica difusa e métodos matemáticos, como
PID, no mesmo sistema, aumentando o desempenho do mecanismo de
controlo.

Nesta dissertação é feita uma introdução à lógica difusa e controladores
difusos e o seu desenvolvimento na área de controlo digital para
microcontroladores. Todo o sistema foi implementado utilizando ferramentas
de sistemas de tempo real. Os testes foram realizados num motor DC, com o
objectivo de controlar a sua velocidade e comparado com testes utilizando
um controlador PID.

12

13

Contents

Image list.. 15

Table List .. 19

List of Acronyms .. 20

1 Introduction.. 21

1.1 Motivation... 21

1.2 Objectives ... 21

1.3 Structure ... 21

1.4 Methodology ... 22

2 Fuzzy Control .. 25

2.1 Introduction .. 25

2.2 Fuzzy inputs and outputs .. 27

2.3 Linguistic variables .. 28

2.4 Rules .. 29

2.5 Fuzzy quantification of knowledge ... 31

2.6 Inference process .. 32

2.7 Defuzzification .. 34

2.8 Tuning the fuzzy controller ... 35

2.8.1 Tuning via scaling the universe of discourse ... 35

2.8.2 Tuning membership functions ... 37

3 Fuzzy Controller Design .. 39

3.1 Introduction .. 39

3.2 Interface .. 41

3.3 Knowledge gathering .. 43

3.4 Fuzzy design .. 45

3.5 Fuzzy structure .. 47

3.5.1 Membership functions .. 47

3.5.1.1 Number ... 47

3.5.1.2 Shape .. 49

3.5.2 Inference mechanism and defuzzification .. 50

14

3.6 Performance ... 52

4 Results .. 55

4.1 Introduction .. 55

4.2 PID Controller .. 55

4.3 Experimental Results .. 56

4.3.1 PID and Fuzzy controllers without load applied ... 57

4.3.2 PID and Fuzzy Controllers with active load applied 65

4.3.3 Controllers performance ... 75

5 Conclusion and Future Work .. 81

5.1 Conclusion ... 81

5.2 Future Work .. 82

Bibliography ... 83

15

Image list

Figure 2.1: Fuzzy controller architecture (1) ………………………………………………....................26

Figure 2.2: Fuzzy linguistic variables representation ……………………………………………………..28

Figure 2.3: Fuzzy linguistic variables ……………………………………………………………………………..29

Figure 2.4 Selection of two membership functions ……………………………………………………….31

Figure 2.5 Set of membership functions for error (left) and change of error (right) ……...32

Figure 2.6: Fuzzy matching process ……………………………………………………………………………….33

Figure 2.7: a) conclusion phase, b) membership function certainty ………………….…………..34

Figure 2.8 Fuzzy controller with scaling gain G1, G2 and h ……………….…………………………..36

Figure 2.9 Scaling the input…………………………………..……………………………………………………….36

Figure 2.10 Scaling the output ………………………………..…………………………………………………….37

Figure 2.11 Nonlinear output membership functions …………………..……………………………….38

Figure 3.1: Power control module …………………………………………..…………………………………….39

Figure 3.1: LPC1759…………………….. ……………………………………………………………………………….39

Figure 3.2: DC-motor (right) and generator (left) ………………………………………………………….40

Figure 3.3: Controller environment ……………………………………………………………………………….41

Figure 3.4: Fuzzy Interface …………………………………………………………………………………………….42

Figure 3.5: Automatic rule set table ………………………………………………………………………………44

Figure 3.6: a) DC-Motor velocity (rpm), b) 0-100% Duty-cycle c) 100-0% Duty-cycle………44

Figure 3.7: Paced increment of the PWM wave ……………………..……………………………………..45

Figure 3.8: Fuzzy Controller input membership functions……………………..……………………….50

Figure 3.9: Rule-set table with the inference and defuzzification phases ………………………51

Figure 4.1: Tests reference signal ……………..…………………………………………………………………..56

16

Figure 4.2: Motor speed setup without load …………….…………………………………………………..57

Figure 4.3: Motor speed for the PID Controller……………………………………………………………..58

Figure 4.4: PID control signal ……………………..…………………………………………………………………58

Figure 4.5: Motor speed for the Fuzzy Controller ……………………………………………..……...….59

Figure 4.6: Fuzzy control Signal ………………………………………….…………………………………………60

Figure 4.7: Fuzzy controller response to a set point variation ………………….…………………..60

Figure 4.8: Fuzzy Control Signal ……………………………………………………………………………………61

Figure 4.9: PID controller response to a set point variation ………………………………………….62

Figure 4.10: PID control signal ………………………………………………………………………………………63

Figure 4.11: PID versus Fuzzy ………………………………...………………………………….……..………….64

Figure 4.12: Controller imprecision at the set point .………………………………….……..………….64

Figure 4.13: Actve load setup ………………………………………………………………………………….……65

Figure 4.14: Electric schematic of the controlled current supply …………………………….……66

Figure 4.15: Power transistor ………………………………………………………………………………….……67

Figure 4.16 Fuzzy controller response ……………………………….…………………………..…………….67

Figure 4.17 PID control response ………………………………………………..…………………..……………68

Figure 4.18: Fuzzy control signal ……………………………..……….…………………………..………………68

Figure 4.19: PID control signal ………………………………………………………………………………………69

Figure 4.20: PID versus Fuzzy (static load) ……………...………………………………….……..………….69

Figure 4.21: PID Controller response for active load variations …………..………………………..69

Figure 4.22: PID control signal for active load variations ……………………….….……………….…70

Figure 4.23: Fuzzy controller for active load variations ………………………………….…..…………71

Figure 4.24: Fuzzy control signal for active load variations ……………………………………………72

Figure 4.25: Fuzzy2 response for the first setup ……………………………………………………………73

Figure 4.26: Fuzzy2 control signal for the first setup ……….……………………………………………74

17

Figure 4.27: Figure 4.25: Fuzzy2 response for the second setup …………………………..………74

Figure 4.28: Fuzzy2 control signal for the second setup …..……………………………………………75

Figure 4.29: PID versus Fuzzy (active load) ……………...………………………………….…....………….77

Figure 4.30: Figure 4.27: Fuzzy2 response for the third setup ……………………….………………77

Figure 4.31: Fuzzy2 control signal for the third setup ……………………………………………………78

18

19

Table List

Table 4.1: Active load variation profile …………………………………….…….………………………..……67

Table 4.2: Rule set table fuzzy2……………………………………………………………………………………...71

Table 4.3: Performance for PID and Fuzzy Controllers without Load ………………………..……74

Table 4.4: Performance for PID and Fuzzy controllers with Static Load ……………………….…74

Table 4.5: Performance for PID and Fuzzy controllers to active load variations ……………..75

20

List of Acronyms

QEI Quadrature Encoder Interface

RTOS Real Time Operating System

PID Proportional, Integral, Derivative

PWM Pulse-Width Modulation

MCPWM Motor Control PWM

21

1 Introduction

1.1 Motivation

Since the beginning of development of computer systems and processing units the

idea of using these to control systems has been a constant achievement. In modern times,

with the proliferation of microprocessors, digital control systems offer a wide range of new

possibilities for almost every system in the world. It became an opportunity to research

alternative control methods and developing new digital control systems to better adjust

with the reality. This new challenge will be addressed at this dissertation, using fuzzy

control logic in these new microprocessors and compare its results with the so-far

dominant PID approach.

1.2 Objectives

Introduce fuzzy logic theory with its implementation and development on a digital

controller.

Develop a fuzzy controller based on an ARM Cortex M3 processor for velocity control

using a DC motor as test and comparison with a PID controller. Infer the quality of the

controllers using active load changes with several setups.

Develop the controller software using free RTOS tools.

Create a Matlab interface between the hardware and the software that

communicates with the microcontroller monitoring the whole structure. It should be able

to perform the basic operations on the controller, change the system input (set point),

enable and control the active load and show the real time plot of both the motor speed

and control signal.

1.3 Structure

This document is organized in five chapters:

 Introduction;

 Fuzzy Control;

22

 Fuzzy Controller design;

 Results;

 Conclusion and future work.

In the first chapter it is presented the dissertation objectives, its structure and the

motivation towards the theme.

In the second chapter there is an overview on fuzzy logic and its implementation on

fuzzy control. Then the fuzzy control method is present with constant discussion for better

insight about the theme.

In the third chapter the fuzzy control design applied to the dissertation is presented.

It starts with an overview of the control design for the work environment, explaining the

selected microcontroller and the controllable object – a DC motor. It follows by explaining

the thought process in the construction of the fuzzy controller, explaining each phase and

decision and summing up with the integration of the whole process in digital control on

microcontrollers.

In the fourth chapter are presented the results for each controller built. The results

are discussed based on the performance, complexity and possible improvements. There is

also a comparison to a standard PID controller.

In the fifth chapter the dissertation concludes with an overall discussion of the

dissertation results and future work to be developed on the fuzzy control area.

1.4 Methodology

The dissertation consists in developing a fuzzy controller based on an ARM Cortex M3

processor. The fuzzy system is applied to control the velocity of a DC motor.

The work developed in this dissertation follows a previous dissertation work (2),

which developed all the conditions for a controllable system. It included a power control

module and a DC motor coupled to another motor working as generator. Starting at this

point, the workflow began with adapting the power control module into the

microprocessor and retrieving the input of the fuzzy controller, the velocity.

 The next step used the selected microprocessor, an LPC1957 with ARM Cortex M3,

which is a unique unit specialized to work with motor control (3). Both the velocity and

position are measured by the Quadrature Encoder Interface of the microcontroller. The

23

output, duty cycle of a PWM wave, is directed to the power control module using the motor

control PWM module. For optimal reasons and better control guarantees the developed

code used free RTOS (4). The fuzzy control logic was developed in the microcontroller,

followed by testing both systems and a PID controller for results comparison.

Finally it was built an interface using Matlab to isolate the hardware from the

software, granting the option to operate the control system and overview the system data

in real time.

24

25

2 Fuzzy Control

2.1 Introduction

“Fuzzy control provides a formal methodology for representing, manipulating and

implementing human’s heuristic knowledge about how to control a system” (1 p. 10). Fuzzy

logic is a technique to embody human like thinking into a control system. A fuzzy controller

can be designed to emulate human deductive thinking, that is, the process people use to

infer conclusions from what they know. Traditional control approach requires formal

modeling of the physical reality. Fuzzy Logic Control has proven to be an excellent choice

for many control systems applications since it mimics human control logic. It can be built

into anything from small, handmade products to large computerized process control

systems. Fuzzy basic control has become highly competitive due to its better performance,

high reliability and robustness. The thinking process involved in the fuzzy realm is not

complex; it is simple, elegant and easy to apply.

Fuzzy logic control is one of the methodologies for solving control system problems.

Its implementation in control systems ranges from simple, small, embedded micro

controllers to large, networked, multi-channel PC or workstation-based data acquisition

and control systems. It can be implemented in hardware, software or a combination of

both.

Fuzzy logic controllers provide a simple way to reach at a definite conclusion based

upon vague, ambiguous, imprecise, noisy, or missing input information. Fuzzy logic

controllers approach to control problems mimics how a person would make decisions at a

faster rate. It is inherently robust since it does not require precise noise free inputs. The

output control is a smooth control function despite a wide range of input variations. This

also allows a different approach to control complex systems. Fuzzy logic focuses on what

the systems should do rather than trying to model how it works. One can concentrate on

solving the problem rather than trying to model the system mathematically, if that is even

possible. On the other hand, the fuzzy approach requires a sufficient expert knowledge for

the formulation of some of the fuzzy controller main structure parts - the rule base, the

combination of the sets and the defuzzification. “If you can't explain it to a six year old, you

don't understand it yourself” (5).

The fuzzy controller block diagram is represented in Figure 2.1. It is a fuzzy controller

applied in a closed-loop control system. The plant outputs are denoted by y(t), its inputs

are denoted by u(t), and the reference input to the fuzzy controller is denoted by r(t).

26

Figure 2.1: Fuzzy controller architecture (1 p. 11)

The fuzzy controller consists of four major phases/blocks. The first phase is the

fuzzification, which works as an interface for the fuzzy logic. It simply transforms the inputs

so that they can be interpreted by the inference mechanism and related to the rules in the

rule-base block.

The second phase is the inference mechanism, which evaluates the content in the

rule-base block and decides which control rules are relevant based on the information

gathered from the inputs and then decides what the input to the plant should be.

The third is the rule-base that contains the knowledge required to control the system,

in the form of a ruled-set.

The last phase is the defuzzification. It is an interface that converts the conclusions

inferred from the rule-base into the inputs of the plant. Basically, the fuzzy controller acts

as an artificial decision maker that operates in a closed-loop system in real time. It gathers

the plant output data y(t), compares it to the reference input r(t), and then decides what

the plant input u(t) should be in order to achieve the performance objectives.

To design the fuzzy controller, the control engineer must gather information on how

the artificial decision maker should act in the closed-loop system. Depending on the

controllable system, this information can come from a human expert at the controllable

task. It must be the control engineer to understand the plant dynamics and formulate a set

of rules about how to control the system. This quantification process of the knowledge

gathered from the controllable system to the rules is of major importance. It is quite natural

to realize that how much better the expert on the controllable task is, the better

performance it is to expect from the fuzzy controller. The importance of the control

engineer is still very much as relevant, as it is on his own skills the ability to correctly import

27

the information gathered to the system from the expert. It is a crucial task, because only

the control engineer knows both sides, and his ability to correctly pass the information

gathered from an expert to the fuzzy controller and knowing the controller limitations can

be a very hard task to perform.

As this information is loaded into the rule-base, and an inference strategy is chosen,

then the system is ready to be tested to see if the closed-loop performance objectives are

met. Knowing this, the ability to create a fuzzy controller is very much different for every

designer.

Fuzzy control system design essentially selects the fuzzy controller inputs and

outputs, choose the preprocessing that is required for the controller inputs and possibly

post processing that is required for the outputs and finally designing each of the four

components of the fuzzy controller explained above.

2.2 Fuzzy inputs and outputs

There are several important aspects to keep in mind when choosing the correct

inputs for a fuzzy system. In general, the inputs should grant enough information about the

current state of the system that allows the fuzzy controller to correctly decide which action

to take that best serves the performance objectives. In a fuzzy system, it is wise to carefully

choose the number of inputs. If the expert on the controllable task only bases his

predictions on a single reference, then adding more inputs would only cause potential

unexpected results. When the expert relies on many inputs, even if some are not of major

importance, it is really important to keep them. The fuzzy controller can easily adapt

different scales of importance due to its inference process. It is really important to keep in

mind that sometimes the human expert does not know correctly how many aspects he is

evaluating to make his decisions, and therefore sometimes it is a hard choice for the control

engineer to choose the inputs. In a simple example, a motor velocity can be evaluated by

its sound. Naturally you could assume that the correct input for a motor velocity control

would be the error or change of error. But as a fuzzy controller it is really important to keep

the correct input that better relates the knowledge gathered from the expert to the rules.

It could still be possible to use the error of the velocity if you could relate it to the sound it

makes, but that is much harder than choosing to implement a sensor that evaluates the

sound.

The thought process behind choosing an output follows the same reasons, while its

importance might not be of such value as the inputs, it is still optimal for the defuzzification

28

process if the chosen output can relate with the controller rule-set and the controller

actuator in a simple way.

2.3 Linguistic variables

To better define the knowledge given by the expert, fuzzy control uses a set of

linguistic variables. These variables describe each of the time-varying fuzzy inputs and

outputs. There are many choices of the linguistic description of variables. Often the control

engineer can choose for a more complete description of the variable and use long linguistic

descriptions, but these choices do not reflect in any way in how the controller operates. It

is simply a notation that helps the construction of the fuzzy controller using fuzzy logic.

These linguistic variables change dynamically over time, so after defining those, some sort

of dynamic identification is also required. For instance, for the input “e(t)” the linguistic

variable “error” can be used and to identify its dynamics “negative small” , “zero”, “positive

small”. Other kind of descriptions can be used, even numbers, but they only act as a

representation of its dynamic value and not the value itself. An example is shown in the

figure 2.2.

The input “height” represents the height of the senior human population, which

ranges from 1.25m to 2.25m. So “height” is the linguistic variable that represents the input

of the fuzzy system. The crisp values are fuzzified to three dynamic variables Short, Medium

and Tall. Each one defining a specific part of the input and together covering the entire

input range.

Figure 2.2: Fuzzy linguistic variables representation

This linguistic variables and dynamic values provide a language for the expert to

express his knowledge about the decision-making process established in the fuzzy

0.5

1

 Short Med Tall

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 meters

29

controller, given by its inputs and outputs. Basically the linguistic variables are a

representation of the inputs and linguistic values the quantification of dynamics. This

aggregate created by the control engineer to fuzzify the system is called universe of

discourse, which also includes the way these variables relate to each other, expressed in

the fuzzy rules.

 In the classic approach, the difficulty of correctly defining the margins between sets

is an evident problem. Defining tall as two meters and not tall as less than two meters

means people with 1.75 meters aren’t tall, but people with 1.76 meters are. This is a very

weak approach as ‘objects’ with such a small difference are labeled so differently and, as

such, treated differently. This also means in the same set we have a wide array of values

that are treated in the same way, which might be imprecise and worse, it makes it very

weak towards errors near the set margins, known as rigid boundaries. In contrast, fuzzy

sets have soft boundaries.

2.4 Rules

Using the linguistic variables, it is possible to create a set of rules that mimics the

decision-making of the expert. The process relies on creating a rule for each possible state

of fuzzy inputs, so that the control system always knows how to best perform at each

situation to achieve the system objectives. These rules are called the linguistic rules, since

they are created based only on linguistic variables. The figure 2.3 shows an example of

linguistic variables for a fuzzy system that tries to predict the best position for each person

based on two inputs, height and reaction time.

Figure 2.3: Fuzzy linguistic variables

1
 Short Med Tall

1.25 1.5 1.75 2 2.25 meters

 Fast Average Slow

1

0 50 100 150 200 mS

Height input Reactions input

30

With three dynamic variables (Short, Medium, Tall) for the linguistic variable

“Height” and three dynamic variables (Fast, Average, Slow) for the “reaction time” inputs,

there is a possible number of nine different rules that govern the entire possibility of inputs

combination.

The form that the inputs relate to each other to generate an output is shown below.

It is up to the designer to select the best logic to relate the inputs, in many systems the

logic “or” is best suited for instance. The nine different rules for the fuzzy set represented

in the figure 2.3 can be described as:

If the height is “short” and the reaction time is “fast”, then the control output is

“Defender”.

If the height is “short” and the reaction time is “average”, then the control output is

“Midfielder”.

If the height is “short” and the reaction time is “slow”, then the control output is

“Support”.

If the height is “med” and the reaction time is “fast”, then the control output is

“Midfielder”.

If the height is “med” and the reaction time is “average”, then the control output is

“Midfielder”.

If the height is “med” and the reaction time is “slow”, then the control output is

“Support”.

If the height is “tall” and the reaction time is “fast”, then the control output is “Striker”.

If the height is “tall” and the reaction time is “average”, then the control output is

“Defender”.

If the height is “tall” and the reaction time is “slow”, then the control output is

“Defender”.

These rules offer an abstract level that humans are often comfortable with in terms

of specifying how to control a process, but these rules are not yet the precise

representation of the quantities used to actually control the system. These rules are used

to build the rule-based table, which is the representation of every possible case of inputs

and its expected output.

Since the fuzzy logic controller processes user defined rules governing the target

control systems, it can be modified and tweaked easily to improve or alter the system

31

performance drastically. New sensors can easily be incorporated into the systems simply

by generating appropriate governing rules. Because of the rule-based operation, any

reasonable number of inputs can be processed and numerous outputs can be generated.

As it is possible to understand from the example bellow, defining the rules becomes

complex if too many inputs and outputs are chosen for a single implementation. In those

cases it is better to break the control systems into smaller parts and use several smaller

fuzzy logic controllers that can be distributed through the system.

2.5 Fuzzy quantification of knowledge

At this point, the system inputs and control logic is fuzzified and the generic concept

of how to control the system has been done. The next step is to quantify the universe of

discourse created in this fuzzification process in order to automate and control the system,

using fuzzy logic. The linguistic values are represented/quantified using membership

functions. These functions must confine the certainty of a linguistic variable in a continuous

manner and can take many shapes, usually triangles, trapezoids or bell-shaped functions

(6). This continuous manner can relate to a probability that varies from each membership

function shape.

An example of two active triangular membership functions is shown in the figure 2.4.

Figure 2.4: Selection of two membership functions

A system with 5 membership functions defines the linguistic variable “error”. For the

input “error”, both the membership functions ‘negative small’ (NS) and ‘Zero’ are active

and µx represents the certainty level of that membership function. Since triangular

µ(e) µ(e)

Error input

 -6 -4 -2 e 0 2 4 6 -4 -2 e 0 2

1 1
 NS

µZero(e)

µ
NS

(e)

µ
Zero

(e)

µ
NS

(e)

 NL Zero PS PL NS Zero

µ
Zero

(e) = 1 - µ
NS

(e)

32

membership functions represent a linear change of certainty, for the input e, that activates

both ‘NS’ and ‘Zero’, µZero (e) (certainty of membership function ‘Zero’ for the input e) is 2/3

and µNS (e) is 1/3.

Each linguistic variable is represented by membership functions and for a stated input

it specifies which membership function that input is a member of. A good definition of the

shape of the membership function is a crucial step to a good fuzzy controller.

Creating a basic and simple shape that quantifies in a manner that makes sense for

the designer is always the best step. In later stages, to achieve high performance objectives

it can be required to tune the shapes of the membership functions, but usually they only

recreate a subjective approach.

2.6 Inference process

The inference process involves two important steps, the matching process and the

conclusions.

In the matching process the premises of all the rules are compared to the controller

inputs in order to determinate which rules are valid to the current situation. This matching

process requires knowledge about the certainty of each rule, so that the more relevant the

rule, the more impact it has in the current situation. Again, the process to match the rules

can be very complex, there is a wide array of choices for the designer to match the rules,

the simplest way is using the logic “and”/”or”, but in the fuzzy universe, it is up to the

designer to choose the best for each situation. The figure 2.6 shows the quantification of

the “and” operation as an example of the matching process for a fuzzy system with 2 inputs,

e and de, each with five triangular membership functions as shown in figure 2.5.

 Figure 2.5: Set of membership functions for error (left) and change of error (right)

µ(e)

 -6 -4 -2 e 0 2 4 6

1
 NS

µ
NS

(e)

 NL Zero PS PL µ(de)

 -6 -4 -2 0 2 de 4 6

1
 NS

µ
PL

(de)

µ
PS

(de)

 NL Zero PS PL

µ
Zero

(e)

33

 The matching process is identifying which rule is active. As shown in figure 2.6,

there are four active membership functions, two for the error input ‘Negative Small, Zero’

and two for the change of error ‘Positive Small, Positive Large’. These active membership

functions ‘match’ in the fuzzy rule table, highlighted in red, selecting four different rules.

The variable uf represents a generic output membership function variable, for instance in

motor speed control it can be “power”.

 Notice that, depending of the number of active membership functions, the number

of rules can go from one to four.

Figure 2.6: Fuzzy matching process

After the matching process is complete, the conclusion process starts. The matching

process goes through the active membership functions and returns a set of rules. It is now

required to analyze these rules and set a single conclusion for the output. For this, each

rule must be analyzed independently. In the end, all single rules recommendations are

combined to conclude the final output.

The figure 2.7 represents the conclusion process for each rule, using the product

between matched membership functions values.

 E
dE NL NS Z PS PL

NL C00 C01 C02 C03 C04

NS C10 C11 C12 C13 C14

Z C20 C21 C22 C23 C24

PS C30 C31 C32 C33 C34

PL C40 C41 C42 C43 C44

Fuzzy Inference and Output:

Rule 1: error is NegativeSmall and de is PositiveSmall

then uf is C31

Rule 2: error is NegativeSmall and de is PositiveLarge

then uf is C41

Rule 3: error is Zero and de is PositiveSmall then uf is

C32

Rule 4: error is Zero and de is PositiveLarge then uf is

C42

Fuzzy Rule Table

34

Figure 2.7: a) conclusion phase, b) membership function certainty

The µ represents the change of certainty of the respective membership function and

in this particular shape it matches the probability. As it is possible to see in the figure 2.7

b), the µZero(e) is 2/3 and µNS(e) is 1/3. Each rule contribution is calculated separately (figure

2.7 a)) to a value Dx that represents the implied fuzzy set for that rule.

At this point, the fuzzy system has taken information from the inputs, quantified it to

fuzzy logic, applied knowledge from the expert to it by using the fuzzy rules and got its

conclusions in terms of fuzzy outputs. The only step left is to defuzzify these conclusions.

2.7 Defuzzification

The defuzzification phase uses the information produced by the inference process

into numeric fuzzy controller outputs. Some authors relate the defuzzification part to the

conclusion phase of the inference process. The ambiguity is clear, since most of the times,

if the outputs are chosen correctly, the final value returned from the conclusion process is

often the direct value to be applied to the system under control, and, when so, the

defuzzification process is “hidden” in the conclusion phase.

The idea about the defuzzification phase is to know that while all the values inside

the fuzzy controller work with fuzzy logic, at the end of the defuzzification process, all

values in the output must be specific (crisp values) and without fuzzy logic implied.

D13 + D14 + D23 + D24= 1

Rule 1: error is NegativeSmall and de is PositiveSmall then u
f
 is C

31

Rule 2: error is NegativeSmall and de is PositiveLarge then u
f
 is C

41

Rule 4: error is Zero and de is PositiveLarge then u
f
 is C

42

Rule 3: error is Zero and de is PositiveSmall then u
f
 is C

32

 µNS(e) * µPS(de) = D13

 µ
NS

(e) * µ
PL

(de) = D
14

 µ
Zero

(e) * µ
PS

(de) = D
23

 µ
Zero

(e) * µ
PL

(de) = D
24

b)

µ(e)

 -4 -2 e 0 2

1
 NS Zero

µ
Zero

(e)

µ
NS

(e)

a)

35

The most usual defuzzification method is the COG (Center of Gravity) (7). The COG is

calculated manually, since the membership functions used (2.8 b)) are simple. The COG

method can be described as:

𝑢 =
∑ i 𝐶i ∗ ∫ 𝜇(i)

∑ i ∫ 𝜇(i)

Ci represents the output value, as shown in the fuzzy rule table in the figure 2.6. ʃ µi is the

area under the membership function.

 For the example at the figure 2.7, the defuzzification using the COG method is:

 𝑢 =
C31 ∗ D13 + C41 ∗ D14 + C32 ∗ D23 + C42 ∗ D24

D13 + D14 + D23 + D24

2.8 Tuning the fuzzy controller

Often the designer comes to a point where the basic structure of the fuzzy controller

is completed and the next step is to improve performance or test for better results. In a

fuzzy controller, there are many ways to change the way that the controller works and

therefore its results.

2.8.1 Tuning via scaling the universe of discourse

The more intuitive way to tune a fuzzy controller is to look at the fuzzy logic

interpretations. The universe of discourse the designer built, using fuzzy logic, often

provides soft boundaries between fuzzy sets. The designer can change these boundaries,

for instance scale the fuzzy definition of linguistic variable or adapt the fuzzy boundaries.

The designer should always be aware to keep the basic fuzzy rules applied, in this case,

keep the entire input range defined. The figure 2.8 represents a fuzzy controller with

different scaling gains for the inputs and output.

(2.1)

(2.2)

36

Figure 2.8: Fuzzy controller with scaling gain G1, G2 and h

It is really important to notice that scaling the gain via G1 has the same effect of

changing the derivative axis membership function axis. In fact, choosing a scaling gain G1 =

0.5 is equivalent to have the change observed in the figure 2.9.

Figure 2.9: Scaling the input

The figure 2.9 shows that the choice of a scaling gain G1=0.5 results in scaling the

horizontal axis of the membership functions by 1 / G1. In general, it is possible to get some

conclusions about scaling G1 and its effects on the membership functions.

If the scaling gain G1 < 1, the membership functions are uniformly spread out by a

factor of 1/G1, like the figure 2.10 represents. The opposite effect happens when the

scaling gain G1 > 1 as the membership functions are uniformly contracted. The same effect

would occur to the other input (error) for the G0 gain. However, the effect on the meaning

of the linguistics that form the definition of the fuzzy controller change when scaling their

respective input gains. In particular, when G1 <1, as the membership functions are

uniformly spread out, it changes the relative meaning of the linguistics so that, for example

“ high” is now a membership function that represents higher values. The opposite happens

when G1 > 1 as the membership functions contract, “high” now represents smaller values

then before.

r e

𝑑

𝑑𝑡

G0

G1

Fuzzy

Controller
h Process

u
y -

∑

1

 Small Med High

 0 0.5 1 1.5 2

1

 Small Med High

 0 0.5*2 1*2 1.5*2 2*2

 G1 = 0.5

37

 Similar statements can be made for all the other membership functions and

respective associated linguistic values. The input scaling factors have an inverse

relationship in terms of their effect on the scaling. A G1 factor greater than 1 corresponds

of changing the meaning of the linguistics so that they quantify smaller numbers. While this

inverse relationship exists for the input, scaling the output gain has the opposite effect as

it is shown in the figure 2.10:

Figure 2.10: Scaling the output

 There is a proportional effect between scaling h and the output membership

functions. If h<1, the output membership functions contract, hence making the meaning of

their associated linguistic quantify smaller numbers. If h>1, the output membership

functions spread out, hence making the meaning of their associated linguistics quantify

larger numbers.

2.8.2 Tuning membership functions

Sometimes it is not possible to achieve the desired performance tuning only the

scaling gains. Often, it is required a more careful consideration of how to specify additional

rules or better membership functions. The major problem is that there are often too many

parameters to tune like membership function shapes, positioning, number and type of

rules. In fact, for most cases there is not a clear connection between the design objectives

(rise-time, overshoot) and a reasonable method that should be used to tune these

parameters.

A simple method to tune output membership functions is to change their positioning.

To do so, it is required to move their center. An easy and understandable example to tune

membership functions is shown in the next figure 2.11:

1

 Small Med High

 0 0.25 0.5 0.75 1

1

 Small Med High

 0 0.5 1 1.5 2

h = 0.5

38

Figure 2.11: Nonlinear output membership functions

In the figure 2.11 a) it is represented a common linear equally spread set of output

membership functions. Imagine the fuzzy system described in the figure 2.8. When the

inputs error and change of error are small, likely the system is close to its set point, the

output values are near zero. For the figure 2.11 a), even if the inputs change, they linearly

increase or decrease the response from the output membership functions. If the designer

feels that the system, for instance, should keep a linear and close to zero response when

close to the set point and a much stronger output when far away from the set point. This

change is represented in the figure 2.11 b), by replacing the centers of the output

membership functions, using Ci = sign(i)i2, where Ci is the center of the respective

membership function.

If the systems inputs are near where they should be, then the signal applied to the

system is small, but if the inputs change, then the signal applied to the system is much

higher.

While there are some methods for tuning the logic premises used in the inference

process (‘and/or’) or in the conclusion phase (‘product/minimum’), these methods often

do not provide insights into how these parameters affect the performance that we are

trying to achieve (hence it is difficult to know how to tune them to get the desired

performance). It often lends to a process of trial and error, which results must be carefully

validated and interpreted by the designer.

The tuning process overall should be an interactive process after the first fuzzy

requirements are met. The designer should feel that the tuning process should be adding

more knowledge to the system or to better work with the knowledge it already has.

Generally, if the designer is having difficulties building a good fuzzy controller, he probably

needs more knowledge of the physics of the process to control, and then get that

knowledge to properly affect the plant dynamics into the fuzzy controller.

1

 C0 C
-1
 C

-2
 C

1
 C

2

 1

 C
-2
 C

-1
 C

1
 C

2

 a) b)

 C
0

 -2 -1 0 1 2 -4 -1 0 1 4

39

3 Fuzzy Controller Design

3.1 Introduction

In order to implement the fuzzy controller it was chosen a DC motor RS210L (8) with

the objective to control its velocity. It is a permanent magnet DC motor from Parvex (8 p.

2), using 24V supply and definition speed of 3000rpm. The tests setup used a previous work

from Luís Terra that includes the LPC1759 and the power control module (2 p. 61) (figure

3.1).

Figure 3.1: Power control module

Luís Terra developed two boards, one for the LPC2129 used in his work and the

LPC1759 after its release that year. The LPC1759 (2 p. 106) (figure 3.2) is a significant

advance from the LPC2129, doubling its performance. It also provides a Motor Control

PWM (MCPWM) and a Quadrature Encoder Interface (QEI) module.

Figure 3.2: LPC1759

The DC motor is mechanically coupled with a parallel excited motor (load), as shown

in the figure 3.3. This motor, unlike the permanent magnet DC motor has a very nonlinear

behaviour and, even at open loop, behaves like a load that increases with velocity. If there

is a constant current supply at the terminals of the generator, this current will not imply a

constant torque for different velocities, different from the permanent magnet DC motors.

This behavior is used to test the quality of the controllers.

40

Figure 3.3: DC-motor (right) and generator (left)

The power supply was connected to the power control module with 3A maximum

current and a 24V supply voltage.

A generic overview of the controller environment is shown in the figure 3.4. The fuzzy

inputs are the velocity error and the error rate. These signals were provided by using the

incremental encoder attached to the motor and the Quadrature Encoder Interface

provided by the selected microcontroller (3 p. 554). The signal consisted in two phase

signals and an index. The index counted revolutions while the phase signals were used to

know the motor speed and direction. The selected output for the fuzzy controller is the

PWM duty cycle, using the MCPWM module provided that generates a square wave with a

programmed duty-cycle. The PWM is then directed to the power control module, which

converts it to a DC voltage and applies it to the DC-motor. The microcontroller used two

different UART units, one for programming the memory and other for communicating with

Matlab.

Each module was tested separately, the QEI used to get information about the motor

speed was compared with the tachometer values, and the MCPWM was compared with a

square wave form created using the DAC.

41

Figure 3.4: Controller environment

3.2 Interface

The methodology to operate the whole system had some problems. To better check

and validate the system performance it was required to power externally the

microcontroller, connect it to one PC using RS232, change the program, flash it to the

processor memory, send the data using serial communication and print it to a file in the PC.

Then the user could read the file using Matlab, plot the variables and take offline

conclusions on the fuzzy controller performance. This workflow was not optimal for several

reasons. The whole process was slow, the code was developed in Virtual machine Linux

operating system so the serial communication used to flash the processor memory and

then to write the data (system output, control signal, etc.) could not use the same

DC - Motor

LPC1759

Fuzzy Controller

PC – Interface

Matlab

Power Control Module

Data

Incremental Encoder

Operations

PWM

QEI

Phase Signal

MCPWM

Control Voltage

Power

Supply

UART0 UART1 RS232

UART1 UART0

Programming

42

communication port, as one was only accessible on each operating system at once (Matlab

was running on Windows). When the user was evaluating the data, it was an offline view

of the motor performance, which limits the fuzzy controller designer options.

In order to solve these problems and add new functionalities to the whole system,

it was developed an interface using Matlab. It separated the programming of the memory,

using different UARTs for the data communication and program flash. The microcontroller

power supply was provided directly from the PC-Com.

From the system interface the user could select the input wave, start/stop the

controller, watch the real time plot of the system output and the control signal, save any

plot at any given time and change the active load value. These options allowed a faster

tuning and evaluation of the fuzzy controller, which majorly improved the fuzzy control

development.

Figure 3.5: Fuzzy Interface

An image of the current fuzzy interface is shown at the figure 3.5. If the user wants

to save a specific plot, it must be selected previously by clicking on the plot then pressing

save. The start/stop buttons only affect the communication between the microcontroller

and the fuzzy interface, it does not shut down the motor. The moddedwave button is the

standard input created for testing the controllers. The random button creates a random 10

step square wave as it is represented in the figure.

43

The membership function form is only available with triangular shape and Gaussian

shape, but it could not be implemented since it required floating point. The number of

membership function actually changes the number of both inputs, and it ranges from 3 to

21. This also allows the construction of the rule set table, which will not be tuned, and it

will follow a base gain between the numbers of membership function, for instance, it would

be something like the figure 3.6.

Figure 3.6: Automatic rule set table

 The interface really helped the development of the controllers due to the real time

plot of the system variables and changing the set point. However, there were a lot of

significant improvements that could be done to help the designer to build better fuzzy

controllers. Some options were still tested and disabled after, due to some complexity

problems with the time restrains the program in the microcontroller had.

3.3 Knowledge gathering

The amount of information the designer possesses about the controllable system

majorly dictates his success on developing a controller. Some basic performance tests were

made to the motor in that sense. The first test (figure 3.7) evaluates the motor response to

a 0 to 100% duty-cycle variation and after reaching the maximum speed, back to 0% duty-

cycle. The motor vein was attached to another DC motor working as generator but without

load applied to it. The velocity was measured using the QEI module.

44

Figure 3.7: a) DC-Motor velocity (rpm), b) 0-100% Duty-cycle c) 100-0% Duty-cycle

This test insights the controller designer about the motor behavior at maximum

power. It is possible to identify several different slopes that define the rate of change of

the motor speed. It takes around 130ms to make the first 1500rpm and then 150ms to

reach 3000rpm. Over the 3000rpm mark the motor slows a lot the rate of change taking

120ms to reach the maximum speed. This information is important to get a reference about

the maximum rate of change possible for this setup. Since the motor is receiving the

maximum power, this times reflect the minimum times for rpm variations.

Over to the other side, when stopping, the motor follows a close to linear slope,

taking around 500ms to stop. This difference should be important and reflect in different

gains in the rule-set table for the membership functions that define negative error.

The second test (figure 3.8) was made under the same setup and is a one second

paced increment of the PWM wave duty-cycle that controls the motor velocity.

a)

b) c)

45

Figure 3.8: Paced increment of the PWM wave

The main goal of this test is to better tune the controller response when near the set

point. This graphic shows the different rpm “jumps” of the motor speed. This was achieved

by keeping the duty-cycle increment fixed (1%) and evaluating the response during the 60-

100% duty-cycle range.

The graphic only shows the variation between 60-100% duty-cycle since the

acquisition of the motor speed at lower speeds was imprecise due to error. This error is

due to the counting of the phase edges on the QEI on the microcontroller which at lower

rates a difference of 1-2 phase edges would be significant.

Having the basic information about the motor, having the hardware design ready, the

inputs and the output selected, the next step is to create the fuzzy control system.

3.4 Fuzzy design

The controller environment shown in the figure 3.4 represents the overview of the

hardware. The fuzzy design however, relates to the hardware in the form of the output it

provides to the system, in this case, the PWM wave sent to the power control module and

the inputs it receives, the wave form from the incremental encoder attached to the motor.

46

The motor speed was calculated in the LPC1759 QEI module after counting the phase edges

from the incremental encoder in a period of time.

 The difference from the set point and the actual speed (error) was the primary input

for the fuzzy system. It was the most natural way to gather information from the

controllable system and by selecting the error as an input, it can be easily extracted

knowledge from the membership functions to the inference system and use it in the fuzzy

rules.

For the second input it was selected the change of error. It is a source of information

from the first input and also simple to interpret to better tune the fuzzy controller

performance.

The reasons for the output selection of the fuzzy controller are quite natural, as it

needed to be a variable that could closely relate the knowledge gathered in the fuzzy rules

from the membership functions and the actual objective of the system – velocity control.

Therefore the duty-cycle provides a way to relate with the motor velocity, as it controls the

voltage applied. It is also important to note the way that the system changes the output,

the duty-cycle percentage. The microcontroller changes the duty cycle by dividing two 32

bits register (3 p. 518), one representing the processor frequency and the other the

frequency of the PWM wave. In order to keep a high velocity resolution, this is, the least

incremental gain possible from the controller change the motor velocity in the smallest

way, the frequency of the PWM wave needed to be inside the human ear frequency sound.

Since the software used fixed point, the resolution required for the duty-cycle constant to

change 1rpm should be around 15000. To diminish the error from the fixed point, it was

used 100000 to represent 100% duty-cycle. Since the processor frequency is 120MHz, the

maximum frequency for the PWM wave is 1200Hz. Even using the constant at 15000 to

represent 100% duty-cycle, it would mean 8000Hz. This options bring some noise. To better

accommodate both, the frequency was set to 20 000 Hz, giving a much more smooth

rotation to the motor, with a small noise and with a resolution of three rpm.

The sampling period was set to 20ms. With the information from the figure 3.7, the

maximum velocity change for 20ms is around 250rpm. Since the motor speed can go up to

3300rpm and further tests should be realized with active loads, that lower this rate, the

20ms sampling period should prove sufficient for this motor behavior. To guarantee the

sampling time, the whole software was built upon FreeRTOS. The FreeRTOS scheduler (9)

used only two tasks. The highest priority task, that sets the controller increment to the

motor, ran at 20ms. The other task, at the same rate, computed all the controller arithmetic

and the communication with the Matlab. This way, the variation of time that the controller

arithmetic took to run did not affect the controller output step.

47

The whole system used fixed point, avoiding the floating point unit. This was the only

computationally viable choice, since the fuzzy controller arithmetic consumed a lot of time

resources plus the communication with the interface, reading sensors, etc. However, it set

a maximum precision value, since all numbers had to be multiplied to bring some sort of

precision to the system. Other consequence of using fixed point is that without the floating

point unit, for instance, it was not possible to build bell shaped membership functions.

It was developed a startup process lasting 0.1 seconds to start up the motor at its

minimal PWM command in open loop. As in digital control, this action prevents a lot of

unwanted factors and the first measurements for the inputs were only done after this

startup, so that the control system already deals with a functional controllable system. The

basic control design idea is to have the fuzzy controller built based on proportional,

derivative and integral components.

The next sub-chapter explains the construction of the fuzzy controller and the

thought process behind it.

3.5 Fuzzy structure

3.5.1 Membership functions

Membership functions are more subjective than objective. This means that the

information they quantify reflect the engineer view of the system and others might

quantify it in a different manner.

3.5.1.1 Number

The selection of the number of membership functions was not an obvious choice

from the start. Since the primary source of information was the first input (error) it seemed

reasonable to emphasize that choice on the number of membership functions. The choice

ended up being eleven membership functions for the error and three for the change of

error.

The eleven functions divided the possible range of error, having one centered at zero

error, and the other five symmetrically represent high error and small error, positive and

negative. For the change of error, one centered in zero and one representing positive

change of error and the other one negative.

48

The number of membership functions to use in this design was by far the most

important and most conscious decision between complexity/simplicity, execution time and

performance. The thought process behind it is explained separately since most of the

problems came across during the fuzzy design implementation, the performance tuning

and testing.

The first approach towards the number of membership functions is to look at the

inputs. The error input, range [-3000, +3000] rpm and the change of error [-1000, +1000]

rpm/step, represent the fuzzy inputs and must be divided by membership functions. Each

of these membership functions will confine a part of the input range and interpret the input

in a way to be used in the rule set table. The number of membership functions then reflects

how many different phases the controller will have and the boundaries between each. The

first problem adjacent to this decision is the input range versus actual input.

In most fuzzy logic controllers, initial membership functions are normally laid evenly

all across the universes of discourse that represent fuzzy control inputs. However, for

evenly distributed membership functions, there might be a problem that may adversely

affect the control performance. If the actual inputs are not equally distributed, but instead

concentrated within a certain interval that is only part of the entire input area, this will

result in two negative effects. On one hand, the membership functions in the dense input

area will not be sufficient for a precise response to the inputs, because these inputs are too

close to each other compared to the membership functions in this area. The same fuzzy

control output could be triggered for several different inputs.

On the other hand, some of the membership functions assigned for the sparse-input

area are never active or just trigger once, being technically a waste of resources.

Both these problems are quite difficult to solve, especially in the early stages of a

fuzzy control system. The first problem could be solved by adding more membership

functions which would decrease the operating range of each, making them more precise.

But this is not really a valid solution. In this system, having 11 membership functions would

result in 500rpm difference between each. To change this value by half, it would be

necessary to increase the number of membership functions to 23. It is important to

remember that for the motor speed, evaluating high error, should only happen a few times

between set point changes, and only on large set point changes. Usually the controller will

have much more effort for the near to zero error membership functions, where the

controller should require a more clustered zone of membership functions.

The other problem is the fact that by increasing the number of membership

functions, the complexity of the rule set table also increases to a maximum of n x n. If both

the inputs increase from 3 membership functions to 5, then the rule set table will grow

49

from 3 x 3 to 5 x 5. In fact, these choices proved even more challenging when trying to

improve the controller performance.

The final number of membership functions ended up being 11 for the error input,

spacing the error for 500rpm between each function, from Positive Very High to Negative

Very High. For the change of error, only 3 membership functions were built, enough to

identify positive, zero and negative change of error. These choices would create 33

different phases of action in the rule set table which, by analyzing the figures 3.7 and 3.8,

is a bit low. The main problem of using 11x3, is that often the same membership function

will be active for several consecutive controller steps, which is not optimal when reaching

the set point (zero error) value. In the change of error input, this is even more highlighted,

where the central membership function will always be active.

3.5.1.2 Shape

The fuzzy controller used triangular shape of membership functions with interception

at half curve. This way the conception about the certainty of the linguistic variable became

linear by phases, which not only simplifies the through process and analysis of the

membership functions as it makes more sense after the information gathered in the figure

3.7. It is possible to identify several linear phases of the motor speed during the tests. More

complex shapes of membership functions would require floating point, which is out of this

controller capabilities, so when using fixed point, the triangular membership functions are

simple to implement and computationally fast.

The fuzzy controller number and shape of the input membership functions is shown

in the figure 3.9. The change of error membership functions range from [-1000, 1000]

rpm/step. The data from the figure 3.7 shows that without external interference with the

system, the velocity cannot change quicker than 350 rpm/step. Even so, it was selected

1000, as the system would be tested using active load changes. These loads when

applied/detached will drastically change the motor speed. By having a larger range in the

membership functions, the controller can have a better response. The downside of this

larger range is that in the setup without active load the controller could be less precise in

the [-350, 350] rpm range. This actually happens because of the linear change behavior of

the triangular membership functions. Since the change of error only uses three

membership functions, expanding their range forces the linear behavior of the left and right

membership functions to continue for a larger change of error, which is the good part. The

downside is that the central membership function is now always active [-500, 500]

rpm/step.

50

Figure 3.9: Fuzzy Controller input membership functions

During the development of the fuzzy controller it was quite difficult to have the

perception when would a different shape of membership function, this is, a different

change of certainty, be required or optimal for speed control on the motor. In fact, many

times, the simplistic and linear approach that the triangular membership functions offered

the system was often a safe liability. Maybe due to the lack of experience, it proved easier

to add nonlinear behavior to the fuzzy control by adapting the rule-base set than changing

the shape of the membership functions.

3.5.2 Inference mechanism and defuzzification

The inference mechanism starts by identifying all active membership functions for

the respective input and their certainty level. The software always finds the (active) most

left membership function first and calculates its probability (P0). Then, as the system uses

triangular membership functions evenly spaced and the edges of each function are equal

to the centers of its adjacent functions, the next membership function is always active and

µ(e)

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000

1
 Mfe1 Mfe0 Mfe2 Mfe3 Mfe4

µ(de)

-1000 - 500 0 500 1000

1
 Mfde1 Mfde0 Mfde2

 Mfe5 Mfe6 Mfe7 Mfe8 Mfe9 Mfe10

 rpm

 rpm

Change of Error Membership Functions

Error Membership Functions

0.5

0.5

51

with probability 1-P0. The software proceeds to match the rules using “and” implication.

With only two inputs, there can only be 1, 2 or 4 active rules. It will be selected only one

rule if both the inputs have a membership function with 100% probability, two rules if one

of the inputs membership function have a probability of 100% and four rules if both inputs

have two active membership functions with probabilities different than 100%.

The software always assumes there are four active rules but, when the probability is

0% their contribution is 0, as it is possible to see in the expressions bellow, where µMf

represents the probability associated with its respective membership function.

In the conclusion phase, the software uses the matched information (Dxx) and the rule

set table to get the conclusions for the COG method in the defuzzification process.

The rule set table is shown in the figure 3.10, where the value “k” represents a

constant to multiply since the software uses fixed point.

 e
de

Mfe0 Mfe1 Mfe2 Mfe3 Mfe4 Mfe5 Mfe6 Mfe7 Mfe8 Mfe9 Mfe10

Mfde0 -165k -135k -125k -120k -75k -45k -75k -120k -125k -135k -165k

Mfde1 -110k -90k -57k5 -42k5 -25k 0 25k 42k5 57k5 90k 110k

Mfde2 165k 135k 125k 120k 75k 45k 75k 120k 125k 135k 165k

Figure 3.10: Rule-set table with the inference and defuzzification phases

 This is an example of the rule-set table used in control the motor speed. The error

membership functions are on top and the change of error on the side. The relation between

the gains presented and the output PWM is 10k = 1% duty-cycle. With the information from

the figure 3.8, 1% DC is around 100 rpm.

As it is possible to see, looking only to the error membership functions, the

incremental gain between functions is around 20k to 30k, which represents a careful

approach, especially when reaching some kind of stationary speed.

 µMfe1(e) * µMfde1(de) = D11 µ
Mfe1

(e) * µ
Mfde2

(de) = D
12

 µ
Mfe2

(e) * µ
Mfde1

(de) = D
21

 µ
Mde2

(e) * µ
Mfde2

(de) = D
22

52

The change of error is 3 times more aggressive, especially at Mf5-Mde0/2. It is really

important to note that like it was previously explained, the range of membership in the

change of error input it is quite large. This forces most of the inputs to be in the central

membership function and with high probability, making its attached rules more influent.

One way to decrease this effect is to force the attached rule for the Mfde0/2 to be more

impactful, making it so that even with low probability, they still influence the system

enough.

3.6 Performance

It is possible to evaluate beforehand the expected performance of a designed fuzzy

controller. Knowing its basic structure allows the designer to predict in a certain way how

the control mechanism will behave under specific circumstances that are always very

helpful for further tuning or understanding the results given.

The overall performance of a fuzzy controller can be measured by analyzing the

membership functions. Their shape defines the certainty they influence the output value

and the inferred value the way they reflect it. With multiple membership functions, it is

possible to define different control behaviors to better adapt for different plant behaviors.

This way, the fuzzy controller performance can change between membership functions and

its actual expected behavior is a match between one or more membership functions,

depending on the number of active membership functions.

For this specific design, there are some very important aspects to mention, that are

relevant for understanding the performance analysis. The fuzzy controller uses an integral

of the control variable in the output, which means that every new plant input will be the

sum of the current output value given by the fuzzy controller plus the last output. Looking

at the fuzzy rule set table at figure 3.10, it is possible to make some further conclusions on

how the incremental gain will affect the system. As the figure 3.9 shows, the membership

functions are spaced by 500rpm. Imagine that the set point changes 1000rpm, making it so

that the error is 1000, selecting Mf7 and Mfde2. The output would then be 120k, which

from the knowledge gathered from the motor behavior at the figure 3.8 will be enough (if

given time) to change the speed around 12*83 = 996rpm (1%DC = 83rpm). This increment

would be sufficient to reach the desired new set point but, as the figure 3.7 shows, the

motor dynamics will not allow such high speed variation in one step time. At maximum

power it would still take around 6 steps for the motor to change 1000rpm. The next time

steps, the controller will continue to reinforce the control signal, but at a much lower rate,

still, all the increments after the first should only try to improve the rise time and then

softening down the gain towards a stationary point.

53

This kind of analysis is always possible but it gets difficult to predict with the ongoing

change of speed towards the set point. For this reason it is really important to have a good

source of information about the plant behavior, in this case, the motor. If it would be

possible to know the effects of each increment at each speed, it would be possible to make

a model for the motor using the membership functions and the rule set table that would

inherit the motor dynamics.

Other point that helps this kind of analysis is the shape of membership function.

With triangular shape, the change of certainty is linear and, if the rule set table uses linear

gains then the controller would be linear and would only require a minimum number of

membership functions to perform. Since the DC-motor-Generator setup has a nonlinear

response, it is wise to tune nonlinear gains for each membership function on the rule-set

table that better represent the motor behavior.

To control the motor speed using error and change of error inputs, the central

membership function gains increased importance. It represents the last increments of

power to control the motor and which the control model converges to, since it is the only

membership function that will always be active at some point in this type of control. While

this perspective of the central membership function is important, the practical design can

change it. There will always be a combination of two membership functions that define the

controller output for each input and this combination, or at least the grade of influence of

each membership function, is directly given by the range of each function.

Outside of the fuzzy control performance there are general control measurements

that are useful for comparison between controllers. In the results chapter the following

metric (9) will be used to compare the fuzzy controller and the PID.

Integral of the Absolute Error (IAE) where:

𝐼𝐴𝐸 = ∑| 𝑒(𝑘ℎ)|

𝑛

𝑘=1

gives basic information about the overall error of the system.

Integral of the Square Error (ISE) where:

𝐼𝑆𝐸 = ∑ 𝑒2(𝑘ℎ)

𝑛

𝑘=1

gives enhanced information about greater errors, since errors are squared.

(3.1)

(3.2)

54

Integral of the Time -Weighted Absolute Error (ITAE) where:

𝐼𝑇𝐴𝐸 = ∑ 𝑘 |𝑒(𝑘ℎ)|

𝑛

𝑘=1

improves the information given by IAE, adding more importance towards errors that persist

over time.

Integral of the Time-Weighted Square Error or Mean Square Error (MSE) where:

𝑀𝑆𝐸 = ∑ 𝑘 𝑒2(𝑘ℎ)

𝑛

𝑘=1

Mean square error is really important, since it prioritizes large errors, normal in the

initial system response but since it multiplies with time, large errors that persist for long

will be more relevant (10).

(3.3)

(3.4)

55

4 Results

4.1 Introduction

The velocity control was tested using the developed fuzzy controller explained

previously and a PID controller which will be explained further in this chapter. Since there

were no specified performance objectives, it was opted to build a generic fuzzy controller.

 This dissertation objectives are based on understanding the digital control towards

fuzzy controllers, being aware of which parts could improve the controller performance,

what to do to make the controller more precise and understanding the problems that each

step revealed.

 The precision of the controller was the first evident problem. From the hardware

perspective, being able to gather the velocity by counting the phase edges directly from

the incremental encoder mounted on the motor shaft proved to be a significant increase

in the input resolution. The other option of using the tachometer had a resolution of

6Volts/1000rpm. This meant a 0.6mV for each rpm that was highly susceptible of error.

Even so, counting the phase edges from the phase signal in the QEI for a step time (20ms)

brought some problems at lower speed. For instance, if the motor is rotating at 500rpm, a

single edge count means a variation of 4rpm. This means that even if the control signal

does not change, there might be a slight velocity variation due to that. At higher speed,

over 2000rpm, a single phase edge count will barely be noticed.

 For the software of the controller, the precision was majorly dictated by the use of

fixed point. By only using integers there is always a precision loss. In fact, as it will be shown

in the subchapter 4.3, the minimal increment to the system was of 3rpm.

4.2 PID Controller

 To compare and validate the fuzzy controller performance and results it was

selected the PID controller for comparison. To develop the PID controller it was selected

the Matlab PID Tuner toolbox with plant identification.

The plant identification required the data from a step command, like the one shown

in the figure 3.7. After identifying the plant it was possible to estimate the PID parameters

and tune them towards slower-faster behaviors.

56

After some modest selection of the PID parameters it was tested on the

microcontroller. The control results were far from optimal, with around 50% overshoot.

The system was further manually tuned to reach the set point without overshoot and the

final results are shown in the next subchapter.

4.3 Experimental Results

The experimental results shown in this subchapter all used the same reference

signal. It is a square wave that ranges from 1500rpm to 3000rpm with several different size

steps used in between as it is shown in the figure 4.1. The main purpose of using the square

wave form is that it emulates a perfect variation, only digitally possible, which can be

reflected as the best case possible.

The close loop output should be analyzed as it tries to follow this input wave as

closely as possible, in all its different steps, each separated by 3 seconds.

Figure 4.1 Tests reference signal

57

4.3.1 PID and Fuzzy controllers without load applied

The first tests with the controllers used the setup shown in the figure 4.2. The DC

motor has it vein attached to the other motor (used as generator) but without any load

applied to its terminals. At the right of the motor is the power control module that receives

the PWM wave from the microcontroller using the MCPWM module. The reference signal

is received through RS232 from the Matlab, using the Uart1.

Figure 4.2: Motor speed set up without load

The figure 4.3 represents the output for the PID controller for the figure 4.1

reference signal. The signal repeats twice, for the course of 60 seconds. The PID controller

has no overshoot. High errors are quickly recovered but without overshoot the controller

is slower at small errors, taking some time to reach the steady state value.

At lower speed the motor tends to have a small oscillation, which comes in line with

the way the motor speed input is gathered. At lower velocity, there are fewer impulses

counted, whereas the difference between few impulses can generate a resolution error in

speed that does not reflect the actual state of the motor. It is possible to notice this effect

gradually getting nullified as the motor speed increases, being quite noticeable at 1500rpm,

slightly noticeable at 2000rpm and barely seen at 3000rpm. This effect is shared between

both controllers due to its source being from the input and not from the respective

controller influence.

r

Error

𝑑

𝑑𝑡

u

-

∑

u’

LPC1759

Phase signal

Quadrature Encoder Interface

Uart1

Velocity

Reference

Controller

e

de

MCPWM

Duty-Cycle

ʃ

58

Figure 4.3: Motor speed for the PID Controller

 The control signal for this output is shown in the figure 4.4, where it is possible to

notice the usage of the controller signal the duty-cycle wave sent to the power control

module. When the set point changes the control signal goes close to 100%, responding to

the large error input. When the set point changes from 1500rpm to 3000rpm, the control

signal actually reaches 100% and as the motor speed approaches the set point value, the

control signal drops and, to avoid overshoot, even drops slightly more than the final value.

In the 1000rpm set point changes this behavior is barely noticeable.

Figure 4.4: PID Control signal

59

 The next figure shows the output signal for the fuzzy controller.

Figure 4.5: Motor speed for the Fuzzy Controller

 At the figure 4.5 it is possible to notice the overall fuzzy controller time performance

for the set point wave shown at figure 4.1. The system output follows the input really

closely, with barely any overshot. The rise time (0%-100%) for the 1500rpm to 3000rpm is

0.42s, for the 2000rpm to 3000rpm is 0.34s. The time for the 3000rpm to 2500rpm is 0.2s,

for the 2500rpm to the 1500rpm is 0.28s and from 3000rpm to 2000rpm is 0.3s. The fuzzy

controller approach towards every new set point is slightly different. While in PID controller

it follows a predictable variation towards the various input changes, the fuzzy controller

can have slight differences. Since the triangular membership functions offer a linear by

phases change of certainty but the rule set table values change non linearly, depending on

which membership functions are active and which percentage, it can generate different

behaviors.

 The control signal behavior, presented in the figure 4.6 is not as aggressive as the

PID control signal when the set point changes, which slows down the fuzzy controller at the

start. When both control signals reach its peak value, the fuzzy control signal decreases

until the set point while the PID control signal decreases to the actual speed control signal

value and raises form there to the set point.

60

Figure 4.6: Fuzzy Control Signal

 To take more conclusions on both controllers behavior it is shown a closer look at

the 2000rpm to 3000rpm set point variation.

Figure 4.7: Fuzzy controller response to a set point variation

61

The figure 4.7 shows a closer look to the fuzzy controller behavior. Several

important aspects should be addressed, the initial small oscillation at 2000rpm, which is a

problem addressed in the figure 4.11, the less than 5% overshoot and the rise time.

Even though the output actually shows a small overshoot, it is barely noticeable as

it is less than 3% of the final value. The rise time achieved was 0.34 seconds. This time

represents 17 controller time steps to reach the final value. From the knowledge gathered

for the motor, it was possible to change the motor speed from 2000rpm to 3000rpm in 0.14

seconds. Having in mind that the controller objective is to change set points in the least

time possible without overshoot and with some degree of precision, the overall

performance towards the maximum possible in terms of rise time was quite good. This

value could be better if it was not the problem shown in the control signal for this same

output, at the figure 4.8:

Figure 4.8: Fuzzy control signal

 The fuzzy controller control signal was actually raising at a very high rate, but due

to the fact the derivative component was so aggressive it held down the control signal

loosing 3 control steps correcting that. It then resumes increasing the control signal at a

slower rate since it was closer to the set point. The main reason this happens is because

the fuzzy system was only using three membership functions for the change of error input,

which represents the derivative gain. When using the active load setup this effect

disappears, which reinforces this statement. Back in the chapter 3 it was explained how the

62

change of error membership functions were centered, to improve the system response in

an active load setup and, due to that choice, decreasing the quality of the controller

response on this setup.

The choice of using only three membership functions for the change of error limits

the number of control options. If more membership functions were used, it would be

possible to tune a less aggressive behavior when the error was large and the change of

error was low – medium, and a more aggressive impact when the error was low and the

change of error was high, which happens for faster control systems. Given that only three

membership functions were used to the change of error, it was preferred to keep the no

overshoot performance objective over the rise time and, as such, the aggressive behavior

on the derivative gain.

 The PID controller response for the same variation is how in the figure 4.9.

Figure 4.9: PID controller response to a set point variation

 The PID controller shows no overshoot and the rise time is similar of the fuzzy

controller. The more impactful difference is at the initial behavior towards the set point

change. The PID controller changes 750 rpm in 0.12s while the fuzzy controller takes 0.18s.

This represents a difference of 3 controller steps between the controllers, which confirms

the previous analysis on the fuzzy control signal. The PID controller then slows significantly,

63

taking a very cautious approach to the set point, completely avoiding any overshoot. The

fuzzy controller is then slightly faster on the last 250rpm.

Figure 4.10: PID control signal

The figure 4.10 shows the PID control signal behavior. The initial response to the set

point variation uses up to 98% of the control signal which is almost optimal. As expected

from the careful approach towards the set point shown in the figure 4.9, the control signal

changes slowly near the set point.

64

 Figure 4.11: PID versus Fuzzy

 The figure 4.11 represents the comparison of the PID and Fuzzy controllers.

The figure 4.12 shows the effects of the imprecision caused by the minimum

increment of the controller.

With the minimum increment to be held at 3 rpm there is a random problem. When

the control gains that add up to the final membership function do not make it possible to

reach the actual correspondence of the control gain – controller speed at the desired set

65

point, the controller will oscillate around the minimal incremental value around the set

point but never reaching it.

Figure 4.12: Controller imprecision at the set point

4.3.2 PID and Fuzzy Controllers with active load applied

To check both controllers quality it was used a setup with an active load applied to

the motor working as generator. It is the same setup as the figure 4.2, with the following

changes on the generator (figure 4.13):

66

Figure 4.13: Active load setup

The current was set using a reference voltage, which was controlled by the

microcontroller using an external DAC. The current supply had a factor of 1:1, so that the

current in amperes passing through the power transistor is equal to the reference voltage

from the DAC module.

The electric schematic of the controlled current supply is shown in the figure 4.14

and the figure 4.15 shows the power transistor with the respective dissipater.

DC Motor Generator
Power

Transistor

Error

𝑑

𝑑𝑡

-

∑

LPC1759

Quadrature Encoder Interface

Uart1

Velocity

Reference

Controller

e

de

MCPWM

Duty-Cycle

SPI

DAC

Controlled

Current

Supply

ʃ

67

Figure 4.14: Electric schematic of the controlled current supply

68

Figure 4.15: Power transistor

To check the impact and the operating range of the motor speed with the load

applied it was first tested with a constant current applied of 0.5A (current that the fixed

current supply pulls from the generator).

Figure 4.16: Fuzzy controller response

69

Figure 4.17: PID controller response

The figure 4.16 and 4.17 shows both controllers results in controlling the motor

speed (reference signal) with a constant load of 0.5A. Both controllers cannot reach the

3000rpm, since the control signal is already at 100%, as shown at the figures 4.18 and 4.19.

Both controllers show a similar response as without static load (figures 4.3 and 4.5),

with the PID controller being slightly slower. The control signals shown at the figures 4.18

and 4.19 help understand this behaviour.

Figure 4.18: Fuzzy control signal

70

Figure 4.19: PID control signal

The control signals are much higher when compared with the precious setup and

the PID controller struggles more with that. The PID controller had a response towards the

set point change that used 98% of the control signal even though it would fall back a few

iterations after. Even so, the PID controller when dropping the control signal would have

the error diminish, being closer to the set point. Now, since the control signals are higher,

that early gain is lower.

The figure 4.20 shows the comparison of the PID and Fuzzy controllers for the static

load setup in the same graphic. The small gap in the top of the graphic between both

controllers is due to a small offset variation on the external DAC that indirectly controlled

the current that was being pulled from the generator.

71

Figure 4.20: PID versus Fuzzy (static load)

 The response of the controllers to the motor active load variations is shown in the

figures 4.21 and 4.23 and their respective control signals in 4.22 and 4.24.

 The set point was fixed at 2000rpm. During 10 seconds it was applied 3 different

loads and cancelled before the next load being applied with 2 seconds interval. The first

load is around 250mA, the second 500mA and the last 1A, like the next table shows:

Table 4.1: Active load variation profile

Time(s) 0 0.5 2.5 4.5 6.5 8.5 10.5

Current(A) 0 0.25 0 0.5 0 1 0

72

Figure 4.21: PID Controller response for active load variations

Figure 4.22: PID control signal for active load variations

73

The PID controller response for the active load variations showed in the figure 4.19

reflects a decrease of the controller quality in this setup. By analysing the control signal at

the figure 4.20, it is possible to notice how the control signal increases slowly. This effect

make the PID response slower, taking nearly 0.6s to recover from the 1A variation.

The fuzzy controller response if shown in the figure 4.21. It is possible to see that

the fuzzy controller keeps a close behaviour to the previous setups. By analysing the control

signal shown in the figure 4.22, it is possible to see the similarities with the figure 4.8 but

without the control signal setback. This time, the fuzzy control signal went up to 98% and

then decreased until reaching the set point value.

Figure 4.23: Fuzzy Controller for Active load variations

74

Figure 4.24: Fuzzy control signal for active load variations

Figure 4.25: PID versus Fuzzy (active load)

75

 The figure 4.25 shows the comparison of the PID and Fuzzy controllers on the active

load setup.

4.3.3 Controllers performance

 To measure the controllers performance it was used the metric IAE, ISE, ITAE and

MSE. The first results on both controllers use a setup without load applied to the generator,

with a set point variation of 750rpm (table 4.3). The measurements for the static load used

500mA and a set point variation of 750 rpm (table 4.4). For the active load variation is was

used a single measurement with 1A variation at 2250rpm (table 4.5).

In addition to the two controllers explained it was also used one extra fuzzy

controller with a different configuration.

 The additional fuzzy controller used triangular membership functions in a

configuration with 5 membership functions for each input. The rule-set table is presented

in the table 4.3. The fuzzification and defuzzification methods were the same used on the

previous fuzzy controller setup. The gains presented in the rule set table are the duty-cycle,

whereas 1000 = 1% duty-cycle.

 The new fuzzy controller will be denoted as fuzzy2 and it will be displayed the

graphics for the fuzzy2 response on the tests used to calculate the metric IAE, ISE, ITAE and

MSE

e
de

Negative
high

Negative
small

Zero Positive
small

Positive
high

Negative
high

-200000 -180000 -140000 -50000 0

Negative
small

-150000 -140000 -75000 0 50000

Zero -100000 -75000 0 75000 100000

Positive
small

-50000 0 75000 140000 150000

Positive
high

0 50000 140000 180000 200000

Table 4.2: Rule set table fuzzy2

 The fuzzy2 response towards the first metric setup is shown in the figure 4.26 and

its respective control signal in the figure 4.27.

76

 Figure 4.26: Fuzzy2 response for the first setup

The fuzzy2 controller had a faster response than the first fuzzy setup, majorly

because of the addition of two more membership functions in the change of error input.

Even with the error input passing from 11 membership functions to 5, it was not as

relevant. This is explained because most of the error membership functions were in an

error input range that was almost never used. The number of active membership functions

on the error input almost did not change with this. It is also now possible to see the control

signal following two different behaviours, as each control signal figure show (figures 4.27,

4.29 and 4.31.

Figure 4.27: Fuzzy2 control signal for the first setup

77

 The figure 4.28 shows a similar behaviour with the figure 4.26 as the control signals

are mostly equal.

 Figure 4.28: Fuzzy2 response for the second setup

Figure 4.29: Fuzzy2 control signal for the second setup

 For the last setup, the fuzzy2 response is shown in the figure 4.30.

78

Figure 4.30: Fuzzy2 response for the third setup

Figure 4.31: Fuzzy2 control signal for the third setup

 The results on all controllers to the metrics is shown on the tables bellow.

79

 The first setup results:

 ITAE IAE ISE MSE

Fuzzy 571 3843 1658251 58025

PID 476 3258 1425766 33957

Fuzzy2 677 3208 1192054 30236

Table 4.3: Performance for PID and Fuzzy controllers without load

 The second setup results:

 ITAE IAE ISE MSE

Fuzzy 1089 4938 2091448 97588

PID
793

4843 1848247 83821

Fuzzy2 830 3844 1482982 47787

Table 4.4: Performance for PID and Fuzzy controllers with Static load

The third setup results:

 ITAE IAE ISE MSE

Fuzzy 1129 4719 1568853 167080

PID 1323 5226 1252296 198400

Fuzzy2 1448 3228 590634 65343

Table 4.5: Performance for PID and Fuzzy controllers to active load variations

 Based on this results the PID controller showed better results than the first fuzzy

controller except in the last setup, where the fuzzy controller showed better results except

in the ISE. The second fuzzy controller meanwhile showed better results in every setup,

with the exception of the ITAE index. This means the second fuzzy controller had more

small errors over time since the MSE index was normally very good, that reflects a very

good response towards large errors and the initial response.

80

81

5 Conclusion and Future Work

5.1 Conclusion

The work developed granted a very insightful experience in fuzzy control, digital

control and embedded programming. It was possible to realize that fuzzy controllers offer

a wide array of opportunities in digital control to achieve very good performances

objectives. In comparison with the general PID controllers, the fuzzy systems can achieve

better results and still offer more control options. The simplicity of PID controllers stands

as a relevant fact in this comparison but even a simple fuzzy system can have very good

performance results. The more complex fuzzy controllers can achieve and outpace the

performance of the PID controllers, given the versatility that the fuzzy systems have that

the PID systems does not. A very important fact is that every digital fuzzy controller can be

upgraded, without changing the hardware. The amount of tuning process that can be

applied in the fuzzy systems is immense, which is a very good remark to acknowledge when

choosing between the two types of controllers. This options and the fact that the fuzzy

controllers can easily adapt to nonlinear systems, since fuzzy controllers can have nonlinear

change of certainty in the membership functions shape or have a nonlinear rule set table,

makes the fuzzy controller a choice to be acknowledge.

The selected microcontroller – NXP LPC1759, which stands in a new type of

microcontrollers that specific offer better solutions for embedded controllers, proved to

be a valuable option. Both the Quadrature Encoder Interface and the Motor Control PWM

modules offered a very good option to simplify the hardware and still grant very good

results. The tests on the QEI velocity reading versus the tachometer attached to the motor

only had a slight difference of 1% maximum. The MCPWM could be slightly better, as if it

is required a frequency higher than 20000Hz, the resolution for the PWM constant gets

really low, which can become a problem.

Using FreeRTOS also proved to be an excellent choice. In digital control is very

important to keep a perfect notion on every action, when each segment of code happens

and, most of all, to be able to control that. FreeRTOS tools offered this possibility with great

results and also being simple to use and to control.

The workflow was full of step backs with practical problems that took a long time

to overcome. The path towards a functional controller involved a lot of choices that mostly

were an agreement between something good and something bad. Some examples of this

is the choice between fixed point and floating point or the number and shape of

membership functions, This process was of extreme importance, as it made possible to

82

acknowledge at least some problems and solutions methods that might be important in

the years ahead.

5.2 Future Work

Following the conclusions of this work, the next step should be to evaluate the

advantages of fuzzy systems over other controllers. It would be interesting to build an

adaptive fuzzy controller. As it was discussed previously, it is very hard for the designer to

know which membership functions or rule-sets to pick to achieve a certain level of

performance. By giving the controller the ability to adapt these and automatic tune to

achieve certain levels of performance it is a great improvement overall. In many cases, even

if the performance is achieved, there could be always some new factors that could change

the system in a way that a non-adaptive controller ca not answer. For this type of project

it would be recommended to use C++ to interpret the membership functions as objects to

have move options and better processing times.

There are various improvements that can be made to the fuzzy controller interface

as well. The interface has its basics abilities but it is far from achieving great versatility. The

most important factor could be adding the ability to directly make or change the rule set

table form the interface. Adding the ability to make different number of membership

functions and more shapes and even selecting the number of inputs should be possible. It

would be recommended to use a more powerful processor for this case and being able to

work with floating point would vastly increase the controller performance.

83

Bibliography

1. M.Passino, Kevin and Yurkovich, Stephen. Fuzzy Control System Design. Fuzzy Control.

s.l. : Prentice-Hall, 1998.

2. Ferreira, Luís Filipe Terra. Controlo Adaptativo de um motor DC. Aveiro : Universidade

Averio, 2010.

3. NXP. LPC17xx User Manual. s.l. : NXP, 2010.

4. Real Time Engineers Ltd. Quality RTOS & Embedded Software. [Online] Real Time

Engineers Ltd, 2010-2013. http://www.freertos.org/.

6. Zhang, Huaguang, Liu, Derong. Fuzzy Modeling and Fuzzy Control. Chicago : Birkhäuser,

2006. ISBN-10 0-8176-4491-1.

7. Tanaka, Kazuo. An Introduction to Fuzzy Logic for Practical Applications. New York :

Springer, 1996. 0387948074, 9780387948072.

8. PARVEX. DC SERVOMOTORS. FRANCE : PARVEX SA, 2003.

9. Dr. Feng Xia, Prof. Youxian Sun. Control and Sheduling Codesign. Hangzhou : Springer,

2008. ISBN 978-7-308-05765-3.

10. Comparison of Tuning Methods of PID Controllers for FOPTD System. K. Mohamed

Hussain, R. Allwyn Rajendran Zepherin, M. Shantha Kuma. 3, Trichy : INTERNATIONAL

JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION

AND CONTROL ENGINEERING, 2014, Vol. II. ISSN (Online) 23 21 – 2004 / ISSN (Print) 2321

– 5526.

11. Kung, Ying-Shieh, Huang, Chung-Chun and Huang, Liang-Chiao. FPGA-Based Motion

Control IC for Linear Motor Drive X-Y Table Using Adaptive Fuzzy Control. [Article] 2012.

ISBN 978-953-51-0759-0.

84

