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Abstract

In this paper we consider an integrated berth allocation and quay crane assignment and
scheduling problem motivated by a real case where a heterogeneous set of cranes is considered.
A first mathematical model based on the relative position formulation (RPF) for the berth
allocation aspects is presented. Then, a new model is introduced to avoid the big-M constraints
included in the RPF. This model results from a discretization of the time and space variables.
For the new discretized model several enhancements, such as valid inequalities, are introduced.
In order to derive good feasible solutions, a rolling horizon heuristic (RHH) is presented. A
branch and cut approach that uses the enhanced discretized model and incorporates the upper
bounds provided by the RHH solution is proposed. Computational tests are reported to show
(i) the quality of the linear relaxation of the enhanced models; (ii) the effectiveness of the exact
approach to solve to optimality a set of real instances; and (iii) the scalability of the RHH based
on the enhanced mathematical model which is able to provide good feasible solutions for large
size instances.

keywords: Logistics; Berth allocation; Quay crane scheduling; mixed integer formulations;
branch and cut; rolling horizon heuristic.

1 Introduction

Maritime transportation is a major mode of transportation. Around 80% of global trade by
volume and over 70% of global trade by value are carried by sea and are handled by ports worldwide
[37]. Port activities involve several interrelated decisions, as berth assignment of vessels, quay crane
assignment and scheduling, cargo placement, etc. During peak periods of activity delays may occur
leading to large waiting costs. The request for operational efficiency at ports has motivated the
increase of research during the last decades on such optimization problems, which is even more
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visible during the last years with a rapid increase on the number of papers, some of them focused
on real applications. For a recent survey see [7].

This paper considers an integrated berth allocation and quay crane assignment and scheduling
problem occurring at a port whose main activities are related to short sea shipping operations.
For a given time period, a sets of vessels is considered. For each vessel the arrival time and cargo
quantity (to load or unload) are known. The objective is to manage the load and unload operations
in order to minimize the total service completion time. These operations are performed with a set
of cranes that transfer the cargo between the vessels and the storage area at the yard, as depicted in
Figure 1. This problem integrates two subproblems: the Berth Allocation Problem (BAP), which
aims to assign arriving vessels to berthing positions, and the quay crane assignment and scheduling
problem (QCASP) where cranes are assigned to vessels, and their operations are scheduled. The
complete problem is known by the acronym BACASP [41]. The storage management of the cargo
at the yard is not considered here.

The cranes are mounted on rails. This physical limitation creates operational restrictions on
the quay areas where each crane can operate, and enforces non-crossing constraints, that is, the
relative position of the cranes cannot be exchanged, see Figure 1. An additional complexity of this
real problem is the existence of a heterogeneous set of cranes types, with different processing rates.
The physical operational limitation of the cranes combined with the cranes efficiency, make some
berthing areas more attractive than others. Typically an area that is served by a more efficient crane
tends to be used more often than the other areas. Other physical aspects, such as the proximity to
the storage yard, the structure of the berth, may also influence berth allocation. See for example
[5]. This fact makes the BACASP that results from the integration of both subproblems (BAP and
QCASP) even more relevant than in the case of homogeneous cranes.

Figure 1: Example of a quay operation on three ships and seven cranes (five of them of one type
and the other two of other type), six of them operating.

Following the classical approach for BAP (see [16]), a time and space discretization is assumed.
The wharf is divided into sections of the same length. Contrary to the case of the discrete berth
allocation, where each vessel is assigned to a single berth position, in the continuous berth allocation
several adjacent sections are assigned to each vessel, corresponding to its length. The continuous
berth allocation assumption is more flexible and such flexibility is required in practical cases,
as the one we consider, where the wharf length is a binding restriction and the set of cranes is
heterogeneous.

As BACASP has many variants which depend on the assumptions made, next we list the
assumptions for our problem:
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1. A dynamic berth allocation where vessels are allowed to arrive any time within the planning
horizon but their arriving time is deterministic.

2. No service priorities are considered.

3. Vessels are allowed to moor at any place along the wharf, which is known in the literature as
the continuous berth allocation.

4. The berth is divided into berth sections of equal length.

5. The time horizon is divided into time periods of equal length.

6. A time-variant assignment of cranes, that is, a crane can be assigned to a vessel and move to
another vessel in the following period while the first vessel is still operating.

7. Non-crossing constraints and safety space between cranes must be obeyed.

Both subproblems BAP and QCASP have received great attention in the past years, see the
survey [6] and its follow-up [7] with a very recent overview and classification. As the integrated
problem is very complex many approaches consider the two problems separately. For the BAP see,
for instance, [16, 18, 19, 27, 30, 42, 46, 47]. For the QCASP see [4, 13, 14, 15, 25, 28, 29, 32, 35,
38, 40]. Some authors consider the travelling times of cranes when moving between quay positions,
see [25, 32]. Here we assume that such travelling times are negligible. Crane scheduling problems
at port terminals may occur not only at the quay area but at other areas, such as the storage area.
Although such storage management issues can be very complex, see for example [23, 22], here we
consider only the scheduling of the quay cranes. For a recent classification of the crane scheduling
problems see [9].

It is well-known that better solutions can in general be obtained by analysing all the decisions
together. The integrated problem has been considered before in several papers such as [3, 8, 10,
11, 17, 20, 21, 24, 26, 31, 34, 36, 39, 40, 41, 43, 44, 45, 48].

Next we briefly review some of the most relevant references for the integrated model. For a
more detailed information on the problem characteristics and approaches we suggest the very recent
work [21].

Park and Kim [34] present an integer programming model which is used in a two-phases solution
procedure. Ak [3] provides both a mathematical analysis and heuristics. Chang et al. [10] focus
on heuristic approaches: a rolling-horizon approach and a hybrid parallel genetic algorithm. Model
formulations and genetic algorithms are also presented by Imai et al. [20] and Liang et al. [26].
Meisel and Bierwirth [31] give several heuristic procedures including a construction heuristic, local
refinement procedures, and two meta-heuristics. Heuristic procedures are developed also by Zhang
et al. [44] (a subgradiente based heuristic) and by Yang et al. [48] (an evolutionary algorithm).
Blazewicz et al. [8] consider the integrated problem as a scheduling problem where tasks are
considered the ships and processors are the quay cranes. Giallombardo et al. [24] consider a MILP
model to solve small instances and a Tabu search heuristic for generating feasible solutions. Raa et
al. [36] present a formulation that is used in a hybrid heuristic solution procedure. Song et al. [39]
follow a bi-level programming approach where the BAP is considered in the upper-level problem
and the QCASP is considered in the lower-level. Recently a constraint programming approach was
followed by Zampelli et al. [45]. In a different perspective, Han et al. [17] consider the case with
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uncertainty on the vessel arrival times. They propose a mixed integer programming model, and
use a simulation based genetic algorithm search procedure to generate robust solutions. Chen et
al. [11] propose a Benders decomposition method over the berth-level model introduced by Liu et
al. They also use valid inequalities to improve the mathematical model. [29]. Vacca et al. [43]
propose a model based on an exponential number of variables that is solved with a branch-and-price
scheme.

More recently, Turkogullari et al. [41] present a mathematical model for QCASP assuming
a time-invariant quay crane assignment policy. First they solve the model considering only the
number of cranes assigned to each vessel and then they extend the approach to general assignment
case. Iris et al. [21] propose new set partition models and provide variable reduction techniques.
Their improved models are compared with the one given in [31]. Both time-invariant and time-
variant problems are considered.

The development of commercial solvers combined with the use of integer programming theory
to create tuned models has been allowing to solve an increasing number of practical problems.
The trend is to increase the size of those instances that can be solved to optimality using such
exact tools. When the problems are not solved to optimality, these tuned models can often be
used within heuristics. Following such line of research, in this paper we present and discuss mixed
integer formulations to model the integrated problem with a heterogenous set of cranes. Those
formulations are used within a branch and cut algorithm which can be used either to solve the
problem instances directly or within heuristic schemes.

It is well-known that the performance of the exact methods such as the branch and bound
and the branch and cut depend on the quality of the bounds (lower and upper) to the optimal
solution. In a minimization problem, the quality of the lower bounds depend on the quality of the
formulation, that is, depend on how distant is the linear relaxation value to the optimum value.
The quality of the upper bound depend on the distance between the value of the feasible solution
to the optimum value. If the bounds are bad, the number of nodes in the enumeration search
tree of these exact methods tend to be large, making those exact approaches unattractive from
a practical point of view. Conversely, if the formulation provides tight lower bounds and a good
feasible solution is known, one can expect that the search tree nodes are pruned at early stages of
the enumeration scheme. Hence, in this paper we address the two issues: (i) how to derive good
mixed integer formulations, and (ii) how to derive good upper bounds. Next, we consider each case
separately and relate it with the literature.

Lower bounds. For the continuous BAP, the classical formulations are the well-known Relative
Position Formulation (RPF) and the Position Assignment Formulation (PAF) that are based on
the space-time diagram [16]. The RPF uses variables that order each pair vessels in time and space,
separately, while the PAF uses variables that assign blocks of the space-time diagram to each vessel.
A RPF is used in [31] for an integrated berth and crane allocation problem. The main drawback
of these formulations are the big-M constraints used to link the variables. Those constraints lead
to models with very weak linear relaxation based lower bounds. Although the PAF avoids some of
those constraints, it includes many more variables. For a detailed analysis of these formulations see
[3, 16]. New formulations have been used recently where the binary variables are associated with
an assignment of a vessel to a berth position, a time period and a number of cranes [21, 41, 43].
Such formulations, known as Set Partition Formulations (SPF), are known to be tighter and avoid
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the big-M constraints. However they originate an exponential number of variables and can only be
used directly to solve small size instances of simpler problems, such as the discrete berth assignment
(where the number of berth positions is small and it is not necessary to enforce a vessel to occupy
adjacent berth sections) and the case of time-invariant quay crane assignment (where the schedule
of the cranes is ignored, and only the number of cranes assigned to the vessel is relevant). Even
for such less complex problems, solving instances to optimality may require the use of column
generation based techniques such as the branch and price algorithm, see [43].

Here we propose a new formulation that uses variables that discretize the integer variables used
in the RPF (the berth sections and the time). This new model will be named as discretized RPF
and to the best of our knowledge it has never been used before. This model has the advantage
of avoiding the big-M constraints and to avoid the large number of variables used in the SPF.
Additionally, families of valid inequalities are introduced to enhance the discretized formulation.
The use of valid inequalities is not common within recent literature in BAP and QCSP. Exceptions
are [11, 32, 41] that introduce valid inequalities which are not directly related to the ones we
introduce in this paper and cannot be directly used here. As a result of these model improvements,
the linear relaxation of the new formulation produces much better lower bounds than the linear
relaxation of the RPF, as it is shown in Section 6. Both the discretized formulation and the valid
inequalities can be used for the heterogeneous and homogeneous cranes cases. For the homogeneous
cranes case, a family of valid inequalities becomes the classical cover inequalities.

Upper bounds. In order to obtain good upper bounds we introduce a rolling horizon heuristic.
The heuristic solves a sequence of restricted subproblems. In each iteration a new subproblem is
considered by including a set of a given number of arriving vessels and freezing some decisions taken
in relation to the previous vessels. These restricted subproblems are solved by a branch and cut
algorithm based on the enhanced discretized model. A Rolling horizon strategy was used in [10]
for a related problem with different assumptions.

The heuristic can be used either to provide good upper bounds that are used as cutoff values
to speed up the branch and cut algorithm, or to provide good feasible solutions for the large size
instances when the exact approach fails.

The computational results show that a commercial solver based on the discretized formulation,
enhanced with valid inequalities, and feeded up with the solution of the rolling horizon heuristic
solves all the instanced based on real data to optimality. Moreover, the three main contributions of
this paper: (i) a new discretized model for the set of feasible solutions of the BAP; (ii) the inclusion
of valid inequalities, and (iii) the rolling horizon heuristic, are valid both for the heterogeneous and
homogeneous cranes case and can be easily adapted to related problems.

In Section 2 we introduce the complete mixed integer model for the BACASP. For the berth
allocation aspects, the model follows [3]. Then, in Section 3, we introduce a new model for berth
allocation which avoids the big-M constraints of the classical RPF. Enhancements, mainly based on
derivation of valid inequalities, are discussed in Section 4. In Section 5 the rolling horizon heuristic
is introduced. In Section 6 we report the computational results that compare the different models
and test the heuristic.

These testes include the study of the homogeneous quay cranes case. Finally, some conclusions
and future research directions are given in Section 7.
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2 The integrated quay allocation and crane assignment formula-
tion

In this section we introduce a formulation for the BACASP. We break the formulation into the
two parts: the Berth Allocation (BA) formulation and the Quay Crane Assignment and Scheduling
(QCAS) formulation. This eases the presentation and allow us to discuss the reformulation of BA
independently, as this is one of the main contributions of this paper.

BA formulation

In order to model the BA we use the time-space diagram. The wharf is divided into J berth
sections and the time horizon is divided into M periods. There are two classical formulations based
on the time-space diagram, the Relative Position Formulation (RPF) and the Position Assignment
Formulation (PAF) [16]. Here we follow the RPF since the number of variables is smaller.

Consider the following sets.

V = {1, . . . , N} is the set of ships, with indices k, `,

T = {0, . . . ,M} is the time horizon, with indices i, j,

B = {0, . . . , J} is the set of berth sections, with indices n, m.

And define the following parameters:

Ak is the arrival time of vessel k, k ∈ V ,

Hk is the length of vessel k measured in number of berth sections, k ∈ V ,

F safety time between the departure of a vessel and the berthing of a new one, measured in

number of time units.

As in [3, 16, 31] we define the following variables:

xk` =

{
1, if ship ` berths after ship k had departed

0, otherwise
, k, ` ∈ V,

yk` =

{
1, if ship ` berths below the berth position of ship k

0, otherwise
k, ` ∈ V,

bk berth position of vessel k, for k,∈ V,
tk berthing time of vessel k, for k,∈ V,
ck departing (completion) time of vessel k, for k,∈ V .

The x and y variables are binary and model the relative position of vessels. The remaining variables
are integer.
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The set of constraints is given by:

x`k + xk` + y`k + yk` ≥ 1, k, ` ∈ V, k < `, (1)

x`k + xk` ≤ 1, k, ` ∈ V, k < `, (2)

y`k + yk` ≤ 1, k, ` ∈ V, k < `, (3)

t` ≥ ck + F + (xk` − 1)M, k, ` ∈ V, k 6= `, (4)

bk ≥ b` +H` + (yk` − 1)J, k, ` ∈ V, k 6= `, (5)

tk ≥ Ak, k ∈ V, (6)

bk ≤ J −Hk, k ∈ V, (7)

bk, tk, ck ∈ Z+
0 , k ∈ V, (8)

xk` ∈ {0, 1}, yk` ∈ {0, 1}, k, ` ∈ V, k 6= `. (9)

Constraints (1) - (3) are the usual constraint enforcing each pair of ships not to overlap either in
time or space. Constraints (4) relate the time variable of two vessels tl, ck, xkl and (5) relate the
space variable of two vessels. Constraints (4), (5) also enforce the definition of variables xkl, ykl.
Constraints (6), (7) define the range of variables representing the time and space allocation of
vessels, constraints (8) define the integer variables and constraints (9) define the binary variables.

QCAS formulation

Quay cranes are mounted along the same berth and operate on a common set of rails. This
prevents quay cranes from passing each other at any time. The set of cranes is assumed to be
heterogeneous with different processing rates. Several cranes can be assigned to the same ship and
each crane can change its position at the beginning of each time period. For instance, a crane
can be assigned to a ship and then move to another ship while the previous one is still being
loaded/unloaded. All these assumptions make the model more flexible.

Let G = {1, . . . , | G |} be an ordered set of cranes where g, g′ ∈ G and g < g′ means that crane
g has an operating range lower (in term of berth position) than crane g′. We assume a crane can
be assigned to a vessel if the vessel is berthed within the range interval of the crane.

Let us define the following parameters:

Qk cargo volume to be operated in vessel k, for k,∈ V ;

Pg processing rate of crane g for each time period, for g ∈ G;

[Sg, Eg] range interval of crane g, for g,∈ G;

and the binary crane assignment variables,

zjgk =

{
1, if crane g is assigned to ship k in time period j

0, otherwise
, g ∈ G, k ∈ V, j ∈ T.
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The set of constraints is the following:∑
k∈V

zjgk ≤ 1, j ∈ T, g ∈ G, (10)

tk ≤ jzjgk + (1− zjgk)M, j ∈ T, k ∈ V, g ∈ G, (11)

ck ≥ (j + 1)zjgk, ∀j ∈ T, k ∈ V, g ∈ G, (12)∑
j∈T

∑
g∈G

Pgz
j
gk ≥ Qk, k ∈ V, (13)

bk +Hk ≤ Egz
j
gk + (1− zjgk)J, j ∈ T, k ∈ V, g ∈ G, (14)

bk ≥ Sgzjgk, j ∈ T, k ∈ V, g ∈ G, (15)

zjgk + zjg′` ≤ 2− yk`, j ∈ T, k, ` ∈ V, g, g′ ∈ G, g′ < g, (16)∑
g∈G

zjgk ≤ NCk, k ∈ V, j ∈ T, (17)

zjgk ∈ {0, 1}, k ∈ V, g ∈ G, j ∈ T. (18)

Constraints (10) ensure that in each time period each crane is operating at most one vessel. Con-
straints (11) guarantee that a crane can be assigned to a vessel only after its arrival, while constraints
(12) ensure that if a crane was operating vessel k in time period j, then this vessel can only depart
after the end of time period j (ck ≥ j + 1). Constraints (13) guarantee that the assigned cranes
to vessel k suffice to operate all the cargo of that vessel. Constraints (14) and (15) ensure that a
crane can be assigned to a vessel if and only if the vessel is berthed within the range of the crane.
Constraints (16) prevent cranes from passing each other at any time period. If g′ < g then crane g′

must be assigned to a lower berth section than crane g, thus if ykl = 1, meaning vessel k is assigned
to a berth position lower than the berth position of l, cranes g and g′ cannot be assigned to vessel
k and l, simultaneously. Constraints (17) impose a maximum number of cranes, denoted by NCk,
assigned to vessel k and allow to consider safety distance between cranes. Finally, constraints (18)
define variables zjgk as binary.

Objective function

The objetive is to minimize the service completion time:

min
∑
k∈V

ck (19)

The model (1) - (19) will be denoted by RPF (Relative Position Formulation) and the set of
feasible solutions will be denoted by XRPF .

This problem has many alternative optimal solutions that can be obtaining by exchanging cranes
of the same type between vessels. From the practical point of view it is desirable to minimize the
unnecessary crane movements. In order to minimize the crane movements without deteriorating
the quality of the optimal solution one can solve a new crane schedule problem on the z variables
where all variables x, y, b, t, c are fixed to their values in the the optimal solution. Since this problem
was solved very efficiently for all tested instances by branch and cut using a commercial solver, we
provide the model in the Appendix and omit further discussion on it.
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3 A discretized reformulation for the BA

The model (1) - (9) for the BA is very weak since it is based on the big-M constraints (4) and (5).
As it is well-known such constraints provide poor linear relaxation lower bounds. Here we propose
a reformulation that avoids the use of those constraints by introducing new variables which result
from a discretization of time, tk, and space, bk, variables. Such discretization technique has been
successfully employed in other optimization problems to derive tighter formulations (formulations
that provide better lower bounds), see for instance an application to lot-sizing problem in [12].
Within berth allocation and quay crane assignment such technique is not common.

We first consider the case of the berth aspects. As the vessels’ length is known in advance this
case is simpler than the case of the time aspects, where the operating time of a vessel depends on
the cranes assignment and schedule.

Discretizing berth variables

Consider the new binary variables πkn and σkn defined as follows:

πkn =

{
1, if the first (lower) berth position of vessel k is n

0, otherwise
, k ∈ V, n ∈ B,

σkn =

{
1, if berth section n is assigned to vessel k

0, otherwise
, k ∈ V, n ∈ B.

Variables πkn are related with variables bk through the equations:

bk =
∑
n∈B

nπkn, k ∈ V (20)

Additionally, the following set of constraints is added:∑
n∈B

σkn = Hk, k ∈ V, (21)∑
n∈B

πkn = 1, k ∈ V, (22)

πkn ≥ σkn − σk,n−1, k ∈ V, n ∈ B,n > 1 (23)

πk1 ≥ σk1, k ∈ V, (24)

πkn ≤ σkn, k ∈ V, n ∈ B, (25)

πkn ≤ 1− σk,n−1 k ∈ V, n ∈ B,n > 1, (26)

yk` +

J∑
m=max{n−H`+1,0}

πkm + π`n ≤ 2, k, ` ∈ V, k 6= `, n ∈ B, (27)

πkn, σkn ∈ {0, 1}, k ∈ V, n ∈ B. (28)

Constraints (21) ensure that the number of berth sections assigned to vessel k coincides with its
length. Constraints (22) state that there must exits a first (lower) berth position assigned to each
vessel. Constraints (23)-(26) relate the two new sets of variables. Constraints (23) ensure that
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πkn must be one if σkn = 1 and σk,n−1 = 0, that is, if berth section n is assigned to vessel k
but berth section n − 1 is not. Conversely, constraints (25) and (26) enforce πkn to be zero when
either σkn is zero or σk,n−1 is one, respectively. Constraints (27) are binding only if yk` = 1 since∑J

m=max{m−H`+1,0} πkm ≤ 1 and π`n ≤ 1. These constraints ensure that if the berth position of
vessel k is lower than the position of vessel ` (yk` = 1), and if the starting berthing position of
vessel ` is n (π`n = 1), then starting berthing position of vessel k cannot be located in the interval
[n−H` + 1, J ].

The new set of variables can also be related with the crane assignment variables through the
constraints

zjgk ≤
Eg−Hk∑
n=Sg

πkn, k ∈ V, g ∈ G, j ∈ T, (29)

which ensure that if crane g is assigned to vessel k, (zjgk = 1 for some time period j), then vessel
k is berthed within the range of crane g. If (29) are added, then (14) and (15) can be removed.
Preliminar results showed that keeping those constraints provide better results so we keep them in
addition to (29).

Discretizing time variables

Next we consider the case of time constraints. Consider the following variables:

αj
k =

{
1, if vessel k starts operating in time period j

0, otherwise
, k ∈ V, j ∈ T,

βjk =

{
1, if vessel k is operated in time period j

0, otherwise
, k ∈ V, j ∈ T.

We assume αj
k = βjk = 0 when k ∈ V, j ∈ T, j < Ak. Variables tk are related with variables αj

k in
the following way:

tk =
∑
j∈T

jαj
k, k ∈ V. (30)

The set of additional constraints is similar to the case of the space discretization.

ck ≥ (j + 1)βjk, k ∈ V, j ∈ T, (31)

zjgk ≤ β
j
k, k ∈ V, j ∈ T, g ∈ G, (32)∑

j∈T
αj
k = 1, k ∈ V, (33)

αj
k ≥ β

j
k − β

j−1
k , k ∈ V, j ∈ T, j > 1, (34)

α1
k ≥ β1k, k ∈ V, (35)

αj
k ≤ β

j
k, k ∈ V, j ∈ T, (36)

αj
k ≤ 1− βj−1k , k ∈ V, j ∈ T, j > 1, (37)

xkl + βik + βjl ≤ 2, k, l ∈ V, k 6= l, j, i ∈ T, i ≥ j − 1, (38)

αj
k ∈ {0, 1}, β

j
k ∈ {0, 1}, k ∈ V, j ∈ T. (39)
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Since the meaning of these constraints is similar to the ones given for the discretized berth
allocation subproblem we explain in detail only those that are different, that is, the non-overlapping
constraints (38) because the operating time of the vessel is an output of the model, therefore it is
not possible to replicate the spatial non-overlapping constraints (27). Constraints (38) are binding
only if xk` = 1. In this case, since vessel k is served before vessel l, then if vessel l berths at time
period j, vessel k cannot be served in time interval [j − 1, J ].

We denote the model obtained by replacing constraints (4) and (5) by (20) - (39) by DRPF
(Discretized Relative Position Formulation) and the set of feasible solutions by XDRPF .

Observe that variables tk, bk could now be dropped from the model. Overall, in order to avoid
the big-M constraints (4) and (5) model DRPF has more variables and constraints. The difference
is mainly on the modelling of the BAP. For this subproblem the RPF has O(max{V 2,M, J}) vari-
ables and O(V 2) constraints while the DRPF has O(max{V 2, V M, V J}) variables and O(V 2M2)
constraints.

It is worth of notice that including the discretized variables in the RPF using equations (20)
and (30) will not lead to a tighter model. Only the use of the information provided by those new
variables has allowed us to derive new and tighter constraints.

4 Enhancements

In this section we discuss different enhancements on the DRPF to improve the performance
of the branch and cut algorithm implemented in a commercial solver using the default options.
Some enhancements were not clearly effective from the computational point of view. For instance,
constraints (38) are large in number and one can add them dynamically in order to reduce the size
of the model. In order to add dynamically the original and weaker constraints (38) are kept to
ensure feasibility of the solutions. For the tested instances this approach was not clearly effective.
Next we discuss only those that were effective from the computational point of view.

Additional tightening with new variables

A first approach is to discretize the ck variables by introducing new binary variables γjk, k ∈
V, j ∈ T, that indicate whether the last time period vessel k is operated is j or not. Although this
discretization is not required to eliminate big-M constraints, new inequalities can be derived using
the information of the new variables.

The new variables are related with variables βjk through the following constraints:

γjk ≥ β
j
k − β

j+1
k , k ∈ V, j ∈ T, j < M, (40)

γ1k ≥ βMk , k ∈ V, (41)

γjk ≤ β
j
k, k ∈ V, j ∈ T, (42)

γjk ≤ 1− βj+1
k , k ∈ V, j ∈ T, j < M, (43)∑

j∈T
γjk = 1, k ∈ V, (44)

γjk ∈ {0, 1}, k ∈ V, j ∈ T. (45)
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Constraints (40) - (43) have a similar meaning as (34) - (37) with the necessary changes, namely
(40) forces γjk to one if βjk = 1 and βj+1

k = 0. Inequalities (41) have the same meaning but for the last

time period. Inequalities (42) and (43) enforce γjk to zero if either βjk = 0 or βj+1
k = 1. Constraints

(44) ensure that there must exist a final operating period assigned to each vessel. Constraints (45)
state that the new variables are binary.

Using the discretized variables γjk, ck can be defined by the following equations:

ck =
∑
j∈T

(j + 1)γjk, k ∈ V. (46)

Time inequalities

As stated above, the use of the information provided by the discretized variables will allow us
to derive new valid inequalities. Next a new set of inequalities is derived by relating ck with the
berthing time tk and the discretized variables βjk.

ck ≥ tk +
∑
j∈T

βjk k ∈ V, g ∈ G (47)

This equation says that the departing time is equal to the starting time plus the number of periods
vessel k was operated. If tk are removed from the model, then (47) can be written in the following
equivalent format.

ck ≥
∑
j∈T

jαj
k +

∑
j∈T

βjk, k ∈ V, g ∈ G

Valid inequalities from an integer knapsack relaxation

A relaxation of the feasible sets XRPF and XDRPF can be obtained for each k ∈ V from the
knapsack constraint (13):

∑
j∈T

∑
g∈G Pgz

j
gk ≥ Qk. Let L denote the set of different crane types

(each crane type corresponds to a processing rate) and consider a partition of G accordingly to
that set of cranes types: G = G1 ∪G2 ∪ · · · ∪GL. The knapsack constraint can be written as

L∑
t=1

PtYt ≥ Qk

where Pt is the rate of a crane of type t, and the integer variable Yt =
∑

g∈Gt

∑
j∈T z

j
gk is the number

of time periods that cranes of type t are assigned to vessel k. In our case there are two types of cranes
(corresponding to two distinct processing rates), thus we obtain the following 2-integer knapsack
set.

XK =
{

(Y1, Y2) ∈ Z2 | P1Y1 + P2Y2 ≥ Qk, Y1, Y2 ≥ 0
}
.

Valid inequalities for XK can then be converted into valid inequalities for XRPF . The strongest valid
inequalities are the facet-defining inequalities which, for such sets, can be derived in polynomial
time, see [1]. The coefficients of these inequalities are obtained, in general, using the euclidian
algorithm. The number of facet-defining inequalities is polynomial.
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Example 4.1. Suppose Qk = 2800 tones, for some k ∈ V, and P1 = 250 tones/hour and P2 = 320
tones/hour. So XK = {(Y1, Y2) ∈ Z2 | 250Y1 + 320Y2 ≥ 2800, Y1, Y2 ≥ 0}. The segment line
250Y1 + 320Y2 = 2800 is drawn by a dashed line in Figure 2. As it is shown in Figure 2, conv(XK)
has three non-trivial facet-defining inequalities: Y1 + 2Y2 ≥ 12, 7Y1 + 9Y2 ≥ 79, and Y1 + Y2 ≥ 9.
These facets are easily derived from the extreme points in conv(XK). The extreme points are
computed as follows. Two extreme points are trivially obtained setting one of the coordinates to
zero: (0, d2800320 e) = (0, 9) and (d2800250 e, 0) = (12, 0). Starting from each one of these points a sequence
of extreme points is obtained using vectors (pi,−qi) and (−uj , vj). These vectors are obtained from a
variant of the Euclidean algorithm applied to the integers 250 and 320 and satisfying the following
approximation p1/q1 < p2/q2 < · · · < pk/qk = 320/250 = ur/vr < · · · < u1/v1. In the case of
the example the (p,−q) vectors obtained are (1,−1), (5,−4), (14,−11), (23,−18), (32,−25) and the
(−u, v) vectors are (−2, 1), (−3, 2), (−4, 3), (−9, 7), (−32, 25). Starting from (0, 9), vectors (p,−q)
are tested in sequence to check whether another extreme point is obtained. In this case only vector
(1,−1) leads to the extreme points (1, 8). Starting from the point (12, 0) and using vectors (−u, v)
we obtain the other extreme point (10, 1) with vector (−2, 1). Then, starting from (10, 1), we obtain
the extreme point (1, 8) again using the vector (−9, 7). The vectors (1,−1), (−2, 1), (−9, 7) originate
the coefficients of the three non-trivial facet-defining inequalities. For other instances, the number
of facets can be greater or lower than the case we illustrate here. That number depends on the
coefficients of the knapsack inequalities. The possible facet-defining coefficients are the p, q and the
u, v values.

Y1

Y2

1 2 3 4 5 6 7 8 9 10 11 12 130

1

2

3

4

5

6

7

8

9

10

Figure 2: Facet-defining inequalities for conv({(Y1, Y2) ∈ Z2
+ | 25Y1 + 32Y2 ≥ 280}).

Knapsack inequalities can be added a priori to the models or added dynamically, that is,
an inequality is added when the fractional solution violates such inequality. As the number of
inequalities is small we opted by include them a priori.

New inequalities can derived by aggregating the cargo of a set of vessels. Let S ⊆ V. Then
the following 2-integer knapsack constraint is obtained P1Y1(S) + P2Y2(S) ≥ Q(S) where Q(S) =∑

k∈S Qk and Yt(S) =
∑

g∈Gt

∑
j∈T

∑
k∈S z

j
gk, t ∈ {1, 2}, and new inequalities can be derived.
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The facet-defining inequalities for the 2-integer knapsack sets can also be extended to the case
where more than two types of cranes are considered by lifting, see [2].

Time-windows

If time-windows are not given in advance, constructing tight time-windows for the service of
each vessel allow us to handle with large size problems. In particular the number of z variables can
be kept under control.

Here we consider time-windows for the start of service time Ak ≤ tk ≤ Tk and for the end of
service time Ak + PKk ≤ ck ≤ Ck. Parameter PKk is the minimum time required to serve vessel
k and can be easily computed. Given an upper bound z on the optimal value, the value Tk (resp.
Ck) can be computed by providing an lower bound zTk for the case tk > Tk (resp. zCk for the case
ck > Ck) such that zTk ≥ z (resp. zCk ≥ z). A good feasible solution can be easily obtained using
the heuristic given in Section 5. The lower bound can be obtained by solving a relaxation of the
restricted set with tk ≥ Tk + 1 (resp. ck ≥ Ck + 1). A weaker but easily computable bound can be
derived for each vessel k as follows. Let c` = A` +PK` denote the lower completion time for vessel
`. Then take zTk =

∑
`∈V c` + (Tk −Ak) and zCk =

∑
`∈V c` + (Ck − ck).

Branching priorities

It is well known that branching decisions can have a great impact on the performance of the
branch and cut algorithm. Base on preliminar tests we chose to give branching priority to variables
xkl and ykl.

5 Rolling Horizon Heuristic

The enhanced formulation will allow to solve small/medium practical problems but will certainly
fail to solve large size instances. We also have observed from preliminar computational tests that
for some instances the solver was not able to find any feasible solution quickly. In order to handle
with these two issues we propose a Rolling Horizon Heuristic (RHH) where each subproblem is
solved by a branch and cut based on the enhanced formulation.

The main idea of the RHH is to split the planning horizon into smaller sub-horizons, and then
repeatedly solve tractable subproblems for each sub-horizon. Such heuristic scheme fits well the
dynamic problem where the decisions concerning the last vessels arriving have little connection
with those decisions for the first arriving vessels.

At each iteration k of the RHH a new subproblem is chosen. This subproblem is defined by
the inclusion of a new set of vessels. The number of vessels included in each iteration is fixed and
denoted by nv. Therefore, the time horizon of these subproblems is not constant, but it depends on
the last arrival time of the new vessels being considered. When moving from iteration k to iteration
k + 1 the next nv arriving vessels are considered. The berth locations of the vessels considered in
the previous k iterations are freezed. The time variables, and the cranes schedule and assignment
are freezed in part of the previous time horizon and kept free during the last ut time units of
that horizon. Hence, in iteration k + 1 a restricted problem is solved where the berth decision are
considered only for the new nv vessels and part of the scheduled decisions are fixed. See Figure 3.
The details of the RHH are given in Algorithm 1.
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Figure 3: The rolling horizon heuristic, where FBT means freeze berth and time variables, FB
means freeze berth variables, and free means all the variables are free.

Algorithm 1 Rolling horizon heuristic

1: nv ← number of new vessels to consider in each iteration
2: nt← number of time periods to consider for each subproblem after the arrival time of the last

vessel
3: ut ← number of time periods to consider for each subproblem before the arrival time of the

first new vessel
4: LT = Anv + nt← limited time horizon of the first subproblem
5: U ← number of iterations to cover the planning horizon
6: solve the first subproblem defined for nv vessels and with time horizon LT
7: for all k = 2 . . . U do
8: Fix x, y, b, π, σ variables for vessels 1, . . . , (k − 1) ∗ nv
9: Fix t, z, α, β for vessels 1, . . . , (k − 1) ∗ nv and time periods 1, . . . , LT − ut

10: LT ← Ak∗nv + nt
11: Solve the restricted mixed integer problem for k ∗ nv vessels and LT time periods
12: end for

In each iteration of the RHH the subproblem is solved using the branch and cut based on the
DRPF with the enhancements described in Section 4.

Considering nv = N the complete model is solved in one iteration. For the case nv = 1 the
RHH resembles a greedy algorithm where at each iteration the berth position of a vessel is fixed
but the time and quay crane assignment decisions are not fixed.

6 Computational results

In this section we report the computational results obtained on 21 instances. The formulations
were written in Mosel and implemented in Xpress-IVE Version 1.24.06, with 64 bits. All the tests
were run on a computer with a CPU Intel(R) Core i7, with 16GB RAM and using the Xpress
Optimizer Version 27.01.02 with the default options.
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6.1 Test Cases

We consider two sets of instances based on real data extracted from a practical problem occurring
at a multi-use terminal of a port devoted to short sea shipping operations. The terminal is mainly
used for bulk cargo operations of products such as steel, cement, cereals. The physical aspects as
the quays length, the number of cranes, their relative position and efficiency are obtained from real
data. All the instances consider 7 cranes and 34 berth sections. Six cranes have the same capacity
and another crane has a larger capacity. As the processing rates cannot be obtained directly from
the capacities, we used the historical data to estimate the processing rates. For the lower capacity
cranes the rate estimated is 263.6 ton/hr and for the larger capacity crane the estimated rate is
319 ton/hr. The time period was set to one hour and each berth section is 25 meters. The vessels’
size and operated cargo amounts are also based on real data. The vessel sizes vary between 6 to
9 berth sections (which includes the safety distances) and the cargo varies between 3,000 tons to
8,800 tons. Other details on the practical problem can be found in [33].

The first test set includes the 9 instances and was built to test and tune the mathematical
models. These instances are made harder than the real instances by shortening the interval between
arrival times of the vessels. Table 1 gives the details of these instances. Also, preliminar tests have
shown that the problem becomes much harder when several ships arrive at the same time (which
is not common in the real situation) creating a congestion. Instances I3, I5, I7, I9 were created
assuming that the first four vessels arrive at the beginning of time horizon. A limit of 4 cranes
(NCk = 4) was assumed.

Table 1: Small test instances based on real data.
Instance | V | M

I1 7 50
I2 8 55
I3 8 55
I4 10 60
I5 10 60
I6 12 65
I7 12 65
I8 15 65
I9 15 65

The second test set, has 12 instances and it is based on large size instances with a time horizon
of one week (168 hours). Instances are labeled as nt, where n indicates the number of vessels and
t is the version. For each value of n three instances are generated. So t can assume values a, b, c.
For this set of instances, the arrival times are randomly generated in the interval [0, 150]; the ship
lengths are randomly generated in the set {6, 7, 8, 9}.

6.2 Computational experiments and results for the hard instances

In this section we report some of the main results obtained with the conducted computational
experimentation on the first set of instances. These tests allowed us to compare the models and
derive solutions approaches that will be used in the second set (larger size) of instances.

In Table 2 we provide the optimum value for each instance (column Opt); the linear relaxation
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value (LR) and the linear gap (Gap) obtained using models RPF (columns RPF), DRPF (Columns
DRPF), and the enhanced DRPF (columns DRPF+), which includes the additional variables γjk
and the corresponding constrains, inequalities (47), the knapsack inequalities derived for each vessel
and for the set of all vessels. We can observe that the RPF model based on big-M constraints is
very weak providing poor lower bounds. The two discretized models are much tighter than the
RPF model and the linear gap of the enhanced model is, in average, 2.3% lower than the linear
gap of DRPF.

Table 2: Linear relaxation bounds using the different models.

Instance Opt
RPF DRPF DRPF+

LR Gap LR Gap LR Gap

I1 125 3.8 97.0 112.6 9.9 116.7 6.6
I2 221 7.1 96.8 202.95 8.2 207.4 6.2
I3 128 7.1 94.4 103.89 18.8 108.2 15.5
I4 327 10.6 96.8 301 8.0 307.3 6.0
I5 202 10.0 95.1 169.4 16.1 174.8 13.5
I6 439 10.7 97.6 410.2 6.8 417.3 5.2
I7 281 12.2 95.6 244 13.2 251 10.7
I8 559 14.9 97.3 523.6 6.3 532 4.8
I9 504 17.9 96.5 458.1 9.1 466.4 7.5

Average 96.3 10.7 8.4

In Table 3 we provide the results (best feasible solution found, denoted by BFS, and the running
time in seconds, denoted by Time) obtained with the RHH for nv = 1, nv = 3 and nv = 5, which are
denoted by RHH1, RHH3 and RHH5, respectively. When the number of vessels nv is increased, the
running times also increase since each subproblem tends to be more difficult to solve. The running
times for RHH1 are always below one minute, while the running times for the RHH3 depend on the
problem difficulty. Considering the best feasible solution found, RHH5 was able to find the optimal
solution in 8 instances and provided a better solution than RHH1 in 5 instances. However, RHH1
determines all the optimal solutions, except for instance I2, when we restrict the analysis to those
instances that have not been made hard by creating a congestion artificially. As conclusion, RHH1
is fast and provides very good lower bounds in general, while RHH5 is more time consuming than
RHH1 but may lead to better solutions when there is congestion at port.

Next, in Table 4 we compare the models RPF and the enhanced model DRPF with the branch
priorities and with the inclusion of the upper bound provided by the heuristic RHH5 (denoted by
DRPF++). Columns BFS, BLB, Gap, Time, represent the Best Feasible Solution, Best Lower
Bound, linear Gap, and running time, respectively. The running time was limited to one hour.
BFS, BLB and Gap are the values obtained at the end of the running time. The running times
for DRPF++ do not include the running time of heuristic RHH5. For DRPF++ we used a time
window of 24 hours for each vessel (allowing the start of service to be delayed at most by one day,
and the end-of-service to occur at most one day after the earliest possible end-of-service time ck).
For all the 9 tested instances the interval considered suffices to prove optimality. An * means no
feasible solution was found within one hour.

We can see that using RPF none of the instances were solved, although in two of them the
optimal solution was obtained. The lower bounds at the end of one hour are very low.
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Table 3: Rolling Horizon Heuristic with nv = 1, nv = 3 and nv = 5.

Instance
RHH1 RHH3 RHH5

BFS Time BFS Time BFS Time

I1 125 1 125 18 125 12
I2 222 3 221 19 221 61
I3 130 14 131 87 128 1126
I4 327 14 327 43 327 78
I5 203 23 202 153 203 1179
I6 440 29 439 50 439 230
I7 284 36 283 149 281 904
I8 559 51 560 38 559 223
I9 506 54 506 173 504 433

Table 4: Bounds from tested models RPF and DRPF + +.

Instance
RPF DRPF++

BFS BLB Gap Time BFS BLB Gap Time

I1 125 115 8.0 3600 125 125 0 7
I2 221 140 36.7 3600 221 221 0 1
I3 152 54 64.5 3600 128 128 0 22
I4 353 147 58.4 3600 327 327 0 11
I5 355 91 74.4 3600 202 202 0 285
I6 497 156 68.6 3600 439 439 0 26
I7 434 88 79.7 3600 281 281 0 434
I8 * 148 * 3600 559 559 0 713
I9 * 145 * 3600 504 504 0 351
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Conversely, the exact approach that uses all the contributions in the paper, that is, the branch
and cut based on the enhanced DRPF feeded up with the RHH solution, provides the optimal
solution to all the tested instances within acceptable running times.

6.3 Computational experiments for the larger size test instances

Currently, from a practical point of view, extending this approach to solve larger time horizons
than those tested previously is not meaningful since no accurate information on the arrival vessels
would be available. However, in order to test scalability of our approach and to account for possible
future scenarios where such information will be available, we test our approaches on the set of large
size instances. Since RHH5 outperformed RHH1 only for the artificially hard instances and since
RHH1 runs much faster than RHH5, we used in these experiments RHH1. We first ran RHH1 and
then ran DRPF++ with a time limit of one hour, using as cutoff value the value of the feasible
solution obtained with RHH1. The results are reported in Table 5. For the RHH1 we provide
the value of the best feasible solution (BFS) found, the linear gap (Gap) in relation to the best
known lower bound and the running time (Time) in seconds. For the exact approach DRPF++ we
provide only the best lower bound found (BLB) and the running time (Time) since the best feasible
solution was never improved in relation to that obtained with RHH1 (so the gap is the same as
the one for RHH1). Hence, the final gap is the same as the one reported for RHH1 and therefore
is omitted. When the running time is lower than 1 hour the optimal solution was found (in all
those cases the RHH1 solution was proved to be optimal). We can observe that the RHH1 could
provide very good solutions for all the tested instances with running times ranging between half of
a minute to 10 and half minutes. All but one instances up to 20 vessels were solved to optimality.
For the largest instances the solution obtained has a proved gap lower than 2%.

Table 5: Heuristic RHH1 for large scale instances.
RHH1 DRPF++

Instance BFS Gap Time BLB Time

15a 1295 0.0 28 1295 6
15b 1331 0.0 32 1331 7
15c 1149 0.0 26 1149 5
20a 1680 0.0 58 1680 11
20b 1654 0.1 98 1653 3600
20c 1492 0.0 63 1492 33
30a 2412 0.2 231 2408 3600
30b 2325 0.5 250 2313 3600
30c 2349 0.3 193 2343 3600
40a 2942 0.4 630 2931 3600
40b 3312 1.8 605 3253 3600
40c 3199 1.3 508 3156 3600

6.4 Computational experiments for the homogeneous cranes case

As most of the reported applications in the literature consider a set of homogeneous cranes, here
we assume all the cranes are similar in order to tests the formulations and the valid inequalities
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for this particular case. The tests are similar to those conducted for the heterogeneous case but
assuming the cranes have the same processing rate as the lower one. We denote Pg = P,∀g ∈ G.
In the homogeneous case, the knapsack inequalities are reduced to the following family of cover
inequalities:

Y (G) ≥
⌈
Q(S)

P

⌉
, ∀S ⊆ V,

where Y (G) =
∑

g∈G
∑

j∈T
∑

k∈S z
j
gk, and Q(S) =

∑
k∈S Qk.

For the homogeneous cranes case we test the RPF model, the heuristic RHH1 and the improved
formulation DRPF++ with the upper bound obtained with the RHH1 heuristic. The results are
presented in Table 6. Column Opt gives the optimal value, columns LR give the linear relaxation
value of the corresponding formulation, IGap gives the initial gap (computed with the values in
columns Opt and LR), columns BLB and BFS give the best lower bound and the best upper
bounds at the end of the running time, respectively, and columns Time give the running time in
seconds. A time limit of one hour was considered.

Table 6: Upper and lower bounds using different approaches for the homogeneous cranes case.

Instance Opt
RPF RHH1 DRPF++

LR IGap BLB BFS Time BFS Time LR IGap Time

I1 125 3.8 97 125 125 1571 125 6 115.2 7.8 10
I2 223 7.1 96.8 152 224 3600 223 4 206.8 7.3 8
I3 129 7.1 94.5 107 135 3600 130 17 107.6 16.6 172
I4 328 10.6 96.8 210 347 3600 328 7 306.9 6.4 29
I5 204 10.0 95.1 119 259 3600 205 24 173.6 14.9 301
I6 441 10.7 97.6 216 459 3600 442 20 416.3 5.6 144
I7 283 12.2 95.7 129.8 414 3600 285 27 251 11.3 702
I8 562 14.9 97.3 212.6 576 3600 562 25 531.1 5.5 234
I9 506 17.9 96.5 202.2 542 3600 514 27 465.4 8 1555

Average 96.4 9.3

We can observe that the results obtained for the homogeneous cranes case are, in general, similar
to those obtained to the general heterogeneous one. The RPF model based on big-M constraints
provides poor lower bounds again. In this case, with the corresponding formulation, it was possible
to solve the easiest instance to optimality. However, for the remaining ones, the lower bounds after
one hour are very poor (and below the value of the linear relaxation of the enhanced formulation)
and the upper bounds are away from the optimal value. The RHH1 runs fast, always below
30 seconds, and obtained the optimal solution in four instances, and very good solutions in the
remaining cases. Again, with the approach DRPF + + (that uses the discretized model tightened
with valid inequalities and feeded up with good upper bounds from the heuristic) all the instances
could be solved to optimality in less than half and hour. These results show that all the techniques
introduced in the paper (stronger formulations, valid inequalities and hybrid heuristics) also have
a good performance in the particular case of homogeneous cranes.
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7 Conclusion

A flexible model is presented for a real problem integrating berth assignment and quay crane
assignment. A heterogenous set of cranes is considered. A new reformulation based on a time and
space discretization is introduced and several enhancements are discussed. The reformulation allows
to avoid the classical big-M constraints for the Berth Allocation Problem. In order to handle with
large size instances, and in order to improve the efficiency of the exact method by feeding it with a
good initial upper bound, a rolling horizon heuristic is proposed. The exact approach that is based
on a branch and cut algorithm that combines all the contributions: the discretized formulation,
the inclusion of valid inequalities and the use of the upper bound given by the heuristic, was very
effective in solving all the practical instances within one hour. Computational tests also show
that the proposed heuristic can be used to provide good quality solutions to large size instances,
cautioning for possible increase of the instances complexity in the future.

From the practical point view, the proposed approach provides the port management with a
tool to support the berth assignment planing of the incoming ships and to suggest a schedule for
the quay cranes. Although this approach is able to handle current and future larger instances, it
has a few shortcomings as it doesn’t consider some practical relevant aspects. One such aspect is
the storage space at the yard. With the increase of the port activity, the limited storage space is
becoming more relevant as it restricts other port activities. Hence, the coordination of the quay
load/unload operations with the cargo storage management is needed. The other relevant aspect
not considered here is the uncertainty associated with some events such as vessels arrival times,
processing times, etc. For future research we aim to integrate uncertainty and storage management
with the berth assignment and quay crane scheduling.
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Appendix: minimizing the number of crane changes

The goal in this problem is to minimize the number of crane movements while keeping the same
overall completion time of a given solution. We consider the following variables:

wj
gk =

{
1, if crane g starts operating vessel k in time period j

0, otherwise
, g ∈ G, k ∈ V, j ∈ T.

To minimize the number of movements is equivalente to minimize the number of variables wj
gk equal

to 1. The objective function becomes as follows.

min
∑
g∈G

∑
k∈V

∑
j∈T

wj
gk (48)

Given a solution to the RPF, variables xk`, yk`, bk, tk and ck are fixed to their value in the
crane movements minimization problem. Hence only constraints for the QCASP are considered.

21



In addition to constraints (10) - (18), the following constraints are considered:

zjgk − z
j−1
gk ≤ w

j
gk, g ∈ G, k ∈ V, j ∈ T, j > 1, (49)

wj
gk ≤ z

j
gk, g ∈ G, k ∈ V, j ∈ T, (50)

wj
gk ≤ 1− zj−1gk , g ∈ G, k ∈ V, j ∈ T, j > 1, (51)

wj
gk ∈ {0, 1}, g ∈ G, k ∈ V, j ∈ T. (52)

Constraints (49) state that if crane g does not operate vessel k at time period j − 1 and has not
started to operate in time period j, then variable zjgk must be zero. Constraints (50) relate variables

zjgk and wj
gk and guarantee that if crane g starts to operate vessel k in time period j, then zjgk must

be 1. Constraints (51) state that if crane g starts to operate in time period j, then it cannot have
operated in time period j − 1 and therefore zj−1gk = 0. Finally, constraints (52) state that variables

wj
gk are binary.
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