

Universidade de Aveiro

2016

Samuel Noronha Rocha	Síntese e caracterização de líquidos iónicos quirais e sua aplicação no desenvolvimento de sistemas aquosos bifásicos			
	Synthesis and characterization of chiral ionic liquids and their application in the development of aqueous biphasic systems			

Universidade de Aveiro

2016

Samuel NoronhaSíntese e caracterização de líquidos iónicos quirais e sua
aplicação no desenvolvimento de sistemas aquosos
bifásicosSynthesis and characterization of ionic liquids and their
application in the development of aqueous biphasic
systems

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Química, realizada sob a orientação científica do Professor Doutor João Manuel da Costa e Araújo Pereira Coutinho, Professor Catedrático do Departamento de Química da Universidade de Aveiro e coorientação da Doutora Sónia Patrícia Marques Ventura, Investigadora Auxiliar do Departamento de Química, CICECO, da Universidade de Aveiro.

O Júri

PresidenteProfessor Doutor Artur Manuel Soares da Silva
professor catedrático do Departamento de Química da Universidade de AveiroDoutor Jorge Fernando Brandão Pereira
professor assistente da Universidade Estadual Paulista "Júlio de Mesquita Filho" -
UNESPDoutora Sónia Patrícia Marques Ventura
investigadora auxiliar do Departamento de Química, CICECO, da Universidade de
Aveiro

Agradecimentos Começo por agradecer ao meu orientador, Prof. Dr. João Coutinho, pela oportunidade que me deu de trabalhar neste grupo maravilhoso e neste tema desafiante do qual gostei imenso.

Queria também agradecer à minha coorientadora, Dra. Sónia Ventura, por toda a ajuda e todas as dicas preciosas que me deu ao longo da realização do trabalho. À Tânia e à Francisca, por tudo o que me ensinaram, pela motivação, pela paciência e pela ajuda, um muito obrigado. Agradeço a todos os membros do PATh, pelo espírito magnífico que este grupo tem e por toda a ajuda.

Pai e Mãe, muito obrigado pela paciência e pelo apoio incondicional, sei que levou tempo, mas está feito. Liliana apesar de andarmos sempre às "turras", no fundo nós entendemo-nos bem, sabes que gosto muito de ti. Alexandra agradeço-te toda a motivação que me transmitiste, sem ti possivelmente não teria chegado aqui.

Queria dedicar este trabalho aos meus avôs paterno e materno, pois eles ajudaram em muito a ser a pessoa que sou hoje, estarão sempre presentes. Avós, não fiquei com inveja, sabem que vos adoro.

Mafalda, quanto a ti não tenho nada para agradecer, tenho tudo. Obrigado por todo o apoio, por todas as opiniões importantes, por me dares na cabeça quando sou um pouco "baldas", por toda a ajuda, por toda a felicidade que me transmites, enfim... por tudo. Simplesmente completas-me...

- **Palavras-chave** Enantiómeros, líquidos iónicos quirais, sistemas aquosos bifásicos, resolução quiral, excesso enantiomérico, ácido mandélico.
- Resumo A síntese de misturas racémicas, seguida de separação enantiomérica é uma abordagem simples, flexível e muito utilizada. No entanto, a separação de enantiómeros continua a constituir um grande desafio para a indústria farmacêutica pois enantiosseletividade apresentada por estes processos é moderada e tem que ser compensada por processos cromatográficos que apresentam limitações ao nível do aumento de escala e das quantidades que estes conseguem processar. Na última década, a separação e purificação de moléculas, usando sistemas aquosos bifásicos (SABs) constituídos por líquidos iónicos (LIs) foi extensivamente estudada, como alternativa aos sistemas tradicionais de cromatografia ou extração líquido-liquido com solventes orgânicos ou mesmo SABs convencionais de base polimérica.

O presente trabalho tem como objetivo desenvolver SABs com líquidos iónicos quirais (LIQs) enantiosseletivos, funcionando estes simultaneamente como solventes e seletores quirais. Doze LIQs compostos pelo catião tetrabutilamónio ou colínio e por vários aniões provenientes de diferentes aminoácidos quirais foram sintetizados e as suas propriedades físico-químicas e ecotoxicidade caracterizadas. LIQs Posteriormente. os sintetizados contendo 0 catião tetrabutilamónio foram combinados com diferentes sais para formar SABs, a fim de permitir a determinação dos respetivos diagramas de fase ternários a 25 (±1) °C e à pressão atmosférica. Estes sistemas foram aplicados como plataformas de separação de enantiómeros de ácido mandélico. A partição dos enantiómeros mostrou ser afetada pela estrutura do LIQ e do sal utilizado, bem como pela presença/ausência do ião Cu^{2+} . Apesar dos excessos enantioméricos obtidos serem pequenos, o SAB mais promissor consistiu no sistema constituído por $[N_{4444}]_2[L-Glu] + Na_2SO_4$, tendo para este sido obtido um valor máximo de excesso enantiomérico de 12,4 ± 2,0 %. **Keywords** Enantiomers, chiral ionic liquids, aqueous biphasic systems, chiral resolution, enantiomeric excess, mandelic acid, enantiomers.

Abstract The synthesis of racemic mixtures followed by enantiomeric separation is the simplest, most flexible and more widely used approach. However, the separation of enantiomers remains a major challenge for the pharmaceutical industry, since the enantioselectivity of these processes is often moderate and must be compensated by using chromatographic processes that have a limited scale up and processing capacity. In the last decade, the separation and purification of several (bio)molecules, using aqueous biphasic systems (ABS) composed of ionic liquids (ILs) has been extensively studied as an alternative to the traditional chromatographic techniques or liquid-liquid extraction with organic solvents or even more conventional, polymeric ABS.

This study aims at developing enantioselective ABS with chiral ionic liquids (CLIs), simultaneously acting as solvents and chiral selectors. Twelve CILs composed of tetrabutylammonium and cholinium cations and several anions derived from different chiral amino acids were synthesized and characterized regarding their physico-chemical properties and ecotoxicity. These were then combined with different salts to form ABS, allowing the determination of their ternary phase diagrams at 25 (\pm 1) °C and under atmospheric pressure. These systems were applied as platforms for the separation of mandelic acid enantiomers. The enantiomers partitioning behaviour is affected by the CIL and salt structure and by the presence/absence of Cu²⁺ ions. Although the enantioselectivities obtained were limited, the most promising ABS was

composed of $[N_{4444}]_2[L-Glu] + Na_2SO_4$, which yielded a maximum enantiomeric excess of $12,4 \pm 2,0$ %.

Índice

1. Introdução	. 23
1.1. Objetivos	40
2. Materiais e métodos	43
2.1. Materiais	45
2.2. Métodos	46
2.2.1. Síntese e caracterização dos LIQs	. 46
2.2.1.1. Síntese	46
2.2.1.2. Determinação da temperatura de decomposição	. 47
2.2.1.3. Determinação da temperatura de fusão	. 47
2.2.1.4. Densidade e viscosidade	. 48
2.2.1.5. Índice de refração	. 48
2.2.1.6. Rotação ótica	. 48
2.2.1.7. Toxicidade	. 48
2.2.2. Determinação de SABs para separação de enantiómeros	. 49
2.2.2.1. Determinação dos diagramas de fase e respetivas tie-lines	. 49
2.2.2.2. Estudos de partição dos enantiómeros do ácido mandélico	50
2.2.2.3. Quantificação dos enantiómeros do ácido mandélico por HPLC-DAD	51
2.2.2.4. Medição do pH das fases	. 52
3. Resultados e discussão	. 53
3.1. Síntese e caracterização de líquidos iónicos quirais	. 55
3.1.1. Síntese	55
3.1.2. Caraterização	. 58
3.1.2.1. Temperatura de fusão e de decomposição	58
3.1.2.2. Densidade, viscosidade e índice de refração	60
3.1.2.3. Rotação ótica	63
3.1.2.4. Toxicidade	65
3.2. Desenvolvimento de SABs com LIQs para a separação de enantiómeros	. 69
3.2.1. Diagramas de fase dos sistemas constituídos por $[N_{4444}][AA] + sal + H_2O$.	69
3.2.1.1. Efeito do anião	. 69

3.2.1.2. Efeito do sal	
3.2.2. Estudo da partição dos enantiómeros do ácido mandélico nos SABs	
3.2.2.1. Efeito do LIQ	
3.2.2.2. Efeito da introdução do ião cobre como seletor quiral	81
3.2.2.3. Efeito do sal	
3.2.2.4. Comparação com outros SABs	
4. Considerações finais	89
4.1. Conclusões	
4.2. Perspetivas futuras	
5. Referências	
Anexo A – curvas de calibração HPLC	109
Anexo B – caracterização dos LIQs	113
Anexo C – curvas binodais	
Anexo D – partição dos enantiómeros do ácido mandélico	161

Lista de Figuras

Figura 1- Estrutura representativa dos enantiómeros do fármaco ibuprofeno 25
Figura 2- Métodos de obtenção de compostos enantiomericamente puros (adaptado de
[9])
Figura 3 - Modelo dos três pontos seguido pelos seletores quirais: A, B, C e D
representam os diferentes substituintes de um dos enantiómeros; as linhas representam as
interações de cada um dos diferentes substituintes com o seletor quiral [11] 30
Figura 4 – Esquema de um diagrama de fases do sistema componente 1 + componente 2
+ água: SCI – curva binodal; SI - <i>tie-line</i> ; S – composição da fase superior; I - composição
da fase inferior; X, Y e Z - composição das misturas na região bifásica (adaptado de [32]).
Figura 5 – Estrutura dos LIQs sintetizados por Wu e co-autores utilizados na separação
de aminoácidos utilizando SABs [31]
Figura 6 - Descrição das etapas principais e mais comuns envolvidas na síntese de LIs.
Figura 7 - Síntese do primeiro LIQ reportado em [68] 38
Figura 8 - Reação de neutralização entre o hidróxido de tetrabutilamónio e distintos
aminoácidos
Figura 9 – O primeiro LI com quiralidade no anião e no catião reportado por Machado e
co-autores [67]
Figura 10 - Estrutura dos dois enantiómeros de ácido mandélico
Figura 11 – Esquema da síntese dos LIQs pela reação de neutralização (A) com o catião
tetrabutilamónio e (B) com o catião colínio
Figura 12 – Estrutura química dos LIQs sintetizados 56
Figura 13 - Densidade em função da temperatura para os LIQs: [Col] ₂ [L-Glu] (■),
[Col][D-Phe] (*), [Col][L-Phe] (0), [N ₄₄₄₄][L-Pro]((), [N ₄₄₄₄][L-Val](()61
Figura 14 - Viscosidade em função da temperatura para os LIQs: [Col] ₂ [L-Glu] (■),
$[Col][D-Phe] (*), [Col][L-Phe] (0), [N_{4444}][L-Pro](\blacktriangle), [N_{4444}][L-Val](\diamondsuit) 62$
Figura 15 – Índice de refração em função da temperatura para os LIQs: [Col] ₂ [L-Glu]
(\blacksquare), [Col][D-Phe] ($*$), [Col][L-Phe] (O), [N ₄₄₄₄][L-Pro](\blacktriangle), [N ₄₄₄₄][L-Val](\blacklozenge) 63
Figura 16 - Valores de EC ₅₀ (mg/L) para cada composto, após 5, 15 e 30 minutos de
exposição à bactéria luminescente Vibrio fischeri

Figura 17 - Avaliação do impacto do anião do LIQ na formação de SABs constituídos por
$[N_{4444}][AA] + Na_2SO_4 + H_2O: [N_{4444}]_2[L-Glu] (*), [N_{4444}][D-Phe] (\blacksquare), [N_{4444}][L-Phe]$
(\Box), [N ₄₄₄₄][L-Val] (\blacktriangle), [N ₄₄₄₄][L-Pro] (\blacklozenge), [N ₄₄₄₄][L-Ala] (\times) e [N ₄₄₄₄][Cl] ($-$) 70
Figura 18 - Diagrama de fases para o sistema ternário constituído por [N4444][L-Phe] +
Na ₂ SO ₄ + H ₂ O: dados da curva binodal (■); dados das TLs (•); ajuste dos dados da curva
binodal segundo a Eq. 1 (—)
Figura 19 - Avaliação do impacto do sal em sistemas ternários constituídos por LIQ + sal
+ H ₂ O: $[N_{4444}][L-Phe] + K_3PO_4$ (\triangle), $[N_{4444}][D-Phe] + K_3PO_4$ (\blacktriangle), $[N_{4444}][L-Phe] +$
$K_{2}HPO_{4}$ (\bigcirc), [N ₄₄₄₄][D-Phe] + $K_{2}HPO_{4}$ (\bigcirc), [N ₄₄₄₄][L-Phe] + Na ₂ SO ₄ (\diamondsuit), [N ₄₄₄₄][D-
Phe] + Na ₂ SO ₄ (\blacklozenge), [N ₄₄₄₄][L-Phe] + Na ₂ CO ₃ (\Box), [N ₄₄₄₄][D-Phe] + Na ₂ CO ₃ (\blacksquare),
$[N_{4444}][L-Phe] + K_2CO_3 (-), [N_{4444}][D-Phe] + K_2CO_3 (-), [N_{4444}][L-Phe] + K_3C_6H_5O_7 (\times),$
$[N_{4444}][D-Phe] + K_3C_6H_5O_7 (\times), [N_{4444}][L-Phe] + KNaC_4H_4O_6 (+), [N_{4444}][D-Phe] +$
$KNaC_4H_4O_6$ (+). As ampliações correspondem a sais de potássio (A) e sais de sódio (B)
de modo a facilitar a interpretação dos dados75
Figura 20 - Eficiências de extração (<i>EE</i> , %, barras) dos enantiómeros R () e S () do
ácido mandélico e excesso enantiomérico (e.e. %, \bullet) obtidos com SABs constituídos por
$LIQs + Na_2SO_4 + H_2O.$
Figura 21 - Eficiências de extração (<i>EE</i> , barras) dos enantiómeros <i>R</i> (,) e <i>S</i> (,)
do ácido mandélico e excesso enantiomérico (e.e. %, \bullet) obtidos com SABs constituídos
LIQ + Na ₂ SO ₄ + H ₂ O na presença e ausência de CuSO ₄
Figura 22 - Eficiências de extração (<i>EE</i> , barras) dos enantiómero <i>R</i> (,) e <i>S</i> (,)
do ácido mandélico e excesso enantiomérico (<i>e.e.</i> %, ●) obtidos com SABs constituídos
[N ₄₄₄₄][L-Phe]/[N ₄₄₄₄][D-Phe] + sal

Lista de Tabelas

Tabela 1 – Separação de diferentes misturas racémicas utilizando SABs com LIs. Os parâmetros de enantiosseletividade calculados correspondem ao excesso enantiomérico obtido numa determinada fase (e. $e \% = SouR - [RouS]S + [R] \times 100$) e ao fator de Tabela 2 - Comparação entre os resultados obtidos neste trabalho e os reportados na literatura considerando parâmetros como o aspeto, estado físico e rendimento da síntese Tabela 3 – Propriedades térmicas dos LIQs sintetizados e respetivos aminoácidos (AA), nomeadamente, temperatura de fusão (T_{fus}) e temperatura de decomposição (T_d). (n.d. -Tabela 4 – Rotação ótica para os LIQs sintetizados, à temperatura ambiente, e comparação com os valores reportados na literatura [54] e com os valores dos aminoácidos que lhes Tabela 5 - Parâmetros de ajustamento determinados pelo ajuste da Eq. 1, usados na descrição da curva binodal de cada sistema constituído por LIQ + Na₂SO₄ + H₂O. 71 Tabela 6 - Dados experimentais das TLs e TLLs para SABs constituídos por [N₄₄₄₄][AA] + Na₂SO₄ + H₂O. Os valores destacados a negrito e itálico correspondem aos pontos de mistura utilizado nos estudos de partição. O pH das fases está igualmente apresentado. Tabela 7 – Combinações LI + sal + H_2O testadas e a sua capacidade para formar SABs

excesso enantiomérico numa dada fase $(e.e\% = SouR - [RouS]S + [R] \times 100)$ e ao fator de separação ($\alpha = [SouR]Fase1[SouR]Fase2[RouS]Fase1[RouS]Fase2....88$

XVIII

Lista de Abreviaturas

- [C₂mim][BF₄] tetrafluoroborato de 1-etil-3-metilimidazólio
- [C₄C₁im][L-Lac] L-lactato de 1-*n*-butil-3-metilimidazólio
- [C4mim][BF4] tetrafluoroborato de 1-butil-3-metilimidazólio
- [C4mim][N(CN)2] dicianamida de 1-butil-3-metilimidazólio
- [Col][BES] 2-(bis(2-hidroxietil)amino)etanosulfonato de colínio
- [Col][CAPSO] 3-(ciclohexilamino)-2-hidroxipropanosulfonato de colínio
- [Col][D-Phe] D-fenilalaninato de colínio
- [Col][D-Phe] L-fenilalaninato de colínio
- [Col]₂[L-Glu] L-glutamato de dicolínio
- [Col][MOPSO] 2-hidroxi-3-morfolinopropanosulfonato de colínio
- [Col]Cl cloreto de colínio
- [Col]OH hidróxido de colínio
- [EtNH₃][NO₃] nitrato de etilamónio
- [N4444][BES] 2-(bis(2-hidroxietil)amino)etanosulfonato de tetrabutilamónio
- [N4444][CAPSO] 3-(ciclohexilamino)-2-hidroxipropanosulfonato de tetrabutilamónio
- [N4444][D-Phe] D-fenilalaninato de tetrabutilamónio
- [N4444][L-Ala] L-alaninato de tetrabutilamónio
- [N4444][L-Arg] L-arginato de tetrabutilamónio
- [N4444][L-Phe] L-fenilalaninato de tetrabutilamónio
- [N4444][L-Pro] L-prolinato de tetrabutilamónio
- [N4444][L-Val] L-vanilato de tetrabutilamónio
- [N4444][MOPSO] 2-hidroxi-3-morfolinopropanosulfonato de tetrabutilamónio

[N₄₄₄₄]₂[D-Tar] - D-tartarato de ditetrabutilamónio

[N4444]2[L-Glu] - L-glutamato de ditetrabutilamónio

[N4444]2[L-Tar] - L-tartarato de ditetrabutilamónio

[N4444]Cl - cloreto de tetrabutilamónio

[N4444]OH - hidróxido de tetrabutilamónio

 BF_4 - tetrafluoroborato

CH₃CH(OH)COO⁻ - lactato

CH₃COO⁻ - acetato

e.e. % - excesso enantiomérico

EE - eficiência de extração

ELL - extração líquido-líquido

EMA - European Medicines Agency

FDA - Food and Drug Administration

HPLC-DAD - cromatografia líquida de alta eficiência com detetor de rede de díodos

LIQs - líquidos iónicos quirais

LIs - líquidos iónicos

NO3⁻ - nitrato

NTf2⁻ - bis(trifluorometilsulfonil)amida

PEG - polietilenoglicol

 PF_6^- - hexafluorofosfato

SAB - sistemas aquosos bifásicos

SCN⁻ - tiocianato

TL - tie-line

TLL - tie-line length

 α - fator de separação

 β -CD - β -ciclodextrina

1. Introdução

A química quiral foi descoberta por Louis Pasteur, químico e biólogo Francês, em 1848, quando separou pela primeira vez dois isómeros de sais de amónio e sódio do ácido tartárico por cristalização [1]. Contudo, só um século mais tarde se viria a descobrir que este fenómeno de quiralidade, por vezes também chamado de estereoisomerismo, enantiomerismo ou dissimetria, desempenha um papel crucial em diversos campos da indústria, nomeadamente a alimentar, agrónoma e, principalmente, farmacêutica [2].

Existe quiralidade quando a estrutura de um composto apresenta pelo menos um átomo de carbono com quatro substituintes diferentes, o designado carbono ou centro quiral (Figura 1) [2]. Além do carbono, também o enxofre, o fósforo e o azoto podem apresentar centros quirais [3]. Quando uma molécula não é sobreponível à sua imagem no espelho, analogamente às duas mãos de uma pessoa, nem por rotação, nem por translação, esta e a sua imagem são consideradas estereoisómeros, também designados por enantiómeros ou isómeros óticos [3]. Os enantiómeros embora tenham a mesma fórmula química diferem na atividade ótica e na sua orientação espacial [2]. Podem, portanto, ser classificados como levogiros (isómero 1) ou dextrogiros (isómero d) dependendo da forma como rodam o plano da luz polarizada [1]. É também possível distinguir enantiómeros através da sua estrutura espacial, isto é, pela sequência de ligação dos substituintes ao centro quiral. Esta distinção é possível pela convenção de Cahn-Ingold-Prelog, que define as prioridades dos grupos substituintes ligados ao centro quiral [1]. Existem diferentes regras descritas, sendo a mais simples a que considera que os substituintes de maior número atómico precedem aqueles de menor. Se esta sequência for no sentido dos ponteiros do relógio o isómero é definido como R, caso contrário este é classificado como S. Proteínas, enzimas, aminoácidos e hidratos de carbono são exemplos de moléculas quirais [2].

Figura 1- Estrutura representativa dos enantiómeros do fármaco ibuprofeno.

Na indústria farmacêutica, cerca de 56% dos produtos usados têm quiralidade e 88% destes são comercializados como misturas racémicas, ou seja, misturas equimolares dos dois enantiómeros do mesmo composto quiral [4]. Apesar de terem a mesma estrutura química, muitos dos enantiómeros possuem atividades biológicas bastante distintas, nomeadamente farmacológicas, toxicológicas, metabólicas, entre outras. Enquanto um enantiómero pode ter efeito terapêutico, o outro pode ser inerte ou até possuir uma ação tóxica [5]. Numa mistura racémica, um deles pode anular o efeito biológico do outro, diminuir ou até mesmo levar a um efeito diferente do desejado, podendo causar efeitos nefastos ao nível da saúde humana. Um exemplo marcante é o desastre da talidomida, uma droga racémica amplamente utilizada na década de 60 para tratar náuseas durante a gravidez. Enquanto o enantiómero R da talidomida era um sedativo seguro, o enantiómero S causava mutações graves ao feto, levando ao nascimento de crianças com malformações - comummente apelidadas como "Geração Talidomida" [6]. Com este incidente de enorme impacto mundial, a problemática de lidar com fármacos quirais existe até aos dias de hoje. Deste modo, quando se inicia o desenvolvimento de um fármaco quiral, para além de ser necessário o conhecimento da sua estrutura, é também necessária a quantificação correta de cada enantiómero. Mais importante ainda é avaliar a farmacocinética de cada um dos enantiómeros, ou da mistura dos mesmos, sendo assim obrigatório desenvolver ensaios quantitativos para cada um em amostras in vivo. Isto permite estudar não só o potencial de interconversão, mas também de absorção, distribuição, metabolismo e excreção dos enantiómeros. Quando o medicamento é um racemato e os perfis farmacocinéticos dos enantiómeros são diferentes, estes são então monitorizados individualmente [7]. A par com a talidomida, também outros fármacos quirais apresentam esta disparidade de efeitos. É o caso da levodopa, fármaco utilizado para a doença de Parkinson, por sua vez o enantiómero D é biologicamente inativo e provoca vómitos. Ao invés, as misturas racémicas continuam a ser largamente usadas de forma segura, como o caso do ibuprofeno, cujos enantiómeros apresentam ação antiinflamatória, e da varfarina, em que ambos os enantiómeros são anticoagulantes [7]. No caso de um medicamento quiral consistir numa mistura racémica, a legislação imposta pela FDA (do inglês U.S. Food and Drug Admnistration) [7] e EMA (do inglês European Medicines Agency) [8] é bastante restrita, obrigando ao fornecimento de dados farmacológicos e toxicológicos para os dois enantiómeros e mistura correspondente, aconselhando o uso de enantiómeros puros. Dado este cenário, a existência de compostos enantiomericamente puros revela-se crucial para aplicações farmacêuticas, contudo,

existe um número limitado de abordagens para a sua obtenção. Essas abordagens podem ser divididas em dois grupos, a síntese direta do enantiómero desejado, também designada por síntese assimétrica, e a separação de misturas racémicas [9]. A Figura 2 esquematiza estas duas abordagens e as metodologias principais englobadas por cada uma delas.

Figura 2- Métodos de obtenção de compostos enantiomericamente puros (adaptado de [9]).

A primeira abordagem, a qual valeu a entrega do prémio Nobel da Química em 2001 a William S. Knowles, K. Barry Sharpless e Ryori Nyori, envolve a síntese assimétrica utilizando catalisadores assimétricos na produção de compostos enantiomericamente puros [10]. Neste tipo de método, a presença de um catalisador quiral enantiomericamente puro em pequenas quantidades pode promover as reações de formação do composto com a quiralidade desejada, ou pelo menos de uma mistura enriquecida num dos enantiómeros [9]. Os catalisadores quirais mais utilizados são os complexos metal-ligando derivados de ligandos quirais, os organocatalisadores quirais e os biocatalisadores. Esta diversidade de catalisadores permite que seja possível selecionar o mais adequado para maximizar a eficiência da síntese, ou seja, a obtenção de um elevado excesso enantiomérico (*i.e.* medida de pureza de compostos quirais) [9]. Outra das vias é a utilização de compostos naturais enantiomericamente puros (*e.g.* aminoácidos ou açúcares) numa síntese em que como produto final é obtido apenas um dos enantiómeros. Apesar desta técnica ser apelativa pelo baixo custo relativo das matérias-primas naturais, o facto de o número de reações possíveis para determinadas moléculas

ser restrito limita a sua aplicação [11]. Os métodos de fermentação têm como base o metabolismo seletivo de microrganismos para produção de compostos opticamente puros, sendo já utilizados a grande escala na produção de aminoácidos como aditivos alimentares. Esta técnica tem a vantagem de usar matérias-primas baratas e tem como limitação o número de produtos que podem provir de fontes naturais [12]. Outra técnica enquadrada nesta primeira abordagem é a indução assimétrica, que consiste na transformação de enantiómeros em diastereómeros, por exemplo, recorrendo à utilização de auxiliares quirais [9]. Estes ligam-se ao composto inicial, bloqueando fisicamente determinadas ligações aquando da reação e permitindo um controlo sobre a estrutura do composto final. A aplicação deste processo compreende dois passos, um de adição e outro de remoção do auxiliar quiral. Contudo, o facto de esta técnica possuir duas etapas distintas limita-a em termos de rendimento e de custo associado. Por outro lado, os diastereómeros possuem propriedades físico-químicas diferentes, o que facilita a sua separação por processos simples, como a cristalização [13].

No que diz respeito à segunda abordagem, que se baseia na separação de misturas racémicas dos compostos pretendidos, esta apresenta um grau de flexibilidade derivado da sua possível aplicação na purificação dos produtos finais e das matérias-primas dos processos envolvidos na primeira abordagem [11]. Também, as misturas racémicas podem ser adquiridas a baixo custo, ou até obtidas através de uma síntese não seletiva, muito mais simples do ponto de vista operacional do que a síntese assimétrica [11]. Para a resolução de misturas racémicas podem ser aplicados vários métodos (Figura 2). Uma destas técnicas designa-se por resolução cinética e tem como princípio básico a diferença de consumo de dois enantiómeros numa reação química, obtendo-se no final uma mistura enriquecida no enantiómero menos reativo [9]. Apesar da sua operação fácil e simples, esta técnica apresenta geralmente um máximo de conversão baixo e a necessidade de um passo adicional para separar o produto dos reagentes. De forma a combater estas desvantagens, surge a resolução cinética dinâmica [9], com a qual é possível obter uma conversão de 100% devido ao equilíbrio químico entre os enantiómeros. No entanto, a necessidade de identificar reagentes adequados e os requisitos elevados em termos de pureza restringem a aplicação desta técnica. Outro método atrativo é a separação utilizando membranas (líquidas ou sólidas). Estas podem ser quirais, permitindo uma separação direta, ou aquirais, assistindo no processo de separação quiral [9]. A utilização destas membranas proporciona alguns benefícios ao processo de purificação, sobretudo do ponto de vista ambiental, nomeadamente a possibilidade de operar em contínuo, a

elevada eficiência energética e os elevados rendimentos [9]. A utilização de membranas quirais líquidas permite integrar o fracionamento em contracorrente [14], sendo no entanto necessário considerar a instabilidade das membranas durante longos períodos de utilização [9]. A cristalização é também uma técnica que segue este princípio de separação de misturas racémicas [15]. Geralmente, os métodos de cristalização apresentam várias vantagens no que diz respeito à sua ampla, fácil e simples aplicação, bem como o facto de aliar altas eficiências a custos reduzidos [9]. A cristalização pode também ser utilizada para purificação das misturas resultantes da aplicação de outras técnicas, como por exemplo a partir da cromatografia e para a separação de diastereómeros (designada por resolução clássica) [13]. Apesar da resolução clássica estar limitada a rendimentos inferiores a 50 %, existe a possibilidade de otimizar o processo, através da racemização do enantiómero indesejado, aplicando novamente a estratégia inicial. Este método foi já testado na produção do S-naproxeno com rendimento de 95 % [16] e a nível industrial para obtenção de frovatriptano, duloxetina e eszopiclone [17]. A cromatografia, particularmente a cromatografia líquida de alta eficiência (HPLC, do inglês high-performace liquid chromatography), consiste noutra técnica largamente utilizada para separação de racematos e, a par com a cristalização, revelam-se as mais estudadas. Uma primeira abordagem, designada por método indireto, envolve a derivatização da amostra com um agente quiral para produzir diastereómeros, seguida da separação cromatográfica com eluentes e fase estacionária sem quiralidade (apoiando-se nas diferenças físico-químicas dos diastereómeros). Os requisitos de pureza enantiomérica do agente de derivatização bem como a necessidade de dois passos tornam esta metodologia menos atrativa dos pontos de vista operacional e económico [18]. O método direto, que não necessita de derivatização, adota colunas com fases estacionárias quirais, as quais consistem normalmente em suportes de esferas de sílica porosa funcionalizados com um seletor quiral ligado covalentemente ou adsorvido [18]. É então permitido o ajuste da fase móvel e/ou da fase estacionária, o que torna esta metodologia robusta, proporcionando inúmeras soluções para alcançar separações favoráveis [9]. A aplicação de uma fase estacionária quiral é normalmente o método mais conveniente, se comparado com o uso de fases móveis quirais onde é difícil recuperar e reciclar os agentes quirais envolvidos e obter eficiências igualmente elevadas [9]. De facto, o número de fases estacionárias quirais disponíveis no mercado está permanentemente a aumentar, o que permite também a separação de um amplo número de misturas racémicas [9]. Estas técnicas são largamente utilizadas na indústria para purificar apenas pequenas quantidades de enantiómeros.

A extração líquido-líquido surge por fim neste contexto, combinando os conceitos de reconhecimento quiral e de extração com solventes alternativos. O princípio do reconhecimento quiral necessita da presença de um seletor quiral para a formação de complexos quirais. Entre o composto quiral alvo e o seletor quiral têm de ocorrer três interações intermoleculares simultâneas (electroestáticas, ligações por pontes de hidrogénio, π - π , dipolo-dipolo ou van der Waals), sendo pelo menos uma delas estereoquimicamente dependente, de modo a que a mistura racémica possa ser resolvida [11]. Esta chama-se regra dos três pontos e encontra-se representada na Figura 3.

Figura 3 – Modelo dos três pontos seguido pelos seletores quirais: A, B, C e D representam os diferentes substituintes de um dos enantiómeros; as linhas representam as interações de cada um dos diferentes substituintes com o seletor quiral [11].

Um dos aspetos mais interessantes da extração líquido-líquido é a possibilidade de poder ser aplicada em diferentes escalas de uma forma simples [11], mas também ser de fácil operação, apresentar custos baixos e ser de alta resolução, permitindo a purificação e concentração do composto alvo em apenas uma etapa [19, 20]. No entanto existem algumas desvantagens, nomeadamente o risco de emulsão e os grandes volumes de solventes orgânicos utilizados, muitos deles tóxicos, inflamáveis e voláteis [21]. Incluídos na extração líquido-líquido encontram-se os sistemas aquosos bifásicos (SAB), introduzidos pela primeira vez por Albertsson nos anos 60 [22]. A sua formação tem como base a utilização de pares de dois polímeros (*e.g.* polietilenoglicol e dextrana), de um polímero e um sal (*e.g.* polietilenoglicol e fosfato de potássio) [22, 23] e mais recentemente, de dois sais [24] em solução aquosa. Quando os dois solutos são misturados em água acima de uma dada concentração, a formação de duas fases aquosas de natureza distinta e ricas em cada um dos formadores de fases é promovida [25]. A determinação

dessas concentrações é dada pelo diagrama de fases e curva de solubilidade (Figura 4), a qual divide a região de formação de duas fases aquosas imiscíveis (região bifásica), daquela de miscibilidade completa (região monofásica) [26]. Através da determinação destas curvas é possível aferir a composição da fase superior (FS Componente 1, FS Componente 2) e da fase inferior (FI _{Componente 1}, FI _{Componente 2}) de um SAB formado a partir de uma mistura ternária inicial (X, Y e Z). A linha de equilíbrio ou tie-line (TL) do inglês é a linha que une as composições específicas de cada uma das fases e o seu comprimento (TLL, do inglês *tie-line length*) determina a diferença das composições entre as fases [26]. Quando misturas ternárias distintas se posicionam ao longo da mesma TL (como o caso de X, Y e Z), estas diferem em termos de razão volumétrica ou mássica, mas mantêm a composição das duas fases coexistentes. Posto isto, a determinação e caracterização cuidada de diagramas como o da Figura 4 apresenta importância primordial para o desenvolvimento de uma aplicação pretendida deste tipo de sistemas. Para o desenho eficaz de uma dada aplicação, além das propriedades físico-químicas do sistema, também a natureza e a estrutura da molécula alvo e as suas interações com os componentes do SAB devem ser tidas em conta [26]. Neste contexto, o pH, a força iónica, a temperatura e a lipofilicidade do sistema são condições preponderantes. Este avanço no campo dos SABs impulsionou a sua aplicação regular na separação e purificação de várias moléculas, nomeadamente antioxidantes, fármacos, aminoácidos, incluindo até misturas racémicas [27-31]. A sua grande vantagem prende-se com o facto de, ao mesmo tempo que mantêm as grandes vantagens dos processos tradicionais de extração líquido-líquido, eliminam o uso de compostos orgânicos voláteis [20].

Figura 4 – Esquema de um diagrama de fases do sistema componente 1 + componente 2 + água:
SCI – curva binodal; SI - *tie-line*; S – composição da fase superior; I - composição da fase inferior;
X, Y e Z - composição das misturas na região bifásica (adaptado de [32]).

Existem vários trabalhos focados no uso de SABs convencionais no domínio da resolução de misturas racémicas, onde os componentes para formação de fases mais habituais são polímeros e sais. Várias misturas racémicas, nomeadamente de aminoácidos [33, 34], fármacos [35, 36] e building blocks [37-39], foram resolvidas usando este tipo de sistemas. Para além do polímero polietilenoglicol em combinação com vários sais inorgânicos [21, 33, 37, 38] ou com o polímero dextrana [35] (SAB convencionais), também as junções de etanol [36] com sais inorgânicos e outros solventes orgânicos com derivados de β-ciclodextrinas (β-CD) [40, 41] foram adotados neste tipo de estudos. Como seletores quirais, os mais utilizados foram ciclodextrinas [21, 33, 36] e complexos de cobre em ciclodextrina [19, 39], bem como a proteína albumina de soro bovino [35, 38]. No caso do artigo publicado por Li e Li [19], os autores otimizaram o uso de SABs constituídos por polímeros e sais inorgânicos utilizando complexos de cobre em ciclodextrina como seletores quirais para a resolução de um racemato de ácido aciclohexilmandélico. Foram obtidas enantiosseletividades de 1,36 as quais indicaram que estes sistemas podem ser promissores para aplicação em técnicas preparativas, embora uma futura otimização permaneça necessária. Mais recentemente, em 2016, Wang e colaboradores [41] reportaram SABs compostos por solventes orgânicos e derivados de

 β -ciclodextrinas na separação enantiomérica de uma mistura racémica do zopiclone (medicamento hipnótico). Depois de otimizadas as condições e num único passo de extração, os autores conseguiram obter um excesso enantiomérico (*e.e.* %) de 32,66 % e uma elevada recuperação dos enantiómeros (95,54 % para o *S* e 98,22 % para o *R*) [41]. Arai e Kuroda [35] estudaram o papel de proteínas como seletores quirais em SABs constituídos por dois polímeros em cromatografia de contracorrente, na separação de misturas racémicas de fármacos. Apesar da albumina de soro bovino promover um máximo de *e.e.* % de 62 % do enantiómero *R* do antibiótico ofloxacina, o desempenho desta tecnologia revelou-se dependente da proteína aplicada e sua partição no sistema bifásico. Aplicando a proteína ovomucoide, a capacidade de resolução enantiomérica foi menor [35].

Em 2003, Rogers e os seus colaboradores propuseram uma nova classe de SABs, constituída por dois sais, um dos quais pertencente à classe dos líquidos iónicos (LIs) [42]. Por definição, estes são compostos iónicos com temperaturas de fusão inferiores a 100 °C [25, 29] devido ao tamanho dos seus iões, e que por serem assimétricos, provocam uma redução nas forças electroestáticas tornando difícil a formação de uma estrutura cristalina [25]. O foco de interesse nos LIs recai nas suas propriedades físico-químicas únicas, como a pressão de vapor desprezável, a inflamabilidade nula, a alta condutividade iónica, bem como elevadas estabilidades térmica e eletroquímica [25]. No campo dos SABs, duas das principais vantagens do uso destes compostos iónicos são a grande capacidade de solvatação de moléculas de um largo intervalo de polaridades [25, 29], através de uma seleção criteriosa do par catião/anião e o facto de incutirem menores viscosidades, logo separação de fases mais rápida comparativamente aos SABs constituídos por polímeros ou mesmo por um polímero e um sal [25]. Esta possibilidade de manipulação do par iónico, juntamente com a diversidade de outros solutos com os quais é possível combinar os LIs para criar SABs para além dos sais (e.g. polímeros, açúcares, aminoácidos, entre outros), evidencia a versatilidade desta tecnologia do ponto de vista de desenho e aplicação [25]. Noutras palavras, através da síntese de um LI específico e da escolha do seu par catião/anião mais eficaz para formar SABs, é possível desenvolver metodologias específicas para uma dada aplicação. Apesar de existir uma vasta gama de aplicações de SABs constituídos por LIs, nas quais a purificação de vários tipos de moléculas foi estudada (ex. aminoácidos [43], proteínas [44], ácidos nucleicos [45] e fármacos [46]), a sua aplicação na separação de enantiómeros é ainda muito recente. Em 2014 surgiu o primeiro trabalho com sistemas de extração líquido-líquido

(ELL) usando LIs para a separação de enantiómeros [30]. Yue e co-autores [30] reportaram a utilização de sistemas de ELL compostos por LIs derivados do imidazólio e tampão fosfato para a separação dos enantiómeros do ácido mandélico. Neste estudo foi utilizado como seletor quiral a β -CD e foi obtida uma enantiosseletividade (α) de 1,74. Em 2015 surgem então três trabalhos de SABs constituídos por LIs para a separação enantiomérica [31, 47, 48]. O foco de cada um destes trabalhos está descrito na Tabela 1. Chen e seus colaboradores [48] otimizaram a separação de enantiómeros do ácido aciclohexilmandélico utilizando SAB com os LIs tetrafluoroborato de 1-butil-3metilimidazólio ([C₄mim][BF₄]), tetrafluoroborato de 1-etil-3-metilimidazólio, ([C₂mim][BF₄]) e dicianamida de 1-butil-3-metilimidazólio ([C₄mim][N(CN)₂]), sendo usado o sal sulfato de amónio ((NH₄)₂SO₄), e tendo como seletor quiral a hidroxipropilβ-ciclodextrina (HP-β-CD). Os autores estudaram vários parâmetros influentes na separação, como o tipo e concentração de LI, a concentração de sal, a temperatura, o tempo de agitação, o pH e a concentração do seletor quiral. Os resultados deste trabalho permitiram concluir que nem todos os SABs com LIs têm a mesma habilidade de resolução da mistura racémica de ácido α-ciclohexilmandélico. Para o SAB composto por $[C_4 mim][N(CN)_2]$ foram obtidos os valores de α mais baixos, estando estes entre 0,98-1,02. O SAB contendo [C₄mim][BF₄] foi o que mostrou uma maior capacidade de separação, chegando a um valor de α de 1,59 num único passo de extração. Relativamente ao trabalho de Wu e colaboradores [47], foram estudados SABs constituídos por líquidos iónicos quirais (LIQs), derivados da atropina, e diferentes sais de potássio, nomeadamente o fosfato de potássio (K₃PO₄), fosfato de potássio dibásico (K₂HPO₄) e carbonato de potássio (K_2CO_3) na presença de acetato de cobre para a separação dos enantiómeros de uma mistura racémica do aminoácido fenilalanina. Um conjunto completo de parâmetros foi testado (cadeia alquílica do catião do LI, o tipo e concentração de sal, a concentração de fenilalanina, a quantidade de acetato de cobre, a quantidade de água e a temperatura), revelando influência ao nível quer do comportamento dos diagramas de fase quer da partição do aminoácido-alvo. Verificou-se ainda que o mecanismo de interação é baseado na formação de um complexo ternário entre a D-fenilalanina, o ião cobre e o LI quiral, sendo o enantiómero L transferido para a fase oposta (rica em sal). Nas melhores condições estudadas, neste caso para o LI com cadeia alquílica de 8 carbonos em combinação com o sal K₂HPO₄ na presença de 35 mg/g de acetato de cobre, foi obtido um valor de e.e. % na fase rica em sal de 65 % do enantiómero L da fenilalanina. Por último, Wu e co-autores [31] estudaram a separação de misturas racémicas de sete

aminoácidos diferentes (fenilalanina, isoleucina, treonina, tirosina, triptofano, serina e ácido aspártico), utilizando SABs formados por dois LIs sintetizados a partir do (R)-2amino-1-butanol e do imidazólio, e pelo sal sulfato de sódio, Na₂SO₄. A fenilalanina foi o primeiro aminoácido estudado e verificou-se que o SAB contendo o LI [C₁₀H₁₈N₃O₂][PF₆] tem uma enantiosseletividade superior relativamente ao SAB composto pelo LI [C₁₁H₂₁N₄O₂][PF₆], o que os autores afirmam dever-se a interações intermoleculares mais favoráveis com o enantiómero D. Foi então validado o LI [C₁₀H₁₈N₃O₂][PF₆] para os restantes aminoácidos, e os valores de *e.e.* % obtidos variaram entre 21 % e 53 %, sendo que o valor mais promissor, 53 %, foi obtido para a fenilalanina e o valor mais baixo, 21 %, foi alcançado para a serina. Apesar dos resultados promissores obtidos, as enantiosseletividades (dadas pelos valores de e.e.% ou α) apresentaram-se limitadas e os LIs utilizados até ao momento nestes estudos revelaram desvantagens ambientais, isto porque contêm aniões com ação tóxica considerável [49] e/ou quimicamente instáveis [50, 51]. De facto, nestes trabalhos diferentes abordagens foram testadas, nomeadamente o uso de LI apenas como solvente [48] mas também como solvente e seletor quiral na presença [47] e ausência [31] do ião cobre. Apesar de alguns autores já incorporarem nos seus trabalhos alguns estudos que elucidam os mecanismos de resolução enantiomérica em SABs constituídos por LIs [47], o papel dos LIs como solventes e/ou seletores quirais permanece incompreendido.

Tabela 1 – Separação de diferentes misturas racémicas utilizando SABs com LIs. Os parâmetros de enantiosseletividade calculados correspondem ao excesso enantiomérico obtido numa determinada fase (*e. e* % = $\frac{[SouR] - [RouS]}{[S] + [R]} \times 100$) e ao fator de separação (α =

$\frac{[SouR]_{Fase1}/[SouR]_{Fase2}}{[RouS]_{Fase1}/[RouS]_{Fase2}}).$											
Autor	LI	Sal	Seletor quiral	Mistura racémica	Seletividade	Ref.					
Chen	[C ₄ mim][BF ₄]	-	-	Ácido α-	-	-					
et al.	[C ₂ mim][BF ₄]	$(NH_4)_2SO_4$	HP-β-CD	ciclohexil-	$\alpha < 1.59$	[48]					
(2015)	[C ₄ mim][N(CN) ₂]			mandélico							
Wu <i>et</i> <i>al</i> . (2015)	$[C_n a tropina][Pro] \\ (n = 2 - 8)$	$\begin{array}{c} K_3PO_4\\ K_2HPO_4\\ K_2CO_3 \end{array}$	$LI + Cu^{2+}$	Fenilalanina	<i>e.e.</i> % = 65 %	[47]					
Wu <i>et</i> <i>al.</i> (2015)	$\begin{array}{l} [C_{10}H_{18}N_{3}O_{2}][PF_{6}] \\ [C_{11}H_{21}N_{4}O_{2}][PF_{6}] \end{array}$	Na ₂ SO ₄	LI	Misturas racémicas de vários aminoácidos	<i>e.e.</i> % = 53 %	[31]					

Como referido anteriormente, uma das abordagens adotadas no desenvolvimento de SABs para resolução enantiomérica envolve o uso de LIQs como seletores quirais. Tendo em conta o caráter *designer solvent* [52] destes compostos iónicos, a incorporação de estruturas quirais ao nível do catião e/ou do anião, possibilita a sua aplicação neste campo [31, 36, 53, 54]. Na Figura 5 são apresentadas as estruturas de dois LIQs sintetizados no trabalho de Wu e co-autores, os quais foram utilizados em SABs como seletores quirais [31].

Figura 5 – Estrutura dos LIQs sintetizados por Wu e co-autores utilizados na separação de aminoácidos utilizando SABs [31].

A síntese do primeiro LI remonta a 1914, com a síntese do nitrato de etilamónio, ([EtNH₃][NO₃]), por Paul Walden, o qual apresenta uma temperatura de fusão entre 13-14 °C [55]. Apesar deste tipo de compostos ter sido descoberto no início do século XX, foi apenas nos últimos anos, com o aparecimento de LIs estáveis ao ar e à água, que a investigação e desenvolvimento de novos LIs e as suas possíveis aplicações aumentaram significativamente [25, 56]. De uma forma geral, a síntese de LIs envolve duas etapas distintas: a primeira abrange a síntese do catião pretendido, seguindo-se a troca aniónica, descrita pela substituição do anião de partida pelo anião que se pretende, tal como mostra a Figura 6. A formação do catião pode ser efetuada, quer por protonação com um ácido livre, quer por quaternização de uma amina, fosfina ou sulfureto (geralmente recorrendo a haletos de alquilo ou sulfatos de dialquilo). Relativamente às reações de troca aniónica, estas podem ser divididas em duas classes distintas, nomeadamente a reação direta de sais de haletos com ácidos de Lewis ou pela metátese do anião. No primeiro caso, o método envolve a combinação de sais de haleto com o ácido de Lewis nas devidas proporções, formando-se o LI com o anião desejado. Esta reação é normalmente bastante exotérmica, logo são necessários alguns cuidados na adição de um reagente ao outro. Embora os sais
sejam termicamente estáveis, um pico de temperatura pode degradar o LI. Isto pode ser evitado pelo arrefecimento da solução e pela adição lenta de um reagente ao outro. Geralmente este método resulta na formação de diferentes espécies aniónicas, dependendo da proporção dos compostos de partida.

Figura 6 - Descrição das etapas principais e mais comuns envolvidas na síntese de LIs.

Os LIs podem também ser preparados pelo método da metátese do anião, o qual consiste na troca aniónica entre sais de haleto e um metal ou um sal de amónio, ou até mesmo através da conjugação do ácido correspondente ao anião desejado, tal como esquematizado na Figura 6. A principal desvantagem deste método advém de não ser possível preparar LIs com pureza elevada, situação mais evidente nos LIs hidrofílicos do que nos hidrofóbicos. Relativamente à preparação de LIs hidrofóbicos, a reação pode ser realizada em solução aquosa, sendo o LI sintetizado separado durante a reação e ficando as impurezas dissolvidas na solução aquosa [57]. Para LIs hidrofílicos a metátese é geralmente realizada num solvente orgânico imiscível em água [58]. A mistura daí resultante é posteriormente filtrada, sendo o filtrado lavado com água com o intuito de remover qualquer vestígio do sal de haleto. Quanto maior a miscibilidade do LI em água,

menor é a eficiência deste processo, o qual pode acarretar um rendimento mais baixo ou mesmo levar à contaminação do LI com haletos [59]. Normalmente, a solubilidade dos LIs em água é afetada pela natureza aniónica, bem como pelo comprimento da cadeia alquílica (cadeias alquílicas mais longas permitem uma diminuição da solubilidade do LI [60]). Assim, para a síntese de LIs com cadeias curtas deve-se procurar um método alternativo, pois o método de metátese pode não ser suficientemente eficaz. Todas estas técnicas anteriormente abordadas relativamente à síntese de LIs se aplicam também à síntese de LIs com quiralidade.

Quanto aos LIQs enantiomericamente puros a forma mais simples de os obter é através da utilização de precursores que já apresentam quiralidade [61]. Como resultado, é possível obter LIs com quiralidade proveniente do anião [62-64], do catião [65, 66], ou mesmo do catião e do anião simultaneamente [67]. Para o primeiro caso, ou seja, quiralidade no anião, tem-se o exemplo em 1999, quando Seddon e colaboradores [68] reportaram o primeiro LIQ, o L-lactato de 1-butil-3-metilimidazólio ([C₄C₁im][L-Lac]). Neste contexto, o LIQ foi sintetizado através de uma troca aniónica, já mencionada anteriormente, entre o [C₄C₁im]Cl e o (*S*)-2-hidroxipropanoato de sódio em acetona, tal como descrito na Figura 7 [68]. O produto final foi então obtido depois de uma filtração para remoção do NaCl e da posterior evaporação da acetona.

Figura 7 - Síntese do primeiro LIQ reportado em [68].

Outra técnica também utilizada para a síntese de LIs é a neutralização, sendo que esta explora a química simples ácido-base. Na literatura encontram-se inúmeros trabalhos que adotam este procedimento [64]. Allen e seus co-autores [62] reportam a aplicação deste procedimento na síntese de LIs com quiralidade, utilizando o hidróxido de tetrabutilamónio que é uma base forte, e que desprotona facilmente os grupos carboxilo dos aminoácidos e ácidos orgânicos utilizados, formando um sal carboxilato e água. Neste trabalho em particular foram sintetizados vários LIQs em que a quiralidade se encontra no anião, ou seja, no aminoácido ou no ácido orgânico. Na Figura 8 encontra-se representado o esquema da reação abordada no trabalho referido.

Figura 8 - Reação de neutralização entre o hidróxido de tetrabutilamónio e distintos aminoácidos.

Em 2005, Fukumoto e co-autores [64] sintetizaram igualmente LIQs com quiralidade no anião a partir de 20 aminácidos e do hidróxido de 1-etil-3-metilimidazólio através de uma reação de neutralização. Têm sido reportados inúmeros trabalhos que recorrem a aminoácidos como material de partida para a síntese de LIQs [62-64]. As principais razões são a abundância, o baixo custo e a sua alta pureza enantiomérica [63]. Além disso, os LIs provenientes de aminoácidos são considerados biorenováveis, o que constitui uma mais-valia do ponto de vista da química sustentável [53]. Devido à presença de pelo menos um grupo carboxilo e de pelo menos um grupo amina na sua estrutura, os aminoácidos podem ser utilizados tanto como catião como anião na síntese de LIQs [63]. Muitos dos catiões quirais têm como precursores aminoácidos [69]. Também em 2005, Tao e co-autores [70] reportaram a síntese de duas classes de LIQs contendo um catião derivado de aminoácidos e ésteres de aminoácidos. Neste estudo foram utilizados nove aminoácidos (L-glicina, L-alanina, L-fenilalanina, L-valina, L-isoleucina, L-treonina, Lserina e L-prolina) e sete aniões diferentes (NO₃⁻, BF₄⁻, PF₆⁻, NTf₂⁻, SCN⁻, CH₃COO⁻ e CH₃CH(OH)COO⁻). A preparação destes LIQs ([AA]X) envolveu a reação de protonação, em que uma solução equimolar do aminoácido reagiu com um ácido forte. Neste trabalho foram determinadas as temperaturas de degradação e de fusão dos LIQs, bem como a sua rotação ótica. Da ampla gama de LIQs sintetizados, a maioria apresentou uma estabilidade térmica elevada (77 a 241°C) [70]. A diversidade de catiões quirais é ampla, sendo os mais reportados os derivados do imidazólio [71], no entanto são comuns catiões quirais derivados de amónio [72], piridínio [73], açúcares [74], entre outros. Relativamente a LIQs formados por um catião quiral derivado do amónio, surge como exemplo o trabalho desenvolvido por Tran e co-autores [72], onde a síntese do LIQ (R)bis(trifluorometilsulfonil)imida de (3-cloro-2-hidroxipropil)-trimetilamónio e 0 correspondente enantiómero S foi feita por uma reação de troca aniónica. Os LIQs

resultantes apresentaram-se extremamente estáveis a temperaturas elevadas, visto que, é reportada uma temperatura de degradação acima dos 300 °C.

Quanto a LIs com dupla quiralidade, ou seja, quiralidade no catião e no anião, esta é uma área pouco explorada, estando apenas um trabalho reportado até ao momento, o qual data de 2005 [67]. Neste trabalho os autores explicaram como se obtém o catião e o anião separadamente, sendo o composto final obtido através de uma reação com uma resina de troca iónica. Esta resina contém o anião sulfonato de (*S*)-cânfora e substitui-o então pelo anião que se encontrava anteriormente no composto, o anião tosilato, tal como descrito na Figura 9.

Figura 9 – O primeiro LI com quiralidade no anião e no catião reportado por Machado e coautores [67].

1.1. Objetivos

O presente trabalho tem como principal objetivo o desenvolvimento de novos LIQs para ser usados como seletores quirais em SABs como alternativas mais eficientes sustentáveis aos processos convencionais de separação de misturas racémicas. Como foi exposto anteriormente, os métodos convencionais utilizados mais frequentemente apresentam desvantagens significativas como o uso de solventes orgânicos voláteis (e.g. extração líquido-líquido), a limitação do aumento de escala (e.g. cromatografia) e/ou baixa versatilidade do método (e.g. cristalização) [9, 15]. Apesar de promissores, os dados existentes na literatura relativos a enantioseparações com SABs, e em particular com SABs formados por LIs são limitados face às múltiplas estruturas que podem ser usadas [53]. Deste modo, e tendo em conta as vantagens já descritas da aplicação de LIs em SABs, a presente tese divide-se em duas principais etapas:

 i) Síntese e caracterização de LIQs partindo de precursores naturais abundantes e sustentáveis (aminoácidos, ácidos orgânicos e colina); *ii*) Desenvolvimento da tecnologia de resolução enantiomérica utilizando
 SABs constituídos pelos LIQs sintetizados na etapa *i*.

Numa primeira fase (*i*), serão sintetizados 12 LIQs, através de neutralização do hidróxido de tetrabutilamónio ou do hidróxido de colínio com diversos aminoácidos, tais como L-alanina, L-fenilalanina, D-fenilalanina, L-arginina, L-prolina, L-valina e ácido L-glutâmico, bem como com dois ácidos orgânicos (ácidos D-tartárico e L-tartárico). As suas propriedades físico-químicas e biológicas serão avaliadas, nomeadamente as temperaturas de fusão e degradação, viscosidade, densidade, índice de refração, a atividade ótica e a ecotoxicidade para a bactéria marinha *Vibrio fischeri*.

Estes LIQs serão, numa segunda etapa usados para, em combinação com diversos sais orgânicos e inorgânicos, a determinação dos diagramas de fase dos SABs correspondentes, e sua posterior aplicação à separação de misturas racémicas de ácido mandélico, aqui usado como molécula modelo. Vários parâmetros incluindo a estrutura do LI, tipo de sal e presença/ausência do ião cobre serão testados nos estudos de partição do ácido mandélico nos SABs determinados. O ácido mandélico foi escolhido devido ao seu interesse para a indústria farmacêutica como precursor na síntese de vários fármacos, como é o caso da penicilina e da cefalosporina [30]. Este composto e alguns dos seus derivados são muito utilizados em aplicações farmacêuticas, nomeadamente no tratamento de infeções do sistema urinário, devido às suas propriedades bacteriostáticas. Este ácido é também utilizado como constituinte de fármacos pela sua capacidade analgésica, antirreumática e espasmolítica [9]. Os dois enantiómeros R e S são agentes quirais regularmente utilizados na resolução de misturas racémicas de álcoois e aminas [75]. No entanto, o *R*-ácido mandélico é aquele que mais interesse tem despertado, visto que tem uma atividade biológica, nomeadamente analgésica e antirreumática, superior ao S- ácido mandélico [30].

2. Materiais e métodos

2.1. Materiais

Para a síntese dos LIQs os reagentes utilizados foram a solução de hidróxido de tetrabutilamónio, [N4444]OH (40 % (m/m) em água) e solução de hidróxido de colínio, [Col]OH (45 % (m/m) em metanol) provenientes da Sigma-Aldrich e vários aminoácidos (AA), nomeadamente a D-fenilalanina, D-Phe (pureza > 98 % (m/m)), L-fenilalanina, L-Phe (pureza de 99 % (m/m)) e L-arginina, L-Arg (pureza de 99 % (m/m)) da Sigma-Aldrich; o ácido D-tartárico, D-Tar (pureza de 99 % (m/m)), ácido L-tartárico, L-Tar (ACS reagente) e L-prolina, L-Pro (pureza de 99 % (m/m)) da Acros Organics; o ácido L-glutâmico, L-Glu (pureza de 99 % (m/m)) da Riedel de Haen, L-valina, L-Val (pureza de 99 % (m/m)) da Fluka e L-alanina, L-Ala (pureza de 99 % (m/m)) da BDH. A água ultrapura utilizada na síntese dos LIQs foi destilada duas vezes e depois purificada num Milli-Q plus 185. O metanol (HPLC Grade) e o acetonitrilo (pureza de 99,9 % (m/m)) utilizados no processo de limpeza da síntese foram adquiridos na CHEM-LAB e na VWR-BDH Prolabo, respetivamente. Para a preparação das amostras para RMN, o solvente utilizado foi a água deuterada, D₂O (pureza de 99,9 % (m/m)) fornecida pela Eurisotop. Os SABs estudados foram formados com os LIQs sintetizados e diferentes sais, entre eles o sulfato de sódio, Na₂SO₄ (pureza de 99,99 % (m/m)), o carbonato de potássio, K₂CO₃ (pureza de 99 % (m/m)) e o fosfato de potássio monobásico, KH₂PO₄ (pureza de 99,5 % (m/m)) provenientes da Sigma-Aldrich; o carbonato de sódio, Na₂CO₃ (pureza de 99 % (m/m)) da Vencilab; o fosfato de potássio dibásico, K_2 HPO₄ (pureza > 98 % (m/m)) da JMVP, o fosfato de potássio tribásico, K₃PO₄ (pureza > 98 % (m/m)) da Acros Organics; o citrato de potássio mono-hidratado, K₃C₆H₅O₇.H₂O (GPR rectapur) da Prolabo (VWR);

e o tartarato de potássio e sódio tetra-hidratado, $KNaC_4H_4O_6.4H_2O$ (pureza de 99 % (m/m)) da Scharlau. Em alguns destes sistemas foi também utilizado sulfato de cobre (II) penta-hidratado, $CuSO_4.5H_2O$ (pureza > 98 % (m/m)) fornecido pela AnalaR.

Para a preparação da fase móvel utilizada para as análises em HPLC-DAD utilizouse água ultrapura (duplamente destilada e purificada num Milli-Q plus 185), metanol (HPLC *Grade*) adquirido na CHEM-LAB, sulfato de cobre (II) penta-hidratado, CuSO₄.5H₂O (pureza > 98 % (m/m)) fornecido pela AnalaR e L-fenilalanina, L-Phe (pureza de 99 % (m/m)) adquirida à Sigma-Aldrich. A amónia PA, NH₃, para a preparação da solução aquosa a 25 % (m/m) foi adquirida à ChemLab. A fase móvel foi filtrada recorrendo a um sistema de filtração com filtros de membrana de celulose regenerada $(0.45 \ \mu m)$ fornecidos pela Sartorius. Antes de serem analisadas, todas as amostras foram filtradas com filtros de seringa (0.45 μm) adquiridos na Specanalitica.

Por último, os enantiómeros modelo utilizados neste estudo foram o ácido (R)-(-)mandélico, R-AM (pureza de 99 % (m/m)), e ácido (S)-(+)-mandélico, S-AM (pureza de 99 % (m/m)), provenientes da Acros Organics. As estruturas químicas dos dois enantiómeros de ácido mandélico encontram-se representadas na Figura 10.

Figura 10 - Estrutura dos dois enantiómeros de ácido mandélico.

2.2. Métodos

2.2.1. Síntese e caracterização dos LIQs

2.2.1.1. Síntese

Neste trabalho foram sintetizados LIQs através de uma reação de neutralização entre o hidróxido de tetrabutilamónio e vários aminoácidos (AAs), nomeadamente Dfenilalanina e L-fenilalanina, ácidos D-tartárico e L-tartárico, ácido L-glutâmico, Larginina, L-valina, L-prolina e L-alanina de acordo com o reportado na literatura por Allen e co-autores [62]. De forma breve, prepararam-se as soluções dos aminoácidos em água ultrapura, estando estes com um excesso molar de 1,1 Eq, com a exceção do ácido L-glutâmico e dos ácidos D-tartárico e L-tartárico em que a reação foi feita na estequiometria 2:1, ou seja, 2 mol de hidróxido de tetrabutilamómio para 1 mol destes aminoácidos. A adição da solução de hidróxido de tetrabutilamónio foi feita gota-a-gota a 60 °C, tendo a reação decorrido à mesma temperatura, protegida da luz e sob agitação controlada durante 2 horas. Após a reação, evaporou-se a água e removeu-se o excesso de aminoácido (para os casos onde este foi usado) através da adição de acetonitrilo, no qual os aminoácidos são insolúveis. O acetonitrilo foi então evaporado e os produtos foram secos sob vácuo intenso (na ordem dos 1×10^{-3} mbar), durante 48h para remoção de todo o solvente. Sintetizaram-se também LIQs com o hidróxido de colínio e os aminoácidos D- e Lfenilalanina e ácido L-glutâmico seguindo o procedimento descrito por Santis e coautores [76]. A adição do hidróxido de colínio foi realizada a 0 °C e a síntese foi mantida à temperatura ambiente e a atmosfera inerte devido à instabilidade do hidróxido de colínio, durante a noite. A remoção do excesso de aminoácido, à exceção do $[Col]_2[L-Glu]$ cuja estequiometria da reação foi de (2:1), foi efetuada recorrendo a uma mistura acetonitrilo/metanol (9:1), na qual os aminoácidos se apresentam insolúveis. Depois de filtrada a solução, a mistura acetonitrilo/metanol foi evaporada. Por fim, os compostos obtidos foram secos sob vácuo intenso, na ordem dos 1×10^{-3} mbar, durante 48h para garantir a remoção de todo o solvente. Todos os LIQs foram guardados na ausência de luz e em atmosfera inerte.

Todas as estruturas dos LIQs sintetizados foram confirmadas por espectroscopia de Ressonância Magnética Nuclear (RMN) de ¹H e de ¹³C, a 300 MHz e 75,47 MHz, respetivamente. Para tal utilizou-se um Bruker AMX 300 (EUA), sendo o solvente usado o D_2O .

2.2.1.2. Determinação da temperatura de decomposição

A temperatura de decomposição dos LIQs sintetizados foi determinada através de uma análise termogravimétrica (TGA). Esta análise foi realizada num equipamento *Setsys Evolution* 1750 (SETARAM). As amostras foram aquecidas num cadinho, sob uma atmosfera de azoto, numa gama de temperaturas entre os 25 °C e os 800 °C, e com uma rampa de aquecimento de 10 °C/min.

2.2.1.3. Determinação da temperatura de fusão

As temperaturas de fusão dos LIQs sintetizados foram determinadas através de um calorímetro de varrimento diferencial (DSC) Hitachi DSC7000X. O equipamento foi previamente calibrado com um padrão primário de calibração, índio, com uma pureza superior a 99 % (m/m) e com uma rampa de aquecimento de 2 °C/min. Após cada amostra de LIQ (10 mg) ter sido selada num cadinho, foi sujeita a três ciclos de arrefecimento e aquecimento a 2 °C/min, partindo dos 20 °C até uma temperatura superior à temperatura de fusão do composto. Para evitar a condensação da água dentro do cadinho introduziu-se uma corrente de azoto alimentada a 50 cm⁻³/min. A temperatura de transição tem uma incerteza associada de \pm 2 °C. Para os LIQs líquidos, estas medições foram realizadas numa gama de temperaturas entre os -80 °C e os 50 °C.

2.2.1.4. Densidade e viscosidade

As medições de densidade e viscosidade foram realizadas utilizando um viscosímetro-densímetro automático SVM3000 Anton Paar rotacional Stabinger numa gama de temperaturas entre 20 °C e 80 °C à pressão atmosférica e com rampa de temperatura de 5 °C. A incerteza absoluta da densidade é de \pm 5×10⁻⁴ g/cm³, a incerteza relativa da viscosidade é 0,35 % e a incerteza associada à temperatura é de \pm 0,02 °C.

2.2.1.5. Índice de refração

O índice de refração de cada LIQ sintetizado neste trabalho foi determinado por um refratómetro automático ABBEMAT 500 Anton Paar a um comprimento de onda de 589 nm, com uma resolução de $\pm 10^{-6}$ e com uma incerteza de $\pm 4 \times 10^{-5}$ para um nível de confiança de 95 %. As medições foram realizadas numa gama de temperaturas entre 20 °C e 80 °C, à pressão atmosférica e com uma rampa de temperatura de 10 °C.

2.2.1.6. Rotação ótica

Para determinar a rotação ótica dos LIQs sintetizados foi utilizado um polarímetro JASCO P-2000 e uma célula cilíndrica CG3-100 de 1 mL, 3,5×100 mm. As medições foram realizadas a um comprimento de onda de 589 nm, à temperatura ambiente.

2.2.1.7. Toxicidade

Para avaliar a toxicidade dos LIQs sintetizados foi adotado o método *standard* "81,9 % *Basic Test*" do teste Microtox[®] [69]. Este foi já largamente usado no grupo de investigação para avaliar e entender a toxicidade de vários LIs [70-72]. Neste método, a luminescência da bactéria marinha *Vibrio fischeri* emitida após exposição deste organismo a diversas concentrações de cada um dos compostos em estudo é monitorizada, em comparação com a luminescência emitida pela bactéria na ausência do composto (controlo). A bactéria é aclimatizada e mantida a 15 °C, sendo que as concentrações do composto em análise variam entre 0 e 81,9 %, com um fator de diluição de 2, sendo 100 % a concentração da solução-mãe preparada. Os valores de EC₅₀, concentração do composto que promove uma redução em 50 % da bioluminescência da bactéria, foram determinados utilizando um programa acoplado ao equipamento, Microtox[®] OmniTM *Software*, após 5, 15 e 30 min de exposição ao composto. Posteriormente, o parâmetro EC₅₀, e os respetivos intervalos de confiança, foram estimados usando o *software* STATISTICA.

2.2.2. Determinação de SABs para separação de enantiómeros

2.2.2.1. Determinação dos diagramas de fase e respetivas tie-lines

A curva binodal de cada diagrama de fase foi determinada através do método turvação-desturvação, ou do inglês, *cloud point* [77, 78], previamente validado no grupo de investigação para SABs constituídos por LIs e sais [20, 79]. Estes diagramas de fase foram igualmente medidos neste trabalho a 25 (\pm 1) °C e à pressão atmosférica.

Determinaram-se os diagramas de fase de todos os LIQs sintetizados com o mesmo sal inorgânico, o sulfato de sódio (Na₂SO₄), bem como as curvas de solubilidade para sistemas constituídos pelos LIQs [N₄₄₄₄][L-Phe] e [N₄₄₄₄][D-Phe] e diferentes sais. Para tal, foram preparadas soluções aquosas dos diferentes LIQs entre 50 - 60 % (m/m) e soluções dos sais entre 20 - 40 % (m/m), dependendo da sua solubilidade em água. Procedeu-se à adição gota-a-gota da solução de sal à solução de LIQ até ser detetada uma solução turva correspondente à região onde a formação de duas fases ocorre (região bifásica). De seguida, adicionou-se água gota-a-gota até se observar uma solução límpida, a qual corresponde à região monofásica. Este processo foi repetido alternadamente e sob agitação constante. A composição da mistura foi determinada por quantificação da massa de todos os componentes adicionados com um grau de incerteza de $\pm 10^{-4}$ g.

As curvas binodais obtidas experimentalmente foram ajustadas usando o modelo matemático inicialmente proposto por Merchuk e co-autores (Eq.1) [80]:

$$[LIQ] = A \exp[(B[sal]^{0,5}) - (C[sal]^3)]$$
(1)

onde [LIQ] e [sal] são, respetivamente, as frações mássicas de LIQ e sal e *A*, *B* e *C* são constantes obtidas através do ajuste da equação aos dados experimentais.

As *tie-lines* (TLs) de cada diagrama de fase foram determinadas pelo método gravimétrico originalmente descrito por Merchuk e co-autores [80]. Foi preparada uma mistura ternária na região bifásica constituída por LIQ + sal + H₂O. Esta foi agitada vigorosamente e deixada em repouso a 25 (\pm 1) °C durante cerca de 18 h de modo a garantir o equilíbrio das fases coexistentes. Após este período, cada fase (fase de topo e fase de fundo) foi cuidadosamente separada e pesada (grau de incerteza associado de \pm 10⁻⁴ g). Finalmente, cada *tie-line* foi determinada pela relação entre a massa da fase de topo e a composição global do sistema através das Eq. 2-8 e o comprimento da *tie-line* calculado pela Eq. 9:

$$[LIQ]_T = A \exp[(B[sal]_T^{0,5}) - (C[sal]_T^3)]$$
(2)

$$[LIQ]_F = A \exp[(B[sal]_F^{0,5}) - (C[sal]_F^3)]$$
(3)

$$[LIQ]_T = ([LIQ]_M/\alpha) - ((1-\alpha)/\alpha)[LIQ]_F$$
(4)

$$[sal]_T = ([sal]_M/\alpha) - ((1-\alpha)/\alpha)[sal]_F$$
(5)

onde as letras em subscrito M, $T \in F$ representam, respetivamente, a mistura, a fase de topo e a fase de fundo, [sal] é a fração mássica do sal, [LIQ] é a fração mássica do LIQ e α é a razão entre a massa da fase de topo e a massa total da mistura. Os resultados do sistema de equações fornecem a concentração de cada soluto (sal e LIQ) nas fases de topo e fundo. A *tie-line* representa a linha que une as três composições (da mistura inicial e de cada uma das fases). Estes resultados devem obedecer obrigatoriamente a um conjunto de critérios, representados pelas Eq. 6-9:

$$m(LIQ)_{M} = ((m_{T} \times [LIQ]_{T})/100) + ((m_{F} \times [LIQ]_{F})/100)$$
(6)
$$m(sal)_{M} = ((m_{T} \times [sal]_{T})/100) + ((m_{F} \times [sal]_{F})/100)$$
(7)

$$([sal]_F - [sal]_M) / ([sal]_M - [sal]_T) = m_T / m_F$$
(8)

onde m(LIQ)_M e m(sal)_M correspondem às massas de LIQ e sal pesadas na preparação do ponto de mistura, enquanto m_T e m_F são as massas de topo e de fundo, respetivamente.

O comprimento das *tie-lines* (TLL) corresponde à distância Euclidiana entre a composição das fases de topo e fundo e pode ser calculada através da Eq. 9.

$$TLL = \sqrt{([sal]_T - [sal]_F)^2 + ([LIQ]_T - [LIQ]_F)^2}$$
(9)

2.2.2.2. Estudos de partição dos enantiómeros do ácido mandélico

A composição das misturas ternárias foi escolhida com base nos diagramas de fase determinados anteriormente. O ponto de mistura selecionado é constituído por cerca de 25 % (m/m) de LIQ, 10 % (m/m) de sal, 0,8 % (m/m) de *R*-ácido mandélico, 0,8 % (m/m) de *S*-ácido mandélico e 63,4 % (m/m) de água. Os enantiómeros foram adicionados à mistura sob a forma de soluções aquosas de concentração 0,05 g/mL nas quantidades específicas para atingir as composições anteriormente descritas. Desta forma, os sistemas foram formados pela adição deste conjunto de componentes nas percentagens pretendidas, perfazendo uma massa total de sistema de 1,5 g. Para os SABs formados pelos LIQs [N4444]2[L-Glu], [N4444][L-Arg] e [N4444][L-Pro] e Na2SO4 foi adicionalmente estudado o efeito da presença de iões cobre. Para tal, 0,5 % (m/m) de CuSO4 foi adicionado às composições descritas acima. A massa de todos os componentes adicionados ao sistema foi determinada com um grau de incerteza de $\pm 10^{-4}$ g.

O LIQ foi deixado em contacto com as soluções aquosas dos enantiómeros do ácido mandélico com agitação constante durante pelo menos 18 h. Procedeu-se à adição do sal

correspondente a cada sistema após este período. Tendo a mistura ternária devidamente preparada, esta foi submetida a agitação vigorosa e deixada a 25 (± 1) °C durante pelo menos 18 h para ocorrer a separação completa das fases, bem como a partição total dos enantiómeros entre as duas fases do sistema. Após o tempo de repouso, as fases foram cuidadosamente separadas, pesadas com um grau de incerteza de ± 10⁻⁴ g e analisadas em termos de concentração de cada enantiómero por HPLC-DAD (ver seção 2.2.2.3). Em todos os SABs formados, a fase superior corresponde à fase rica em LIQ, enquanto a fase inferior corresponde à fase rica em sal.

Para avaliar a capacidade dos SAB desenvolvidos na extração enantiosseletiva do *R*-ácido mandélico e *S*-ácido mandélico, a eficiência de extração (*EE*, %) e o excesso enantiomérico (*e.e.* %) foram os parâmetros considerados. O primeiro (Eq. 10) permite comparar e avaliar a extensão da partição dos enantiómeros para uma dada fase, neste caso a de topo, enquanto o segundo (Eq. 11) indica o grau de enriquecimento apresentado pela fase de topo num dos enantiómeros em relação ao outro.

$$EE_{R/S} \% = m_{R/S}^T / m_{R/S}^0 \times 100$$
⁽¹⁰⁾

$$e. e. \% = (m_R^T - m_S^T) / (m_R^T + m_S^T)$$
(11)

Na Eq. 10, $m_{R/S}^T$ é a massa do enantiómero *R* ou *S* na fase de topo e $m_{R/S}^0$ é a massa do enantiómero *R* ou *S* utilizada inicialmente na preparação do SAB. Relativamente à Eq. 11, m_R^T corresponde à massa do enantiómero *R* na fase de topo, tal como m_S^T representa a massa do enantiómero *S* na fase de topo.

2.2.2.3. Quantificação dos enantiómeros do ácido mandélico por HPLC-DAD

Os enantiómeros do ácido mandélico foram quantificados por HPLC-DAD recorrendo a um método analítico desenvolvido e validado no grupo de investigação, adaptado da literatura [30]. O cromatógrafo HPLC Elite LaChrom (VWR Hitachi) usado é constituído por um detetor de rede de díodos (DAD, do inglês *diode array detector*) 1-2455, um forno para a coluna analítica 1-2300, um sistema de injeção automático 1-2200 e um sistema de bombagem 1-2130. A coluna analítica utilizada foi adquirida à Merck, contendo um adsorvente LIChrospher 100 RP-18 (5 μ m) e um cartucho LiChroCART 250-4 HPLC-Cartridge, ligado a uma pré-coluna (5 μ m, 4 mm × 4 mm) com a mesma fase estacionária. A fase móvel era constituída por 15 % (v/v) de metanol, 85 % (v/v) de água (15:85), contendo 2 mM de L-Phe e 1 mM de CuSO₄. O pH foi ajustado para 4,00 (± 0,02) adicionando uma solução aquosa de amónia a 5 % (m/m). De seguida, a fase foi

filtrada sob vácuo utilizando filtros de membrana de celulose regenerada (0,45 μ m) e desgaseificada num banho de ultrassons. A separação cromatográfica ocorreu em modo isocrático, com um caudal de 0,8 mL/min. O volume de injeção foi de 20 μ L e o comprimento de onda da análise foi fixado a 270 nm. As temperaturas de operação da coluna e do injetor automático foram, respetivamente, de 22 °C e 25 °C. Os tempos de retenção dos enantiómeros foram de 11 min para o *R*-ácido mandélico e o de 13 min para o *S*-ácido mandélico. A quantificação foi realizada com base numa curva de calibração para cada enantiómero determinada com soluções padrão de concentração conhecida entre 10 e 500 μ g/mL (Anexo A – Figuras A1 e A2). De forma rotineira, foram injetados padrões de concentração conhecida para garantir uma quantificação correta. As amostras correspondentes às fases de topo (fase para a qual se verificou uma migração preferencial do ácido mandélico) foram diluídas com uma mistura de água:metanol (85:15 v/v) tendo em conta um fator de diluição de 100, o que permitiu eliminar a interferência do LIQ na quantificação. A quantificação das fases de fundo não foi efetuada devido a limitações analíticas relacionados com a resolução dos cromatogramas e largura dos picos.

2.2.2.4. Medição do pH das fases

O pH das fases constituintes de todos os SABs e da fase móvel utilizada para a quantificação em HPLC-DAD foi medido, utilizando um medidor de pH e condutividade Mettler Toledo S47 SevenMultiTM com uma incerteza associada de \pm 0,02.

3. Resultados e discussão

3.1. Síntese e caracterização de líquidos iónicos quirais

3.1.1. Síntese

Neste trabalho foram sintetizados doze LIQs através de uma reação de neutralização esquematizada na Figura 11, sendo que nove pertencem à família dos amónios ([N₄₄₄₄][AA]) e três à família dos colínios ([Col][AA]).

Dentro do grupo dos [N₄₄₄₄][AA] foram sintetizados os seguintes LIQs (Figura 12): de [N₄₄₄₄][L-Phe]; L-fenilalaninato tetrabutilamónio, D-fenilalaninato de tetrabutilamónio, [N₄₄₄₄][D-Phe]; L-valinato de tetrabutilamónio, [N₄₄₄₄][L-Val]; Lalaninato de tetrabutilamónio, [N4444][L-Ala]; L-prolinato de tetrabutilamónio, [N4444][L-L-argininato de tetrabutilamónio, [N₄₄₄₄][L-Arg]; Pro]; L-glutamato de ditetrabutilamónio, [N4444]2[L-Glu]; L-tartarato de ditetrabutilamónio, [N4444]2[L-Tar] e D-tartarato de ditetrabutilamónio, [N₄₄₄₄]₂[D-Tar]. O protocolo seguido para a sua síntese, exceto nos casos do [N4444][L-Arg] e do [N4444][L-Phe] cujo método experimental foi validado na presente tese, foi o reportado no trabalho de Allen e co-autores [62]. Quanto aos LIQs da família dos [Col][AA] foram sintetizados o L-fenilalaninato de colínio, [Col][L-Phe]; o D-fenilalaninato de colínio, [Col][D-Phe] e o L-glutamato de di(colínio), [Col]₂[L-Glu]. Para a sua síntese foi seguido o procedimento reportado em [76]. A estrutura química de todos os LIQs sintetizados e estudados neste trabalho está representada na Figura 12.

Figura 11 – Esquema da síntese dos LIQs pela reação de neutralização (A) com o catião tetrabutilamónio e (B) com o catião colínio.

Figura 12 – Estrutura química dos LIQs sintetizados.

A estrutura química dos LIQs sintetizados foi confirmada por espectroscopia de RMN ¹H e ¹³C, estando em concordância com o reportado na literatura [62, 76]. Os espectros obtidos são apresentados no Anexo B1 – Figuras B1 a B24.

Como forma de avaliar o desempenho do procedimento adotado na síntese destes LIQs, na Tabela 2 apresenta-se uma comparação entre o desempenho de cada síntese, onde o aspeto, estado físico e rendimento da síntese são abordados considerando os resultados obtidos neste trabalho e os anteriormente reportados na literatura [62, 76]. É possível observar que os LIQs [N₄₄₄₄][L-Val], [N₄₄₄₄][L-Pro] e [Col][L-Phe] sintetizados neste trabalho apresentam aspeto e rendimento de síntese semelhantes aos reportados na literatura [62]. No caso do [N₄₄₄₄][L-Phe] e do [N₄₄₄₄][L-Ala], os rendimentos de síntese obtidos foram inferiores aos anteriormente reportados, o que pode ser explicado pela ineficácia na eliminação do solvente nos LIQs sintetizados por Allen e co-autores [62]. Tal é corroborado pelo estado físico apresentado, uma vez que neste trabalho estes LIQs são sólidos e no trabalho de Allen e co-autores [62] são descritos como líquidos. Contrariamente aos anteriores, os LIQs [N4444]2[L-Glu], [N4444]2[L-Tar] e [N4444]2[D-Tar] sintetizados neste trabalho apresentam um rendimento de síntese superior ao reportado [62, 76]. Este facto pode ser explicado pela perda de LIQ durante a lavagem realizada pelos autores, etapa que foi eliminada no procedimento experimental desenvolvido neste trabalho (secção 2.2.1.), uma vez que a sua síntese foi realizada na estequiometria de 2:1, assumindo-se que todo o aminoácido terá reagido. No entanto, pelo aspeto líquido reportado para estes LIQs, suspeita-se que a secagem efetuada pelos autores foi novamente ineficiente, pois os mesmos LIQs obtidos neste trabalho são sólidos depois da remoção dos solventes. Relativamente ao [Col]2[L-Glu] o rendimento é idêntico, mas o estado sólido reportado por Santis e co-autores [76] é distinto do estado líquido obtido no presente trabalho. Uma vez que, de acordo com o nosso conhecimento, a sua síntese nunca antes foi reportada na literatura, para os LIQs [N₄₄₄₄][D-Phe], [N₄₄₄₄][L-Arg] e [Col][D-Phe] não é possível realizar nenhuma comparação.

	Este t	rabalho	Literatura		
LI	<i>Estado físico</i> Aspeto (25 °C)	Rendimento (%)	<i>Estado físico</i> Aspeto (25 °C)	Rendimento (%)	
[N4444][L-Phe]	<i>Sólido</i> Amarelo pálido	93	<i>Líquido viscoso</i> Amarelo	95	
[N4444][D-Phe]	<i>Sólido</i> Amarelo pálido	97	-	-	
[N4444][L-Val]	<i>Líquido</i> Amarelo pálido	86	<i>Líquido</i> Amarelo	85	
[N4444][L-Ala]	<i>Sólido</i> Branco	88	<i>Líquido</i> Amarelo pálido	98	
[N ₄₄₄₄][L-Pro]	<i>Líquido</i> Amarelo pálido	95	<i>Líquido</i> Amarelo	97	
[N ₄₄₄₄][L-Arg]	<i>Sólido</i> Amarelo	85	-	-	
[N ₄₄₄₄] ₂ [L-Glu]	<i>Sólido</i> Branco	100	<i>Líquido</i> Amarelo	94	
[N ₄₄₄₄] ₂ [L-Tar]	<i>Sólido</i> Incolor	90	<i>Líquido viscoso</i> Incolor	65	
[N ₄₄₄₄] ₂ [D-Tar]	<i>Sólido</i> Incolor	90	<i>Líquido viscoso</i> Amarelo pálido	61	
[Col][L-Phe]	<i>Líquido viscoso</i> Amarelo	94	Líquido	94	
[Col][D-Phe]	<i>Líquido viscoso</i> Amarelo	93	-	-	
[Col] ₂ [L-Glu]	<i>Líquido</i> Amarelo pálido	100	Sólido	> 90	

Tabela 2 – Comparação entre os resultados obtidos neste trabalho e os reportados na literatura considerando parâmetros como o aspeto, estado físico e rendimento da síntese dos LIQs [62, 76].

3.1.2. Caraterização

Para a caraterização dos LIQs sintetizados várias propriedades físico-químicas foram estudadas, nomeadamente as temperaturas de fusão e de decomposição, viscosidade, densidade, índice de refração e rotação ótica. Por último, a toxicidade de cada LIQ relativamente à bactéria marinha *Vibrio fisheri* foi avaliada.

3.1.2.1. Temperatura de fusão e de decomposição

A temperaturas de fusão (T_{fus}) e de decomposição (T_d) dos LIQs sintetizados foram determinadas por calorimetria de varrimento diferencial (DSC) e por análise termogravimétrica (TGA), respetivamente. A Tabela 3 mostra os resultados obtidos.

De acordo com os perfis de DSC (Anexo B2 – Figuras B25 a B33) dos LIQs sintetizados, as T_{fus} variam entre -46 e 123 °C, como reportado na Tabela 3. Os enantiómeros do mesmo LIQ ([N₄₄₄₄][L/D-Phe] e [N₄₄₄₄]₂[L/D-Tar]) apresentam o mesmo valor de T_{fus} . Considerando o catião tetrabutilamónio, a T_{fus} dos LIQs aumenta na

seguinte ordem: $[N_{4444}][L-Val] < [N_{4444}][L-Ala] < [N_{4444}]_2[L/D-Tar] < [N_{4444}][L-Arg] < [N_{4444}][L/D-Phe] < [N_{4444}]_2[L-Glu]. Esta tendência não é observada para os respetivos aminoácidos. Para o L-Glu, a T_{fus} é de 205 °C, uma das mais baixas de todos os aminoácidos, ao contrário da T_{fus} do LIQ correspondente (123 °C) que é a mais alta entre os LIQs. Tal facto pode ser explicado pela presença de dois catiões [N_{4444}]^+ no LIQ, provocando um aumento na T_{fus}. O mesmo também se pode concluir para os [N_{4444}]_2[L/D-Tar]. O [N_{4444}][L-Val] também não vai de encontro à sequência, visto que tem a T_{fus} mais baixa de todos os LIQs constituídos pelo mesmo anião, mas que diferem no catião ([N_{4444}]_2[L-Glu] vs [Col]_2[L-Glu]), conclui-se que o LIQ compostos pelo catião [N_{4444}]^+ têm uma T_{fus} mais alta do que os LIQs compostos pelo catião [Col]⁺. Tal não se verifica para os LIS [N_{4444}]Cl (T_{fus} = 70 °C) e [Col]Cl (T_{fus} = 305 °C), uma vez que para estes a T_{fus} do LI da família do colínio é mais elevada do que a T_{fus} do LI da família do tetrabutilamónio [81].$

A partir dos perfis de TGA dos [N₄₄₄₄][AA] (Anexo B3 – Figuras B34 e B35), bem como dos valores de T_d reportados na Tabela 3, é possível concluir que todos os compostos estudados têm uma boa estabilidade térmica, com valores entre 166 °C (correspondente ao $[N_{4444}]_2[L-Glu]$) e os 222 °C (relativa ao $[N_{4444}][L-Arg]$). Considerando o catião tetrabutilamónio, a T_d dos LIQs aumenta na seguinte ordem: $[N_{4444}]_2[L-Glu] < [N_{4444}][L-Val] < [N_{4444}][L-Ala] < [N_{4444}][L-Pro] < [N_{4444}][L/D-Phe] < [N_{4444}][L/D-Phe] < [N_{4444}][L-Val] < [N_{444}][L-Val] < [N_{444}][N_{444}][L-Val] < [N_{444}][N_{44}][N_{444}][N_{444}][N_{444}][N_{444}][N_{444}][N_{444}][N_{444}][N_{44}][N_{444}][N_{444}][N_{444}][N_{444}][N_{444}][N_{444}][N$ [N₄₄₄₄]₂[L/D-Tar] < [N₄₄₄₄][L-Arg]. Mais uma vez e também para a T_d, a mesma tendência não é observada para os respetivos aminoácidos. No geral, os LIQs sintetizados apresentam uma menor estabilidade térmica comparando com os respetivos aminoácidos [82]. Para o [N₄₄₄₄][L-Arg] a T_d (200 °C) é semelhante à do aminoácido (207 °C), já o [N₄₄₄₄][L-Ala] é aquele em que a diferença entre a T_d do LIQ (184 ° C) e a T_d do respetivo aminoácido (297 °C) é a maior. Relativamente à influência do catião, e analisando os LIQs compostos pelo mesmo anião, verifica-se que os compostos pelo catião [N₄₄₄₄]⁺ têm uma estabilidade térmica inferior aos compostos pelo catião [Col]⁺. O contrário se verifica para o conjunto de LIs reportados por Lee e colaboradores [83], nomeadamente os LIs $[N_{4444}][BES] (T_d = 269 \text{ °C}) e [Col][BES] (T_d = 227 \text{ °C}), [N_{4444}][MOPSO] (T_d = 268 \text{ °C})$ e [Col][MOPSO] ($T_d = 231 \,^{\circ}$ C), e [N₄₄₄₄][CAPSO] ($T_d = 270 \,^{\circ}$ C) e [Col][CAPSO] ($T_d =$ 214 °C), onde o LI da família do tetrabutilamónio apresenta sempre uma T_d mais elevada do que a T_d do LI da família do colínio. É de referir que embora os LIQs apresentem uma T_d inferior aos respetivos aminoácidos, esta continua a ser elevada.

LIQ	T _{fus} (°C)	$T_d (\pm 2 \ ^oC)$	AA	T _{fus} (°C) [81]	T _d (°C) [82]
[N4444][L-Phe]	95	190	L-Phe	275	283
[N ₄₄₄₄][D-Phe]	95	190	D-Phe	275	n.d.
[N4444][L-Val]	-46	181	L-Val	295-300	n.d.
[N4444][L-Ala]	71	184	L-Ala	214	297
[N4444][L-Pro]	n.d.	188	L-Pro	228	220
[N4444][L-Arg]	79	200	L-Arg	235	207
[N4444]2[L-Glu]	123	166	L-Glu	205	205
[N4444]2[L-Tar]	74	194	L-Tar	170-172	n.d.
[N4444]2[D-Tar]	74	199	D-Tar	172-174	n.d.
[Col][L-Phe]	n.d.	222	L-Phe	275	283
[Col][D-Phe]	n.d.	220	D-Phe	275	n.d.
[Col] ₂ [L-Glu]	5	199	L-Glu	205	205

Tabela 3 – Propriedades térmicas dos LIQs sintetizados e respetivos aminoácidos (AA), nomeadamente, temperatura de fusão (T_{fus}) e temperatura de decomposição (T_d). (n.d. – não disponível)

3.1.2.2. Densidade, viscosidade e índice de refração

A densidade e a viscosidade são duas propriedades físicas importantes, quando se pretende aplicar sistemas com LIs em larga-escala. Estas duas propriedades dependem do anião e do catião do LI, sendo que os LIs contendo átomos mais pesados são geralmente caracterizados por densidades mais elevadas [84]. Por outro lado, o índice de refração pode ser usado para medir a polarizabilidade eletrónica de uma molécula e pode fornecer informações sobre o comportamento do LI em solução, uma vez que solventes com um elevado índice de refração apresentam forças intermoleculares mais fortes [85].

Nas Figuras 13, 14 e 15, são apresentados os dados experimentais da densidade, viscosidade e índice de refração em função da temperatura, para os LIQs em estado líquido [N₄₄₄₄][L-Val], [N₄₄₄₄][L-Pro], [Col]₂[L-Glu], [Col][D-Phe] e [Col][L-Phe] (Anexo B4 – Tabela B1). Estes três parâmetros são dependentes da temperatura e do teor de água. O teor de água foi determinado através do método de titulação de *Karl Fisher* após secagem dos LIQs. Foram obtidos valores entre 0,7 e 5,3 %, para o [N₄₄₄₄][L-Val] e [Col]₂[L-Glu], respetivamente, e valores de 3,0 % para o [N₄₄₄₄][L-Pro], 4,2 % para o [Col][D-Phe] e 4,3 % para o [Col][L-Phe]. Tendo em conta a aplicação proposta neste trabalho, a densidade e a viscosidade dos diferentes LIQs foram comparadas à

temperatura ambiente (25 °C). No que diz respeito ao índice de refração, e como os dados foram obtidos com um intervalo de 10 °C, a comparação destes dados será realizada a 20 °C.

Relativamente à densidade dos LIQs (Figura 13), esta diminui linearmente com o aumento da temperatura, o que está de acordo com o que é reportado por Lee e co-autores [83] para LIs derivados do tetrabutilamónio e do colínio. Neste trabalho, o LIQ mais denso é o [Col]₂[L-Glu], seguindo-se os LIQs [Col][D-Phe], [Col][L-Phe], [N₄₄₄₄][L-Pro] e [N₄₄₄₄][L-Val], por ordem decrescente. Este comportamento está diretamente relacionado com a estrutura dos LIQs, visto que o mais denso é aquele que tem dois catiões na sua estrutura. De seguida vêm os LIQs que têm no seu anião um anel aromático (L/D-Phe) e por fim, e apesar do catião ter maiores dimensões, seguem-se os LIQs constituídos pelos menores aniões (L-Pro e L-Val). Quanto à natureza do catião, esta também influencia a densidade dos LIQs. Para os LIQs derivados do catião colínio são apresentados valores de densidade superiores àqueles obtidos para os LIQs da família do tetrabutilamónio, que se devem ao facto de o catião colínio apresentar uma cadeia alquílica lateral mais curta [83].

Figura 13 – Densidade em função da temperatura para os LIQs: [Col]₂[L-Glu] (■), [Col][D-Phe] (★), [Col][L-Phe] (●), [N₄₄₄₄][L-Pro](▲), [N₄₄₄₄][L-Val](♦).

Quanto à viscosidade (Figura 14), esta diminui exponencialmente com o aumento da temperatura, o que está de acordo com o que é reportado por Lee e co-autores [83], e segue a seguinte tendência decrescente: [Col][D-Phe] > [Col]₂[L-Glu] > [Col][L-Phe] >

 $[N_{4444}][L-Val] > [N_{4444}][L-Pro]$. Esta não está de acordo com o esperado, uma vez que se observa uma diferença elevada entre os enantiómeros [Col][D-Phe] ($\eta = 93775$ mPa.s) e [Col][L-Phe] ($\eta = 14731$ mPa.s). Tal não pode ser explicado pelo teor de água dos LIQs em questão, visto que valores semelhantes foram obtidos para os dois enantiómeros (4,2 % para o [Col][D-Phe] e 4,3 % para o [Col][L-Phe]). Por outro lado, os LIQs da família do colínio apresentam valores de viscosidade superiores aos que são obtidos para os LIQs da família do tetrabutilamónio, o que se deve à presença de um grupo hidroxilo no catião colínio, que facilmente forma ligações por pontes de hidrogénio. A viscosidade dos LIs está essencialmente relacionada com a força das interações de van der Waals e a sua capacidade de formar ligações por pontes de hidrogénio [86].

Figura 14 - Viscosidade em função da temperatura para os LIQs: [Col]₂[L-Glu] (■), [Col][D-Phe] (★), [Col][L-Phe] (**0**), [N₄₄₄₄][L-Pro](▲), [N₄₄₄₄][L-Val](♦).

Comparando os dados obtidos para o índice de refração (Figura 15), o maior valor representa o [Col][D-Phe], seguindo-se o [Col][L-Phe], o [Col]₂[L-Glu], o [N₄₄₄₄][L-Pro] e por último o [N₄₄₄₄][L-Val]. Esta tendência mostra que o índice de refração depende da estrutura do catião, tal como é reportado por Seki e co-autores [87] e é também dependente do tamanho do anião, uma vez que para aniões de maiores dimensões são obtidos valores maiores de índice de refração. Observando a tendência acima pode-se concluir também que, sendo os enantiómeros [Col][D-Phe] e [Col][L-Phe] os LIQs para o qual se obteve um maior valor, há uma maior polarizabilidade para estes compostos, e

consequentemente, possuem forças intermoleculares mais fortes [85]. Como esperado, foram obtidos valores de índice de refração muito semelhantes para os enantiómeros [Col][D-Phe] e [Col][L-Phe].

Figura 15 – Índice de refração em função da temperatura para os LIQs: [Col]₂[L-Glu] (■), [Col][D-Phe] (★), [Col][L-Phe] (**O**), [N₄₄₄₄][L-Pro](▲), [N₄₄₄₄][L-Val](♦).

3.1.2.3. Rotação ótica

Para a determinação da rotação ótica dos LIQs foram preparadas soluções aquosas dos mesmos de forma a obter uma concentração constante do anião do LIQ de 20 mg/mL. A mesma concentração foi também adotada na preparação das soluções dos aminoácidos. Na Tabela 4 são apresentados os resultados obtidos para os LIQs e para os respetivos aminoácidos, em comparação com dados obtidos em literatura [62]. Analisando os resultados é possível identificar uma menor rotação ótica para os LIQs em comparação com os respetivos aminoácidos. Relativamente aos valores reportados por Allen e co-autores [62], os valores obtidos são semelhantes, apesar dos autores realizarem as medições para uma concentração inferior. Para os LIQs [N₄₄₄₄][L-Phe], [N₄₄₄₄][L-Va]], [N₄₄₄₄][L-Ala], [N₄₄₄₄][L-Pro] e [N₄₄₄₄]₂[L-Glu] a concentração utilizada pelos autores é de 10 mg/mL, enquanto que para os LIQs [N₄₄₄₄]₂[L-Tar] e [N₄₄₄₄]₂[D-Tar] é de 5 mg/mL. É de referir que estas concentrações se referem ao LIQ e não apenas ao anião.

LIQ	Rotação ótica experimental	Literatura	Rotação ótica dos aminoácidos correspondentes		
[N ₄₄₄₄][L-Phe]	$-0,85 \pm 0,04$	-0,83	$-34,34 \pm 0,69$		
[N4444][D-Phe]	$0{,}91\pm0{,}05$	n.d.	$33,\!51 \pm 0,\!65$		
[N ₄₄₄₄][L-Val]	$4,\!12\pm0,\!25$	4,10	$5,\!45 \pm 0,\!11$		
[N4444][L-Ala]	$0,\!83\pm0,\!06$	1,65	$1,\!30\pm0,\!03$		
[N ₄₄₄₄][L-Pro]	$\textbf{-33,}10\pm2\textbf{,}08$	-28,49	$-86,18 \pm 1,79$		
[N ₄₄₄₄][L-Arg]	$9,35\pm0,20$	n.d.	$11,50 \pm 0,24$		
[N4444]2[L-Glu]	$2,\!12\pm0,\!18$	1,86	$11,25 \pm 0,06$		
[N ₄₄₄₄] ₂ [L-Tar]	$8{,}68\pm0{,}75$	11,08	$15,\!17\pm0,\!30$		
[N4444]2[D-Tar]	$\textbf{-8,79} \pm \textbf{0,76}$	-11,22	$-15,07 \pm 0,31$		
[Col][L-Phe]	$\textbf{-0,82} \pm \textbf{0,03}$	n.d.	$-34,34 \pm 0,69$		
[Col][D-Phe]	$0{,}61\pm0{,}02$	n.d.	$33,\!51 \pm 0,\!65$		
[Col] ₂ [L-Glu]	$3,\!70\pm0,\!19$	n.d.	$11,25 \pm 0,06$		

Tabela 4 – Rotação ótica para os LIQs sintetizados, à temperatura ambiente, e comparação com os valores reportados na literatura [54] e com os valores dos aminoácidos que lhes deram origem. (n.d. – não disponível)

Comparando os resultados experimentais obtidos e apresentados na Tabela 4, a maior rotação ótica foi obtida para o [N₄₄₄₄][L-Pro] (-33,10), o que era esperado uma vez que o respetivo aminoácido também é aquele que apresenta maior valor de rotação ótica (-86,18). Entre os LIQs sintetizados existem cinco para os quais o valor obtido foi muito próximo de zero, nomeadamente o [N₄₄₄₄][L-Phe] (-0,85), [N₄₄₄₄][D-Phe] (0,91), [N₄₄₄₄][L-Ala] (0,83), [Col][L-Phe] (-0,82) e [Col][D-Phe] (0,61). Relativamente ao [N₄₄₄₄][L-Ala] este era já o comportamento esperado porque o valor de rotação ótica obtido para o aminoácido correspondente é igualmente baixo. Importa ainda salientar que os valores obtidos para cada par de enantiómeros são semelhantes entre si, mas de carga oposta, tal como espectável, uma vez que considerando a sua estrutura química cada enantiómero roda num sentido quando num plano de luz polarizada.

3.1.2.4. Toxicidade

Na Europa, sempre que um novo produto é proposto para aplicação em escala industrial, é exigido que os seus riscos incluindo os ambientais sejam avaliados de acordo com normas bem estabelecidas [88]. Embora a elevada solubilidade em água que os LIQs sintetizados apresentam possa consistir uma vantagem para a sua incorporação na preparação de SABs, esta faz com que o seu potencial para contaminar o compartimento aquático seja maior. Neste contexto, o impacto dos LIQs sintetizados na bactéria marinha *Vibrio fisheri* foi também avaliado como caracterização biológica. Apesar de não ser contemplado nas normas europeias (REACH), o teste Microtox é um dos bioensaios toxicológicos mais amplamente usados na avaliação qualitativa da toxicidade de LIs, pela sua fácil e rápida operação e resposta rápida relativa à tendência de toxicidade de um conjunto de compostos [89-92]. O parâmetro EC₅₀ (o qual indica a concentração de composto necessário para provocar uma diminuição da luminescência desta bactéria em 50 %) e os respetivos intervalos de confiança a 95 %, foram determinados para todos os LIQs, tendo em conta três diferentes tempos de exposição, nomeadamente 5, 15 e 30 min (Anexo B5 – Tabela B2).

Relativamente à influência do tempo de exposição destes compostos à bactéria na sua ação tóxica (Figura 16), foi possível observar dois comportamentos distintos. Para a maioria dos LIQs sintetizados ([N₄₄₄₄]₂[D-Tar], [N₄₄₄₄]₂[L-Tar], [N₄₄₄₄]₂[L-Glu], [N₄₄₄₄][L-Val], [N₄₄₄₄][L-Phe], [N₄₄₄₄][L-Pro], [N₄₄₄₄][L-Arg] e [Col][D-Phe]), observa-se um aumento de toxicidade (traduzido pela diminuição do valor de EC_{50}) com o aumento do tempo de exposição da bactéria. Estes resultados seriam de esperar uma vez que só demonstram a baixa cinética de toxicidade destes compostos [89]. No que diz respeito aos LIQs [Col][L-Phe] e [Col]₂[L-Glu], o tempo de exposição não apresenta uma influência significativa na toxicidade, o que implica que a ação tóxica máxima que a bactéria é capaz de sentir quando em contacto com estes LIQs em particular, é logo sentida para baixos tempos de exposição. Tendo este fenómeno em conta, a discussão que se segue será baseada nos valores obtidos a 30 min, o tempo mais longo, uma vez que este garante uma resposta mais uniforme da bactéria à ação tóxica do LIQ.

Numa primeira análise é possível classificar estes LIQs como sendo não tóxicos de acordo com as normas da legislação europeia (Categoria: *Acute* 3) [93]. Utilizando a classificação de Passino e Smith [89], e tendo em conta os valores de EC₅₀ para 30 minutos de exposição, é possível classificar os LIQs [N₄₄₄₄][D-Phe], [N₄₄₄₄][L-Phe],

 $[N_{4444}]$ [L-Ala] e $[N_{4444}]$ [L-Arg] como "moderadamente tóxicos" (10 < EC₅₀ < 100 mg/L) e os restantes como "praticamente inofensivos" ($100 \le EC_{50} \le 1000 \text{ mg/L}$). Pela avaliação da Figura 16, a toxicidade dos LIQs para a bactéria Vibrio fischeri aumenta de acordo com a seguinte tendência (30 minutos): $[N_{4444}]_2[L-Tar]$ (EC₅₀ = 384,14 mg/L) < $[N_{4444}]_2$ [D-Tar] (EC₅₀ = 257,67 mg/L) < [Col]_2[L-Glu] (EC₅₀ = 217,08) < [Col][L-Phe] $(EC_{50} = 180,93) < [N_{4444}]_2[L-Glu] (EC_{50} = 144,74) < [N_{4444}][L-Pro] (EC_{50} = 122,30) < 100$ $[N_{4444}]$ [L-Val] (EC₅₀ = 117,50) < [Col][D-Phe] (EC₅₀ = 102,98) < [N_{4444}][D-Phe] (EC₅₀ $= 95,77) < [N_{4444}][L-Arg] (EC_{50} = 88,92) < [N_{4444}][L-Ala] (EC_{50} = 88,11) < [N_{4444}][L-$ Phe] (EC₅₀ = 86,48). No que diz respeito ao efeito da estrutura do anião, o aumento da cadeia alquílica pela introdução do efeito de isomerização de posição por ramificação normalmente leva a uma diminuição da toxicidade [94] e a introdução de grupos aromáticos no anião que normalmente incute um aumento significativo da toxicidade dos LIs, tal como Hou e co-autores reportam [95]. No entanto, neste trabalho, comparando os valores de toxicidade obtidos entre o $[N_{4444}]$ [L-Phe] (EC₅₀ = 86,48 mg/L) e o $[N_{4444}]$ [L-Ala] (EC₅₀ = 88,11 mg/L), a introdução do anel aromático ([L-Phe]⁻) não é suficiente para aumentar significativamente a toxicidade. Quando o aumento da cadeia alquílica é feito pelo efeito de isomerização de posição por ramificação, normalmente o valor de EC₅₀ aumenta, que é o que parece acontecer quando os resultados de $[N_{4444}][L-Val]$ (EC₅₀ = 117,50 mg/L) e [N₄₄₄₄][L-Ala] (EC₅₀ = 88,11 mg/L) são comparados. Analisando a basicidade e acidez dos aminoácidos verifica-se que há um aumento da toxicidade para a bactéria quando os LIQs são compostos por aminoácidos com uma cadeia lateral básica, como é o caso do [N₄₄₄₄][L-Arg] (88,92 mg/L). O contrário (menor toxicidade) pode especular-se quando a cadeia lateral do aminoácido é ácida, em particular para o $[N_{4444}]_2[L-Glu]$ (EC₅₀ = 144,74 mg/L), embora neste caso particular seja difícil retirar conclusões, uma vez este composto tem por base dois catiões conjugados, enquanto o $[N_{4444}]$ [L-Arg] (EC₅₀ = 88,92 mg/L) tem apenas um catião conjugado.

Comparando os enantiómeros $[N_{4444}][L-Phe]$ versus $[N_{4444}][D-Phe]$, $[N_{4444}]_2[L-Tar]$ versus $[N_{4444}]_2[D-Tar]$ e [Col][L-Phe] versus [Col][D-Phe] (Figura 16), pode verificar-se o efeito do isomerismo ótico na toxicidade destes LIQs derivados de aminoácidos. Os valores de EC_{50} entre o $[N_{4444}][L-Phe]$ e o $[N_{4444}][D-Phe]$ são semelhantes, respetivamente $EC_{50} = 86,48$ mg/L versus $EC_{50} = 95,77$ mg/L. Para os dois últimos pares de enantiómeros, os valores de toxicidade obtidos são distintos, sendo o enantiómero L o menos tóxico, respetivamente $EC_{50} = 384,14$ mg/L versus $EC_{50} = 256,67$ mg/L e 180,93 mg/L versus 102,98 mg/L. No entanto é de salientar que, embora os valores

de toxicidade variem, os dois enantiómeros se mantêm sempre na mesma categoria de "praticamente inofensivos" [89].

Finalmente, e avaliando o efeito do catião $[N_{4444}]^+$ e $[Col]^+$ para os LIQs formados por $[L-Glu]^{2-}$ (EC₅₀ = 144,74 mg/L *versus* EC₅₀ = 217,08 mg/L) , $[L-Phe]^-$ (EC₅₀ = 86,48 mg/L *versus* EC₅₀ = 180,93 mg/L) e $[D-Phe]^-$ (EC₅₀ = 95,77 mg/L *versus* EC₅₀ = 102,98 mg/L), verifica-se que de um modo geral o catião $[Col]^+$ apresenta toxicidade mais baixa para a bactéria.

Figura 16 - Valores de EC₅₀ (mg/L) para cada composto, após 5, 15 e 30 minutos de exposição à bactéria luminescente Vibrio fischeri.

3.2. Desenvolvimento de SABs com LIQs para a separação de enantiómeros

Neste trabalho foram estudados SABs constituídos por $[N_{4444}][AA]$ + sais inorgânicos e orgânicos. Estes sistemas foram escolhidos para o desenvolvimento de um sistema com uma das fases quirais, com o objetivo de permitir a interação diferenciada dessa fase com os enantiómeros, ou seja, permitindo uma interação preferencial da fase quiral com um dos enantiómeros.

A determinação dos diagramas de fase pela determinação da curva binodal e respetivas *TLs*, bem como a sua caraterização pela determinação do pH das fases, revelam-se muito importantes para a utilização de SABs em qualquer processo de purificação, e a separação de enantiómeros não é exceção. Na determinação dos diagramas de fase destes sistemas foram analisados dois parâmetros:

- i) Efeito do anião através do estudo de sistemas constituídos por vários [N₄₄₄₄][AA] + Na₂SO₄;
- ii) Efeito de vários sais inorgânicos e orgânicos pela determinação de SABs mantendo os LIQs [N4444][L-Phe] e [N4444][D-Phe].

Posteriormente, a capacidade destes SABs para resolver racematos de ácido mandélico foi avaliada.

3.2.1. Diagramas de fase dos sistemas constituídos por [N₄₄₄₄][AA] + sal + H₂O 3.2.1.1. Efeito do anião

Numa primeira fase, foi escolhido um sal com baixo poder *salting-out* de acordo com a série de *Hofmeister* [96] para potenciar as interações quirais entre o LIQ e os enantiómeros, sem que o fenómeno de *salting-out* do sal se sobrepusesse, o que consequentemente levaria à migração forçada e completa dos dois enantiómeros para a fase rica em LIQ. Por outro lado, e como a capacidade de formação de SABs de LIs da família do colínio com sais é reduzida devido à sua elevada hidrofilicidade [79] este estudo focou-se no uso dos LIQs da família [N4444][AA], nomeadamente [N4444][L-Phe], [N4444][D-Phe], [N4444][L-Val], [N4444][L-Ala], [N4444][L-Pro] e [N4444]2[L-Glu]), em combinação com Na₂SO₄. Assim, foi possível fazer um estudo mais alargado do efeito do anião [AA]⁻, estando os respetivos SABs representados na Figura 17. É de notar que os LIQs [N4444]2[D-Tar], [N4444]2[L-Tar] e [N4444][L-Arg] não foram capazes de promover a formação de duas fases na presença do Na₂SO₄. Os valores experimentais detalhados

estão apresentados no Anexo C - Tabelas C1 a C7. Nos diagramas de fase apresentados, a região bifásica encontra-se localizada acima da curva de solubilidade. Quanto maior é esta região, maior é a capacidade do LIQ para promover a formação do SAB. As curvas binodais estão representadas em unidades de molalidade (mol de soluto por kg de solvente) de modo a excluir a influência das massas moleculares dos LIQs.

Figura 17 - Avaliação do impacto do anião do LIQ na formação de SABs constituídos por [N4444][AA] + Na2SO4 + H2O: [N4444]2[L-Glu] (*), [N4444][D-Phe] (■), [N4444][L-Phe] (□), [N4444][L-Val] (▲), [N4444][L-Pro] (�), [N4444][L-Ala] (×) e [N4444][Cl] (−).

A influência do anião do LIQ nos diagramas de fase (Figura 17) é notória e a capacidade do LIQ para formar um SAB na presença de Na₂SO₄ diminui na seguinte ordem (para uma molalidade de sal de 1 mol/kg):

$$\label{eq:constraint} \begin{split} [N4444]_2[L-Glu] > [N4444][D-Phe] &\approx [N4444][L-Phe] > [N4444][L-Val] &\approx [N4444][L-Pro] > \\ [N4444]Cl &\approx [N4444][L-Ala] \end{split}$$

Estes resultados indicam que a diferente hidrofobicidade dos aminoácidos e, consequentemente, a sua distinta solubilidade em água, são responsáveis pelo efeito observado. Isto é confirmado pelo coeficiente de partição octanol-água (K_{ow}) dos diferentes aminoácidos que compõem os LIQs em estudo, onde o valor da sua função logarítmica (logK_{ow}) negativo indica uma maior afinidade para a água. Deste modo, o anião mais hidrofóbico [L/D-Phe]⁻ (logK_{ow} = -1,28) é responsável pela maior capacidade de formação de fases, seguido do anião [L-Val]⁻ (logK_{ow} = -2,08), [L-Pro]⁻ (logK_{ow} = -2,15) e, por fim, do anião [L-Ala]⁻ (logK_{ow} = -2,99) que se apresenta como o menos

eficiente por ser o mais hidrofílico [81]. Como exceção surge o LIQ $[N_{4444}]_2[L-Glu]$, que apresenta a maior região bifásica. O logK_{ow} do anião $[L-Glu]^{2-}$ é de -3,83 o que não corrobora o comportamento observado. No entanto como apresenta na sua composição dois catiões $[N_{4444}]^+$, torna assim o LI maior e mais hidrofóbico do que os restantes. Quanto ao SAB formado pelo $[N_{4444}]Cl$, aqui utilizado apenas como termo comparativo por ser um LI comummente estudado, é notório que este tem uma capacidade mais baixa para formar SABs na presença de Na₂SO₄ do que a maioria dos LIQs constituídos por aminoácidos. Este facto deve-se à elevada *hydrogen-bond basicity* do anião Cl⁻ [97], indicando que uma adequada escolha do anião $[AA]^-$ permite manipular a curva binodal para uma região mais rica em água.

Por comparação dos LIQs [N₄₄₄₄][L-Phe] e [N₄₄₄₄][D-Phe] foi possível avaliar o efeito do isomerismo ótico do anião na formação de SABs com Na₂SO₄. Este revelou-se pouco significativo, tal como é possível observar pela sobreposição das curvas binodais representadas na Figura 17. Este comportamento foi também observado em trabalhos anteriores utilizando catiões isoméricos [98, 99].

Para os sistemas estudados, os dados experimentais das curvas binodais foram posteriormente ajustados pela relação empírica descrita pela Eq.1. Os parâmetros da regressão foram calculados pelo método dos mínimos quadrados, e os seus valores e correspondentes desvios padrão (σ) estão apresentados na Tabela 5.

LIQ	$A \pm \sigma$	$B \pm \sigma$	$(C \pm \sigma) \ 10^{-5}$
[N ₄₄₄₄][L-Phe]	$92{,}3\pm4{,}3$	$\textbf{-0,}45 \pm 0,\!02$	$10{,}6\pm1{,}8$
[N4444][D-Phe]	$91,8\pm2,3$	$-0,45 \pm 0,01$	$11,\!8\pm1,\!1$
[N4444][L-Val]	$80{,}5\pm2{,}9$	$\textbf{-0,}42 \pm 0,\!02$	$7,8\pm2,1$
[N4444][L-Ala]	$85,4 \pm 3,6$	$\textbf{-0,}44 \pm 0,\!02$	$5,4 \pm 2,0$
[N ₄₄₄₄][L-Pro]	$85,0\pm3,9$	$\textbf{-0,}45 \pm 0,\!02$	$6,1 \pm 2,0$
[N ₄₄₄₄] ₂ [L-Glu]	$93,2\pm6,5$	$-0,46 \pm 0,03$	$5,6 \pm 1,7$
[N ₄₄₄₄]Cl	$76{,}9\pm2{,}6$	$-0,46 \pm 0,03$	$7,3 \pm 16,9$

Tabela 5 - Parâmetros de ajustamento determinados pelo ajuste da Eq. 1, usados na descrição da curva binodal de cada sistema constituído por LIQ + Na₂SO₄ + H₂O.

As TLs determinadas experimentalmente para os SABs constituídos por LI + Na₂SO₄ + H₂O, juntamente com o seu respetivo comprimento (TLLs), encontram-se na

Tabela 6. Um exemplo das TLs obtidas está demonstrado na Figura 18 através do sistema ternário $[N_{4444}][L-Phe] + Na_2SO_4 + H_2O.$

Tabela 6 - Dados experimentais das TLs e TLLs para SABs constituídos por [N₄₄₄₄][AA] + Na₂SO₄
+ H₂O. Os valores destacados a negrito e itálico correspondem aos pontos de mistura utilizado nos estudos de partição. O pH das fases está igualmente apresentado.

Fração mássica / % (m/m)									
[N4444][AA]	рНт	[sal]T	[LIQ]T	[sal]M	[LIQ]M	[sal]F	[LIQ]F	рНғ	TLL
[N ₄₄₄₄] [L-Phe]	10,47	4,37	35,36	10,14	24,96	22,01	3,52	9,91	36,40
	10,42	2,91	42,39	9,98	29,97	26,31	1,29	9,96	47,29
[N ₄₄₄₄] [D-Phe]	10,43	1,53	52,57	9,99	24,96	13,74	12,73	9,93	41,67
	10,42	0,31	71,37	10,02	30,00	14,27	11,89	9,85	61,09
[N ₄₄₄₄] [L-Val]	10,95	4,47	32,60	10,00	24,97	26,59	2,06	10,45	37,71
	10,85	2,55	40,84	9,98	30,09	30,14	0,91	9,95	48,53
[N ₄₄₄₄] [L-Ala]	11,41	4,72	32,70	10,03	24,98	23,90	4,78	10,92	33,88
	11,20	3,20	38,86	9,98	30,05	32,23	1,16	10,78	47,58
[N ₄₄₄₄] [L-Pro]	11,53	4,51	32,68	9,97	24,97	25,24	3,36	11,12	35,91
	11,52	2,55	41,55	9,96	29,97	27,72	2,19	11,08	46,72
[N4444]2 [L-Glu]	10,99	5,75	30,85	10,02	25,00	25,68	3,56	10,58	33,80
	11,10	3,50	39,56	9,99	29,98	28,91	2,06	10,78	45,30

Figura 18 - Diagrama de fases para o sistema ternário constituído por [N4444][L-Phe] + Na2SO4 + H2O: dados da curva binodal (■); dados das TLs (•); ajuste dos dados da curva binodal segundo a Eq. 1 (—).

3.2.1.2. Efeito do sal

A formação de SABs com os LIQs [N4444][D-Phe] e [N4444][L-Phe], com diversos sais inorgânicos e orgânicos foi investigada numa segunda etapa, onde os principais resultados se encontram na Tabela 7. A escolha dos sais baseou-se, mais uma vez na série de Hofmeister [100] e em outros estudos relacionados [96]. Os sais usados foram o KH₂PO₄, KNaC₄H₄O₆, Na₂SO₄, K₂CO₃, Na₂CO₃, K₂HPO₄, K₃C₆H₅O₇, e o K₃PO₄. As razões para a escolha destes dois LIQs foram a sua diferente quiralidade e elevada capacidade de formação de SABs. De todos os sais testados, apenas o KH₂PO₄, o sal de menor poder *salting-out* estudado, não foi capaz de promover a separação das fases. Como tal, outros sais de poder *salting-out* mais baixo não foram testados. Os restantes sais foram capazes de formar SABs, pelo maior poder *salting-out* que exibem, o que se traduz numa maior afinidade destes com a água, consequentemente expulsando o LIQ e promovendo a formação de uma segunda fase aquosa. Os valores experimentais detalhados estão apresentados no Anexo C, Tabelas C8 a C19.

	C-1	LIQ				
t	Sal	[N4444][L-Phe]	[N4444][D-Phe]			
no-8	KH ₂ PO ₄	×	×			
altin	KNaC4H4O6	~	v			
der s	Na_2SO_4	~	v			
lo po	K_2CO_3	~	v			
nto d	Na ₂ CO ₃	✓	v			
vume	K ₂ HPO ₄	✓	v			
\downarrow	K ₃ C ₆ H ₅ O ₇	~	v			
	K_3PO_4	~	~			

Tabela 7 – Combinações LI + sal + H₂O testadas e a sua capacidade para formar SABs em função do seu poder *salting-out*. (×) não forma SAB, (∨) forma SAB.

Os diagramas de fase ternários para os sistemas compostos por [N₄₄₄₄][D-Phe]/ [N₄₄₄₄][L-Phe] com os diversos sais estão representados na Figura 19 e permitem avaliar o efeito do sal na formação do SABs. Da mesma forma que na secção anterior, as curvas binodais estão também aqui representadas em unidades de molalidade (mol de soluto por kg de solvente) de modo a excluir a influência das massas moleculares dos sais. Analisando a Figura 19 e definindo uma concentração fixa de sal de 1 mol/kg, a capacidade de formação de SABs constituídos por sais de potássio obedece à série de Hofmeister [100], diminuindo na seguinte tendência (Tabela 7):

K3PO4 > K2HPO4 > K2CO3 > K3C6H5O7 > KNaC4H4O6

Comparando esta tendência com a série de Hofmeister é possível verificar que o $K_3C_6H_5O_7$ representa uma exceção à série de Hofmeister, uma vez que este é o segundo sal com maior capacidade *salting-out*, a seguir ao K_3PO_4 reportado em literatura. De acordo com estudos prévios [96, 101], os iões trivalentes (como o caso do PO_4^{3-} e do $C_6H_5O_7^{3-}$) teriam mais capacidade para induzir a formação de duas fases do que os divalentes (e.g. HPO_4^{2-} , CO_3^{2-} e $C_4H_4O_6^{2-}$). Kurnia e colaboradores verificaram que alguns desvios à série de Hosmeister podem ocorrer em sais compostos por iões polivalentes, devido às interações preferenciais entre os iões em solução e não devido à interação preferencial do sal com a água [102], facto que pode justificar o comportamento observado para o $K_3C_6H_5O_7$.

Já para os sais de sódio a capacidade de formação de SABs diminui na seguinte tendência:

$Na_2SO_4 > Na_2CO_3 > KNaC_4H_4O_6$

Neste caso o Na₂SO₄ é a exceção à série de Hofmeister [100], visto que a sua curva binodal está ligeiramente abaixo da do Na₂CO₃ [96]. Tendo em conta as duas exceções à série de Hofmeister, parece também que este tipo específico de LIQs, contendo aniões $[AA]^{-}$, comporta-se de forma diferente à revelada por LIs convencionais como o $[C_4mim][CF_3SO_3]$ [96].

De acordo com a série de Hofmeister [100], o catião Na^+ apresenta um maior poder *salting-out* do que o catião K^+ , o que explica a maior região bifásica induzida pelo Na_2CO_3 em relação ao K_2CO_3 . É neste sentido que se conclui que a maior capacidade do Na_2SO_4 na formação de SABs em relação a alguns sais de potássio pode ser devida à sobreposição do efeito do ião Na^+ .

Figura 19 - Avaliação do impacto do sal em sistemas ternários constituídos por LIQ + sal + H₂O: [N₄₄₄₄][L-Phe] + K₃PO₄ (△), [N₄₄₄₄][D-Phe] + K₃PO₄ (▲), [N₄₄₄₄][L-Phe] + K₂HPO₄ (○), [N₄₄₄₄][D-Phe] + K₂HPO₄ (○), [N₄₄₄₄][L-Phe] + Na₂CO₃ (○), [N₄₄₄₄][D-Phe] + Na₂CO₃ (○), [N₄₄₄₄][D-Phe] + Na₂CO₃ (○), [N₄₄₄₄][D-Phe] + K₂CO₃ (○), [N₄₄₄₄][D-Phe] + K₃C₆H₅O₇ (×), [N₄₄₄₄][D-Phe] + K₃C₆H₅O₇ (×), [N₄₄₄₄][D-Phe] + KNaC₄H₄O₆ (+),
[N₄₄₄₄][D-Phe] + KNaC₄H₄O₆ (+). As ampliações correspondem a sais de potássio (A) e sais de sódio (B) de modo a facilitar a interpretação dos dados.

Para os sistemas estudados, os dados experimentais foram posteriormente ajustados pela relação empírica descrita pela Eq.1, onde os parâmetros da regressão e

correspondentes σ estão apresentados na Tabela 8. As TLs e TLLs determinadas experimentalmente para os SABs constituídos por [N₄₄₄₄][L-Phe] / [N₄₄₄₄][D-Phe] + sal + H₂O, encontram-se descritos na Tabela 9.

Sal	$A \pm \sigma$	$B \pm \sigma$	$(C \pm \sigma) \ 10^{-5}$			
[N4444][L-Phe]						
Na ₂ SO ₄	$92,3 \pm 4,3$	$-0,45 \pm 0,02$	10,6 ± 1,8			
K_2CO_3	$84,3 \pm 2,8$	$\textbf{-0,37} \pm 0,01$	$17,1\pm0,7$			
Na ₂ CO ₃	$89,5 \pm 2,3$	$\textbf{-0,}49 \pm 0,\!01$	$17,2\pm1,7$			
K ₂ HPO ₄	$80{,}0\pm2{,}0$	$-0,36 \pm 0,01$	$8,8\pm0,4$			
$K_3C_6H_5O_7$	$104,5 \pm 2,5$	$\textbf{-0,28} \pm 0,01$	$2,7\pm0,1$			
K ₃ PO ₄	$78,1\pm2,2$	$\textbf{-0,37} \pm 0,01$	$15,2 \pm 0,6$			
KNaC ₄ H ₄ O ₆	$98,5\pm10,8$	$-0,31 \pm 0,03$	$3,4 \pm 0,4$			
[N4444][D-Phe]						
Na ₂ SO ₄	$91,8\pm2,3$	$-0,45 \pm 0,01$	$11,8 \pm 1,1$			
K_2CO_3	$90{,}0\pm2{,}2$	$\textbf{-0,39} \pm 0,01$	$15,3 \pm 0,6$			
Na ₂ CO ₃	$84,5 \pm 2,7$	$\textbf{-0,}47 \pm 0,\!02$	$21,0\pm1,6$			
K_2HPO_4	$79,4 \pm 1,8$	$-0,36 \pm 0,01$	$9,0\pm0,4$			
K ₃ C ₆ H ₅ O ₇	$99,0\pm2,5$	$\textbf{-0,28} \pm 0,01$	$2,9\pm0,3$			
K ₃ PO ₄	$74,4 \pm 1,2$	$-0,34 \pm 0,01$	$15,7 \pm 0,4$			
KNaC4H4O6	$90{,}8\pm7{,}8$	$\textbf{-0,28} \pm \textbf{0,03}$	$3,6 \pm 0,3$			

Tabela 8 - Parâmetros de ajustamento determinados pelo ajuste da Eq. 1, usados na descrição da curva binodal de cada sistema constituído por LIQ + sal + H₂O.

Fração mássica / % (m/m)									
Sal	рНт	[sal] _T	[LIQ] _T	[sal]M	[LIQ]M	[sal] _F	[LIQ] _F	рН _F	TLL
[N4444][L-Phe]									
No.SO	10,47	4,37	35,36	10,14	24,96	22,01	3,52	9,91	36,40
182504	10,42	2,91	42,39	9,98	29,97	26,31	1,29	9,96	47,29
	12,14	1,46	49,42	10,00	<i>24,98</i>	16,91	5,20	11,64	46,84
Na ₂ CO ₃	12,01	3,45	35,76	10,00	20,00	15,41	6,96	11,59	31,18
	10,44	6,87	29,89	10,10	24,95	23,64	4,25	11,10	30,63
К 2ПРО4	10,51	3,67	39,61	10,01	30,05	29,12	1,28	11,11	46,01
	12,55	0,77	56,64	9,97	24,97	12,73	15,49	12,55	42,84
K3PU4	12,49	0,06	71,61	9,96	30,13	14,04	13,03	12,62	60,23
V CO	12,42	2,13	49,37	10,01	<i>24,98</i>	13,27	14,89	12,09	36,24
K ₂ CO ₃	12,36	0,34	68,05	10,00	30,01	14,45	12,52	12,05	57,30
V C U O	10,67	11,29	38,61	19,87	24,82	25,54	15,72	10,44	26,97
К 3С6П5О7	10,66	3,80	59,93	19,97	30,04	31,20	9,27	10,32	57,60
	10,63	4,97	49,70	19,73	24,54	29,54	7,83	10,30	48,55
KNaC4H4O6	10,52	1,56	67,32	19,85	29,83	31,34	6,29	10,18	67,92
				[N4444][D	-Phe]				
NasSO	10,43	4,68	34,26	24,96	9,99	22,71	2,68	9,93	36,36
1 1 <i>a</i> ₂ 504	10,42	3,90	42,52	30,10	9,98	26,59	0,97	9,85	47,83
No-CO-	12,02	1,06	52,32	24,99	10,00	16,56	4,91	11,51	<i>49,88</i>
INd ₂ CO ₃	11,97	3,00	37,54	20,03	10,06	15,79	5,83	11,55	34,19
K-UDO	10,42	7,01	29,64	25,02	10,01	23,49	4,31	10,77	30,22
K 2 ПРU 4	10,43	3,74	39,33	30,01	9,99	29,28	1,18	10,9	45,91
	12,48	0,82	54,63	10,02	24,97	12,92	15,61	13,05	40,85
K 3PU4	12,40	0,02	71,29	10,21	29,97	14,47	12,67	12,84	60,37
V CO	12,34	2,29	49,56	9,99	24,92	12,70	16,25	12,11	34,89
$\mathbf{K}_2\mathbf{C}\mathbf{U}_3$	12,38	0,68	65,05	10,03	30,01	14,80	12,11	12,10	54,79
	10,62	7,65	45,43	20,02	24,94	27,24	12,98	10,55	37,90
N 3U6П5U7	10,61	2,81	62,21	19,92	29,95	31,13	8,81	10,42	60,45
KN ₀ C H O	10,48	10,23	35,68	18,14	22,68	21,09	17,84	10,29,	20,88
MINAU4174U6	10,58	1,07	68,02	19,77	29,74	31,26	6,23	10,17	68,77

Tabela 9 - Dados experimentais das TLs e TLLs para SABs constituídos por [N4444][L-Phe] / [N4444][D-Phe] + sal + H2O. Os valores destacados a negrito e itálico correspondem aos pontos de mistura utilizado nos estudos de partição. O pH das fases está igualmente apresentado.

3.2.2. Estudo da partição dos enantiómeros do ácido mandélico nos SABs

Após a determinação dos diagramas de fase dos sistemas constituídos por LIQ + $Na_2SO_4 + H_2O$, a capacidade de separação dos enantiómeros do ácido mandélico (composto quiral modelo) utilizando estes sistemas foi investigada. Os efeitos analisados nestes estudos foram três, seguindo a mesma lógica dos estudos da capacidade de formação de SABs (secção 3.2.1), nomeadamente o efeito:

- i) do anião [AA]⁻, de modo a perceber qual a estrutura que mais favorece e/ou seletivamente interage com o *R*-ácido mandélico ou o *S*-ácido mandélico;
- ii) do sal, com o objetivo de entender o papel do seu poder *salting-out*;
- iii) da adição do ião cobre, comummente usado como seletor quiral devido à sua capacidade de complexar com ligandos quirais específicos [103, 104].

3.2.2.1. Efeito do LIQ

Para este estudo, selecionou-se um ponto de mistura fixo com uma concentração de 25 % (m/m) de LIQ + 10 % (m/m) de Na₂SO₄ + 65 % (m/m) de H₂O, ponto de mistura selecionado como estando dentro da região bifásica de todos os SABs em estudo neste trabalho. Após a separação das fases coexistentes, as fases de topo ricas em LIQ foram analisadas por HPLC. Para cada sistema, foram determinados os parâmetros eficiência de extração e o excesso enantiomérico, descritos pelas Eq. 10 e Eq. 11, respetivamente e apresentados na Figura 20. O ácido mandélico é um composto polar, como evidenciado pelo seu coeficiente de partição octanol-água próximo de zero (logK_{ow} = 0,62) e a sua elevada solubilidade em água (181 g/L) [88]. Além disso, tendo em conta a sua constante de dissociação acídica (pKa = 3,41) [88], conclui-se que este se encontra sempre carregado negativamente no intervalo de pHs dos sistemas em estudo (Tabelas 6 e 9). Sendo constante a sua carga à superfície, conclui-se que a especiação do ácido mandélico não irá afetar os resultados de partição obtidos.

A migração preferencial do ácido mandélico, quer do enantiómero *R*, quer do enantiómero *S*, para a fase de topo rica em LIQ, é um resultado maioritariamente controlado pelo poder *salting-out* do Na₂SO₄. De acordo com a Figura 20, a aptidão destes sistemas para separar o *R*-ácido mandélico do *S*-ácido mandélico segue a seguinte tendência, variando o *e.e.* % entre $12,4 \pm 2,0$ (%) e $1,3 \pm 1,0$ (%):

$[N4444]_2[L-Glu] > [N4444][L-Ala] > [N4444][L-Pro] > [N4444][D-Phe] > [N4444][L-Phe] > [N4444][L-Val]$

Pela sequência mencionada anteriormente, o sistema composto por $[N_{4444}]_2[L-Glu]$ + Na₂SO₄ + H₂O é aquele que apresenta um maior *e.e.* % = 12,4 ± 2,0 (%) e uma maior diferença entre as *EE* do enantiómero *R* e *S*, *EE*_R = 79,5 ± 5,8 (%) e *EE*_S = 63,1 ± 5,4 (%), respetivamente. Tendo em conta o modelo dos três pontos de interação descrito anteriormente e que define a separação eficiente de enantiómeros, vários tipos de interações podem afetar a separação de enantiómeros em SABs quirais, nomeadamente pontes de hidrogénio, van der Waals e interações eletrostáticas [19]. Sendo este o único LIQ contendo um grupo funcional acídico extra ao nível do anião, é possível que a extensão da separação dos dois enantiómeros do ácido mandélico esteja relacionada com interações diferenciais ao nível dos grupos acídicos do [L-Glu]²⁻ com cada um dos enantiómeros.

Em relação aos restantes LIQs estudados parece que não ocorrem interações tão favoráveis para que a separação enantiomérica seja eficiente. Especialmente, no caso dos LIQs [N₄₄₄₄][D-Phe] e [N₄₄₄₄][L-Phe], seria de esperar um *e.e.* % em cada um dos enantiómeros devido à sua diferente quiralidade (rotação ótica de 0,91 \pm 0,05 e -0,85 \pm 0,04, respetivamente).

Figura 20 - Eficiências de extração (*EE*, %, barras) dos enantiómeros *R* (■) e *S* (■) do ácido mandélico e excesso enantiomérico (*e.e.* %, ●) obtidos com SABs constituídos por LIQs + Na₂SO₄ + H₂O.

3.2.2.2. Efeito da introdução do ião cobre como seletor quiral

De forma a tentar melhorar os resultados obtidos anteriormente, aos sistemas compostos por [N₄₄₄₄][L-Pro], [N₄₄₄₄][L-Ala] e [N₄₄₄₄]₂[L-Glu] + Na₂SO₄ + H₂O foi adicionado CuSO₄ a 0,5 % (m/m). O potencial dos complexos de cobre na separação enantiomérica tem sido reportado em vários trabalhos [19, 39], e por isso a introdução do ião Cu²⁺ foi também contemplada neste estudo de otimização da partição dos enantiómeros do ádico mandélico. Além disso, a escolha do CuSO₄ deve-se ao facto dos SABs estudados neste subcapítulo serem constituídos por LIQ + Na₂SO₄, evitando-se assim a adição de outra espécie iónica que não o Cu²⁺. A Figura 21 apresenta os resultados da separação enantiomérica para os sistemas compostos por LIQ + Na₂SO₄ + H₂O e LIQ + Na₂SO₄ + CuSO₄ + H₂O. À exceção do sistema formado por [N₄₄₄₄][L-Pro] + Na₂SO₄ + CuSO₄ + H₂O, no qual se verifica uma separação mais eficiente dos enantiómeros do ácido mandélico (migrações preferências para fases opostas) entre as fases coexistentes (*EE*_R = 46,3 % ± 1,8 % e *EE*_S = 55,9 % ± 1,4 %), os dois isómeros de ácido mandélico migram preferencialmente para a fase rica em LIQ.

A capacidade destes sistemas para separar os enatiómeros do ácido mandélico segue a tendência seguinte, variando o *e.e.* % entre $12,4 \pm 2,0$ (%) e $4,4 \pm 1,2$ (%):

Glu] + CuSO₄ > [N₄₄₄][L-Ala] > [N₄₄₄][L-Pro]

De notar que os *e.e.*% apresentados como valores negativos representam apenas um enriquecimento da fase rica em LIQ no enantiómero *S*, de modo a facilitar a interpretação dos dados obtidos. O sistema formado por $[N_{4444}]_2[L-Glu] + Na_2SO_4 + H_2O$ continua a ser aquele que apresenta um maior *e.e.* % = 12,4 ± 2,0 (%) e uma maior discrepância entre as *EE* do enantiómero *R* e *S* (*EE*_R = 79,5 % ± 5,8 % e *EE*_S = 63,1 % ± 5,4 %), tal como descrito anteriormente. Observando a Figura 21, é possível concluir que a introdução de CuSO₄ nos sistemas constituídos por $[N_{4444}][L-Ala]$ e $[N_{4444}][L-Pro] + Na_2SO_4$ aumenta o *e.e.*% [de 4,5 ± 1,7 (%) para 6,4 ± 0,6 (%) e de 4,4 ± 1,2 (%) para -8,8 ± 1,0 (%)]. Assim, parece que começam a ocorrer interações mais favoráveis entre os LIQs e o ácido mandélico, pela presença do ião Cu²⁺, que levam à separação mais eficiente dos enantiómeros em estudo. No entanto, o oposto acontece no SAB constituído por $[N_{4444}]_2[L-Glu] + Na_2SO_4$, sendo que a introdução de CuSO₄ compromete a separação dos dois enantiómeros (12,4 ± 2,0 para -6,1 ± 0,1). Além disto, a adição de CuSO₄ promove interações mais favoráveis com o enantiómero *S*-ácido mandélico do que com o *R*-ácido mandélico nos sistemas contendo os LIQs $[N_{4444}][L-Pro]$ e $[N_{4444}]_2[L-Glu] +$ Na₂SO₄. Deste modo, parece que a estabilidade dos complexos Cu²⁺-LIQ-ácido mandélico ditam o comportamento da separação neste tipo de SABs, tal como verificado para a aplicação de complexos de ciclodextrina-cobre como seletores quirais noutros tipos de sistemas para separar os enantiómeros de ácido mandélico ou do ácido α -ciclohexilmandélico [19, 39].

Figura 21 - Eficiências de extração (*EE*, barras) dos enantiómeros *R* (□, □) e *S* (□, □) do ácido mandélico e excesso enantiomérico (*e.e.* %, ●) obtidos com SABs constituídos LIQ + Na₂SO₄ + H₂O na presença e ausência de CuSO₄.

3.2.2.3. Efeito do sal

O efeito do sal enquanto formador de fases foi avaliado na partição do *R*-ácido mandélico e *S*-ácido mandélico recorrendo a dois LIQs com elevada capacidade de formação de SABs e quiralidade diferente, [N₄₄₄₄][L-Phe] e [N₄₄₄₄][D-Phe]. O objetivo desta etapa de otimização consistiu no estudo do efeito do poder *salting-out* dos sais, bem como do efeito das espécies iónicas presentes em solução.

Na Figura 22 encontram-se expostos os resultados da separação enantiomérica para os sistemas formados pelos dois LIQs $[N_{4444}][L-Phe]$ e $[N_{4444}][D-Phe]$ e cinco sais diferentes, nomeadamente Na₂SO₄, Na₂CO₃, K₂CO₃, K₂HPO₄ e K₃PO₄. Os SABs contendo os dois sais orgânicos de citrato e tartarato, devido à sua menor região bifásica, apresentam-se monofásicos no ponto de mistura 25 % (m/m) de LIQ + 10 % (m/m) de sal selecionado. Como tal, foi adotado um ponto de mistura considerando a sua zona bifásica [25 % (m/m) de LIQ + 20 % (m/m) de K₃C₆H₅O₇/KNaC₄H₄O₆], mas devido a precipitação do ácido mandélico, estes não foram considerados neste estudo.

Tal como anteriormente descrito, o ácido mandélico migra preferencialmente para a fase de topo rica em LIQ. A capacidade demonstrada por estes SABs para separar estes dois enantiómeros varia de acordo com os valores de *e.e.* % de 1,6 ± 0,6 (%) para 9,2 ± 0,4 (%) e de 3,0 ± 0,7 (%) para 8,3 ± 0,1 (%) para os SABs contendo [N₄₄₄₄][L-Phe] e [N₄₄₄₄][D-Phe], respetivamente:

$[N_{4444}][L-Phe]: K_2HPO_4 > K_2CO_3 > K_3PO_4 > Na_2SO_4 > Na_2CO_3$ $[N_{4444}][D-Phe]: K_3PO_4 \approx K_2HPO_4 > K_2CO_3 > Na_2CO_3 \approx Na_2SO_4$

Numa primeira análise é possível verificar que sais contendo o ião K⁺ parecem ser mais eficientes do que os seus pares com Na⁺ na separação de misturas racémicas de ácido mandélico recorrendo a SABs constituídos por LIQs à base de [Phe]⁻. Pela sequência mencionada anteriormente, o sistema composto por [N₄₄₄₄][L-Phe] + K₂HPO₄ é aquele que apresenta um maior *e.e.* % = 9,2 ± 0,4 (%) e uma maior discrepância entre as *EE* dos dois enantiómeros (*EE*_R = 94,0 % ± 1,8 % e *EE*_S = 73,6 % ± 1,0%, respetivamente). Pode então concluir-se que por alteração do agente *salting-out* e consequente mudança das espécies iónicas em solução é possível maximizar os *e.e.* %.

Figura 22 - Eficiências de extração (*EE*, barras) dos enantiómero *R* (□, □) e *S* (□, □) do ácido mandélico e excesso enantiomérico (*e.e.* %, ●) obtidos com SABs constituídos [N4444][L-Phe]/[N4444][D-Phe] + sal.

A influência de diferentes sais em aplicações de resolução enantiomérica foi comprovada em SABs constituídos por outros LIQs e diferentes sais para resolução de racematos de fenilalanina [47]. Os autores indicam que o pH do sal em solução e a carga adquirida pelo aminoácido como a causa das diferenças nos valores de *e.e.* % [47]. Contudo, no presente trabalho, o ácido mandélico está maioritariamente na mesma forma carregada no intervalo de pH destes SABs com sais diferentes [81]. Por fim, a mudança de quiralidade do anião [Phe]⁻ não se revela seletiva para os enantiómeros do ácido mandélico (ver *seção 3.2.2.1.*).

3.2.2.4. Comparação com outros SABs

O melhor SAB testado neste trabalho para a enantioseparação do ácido mandélico foi o $[N_{4444}]_2[L-Glu] + Na_2SO_4$, tendo sido obtido um *e.e.* % de $12,4 \pm 2,0$ (%), correspondendo a uma razão entre as massas de *R*-ácido mandélico e *S*-ácido mandélico na fase de topo de $1,28 \pm 0,1$, num único passo de separação. Estes valores de seletividade (tanto de *e.e.* % como de razão das massas dos enantiómeros na fase rica em LIQ) são inferiores aos reportados na literatura para diversos tipos de SABs aplicados na resolução quiral de racematos de ácido mandélico e seus derivados (Tabela 10). Contudo, foram apenas estudados os efeitos da estrutura dos LIQs e dos agentes *salting-out*, bem como o efeito da presença do ião Cu²⁺. Otimizações adicionais ao nível do pH e da temperatura, bem como dos pontos de mistura adotados poderiam levar a melhores resultados, como observados noutros trabalhos [19, 21, 39].

O valor máximo de seletividade (*e.e.* % = 67,9 %) é obtido por Xing e co-autores [39] utilizando sistemas constituídos por surfatantes. A formação destes sistemas é induzida por aumentos da temperatura, consistindo num gasto energético superior. Além disso, neste trabalho é utilizado como seletor quiral o complexo Cu₂- β -CD, tal como no estudo realizado por Li e co-autores [19]. Nestes trabalhos é utilizado um componente extra como seletor quiral, um elemento que não é essencial à formação do SAB, o qual torna obrigatoriamente o processo mais complexo, mas que parece compensar em termos de seletividade.

Relativamente aos trabalhos de Tan e co-autores [21] e Li e co-autores [19], estes utilizam SABs compostos por polietilenoglicol (PEG) de elevado peso molecular (< 1500 g/mol) e sais, utilizando um quarto componente como seletor quiral. O uso de combinações de polímero-sal revelam não só uma diferença abrupta da polaridade das fases, dificultando a manipulação das interações mais propícias a existir

enantioseparação, como também uma separação de fases mais lenta, devido à elevada viscosidade da fase rica em polímero.

Chen e co-autores [48] reportam seletividades superiores às obtidas neste trabalho, utilizando também SABs constituídos por LIs não quirais e sais. No entanto, os LIs são pouco estáveis devido à presença do anião $[BF_4]^-$, sofrendo hidrólise em meio aquoso [50]. Os LIQs aqui utilizados, tal como demonstrado pelos seus valores de EC₅₀ para *Vibrio fischeri*, constituem uma alternativa mais adequada. À semelhança dos trabalhos descritos anteriormente, HP- β -CD foi aqui adicionado à mistura ternária como seletor quiral.

Tan e co-autores [106] obtiveram um valor de α de 1,27, e semelhante àquele que foi obtido neste estudo (1,28), sendo o único, entre os que são apresentados na Tabela 10, que segue uma abordagem semelhante à que se adotou neste trabalho. Por outras palavras, é o único que usa um dos constituintes do SAB simultaneamente como formador de fase e seletor quiral. Esta abordagem permite diminuir o número de compostos químicos no SAB, não sendo necessária a adição de um quarto componente à mistura bifásica para obter reconhecimento quiral. Este aspeto simplifica também etapas futuras de isolamento dos enantiómeros e reciclo dos constituintes de fases. Foi neste âmbito que Tan e coautores [106], utilizando um polímero termo-sensível, desenvolveram uma forma simples de o reutilizar por aumento da temperatura, deixando o ácido mandélico em solução.

Tabela 10 – Separação de misturas racémicas do ácido mandélico (ou derivados) utilizandoSABs. Os parâmetros de enantiosseletividade calculados correspondem ao excesso enantiomériconuma dada fase (e. e% = $\frac{[SouR] - [RouS]}{[S] + [R]} \times 100$) e ao fator de separação ($\alpha = \frac{[SouR]_{Fase1} / [SouR]_{Fase2}}{[RouS]_{Fase1} / [RouS]_{Fase2}}$).

		N/:		
SAB	Seletor quiral	Nistura racémica	Seletividade	Ref.
[N ₄₄₄₄] ₂ [L-Glu] + Na ₂ SO ₄	[N4444]2[L-Glu]	RS-AM	<i>e.e.</i> % = 12,4 % $\alpha = 1,28$	Este trabalho
Triton-114	Cu ₂ -β-CD	RS-AM	<i>e.e.</i> % = 67,9 %	[39]
Poly(MAH-β- CD-co-NIPAAm + dextrana T40	Poly(MAH-β- CD-co- NIPAAm	RS-AM	α = 1,27	[106]
$PEG + (NH_4)_2SO_4$	β-CD	RS-AM	<i>e.e.</i> % = 42,1 % $\alpha = 2,46$	[21]
PEG + Na ₃ C ₆ H ₅ O ₇	Cu ₂ -β-CD	α -ciclohexil- AM	α = 1,36	[19]
[C ₄ mim][BF ₄] + (NH ₄) ₂ SO ₄	HP-β-CD	α -ciclohexil- AM	α = 1,59	[48]

4. Considerações finais

4.1. Conclusões

Neste trabalho foram sintetizados LIQs com propriedades quirais, em particular o [N₄₄₄₄][L-Phe], [N₄₄₄₄][D-Phe], [N₄₄₄₄][L-Val], [N₄₄₄₄][L-Ala], [N₄₄₄₄][L-Pro], [N₄₄₄₄][L-Arg], [N₄₄₄₄]₂[L-Glu], [N₄₄₄₄]₂[L-Tar], [N₄₄₄₄]₂[D-Tar], [Col][L-Phe], [Col][D-Phe], [Col]₂[L-Glu]; com rendimentos superiores a 85 % e com um grau elevado de pureza, como mostram os RMN. Destes doze compostos apenas cinco são líquidos à temperatura ambiente, nomeadamente o [N₄₄₄₄][L-Val], [N₄₄₄₄][L-Pro], [Col][L-Phe], [Col][D-Phe] e o [Col]₂[L-Glu].

Após a síntese dos LIQs, as suas propriedades físico-químicas foram avaliadas. Determinou-se a temperatura de fusão e de decomposição para cada LIQ, bem como a viscosidade, a densidade, índice de refração e rotação ótica. As temperaturas de fusão dos LIQs sintetizados variam entre -46 e 123 °C, sendo o $[N_{4444}]_2[L-Glu]$, o composto que apresenta o maior valor e o $[N_{4444}][L-Val]$ o que apresenta o menor. De acordo com as temperaturas de decomposição obtidas, os LIQs sintetizados têm uma elevada estabilidade térmica, pelo menos até 160 °C. O [Col][D-Phe] é aquele que apresenta maior viscosidade e maior índice de refração, enquanto o $[Col]_2[L-Glu]$ é o que exibe uma densidade superior. Por outro lado, o $[N_{4444}][L-Val]$ tem valores inferiores de densidade e índice de refração e o $[N_{4444}][L-Pro]$ uma viscosidade menor. Relativamente à rotação ótica os valores variam entre -33,10 para o $[N_{4444}][L-Pro]$ e 9,35 obtido para o $[N_{4444}][L-Arg]$.

O impacto toxicológico destes LIQs na bactéria *Vibrio fischeri*, a diferentes tempos de exposição foi igualmente avaliado. Numa primeira análise foi possível classificar estes LIQs como sendo não tóxicos de acordo com as normas da legislação europeia (Categoria: *Acute* 3) [93]. Utilizando a classificação de Passino e Smith [89], e tendo em conta os valores de EC_{50} para 30 minutos de exposição, foi possível identificar parte dos LIQs sintetizados como "moderadamente tóxicos" e os restantes como "praticamente inofensivos". Para os 30 minutos de exposição, o $[N_{4444}][L-Phe]$ e o $[N_{4444}]_2[L-Tar]$ foram identificados como os LIQs mais e menos tóxicos, respetivamente.

Neste estudo, foram também determinados novos diagramas de fase para os SABs constituídos por LIQs + Na₂SO₄ + H₂O, bem como constituídos por [N₄₄₄₄][L-Phe] e [N₄₄₄₄][D-Phe], e diferentes sais. A tendência observada para os diagramas constituídos por LIQ + Na₂SO₄ + H₂O está de acordo com a hidrofilicidade dos aminoácidos que dão origem aos LIQs. Por outro lado, verificou-se que a tendência obtida nos SABs compostos

por $[N_{4444}][L-Phe]$ e $[N_{4444}][D-Phe]$ + sal é em geral concordante com a série de Hofmeister, embora com algumas exceções, nomeadamente o comportamento de Na₂SO₄ e K₃C₆H₅O₇.

Após a determinação das curvas binodais, os SABs desenvolvidos foram aplicados na separação dos enantiómeros R e S do ácido mandélico. Três abordagens foram consideradas no decorrer destes estudos de otimização da partição dos enantiómeros R-ácido mandélico e S-ácido mandélico. Inicialmente, estudou-se o efeito do anião do LIQ onde o melhor resultado foi obtido para o sistema composto por $[N_{4444}]_2[L-Glu] + Na_2SO_4 + H_2O$, com um *e.e.* % de 12,4 ± 2,0 (%), o melhor resultado obtido neste trabalho. No geral, o estudo do efeito do ião cobre como seletor quiral, através da adição de CuSO₄ a 0,5 % (m/m) nos SABs constituídos por LIQ + Na₂SO₄ revelou-se vantajoso. Por fim, foi testado o efeito do sal através do uso de SABs formados por $[N_{4444}][L-Phe]$ e $[N_{4444}][D-Phe]$ e diversos sais, verificando-se que os resultados obtidos indicam que é possível melhorar o *e.e.*% de 1,6 ± 0,6 (%) para 9,2 ± 0,4 (%), pela variação do sal de Na₂CO₃ para K₂HPO₄.

4.2. Perspetivas futuras

Este trabalho inclui uma série de estudos de separação de enantiómeros de ácido mandélico que são preliminares e necessitam por isso de otimização. De forma a ampliar o estudo do efeito da quiralidade do LI na separação dos enantiómeros do ácido mandélico, seria relevante efetuar a síntese dos outros isómeros dos LIQs já sintetizados, nomeadamente [N₄₄₄₄]₂[D-Glu], [N₄₄₄₄][D-Val], [N₄₄₄₄][D-Pro] e [N₄₄₄₄][D-Ala], o que permitiria uma comparação mais alargada da capacidade de separação dos SABs com LIQs aqui desenvolvidos.

Apesar dos LIQs derivados do catião colínio necessitarem de sais com forte poder *salting-out* para a formação de SABs, seria importante aplicar os que já foram sintetizados e até mesmo sintetizar outros com diferentes aminoácidos em SABs. Utilizando esta família de LIQ seria possível utilizar outro tipo de componentes para a formação de SAB como polímeros, melhorando o caráter biocompatível da tecnologia desenvolvida nesta tese [107]. Para além dos LIQs mencionados anteriormente, a síntese de outras famílias, nomeadamente fosfónio e imidazólio, com outros aminoácidos também poderia ser realizada objetivando uma melhor compreensão dos efeitos do catião e do anião na extração do ácido mandélico. Outra abordagem possível é a utilização de AA como catião

quiral, tendo em conta a sua capacidade de poder ser catião ou anião, podendo ir até mais longe e estudar LIQs com quiralidade dupla, ou seja, quiralidade no anião e no catião. Seria também importante alargar a aplicação destes SAB a outras moléculas com maior destaque, valor acrescentado e interesse na indústria farmacêutica.

Em relação à etapa de isolamento e reciclo dos componentes de fase, apesar de estar fora do objetivo da presente tese, é um passo futuro necessário para apoiar o interesse industrial e ambiental da tecnologia desenvolvida [108]. Várias técnicas poderiam ser utilizadas, sendo que a cristalização parece a mais adequada, podendo depois as fases serem reaproveitadas num novo SAB. Sendo a cristalização também uma técnica de resolução de racematos limitada pela sua elevada especificidade, os SABs aqui desenvolvidos poderiam ser aplicados antes do processo de cristalização como um prépasso de enriquecimento no enantiómero de interesse, neste caso do *R*-AM.

Por fim, e uma vez que o papel dos LIQs como seletores quirais é pouco compreendido, seria importante fazer estudos moleculares de modo a perceber quais as interações mais favoráveis para uma resolução quiral mais eficiente. Técnicas como RMN 1D e 2D foram já utilizadas por Wu e co-autores para estudar o mecanismo de interação entre os enantiómeros da fenilalanina e o seletor quiral (LI + Cu²⁺) em SABs [47].

5. Referências

- Drayer, D.E., *The early history of stereochemistry*; Drug Stereochemistry: 2012;
 p. 1.
- Nguyen, L.A., He, H., Pham-Huy, C., *Chiral drugs: an overview*; International Journal of Biomedical Science: 2006; 2(2), p. 85-100.
- Wainer, I., Drug stereochemistry: analytical methods and pharmacology; CRC Press:1993; 18.
- Rentsch, K.M., *The importance of stereoselective determination of drugs in the clinical laboratory*; Journal of Biochemical and Biophysical Methods: 2002; 54(1), p. 1-9.
- Caner, H., Groner, E., Levy, L., Agranat, I., *Trends in the development of chiral drugs;* Drug Discovery Today: 2004; 9(3), p. 105-110.
- 6. Xie, R., Chu, L.-Y., Deng, J.-G., *Membranes and membrane processes for chiral resolution*; Chemical Society Reviews: 2008; **37**(6), p. 1243-1263.
- Development of new stereoisomeric drugs: 2014; Available from: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidanc es/ucm122883.htm.
- 8. European medicines agency veterinary medicines and inspections, guideline on test procedures and acceptance criteria for new veterenary drug substances and new medicinal products chemical substances: 2005.
- Lorenz, H., Seidel-Morgenstern, A., *Processes to separate enantiomers*; Angewandte Chemie International Edition: 2014; 53(5), p. 1218-1250.
- Liu, J.-T., Liu, R.H., Enantiomeric composition of abused amine drugs: chromatographic methods of analysis and data interpretation; Journal of Biochemical and Biophysical Methods: 2002; 54(1-3), p. 115-146.
- Schuur, B., Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., Heeres, H. J., Feringa, B. L., *Chiral separation by enantioselective liquid–liquid extraction*; Organic & Biomolecular Chemistry: 2011; 9(1): p, 36-51.
- Breuer, M., Ditrich, K., Habicher, T., Hauer, B., Kesseler, M., Stürmer, R., Zelinski, T., *Industrial methods for the production of optically active intermediates*; Angewandte Chemie International Edition: 200; 43(7), p. 788-824.
- Mughal, R., Davey, R., Blagden, N., Application of crystallization inhibitors to chiral separations. 1. Design of additives to discriminate between the racemic compound and the pure enantiomer of mandelic acid; Crystal Growth & Design: 2007; 7(2), p. 218-224.

- Clark, J. D., Han, B., Bhown, A. S., Wickramasinghe, S. R., *Amino acid resolution using supported liquid membranes*; Separation and Purification Technology: 2005; 42(3), p. 201-211.
- Lorenz, H., Perlberg, A., Sapoundjiev, D., Elsner, M. P., Seidel-Morgenstern, A., *Crystallization of enantiomers*; Chemical Engineering and Processing: Process Intensification: 2006; 45(10), p. 863-873.
- Harrington, P. J., Lodewijk. E., *Twenty years of naproxen technology*; Organic Process Research & Development: 1997; 1(1), p. 72-76.
- Murakami, H., From racemates to single enantiomers-chiral synthetic drugs over the last 20 years, in novel optical resolution technologies; Springer: 2006; p. 273-299.
- Lämmerhofer, M., Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases; Journal of Chromatography A: 2010; **1217**(6), p. 814-856.
- Li, L.-H., Li, F.-F., Chiral separation of α-cyclohexyl-mandelic-acid by aqueous two phase system combined with Cu 2-β-cyclodextrin complex; Chemical Engineering Journal: 2012; 211, p. 240-245.
- Passos, H., Sousa, A. C. A., Pastorinho, M. R., Nogueira, A. J. A., Rebelo, L. P. N., Coutinho, J. A. P., Freire, M. G., *Ionic-liquid-based aqueous biphasic systems for improved detection of bisphenol A in human fluids*; Analytical Methods: 2012; 4(9), p. 2664-2667.
- Tan, L., Long, Y., Jiao, F., Chen, X., Enantioselective extraction of mandelic acid enantiomers by aqueous two-phase systems of polyethylene glycol and ammonium sulfate containing β-cyclodextrin as chiral selector; Journal of the Iranian Chemical Society: 2011; 8(4), p. 889-896.
- 22. Albertsson, P.-A., Partition of cell particles and macromolecules. Separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology; 1986.
- Tjerneld, F., Persson, I., Albertsson, P.-Å., Hahn-Hägerdal, B., Enzymatic hydrolysis of cellulose in aqueous two-phase systems. I. partition of cellulases from Trichoderma reesei; Biotechnology and bioengineering: 1985; 27(7), p. 1036-1043.

- 24. Bridges, N. J., Gutowski, K. E., Rogers, R. D., *Investigation of aqueous biphasic* systems formed from solutions of chaotropic salts with kosmotropic salts (salt-salt ABS); Green Chemistry: 2007; **9**(2), p. 177-183.
- Freire, M. G., Cláudio, A. F. M., Araújo, J. M. M., Coutinho, J. A. P., Marrucho, I. M., Lopes, J. N. C., Rebelo, L. P. N., *Aqueous biphasic systems: a boost brought about by using ionic liquids*; Chemical Society Reviews: 2012; **41**(14), p. 4966-4995.
- Rosa, P. A. J., Ferreira, I. F., Azevedo, A. M., Aires-Barros, M. R., Aqueous twophase systems: a viable platform in the manufacturing of biopharmaceuticals; Journal of Chromatography A: 2010; 1217(16), p. 2296-2305.
- Cláudio, A. F. M., Freire, M. G., Freire, C. S. R, Silvestre, A. J. D., Coutinho, J. A. P., *Extraction of vanillin using ionic-liquid-based aqueous two-phase systems*; Separation and Purification Technology: 2010; **75**(1), p. 39-47.
- e Silva, F. A., Sintra, T. E., Ventura, S. P. M., Coutinho, J. A. P., *Recovery of paracetamol from pharmaceutical wastes*; Separation and Purification Technology: 2014; **122**, p. 315-322.
- Pereira, J. F. B., Lima, A. S., Freire, M. G., Coutinho, J. A. P., *Ionic liquids as adjuvants for the tailored extraction of biomolecules in aqueous biphasic systems*; Green Chemistry: 2010; **12**(9), p. 1661-1669.
- Yue, Y., Jiang, X.-Y., Yu, J.-G., Tang, K.-W., Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems; Chemical Papers: 2014; 68(4), p. 465-471.
- 31. Wu, D., Zhou, Y., Cai, P., Shen, S., Pan, Y., Specific cooperative effect for the enantiomeric separation of amino acids using aqueous two-phase systems with task-specific ionic liquids; Journal of Chromatography A: 2015; **1395**, p. 65-72.
- 32. Raja, S., Murty, V. R., Thivaharan, V., Rajasekar, V., Ramesh, V., *Aqueous two* phase systems for the recovery of biomolecules–a review; Science and Technology: 2011; **1**(1), p. 7-16.
- Chen, X., Liu, L., Jiao, F., Wang, Z., *Extraction of phenylalanine enantiomers by* aqueous two phase systems containing combinatorial chiral selector; Chinese Journal of Chemistry: 2012; 30(4), p. 965-969.
- Chen, X., Dong, Q.-L., Yu, J.-G., Jiao, F.-P., *Extraction of Tryptophan* enantiomers by aqueous two-phase systems of ethanol and (NH₄)₂SO₄; Journal of Chemical Technology and Biotechnology: 2013; 88(8), p. 1545-1550.

- Arai, T., Kuroda, H., Distribution behavior of some drug enantiomers in an aqueous two-phase system using counter-current extraction with protein; Chromatographia: 1991; 32(1-2), p. 56-60.
- 36. Wang, J., Chen, X., Jiao, F.-P., Enantioseparation of phenylsuccinic acid enantiomers based on aqueous two-phase system with ethanol/ammonium sulfate: phase diagrams optimization and partitioning experiments; Journal of Inclusion Phenomena and Macrocyclic Chemistry: 2015; 81(3-4), p. 475-484.
- Ni, Y., Zhou, J., Sun, Z., Production of a key chiral intermediate of Betahistine with a newly isolated Kluyveromyces sp. in an aqueous two-phase system; Process Biochemistry: 2012; 47(7), p. 1042-1048.
- Shinomiya, K., Kabasawa, Y., Ito, Y., Enantiomeric separation of commercial D, L-kynurenine with an aqueous two-phase solvent system by cross-axis coil planet centrifuge; Journal of Liquid Chromatography & Related Technologies: 1998; 21(1-2), p. 135-141.
- Xing, J. M., Li, F. F., *Chiral separation of mandelic acid by temperature-induced aqueous two-phase system*; Journal of Chemical Technology and Biotechnology: 2012; 87(3), p. 346-350.
- 40. Wang, J., Liu, Q., Rong, L., Yang, H., Jiao, F.-P., Chen, X., Enantioselective extraction of phenylsuccinic acid in aqueous two-phase systems based on acetone and β-cyclodextrin derivative: modeling and optimization through response surface methodology; Journal of Chromatography A: 2016; 1467, p. 490-496.
- Wang, J., Yang, H., Yu, J., Chen, X., Jiao, F.-P., Macrocyclic β-cyclodextrin derivative-based aqueous-two phase systems: phase behaviors and applications in enantioseparation; Chemical Engineering Science: 2016; 143, p. 1-11.
- Gutowski, K. E., Broker, G. A., Willauer, H. D., Huddleston, J. G., Swatloski, R. P., Holbrey, J. D., Rogers, R. D., *Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations*; Journal of the American Chemical Society: 2003; 125(22), p. 6632-6633.
- 43. Zafarani-Moattar, M.T., Hamzehzadeh, S., Nasiri, S., A new aqueous biphasic system containing polypropylene glycol and a water-miscible ionic liquid; Biotechnology Progress: 2012; 28(1), p. 146-156.

- Mondal, D., Sharma, M., Quental, M. V., Tavares, A. P. M., Prasad, K., Freire, M. G., *Suitability of bio-based ionic liquids for the extraction and purification of IgG antibodies*; Green Chemistry: 2016; 18(22), p. 6071-6081.
- 45. Huang, D. J., Huang, D. C., *The Research for the extraction of yeast's nucleic acid with [bmim]BF*₄-H₂O-KH₂PO₄ *ionic liquid aqueous two-phase system*; in Advanced Materials Research; Trans Tech Publications: 2012.
- 46. Zawadzki, M., e Silva, F. A., Domańska, U., Coutinho, J. A. P., Ventura, S. P. M., *Recovery of an antidepressant from pharmaceutical wastes using ionic liquidbased aqueous biphasic systems*; Green Chemistry: 2016; **18**, p. 3527-3536.
- Wu, H., Yao. S., Qian, G., Yao, T, Song, H., A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids; Journal of Chromatography A: 2015; 1418, p. 150-157.
- 48. Chen, L.-L., Li, F.-F., Tan, Z.-J., *Chiral separation of α-cyclohexylmandelic acid* enantiomers using ionic liquid/salt aqueous two-phase system; Chemical Papers: 2015; 69(11), p. 1465-1472.
- 49. Składanowski, A. C., Stepnowski, P., Kleszczyński, K., Dmochowska, B., *AMP* deaminase in vitro inhibition by xenobiotics: a potential molecular method for risk assessment of synthetic nitro-and polycyclic musks, imidazolium ionic liquids and N-glucopyranosyl ammonium salts; Environmental Toxicology and Pharmacology: 2005; **19**(2), p. 291-296.
- Freire, M. G., Neves, C. M. S. S., Marrucho, I. M., Coutinho, J. A. P., Fernandes, A. M., *Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids*; The Journal of Physical Chemistry A: 2009; 114(11), p. 3744-3749.
- Steudte, S., Neumann, J., Bottin-Weber, U., Diedenhofen, M., Arning, J., Stepnowski, P., Stolte, S., *Hydrolysis study of fluoroorganic and cyano-based ionic liquid anions–consequences for operational safety and environmental stability*; Green Chemistry: 2012; 14(9), p. 2474-2483.
- 52. Freemantle, M., *Designer solvents: ionic liquids may boost clean technology development*; Chemical & Engineering News: 1998; **76**(13), p. 32-37.
- 53. Payagala, T., Armstrong, D. W., *Chiral ionic liquids: a compendium of syntheses and applications (2005–2012)*; Chirality: 2012; **24**(1), p. 17.

- Yu, S., Lindeman, S., Tran, C. D., *Chiral ionic liquids: synthesis, properties, and enantiomeric recognition*; The Journal of Organic Chemistry: 2008; **73**(7), p. 2576-2591.
- 55. Walden, P., Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzenen Salze; 1914; **8**(6), p. 405-422.
- 56. Plechkova, N. V., Seddon, K. R., *Applications of ionic liquids in the chemical industry*; Chemical Society Reviews: 2008; **37**(1), p. 123-150.
- Wilkes, J. S., Zaworotko, M. J., *Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids*; Journal of the Chemical Society, Chemical Communications: 1992(13), p. 965-967.
- Cammarata, L., Kazarian, S. G., Salter, P. A., Welton, T., *Molecular states of water in room temperature ionic liquids*; Physical Chemistry Chemical Physics: 2001; 3(23), p. 5192-5200.
- 59. Holbrey, J. D., Seddon, K. R., The phase behaviour of 1-alkyl-3methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals; Journal of the Chemical Society, Dalton Transactions: 1999(13), p. 2133-2140.
- Kurnia, K. A., Sintra, T. E., Neves, C. M., Shimizu, K, Lopes, C., J. N., Gonçalves, F., Ventura, S. P. M., Freire, M. G., Santos, L.M., Coutinho, J. A. P., *The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities*; Physical Chemistry Chemical Physics: 2014; 16(37), p. 19952-63.
- 61. Baudequin, C., Brégeon, D., Levillain, J., Guillen, F., Plaquevent, J.-C, Gaumonte, A.-C., *Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis*; Tetrahedron: Asymmetry: 2005; **16**(24), p. 3921-3945.
- Allen, C. R., Richard, P. L., Ward, A. J., van de Water, L. G. A., Masters, A. F., Maschmeyer, T., *Facile synthesis of ionic liquids possessing chiral carboxylates*; Tetrahedron Letters: 2006; 47(41), p. 7367-7370.
- 63. Ohno, H.,Fukumoto, K., *Amino acid ionic liquids*; Accounts of Chemical Research: 2007; **40**(11), p. 1122-1129.
- Fukumoto, K., Yoshizawa, M., Ohno, H., *Room temperature ionic liquids from 20 natural amino acids*; Journal of the American Chemical Society: 2005; **127**(8), p. 2398-2399.

- Baudequin, C., Baudoux, J., Levillain, J., Cahard, D., Gaumonte, A.-C., Plaquevent, J. C., *Ionic liquids and chirality: opportunities and challenges*; Tetrahedron: Asymmetry: 2003; 14(20), p. 3081-3093.
- Vasiloiu, M., Cervenka, I., Gaertner, P., Weil, M., Schröder, C., Bica, K., Amino alcohol-derived chiral ionic liquids: structural investigations toward chiral recognition; Tetrahedron: Asymmetry: 2015; 26(18), p. 1069-1082.
- 67. Machado, M. Y., Dorta, R., *Synthesis and characterization of chiral imidazolium salts*; Synthesis: 2005; **2005**(15), p. 2473-2475.
- Earle, M. J., McCormac, P. B., Seddon, K. R., Diels–Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate–diethyl ether mixtures; Green Chemistry: 1999; 1(1), p. 23-25.
- 69. Wasserscheid, P., Bösmann, A., Bolm, C., *Synthesis and properties of ionic liquids derived from the 'chiral pool'*; Chemical Communications: 2002; (3), p. 200-201.
- 70. Tao, G.-H., He, L., Sun, N., Kou, Y., *New generation ionic liquids: cations derived from amino acids*; Chemical Communications: 2005; (28), p. 3562-3564.
- Bao, W., Wang, Z., Li, Y., Synthesis of chiral ionic liquids from natural amino acids; The Journal of Organic Chemistry: 2003; 68(2), p. 591-593.
- 72. Tran, C. D., Oliveira, D., Yu, S., *Chiral ionic liquid that functions as both solvent and chiral selector for the determination of enantiomeric compositions of pharmaceutical products*; Analytical Chemistry: 2006; **78**(4), p. 1349-1356.
- 73. Ni, B., Zhang, Q., Dhungana, K., Headley, A. D., *Ionic liquid-supported (ILS)(S)pyrrolidine sulfonamide, a recyclable organocatalyst for the highly enantioselective Michael addition to nitroolefins*; Organic Letters: 2009; **11**(4), p. 1037-1040.
- 74. Van Buu, O. N., Aupoix, A., Hong, N., D. T., Vo-Thanh, G., Chiral ionic liquids derived from isosorbide: synthesis, properties and applications in asymmetric synthesis; New Journal of Chemistry: 2009; 33(10), p. 2060-2072.
- Whitesell, J. K., Reynolds, D., *Resolution of chiral alcohols with mandelic acid*; The Journal of Organic Chemistry: 1983; 48(20), p. 3548-3551.
- De Santis, S., Masci, G., Casciotta, F., Caminiti, R., Scarpellini, E., Campetella, M., Gontrani, L., *Cholinium-amino acid based ionic liquids: a new method of synthesis and physico-chemical characterization*; Physical Chemistry Chemical Physics: 2015; 17(32), p. 20687-20698.

- Willauer, H. D., Huddleston, J. G., Rogers, R. D., Solute partitioning in aqueous biphasic systems composed of polyethylene glycol and salt: the partitioning of small neutral organic species; Industrial & Engineering Chemistry Research: 2002; 41(7), p. 1892-1904.
- Galaev, I. Y., Mattiasson, B., *Thermoreactive water-soluble polymers, nonionic surfactants, and hydrogels as reagents in biotechnology*; Enzyme and Microbial Technology: 1993; 15(5), p. 354-366.
- Lee, S. Y., Vicente, F. A., e Silva, F. A., Sintra, T. E., Taha, M., Khoiroh, I., Coutinho, J. A. P., Show, P. L., Ventura, S. P. M., *Evaluating self-buffering ionic liquids for biotechnological applications*; ACS Sustainable Chemistry & Engineering: 2015; 3(12), p. 3420-3428.
- Merchuk, J. C., Andrews, B. A., Asenjo, J. A., *Aqueous two-phase systems for protein separation: studies on phase inversion*; Journal of Chromatography B: Biomedical Sciences and Applications: 1998; **711**(1–2), p. 285-293.
- 81. *ChemSpider The Free Chemical Database*.; Available from: http://www.chemspider.com/.
- 82. Rappoport, Z., Frankel, M., *CRC handbook of tables for organic compound identification*; CRC Press: 1967.
- 83. Lee, S. Y., Vicente, F. A., Coutinho, J. A. P., Khoiroh, I., Show, P. L. Ventura, S.
 P. M., *Densities, Viscosities, and Refractive Indexes of Good's Buffer Ionic Liquids*; Journal of Chemical & Engineering Data: 2016; 61(7), p. 2260-2268.
- 84. Martins, M. A. R, Neves, C. M. S. S., Kurnia, K. A., Carvalho, P. J., Rocha, M. A. A., Santos, L. M. N. B. F., Pinho, S. P., Freire, M. G., *Densities, viscosities and derived thermophysical properties of water-saturated imidazolium-based ionic liquids*; Fluid Phase Equilibria: 2016; 407, p. 188-196.
- 85. Vieira, N. S. M., Luís, A., Reis, P. M., Carvalho, P. J., Lopes-da-Silva, J. A., Esperança, J. M. S. S., Araújo, J. M. M, Rebelo, L. P. N., Freire, M. G., Pereiro, A. B., *Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids*; The Journal of Chemical Thermodynamics: 2016; 97, p. 354-361.
- Zhang, S., Sun, N., He, X., Lu, X., Zhang, X., *Physical Properties of Ionic Liquids: Database and Evaluation*; Journal of Physical and Chemical Reference Data: 2006; **35**(4), p. 1475-1517.

- Seki, S., Tsuzuki, S., Hayamizu, K., Umebayashi, Y., Serizawa, N., Takei, K., Miyashiro, H., *Comprehensive Refractive Index Property for Room-Temperature Ionic Liquids*; Journal of Chemical & Engineering Data: 2012; 57(8), p. 2211-2216.
- 88. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/dl-Mandelic_acid#section=Experimental-Properties.
- Ventura, S. P. M., e Silva, F. A., Gonçalves, A. M. M., Pereira, J. L., Gonçalves,
 F., Coutinho, J. A. P., *Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria*; Ecotoxicology and Environmental Safety: 2014; 102, p. 48-54.
- 90. Ventura, S. P. M., Marques, C. S., Rosatella, A. A., Afonso, C. A. M., Gonçalves,
 F., Coutinho, J. A. P., *Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria*; Ecotoxicology and Environmental Safety: 2012;
 76, p. 162-168.
- 91. Hernández-Fernández, F. J., Bayo, J., de los Ríos, A. P., Vicente, M. A., Bernal, F. J., Quesada-Medina, J., *Discovering less toxic ionic liquids by using the Microtox® toxicity test*; Ecotoxicology and Environmental Safety: 2015; 116, p. 29-33.
- 92. Parvez, S., Venkataraman, C., Mukherji, S., *A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals*; Environment International: 2006; **32**(2), p. 265-268.
- 93. *Hazardous to the Aquatic Environment*. Available from: https://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev01/Englis h/04e_part4.pdf.
- 94. Ventura, S. P. M., Gonçalves, A M. M., Sintra, T. E., Pereira, J. L, Gonçalves, L. F., Coutinho, J, A. P., *Designing ionic liquids: the chemical structure role in the toxicity*; Ecotoxicology: 2013; 22(1), p. 1-12.
- Hou, X.-D., Liu, Q.-P., Smith, T. J., Li, N., Zong, M.-H., Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids; PLOS One: 2013; 8(3), p. 59145.
- 96. Shahriari, S., Neves, C. M. S. S., Freire, M. G., Coutinho, J. A. P., Role of the Hofmeister Series in the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems; The Journal of Physical Chemistry B: 2012; 116(24), p. 7252-7258.

- 97. Passos, H., Ferreira, A. R., Claúdio, A. F. M., Coutinho, J. A. P., Freire, M. G., Characterization of aqueous biphasic systems composed of ionic liquids and a citrate-based biodegradable salt; Biochemical Engineering Journal: 2012; 67, p. 68-76.
- Marques, C. F. C., Mourão, T., Neves, C. M. S. S., Lima, A. S., Boal-Palheiros, I., Coutinho, J. A. P., Freire, M. G., *Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline*; Biotechnology Progress: 2013; 29(3), p. 645-654.
- 99. Ventura, S. P. M., Sousa, S. G., Serafim, L. S., Lima, A. S., Freire, M. G., Coutinho, J. A. P., *Ionic liquid based aqueous biphasic systems with controlled pH: the ionic liquid cation effect*; Journal of Chemical & Engineering Data: 2011; 56(11), p. 4253-4260.
- Hofmeister, F., On the effect of salts. Second communication; Archiv for Experimentelle Pathologie und Pharmakologie: 1888; 24, p. 247-260.
- Mourão, T., Claúdio, A. F. M., Boal-Palheiros, I., Freire, M. G., Coutinho, J. A.
 P., Evaluation of the impact of phosphate salts on the formation of ionic-liquidbased aqueous biphasic systems; The Journal of Chemical Thermodynamics: 2012; 54, p. 398-405.
- 102. Kurnia, K. A., Freire, M. G., Coutinho, J. A. P., *Effect of Polyvalent Ions in the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems*; The Journal of Physical Chemistry B: 2014; **118**(1), p. 297-308.
- 103. Bai, L.-H., Chen, X.-X., Huang, Y.-P., Zhang, Q.-W., Liu, Z.-S., Chiral separation of racemic mandelic acids by use of an ionic liquid-mediated imprinted monolith with a metal ion as self-assembly pivot; Analytical and Bioanalytical Chemistry: 2013; 405(27), p. 8935-8943.
- 104. Yamashita, H., Kayada, S., Maekawa, T., Optical resolution of amino acids and mandelic acid by complex formation with copper (II) ion; Bulletin of the Chemical Society of Japan: 1993; 66(9), p. 2764-2766.
- 105. Tsarpali, V., Dailianis, S., *Toxicity of two imidazolium ionic liquids, [bmim][BF4]* and [omim][BF4], to standard aquatic test organisms: role of acetone in the induced toxicity; Ecotoxicology and Environmental Safety: 2015; **117**, p. 62-71.
- 106. Tan, Z., Li, F., Zhao, C., Teng, Y., Liu, Y., Chiral separation of mandelic acid enantiomers using an aqueous two-phase system based on a thermo-sensitive

polymer and dextran; Separation and Purification Technology: 2017; **172**, p. 382-387.

- 107. Pereira, J. F. B., Deutschmann, R., Rogers, R. D., On the hunt for more benign and biocompatible ABS, in ionic-liquid-based aqueous biphasic systems: fundamentals and applications; Springer Berlin Heidelberg: Berlin, Heidelberg, 2016; p. 247-284.
- 108. Ventura, S. P. M., Coutinho, J. A. P, Toward the recovery and reuse of the ABS phase-forming components, in ionic-liquid-based aqueous biphasic systems: fundamentals and applications; Springer Berlin Heidelberg: Berlin, Heidelberg, 2016; p. 285-315.
Anexo A – curvas de calibração HPLC

A. Curvas de calibração para a quantificação dos enantiómeros do ácido mandélico

Figura A 1 - Curva de calibração para a concentração do enantiómero R de ácido mandélico ($\lambda = 270$ nm).

Figura A 2 - Curva de calibração para a concentração do enantiómero S de ácido mandélico ($\lambda = 270$ nm).

Anexo B – caracterização dos LIQs

B. Caracterização dos LIQs

B1. 1 H e 13 C RMN

[N₄₄₄₄][L-Phe]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 0,95 (t, $J_{HH} = 7,3$ Hz, 12H, NCH₂CH₂CH₂CH₃); 1,27 – 1,45 (sext, $J_{HH} = 7,3$ Hz, 8H, NCH₂CH₂CH₂CH₃); 1,55 – 1,72 (m, 8H, NCH₂CH₂CH₂CH₃); 2,87 (dd, $J_{H1H\beta} = 7,3$ Hz, $J_{H\alpha H\beta} = 13,5$ Hz, 1H, C₆H₅-CH(β)); 3,01 (dd, $J_{H1H\alpha} = 5,6$ Hz, $J_{H\alpha H\beta} = 13,5$ Hz, 1H, C₆H₅-CH(α)); 3,08 – 3,29 (m, 8H, NCH₂CH₂CH₂CH₃); 3,53 (dd, $J_{H1H\alpha} = 5,6$ Hz, $J_{H1H\beta} = 7,3$ Hz, 1H, O₂C-CH); 7,23 – 7,45 (m, 5H, C_6H_5 -CH₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 12,77; 19,09; 23,06; 40,39; 57,28; 58,03; 126,65; 128,56; 129,38; 137,99; 181,79.

Figura B 1 - Espectro de RMN de ¹H do [N₄₄₄₄][L-Phe].

Figura B 2 - Espectro de RMN de ¹³C do [N₄₄₄₄][L-Phe].

[N₄₄₄₄][**D-Phe**]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 0,95 (t, $J_{HH} = 7,3$ Hz, 12H, NCH₂CH₂CH₂CH₃); 11,28 – 1,43 (sext, $J_{HH} = 7,3$ Hz, 8H, NCH₂CH₂CH₂CH₂CH₃); 1,55 – 1,71 (m, 8H, NCH₂CH₂CH₂CH₃); 2,87 (dd, $J_{H1H\beta} = 7,4$ Hz, $J_{H\alpha H\beta} = 13,5$ Hz, 1H, C₆H₅-*CH(β)*); 3,02 (dd, $J_{H1H\alpha} = 5,5$ Hz, $J_{H\alpha H\beta} = 13,5$ Hz, 1H, C₆H₅-*CH(α)*); 3,09 – 3,25 (m, 8H, NCH₂CH₂CH₂CH₃); 3,53 (dd, $J_{H1H\alpha} = 5,5$ Hz, $J_{H1H\beta} = 7,3$ Hz, 1H, O₂C-*CH*); 7,25 – 7,43 (m, 5H, C_6H_5 -CH₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 12,79; 19,09; 23,05; 40,29; 57,24; 58,02; 126,68; 128,59; 129,39; 137,91; 181,52.

Figura B 3 - Espectro de RMN de ¹H do [N₄₄₄₄][D-Phe].

Figura B 4 - Espectro de RMN de ¹³C do [N₄₄₄₄][D-Phe].

[**N**₄₄₄₄][**L**-**Val**]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 0,86 (d, J_{HH} = 6,9 Hz, 3H, $CH_3(\beta)$ -CH); 0,90 - 1,02 (m, 15H, $CH_3(\alpha)$ -CH e NCH₂CH₂CH₂CH₂CH₃); 1,36 (sext, J_{HH} = 7,3 Hz, 8H, NCH₂CH₂CH₂CH₂CH₃); 1,58 - 1,73 (m, 8H, NCH₂CH₂CH₂CH₃); 1,86 - 1,99 (m, 1H, (CH₃)₂-CH-C-); 3,05 (d, J_{HH} = 5,2 Hz, 1H, -O₂C-CH); 3,14 - 3,29 (m, 8H, NCH₂CH₂CH₂CH₂CH₃). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 12,80; 16,62; 19,02; 19,10; 23,06; 31,57; 58,04; 61,72; 182,33.

Figura B 5 - Espectro de RMN de ¹H do [N₄₄₄₄][L-Val].

Figura B 6 - Espectro de RMN de ¹³C do [N4444][L-Val].

[N₄₄₄₄][L-Ala]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 0,82 (t, $J_{HH} = 7,3$ Hz, 12H, NCH₂CH₂CH₂CH₂CH₃); 1,10 (d, $J_{HH} = 7,1$ Hz, 3H, NH₂CH-CH₃); 1,15 – 1,33 (m, 8H, NCH₂CH₂CH₂CH₃); 1,42 – 1,63 (m, 8H, NCH₂CH₂CH₂CH₃); 2,99 – 3,13 (m, 8H, NCH₂CH₂CH₂CH₂CH₃); 3,18 (q, $J_{HH} = 7,1$ Hz, 1H, O₂C-CH). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 12,84; 19,10; 20,10; 23,06; 51,33; 58,02; 183,82.

Figura B 7 - Espectro de RMN de ¹H do [N₄₄₄][L-Ala].

Figura B 8 - Espectro de RMN de ¹³C do [N4444][L-Ala].

[**N**₄₄₄₄][**L**-**Pro**]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 0,80 (t, $J_{HH} = 7,3$ Hz, 12H, NCH₂CH₂CH₂CH₂CH₃); 1,12 – 1,31 (sext, $J_{HH} = 7,2$ Hz, 8H, NCH₂CH₂CH₂CH₂CH₃); 1,39 – 1,73 (m, 11H, *CH*₂*CH*HCHCO₂e NCH₂*CH*₂CH₂CH₃); 1,89 – 2,08 (m, 1H, HNCH₂CH₂CH₂CH*H*); 2,59 – 2,73 (m, 1H, NH*CH*H); 2,88 – 3,16 (m, 9H, NH*C*H*H* e N*CH*₂CH₂CH₂CH₂CH₃); 3,33 – 3,45 (m, 1H, *CH*CO₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 12,83; 19,09; 23,05; 24,95; 30,52; 45,96; 58,01; 61,38; 181,04.

Figura B 9 - Espectro de RMN de ¹H do [N₄₄₄₄][L-Pro].

Figura B 10 - Espectro de RMN de ¹³C do [N₄₄₄₄][L-Pro].

[**N**₄₄₄₄][**L**-**Arg**]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 0,79 (t, J_{HH} = 7,0 Hz, 12H, NCH₂CH₂CH₂CH₂CH₃); 1,08 – 1,31(m, 8H, NCH₂CH₂CH₂CH₃); 1,32 – 1,73 (m, 12H, CH₂-CH₂-CHNH₂CO₂ e NCH₂CH₂CH₂CH₂CH₃); 2,77 – 3,30 (m, 11H, CH₂CH₂-CH₂-CHNH₂CO₂ e NCH₂CH₂CH₂CH₃); 2,77 – 3,30 (m, 11H, CH₂CH₂-CH₂-CHNH₂CO₂ e NCH₂CH₂CH₃). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 12,78; 19,07; 23,03; 24,66; 31,73; 41,00; 55,54; 58,01; 158,02; 183,08.

Figura B 11 - Espectro de RMN de ¹H do [N₄₄₄₄][L-Arg].

Figura B 12 - Espectro de RMN de ¹³C do [N4444][L-Arg].

[N₄₄₄₄]2[L-Glu]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 0,95 (t, $J_{HH} = 7,3$ Hz, 24H, NCH₂CH₂CH₂CH₂CH₃); 1,37 (sext, $J_{HH} = 7,3$ Hz, 16H, NCH₂CH₂CH₂CH₃); 1,56 – 1,98 (m, 18H, O₂C-CH₂CH₂CH₂ e NCH₂CH₂CH₂CH₃); 2,15 – 2,27 (m, 2H, O₂C-CH₂CH₂); 3,11 – 3,33 (m, 17H, O₂C-CH-NH₂ e NCH₂CH₂CH₂CH₂CH₃). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 12,77; 19,07; 23,06; 31,28; 34,05; 55,75; 58,04; 181,71; 182,08.

Figura B 13 - Espectro de RMN de ¹H do [N₄₄₄₄]₂[L-Glu].

Figura B 14 - Espectro de RMN de ¹³C do [N₄₄₄₄]₂[L-Glu].

[**N**₄₄₄₄]2[**L-Tar**]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 0,83 (t, $J_{HH} = 7,3$ Hz, 24H, NCH₂CH₂CH₂CH₃); 1,13 – 1,34 (sext, $J_{HH} = 7,2$ Hz, 16H, NCH₂CH₂CH₂CH₃); 1,43 – 1,61 (m, 16H, NCH₂CH₂CH₂CH₃); 2,96 – 3,19 (m, 16H, NCH₂CH₂CH₂CH₃); 4,15 (s, 2H, *CH*OH*CH*OHCO₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 12,84; 19,10; 23,07; 58,03; 73,71; 178,05.

Figura B 15 - Espectro de RMN de ¹H do [N4444]2[L-Tar].

Figura B 16 - Espectro de RMN de ¹³C do [N4444]2[L-Tar].

[**N**₄₄₄₄]**2**[**D**-**Tar**]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 0,83 (t, $J_{HH} = 7,3$ Hz, 24H, NCH₂CH₂CH₂CH₃); 1,15 – 1,34 (sext, $J_{HH} = 7,1$ Hz, 16H, NCH₂CH₂CH₂CH₃); 1,40 – 1,63 (m, 16H, NCH₂CH₂CH₂CH₃); 2,94 – 3,24 (m, 16H, NCH₂CH₂CH₂CH₃); 4,16 (s, 2H, *CH*OH*CH*OHCO₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 12,89; 19,12; 23,08; 58,02; 73,68; 177,93.

Figura B 17 - Espectro de RMN de ¹H do [N₄₄₄]₂[D-Tar].

Figura B 18 - Espectro de RMN de ¹³C do [N₄₄₄₄]₂[D-Tar].

[Col][L-Phe]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 2,85 (dd, $J_{H1H\beta}$ = 7,3 Hz, $J_{H\alpha H\beta}$ = 13,5 Hz, 1H, C₆H₅-*CH*(β)); 3,00 (dd, $J_{H1H\alpha}$ = 5,6 Hz, $J_{H\alpha H\beta}$ = 13,5 Hz, 1H, C₆H₅-*CH*(α)); 3,14 (s, 9H, N(*CH*₃)₃); 3,42 – 3,54 (m, 3H, H₂N-*CH* e HO-CH₂*CH*₂); 3,97 – 4,04 (m, 2H, HO-*CH*₂CH₂); 7,26 – 7,41 (m, 5H, *C*₆*H*₅-CH₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 40,44; 53,76; 55,49; 57,30; 67,31; 126,66; 128,58; 129,39; 138,05; 181,77.

Figura B 19 - Espectro de RMN de ¹H do [Col][L-Phe].

Figura B 20 - Espectro de RMN de ¹H do [Col][L-Phe].

[Col][D-Phe]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 2,86 (dd, $J_{H1H\beta}$ = 7,3 Hz, $J_{H\alpha H\beta}$ = 13,5 Hz, 1H, C₆H₅-*CH(β)*); 3,01 (dd, $J_{H1H\alpha}$ = 5,6 Hz, $J_{H\alpha H\beta}$ = 13,6 Hz, 1H, C₆H₅-*CH(α)*); 3.15 (s, 9H, N(*CH*₃)₃); 3,43 – 3,54 (m, 3H, H₂N-*CH* e HO-CH₂*CH*₂); 3,98 – 4,05 (m, 2H, HO-*CH*₂CH₂); 7,25 – 7,40 (m, 5H, *C*₆H₅-CH₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 40,44; 53,76; 55,49; 57,30; 67,37; 126,66; 128,58; 129,39; 138,05; 181,77.

Figura B 21 - Espectro de RMN de ¹H do [Col][D-Phe].

Figura B 22 - Espectro de RMN de ¹³C do [Col][D-Phe].

[**Col**]2[**L-Glu**]: ¹H NMR (D₂O, 300 MHz, [ppm]): δ 1,54 – 1,80 (m, 2H, ⁻OOC-CH₂CH₂); 2,01 – 2,09 (m, 2H, ⁻OOC-*CH*₂CH₂); 3,01 – 3,13 (m, 19H, H₂N-*CH* e N(*CH*₃)₃); 3,34 – 3,41 (m, 4H, HO-CH₂*CH*₂); 3,87 – 3,95 (m, 4H, HO-*CH*₂CH₂). ¹³C NMR (D₂O, 75.47 MHz, [ppm]): δ 31,71; 34,11; 53,78; 55,49; 55,82; 67,34; 182,42; 182,48.

Figura B 23 - Espectro de RMN de ¹H do [Col]₂[L-Glu].

Figura B 24 - Espectro de RMN de ¹³C do [Col]₂[L-Glu].

Figura B 25 – Curva de DSC para o [N4444][L-Phe].

Figura B 26 - Curva de DSC para o [N4444][D-Phe].

Figura B 27 - Curva de DSC para o [N4444][L-Val].

Figura B 28 - Curva de DSC para o [N4444][L-Ala].

Figura B 29 - Curva de DSC para o [N4444][L-Arg].

Figura B 30 - Curva de DSC para o [N4444]2[L-Glu].

Figura B 31 - Curva de DSC para o [N4444]2[L-Tar].

Figura B 32 - Curva de DSC para o [N4444]2[L-Tar].

Figura B 33 - Curva de DSC para o [Col]₂[L-Glu].

B3. Curvas de TGA

Figura B 34 - Curvas de TGA para os LIQs com o catião [N4444]⁺ sintetizados neste trabalho.

Figura B 35 - Curvas de TGA para os LIQs com o catião [Col]+ sintetizados neste trabalho.

B4: Densidade (o). viscos	sidade (v) e	e índice de	refração ($(n_{\rm D})$
D II D elloradae (p, 1000			101109000	1001

LIQ	[]	N4444][L-V	al]	[]	N4444][L-P1	: 0]	[(Col]2[L-Gl	u]	[Col][D-Ph	e]	[Col][L-Ph	e]
T (°C)	ρ (g/cm ³)	η (mPa.s)	Пъ	ρ (g/cm ³)	η (mPa.s)	ИD	ρ (g/cm ³)	η (mPa.s)	<i>N</i> _D	ρ (g/cm ³)	η (mPa.s)	ND	ρ (g/cm ³)	η (mPa.s)	<i>N</i> _D
20	0,9439	5204,7	1,47819	0,9770	4410,5	1,48503	1,1803	47411	1,50788	1,1435	n.d.	1,54346	1,1429	27282	1,53925
25	0,9409	3023,2	n.d.	0,9739	2535,1	n.d.	1,1776	27841	n.d.	1,1404	93775	n.d.	1,1398	14731	n.d.
30	0,9378	1832,3	1,47341	0,9709	1534,7	1,48174	1,1749	17061	1,50572	1,1373	53541	1,53988	1,1368	8353,6	1,53660
35	0,9348	1153,2	n.d.	0,9678	968,65	n.d.	1,1724	10834	n.d.	1,1342	30500	n.d.	1,1338	5049,5	n.d.
40	0,9317	751,41	1,46984	0,9647	632,14	1,47870	1,1700	7111,7	1,50305	1,1312	17991	1,53574	1,1309	3078,5	1,53384
45	0,9286	504,99	n.d.	0,9616	425,37	n.d.	1,1675	4784,6	n.d.	1,1283	10817	n.d.	1,128	1941,7	n.d.
50	0,9255	349,22	1,46627	0,9585	294,61	1,47565	1,1652	3292,5	1,50106	1,1254	6428,3	1,53212	1,1251	1269,3	1,53093
55	0,9225	247,66	n.d.	0,9555	209,55	n.d.	1,1628	2324,5	n.d.	1,1225	3911,7	n.d.	1,1222	842,94	n.d.
60	0,9195	179,86	1,46294	0,9525	152,66	1,47246	1,1604	1678,3	1,49850	1,1196	2433,0	1,52868	1,1192	573,54	1,52769
65	0,9165	133,48	n.d.	0,9495	113,68	n.d.	1,1579	1231,3	n.d.	1,1168	1583,2	n.d.	1,1164	400,93	n.d.
70	0,9136	101,02	1,46009	0,9465	86,366	1,46939	1,1554	923,78	1,49567	1,1140	1053,9	1,52453	1,1136	288,9	1,52396
75	0,9106	77,848	n.d.	0,9434	66,820	n.d.	1,1529	705,10	n.d.	1,1111	719,96	n.d.	1,1107	215,23	n.d.
80	0,9076	60,969	1,45604	0,9403	52,575	1,46699	1,1504	545,34	1,49304	1,1082	500,14	1,52220	1,1079	164,76	1,52098

Tabela B 1 - Densidade (p), viscosidade (v) e índice de refração (nD) dos LIQs derivados de tetrabutilamónio e colínio. (n.d. – não determinado)

B5: Toxicidade

110	EC50 (mg/L) (Limite inferior – Limite superior)						
LIQ	5 minutos	15 minutos	30 minutos				
[N4444][L-Phe]	165,06	110,98	86,48				
	(141,85 - 188,27)	(102,02 – 119,94)	(85,98 – 86,97)				
[N ₄₄₄₄][D-Phe]	128,66	97,22	95,77				
	(107,25 – 150,08)	(82,60 – 111,86)	(87,48 – 104,06)				
[N4444][L-Val]	174,31	139,42	117,50				
	(173,82 – 174,79)	(136,04 – 142,80)	(114,95 – 120,05)				
[N4444][L-Ala]	132,92	100,19	88,11				
	(125,26 – 140,58)	(93,61 – 106,76)	(84,69 – 91,54)				
[N4444][L-Pro]	155,56	135,47	122,30				
	(131,81 – 179,31)	(112,67 – 158,27)	(106,26 – 138,34)				
[N ₄₄₄₄][L-Arg]	118,99	97,46	88,92				
	(107,99 – 129,98)	(90,85 - 104,07)	(86,81 – 91,03)				
[N4444]2[L-Glu]	244,16	176,30	144,74				
	(231,43 – 256,88)	(167,83 – 184,78)	(143,42 – 146,07)				
[N4444]2[L-Tar]	1107,22	569,09	384,14				
	(915,54 – 1298,89)	(471,82 – 666,35)	(324,20 – 444,07)				
[N4444]2[D-Tar]	1261,02	497,23	257,67				
	(881,86 – 1640,18)	(397,49 – 596,96)	(218,71 – 296,63)				
[Col][L-Phe]	205,76	168,45	180,93				
	(199,05 - 212,47)	(164,57 – 172,33)	(178,46 – 183,41)				
[Col][D-Phe]	166,26	113,33	102,98				
	(160,17 – 172,35)	(105,81 – 120,85)	(96,47 – 109,49)				
[Col] ₂ [L-Glu]	215,38	183,88	217,08				
	(205,94 – 224,81)	(181,17 – 186,59)	(158,03 - 276,14)				

Tabela B 2 - Valores de EC₅₀ (mg/L) para cada composto, após 5, 15 e 30 minutos de exposição à bactéria luminescente *Vibrio fischeri*, e respetivos limites de confiança a 95 % (entre parênteses).

Anexo C – curvas binodais

C. Dados experimentais das curvas binodais

100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
41,3776	3,3400	26,3538	7,3235	18,7239	10,6964
40,0385	3,2319	26,0367	7,2353	18,5538	10,5993
38,9343	3,6924	25,7524	7,3622	17,1251	11,5990
38,2666	3,6291	25,3131	7,2366	16,7776	11,3636
37,5197	3,9473	24,5738	7,9400	16,5650	11,9313
36,7068	3,8618	24,5120	7,9788	16,4400	11,8412
35,3290	4,4650	24,2251	7,8273	14,6720	12,9657
34,7784	4,3954	24,1403	7,8578	14,3840	12,7113
33,5211	4,9570	22,4848	8,8161	12,7890	14,0845
33,0403	4,8859	22,1701	8,6927	12,4989	13,7649
31,8547	5,4258	21,3445	9,3936	11,1051	15,1050
31,2414	5,3214	21,0672	9,2715	10,8856	14,8064
29,6512	6,0651	19,7235	10,2041	9,6242	16,0635
29,1837	5,9695	19,3951	10,0342	9,4384	15,7535

Tabela C 1 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídospor [N4444][L-Phe] (1) + Na2SO4 (2) + H2O, a 25 °C e pressão atmosférica.

100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
43,9172	2,7568	28,4756	6,3518	20,4122	9,7190
43,1234	2,7070	28,0634	6,2599	20,1488	9,5935
42,2821	3,0464	27,9595	6,6752	19,2882	10,2828
41,5317	2,9923	27,8974	6,6604	19,0446	10,1529
40,8238	3,2839	27,5096	6,8472	18,2233	10,8749
40,1108	3,2266	27,4006	6,8201	17,9548	10,7147
39,0100	3,6897	26,7272	7,1465	17,0785	11,4992
38,2108	3,6141	26,5796	7,0186	16,8347	11,3351
37,0850	4,0999	26,4822	7,0810	15,9490	12,1645
36,5586	4,0417	26,3356	6,9542	15,6922	11,9686
35,7329	4,4044	25,0959	7,5871	14,5697	12,9131
35,2238	4,3417	24,8537	7,5138	14,3503	12,7187
34,2077	4,7963	24,7030	7,9559	13,4219	13,6539
33,9717	4,7632	24,6328	7,9333	13,1781	13,4058
33,3135	5,0604	23,9064	8,1037	11,8796	14,556
32,7917	4,9811	23,6749	8,4065	11,6641	14,2919
31,5140	5,5703	23,6391	8,0131	9,9814	15,6336
31,1173	5,5002	23,4432	8,3242	9,7894	15,3329
30,0010	6,0240	22,7232	8,5923	8,4832	16,6709
29,6441	5,9524	22,5233	8,5168	8,2842	16,2798
28,6239	6,4393	21,5035	9,1728		
28,5059	6,4128	21,2153	9,0499		

Tabela C 2 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][D-Phe] (1) + Na₂SO₄ (2) + H₂O, a 25 °C e pressão atmosférica.

100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
44,6275	2,1537	24,1021	7,3450	17,8463	11,1311
43,3066	2,0899	23,6201	7,9639	17,6335	10,9983
42,7855	2,3058	23,3093	7,8591	17,1074	11,5999
41,5767	2,2406	22,7535	8,4140	16,8862	11,4499
39,9859	2,9211	22,4469	8,3005	16,1063	12,1813
37,8241	2,7632	21,7132	8,9092	15,8848	12,0138
35,3929	3,8728	21,4444	8,7989	15,3463	12,7042
34,6576	3,7924	20,9596	9,3094	15,1244	12,5205
33,2425	4,4553	20,7261	9,2057	14,4507	13,3356
32,3030	4,3294	20,0107	9,8052	14,2033	13,1073
30,0722	5,4134	19,7528	9,6788	13,8133	13,8788
29,4074	5,2937	19,3242	10,2396	13,5842	13,6486
25,9567	7,0226	19,0634	10,1014	11,9358	15,2515
25,5564	6,9143	18,4300	10,7387	11,5237	14,7249
24,6015	7,4972	18,1936	10,6009		

Tabela C 3 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][L-Val] (1) + Na₂SO₄ (2) + H₂O, a 25 °C e pressão atmosférica.

Tabela C 4 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N₄₄₄₄][L-Ala] (1) + Na₂SO₄ (2) + H₂O, a 25 °C e pressão atmosférica.

100 m ₁	100 m ₂	$100 m_1$	100 m ₂	$100 m_1$	100 m ₂
43,5677	2,4920	31,6449	5,1249	18,7112	11,0716
42,2945	2,4192	31,2225	5,0565	18,4282	10,9042
40,9208	2,9879	29,9444	5,6653	17,7019	11,6921
39,5504	2,8878	29,4491	5,5716	17,4432	11,5212
38,4126	3,3781	27,2744	6,6319	16,6512	12,4539
37,6811	3,3138	26,9372	6,5499	16,3083	12,1975
36,5204	3,8256	20,5489	9,9241	15,7463	13,0980
35,9355	3,7643	20,2630	9,7860	15,4929	12,8872
34,9551	4,2053	19,8952	10,3648	14,8655	13,7059
34,5074	4,1515	19,6390	10,2313	14,6582	13,5148
33,1030	4,7937	19,4140	10,5631	13,9072	14,3851
32,5302	4,7107	19,3777	10,5433	13,6933	14,1639

100 <i>m</i> ¹	100 <i>m</i> ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
42,8336	2,5830	25,5474	6,8514	17,1420	11,6235
40,9178	2,4675	25,2729	6,9329	16,9142	11,4690
38,8654	3,3415	24,1720	7,7296	16,6201	11,9230
37,3609	3,2122	23,8134	7,6149	16,5164	11,8487
36,0683	3,7892	23,3494	8,0990	15,7919	12,5150
34,9991	3,6769	23,1689	8,0364	15,5400	12,3154
33,1226	4,5463	21,5723	8,9863	15,2510	12,8780
32,0855	4,4039	21,1105	8,7940	15,1180	12,7657
30,1702	5,3285	20,3959	9,6090	14,5080	13,3414
29,7421	5,2529	20,0892	9,4645	14,3664	13,2112
28,0456	6,0879	19,6003	10,1219	13,4181	14,1456
27,9967	6,1516	19,3056	9,9697	13,1479	13,8608
27,7087	6,0148	18,3663	10,8631	12,2389	14,9720
27,2205	5,9810	18,0196	10,6580	12,0141	14,6969
25,8671	6,9372	17,9612	11,0999	17,1420	11,6235
25,7077	7,0521	17,8629	11,0391	16,9142	11,4690

Tabela C 5 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][L-Pro] (1) + Na₂SO₄ (2) + H₂O, a 25 °C e pressão atmosférica.

			_		
100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
35,0047	4,7291	26,0683	7,6777	20,4276	10,0700
34,2353	4,6252	25,3037	7,4525	19,7889	10,7541
33,0468	5,1586	25,1250	8,1077	19,4607	10,5758
32,6474	5,0962	24,7368	7,9824	18,7817	11,3592
31,4688	5,6339	24,6821	8,1277	18,4010	11,1289
31,1419	5,5754	24,5658	8,0894	17,7913	11,9798
29,5871	6,2951	23,6923	8,5126	17,4287	11,7356
29,2665	6,2269	23,5503	8,8215	16,8244	12,6182
28,2138	6,8203	23,3792	8,4001	16,4757	12,3567
27,9867	6,8287	22,9867	8,6104	15,9870	13,2775
27,8658	6,7992	22,7515	9,2334	15,6206	12,9732
27,5909	6,6698	22,4186	9,0983	14,7511	14,0614
27,5909	6,6698	21,7685	9,7254	14,4269	13,7524
26,9892	7,2142	21,4160	9,5679	13,7232	14,9204
26,7282	7,1444	20,7596	10,2336	13,3400	14,5037

Tabela C 6 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444]2[L-Glu] (1) + Na2SO4 (2) + H2O, a 25 °C e pressão atmosférica.

-			-		
100 <i>m</i> ¹	100 <i>m</i> ²	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 <i>m</i> ₂
56,7414	0,2992	36,5323	2,5614	27,2603	67,9094
55,4358	0,7531	35,5709	2,4940	26,6740	68,1688
50,9650	0,6924	34,5104	3,0168	26,4915	68,3866
49,9405	1,0811	33,6967	2,9457	25,9232	68,6352
47,8950	1,0368	33,0365	3,2803	25,8057	68,7773
47,0585	1,3685	32,5258	3,2296	25,2573	69,0152
44,3573	1,2899	31,4869	3,7662	24,9289	69,4181
43,5959	1,6116	31,1767	3,7291	24,2379	69,7107
42,5560	1,5731	30,7239	3,9658	24,0784	69,91
41,9648	1,8295	30,4215	3,9268	23,3201	70,2269
40,5399	1,7673	29,9711	4,1652	23,1569	70,4353
39,9729	2,0227	29,6149	4,1157	22,1941	70,8318
39,1257	1,9798	29,1793	4,3497	22,0609	71,0069
38,4875	2,2742	29,0380	4,3286	20,9406	71,4622
37,8070	2,2340	28,3949	4,6763	20,8290	71,6143
37,5896	2,3363	27,9825	4,6084		
37,0706	2,3041	27,5019	4,8732		

Tabela C 7 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N444]Cl (1) + Na2SO4 (2) + H2O, a 25 °C e pressão atmosférica.

_			· -		
100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
44,0416	3,4760	18,0051	11,8209	10,5975	15,5129
42,3494	3,3424	17,6887	12,1393	10,5358	15,4225
41,2304	4,0454	17,5039	12,0125	10,3869	15,6277
39,5673	3,8822	17,1439	12,3813	10,3225	15,5307
38,4817	4,5973	16,9847	12,2664	10,1608	15,7566
37,7400	4,5087	16,6179	12,6482	10,1177	15,6899
36,8080	5,1368	16,4525	12,5223	10,0108	15,8405
36,0063	5,0250	16,0510	12,9474	9,9643	15,7668
35,2265	5,5647	15,9084	12,8323	9,8975	15,8618
34,5226	5,4535	15,5866	13,1785	9,8715	15,8201
33,9452	5,8631	15,4353	13,0506	9,7590	15,9811
32,7883	5,6633	15,0578	13,4638	9,7038	15,8907
31,8147	6,3843	14,9437	13,3618	9,5739	16,0788
31,2434	6,2696	14,5268	13,8245	9,5206	15,9893
30,4972	6,8350	14,2923	13,6013	9,4080	16,1544
29,9323	6,7084	14,0767	13,8478	9,3607	16,0732
29,1375	7,3254	13,9746	13,7475	9,2776	16,1964
28,7152	7,2192	13,7814	13,9714	9,2299	16,1132
27,7327	7,9968	13,6772	13,8658	9,1093	16,2939
27,3200	7,8778	13,4564	14,1254	9,0584	16,2028
26,9571	8,1709	13,3563	14,0203	8,9549	16,3598
26,5571	8,0496	13,0998	14,3262	8,9097	16,2772
25,8906	8,5991	12,9941	14,2106	8,8051	16,4377
25,4927	8,4670	12,7695	14,4826	8,7624	16,3581
24,2108	9,5469	12,6736	14,3738	8,6422	16,5446
23,5630	9,2915	12,5081	14,5770	8,5997	16,4634
23,0007	9,7843	12,4275	14,4830	8,4863	16,6412
22,7451	9,6756	12,2297	14,7292	8,4478	16,5657
22,1193	10,2332	12,1443	14,6264	8,3730	16,6842
21,8569	10,1118	11,9673	14,8496	8,3322	16,6029
21,3486	10,5731	11,8847	14,7471	8,2367	16,7559
21,0746	10,4374	11,6970	14,9871	8,1987	16,6786

Tabela C 8 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N444][L-Phe] (1) + K₂CO₃ (2) + H₂O, a 25 °C e pressão atmosférica.

20,5119	10,9583	11,6227	14,8918	8,0570	16,9078
20,2827	10,8359	11,4650	15,0961	8,0182	16,8264
19,8292	11,2632	11,3946	15,0034	7,9443	16,9472
19,6058	11,1362	11,2222	15,2294	7,9072	16,8680
19,2735	11,4549	11,1553	15,1386	7,7781	17,0815
19,0835	11,3420	11,0304	15,3044	7,7173	16,9479
18,6564	11,7583	10,9599	15,2067	7,4935	17,3248
18,4748	11,6439	10,8177	15,3979	7,4003	17,1093
18,1802	11,9358	10,7513	15,3034		
_			· =		
----------------------------------	--------------------	----------------------------------	--------------------	----------------------------------	--------------------
100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
44,0515	3,5245	18,9013	11,4899	10,9649	15,5235
42,8189	3,4259	18,6833	11,7045	10,9567	15,5118
42,2101	3,8051	18,4848	11,5801	10,9123	15,5709
41,1452	3,7091	18,1273	11,9383	10,8436	15,4728
40,0679	4,4000	17,9892	11,8473	10,6810	15,6921
39,1689	4,3013	17,7382	12,1019	10,6149	15,5950
38,7495	4,5775	17,6964	12,0734	10,4166	15,8658
37,8849	4,4754	17,5623	12,2100	10,3477	15,7609
37,1581	4,9669	17,4093	12,1037	10,1784	15,9954
36,2851	4,8503	17,0033	12,5233	10,1161	15,8975
35,0463	5,7122	16,8353	12,3996	9,9853	16,0811
34,3399	5,5971	16,4937	12,7587	9,9224	15,9797
33,6341	6,1007	16,3130	12,6189	9,7504	16,2243
32,9698	5,9802	15,9385	13,0201	9,6976	16,1364
32,6120	6,2419	15,7969	12,9044	9,5611	16,3330
32,1135	6,1465	15,4730	13,2569	9,5321	16,2833
31,3619	6,7071	15,3437	13,1461	9,4841	16,3528
30,7797	6,5826	15,0129	13,5116	9,4294	16,2586
29,9414	7,2230	14,8960	13,4064	9,2911	16,4617
29,4488	7,1042	14,7157	13,6085	9,2345	16,3614
28,9908	7,4618	14,5755	13,4789	9,1299	16,5170
28,5221	7,3412	14,2488	13,8514	9,0862	16,4379
28,0097	7,7500	14,1499	13,7554	8,9765	16,6029
27,5062	7,6107	13,8678	14,0813	8,9292	16,5153
26,5816	8,3666	13,7684	13,9804	8,7978	16,7151
26,1608	8,2341	13,5446	14,2424	8,7498	16,6239
25,4465	8,8311	13,4487	14,1415	8,6647	16,7551
25,1051	8,7126	13,2160	14,4176	8,6216	16,6718
24,4682	9,2550	13,1195	14,3123	8,4742	16,9012
24,1571	9,1374	12,8313	14,6591	8,4310	16,8150
23,7498	9,4908	12,7544	14,5712	8,3500	16,9425
23,4532	9,3722	12,6547	14,6925	8,3081	16,8573

Tabela C 9 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N444][D-Phe] (1) + K₂CO₃ (2) + H₂O, a 25 °C e pressão atmosférica.

22,8806	9,8782	12,5767	14,6019	8,1919	17,0424
22,6001	9,7571	12,3839	14,8396	8,1514	16,9581
22,1755	10,1392	12,3000	14,7390	8,0617	17,1027
21,9099	10,0177	12,1228	14,9602	8,0221	17,0188
21,5303	10,3656	12,0349	14,8517	7,9262	17,1752
21,2571	10,2341	11,8129	15,1328	7,8959	17,1096
20,6180	10,8313	11,7357	15,0339	7,8012	17,2653
20,3614	10,6965	11,5644	15,2539	7,7718	17,2001
19,8678	11,1669	11,5067	15,1778	7,6998	17,3195
19,7553	11,1037	11,3705	15,3543	7,6632	17,2370
19,6902	11,1663	11,2926	15,2490	7,5696	17,3941
19,4829	11,0487	11,1188	15,4775	7,5408	17,3279
18,9816	11,5387	11,0605	15,3963	7,4657	17,4550

=			· •		
100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
46,2003	1,8244	24,0381	6,6567	15,3925	10,4434
45,2667	1,7875	23,8422	6,6025	15,2005	10,3131
44,2084	2,3277	23,4930	6,8703	14,7178	10,7760
41,9061	2,2065	23,1787	6,7784	14,5699	10,6677
40,8997	2,7512	22,5369	7,2799	14,2106	11,0184
39,5845	2,6627	22,3475	7,2187	14,1150	10,9443
38,6823	3,1693	22,0855	7,4259	13,8868	11,1698
37,2593	3,0527	21,8517	7,3472	13,7657	11,0724
36,4536	3,5249	21,3663	7,7369	13,4300	11,4093
35,4961	3,4323	21,1338	7,6527	13,3382	11,3313
34,8322	3,8336	20,6391	8,0562	13,1338	11,5390
33,6104	3,6991	20,4734	7,9915	13,0183	11,4375
33,0652	4,0429	20,2550	8,1719	12,7366	11,7286
32,6248	3,9891	20,0508	8,0895	12,6491	11,6481
32,0756	4,3409	19,6507	8,4247	12,3925	11,9167
31,6349	4,2813	19,4676	8,3462	12,3091	11,8365
31,1124	4,6217	19,0434	8,7067	12,0525	12,1085
30,4327	4,5207	18,8564	8,6212	11,9826	12,0382
29,8858	4,8867	18,5063	8,9233	11,8067	12,2268
29,4435	4,8144	18,3465	8,8463	11,7379	12,1555
28,9667	5,1394	17,9836	9,1636	11,5244	12,3871
28,5558	5,0665	17,9336	9,1382	11,4826	12,3422
28,1597	5,3416	17,7569	9,2934	11,3389	12,4993
27,8678	5,2862	17,6091	9,2161	11,2731	12,4268
27,4191	5,6018	17,2674	9,5203	11,0565	12,6662
27,0257	5,5214	17,1424	9,4514	10,9891	12,5889
26,5808	5,8403	16,8098	9,7509	10,8387	12,7573
26,0913	5,7327	16,6840	9,6780	10,7725	12,6793
25,3388	6,2852	16,3645	9,9693	10,6243	12,8473
25,0567	6,2152	16,2151	9,8783	10,5685	12,7799
24,7093	6,4741	15,9289	10,1432		
24,3894	6,3903	15,7998	10,0610		

Tabela C 10 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][L-Phe] (1) + Na₂CO₃ (2) + H₂O, a 25 °C e pressão atmosférica.

100 m ₁	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
44,6057	2,1615	23,6620	6,5977	10,9223	12,5583
42,4564	2,0573	22,8209	7,0842	10,8581	12,4844
41,3420	2,5358	22,5322	6,9946	10,3207	12,8705
39,6538	2,4322	21,4204	7,6503	10,2899	12,8321
38,7871	2,8224	21,1640	7,5588	9,7610	13,2152
37,9575	2,7620	19,8402	8,3548	9,7284	13,1710
36,9123	3,2446	19,6376	8,2695	9,2533	13,5184
35,5130	3,1216	18,8179	8,7711	9,2040	13,4463
33,7553	3,9711	18,6033	8,6710	8,6828	13,8336
33,1230	3,8967	17,5432	9,3328	8,6352	13,7577
32,3036	4,3021	17,3608	9,2357	8,0185	14,2239
31,6802	4,2191	16,2691	9,9304	7,9924	14,1776
31,0154	4,5562	16,1120	9,8346	7,6774	14,4183
30,5251	4,4842	15,1410	10,4643	7,6425	14,3527
29,9021	4,8067	15,0036	10,3693	7,1603	14,7269
29,3998	4,7259	14,0649	10,9897	7,1294	14,6634
28,1391	5,3931	13,9508	10,9005	6,6602	15,0333
27,6725	5,3036	13,2082	11,4000	6,6243	14,9523
27,1362	5,5940	13,1154	11,3199	5,8753	15,5553
26,6836	5,5007	12,3155	11,8667	5,8552	15,5021
25,6671	6,0639	12,2289	11,7832	4,8223	16,3458
25,2632	5,9684	11,6889	12,1586	4,7918	16,2423
23,9909	6,6894	11,6073	12,0737		

Tabela C 11 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][D-Phe] (1) + Na₂CO₃ (2) + H₂O, a 25 °C e pressão atmosférica.

.			ý 1		
100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ₁	100 m ₂
42,1654	3,4752	18,7936	12,3163	9,3621	18,7586
40,2243	3,3152	18,2574	12,8444	9,3068	18,6479
39,3298	3,9269	18,0690	12,7118	9,0403	18,9967
38,3989	3,8339	17,4614	13,3209	8,9881	18,8871
37,1554	4,7081	17,3048	13,2014	8,7416	19,2144
35,6348	4,5154	16,6978	13,8195	8,6957	19,1134
34,3678	5,4508	16,5368	13,6863	8,4118	19,4958
33,7440	5,3519	15,9123	14,3335	8,3674	19,3930
33,2073	5,7571	15,7568	14,1934	8,1730	19,6586
32,5662	5,6459	15,2392	14,7397	8,1340	19,5647
31,9253	6,1414	15,1189	14,6234	7,9553	19,8121
31,3226	6,0255	14,6560	15,1193	7,9225	19,7305
30,7367	6,4894	14,5232	14,9823	7,7206	20,0131
30,4101	6,4204	14,0084	15,5438	7,6876	19,9274
29,4247	7,2112	13,9047	15,4289	7,4926	20,2037
28,8923	7,0808	13,4350	15,9490	7,4648	20,1288
28,3915	7,4923	13,3445	15,8416	7,2734	20,4031
27,9184	7,3675	12,9807	16,2502	7,2436	20,3195
27,1637	8,0017	12,9037	16,1538	7,0943	20,5360
26,9895	7,9504	12,5927	16,5075	7,0648	20,4506
26,2862	8,5465	12,5080	16,3964	6,8748	20,7296
25,9885	8,4497	12,0717	16,8997	6,8454	20,6411
25,7104	8,6891	11,9941	16,7911	6,5669	21,0554
25,3609	8,5710	11,7843	17,0365	6,5257	20,9232
24,5151	9,3132	11,7114	16,9312	6,3281	21,2230
24,2421	9,2095	11,4174	17,2799	6,2913	21,0995
23,6249	9,7598	11,3402	17,1630	5,9997	21,5504
23,3616	9,6511	11,0564	17,5049	5,9603	21,4089
22,6481	10,2978	10,9898	17,3995	5,7785	21,6960
22,3804	10,1761	10,5962	17,8804	5,7419	21,5584
21,5665	10,9270	10,5359	17,7787	5,4938	21,9587
21,3683	10,8267	10,2811	18,0942	5,4613	21,8290

Tabela C 12 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N444][L-Phe] (1) + K2HPO4 (2) + H2O, a 25 °C e pressão atmosférica.

20,7961	11,3622	10,2201	17,9867	5,2010	22,2578
20,5635	11,2352	9,9331	18,3472	5,1670	22,1122
19,9835	11,7877	9,8790	18,2472	4,9608	22,4598
19,7649	11,6588	9,6783	18,5027	4,9297	22,3190
18,9685	12,4310	9,6310	18,4121		

			<i>,</i>		
100 <i>m</i> ¹	100 <i>m</i> ²	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
44,4054	2,7995	18,2624	12,6006	8,1926	19,6653
43,1639	2,7212	17,4244	13,4138	8,1559	19,5770
41,7514	3,6244	17,2215	13,2576	7,9698	19,8222
39,5455	3,4329	16,4485	14,0236	7,9276	19,7172
38,4465	4,1802	16,2606	13,8634	7,6670	20,0657
37,5095	4,0783	15,5446	14,5880	7,6383	19,9904
36,6607	4,6722	15,3777	14,4313	7,4752	20,2110
35,7298	4,5535	14,5521	15,2844	7,4633	20,1789
34,8253	5,2058	14,4006	15,1253	7,3501	20,3327
34,1397	5,1033	13,8288	15,7287	7,3195	20,2480
33,3537	5,6840	13,7057	15,5886	7,1259	20,5145
32,6873	5,5705	13,1917	16,1411	7,0935	20,4211
31,5806	6,4085	13,0709	15,9933	6,9069	20,6816
30,9554	6,2816	12,4696	16,6525	6,8758	20,5886
30,3114	6,7817	12,3725	16,5228	6,6737	20,8747
29,7403	6,6539	11,9649	16,9774	6,6426	20,7773
28,5210	7,6243	11,8689	16,8411	6,4345	21,0762
28,0611	7,5014	11,4447	17,3229	6,4073	20,9868
27,5309	7,9325	11,3976	17,2515	6,2442	21,2243
27,0619	7,7974	11,1355	17,5521	6,2173	21,1327
26,1259	8,5765	11,0528	17,4217	5,9034	21,5966
25,7261	8,4452	10,6365	17,9076	5,8603	21,4391
24,8989	9,1486	10,5601	17,7789	5,5752	21,8711
24,4988	9,0016	10,1811	18,2291	5,5532	21,7848
23,2938	10,0503	10,1181	18,1163	5,4021	22,0172
22,9550	9,9042	9,8276	18,4668	5,3807	21,9302
22,2277	10,5510	9,7662	18,3515	5,2132	22,1913
21,9318	10,4106	9,4599	18,7269	5,1860	22,0754
20,9076	11,3404	9,4016	18,6114	4,9145	22,5071
20,8166	11,2910	9,1025	18,9839	4,8836	22,3656
20,5234	11,5590	9,0692	18,9144	4,3306	23,2666
20,2600	11,4107	8,9089	19,1160	4,2771	22,9797

Tabela C 13 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][D-Phe] (1) + K2HPO4 (2) + H2O, a 25 °C e pressão atmosférica.

19,4487	12,1679	8,8617	19,0148	3,9523	23,5373
19,2323	12,0325	8,6014	19,3470	3,9196	23,3424
18,4782	12,7496	8,5413	19,2118		

_	-		. /	, I		
	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
	44,9050	2,5386	16,9614	12,2377	8,9774	16,5403
	42,3380	2,3934	16,7884	12,1130	8,9286	16,4503
	40,2739	3,7376	16,5129	12,4060	8,7914	16,6579
	38,2057	3,5457	16,3236	12,2637	8,7463	16,5723
	37,1373	4,2845	15,9165	12,7051	8,6400	16,7351
	36,3770	4,1968	15,7686	12,5871	8,5992	16,6562
	35,4401	4,8604	15,3445	13,0546	8,5011	16,8080
	34,6060	4,7460	15,1874	12,9209	8,4617	16,7300
	33,9752	5,2056	14,7966	13,3594	8,3339	16,9298
	33,2682	5,0973	14,6444	13,2220	8,2930	16,8468
	32,6202	5,5817	14,3305	13,5809	8,1817	17,0230
	31,9266	5,4630	14,1950	13,4525	8,1447	16,9461
	31,5212	5,7741	13,8760	13,8236	7,9648	17,2337
	30,9446	5,6685	13,7658	13,7138	7,8926	17,0776
	30,2011	6,2522	13,5387	13,9819	7,7380	17,3301
	29,7555	6,1600	13,4265	13,8660	7,7027	17,2512
	29,2775	6,5423	13,0747	14,2878	7,5995	17,4215
	28,6842	6,4097	12,9645	14,1674	7,5634	17,3386
	27,5916	7,3070	12,7172	14,4688	7,3616	17,6753
	27,0997	7,1767	12,6082	14,3447	7,2965	17,5190
	26,6393	7,5638	12,4021	14,6000	7,2001	17,6833
	26,2864	7,4636	12,2114	14,3755	7,1211	17,4893
	25,6197	8,0342	11,6810	15,0526	6,8653	17,9375
	25,2028	7,9034	11,5143	14,8379	6,8084	17,7887
	24,3878	8,6168	11,1374	15,3331	6,6437	18,0831
	24,0214	8,4873	11,0576	15,2232	6,5942	17,9484
	23,3162	9,1178	10,8732	15,4692	6,4758	18,1642
	22,9842	8,9880	10,7992	15,3640	6,4246	18,0205
	22,6056	9,3336	10,6291	15,5940	6,2447	18,3550
	22,2864	9,2018	10,5668	15,5026	6,1986	18,2195
	21,6857	9,7614	10,4103	15,7168	6,0934	18,4189
	21,3973	9,6316	10,3378	15,6073	6,0548	18,3022

Tabela C 14 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][L-Phe] (1) + K₃PO4 (2) + H₂O, a 25 °C e pressão atmosférica.

20,8289	10,1717	10,1200	15,9096	5,8710	18,6562
20,5491	10,0350	10,0513	15,8015	5,8222	18,5009
19,8953	10,6691	9,8357	16,1052	5,7085	18,7247
19,6281	10,5258	9,7706	15,9985	5,6701	18,5985
19,1436	11,0057	9,5919	16,2539	5,5445	18,8503
18,9142	10,8738	9,4989	16,0964	5,5017	18,7050
18,4081	11,3845	9,3338	16,3375	5,3891	18,9356
18,2160	11,2657	9,2843	16,2509	5,3540	18,8124
17,7474	11,7467	9,1723	16,4164		
17,5538	11,6186	9,1213	16,3252		

-							
100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂		
46,7814	1,7456	16,6124	12,5309	8,5939	17,0083		
45,5373	1,6992	16,4355	12,3975	8,5496	16,9208		
44,3420	2,4483	15,9944	12,8763	8,4562	17,0663		
43,3013	2,3909	15,7848	12,7076	8,4157	16,9844		
42,2262	3,0823	15,3903	13,1457	8,2457	17,2522		
41,2439	3,0106	15,2374	13,0151	8,1711	17,0963		
40,4367	3,5434	14,7571	13,5580	8,0062	17,3616		
39,5726	3,4677	14,6195	13,4316	7,9699	17,2830		
38,6488	4,0926	14,3864	13,6995	7,8293	17,5116		
37,4364	3,9642	14,2621	13,5811	7,7922	17,4287		
36,9795	4,2849	13,9466	13,9495	7,7261	17,5373		
36,2529	4,2007	13,8118	13,8146	7,6917	17,4594		
35,3157	4,8738	13,4978	14,1879	7,5988	17,6138		
34,5901	4,7736	13,3837	14,0679	7,5689	17,5444		
33,8593	5,3116	13,0416	14,4812	7,4731	17,7051		
33,2094	5,2097	12,9339	14,3617	7,4428	17,6334		
32,5775	5,6858	12,7343	14,6068	7,3447	17,7995		
32,0266	5,5897	12,6707	14,5339	7,3090	17,7129		
31,4169	6,0590	12,4760	14,7752	7,2313	17,8460		
30,9387	5,9667	12,3937	14,6778	7,1997	17,7681		
30,3453	6,4322	12,2049	14,9148	6,9852	18,1397		
29,8063	6,3179	12,1083	14,7967	6,9046	17,9303		
29,2535	6,7616	11,8237	15,1597	6,7762	18,1592		
28,7819	6,6526	11,7354	15,0465	6,7496	18,0881		
28,0096	7,2855	11,5586	15,2755	6,6630	18,2440		
27,5710	7,1714	11,4737	15,1633	6,6351	18,1675		
26,7637	7,8467	11,2402	15,4700	6,5253	18,3672		
26,4047	7,7415	11,1617	15,3619	6,4993	18,2939		
25,9970	8,0889	10,9835	15,5995	6,4139	18,4508		
25,6990	7,9962	10,9211	15,5109	6,3895	18,3808		
25,3024	8,3395	10,7508	15,7405	6,3363	18,4795		
24,9128	8,2111	10,6995	15,6653	6,3146	18,4160		

Tabela C 15 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][D-Phe] (1) + K₃PO4 (2) + H₂O, a 25 °C e pressão atmosférica.

24,3037	8,7496	10,5813	15,8263	6,2394	18,5568
23,9774	8,6321	10,5159	15,7285	6,2146	18,4830
23,2385	9,2979	10,3291	15,9862	6,1414	18,6214
22,9179	9,1696	10,2680	15,8917	6,1188	18,5528
22,2836	9,7527	10,1245	16,0921	6,0553	18,6741
21,9945	9,6261	10,0638	15,9956	6,0344	18,6096
21,4611	10,1260	9,9002	16,2271	5,9804	18,7137
21,2017	10,0036	9,8452	16,1370	5,9596	18,6486
20,7495	10,4352	9,7197	16,3168	5,8826	18,7983
20,4960	10,3078	9,6658	16,2263	5,8623	18,7335
20,0417	10,7495	9,5115	16,4499	5,8184	18,8195
19,8035	10,6218	9,4588	16,3588	5,7892	18,7250
19,1894	11,2301	9,3158	16,5685	5,6668	18,9683
18,9566	11,0938	9,2642	16,4767	5,6501	18,9124
18,5742	11,4800	9,1246	16,6841	5,5735	19,0659
18,3769	11,3581	9,0810	16,6044	5,5447	18,9672
17,7860	11,9652	8,9361	16,8220	5,4431	19,1737
17,5963	11,8376	8,8845	16,7249	5,4109	19,0602
17,2592	12,1901	8,7466	16,9345	4,9243	20,0652
17,0625	12,0512	8,7002	16,8447	4,7879	19,5096

			· –		
100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
51,9561	5,9895	32,8893	14,3687	21,4664	21,5550
51,0335	5,8832	32,4695	14,1853	21,3097	21,3976
50,3949	6,5168	31,7280	15,1520	20,9685	21,9599
49,6113	6,4155	31,3815	14,9865	20,8535	21,8395
48,9470	7,0864	30,9494	15,5583	20,6902	22,1111
48,3033	6,9932	30,7084	15,4371	20,5631	21,9752
47,6854	7,6267	30,4353	15,8024	20,3569	22,3216
46,9803	7,5139	30,0623	15,6087	20,1666	22,1130
46,1708	8,3581	29,5364	16,3243	19,8738	22,6124
45,504	8,2374	29,1759	16,1251	19,7788	22,5043
44,9418	8,8339	28,6737	16,8203	19,6493	22,7270
44,2993	8,7076	28,4044	16,6623	19,5346	22,5944
43,7689	9,2800	27,9978	17,2328	19,3245	22,9591
43,0778	9,1335	27,8271	17,1277	19,1720	22,7779
42,5112	9,7568	27,3858	17,7522	18,8812	23,2897
41,9008	9,6167	26,9805	17,4895	18,8283	23,2245
41,3964	10,1813	26,3803	18,3577	18,7449	23,3720
40,7688	10,0270	26,1868	18,2230	18,6455	23,2481
40,1300	10,7553	25,9816	18,5229	18,4890	23,5275
39,9300	10,7017	25,7542	18,3607	18,4085	23,4251
39,4965	11,1991	25,3817	18,9125	18,1893	23,8191
38,7485	10,9871	25,0883	18,6938	18,0888	23,6875
38,1672	11,6701	24,6384	19,3720	17,9791	23,8866
37,6877	11,5235	24,4179	19,1986	17,8669	23,7376
37,0991	12,2262	24,0606	19,7447	17,6923	24,0579
36,6316	12,0722	23,8540	19,5752	17,6210	23,9611
36,2228	12,5681	23,5474	20,0499	17,4576	24,2630
35,8230	12,4294	23,3496	19,8814	17,3307	24,0865
35,4170	12,9291	22,9077	20,5746	17,0706	24,5732
35,0951	12,8116	22,6746	20,3652	17,0239	24,5060
34,5207	13,5269	22,2544	21,0351	16,9286	24,6851
34,1497	13,3815	22,1152	20,9035	16,8914	24,6309

Tabela C 16 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][L-Phe] (1) + K₃C₆H₅O₇ (2) + H₂O, a 25 °C e pressão atmosférica.

33,5561	14,1311	21,9739	21,1311	16,8174	24,7704
33,1937	13,9785	21,8185	20,9817	16,7796	24,7147

Tabela C 17 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N₄₄₄₄][D-Phe] (1) + K₃C₆H₅O₇ (2) + H₂O, a 25 °C e pressão atmosférica.

			· •		
100 <i>m</i> ¹	$100 m_2$	100 <i>m</i> ¹	100 m ₂	$100 m_1$	100 <i>m</i> ₂
57,2124	3,8032	37,4349	11,0338	27,0710	17,2618
56,0985	3,7291	36,5733	12,0805	26,7928	17,0844
55,2406	4,5363	36,0288	11,9007	26,3927	17,6732
54,4045	4,4677	35,6902	12,3200	26,1338	17,4998
53,2657	5,5571	35,2150	12,1559	25,6228	18,2626
51,5633	5,3795	34,6627	12,8515	25,3726	18,0842
50,9565	5,9812	34,3046	12,7188	25,0237	18,6128
50,1354	5,8849	33,9165	13,2142	24,8032	18,4488
49,4293	6,5980	33,4780	13,0434	24,3682	19,1165
47,9009	6,3939	32,8396	13,8724	24,1551	18,9494
47,1987	7,1287	32,5738	13,7601	23,8333	19,4499
46,7075	7,0545	32,2321	14,2086	23,5896	19,251
45,9995	7,8042	31,8604	14,0447	23,1855	19,8892
44,9578	7,6275	31,4544	14,5859	22,9990	19,7293
44,2116	8,4389	31,1121	14,4272	22,7377	20,1472
43,5435	8,3114	30,5941	15,1280	22,5556	19,9858
43,0398	8,8689	30,3285	14,9966	22,1780	20,5973
42,2950	8,7154	30,0284	15,4074	21,9903	20,423
41,5731	9,5312	29,6865	15,2320	21,7698	20,7848
41,0727	9,4165	29,2087	15,8964	21,6173	20,6392
40,7832	9,7485	28,9450	15,7528	21,1517	21,4119
40,4203	9,6618	28,4228	16,4882	21,0244	21,283
39,6859	10,5130	28,1698	16,3414	20,8951	21,4997
39,2276	10,3916	27,8918	16,7379	20,7446	21,3449
38,8021	10,8919	27,7216	16,6357	20,3350	22,0393
38,3500	10,7649	27,5095	16,9409	20,1947	21,8873
37,9880	11,1968	27,3570	16,8470		

			· -		
100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂	100 <i>m</i> ¹	100 m ₂
36,7911	10,3226	22,9575	17,6819	14,4267	23,7236
35,9969	10,0997	22,6185	17,4208	14,3235	23,5539
35,3538	10,6326	21,0688	18,9628	13,4743	24,5247
34,6883	10,4324	20,8101	18,7301	13,3817	24,3562
32,6318	12,1810	19,4315	20,1344	12,8733	24,9478
31,9733	11,9352	19,2244	19,9197	12,7093	24,6299
31,1146	12,6869	18,0855	21,1050	12,0225	25,4565
30,5429	12,4538	17,8946	20,8822	11,9468	25,2962
28,5955	14,2054	16,7193	22,1331	11,3939	25,9734
28,1305	13,9745	16,6280	22,0123	11,3542	25,8829
26,9001	15,1096	16,2399	22,4304	10,9884	26,3353
26,5048	14,8876	16,0842	22,2155	10,9217	26,1753
24,8850	16,4178	15,2061	23,1824	10,4881	26,7212
24,5144	16,1733	15,0799	22,9900	10,4320	26,5781

Tabela C 18 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N444][L-Phe] (1) + KNaC4H4O6 (2) + H2O, a 25 °C e pressão atmosférica.

			, -		
100 <i>m</i> ¹	100 <i>m</i> ²	100 <i>m</i> ¹	100 <i>m</i> ²	100 <i>m</i> ¹	100 m ₂
37,3829	10,0723	19,5916	19,9868	11,4122	26,2165
36,0198	9,7050	19,4071	19,7986	11,3581	26,0922
34,3138	11,1364	18,2049	21,0456	10,9371	26,6050
33,6659	10,9261	17,9681	20,7718	10,8739	26,4514
31,6465	12,6657	16,4292	22,4123	10,5103	26,9021
31,0965	12,4456	16,3030	22,2401	10,4613	26,7767
29,8009	13,5906	15,5228	23,0864	10,0086	27,3458
29,5313	13,4677	15,4465	22,9730	9,9631	27,2217
28,4228	14,4608	14,8784	23,5966	9,5826	27,7069
27,9987	14,2450	14,7635	23,4143	9,5116	27,5015
26,9742	15,1847	14,0588	24,2025	9,0143	28,1511
26,6328	14,9925	13,9504	24,0158	8,9712	28,0164
25,3083	16,2325	13,2246	24,8436	8,6700	28,4163
24,9182	15,9823	13,1338	24,6729	8,6488	28,3469
23,2584	17,5773	12,5697	25,3281	8,4103	28,6663
22,7903	17,2235	12,4901	25,1676	8,3760	28,5493
20,8328	19,1736	11,9368	25,8215	8,0533	28,9876
20,6006	18,9599	11,8669	25,6703	8,0171	28,8573

Tabela C 19 - Frações mássicas, % (m/m), obtidas experimentalmente para os sistemas constituídos por [N4444][D-Phe] (1) + KNaC4H4O6 (2) + H2O, a 25 °C e pressão atmosférica.

Anexo D – partição dos enantiómeros do ácido mandélico

Tabela D 1 – Pontos de mistura dos SABs constituídos por LIQs + Na₂SO₄ + H₂O utilizados nos estudos de partição do ácido mandélico e eficiências de extração dos enantiómeros R (*EE*_R %) e S (*EE*_S %) do ácido mandélico e excesso enantiomérico (*e.e.* %).

Fração mássica / % (m/m)								
LI	$[LI]_M \pm \sigma$	$[sal]_{M} \pm \sigma$	$[H_2O]_M \pm \sigma$	$[\mathbf{R}-\mathbf{A}\mathbf{M}]_{\mathbf{M}} \pm \boldsymbol{\sigma}$	$[S-AM]_M \pm \sigma$	$EE_{\rm R}$ % ± σ	<i>EEs</i> $\% \pm \sigma$	<i>e.e.</i> % ± σ
[N4444][L-Phe]	$24,95 \pm 0,09$	$9,94 \pm 0,01$	$63,\!48 \pm 0,\!07$	$0,82 \pm 0,01$	$0,81 \pm 0,01$	$82,1 \pm 5,6$	$78,3 \pm 4,6$	$2,6 \pm 0,1$
[N4444][D-Phe]	$25,27 \pm 0,20$	$9,85 \pm 0,05$	$63,25 \pm 0,25$	$0,81 \pm 0,01$	$0,81 \pm 0,01$	$73,7 \pm 4,2$	$69,3 \pm 3,5$	$3,0\pm0,7$
[N4444][L-Val]	$25,04 \pm 0,18$	$9,83 \pm 0,11$	$63,51 \pm 0,31$	$0,81 \pm 0,02$	$0,81 \pm 0,01$	$60,\!4\pm6,\!0$	$58,\!4\pm3,\!5$	$1,3 \pm 1,0$
[N4444][L-Ala]	$24{,}90\pm0{,}07$	$9{,}93 \pm 0{,}04$	$63,\!36\pm0,\!16$	$0{,}82\pm0{,}01$	$0{,}81\pm0{,}01$	$87,\!2\pm0,\!4$	$80{,}9\pm2{,}8$	$4,5 \pm 1,7$
[N ₄₄₄₄][L-Pro]	$24,\!85\pm0,\!45$	$10,\!19\pm0,\!47$	$63,\!33\pm0,\!04$	$0,\!82\pm0,\!03$	$0{,}81\pm0{,}01$	$92{,}3\pm4{,}5$	$86,2\pm4,9$	$4,4 \pm 1,2$
[N4444]2[L-Glu]	$\textbf{25,08} \pm \textbf{0,26}$	$9{,}95 \pm 0{,}07$	$63,\!37\pm0,\!17$	$0,\!83\pm0,\!01$	$0,\!81\pm0,\!01$	$79,5\pm5,8$	$63,1\pm5,4$	$12,\!4\pm2,\!0$

Tabela D 2 - Pontos de mistura dos SABs constituídos por LIQs + Na₂SO₄ + H₂O + CuSO₄ utilizados nos estudos de partição do ácido mandélico e eficiências de extração dos enantiómeros R (*EE*_R %) e S (*EE*_S %) do ácido mandélico e excesso enantiomérico (*e.e.* %).

	Fração mássica / % (m/m)								
LI	$[LI]_M \pm \sigma$	$[sal]_{M} \pm \sigma$	$[CuSO_4]_{M\pm}$ σ	$[H_2O]_M\pm\sigma$	$[\mathbf{R}-\mathbf{A}\mathbf{M}]_{\mathbf{M}}\pm\mathbf{\sigma}$	[S-AM] _M ± σ	<i>EE</i> _R % ± σ	<i>EE</i> s % ± σ	e.e. % ± σ
[N4444][L-Ala]	25,21 ± 0,04	$9,94 \pm 0,05$	$0,51 \pm 0,01$	$63,17 \pm 0,11$	$0,81 \pm 0,01$	$0,81 \pm 0,01$	$90,1 \pm 4,6$	$79,9 \pm 2,6$	$6,4 \pm 0,6$
[N4444][L-Pro]	$25,27 \pm 0,20$	$10,02 \pm 0,03$	$0,52 \pm 0,05$	$63,09 \pm 0,22$	$0,81 \pm 0,01$	$0,80 \pm 0,01$	$46,3 \pm 1,8$	55,9 ± 1,4	$-8,8 \pm 1,0$
[N4444]2[L-Glu]	24,88 ± 0,12	$9,87 \pm 0,05$	$0,49 \pm 0,01$	$63,58 \pm 0,15$	$0,82 \pm 0,01$	$0,81 \pm 0,01$	64,1 ± 0,2	$73,3 \pm 0,5$	-6,1 ± 0,1

		Fração mássica / % (m/m)						
Sal	$[LI]_{M} \pm \sigma$	$[sal]_{M} \pm \sigma$	$[H_2O]_M \pm \sigma$	$[\mathbf{R}-\mathbf{A}\mathbf{M}]_{\mathbf{M}} \pm \sigma$	$[S-AM]_M \pm \sigma$	$EER \% \pm \sigma$	<i>EEs</i> $\% \pm \sigma$	<i>e.e.</i> % ± σ
				[N4444][L-Phe]				
Na ₂ CO ₃	$24,90 \pm 0,03$	$10,11 \pm 0,21$	$63,37 \pm 0,18$	$0,80 \pm 0,01$	$0,82 \pm 0,01$	$86,3 \pm 0,2$	$82,2 \pm 1,7$	$1,6 \pm 0,6$
K_2CO_3	$24,63 \pm 0,17$	$11,14 \pm 0,05$	$62,61 \pm 0,12$	$0,81 \pm 0,02$	$0,81 \pm 0,01$	$64,3 \pm 3,7$	$55,2 \pm 1,9$	$8,0\pm0,5$
K ₃ PO ₄	$24,88 \pm 0,02$	$10,07 \pm 0,04$	$63,43 \pm 0,02$	$0,81 \pm 0,01$	$0,81 \pm 0,01$	$85,2 \pm 5,3$	$74,8\pm3,9$	$6,5\pm0,5$
K_2HPO_4	$24{,}91\pm0{,}03$	$9{,}80 \pm 0{,}07$	$63{,}66\pm0{,}16$	$0,\!82\pm0,\!01$	$0,\!82\pm0,\!01$	$94,0\pm1,8$	$73,6\pm1,0$	$9,2 \pm 0,4$
				[N4444][D-Phe]				
Na ₂ CO ₃	$25,\!14\pm0,\!15$	$9{,}86 \pm 0{,}02$	$63,\!38\pm0,\!17$	$0,81 \pm 0,01$	$0,81 \pm 0,01$	$66,7\pm0,8$	$63,1 \pm 1,6$	$3,1 \pm 0,3$
K_2CO_3	$24{,}99\pm0{,}01$	$10,\!04\pm0,\!13$	$63,\!34\pm0,\!14$	$0,82 \pm 0,01$	$0,81 \pm 0,01$	$74,5 \pm 2,1$	$65{,}8\pm2{,}8$	$6,6\pm1,1$
K ₃ PO ₄	$25,56 \pm 0,05$	$9,\!85\pm0,\!02$	$62{,}98 \pm 0{,}07$	$0,81 \pm 0,01$	$0,80 \pm 0,01$	$73,1\pm0,5$	$62{,}6\pm0{,}6$	$8,3\pm0,1$
K ₂ HPO ₄	$25,\!06\pm0,\!37$	9,98 ±0,13	$63,\!32\pm0,\!48$	$0{,}81\pm0{,}01$	$0{,}82\pm0{,}01$	$76{,}3\pm3{,}0$	$64,1 \pm 2,4$	$8,1\pm0,7$

Tabela D 3 - Pontos de mistura dos SABs constituídos por [N4444][L/D-Phe] + sal + H2O utilizados nos estudos de partição do ácido mandélico e eficiências de extração dos enantiómero R (*EE*_R %) e S (*EE*_S %) do ácido mandélico e excesso enantiomérico (*e.e.* %).