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Resumo 
 

 

A maioria dos estudos ecotoxicológicos têm investigado os efeitos de curto 
prazo dos contaminantes. Comparativamente, tem sido desenvolvido pouco 
trabalho na avaliação dos efeitos a longo prazo dos químicos existindo 
portanto uma necessidade de preencher esta lacuna. De entre as espécies de 
solo usadas em ecotoxicologia estão os Enquitraídeos (Oligochaeta), membros 
importantes da mesofauna terrestre com diretrizes padrão para testar os 
efeitos ao nível da sobrevivência, reprodução e bioacumulação (ISO, 2004; 
OECD, 2010, 2004). Para a espécie Enchytraeus crypticus, existe também 
disponível o cDNA microarray com mais de 40 000 transcritos (Castro-Ferreira 
et al., 2014) sendo uma vantagem competitiva em relação a outras espécies 
padrão. O principal objetivo desta pesquisa foi desenvolver novos testes de 
curto e longo prazo, abrangendo novos/diferentes endpoints para E. crypticus.  
A habilidade de regeneração do E. crypticus foi descoberta e o processo de 
regeneração foi descrito; este pode ser adicionalmente utilizado para avaliar os 
efeitos de tóxicos em testes de curto prazo. 
O desenvolvimento embrionário de E. crypticus foi investigado e um teste de 
embriotoxicidade foi desenvolvido (pela primeira vez em um invertebrados do 
solo). O cádmio (Cd) foi usado como substância de teste para validar o teste 
embriotoxicidade dados os seus conhecidos efeitos embriotóxicos. Os 
resultados mostraram que o Cd causou uma diminuição no sucesso da 
eclosão devido a um atraso ou interrupção na formação de estruturas 
embrionárias. 
Um teste de longevidade (com avaliação da sobrevivência e reprodução ao 
longo do tempo) foi desenvolvido para E. crypticus. Este ensaio de exposição 
de longo prazo foi utilizado para avaliar os efeitos de nanopartículas de óxido 
de cobre (CuO-NPs) em comparação com CuCl2 revelando que CuO-NPs 
causou efeitos superiores (diminuindo a longevidade e reduzindo a 
reprodução) do que CuCl2, a uma concentração de efeito semelhante. Este 
ensaio traz um novo conceito em ecotoxicidade, a longevidade. Este é um 
especto particularmente importante quando o assunto é a toxicidade de 
nanomateriais (NMs), onde se espera que o tempo de exposição a longo prazo 
revele efeitos imprevisíveis através dos testes correntes de curto/longo prazo. 
O uso dos novos ensaios desenvolvidos podem melhorar a avaliação dos 
perigos dos produtos químicos. 
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Abstract 

 
Most of the ecotoxicity studies have investigated the short-term effects of 
chemicals. Comparatively, little work has been done in the assessment of the 
long-term effects of chemicals and there is a need to fill this gap. Among soil 
species used in ecotoxicology are Enchytraeids (Oligochaeta), important 
members of the terrestrial mesofauna with standard guidelines for testing 
effects at survival, reproduction and bioaccumulation level (ISO, 2004; OECD, 
2010, 2004). For the species Enchytraeus crypticus, there is also available the 
cDNA microarray with more than 40 000 transcripts (Castro-Ferreira et al., 
2014) being a competitive advantage in comparison to other standard species. 
The main goal of this research was to develop novel short and long-term tests, 
covering new/different endpoints, for E. crypticus.  
Regeneration ability of E. crypticus was discovered and the regeneration 
process was described; this can be further used as endpoint to assess the 
effects of toxicants in short-term studies.  
The embryonic development of E. crypticus was investigated and an 
embryotoxicity test was developed (for the first time in a soil invertebrate). 
Cadmium (Cd) was used as a test substance to validate the embryotoxicity test 
given its known embryotoxic effects. Results showed that Cd caused a 
decrease in the hatching success due to a delay or disruption in formation of 
embryonic structures.   
A lifespan test (with assessment of survival and reproduction over time) was 
developed for E. crypticus. This long-term exposure assay was used to assess 
the effects of copper oxide nanoparticles (CuO-NPs) in comparison with CuCl2 
revealing that CuO-NPs caused higher effects (shortening lifespan and 
reducing reproduction) than CuCl2, at similar effect concentration. This lifespan 
assay brings a novel concept in ecotoxicity, the longevity. This is a particularly 
important aspect when the subject is nanomaterials (NMs) toxicity, where 
longer term exposure time is expected to reveal unpredicted effects via the 
current short/long-term tests.  
The use of the new assays developed can improve the hazard assessment of 
chemicals. 
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General Introduction 

 

1. Ecotoxicology and Ecotoxicogenomics  

 

Ecotoxicology is a multidisciplinary science which integrates toxicology and ecology 

(Hermens et al., 2004). Initially dedicated to the study of anthropogenic toxicants, the term 

was firstly used by René Truhaut in 1969, as "the branch of toxicology concerned with the 

study of toxic effects, caused by natural or synthetic pollutants, to the constituents of 

ecosystems, animal (including human), vegetable and microbial, in an integral context” 

(Truhaut, 1977). Now, ecotoxicology can be defined as the study of the adverse effects of 

chemicals on ecosystems structure, functions, and biodiversity in different levels of 

organization (individuals, populations, communities) (Hermens et al., 2004). The main 

goals of this discipline are identify, predict, control, and minimize the negative 

environmental consequences of the recent human industrial development. In this way, 

mandatory testing programs like those posed by REACH (Registration, Evaluation, 

Authorization and Restriction of Chemicals) in Europe and the U.S. Environmental 

Protection Agency (EPA) are essential to increase the information available for the 

chemicals where toxicity data are insufficient, like emerging contaminants (Ankley et al., 

2006; Sanderson and Solomon, 2009).  

Emerging contaminants result from: natural toxins, veterinary and human medicines, 

hormones, nanomaterials, human personal care products and paints (OECD, 2010a).  Some 

of them, like transformation products of synthetic chemicals may be formed in the 

environment by biochemical processes in organisms (Boxall, 2012). Nowadays, they are a 

complex and pressing concern in environmental health, and new approaches, such as 

genomics, have significant implications in risk assessment for humans and ecosystems 

(Miracle and Ankley, 2005; Poynton and Vulpe, 2009). 

The term genomics was first used in 1920, by Winkler, to describe the complete set of 

chromosomes and their associated genes (Snape et al., 2004). Nowadays, genomics is a 

broadly used term that encompasses numerous scientific disciplines and technologies. 

These disciplines include genome sequencing, assigning function to identified genes, 

determining genome architectures, studying gene expression at the transcriptome level, 

studying protein expression at the proteome level, and investigating metabolite flux (Snape 
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et al., 2004). Bioinformatics aim to link the massive and complex data generated from the 

“-omics” with population genetics, histopathology, and ecology to generate a landscape of 

events occurring within a given organism, or collection of organisms, from source of 

stressors through exposure and ultimately, to outcomes (Miracle and Ankley, 2005; Snape 

et al., 2004). 

In 1999, Nuwaysir described the use of microarray technologies in toxicology, presenting 

the possibilities of a new field called toxicogenomics (Poynton and Vulpe, 2009). 

Toxicogenomics combines the fields of genomics and mammalian toxicology (Iguchi et 

al., 2007), studying the genes and their products in adaptive responses to chemical-derived 

exposures (Snape et al., 2004). It has three major goals: the elucidation of the relationship 

between molecular mechanisms underlying toxics responses to environmental 

contaminants; understanding the relationship between chemical exposure and adverse 

effects; and identification of useful biomarkers of exposure to toxic substances (Watanabe 

et al., 2008). 

Ecotoxicogenomics describes the integration of toxicogenomics (transcriptomics, 

proteomics and metabolomics) into ecotoxicology (Iguchi et al., 2007; Watanabe et al., 

2008), using organisms that are representative of ecosystems to study genes and protein 

expression in non-target organisms in response to environmental toxicant exposures. 

Standardized methods rely on measuring whole-organism responses (e.g. mortality, 

growth, reproduction) of generally sensitive indicator species at maintained concentrations, 

and deriving “endpoints” (e.g. median lethal concentrations, no observed effect 

concentrations, etc.), not providing understanding of the mechanism of chemical toxicity. 

Without this understanding, it is difficult to predict how toxic responses across the very 

broad diversity of the organisms present in aquatic and terrestrial ecosystems; to estimate 

how changes at one ecological level or organization will affect other levels (e.g. predicting 

population-level effects); and to predict the influence of time-varying exposure on toxicant 

responses (Snape et al., 2004). Ecotoxicogenomic tools may provide us with a better 

mechanistic understanding of this key challenges having a remarkable potential in 

ecological risk assessment. Figure 1 depicts the interactions between genomics and 

ecotoxicology. 
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Figure 1:  Diagram illustrating the interactions between genomics (blue) and 

ecotoxicology (green).  

 

 

2. Short- and long-term tests 

 

In ecotoxicology, the main objective of testing procedures is to assess hypotheses about the 

potential for chemicals that can cause adverse effects in organisms. Ecotoxicological tests 

are important for guiding decisions of pollutants relating to risk assessment and regulatory 

purposes allowing major improvements in environmental quality. 

Standardized tests are one of the first steps in risk assessments of contaminants. Normally, 

they are sufficient for determining the ecological risk level of chemicals and the limit 

concentrations for humans and biota (Alves and Cardoso, 2016).  

Ecotoxicological tests can be distinguished in two approaches (Van Gestel, 2012). The first 

approach includes analyses to determine the possible toxic effects of the substances. This 

approach is mainly used to test new substances for which the safe exposure in environment 

are unclear and can be used to regulate their use or prevent the entry in the market. The 

second approach involves analyses to determine the actual ecological risk or current 

damage using samples of contaminated media (Alves and Cardoso, 2016). These two 

approaches include many tests that can be classified according to exposure time (acute or 

chronic toxicity), observed effect (mortality, growth, reproduction, bioaccumulation and 

behavioural changes) or effective response (lethal or sublethal) (Kapanen and Itavaara, 
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2001). In these tests, representative species of the fauna/flora are exposed to contaminants 

and the effects are measured in one (single species) or several species (multispecies) to test 

dose-response relations (Jänsch et al., 2005). 

Concerning soil invertebrates, the main standardized tests by the norms of the Organization 

for Economic Cooperation and Development (OECD) and International Organization for 

Standardization (ISO) consist of exposing species to contaminated/spiked media. These 

protocols describe methods used to determine acute and chronic effects on earthworms 

(Eisenia andrei and Eisenia fetida), collembolans (Folsomia candida and Folsomia 

fimetaria), enchytraeids (Enchytraeus albidus and Enchytraeus crypticus), mites 

(Hypoaspis aculeifer, Platynothrus peltifer, and Oppia nitens), isopods (Porcellio scabere 

and Porcellionides pruinosismolluscs), molluscs (Helix aspersa), and insects (Pterostichus 

oblongpunctatus, Poecilus cupreus and Oxythyrea funesta) (Van Gestel, 2012). 

Most of the existent data are based on acute toxicity tests (short-term tests) covering few 

hours up to a few weeks of duration (about 28-30 days) (Diez-Ortiz et al., 2015; Peters and 

Granek, 2016). They are useful for short-term identification of toxic contaminants and also 

used as initial evaluations to determine the concentration ranges to be used in definitive 

acute toxicity tests and/or the sublethal concentrations for chronic toxicity tests (Alves and 

Cardoso, 2016). Beyond that, when chemicals are released into the environment and 

depending of their persistence, can greatly exceed the duration of these toxicity test 

procedures and many authors have suggested more long-term studies with concentrations 

that reflect those detected in the environment (Baun et al., 2008; Kumar et al., 2014). Like 

this, Diez-Ortiz et al. (2015) and Oberdorster (2007) reported some concerns about the 

chemical persistence in the environment including the propagation of toxicity over-time, 

especially with nanomaterials when chemicals have high toxicokinetics which may 

continue accumulated in the tissues. 

Chronic toxicity tests can be medium/long-term tests that measure the sublethal effects of 

toxic substances on organisms, such as changes in reproduction and growth. They are 

useful for assessing effects at the population level (Hoffman et al., 2003; Van Gestel, 

2012). The first standard methods for chronic toxicity tests have been established in ISO 

(2012, 1999) and OECD (2009, 2004) guidelines. The objective of these standardized tests 

is similar for different groups of invertebrates. The only difference is in test duration 

because organisms have different reproductive characteristics (Alves and Cardoso, 2016). 
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In fact, the standardized guidelines for soil ecotoxicological tests are relatively new 

compared with the guidelines for aquatic environment and there is an increase in the 

number of tests based on these guidelines. This tests have been used to investigate the 

potential toxicity of several substances like fungicides, herbicides, insecticides, metals, 

nanomaterials, agro-industrial residues, and other substances in soil (Van Gestel, 2012). 

 

To assess the hazards involved in the action of chemicals on soil organisms, several 

methods have been developed for many species. Also, the majority of these studies have 

already well-defined endpoints, such as, survival, reproduction, bioaccumulation and 

growth (Leppanen and Kukkonen, 1998). To our knowledge, in soil ecotoxicology with 

invertebrates there are no standardized tests specifically concerned with the effects of 

contaminants on embryonic development available (Druart et al., 2010). Embryotoxicity 

tests are included in short-term tests and they are important tools for risk assessment 

(Schirling et al., 2006) due to the level of detailed information that is provided. Further, 

their short duration and prediction power for effects on the individual at later stages is 

highly relevant and within the 3R (Replacement, Reduction and Refinement), and are also 

cost-effective. The 3Rs approach as formulated by Russel and Birch in 1959 and defined 

three strategies for reducing the number and the suffering of experimental animals used in 

research (Part et al., 2009). In an ecotoxicology perspective, few studies were performed 

using the terrestrial slugs Deroceras reticulatum (Iglesias et al., 2002) and snails Monacha 

obstructa and H. aspersa (Druart et al., 2010; Shoaib et al., 2009). For vertebrates, the test 

with Danio rerio is already standardized (OECD, 2013). 

 

Another endpoint less used to assess the effects of toxicants as short-term study is the 

regeneration abilities of organisms (e.g. effects of tributyltin in planarian Schmidtea 

mediterranea regeneration (Ofoegbu et al., 2016)). Regeneration is the replacement of lost 

body parts, although the term has been applied to a broad range of processes (Bely and 

Nyberg, 2010). Regeneration can occur at multiple levels of biological organization (Fig. 

2). Can occur at different parts of the life cycle triggered by a variety of stimuli and the 

structures regenerated can be relatively different to the original (Bely and Nyberg, 2010).  

The capacity to regenerate lost body parts of animals is an aspect of biology poorly 

understood and highly variable (Bely and Nyberg, 2010; Tanaka and Reddien, 2011). 
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Many phyla have been investigated in relation to the regeneration abilities (Fig. 3). Bely 

and Nyberg (2010) reported that the broad variation in regeneration capabilities across 

animals is not easily explained. For example, many groups of animals such as birds, 

mammals, leeches and some nematodes are incapable of regenerate any lost structure 

(Goss, 1969) while other can, e.g. cnidarians, annelids, molluscs, platyhelminthes (Tanaka 

and Reddien, 2011). Moreover, the mechanisms of regeneration ability varies between 

species with respect to which parts of the body can be regenerated (Bely and Nyberg, 

2010), e.g. planarians can replace a missing head or the entire body from small fragments 

(Tanaka and Reddien, 2011), many annelids can regenerate the whole body or only the 

anterior or the posterior segments (Bely, 2006), lizards are capable of replacing a missing 

tail but not a limb (Alibardi and Toni, 2005).  

 

 

 

 

Figure 2:  Regeneration at different levels of biological organization. A particular species 

might regenerate at all, none, or just a subset of these levels. Dashed red lines indicate 

amputation planes; solid red lines indicate wound surfaces; and blue fill indicates 

regenerated body parts (Bely and Nyberg, 2010). 
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Figure 3:  Phylogenetic distribution of regeneration across (a) the Metazoa and (b) the 

Chordata. Presence of regeneration indicates that at least one report exists for regeneration 

in that taxon (not imply that all species in that taxon can regenerate). Absence of 

regeneration indicates that there is at least one report for the lack of regeneration in that 

taxon (and none indicating the presence of regeneration) (Bely and Nyberg, 2010). 

 

 

To our knowledge there are no standardized tests for regeneration as endpoint available for 

soil or aquatic invertebrates. Among the many species that are recognized as models for 

regeneration research, developmental biology and used for ecotoxicological studies, the 

freshwater planarian Schmidtea mediterranea is the most used (Ofoegbu et al., 2016). 

Although there are not standardized protocols for freshwater planarians they have been 
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used in several studies to measure regeneration and locomotor behaviour (Knakievicz, 

2014; Pagan et al., 2009). Regeneration in planarians involves proliferation of the 

totipotent stem cells, neoblasts, to form new tissues at wound sites (blastema formation) 

and remodelling of old tissues (Reddien and Sanchez-Alvarado, 2004). 

Since many chemicals are known to have cytotoxic and teratogenic effects (Hagger et al., 

2002; Velma et al., 2009), they may alter the regeneration process. In this way, the 

regeneration capacity can also be used (as short-term test) to evaluate the effects of 

chemicals. 

 

On the other hand and as mentioned before, long-term studies are also very important for 

risk assessment. They represent a continuous exposure to toxicants during a long period or 

the whole life, similar to what happens in the natural environment, creating a potential 

realistic scenario of adverse ecological effects caused by toxicants (Coutellec and Barata, 

2013; Van Gestel, 2012). However the cost and time involved in these tests are frequently 

high.  

Lifespan tests are included in the category of long-term exposures. Despite the  recognized 

importance of understand the long-term effects of contaminants, relatively few studies 

have focused on the lifespan of organisms (Harada et al., 2007). Some model organisms 

are frequently used to study lifespan effects, such as, Drosophila melanogaster, Mus 

musculus, Saccharomyces cerevisiae and the most commonly used the “soil” organism 

Caenorhabditis elegans (Buffenstein et al., 2008). However, none of the organisms 

described are used in a real ecotoxicological context. Most of these studies (using M. 

musculus, D. melanogaster, S. cerevisiae and C. elegans) were performed to discover 

genetic, environmental and pharmacologic modulators of aging for the lifespan extension 

purpose, providing new insights for human therapy (Hamilton and Miller, 2016; Lucanic et 

al., 2013). Studies that assess the effects of contaminants in lifespan are still limited, the 

few examples use C. elegans to investigate lifespan effects of metals and detergents 

(Harada et al., 2007; Wang et al, 2010). 
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3. Test organism 

 

Enchytraeids have been used in ecotoxicological laboratory tests for more than 30 years 

(Rombke and Moser, 2002). Enchytraeids belongs to the family Enchytraeidae, order 

Oligochaeta, class Clitellata and phylum Annelida. They are whitish small oligochaetes (1-

40 mm), typical of the saprophagous mesofauna, feeding on decomposed plant residues 

and microorganisms (Jänsch et al., 2005) and found in a large variety of soils (Didden, 

1993). They are ecologically important, because they contribute to the decomposition of 

organic matter and nutrient cycling and improve soil pore structure (Didden, 1993). 

Despite of that, this organisms had been practically ignored as test organisms during many 

years until to find the sensitivity to stress in field studies caused by human activity 

(Römbke, 2003) and one of the main invertebrates used in standardized terrestrial 

ecotoxicological tests are enchytraeids (Rombke and Moser, 2002).  

Worldwide, about 950 species of enchytraeids have been described (Didden et al., 1997) 

and in Central Europe there is appreciably between 200 to 300 species (Jänsch et al., 

2005). In temperate regions enchytraieds’ population density may range between a few 

thousand up to 100 000 individuals/m2, and outside of these regions, the density can vary 

even more (Jänsch et al., 2005). The influence of abiotic factors on enchytraeids’ 

population density is well known. Temperature, moisture, pH, and organic matter can 

influence the spatial and temporal distribution of these organisms (Didden, 1993; Graefe 

and Schmelz, 1999; Jänsch and Römbke, 2003) as well as their reaction to stress factors 

(Rombke and Moser, 2002).  

In general, enchytraeids reproduce sexually by cross-fertilization (the most common mode 

of copulation in oligochaetes) and/or self-fertilization, but asexual fragmentation with 

subsequent regeneration is also possible (Jänsch et al., 2005).  

E. crypticus (Fig. 4) is a good model in ecotoxicology due to its short life cycle (25 days 

from cocoon release until the production of new offspring), and a rapid embryogenesis (9–

11 days) (Bicho et al., 2015; Westheide and Müller, 1996). This species is also easy to 

manipulate, maintain, monitor and the cocoons are transparent which facilitates the 

visualization and study of the embryonic development. E. crypticus has standardized 

ecotoxicity tests to evaluate survival, reproduction and bioaccumulation (ISO, 2004; 

OECD, 2010b, 2004), moreover the hatching success, growth and maturity status in the 
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form of a full life cycle test (Bicho et al, 2015). E. crypticus has an average size of about 7 

mm (Westheide and Müller, 1996), reproduces relatively fast, and are very tolerant in 

terms of soil properties (for instance pH from 4.4 to 8.2, clay content from 1 to 29% and 

organic matter from 1.2 to 42% (Kuperman et al., 2006)), preferring temperatures around 

25 to 30 ºC (Jänsch et al., 2005). 

 

 

 

 

Figure 4:  Enchytraeus crypticus (adult and juvenile). 

 

 

4. Test chemicals 

 

4.1.  Cadmium  

 

Cadmium (Cd) is a relatively abundant transition metal classified as a nonessential element 

(Fernández et al., 2003; Wang et al., 2004) and is included in the list of priority pollutants 

of EPA (Blechinger et al., 2002). The distribution of Cd in the environment has 

dramatically increased over the past decades due to its extensive use in industries and 

anthropogenic activities, like in agriculture, electroplating and galvanizing, batteries, 

colour pigment in paints and metal coatings and plastics (Gonzalez et al., 2006; Trinchella 

et al., 2010; Wang et al., 2004). It is also introduced in the atmosphere, water and soil as a 

result of the burning of fossil fuels, waste incineration and as a by-product of zinc and lead 
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mining and smelting (Gonzalez et al., 2006; Hassoun and Stohs, 1996). Thus Cd is a 

toxicant of considerable environmental and occupational concern. 

Currently, most of the knowledge on Cd toxicity covers the “adults’ stages” and in vitro 

testing (cell cultures), for which the mechanisms of toxicity of Cd are better known. For 

instance, Cd is known to cause oxidative stress, increasing the production of reactive 

oxygen species (ROS), metallothioneins (MTs) and heat shock proteins (HSPs), protein 

denaturation and lipid peroxidation (e.g. (Bertin and Averbeck, 2006; Dabas et al., 2013; 

Faverney et al., 2001; Jia et al., 2011; Muangphra and Gooneratne, 2011)). Also, Cd inhibit 

the enzymes involved in DNA synthesis and repair, and can cause the overexpression of 

the proto-oncogenes, some translation factors and apoptosis mechanisms (Bertin and 

Averbeck, 2006; Cambier et al., 2010; Gao et al., 2013; Gonzalez et al., 2006; Lag et al., 

2002). Castro-Ferreira et al. (2012) showed the effects of Cd on survival and reproduction 

in E. crypticus (LC50 > 320 mg/kg and EC50 = 35 mg/kg). 

On the other hand, the molecular mechanisms behind Cd embryotoxicity remains poorly 

known (Blechinger et al., 2002; Cheng et al., 2000; Yamamoto et al., 2012). For example, 

for embryos of the vertebrates Danio rerio (zebrafish) and Podarcis sicula, Cd promotes 

oxidative stress and affects pathways associated with membrane traffic, cytoskeletal 

organization, apoptosis and cell-cycle regulation include  cell proliferation, differentiation 

and cellular metabolism (Chan and Cheng, 2003; Hsu et al., 2013; Pereira et al., 2013; 

Simoniello et al., 2011; Trinchella et al., 2010). For invertebrates, the knowledge is more 

limited, nevertheless, induction of oxidative stress and apoptosis were also identified  for 

Paracentrotus lividus embryos (Agnello et al., 2007, 2006; Roccheri et al., 2004; Russo et 

al., 2003). 

Cd was used as a test substance in the development of embryotoxicity test (Chapter 3) 

given its known embryotoxicity (Brasfield et al., 2004; Coeurdassier et al., 2003; Druart et 

al., 2010; Gomot, 1998). 

 

 

4.2.  Copper salt  

 

Copper (Cu) is a trace metal classified as essential element for most living organisms 

(Mortimer et al., 2010). It is crucial for biological functions and processes, involved in 
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growth, development, respiration and oxidative stress protection, functioning as a co-factor 

in many enzymes systems and proteins, like cytochrome oxidase and superoxide dismutase  

(Yasokawa et al., 2008).  

However this metal can be toxic above certain concentrations and/or if organisms are 

exposed chronically in the environment (Gaetke and Chow, 2003). For example, free Cu 

ions, participate in the formation of ROS that can cause mitochondrial dysfunction and 

inactivation of some proteins (Gomes et al., 2014; Maria and Bebianno, 2011). Also it was 

found that Cu caused up-regulation of MT’s and HSPs and reduction of body weight in 

Lumbricus rubellus (Bundy et al., 2008).  Cu toxicity to enchytraeids is relatively well 

studied (Amorim and Scott-Fordsmand, 2012; Amorim et al., 2008, 2005; Gomes et al., 

2015a, 2015b; Maraldo et al., 2006; Menezes-Oliveira et al., 2011). 

Cu-salt (CuCl2) was used as test substance in the long-term exposure (lifespan) test 

(Chapter 4) to be compared with nanosized CuO. 

 

 

4.3.  Copper oxide nanoparticles 

 

NPs are particles with a size range between 1 and 100 nm, in at least one dimension. After 

more than two decades of basic and applied research, nanotechnologies are growing 

increasingly and used in many commercial products, like in cosmetics industry, 

antimicrobial paints and coatings, textile products, electronic devices, disinfectants, 

medicines, gene therapy, food and packaging, bioremediation, fuel catalysts and water 

purification (Vance et al., 2015). 

NPs are characterized by size, structure, toxicity and specific physical and chemical 

properties (e.g. chemical composition, solubility, agglomeration, mobility, density, 

concentration and charge) (Frenk et al., 2013; Gomes et al., 2014). These specific 

properties make the application of NPs useful in several different products as mentioned 

above (Adam et al., 2015). However, there are many NPs that are of growing concern due 

to their increased use and release into the environment. After such releases, it is known that 

NPs can suffer reactions and transformations that will change their form, surface properties 

and characteristics (Pan and Xing, 2012). 
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Metal oxide NPs belongs to the family of nanomaterials, which include CuO, TiO2, ZnO 

among others that are extensively used in a variety of applications (Chang et al., 2012; 

Frenk et al., 2013). These NPs affect the environmental differently when compared with 

their equivalents (bulk size and dissolved ion), because of their intrinsic characteristics, 

like an amplified surface area and the charge and reactivity are more stronger, which may 

lead to increased bioavailability and toxicity, which makes them more hazardous to the 

organisms (Peralta-Videa et al., 2011; Qafoku, 2010). However is need take into account 

other variables that are involved in toxicity of these NPs, such as, oxidative state, exposure 

time, particle concentration, the target organism and the environmental matrices (habitat) 

(Klaine et al., 2008). For example, in soil compartment features such as the soil type, soil 

water content, soil organic matter and mineral composition need to be considered (Ben-

Moshe et al., 2013). Over the last decade, there are many reports about the potential 

toxicity of nanometal oxides and some of them can be found in the OECD guidance 

manual for the testing of manufactured nanomaterials (OECD, 2010a). 

CuO-NPs is not included in the OECD list (Pradhan et al., 2012) but it is one of the metal 

nanoparticles (NPs) that are commonly used with wide range of industrial and commercial 

applications, such as, gas sensor (Chowdhuri et al., 2004); metallic and plastic coatings 

(Hernández Battez et al., 2010); circuits, batteries and semiconductor devices (Zhang et al., 

2005) and solar energy conversion (Yin et al., 2005). Due to their antimicrobial and 

antifungal properties these NPs are also used in textiles industries, paints, plastics, food 

preservation, additives in lubricants, skin products and medical science (Dastjerdi and 

Montazer, 2010; Delgado et al., 2001; Gabbay et al., 2006;  Jin and Ye, 2007). The 

increased production of CuO-NPs increase the risk of their introduction into the 

environment and human health (Buffet et al., 2013; Siddiqui et al., 2013), where their 

small size and specific properties can cause adverse effects (Adam et al., 2015). Therefore, 

its potential toxicity combined with its relatively low dissolution rate should not be ignored 

and it is important investigate the toxicity of these materials (Blinova et al., 2010; Buffet et 

al., 2011; Saison et al., 2010; Stone et al., 2010). 

In the literature, majority of the ecotoxicological studies regarding ecotoxicity of CuO-NPs 

is relative to aquatic compartment (Chang et al., 2012), and is mostly based on “short-

term”/acute effects (Mortimer et al., 2010; Nations et al., 2011; Pradhan et al., 2012; Zhao 
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et al., 2011). Moreover these studies focus on comparisons between CuO-NPs of different 

sizes, Cu in ionic/dissolved form and/or with CuO in bulk form (Ramskov et al., 2014). 

Studies on chronic effects of CuO-NPs showed that this NPs inhibited Daphnia magna 

growth and reproduction (21 days test) (Adam et al., 2015; Rossetto et al., 2014); and 

induced mortality and decreased growth in Xenopus laevis above 0.3 mg Cu/L in a 47 days 

test, however lower concentrations (below 0.15 mg Cu/L) were beneficial to the organisms 

(higher growth and no mortality) (Nations et al., 2015). Regarding soil compartment, most 

of the literature available is relative to plants (Da Costa and Sharma, 2015; Peng et al., 

2015; Shi et al., 2014) with virtually no information on CuO-NPs toxicity to soil dwelling 

invertebrates  (in opposition to some studies on Cu-NPs that become oxidized (Gomes et 

al., 2015a; Heckmann et al., 2011; Unrine et al., 2010)). 
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5. Objectives 

 

The overall objective of the present thesis was to develop new assays, covering novel 

endpoints, for the soil species Enchytraeus crypticus. The specific aims (addressed in the 

different chapters of the thesis) were: 1) to investigate the regeneration ability of E. 

crypticus; 2) understand the embryonic development in of E. crypticus for the 

implementation of an embryotoxicty test; 3) understand the parameters survival and 

reproduction over the entire lifespan of E. crypticus for the implementation of a long-term 

(lifespan) assay covering those parameters.  

The present thesis is organized as follows:    

 

 Chapter 1: Introduction to ecotoxicology and ecotoxicogenomics; short and long 

term tests; test species; test chemicals; aspects of ecotoxicology of nanomaterials; 

and the objectives of the thesis. 

 

 Chapter 2: “Enchytraeus crypticus (Oligochaeta) is able to regenerate – 

considerations for a standard ecotoxicological species” (Gonçalves, M.F.M., 

Gomes, S.I.L., Soares, A.M.V.M., Amorim, M.J.B., submitted).  

 

 Chapter 3: “Development of an embryotoxicity test for Enchytraeus crypticus – 

The effect of Cd” (Gonçalves, M.F.M., Bicho, R.C., Rêma, A., Soares, A.M.V.M., 

Faustino, A.M.R., Amorim, M.J.B., 2015. Chemosphere 139, 386–392. 

doi:10.1016/j.chemosphere.2015.07.021). 

 

 Chapter 4: “Lifespan (all life) term test exposure using Enchytraeus crypticus – the 

effect of CuO NMs – longevity as novel endpoint” (Gonçalves, M.F.M., Gomes, 

S.I.L., Janeck J. Scott-Fordsmand, Amorim, M.J.B., submitted). 

 

 Chapter 5: General discussion and final considerations. 
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Abstract 

Certain invertebrates (and vertebrates) are able to regenerate lost body parts. In the present 

study we investigated if Enchytraeus crypticus (Oligocheata), a species used for standard 

ecotoxicological testing, shows regeneration ability. Artificial amputation was induced. 

The results showed that regeneration occurs for this species, this being promoted by the 

presence of a mass of undifferentiated cells (blastema) in the wound site. This only 

occurred in the anterior fragment resulting in the posterior regeneration (formation of the 

tail), i.e. the posterior fragment does not regenerate the head and degenerates. The 

regenerated organisms were tested for fertility, which was confirmed. This is an important 

knowledge, that E. crypticus has an additional survival strategy to deal, for instance with 

mechanical stress/injuries. Further, given this is an ecotoxicological model species and the 

possible implications thereof – E. crypticus can fragment and use regeneration as a survival 

strategy.  

 

Keywords: Posterior regeneration; Amputation; Oligochaeta; Enchytraeids  

 

1. Introduction 

The capacity to regenerate lost body parts of animals is an aspect of biology poorly 

understood and highly variable (Bely and Nyberg, 2010; Tanaka and Reddien, 2011). 

Many groups of animals such as birds and mammals are incapable of regenerating any lost 

structure (Goss, 1969) while other can, e.g. cnidarians, annelids, molluscs, platyhelminthes 

(Tanaka and Reddien, 2011). Moreover, the mechanisms of regeneration ability varies 
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between species with respect to which parts of the body can be regenerated (Bely and 

Nyberg, 2010), e.g. planarians can replace a missing head or the entire body from small 

fragments (Tanaka and Reddien, 2011), many annelids can regenerate the whole body or 

only the anterior or the posterior segments (Bely, 2006), lizards are capable of replacing a 

missing tail but not a limb (Alibardi and Toni, 2005).  

Worldwide, about 950 species of enchytraeids (Family: Enchytraeidae) have been 

described (Jänsch et al., 2005) and only five species of the genus Enchytraeus have been 

reported to reproduce asexually by fragmentation and subsequent regeneration: E. 

fragmentosus (Bell, 1959); E. bigeminus (Nielsen and Christensen, 1963); E. variatus 

(Bouguenec and Giani, 1989) E. japonensis (Nakamura, 1993); and E. dudichi (Dózsa-

Farkas, 1995). Only one study reports the regeneration of an enchytraeid (E. buchholzi) 

that reproduces exclusively sexually (Myohara, 2012). Enchytraeids are small oligochaetes 

typical of the saprophagous mesofauna (Jänsch et al., 2005) found in a large variety of 

soils (Didden, 1993). They are ecologically important because they contribute to the 

decomposition of organic matter and improve soil pore structure (Didden, 1993). 

E. crypticus is a standard species in soil ecotoxicology with standardized protocols to 

evaluate survival, reproduction and bioaccumulation (ISO, 2005; OECD, 2010, 2004). 

Additionally, other endpoints such as avoidance behaviour (Bicho et al., 2015a), 

embrytoxicity (Gonçalves et al., 2015), hatching, growth and maturity status in the form of 

a full life cycle test (Bicho et al, 2015b) were studied in this species. It is a small 

enchytraied, with around 7 mm long (Westheide and Graefe, 1992), with a large tolerance 

range in terms of soil properties (for instance pH from 4.4 to 8.2, clay content from 1 to 

29% and organic matter from 1.2 to 42% (Kuperman et al., 2006)) and temperature 

preferences ranging from 25 to 30 ºC (Jänsch et al, 2005). E. crypticus has a relatively 

short life cycle (25 days from cocoon release until the production of new offspring) (Bicho 

et al., 2015b); it reproduces sexually by self-fertilization and, although not confirmed, 

possibly also by cross-fertilization (the most common for oligochaetes) (Schmelz and 

Collado, 2012). Interestingly, we have sporadically observed in agar plate’s cultures and 

soil test vessels fragments of enchytraeids with the same body thickness as a grown adult. 

This suggested that these organisms were able to self-amputate. Same observations were 

reported for E. buchholzi by Nakamura and Shiraishi (1999) currently explained as a 

mechanism of detoxification. In the present study we investigated the regeneration of E. 
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crypticus after artificial fragmentation by amputation and further assessed their viability. 

The implications at ecological and ecotoxicological levels were discussed. 

 

2. Materials and Methods  

2.1. Test organism 

Cultures (Enchytraeus crypticus, Westheide and Graefe, 1992) were kept in agar plates fed 

ad libitum with grinded and autoclaved oats and maintained under controlled conditions of 

16:8 hours (light: dark) and 20 ± 1ºC. Organisms for test were of synchronized age (20 

days old) following the procedures as described in Bicho et al. (2015b).  

 

2.2.  Test procedures  

To assess regeneration capacity organisms were artificially cut and monitored daily during 

42 days. Organisms were randomly selected from cultures and cut at approximately the 7th 

segment (ca. 1 to 2 mm from the head) using a scalpel blade. This procedure was done in a 

Petri dish containing water placed on ice to reduce their mobility. The two parts (anterior 

and posterior) were transferred to individual Petri dishes with agar media. Food (grinded 

and autoclaved oats) and water were added. The test was maintained at a photoperiod of 

16:8 h light:dark and at 20 ± 1 ºC. A total of 50 organisms were amputated. After 1, 2, 4 

and 6 days, ten posterior and anterior parts were collected and photographed for 

macroscopic monitoring and whole-mount staining. Photographs were taken using a Dino-

Eye camera and Dino-Lite software (Corp, 2010) under a stereo microscope (Zeiss Stemi 

2000-C). Ten replicates were maintained up to 42 days to assess reproduction. At day 28, 

after the first cocoon laying, adults were removed from the Petri dish and their length was 

recorded; all produced cocoons were left. At day 42, hatched juveniles were fixated with 

ethanol and Bengal rose for about 24 h and counted using a stereo microscope (Zeiss Stemi 

2000-C). 

 

Whole-mount staining followed the procedures described in Myohara et al. (1999). This 

technique allows a three-dimensional visualization of the morphology and distribution of 

the cells due to the almost complete transparency of the enchytraeids. The sampled 

enchytraeids’ fragments were fixated in a mixture of acetic acid, glycerol and ethanol 

(4:1:2) for 15–20 min, stained in 4% orcein in acetic acid and glycerol (4:1) for 20 min, 
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washed with the acetic acid:glycerol:ethanol solution, mounted in 70% glycerol and 

photographed using a microscope (Olympus BX51) with an attached camera (Olympus). 

 

3. Results 

None of the fragmented enchytraeids died during the 6 days. Representative pictures along 

time are shown in figure 1, including the macroscopic visualization and whole-mount 

staining with orcein. 

 

 

Figure 1: Visualization of the regeneration process of cut Enchytraeus crypticus along 

time (1, 2, 4, 6 days) of the A) posterior part and B) anterior part. Macroscopic 

visualization is showed on top row, whole-mount staining with orcein is on bottom row. as: 

anal segment; h: head; i: intestine; rb: regeneration blastema; vnc: ventral nerve cord. 
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According to our observations, the regeneration of the posterior part was completed in 6 

days (Fig. 1A). At day 1 the surrounding epidermal cells are covered and wound is healed; 

day 2 regeneration blastema is observed; day 4 the anal segment is formed; day 6 

beginning of elongation/formation of new segments. During the days after (around 16 

days) the organisms grew normally (reaching “normal” adults’ size) and reached maturity. 

The anterior part (Fig. 1B) did not regenerate. Observations showed that the wound was 

healed, given the establishment of the connection between the body wall and intestinal 

wall, and the tissues were alive between one and three weeks before degeneration. 

At day 28, 100% of the regenerated organisms survived, and were 5.34 ± 0.26 mm long 

(average ± standard error, n = 10). At day 42 the reproductive output was 3.1 ± 0.9 

juveniles/adult (average ± standard error, n = 10).  

 

4. Discussion 

Results showed regenerative ability in the anterior part (head segments), after artificial 

amputation, whereas the posterior part was not able to regenerate. The presence of 

blastema is usually known to be necessary in annelids for regeneration (Müller, 2004). 

Similarly to what has been described for E. buchholzi (Myohara, 2012), amputation in E. 

crypticus immediately after the head segments resulted in the regeneration of a tail. 

However, head regeneration was not observed. Same observations were made for E. 

variatus by Bouguenec and Giani (1989).  It has also been described for earthworms’ 

species that only anterior fragments are viable and capable of regenerating the missing 

segments (Cameron, 1932).  

Regarding the time required for regeneration, our results showed that the regeneration of 

basic body components is completed within 6 days, which was identical to what was 

observed for other enchytraeids (Müller, 2004; Yoshida-Noro and Tochinai, 2010). The 

fast healing of the wounds caused by amputation could reduce fluid loss and necrosis in 

adjacent segments to the autotomy site. Interestingly, the time required for regeneration 

plus the time required to grow and reach maturity (6 + 16 days), is equivalent to the time 

required from hatching with normal reproduction as described by Bicho et al. (2015b) (see 

Fig. 2), i.e. 22 days. Moreover, the time that the amputee organisms took to grow is similar 

to the 2 weeks observed in E. japonensis (Yoshida-Noro and Tochinai, 2010). After the 

full regeneration and production of new clitellum, organisms reached more than 5 mm in 
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length which is about the same length as observed by Bicho et al. (2015b) in 25 days old 

adults. Regarding the reproductive output, the number of juveniles produced (around 3 per 

adult) is lower than expected (unpublished data). One hypothesis is that amputated E. 

crypticus may need more time (after regeneration) to recover the fitness of the non-

amputated organisms or the resources that they need for reproduction are being used for 

regeneration, but further tests are needed to understand this. 

 

 

 

Figure 2:  Diagram illustrating aspects of the reproduction and regeneration of 

Enchytraeus crypticus, indicating time to reach maturity. 

 

 

The current results confirm the capacity of regeneration (posterior regeneration) in E. 

crypticus. Nevertheless, we believe that the spontaneous amputation and posterior 

regeneration is not the most common reproductive strategy, based on the fact that the 

observation of fragments in the cultures and test vessels is sporadic. One hypothesis is that 

autotomy can be used by this specie as a self-defence mechanism in response to 

natural/environmental stress or injuries from physical or chemical stimuli. This mechanism 

has been observed among a variety of phyla such as Cnidaria, Annelida, Mollusca, 

Arthropoda and Echinodermata (Fleming et al., 2007); the result is a quick separation and 

discard of a body part from the main body (Lesiuk and Drewes, 1999). In fact, several 
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studies report the benefits of self-amputation. In many oligochaetes this can serve as a 

detoxification process by the accumulation of the contaminants in the caudal segments 

followed by its disposal by autotomy, e.g. in E. buchholzi (Nakamura and Shiraishi, 1999), 

Lumbriculus variegatus (Lesiuk and Drewes, 1999), Lutodrilus multivesiculatus 

(McMahan, 1998), Megascolides australis (Jones et al., 1994), Tubifex tubifex (Bouché et 

al., 1999), and Sparganophilus pearsei (Vidal and Horne, 2003).  

Another hypothesis is that fragmentation could be a rare reproductive alternative in this 

species (instead of autotomy) which possibly lost the capacity for full anterior 

regeneration, similarly to what is described for Paranais litoralis by Martínez and 

Levinton (1992) (further details in Bely and Sikes (2010)).  

This is the first study reporting and describing regeneration in E. crypticus.  E. crypticus 

can fragment and regenerate as a response to stress. This may have consequences for the 

interpretation of ecotoxicity results (e.g. in terms of survival). In natural populations, 

regeneration ability can be an advantage to deal with mechanical injuries, but the fitness of 

those organisms can be temporarily affected. 
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Abstract 

The existing standard enchytraeid reproduction test (ERT) concerns the assessment of 

effects on survival and reproduction. In the present study we optimized and propose an 

embryotoxicity test using Enchytraeus crypticus. Cadmium (Cd) was used as a test 

substance.  Endpoints evaluated were embryo development, number of embryonic 

structures, Calcium (Ca) channels quantification and hatching success with macroscopic 

monitoring, histological and immunohistochemistry analysis. Results showed that Cd is 

embryotoxic for this species, causing a decrease in the hatching success (EC50=3.1 mg/kg), 

a delay or disruption in formation of embryonic structures depending on concentrations 

(<5 mg Cd/kg or ≥16 mg Cd/kg). Results from immunohistochemistry suggest a 

competitive binding between Cd and Ca for Ca channels, resulting in changes in Ca 

homeostasis. The use of the E. crypticus embryotoxicity test with the combination of 

histological and immunohistological tools provided a good option towards mechanistic 

information enhancing the importance of these tests to evaluate the hazard of chemicals 

and possible use in risk assessment. 
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Embryonic development, Cadmium, Embryotoxicity, Histology, Immunohistochemistry. 
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1. Introduction 

In recent years, embryotoxicity tests have become increasingly interesting as tools for risk 

assessment (Schirling et al., 2006) given their short duration, prediction power for effects 

on the individual, and cost-effectiveness.  

In soil ecotoxicology with invertebrates, embryonic development tests are limited (Druart 

et al., 2010). A few studies were performed using the terrestrial slugs Deroceras 

reticulatum (Iglesias et al., 2002; Iglesias et al., 2000) and snails Monacha obstructa 

(Shoaib et al., 2010) to assess embryotoxic effects of metals and pesticides and for Helix 

aspersa (syn. Cantareus aspersus) an embryotoxicity test has been proposed (Baurand et 

al., 2014; Druart et al., 2010). In comparison, for the aquatic environment there are several 

embryotoxicity studies available for invertebrates (Druart et al., 2012) and for vertebrates 

the test with Danio rerio (zebrafish) is standardized (OECD, 2013). 

Furthermore, a very important aspect refers to the added value of mechanistic data to 

unravel adverse outcome pathways (Kramer et al., 2011). By integrating mechanistic data 

with data from existing testing programs one can produce more cost-effective, timely and 

more comprehensive evaluations (Villeneuve and Garcia-Reyero, 2011) and improve the 

identification of risk mitigation measures.  

Aiming for an embryotoxicity test with soil species we have used Enchytraeus crypticus 

(Oligochaete), which represents a group of organisms with important ecological functions, 

e.g. organic matter decomposition and soil bioturbation (Didden, 1993).  This species has 

already standardized ecotoxicity tests to evaluate survival, reproduction and 

bioaccumulation (ISO, 2004; OECD, 2004a, 2010) and is a good model due to its short life 

cycle (46 days), and embryonic development (9-11 days) (Bicho et al., 2015; Westheide 

and Müller, 1996). Further, the cocoons of this species are transparent which facilitates the 

visualization and study of the various stages of development. In the present study we 

addressed the following aspects for E. crypticus: 1) to study the embryonic development in 

detail, 2) to propose an embryotoxicity test, 3) to validate results with Cadmium (Cd) as a 

test substance (given its known embryotoxicity) (Brasfield et al., 2004; Coeurdassier et al., 

2003; Druart et al., 2010; Gomot, 1998; Hwang et al., 1995; Itow et al., 1998; Middaugh 

and Dean, 1977) and 4) to analyse the known mechanism of competition between Cd and 

Calcium (Ca) for Ca channels via immunohistochemistry and Ca staining (Blazka and 

Shaikh, 1991; Braeckman et al., 1999; Craig et al., 1999; Li et al., 2010). The endpoints 
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assessed were embryonic development (via macroscopic monitoring), number of 

embryonic structures (via microscopic monitoring) and hatching success.  

 

2. Materials and Methods 

2.1. Test organisms 

The species Enchytraeus crypticus (Oligochaete: Enchytraeidae) was used. Cultures are 

kept in agar plates prepared with a salt solution of CaCl2, MgSO4, KCl and NaHCO3, fed 

ad libitum with oatmeal and maintained in laboratory under controlled conditions at 20ºC 

and a photoperiod of 16:8 (light: dark). Synchronized age cocoons were obtained following 

the procedures described by Bicho et al. (2015). In short, adults with well-developed 

clitellum are transferred to new plates, allowing cocoon deposition which occurs during a 

period of 2 days. Cocoons with 1-2 days old were selected from synchronized cultures. 

 

2.2. Test soil 

All tests were performed using the standard natural soil LUFA 2.2 (Speyer, Germany). The 

properties of this soil can be summarized as follows: pH (CaCl2) of 5.5, 46% of maximum 

water-holding capacity (WHCmax), 4% organic matter content and a particle size 

distribution of 6% clay, 14% silt and 80% sand. 

All soils were moistened to 50% of WHC with deionized water (or spiked with aqueous 

solution) and used immediately after preparation. In all experiments pH and moisture 

content was measured at the beginning and at the end of the experiment. 

 

2.3.  Test chemical and spiking  

Cadmium (CdCl2
.21/2H2O, Fluka, Sigma-Aldrich, 98% purity) was tested in five 

concentrations: 0 – 1.6 – 5 – 16 - 50 mg Cd/kg soil dry weight (mg/kg soil DW). Solutions 

were prepared with deionized water, serially diluted and added onto the pre-moistened soil 

and homogeneously mixed. Test soil was allowed to equilibrate for 3 days previous test 

start. Test vessels consisted of 6-well plates (35 mm ø), containing 5 g of the test soil each, 

where treatments and replicates were distributed randomly. Three replicates were used per 

treatment per sampling day. 
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2.4. Test procedures 

2.4.1. Exposure 

Cocoons were randomly selected and introduced, as pools of 10, into each well containing 

the test soil. During the exposure procedure of adding the cocoons to the test soil it is 

important to distribute these evenly and to cover them with soil to avoid dehydration and 

ensure exposure. 

The test was maintained at a photoperiod of 16:8 h light:dark and at 20ºC. The soil 

moisture content was checked by weighing and replenished every two days with deionized 

water. The exposure time was 9 days (to allow hatching) and samples were collected at 

days 0, 1, 2, 3, 6 and 9, corresponding to 1-2 days, 3, 4, 5, 7 and 11 days after cocoon 

laying. 

 

2.4.2. Hatching test (Ht) 

At the end of the exposure (9 days) the number of hatched juveniles was counted. To 

extract organisms from soil, cocoons were fixated with 96% ethanol and Bengal rose (1% 

solution in ethanol). The following day, soil samples were sieved through a 500 µm mesh 

to separate individuals from most of the soil and facilitate counting using stereo 

microscope (Zeiss Stemi 2000-C). 

 

2.4.3. Embryo development  

2.4.3.1. Macroscopic 

Sampling procedure consisted in transferring the soil with cocoons from each well to a 

Petri dish with ISO water (OECD, 2004b), to remove the soil particles. With the help of a 

binocular (50X) and Dino-Eye camera attached and Dino-Lite software (Corp, 2010) 

photographs were taken for embryo macroscopic analysis. After this, two pools of five 

cocoons per replicate were stored in Eppendorf’s (1.5 mL) with 10% formaldehyde until 

further analysis (histology).  

 

2.4.3.2. Histology 

Sampled cocoons (n=5) were placed on a square of filter paper and covered with another 

square, as an envelope. This was left to dry for 2 min and was transferred into histology 
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cassettes with sponge inside. Histology cassettes were introduced in an automated tissue 

processor (Microm STP 120) for paraffin embedding. The cocoons were transferred to 

embedding workstation to obtain paraffin blocks. Sections (2 µm) were cut on a rotary 

microtome (Leica RM 2035). Sections of cocoons were stained with Hematoxylin and 

Eosin (H&E) and Von Kossa (calcium staining) for light microscopic examination. 

Observations and registrations of the number of embryonic structures and photographs 

were made using an Olympus BX51 microscope with an Olympus camera attached. 

In each concentration in each sampling day, the average number of embryonic structures 

that occurred in the embryos was presented (list of structures is shown in results). The 

membrane thickness of cocoons was assessed in Von Kossa staining (because membranes 

are more evident with this staining) by measuring height in four opposite parts of cocoon 

membrane (Fig. S1A, supplementary data). Measurements were carried out using ImageJ 

software (Rasband, 1997-2008). The average number for the four parts was used to 

compare differences in membrane thickness. 

 

2.5 Data analysis 

Normality and homogeneity of variances were checked. To assess significant differences 

between control and Cd treatments one-way analysis of variances (ANOVA) was used or 

alternatively the Mann-Whithey Rank Sum Test was used (SigmaPlot, 1997). Effect 

Concentrations (ECx) calculations were performed for the hatching success using the 

logistic 2 parameters regression model (TRAP software).  

 

3. Results 

3.1. Hatching success 

Results can be observed in Fig. 1A. The number of hatched juveniles was significantly 

reduced (for all concentrations; ANOVA; p<0.05) and in a dose-related manner. Effect 

concentrations are summarized in Table 1.  
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Table 1: Summary of the effect concentrations (ECx) for Enchytraeus crypticus when 

exposed to CdCl2 (mg Cd/kg DW soil) in LUFA 2.2 standard natural soil. Information 

includes the 95% confidence intervals (CI) shown in brackets and the model used to fit 

data and parameters: slope (S) and intercept (Y0).  n.d. = not determined.   

 

Test endpoint 
EC10 

(mg/kg) 
EC20 

(mg/kg) 
EC50 

(mg/kg) 
EC80  

(mg/kg) 
Model  

(parameters) 

Ht 

 
hatching (n.d.) 

1.0 

(0.2<CI<1.8) 

3.1 

(2.5<CI<3.7) 

5.2 

(4.2<CI<6.2) 

Logistic 2 param 

(S:0.16; Y0:22) 
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Figure 1: Results from hatching success, histological and immunohistochemistry analysis 

for Enchytraeus crypticus when exposed to CdCl2 (mg Cd/kg DW soil) in LUFA 2.2 

standard natural soil. All values are expressed in average ± standard error (Av ± SE). A: 

hatching success. B: embryonic development. The solid line represents the model fit to 

data. (*Dunnets’: p<0.05). 

 

 

3.2. Embryo development 

3.2.1. Macroscopic 

From macroscopic analysis of cocoons in control conditions (Fig. 2), it is possible to 

observe that cocoons are lemon shaped, transparent, the wall is membranous and the 

operculum symmetrically positioned on each side is also visible. Given the transparency of 

cocoons it is possible to visualize the eggs/embryos (2 to 5) within the cocoon fluid media. 
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Embryo development is similar between days 3 and 4 with embryo in morula stage (round 

shape), confirming the beginning of embryonic development and by day 5 progress can be 

seen by the invaginations in embryos, which will differentiate into anterior and posterior 

parts. On the 7th day, there is further differentiation, being already possible to observe the 

fusiform shape and movement of the juveniles (Fig. 2). 

Macroscopic analysis of cocoons exposed to the Cd concentration range (Fig. S4, 

supplementary data) shows the development along days 3-11. At the 11th day, the juveniles 

had hatched.  

Hatching was increasingly reduced with Cd concentration increase and not occurring by 

day 11. For 50 mg Cd/kg, embryos did not differentiate in juveniles by the 11th day and the 

presence of blastocoel (double black arrows) is observed indicating that embryos remain at 

blastula stage (Fig. S4, supplementary data).  

 

 

 

Figure 2: Macroscopic visualization (top row) and histological analysis with Hematoxylin 

and Eosin staining (bottom row) of embryo development of Enchytraeus crypticus in 

control conditions in LUFA 2.2 standard natural soil along time (2-7 days). b: body 

muscles; bc: blastocoel; c: cerebral ganglion; cm: cocoon membrane; eb: embryo in 

blastula stage (round shape); eg: embryo in gastrula stage; em: embryo in morula stage 

(round shape); eo: embryo in organogenesis (fusiform shape); f: cocoon fluid; g: gut 

muscles; i: intestine; in: invagination; m: mouth; o: operculum; s: somatopleure; sg: septal 

glands; vnc: ventral nerve cord; y: yolk proteins. 
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3.2.2. Histology  

From observations of Hematoxylin and Eosin stained slides from cocoons of control group 

(Fig. 2) the following structures were observed: yolk proteins, ventral nerve cord, 

somatopleure, mouth, cerebral ganglion, intestine, and body. Embryogenesis of E. 

crypticus was as follows: 2 days after cocoon deposition yolk proteins were uniformly 

distributed and embryos present the first cell divisions – morula stage. At 3 days large gaps 

were observed revealing that a blastocoel has been formed and ectoderm covers the 

embryo completely and begins the development and migration of cells that will originate 

the ventral nerve cord; the morphological changes are based on the elongation of the germ-

band, and the formation of the anterior part begins – blastula stage. On the 4th day, 

differentiation of cells continues and somatopleure is now visible; anterior part becomes 

more developed than the posterior part, showing an increase in the number of cells forming 

the head structures – gastrula stage. On 5th day, the ventral nerve cord is differentiated into 

two different parts: the ventral part of the nerve cord and the dorsal compartment of the 

cerebral ganglion; the progression of tissue and organ development differs significantly 

between anterior and posterior parts; the ventral nerve cord begins to extend for about half 

of the body length while the anterior part of the embryo shows the first signs of organ 

differentiation, the posterior part is still less differentiated – morphogenesis.  At the 7th day 

is the end of gastrulation, and organogenesis and segmentation begins; the mouth opening 

and septal glands in the anterior part is already visible and differentiation of internal 

structures in the posterior part starts (e.g. intestine and muscle tissue). During the next days 

of embryonic development until hatching, additional structures differentiate and embryos 

grow. 

The presence of the various embryonic structures were recorded and counted during 

embryonic development for all treatments. Structures include 1: yolk proteins, 2: ventral 

nerve cord, 3: somatopleure, 4: mouth, 5: cerebral ganglion, 6: septal glands, 7: intestine, 

8: body muscles, 9: gut muscles. In the control the number of structures (Fig. 1B) increased 

along time; for concentrations ≤5 mg Cd/kg this is similar to the control until day 5 and at 

day 7 there is a decreasing trend; for concentrations ≥ 16 mg Cd/kg there is no progress 

after day 3.  

Representative pictures of the histological analysis are shown in Fig. S5 (supplementary 

data). For 1.6 and 5 mg Cd/kg only at day 11 it was possible to observe the structures 
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present at day 7 in control organisms: intestine, body and gut muscles, organization of all 

structures and a reduction of yolk proteins. For 16 and 50 mg Cd/kg, cell divisions are 

observed at the 3rd day, and from days 4 to 7 although the ventral nerve cord cells begin to 

develop is still possible to observe the blastocoel so cell divisions are ongoing; from 7th 

day onwards cells degenerate and disorganized tissue is observed by day 11. In addition, 

the presence of fungi is observed in more than half of the cocoons (62%) exposed to 16 mg 

Cd/kg and 100% when exposed to 50 mg Cd/kg, likely due to cell death.  

Results of Von Kossa staining (Fig. 3) showed an increase of Ca staining with increasing 

Cd concentrations. Embryos treated with 0, 5 and 50 mg Cd/kg are shown to illustrate the 

differences. For controls and 5 mg Cd/kg Ca staining was observed from the 4th and 5th day 

as a brown Ca staining.  At a further stage of development (7th day) most of the cocoons 

did not show Ca staining. For 50 mg Cd/kg, results are similar for days 3 and 4. At the 5th 

day, staining is more intense and from day 7-11 the staining is clearly more intense. 

In addition, measurements of cocoon membrane thickness at the 7th day showed that Cd 

exposure significantly increased membrane thickness, i.e. values were for control 

organisms 0.038 ± 0.002 nm and for organisms exposed to 50 mg Cd/kg 0.064 ± 0.004 nm 

(Av ± SE).  
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Figure 3: Results from the histological analysis with Von Kossa staining of embryo 

development of Enchytraeus crypticus exposed to CdCl2 (mg Cd/kg DW soil) in LUFA 2.2 

standard natural soil for 3, 4, 5, 7 and 11 days.  

 

 

4. Discussion 

Results allowed a comprehensive knowledge of E. crypticus embryogenesis. Previous 

information was provided by Westheide and Müller (1996) although less detailed. 

Information on Enchytraeus coronatus as given by Bergter et al. (2004) shows the 

similarity between these species. 
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The experimental test design as proposed here can be used as draft for an embryotoxicity 

test for E. crypticus. Such an embryonic development test brings much added value to the 

standard test (ISO, 2004; OECD, 2004a, 2010). This test starts with cocoons with 

synchronized age, which reduces the variability between organisms compared with the 

standard test (where adults with developed clitellum, including different ages are used) and 

it is shorter (11 days) [e.g. Lymnaea stagnalis is 15 days and Helix aspersa is 12 days 

(Druart et al., 2010; Gomot, 1998)]. Further, the test was shown to be reproducible 

(confirmed consistency among various tests, e.g. similar hatching EC50 in Bicho et al., 

(2015)). Not surprisingly, for Cd, the embryo development was a more sensitive endpoint 

compared to reproduction from a standard test (Bicho et al., 2015), and as confirmed here: 

EC50_hatching=3.1 mg Cd/kg) (hatching test), EC50_reproduction=35 mg Cd/kg (standard test) 

(Castro-Ferreira et al., 2012). 

Results from the present study allowed to discriminate the specific day and/or affected 

stage of development to Cd toxicity. The reduced hatching with increasing Cd 

concentrations reflects the delay in embryogenesis at ≤5 mg Cd/kg and the disruption at 

≥16 mg Cd/kg. For 16 mg Cd/kg in most (62%) of the cocoons, cells were degenerated and 

tissue disorganized, being consequently more prone to contamination by fungi. The effect 

of Cd on embryonic development and hatching was concentration dependent and for 

concentrations higher than 16 mg Cd/kg the effects seem to irreversibly stop 

embryogenesis, as confirmed in full life cycle test (Bicho et al., 2015). 

The embryotoxicity of Cd is known to other invertebrate species, like aquatic molluscs 

(Gomot, 1998; Pietrock et al., 2008). The particular stage of embryonic development that 

is delayed or disrupted depends on the Cd concentration, as also observed for Helix 

aspersa by Druart et al. (2010). On the other hand, several authors claim that the effect of 

Cd is dependent on the stage of exposure, i.e., the earlier the exposure, the larger the effect 

(Marc et al., 2005; Pennati et al., 2006). In our study, the worst case scenario was studied 

since cocoons were exposed during first cell divisions (morula stage).  

Results from Von Kossa staining in non-exposed cocoons, showed Ca deposition on the 

membrane during the first stages of embryonic development (morula and gastrula stages), 

but at organogenesis stage this Ca deposition decreased. To our knowledge this is the first 

study that indicates Ca homeostasis/dynamics during embryogenesis of an oligochaete (and 

possibly of invertebrates). Similarly, studies with vertebrate species, e.g. Lepidochelys 
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olivacea, Coluber constrictor and Zootoca vivipara have shown that Ca available in the 

eggshell decreases during embryogenesis (Packard et al., 1984; Sahoo et al., 1998; Stewart 

et al., 2011). The role of Ca in early embryogenesis is also well described in Xenopus 

laevis and Danio rerio (Drean et al., 1995; Whitaker, 2012). However in our study, for Cd 

exposed cocoons, this Ca deposition was not reduced. Additionally, an increase in the 

thickness of membranes at 50 mg Cd/kg for cocoons at organogenesis stage was observed 

(7th day), which confirms the persistence of Ca deposition or accumulation.  

Results from immunohistochemistry in controls support our observations of Von Kossa 

staining for the same conditions (see supplementary data for details). The presence of L-

type Ca channels during early development is confirmed and a decrease of expression of 

these Ca channels was observed at later stages (7th day) of embryonic development. Again 

studies with vertebrates are in agreement with these observations, where the expression of 

L-type Ca channel was showed during early development in Xenopus laevis (Drean et al., 

1995). In our study, we observed the presence of Ca and L-type Ca channels proteins in the 

cocoon membrane at early stage of embryogenesis, followed by its reduction at a later 

stage. This indicates that Ca transport occurs through the extraembryonic membrane during 

the embryonic development. Regarding this mechanism, to the best of our knowledge, this 

has not been described for annelids before. For vertebrates (reptiles and birds), studies 

have shown that the mechanism of calcium transport by both oviparous and viviparous 

embryos does not differ between modes of parity, the calcium used in embryo development 

is either from eggshell or the placenta (Gabrielli and Accili, 2010; Stewart et al., 2011). 

The described mechanisms of embryonic uptake of Ca from extraembryonic membranes 

involve e.g.  Ca channels, Ca binding proteins and Ca ATPases (Fregoso et al., 2010, 2012; 

Gabrielli and Accili, 2010; Stewart et al., 2011). It is shown that the uptake of Ca is low in 

early development, reaching the maximum absorption point during mid-development 

followed by a decrease at the end of development, for which the pattern of expression of 

these proteins follows the Ca uptake.  

It is known that Cd and Ca compete for Ca channels in different species, e.g. zebrafish 

Danio rerio (Hen Chow and Cheng, 2003), aquatic insect (Braeckman et al., 1999; Craig et 

al., 1999), and soil invertebrates species like Helix aspersa (Druart et al., 2010) and 

Eisenia andrei (Li et al., 2010) or in mammalian cells (Blazka and Shaikh, 1991; Hinkle et 

al., 1987), and that Cd has a high affinity binding site in the L-type Ca channels (Marchetti, 
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2013; Misra et al., 2002). Additionally, in mammalian cells, it was shown that Cd induces 

gene transcription with consequent protein translation (Misra et al., 2002).  

Based on the known mechanisms and the observation in our study of increased Ca staining 

with higher Cd concentration, we formulate the following mechanism hypothesis: Cd 

competes with Ca and enters embryos via the L-type Ca channels in the cocoon membrane; 

gene regulation mechanisms are activated to synthesize more Ca channel proteins; for 

higher Cd concentrations the compensatory mechanism is probably not enough, hence the 

disruption in the Ca homeostasis and embryo development.  

To integrate data we illustrate results in a draft AOP (Fig. 4). 

 

 

 

Figure 4: Adverse Outcome Pathway (AOP) for Enchytraeus crypticus when exposed to 

Cd in LUFA 2.2 soil. Red: adverse effect; Orange: semi-adverse effect; Green: no adverse 

effect; Square boxes represent final states for the organism and rounded boxes represent 

intermediate states. Dashed line represents relationships hypothesized. 

 

 

This AOP combines results from the present study with the results observed in Bicho et al. 

(2015). As can be depicted, the initial reduced hatching (11 days) at <5mg/kg Cd exposure 

is partly compensated with time (hatching occurred later in time between 11 and 25 days, 

as measured in the study of Bicho et al. (2015), whereas for the highest concentration this 

was a true reduction, and concentrations between 5 and 16 mg Cd/kg caused intermediate 

effects (with higher uncertainty since values were interpolated within tested 

concentrations).  
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5. Conclusions 

The present study provided the development of an embryotoxicity test for the soil species 

Enchytraeus crypticus (oligochaete). This means that new and relevant endpoints were 

added. We propose an embryo test where the macroscopic monitoring is performed. 

Additionally but not mandatory, histology can be included (as described).  In particular we 

recommend further studies at the immunohistochemical level are done to confirm the 

mechanisms involving Ca transport. Further, this filled an existent gap in soil 

ecotoxicology regarding embryo development. The use of this test in future studies can 

provide helpful information for risk assessment and regulatory purposes.  

 

6. Acknowledgements 

This work was supported by European Funds through COMPETE and by National Funds 

through the Portuguese Science Foundation (FCT) within project PEst-

C/MAR/LA0017/2013 and FUBIA FCOMP-01-0124-FEDER-008651 (Ref. PTDC/AAC-

CLI/103719/2008) and a research grant to Rita Bicho (Ref. BI/UI88/4494/2012). 

The authors declare that they have no conflict of interests. 

 

 

7. Supplementary data 

 

Materials and Methods 

Immunohistochemistry 

Immunostaining of calcium channels in cocoons was detected by immunohistochemistry 

using the primary antibody – Anti-Calcium channel L type DHPR alpha 2 subunit [20A] 

(Abcam. Cambridge, England). This is a mouse monoclonal antibody designed to detect 

1.4-dihydropyridine (DHP) receptor alpha-2 subunit. This antibody detects a 220 kDa 

protein under non-reducing and a 143 kDa protein under reducing conditions representing 

DHP. The DHP receptor is part of the L-type Ca channel complex. Sections of cocoons of 

age 4, 5 and 7 days of all treatments were used (sampling times selected based on effects 

observed with macroscopy and histology). These were immersed in 10 mM sodium citrate 

(pH 6.0) buffer, and microwaved for 30 min at 700 watts for antigen retrieval. Antigen 

visualization was done with the Novocastra Novolink Polymer Detection System (Leica 
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Microsystems GmbH, Wetzlar, Germany) and involved the following steps: Sections were 

incubated with H2O2 (3%) for 10 min to eliminate endogenous peroxidase activity 

followed by a 5 min incubation with a protein blocking agent. Sections were subsequently 

incubated overnight at 4 ºC with the primary antibody diluted at 1:300 with BSA (5%), and 

on the following day, washed in TBS-buffered saline solution before incubation for 30 min 

with the secondary antibody system using diaminobenzidine (DAB) as a chromogen. 

Negative controls were obtained by omitting primary antibody to check antibody 

specificity. In the results one image representing the negative control is shown. 

Observations and photographs were made using an Olympus BX51 microscope with an 

Olympus camera attached. For the quantification process of the expression of Ca channels, 

the cocoon membrane was divided in eight equal parts (Fig. S1B). For each part a semi 

quantitative scoring system was used: 0 = no positive cells, 1 = positive cells in ≤ 50% of 

the section, and 2 = positive cells in > 50% of the section, adapted from Amaral et al 

(2012). 

 

 

Figure S1: Schematic representation of the divisions of the cocoon membrane of 

Enchytraeus crypticus. A: measurement of membrane thickness B: visualization and semi-

scoring of Ca channels.  

 

Results 

Immunohistochemistry  

The expression of Ca channels was classified using an index (described above). Results 

regarding the index of expression of Ca channels are shown in Fig. S2. In controls the 

index of positive immunostaining tend to decrease during embryogenesis, whereas in the 

Cd treated cocoons for concentrations ≤ 16 mg Cd/kg, it was observed a slight increasing 

trend. Cocoons exposed to the highest concentration (50 mg Cd/kg) showed the highest 
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index of membrane with positive expression at the 7th day of development (Fig. S2) and 

can be observed in Fig. S3. It is important to note that further studies are needed to confirm 

the species specificity of the antibody.   
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Figure S2: Results from immunohistochemistry analysis for Enchytraeus crypticus when 

exposed to CdCl2 (mg Cd/kg DW soil) in LUFA 2.2 standard natural soil. All values are 

expressed in average ± standard error (Av ± SE). 
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Figure S3: Results from the immunohistochemistry of embryo development of 

Enchytraeus crypticus exposed to CdCl2 (mg Cd/kg DW soil) in LUFA 2.2 standard 

natural soil for 4, 5 and 7 days. Black arrows: positive immunostaining. A: negative 

control without positive staining. This section represents a control at 4 days. 

 

Macroscopic and histological 

 

 

Figure S4: Results from the macroscopic visualization of embryo development of 

Enchytraeus crypticus exposed to CdCl2 (mg Cd/kg DW soil) in LUFA 2.2 standard 

natural soil for 3, 4, 5, 7 and 11 days. Black arrows: invaginations; double black arrows: 

blastocoel. 
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Figure S5: Results from the histological analysis with Hematoxylin and Eosin staining of 

embryo development of Enchytraeus crypticus exposed to CdCl2 (mg Cd/kg DW soil) in 

LUFA 2.2 standard natural soil for 3, 4, 5, 7 and 11 days. bc: blastocoel; f: fungi; vnc: 

ventral nerve cord. 
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Abstract 

Chemicals’ toxicity is assessed during a certain exposure period of organisms’ life. It is not 

feasible to conduct tests that last the all life duration and hence long term tests usually 

include one reproductive cycle. In the present study we optimized and propose a lifespan 

(all life) term test using Enchytraeus crypticus (Oligochaeta). The effect of copper oxide 

nanoparticles (CuO-NPs) was assessed in this lifespan test and compared to copper salt 

(CuCl2), using the same effect concentrations on reproduction (EC50). Monitored endpoints 

included survival and reproduction over-time (202 days). Results from survival showed 

that CuO-NMs caused shorter life of the adults compared to CuCl2 (control LT80: 260 days 

> CuCl2 LT80: 237 days > CuO-NPs LT80: 228 days). The effect was even more amplified 

in terms of reproduction (control ET80: 188 days > CuCl2 ET80: 155 days > CuO-NPs ET80: 

135 days). Results suggest that CuO-NPs may cause a higher Cu effect via a trojan horse 

mechanism. The use of lifespan tests brings a novel concept in ecotoxicity, the longevity. 

This is a particularly important aspect when the subject is NMs toxicity, where longer term 

exposure time is expected to reveal unpredicted effects via the current short/long-term 

tests.  

 

Keywords: Longevity; All life exposure, Lifespan; Reproductive output 
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1. Introduction 

Organisms’ longevity is a complex process that can be influenced by various 

environmental events (Vanhooren and e Libert, 2012). Long term studies like lifespan tests 

are very important because such effects cannot be predicted based on short term tests, at 

least not yet given the shortage level of information. Chemicals’ toxicity is commonly 

assessed during a certain exposure period of organisms’ life; it is not feasible to conduct 

tests that last the lifespan duration and hence long term tests usually include one 

reproductive cycle. In terms of risk assessment, lifespan tests represent a continuous 

exposure to toxicants during the whole life, similar to what can occur in the natural 

environment, thus recreating a highly relevant scenario of exposure and unique consequent 

adverse effects (Coutellec and Barata, 2013; Van Gestel, 2012). There are very few studies 

within lifespan range and the species used  include Mus musculus, Drosophila 

melanogaster, Saccharomyces cerevisiae and Caenorhabditis elegans (Buffenstein et al., 

2008), not including any soil dwelling invertebrate. Most of these studies (using M. 

musculus, D. melanogaster, S. cerevisiae and C. elegans) were performed to discover 

genetic, environmental and pharmacologic modulators of aging for the lifespan extension 

purpose, providing new insights for human therapy (Hamilton and Miller, 2016; Lucanic et 

al., 2013). Studies that assess the effects of contaminants in lifespan are still limited, the 

few examples use C. elegans to investigate lifespan effects of metals and detergents 

(Harada et al., 2007; Wang et al, 2010). 

Effects of NMs have been investigated for ca. 2 decades, and there has been increasing 

alert regarding the need for longer term exposure tests due to the potential long term 

effects of NMs. So far, results on acute toxicity on e.g. aquatic organisms produced the 

classification, of Ag-NPs as ‘extremely toxic’ and CuO-NPs as ‘very toxic’ (Kahru and 

Dubourguier, 2010). However, most of the data so far generated is on short-term/acute 

effects which is not advised.  For instance Diez-Ortiz et al. (2015) found that 52 weeks 

aged Ag-NPs in LUFA 2.2 soil were more toxic to Eisenia fetida than Ag-NPs freshly 

spiked soil (1 week aged) (reproduction EC50 of 34 and  1420 mg Ag/kg, respectively); and 

Waalewijn-Kool et al. (2013) report that a release of Zn ions to soil, from ZnO-NPs, 

continued over one year. In fact, the need of more long-term toxicity studies to obtain a 

better understanding of NMs effects is fully recognized and pointed out as a current gap 
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and future priority in the knowledge on nanotoxicology (Baun et al., 2008; Kumar et al., 

2014). 

Copper oxide nanoparticles (CuO-NPs) are used in a wide range of industrial and 

commercial applications, such as, gas sensor (Chowdhuri et al., 2004), metallic and plastic 

coatings (Hernández Battez et al., 2010), circuits, batteries and semiconductor devices 

(Zhang et al., 2005) and solar energy conversion (Yin et al., 2005). Due to their 

antimicrobial and antifungal properties these NPs are also used in textiles industries, 

paints, plastics, food preservation, additives in lubricants, skin products and medical 

science (Dastjerdi and Montazer, 2010; Delgado et al., 2001; Gabbay et al., 2006; Jin and 

Ye, 2007). The increased production of CuO-NPs increased the risk of their introduction 

into the environment and human health (Buffet et al., 2013; Siddiqui et al., 2013). 

Therefore, its potential toxicity combined with its relatively low dissolution rate should not 

be ignored and it is important to investigate the toxicity of these materials (Blinova et al., 

2010; Buffet et al., 2011; Saison et al., 2010; Stone et al., 2010). 

Most of the information regarding the ecotoxicity of CuO-NPs is in the aquatic 

compartment (Chang et al., 2012), and is mostly based on “short-term”/acute effects 

(Mortimer et al., 2010; Nations et al., 2011; Pradhan et al., 2012; Zhao et al., 2011). 

Studies on chronic effects of CuO-NPs showed Daphnia magna growth and reproduction 

(21 days test) inhibition (Adam et al., 2015; Rossetto et al., 2014); and induced mortality 

and decreased growth in Xenopus laevis (Nations et al., 2015). Regarding soil 

compartment, most of the literature available is relative to plants (Da Costa and Sharma, 

2015; Peng et al., 2015; Shi et al., 2014) with less information on soil dwelling 

invertebrates (Gomes et al., 2015a; 2015b; Gomes et al., 2012a; Amorim et al., 2012; 

Amorim et al., 2011; Heckmann et al., 2011; Unrine et al., 2010).  

In the present study we propose a lifespan test i.e., all life term for the soil living 

oligochaeta Enchytraeus crypticus. E. crypticus is a model standard species where many 

endpoints are assessed: survival (ISO, 2005), reproduction (OECD, 2004), 

bioaccumulation (OECD, 2010a), embryo development (Gonçalves et al., 2015), or via a 

full life cycle with hatching, growth, maturity (Bicho et al., 2015a). 

The procedures for a lifespan test using E. crypticus were here optimized using control 

conditions (un-spiked soil) by monitoring the survival and reproduction of the organism 
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over the entire time of its lifespan. Further, the developed assay was used to study the 

longevity effects of CuO-NPs in comparison to CuCl2. 

 

2. Materials and Methods  

2.1. Test organisms 

The test organism used belongs to the species Enchytraeus crypticus, Westheide and 

Graefe, 1992. Cultures were kept in agar plates fed ad libitum with grinded and autoclaved 

oats and maintained in laboratory under controlled conditions, e.g. photoperiod of 16:8 

hours (light: dark) and temperature of 20 ± 1ºC. Juveniles of synchronized age (11 days) 

were used. For details on culture synchronization see Bicho et al. (2015a). 

 

2.2.   Test soil 

The standard natural soil LUFA 2.2 (Speyer, Germany) was used. Main properties of the 

soil can be summarised as follows: pH (0.1 M CaCl2) of 5.5, 43.3% of maximum water-

holding capacity (WHCmax), 1.61% organic carbon and a particle size distribution of 

7.9% clay, 16.3% silt and 75.8% sand. 

 

2.3.  Test procedures 

2.3.1. Optimization of the lifespan assay: control conditions 

The optimization of the lifespan assay was done in un-spiked soil, moistened to 50% of the 

WHCmax. Juveniles of synchronized age (11 days) were randomly selected and placed in 

each well (of the 6-well plates) at two densities: 1 (D1) and 20 (D20) organisms per 

replicate, ten replicates were used. After 25 days (11 plus 14 days to allow growth and 

reaching maturity) adults’ survival was recorded and the surviving adults (25 days old) 

were transferred to new test plates, in the same conditions, i.e. D1 or D20 respectively. To 

ensure that no juveniles were transferred together with the adults, prior the transference to 

the new test plates, the organisms were cleaned in a petri-dish with distilled water and 

checked under a stereo microscope (Zeiss Stemi 2000-C). Every 15 days, the survival of 

the adults was recorded and the surviving adults were transferred to new test plates as 

described above. After each transfer, the previous test plates were left during 11 more days 

to ensure that the cocoons laid have time to hatch; after that, the soil in the well plates was 
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transferred to glass vials and fixated with 96% ethanol and Bengal rose (1% in ethanol) 

and the juveniles were counted using a stereo microscope (Zeiss Stemi 2000-C). 

Food (grinded and autoclaved oats) was added weekly (2 and 10 mg for D1 and D20 

exposed organisms, respectively). Water was added every 3 days. The test was maintained 

at a photoperiod of 16:8 hours light:dark and at 20 ± 1 ºC. The test ran until all the adults 

were dead (370 days). 

 

2.3.2. Lifespan assay: exposure to CuO-NPs and CuCl2 

For the test with CuO-NPs and CuCl2, organisms (juveniles of synchronized age) were 

exposed at density D1 following the procedures described above. 20 replicates per test 

condition were used, 2 mg of food was added weekly and water adjusted every 3 days. The 

test was maintained at a photoperiod of 16:8 hours light:dark and at 20 ± 1 ºC. The test ran 

for 202 days (plus 11 more days to allow the cocoons to hatch); the test duration was 

selected based on the results from the optimization of the lifespan assay in control 

conditions (≈ LT80). 

 

2.4. Test chemicals and spiking 

Copper-salt (CuCl2·2H2O) and Copper Oxide Nanoparticles (FP7 SUN pristine materials) 

were used (Table 1).  The tested concentrations were selected based on the EC50 for 

reproduction effect (CuCl2 = 180 mg Cu/kg and CuO-NPs = 1400 mg Cu/kg soil dry 

weight) as known from previous Enchytraeid Reproduction Test (ERT) results (Bicho et 

al., 2015b). CuCl2 was added to pre moistened soil (20% w/w) as serially diluted aqueous 

solutions. For CuO-NPs, the NPs were added as dry powder to the soil as recommend by 

OECD for the testing of insoluble substances (OECD, 2010b). In short, CuO-NPs were 

thoroughly mixed manually with the dry soil to obtain the corresponding concentration 

range. After that, deionized water was added to reach 50% of the soil WHC. All soils were 

homogeneously mixed and allowed to equilibrate for 1 day before test start. Soil was 

spiked and renewed every 15 days during sampling.  

Controls correspond to un-spiked LUFA 2.2 soil moistened until 50% of WHC. Test 

vessels consisted of 6-well plates (35 mm ø), each well containing 5 g of moistened soil. 

Treatments and replicates were distributed randomly in the test plates.  
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Table 1: Characteristics of the tested CuO-NPs and CuCl2 including manufacturer, CAS, 

size, nominal surface area, density, purity and solubility/dispersability. 

 

 

CuO-NPs CuCl2 

Manufacturer Plasma Chem Sigma–Aldrich 

CAS Number    10125-13-0 

Size (nm) 15-20 - 

Nominal Surface Area 

(m2/g) 
47 - 

Density (g/cm3) 6.3 - 

Purity (%)   99 

Solubility/Dispersability 

Not dispersible in 

water 
Water soluble 

 

 

2.5.  Data analysis  

To assess significant differences between treatments at each sampling day One-Way 

ANOVA (using Tukey Test or Dunn's method for multiple comparisons) was used 

(SigmaPlot 11.0).  

Lethal Time (LTx) as time to reduce survival in x% and Effect Time (ETx) as time to 

reduce reproduction in x% calculations were performed for survival and reproduction, 

respectively, using the logistic equation or threshold sigmoid 2 or 3 parameters regression 

models (TRAP software). 

 

3. Results 

3.1. Optimization of the lifespan assay: control conditions 

Results on survival at D1 and D20 are shown on Figure 1A and the ETx values are 

summarized in Table 2.  
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Figure 1: Lifespan test of Enchytraeus crypticus at two different organisms’ densities (1 

organism (D1) and 20 organisms (D20)) in LUFA 2.2 soil, over-time. A) Adults survival; 

all values are expressed as cumulative number (N = 10), B) Reproductive output; all values 

are expressed as average ± standard error (N = 10). The lines represent the model fit to 

data. 

 

The lifespan at D1 is lower than at D20 (D1 LT50: 145 days, D20 LT50: 162 days). Results 

in terms of reproduction can be observed in Figure 1B: the number of juveniles produced 

per adult at D1 is higher than at D20, but D1 has a reproduction EC50 earlier than D20 (e.g. 

D1 ET50: 154 days, D20 ET50: 242 days, Table 2). 
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Table 2: Summary of the Effect Time (ETx) for survival (LTx) and reproduction for Enchytraeus crypticus in control conditions in LUFA 

2.2 soil at two different organisms’ densities (1 organism (D1) and 20 organisms (D20)).  

 

 

  

Survival   Reproduction 

LT10 LT20 LT50 LT80 
Model  

ET10 ET20 ET50 ET80 
Model 

(95%-CI) (95%-CI) (95%-CI) (95%-CI) 
 

(95%-CI) (95%-CI) (95%-CI) (95%-CI) 

D1 
62 92 145 183 Threshold 2 

param (S:0.007; 

Y0:9.2) 

 
97 117 155 182 Threshold 2 

param (S:0.010; 

Y0:100) 
(49-81) (80-103) (137-152) (17-194) 

 
(78-117) (102-131) (142-168) (160-204) 

            

D20 
26 72 162 227 Threshold 2 

param (S:0.004; 

Y0:200) 

 
204 218 242.4 267 Logistic 2 param 

(S:0.014; Y0: 

29.3) 
(14-39) (63-80) (157-167) (219-235) 

 

(180-229) (201-236) (23-254) (249-285) 
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3.1. Lifespan assay: exposure to CuO-NPs and CuCl2 

The effects of CuO-NPs and CuCl2 on E. crypticus lifespan (survival) can be depicted in 

Figure 2A and the ETx calculated are summarized in Table 3.  

 

Time (days)

0 11 34 48 62 76 90 104 118 132 146 160 174 188 202

C
u

m
u

la
ti

v
e

 N
o

. 
A

d
u

lt
s

0

5

10

15

20

Time (days)

45 59 73 87 101 115 129 143 157 171 185 199 213

N
o

. 
J

u
v
e

n
il

e
s

0

20

40

60

80

100

120

*

* *
*

*

*

*

*

*
*

*
*

*
**

** **

0

B

A

Control 

CuO-NPs 

CuCl
2

 

Figure 2: Lifespan test of Enchytraeus crypticus when exposed to CuO-NPs and CuCl2 

(mg Cu/kg DW soil) in LUFA 2.2 soil, over-time. A) Adults survival; all values are 

expressed as cumulative number (N = 20), B) Reproductive output; all values are 

expressed as average ± standard error (N = 20). Asterisks indicate significant differences 

between control and treatments at each sampling day (p<0.05 Tukey Test or Dunn's 

method). The lines represent the model fit to data.  

 

CuO-NPs exposure caused a more severe lifespan decrease than CuCl2: control LT50: 218 

days > CuCl2 LT50: 175 days > CuO-NPs LT50: 145 days. Results in terms of reproduction 

(Fig. 2B) show that CuO-NPs exposure caused higher effects on reproduction in E. 

crypticus, with a 50% reduction in reproduction occurring earlier than CuCl2 (e.g. control 

ET50: 158 days > CuCl2 ET50: 138 days > CuO-NPs ET50: 92 days, Table 3). 
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Table 3: Summary of the Effect Time (ETx) for survival (LTx) and reproduction for Enchytraeus crypticus when exposed to CuO-NPs and 

CuCl2 (mg Cu/kg DW soil) in LUFA 2.2 soil. n.d. = not determined. 

 

 

  

Survival   Reproduction 

LT10 LT20 LT50 LT80 
Model  

ET10 ET20 ET50 ET80 
Model 

(95%-CI) (95%-CI) (95%-CI) (95%-CI) 
 

(95%-CI) (95%-CI) (95%-CI) (95%-CI) 

Control 
127 157 218 260 Threshold 2 

param (S:0.006; 

Y0: 19.1) 

 
110 128 158 188 Logistic 2 param 

(S:0.012; 

Y0:110.9) (117-137) (151-164) (207-227) (242-278) 
 

(99-121) (120-135) (153-163) (179-197) 

            

CuCl2 
77 113 175.3 237 Logistic 2 param 

(S:0.006; 

Y0:19.3) 

 
110 120 138 155 Logistic 2 param 

(S:0.020; 

Y0:100.23) 
(59-95) (102-125) (167-184) (218-256) 

 

(101-118) (114-126) (134-142) (149-162) 

            

CuO-NPs 
23 64 145 204 Threshold 2 

param (S:0.005; 

Y0:19.7) 

 
23 48 92 135 Logistic 2 param 

(S:0.008; Y0:97.7) (n.d.) (40-88) (130-160) (175-233) 

 

(10-36) (39-57) (86-97) (125-145) 
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4. Discussion 

4.1. Optimization of the lifespan assay: control conditions 

This is the first study where the entire lifespan of an enchytraeid was monitored in soil. 

Previous knowledge on enchytraeids’ lifespan (in agar media) showed: 120 days for 

Enchytraeus albidus (Ivleva, 1953), 127 days for Enchytraeus doerjesi (Westheide and 

Graefe, 1992) and 224 days for Enchytraeus coronatus (Rodriguez et al., 2002). Westheide 

and Graefe (1992) also reported an 85 days lifespan for E. crypticus which is considerably 

less than the 244 and 370 days we observed for D1 and D20, respectively. Possibly the 

differences in terms of test media, soil (in our study) and agar media influence the 

longevity. Hence, this indicates that E. crypticus can live longer in soil compared to agar 

which is not surprising given that agar is an artificial substrate. 

The experimental test design as proposed here can be used as draft for a lifespan test in soil 

for E. crypticus. Results showed that the selected sampling points to assess the survival and 

reproductive output over-time were adequate. Although it is a very long test, the associated 

cost are relatively low, except time consumption, and the level of information is of very 

high level. The majority of the studies that assess endpoints like survival, reproduction, 

bioaccumulation or growth are based on much shorter  exposure periods, covering up to 4 

weeks of duration (about 28-30 days) (Diez-Ortiz et al., 2015; Peters and Granek, 2016) 

and cannot predict the effects of longevity.  

Analysis of organism survival over time showed that at D1 enchytraeids died earlier 

compared to D20. The results on reproduction (number of juveniles per adult) at D1 and 

D20 showed a higher reproductive output at D1 than at D20 and are in agreement with 

results from a detailed study using the same species (Gonçalves et al., submitted) where the 

authors observed smaller cocoons and less embryos at D20 compared to D1. This has been 

observed in other studies: lower reproductive output at higher densities compared to lower 

densities, for instance in Lumbricus terrestris (Butt et al., 1994) the cocoon production was 

1.5, 0.6, 0.1, 0.06, 0.04 and 0.0 at D1, D2, D3, D4, D6 and D8 respectively and 

Biomphalaria alexandrina showed four times as many eggs per week in lower than in high 

densities (Mangal et al. 2010). 

Regarding reproduction, we observed a decrease in reproductive output over time, possibly 

age related. Changes in fertility in relation to age (reproductive senescence) have been 

reported in other organisms and can vary among these (Jones et al., 2014). For example, in 
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Caenorhabditis elegans the fast decline in the reproduction begins at young to middle age 

due to sperm depletion (Hughes et al., 2007) whereas in Drosophila melanogaster is due to 

apoptosis of ageing egg chambers (Zhao et al., 2008). In E. crypticus the reproductive 

output showed a variation along the lifespan of the organisms and decreased with aging. 

This further reiterates the importance of using organisms with synchronized age in 

ecotoxicological testing as recommended for this species and implemented in the full life 

cycle test (Bicho et al., 2015a).  

 

4.2. Lifespan assay: exposure to CuO-NPs and CuCl2 

Results in controls were similar to those obtained in the optimization test, although, the 

endpoint reproduction (“optimization test” D1 ET50= 155 days and “controls of Cu 

exposure tests” ET50= 158 days) was more stable than survival (“optimization test” D1 

LT50= 145 days and “controls of Cu exposure tests” LT50= 217 days), which confirms the 

increased relevancy of chronic effects compared to acute. 

Results showed that CuO-NPs were more toxic than CuCl2, i.e. exposure to CuO-NPs 

caused shorter longevity and reproduction. Gomes et al. (2012b, 2011) reported, in Mytilus 

galloprovincialis, that CuCl2 was easily eliminated, whereas CuO-NPs had slower 

elimination rate resulting in an increased accumulation with time of exposure. In short, 

even though Cu concentrations in the digestive gland of mussels were higher for CuCl2 

than for CuO-NPs in the first week of exposure, Cu accumulation decreased for CuCl2 at 

the end of experiment (15 days) whereas it increased for CuO-NPs exposure. The observed 

differences in terms of longevity (59-143 days period) could be related with different 

accumulation/elimination rates between NPs and salt.  

From day 157 onwards effects became more similar between CuO-NPs and CuCl2. This 

could mean that, after prolonged exposure, Cu elimination (from CuCl2) was less efficient 

(also linked to the age of the organisms, note that from day 143 there is a reduction in 

reproduction, also in control) and the effects caused by CuCl2 meet those caused by CuO-

NPs.  

Another study with Daphnia magna also showed higher internal concentrations of Cu from 

exposured to CuO-NPs compared to CuCl2, but in this case, CuCl2 caused higher toxicity 

in terms of reproduction (Adam et al., 2015).  
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The mechanism of Cu uptake from CuO-NPs is not fully understood. Some authors (Studer 

et al., 2010 and Karlsson et al., 2008) explain the higher citoxicity of CuO-NPs (in 

comparison to CuCl2) via a trojan horse mechanism, i.e. NPs can release a boom of metal 

ions inside the cells, possibly due to lower pH which causes a higher dissolution. Shi et al. 

(2011) report higher toxicity of CuO-NPs (in comparison to CuCl2) to Landoltia punctate 

due to the high uptake of ions released from the NPs, but question the intra-cellular form of 

Cu and if the CuO-NPs themselves are taken up into the cells. Pradhan et al. (2012) 

suggest the intake of CuO-NPs in Allogamus ligonifer, and also state that the Cu ions 

released from the CuO-NPs may contribute to the toxicity of CuO-NPs. A study by 

Navratilova et al. (2015) showed that it was possible to detect CuO-NPs by Single Particle 

ICP-MS, in natural soil extracts mixed with a suspension of CuO-NPs, indicating that 

CuO-NPs persist in the nano form (even though in the form of agglomerates) and do not 

completely solubilize in the presence of soil components, i.e. organic matter. 

In our case, enchytraeids ingest soil containing CuO-NPs, and once the NPs reach the 

organisms’ digestive track the low pH would increase the dissolution of NPs and release of 

Cu ions. Additionally the direct uptake of CuO-NPs into the cells with increased Cu 

bioaccumulation can play a role and produce effects via a trojan horse mechanism.   

 

4. Conclusions 

A lifespan test was developed for the first time in soil for an enchytraeid and includes 

longevity as an additional endpoint. The proposed lifespan term test will be extremely 

useful to assess the prolonged effects of toxicants, e.g. very important for nanomaterials. 

Results showed precisely that longevity was more affected for CuO-NPs compared to 

CuCl2, which would not be predictable based on the current standard long term testing. We 

understand that the test length may be an issue but highly recommend the performance of 

longevity test for selected cases and design, in particular for the testing of nanomaterials.  
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General discussion and final considerations 

 

Throughout this thesis some aspects of Enchytraeus crypticus biology were deeply 

investigated towards the development of new assays to assess chemicals toxicity.  

E. crypticus can regenerate, but only the anterior fragment, i.e. formation of the tail 

(Chapter 2). The posterior regeneration took 6 days after which the organisms grew (for 

about 16 days) until they reach sexual maturity and were able to release cocoons (sexual 

reproduction). Regeneration is probably an additional survival strategy to deal, for instance 

with mechanical stress/injuries that can have implications for the interpretation of 

ecotoxicity results. Despite not pursued in the present thesis, regeneration ability could be 

further implemented as endpoint to assess effects of toxicants. 

The embryonic development of E. crypticus was described and an embryotoxicity 

test was developed and validated (using cadmium as test substance) (Chapter 3). The 

development of the embryotoxicity test filled an existing gap in soil ecotoxicology, where 

the study of effects in the embryonary life-stage was not possible. Thus, endpoints such as 

embryo development and hatching success were added to field of soil ecotoxicology. 

By monitoring survival and reproductive output of E. crypticus over its lifespan the 

understanding of the relationship of longevity and reproductive biology of these organisms 

was improved; and allowed the design of a long-term (life-span) assay (Chapter 4). The 

investigation of effects of contaminants on long-term exposure regimes has been long 

recommended for hazard assessment. This gained even more importance in the case of 

nanomaterials for which the effects might not be detected under the standard toxicity test 

time frame. 

To understand the relationships between contaminants and species, more studies 

using chemical, biochemical, and molecular tools (ecotoxicogenomics) are needed, like 

epigenetic studies, as well as proteomic and metabolomic analyses. The combination of 

this tools and endpoints covering effects is the key for an effective ecotoxicology 

approach. 

Finally, it is necessary add new tests or adjust the standard assays available in order 

to enable them to address the new endpoints with several contaminants (e.g. 

nanomaterials). 

 


