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o júri / the jury

presidente / president Doutora Beatriz Sousa Santos
Professora Associada com Agregação da Universidade de Aveiro

vogais / examiners committee Doutor António Joaquim da Silva Teixeira
Professor Associado da Universidade de Aveiro (orientador)

Doutor João Dinis Colaço de Freitas
CTO, DefinedCrowd





Acknowledgements First of all, I want to thank to my father and my mother who unfortunately
died 2 years ago, but helped me to become the person I am today. I also
want to thank to my grandmother. Without their support and love, I would
not achieve this. Thank you so much.

I want to thank Prof. António Teixeira for his guidance and help through
the whole work and all months.

I also want thank to Daniel and Ana who helped me getting more results
for this thesis. Thank you all.





Resumo Desde a década de 80 que começaram a surgir estudos relacionados com o
reconhecimento audiovisual da fala. Contudo, chegou-se à conclusão que,
em certas circunstâncias, o uso da informação audio não poderia ser consid-
erada devido a ambientes ruidosos ou outro tipo de condicionantes. Desde
então, começaram a realizar-se estudos tendo em conta o reconhecimento
visual da fala.
Com o lançamento da Kinect por parte da Microsoft, que inclui câmera
RGB, sensor de profundidade e microfone por um custo relativamente baixo
comparativamente a outras câmeras do mesmo segmento, abriu novas por-
tas e trouxe novas possibilidades no âmbito do reconhecimento da fala.
Com o lançamento da Kinect One em 2014, uma câmera com maior res-
olução e um sensor de profundidade com tecnologia de ”tempo de voo”,
mais precisa, permite ainda obter melhores resultados e abrir ainda mais
portas no que toca ao reconhecimento visual da fala.

Esta dissertação foi desenvolvida com base na Kinect One da Microsoft e
tem como objectivo o reconhecimento visual da fala, mais especificamente
de comandos, em Português, ditos pela pessoa que se encontra de frente
para a câmara, com o intuito de controlar o VLC, uma aplicação relevante
para um cenário AAL, um player de conteúdos multimédia, o mais utilizado
em todo o mundo.
O sistema desenvolvido encontra-se assim projetado para uma realidade de
ambiente assistido, para pessoas com dificuldades motoras ou apenas como
uma ferramenta de aux́ılio para uma melhor experiência cinematográfica em
casa sem a necessidade do uso de um controlo remoto.
O protótipo segue a abordagem clássica em reconhecimento de padrões,
integrando extração de features e classificação. As features adotadas no
protótipo realizado foram a posição dos lábios e a posição do queixo. Em ter-
mos dos classificadores foram experimentados os algoritmos Support Vector
Machine (SVM), Random Forest, Sequential Minimal Optimization (SMO),
AdaBoost e Naive Bayes.

O protótipo no decorrer desta dissertação demonstrou conseguir atingir
taxas de reconhecimento na ordem dos 80 por cento num mundo de 8
comandos escolhidos de forma a serem o mais intuitivos posśıvel tendo em
conta o objectivo desta tese, controlar o reprodutor VLC usando reconhec-
imento visual da fala.





Abstract Since the 80’s started to emerge studies regarding the audio-visual recog-
nition of speech. However, in certain circumstances, the use of the audio
information can not be considered due to noisy environments or other types
of conditioning. Since than, studies started to emerge regarding visual
speech recognition.

With the launch of Kinect by Microsoft, which includes a RGB, depth sen-
sor and microphone for a relatively low price compared to other cameras in
its segment, permited new possibilities in the speech recognition field. The
launch of Kinect One in 2014 brought a new RGB-D camera with bigger res-
olution and a depth sensor with ”Time of Flight” technology, more precise,
witch allows to get better results and better accuracy in Visual Recognition
Systems.

This dissertation was developed with the Kinect One from Microsoft and
has the objective of Visual Speech Recognition, especially commands, in
Portuguese, said by the person that is standing in front of the camera, with
the intention of controlling the VLC player, a relevant application VLC for
an Ambient Assisted Living (AAL) scenario, a multimedia player, the most
used in the world.

The system developed in this dissertation is projected for an AAL scenario,
for people with speech incapacity, noisy environments or only to improve
and create a better home cinema experience, without the need for a remote
control.

The prototype follows a classic approach in pattern recognition, integrating
features and classifiers. The adopted features were the position of the lips
and chin. In therms of classifiers the Support Vector Machine (SVM),
Random Forest, Sequential Minimal Optimization (SMO), AdaBoost and
Naive Bayes algorithms were tested.

The prototype developed in this dissertation achieved an accuracy of around
80 percent in a universe of 8 commands chosen to be the most intuitive
as possible regarding the objective of this dissertation, to create a working
prototype (VLC as chosen) using visual speech recognition.
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Chapter 1

Introduction

In a Human-Computer Interaction based in spoken language sometimes the ambient noise
or the need for privacy is a reality, which results in a limitation to the interaction process.
Regarding this necessities and taking in consideration speech interaction between humans and
machines, a concept of Silent Speech is needed.

Silent Speech Interfaces (SSI) do not use acoustic signals to recognize a word or a sequence
of words from the speaker. In fact, the audible acoustic noise is just the result and the end
of a complex process of speech production [Freitas et al., 2016]. Silent Speech Interfaces uses
a set of other different information to tackle the decision process. These types of information
can be, for example, Depth, Surface, Electromyography, Ultrasonic Doppler [Freitas et al.,
2013] or information taken from the lip movements [Abreu, 2014].

Silent Speech can be very helpful in some particular cases. Cases that the speaker has a
speech handicap or as part of a communications system operating in silence-required or high-
background noise environments [Denby et al., 2010]. It is also suitable for situations where
privacy and confidentiality is required [Freitas et al., 2013]. A laryngectomyzed patient could
use this kind of system (SSI) as an alternative to oesophageal speech, tracheo-oesophageal
speech or the electrolarynx [Hueber et al., 2008].

1.1 Motivation

In some cases speech recognition can not be achieved using the acoustic signal of the
speaker due to high-background noise environments or if the speaker is deaf for example. To
solve these problems, many people started working in Silent Speech solutions. Nowadays,
we live in an era where technology is in a great progress and new technology devices are
constantly hitting the market.

Back in 1952, in the Bell labs, was created the world’s first approach to speech recognition.
However, this system was based only in the speaker voice and it was made to recognize spoken
digits. Despite being the first system in speech recognition ever created, it had a good accuracy
between 97 and 99 percent [Davis et al., 1952], however the capacity in terms of what the
system could recognize were limited. Till late 70s speech recognition systems were only based
in the speaker voice. Then, psychologist Harry McGurk and his assistant, John MacDonald,
discovered by accident an audio-visual illusion, known since then as the McGurk effect or
McGurk illusion, leading to bimodal speech recognition systems [Abreu, 2014].

Despite the good results in bimodal or multimodal speech recognition systems, sometimes
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the use of the speaker voice is not possible, due to the noisy environments, privacy and
confidentiality. For example, a noisy environments where the Silent Speech Interface can be
helpful is by reading the lips of a speaker that is watching television. The noise coming from
the TV added to the voice of the speaker turn out to be impossible to take the voice of the
speaker as input to decide what he is saying. In this case, with a SSI, the speaker can, for
example, turn up the volume or switch channel by the movement of his lips.

Silent Speech interfaces are needed in a Human-Machine interaction to control or commu-
nicate with the machines using speech. The need of an interaction that can be done without
using acoustic signals from the speech production takes into account its usability in noisy en-
vironments, cases where privacy and confidentiality are required or in cases that the speaker
has some kind of speech handicap.

In the Department of Electronics, Telecommunication and Informatics of the University
of Aveiro and other research departments the interest of research for the interaction with high
complex devices like smart phones for Ambient Assisted Living (AAL) proposes or domotics
is increasing. Speech is the easy way for humans to communicate but sometimes the constant
noisy environments due to sound of televisions or music made those systems not able to use
audible acoustic signal in the recognizing process. Than Silent Speech systems where created.
Recently experiences were done regarding Silent Speech systems for European Portuguese
[Abreu, 2014] , [Freitas et al., 2013] to analyze the capability of recognition by machines
using SSI. To evaluate the potential practical usability of a SSI in European Portuguese,
originated the work reported in this dissertation.

1.2 Problems / Challenges

It is not easy to create a real time application for silent speech recognition due to the
complexity of the code and algorithms that are need to tackle the recognition process. If the
complexity is reduced, the real time experience is increased but the accuracy is reduced.

One of the problems in SSI and Visual Speech Recognition (VSR) systems is that the
use of the sound does not enter in the equation, and of course in a multimodal approach the
sound of the speaker saying a word is a good clue in the aim to discover what he/she is saying.
However, it’s possible to tackle the discovery of the words using other type of information
like the lips, tongue, the chin, the ears etc.

One big problem about VSR systems over Automatic Speech Recognition (ASR) systems
is that ASR can have an accuracy far more superior than the VSR systems and in VSR
systems the accuracy ranges can oscillate quite a bit, between 42 percent and 66.9 percent
[Abreu, 2014].

Another problem tends to be the creation of a system totally automatic on the task of
recognizing words. For example, in the direct case of this dissertation, it is complicated
to create a system that allows people, to stand in front of the television, talking to other
people and the system being capable of recognizing the moment when the speaker announces
a command to be sent to VLC.

The motion of the head of the speaker is another problem as well. If the speaker moves the
head joint too much during a word, the evaluation of the word pronounced would be harder.

2



1.3 Objectives

The main objective of this dissertation is to create a working prototype capable of recog-
nizing a small set of words/commands, in real time.

In terms of scenario the aim is to address one in the Ambient Assisted Living (AAL) area.
The chosen scenario was VLC controlling using SSI.

It is not an objective to create a speaker dependent system only, if possible, to assess the
speaker dependency of the developed system.

1.4 Dissertation structure

Chapter 2 presents a review of the speech production process in human beings, speech
perception, SSI basics, used types of cameras and technologies in VSR systems and a review
of the state of the art in Silent Speech recognition systems.

Chapter 3 includes all the information needed to understand the system produced in
this dissertation like the way the features were extracted, automatic activity detection and
classification process.

Chapter 4 presents results from several evaluations made to the system and its components
developed in this dissertation. Some tables and confusion matrices were developed to better
understand the performance of the system. The Speaker Dependency, Distance Dependency,
Live performance and best classification algorithms are also investigated.

Last, in chapter 5, conclusions about this dissertation are available to discuss the all
performance of the system developed. Some comments are made and some future work
suggestions are also made.

3



4



Chapter 2

Background and Related work

2.1 Background

Due to the complexity of the speech production and perception process, in this section
will be presented some topics needed to understand the SSI basics, how the SSI are usually
made, different possibilities in SSI systems, how different effects of the speech production can
be obtained for SSI purposes, how and what features are extracted (using cameras like RGB,
depth or both) and different algorithms used during the classification process.

2.1.1 Speech production

Speech production requires a complex series of events and is considered the most complex
motor task performed by humans [Seikel et al., 2009]. In a fluent conversation, we are able
to produce two or three words per second. This is possible thanks to the mental lexicon,
which contains at least 50-100 thousand words in a normal, literate adult person. However,
the mental lexicon does not have problems to deal with the complexity and speed of the word
production, since it does not fails more than once or twice in 1000 words [Levelt, 1999]. The
speech production model (see Figure 2.1) can be divided into several stages [Freitas et al.,
2011]. In order, these stages are: Conceptual preparation (thought), Formulation (linguistic
representation) and finally Articulation (facial movements + acoustics).

Conceptual preparation consists in the activation of a lexical concept for which you have
a word in your lexicon [Levelt, 1999].

Formulation is the process corresponding to the linguistic representation required for the
expansion of the desired message [De Smedt, 1996].

Articulation is a series of neuromuscular commands to cause the vocal cords to vibrate,
producing an acoustic signal as the final output. These commands must simultaneously
control all the aspects of the articulatory motion, including the lips, jaw, tongue and velum
[Rabiner and Juang, 1993].

5



Figure 2.1: Multimodal speech chain representation with feedback loops [Gick et al., 2013].

After an intent to express has been developed, our brain maps it into muscular movements.
The nervous system takes charge of activating the motor unit and the associated activation
rate. Nerve impulses go from anterior horn of spinal cord to the spinal column and then to
the end of the nerve via motor neurons. These neurons send the signals from the brain to
the exterior body parts through axons and then the neuromuscular junction. When a nerve
impulse reaches this junction causes sodium and potassium cation (positive charge) channels
in the muscle fiber. This generates an electromagnetic field in the area surrounding the muscle
fibers.

In speech production, the articulatory muscles like tongue represent a vital role because
they can shape the air stream into a recognizable speech. Mandibular movement also repre-
sents an important role in this process.

Although the importance of cavities, surfaces and organs in speech production, the articu-
lators are the most important in the pronunciation of different sounds regarding the language
that the person is talking. Its position defines the articulatory and resonant characteristics
of the vocal tract.

Articulators can be active or passive. The active articulators include the lips, tongue,
lower jaw and velum, being the tongue the most important of them all, participating in the
majority of the sounds. The passive include the teeth, alveolar ridge and hard palate. In
Figure 2.2 is represented a sagittal view of several articulators.

6



Figure 2.2: Sagittal view of the vocal tract depicting its main regions and several articulators
[Freitas et al., 2016].

The most visible effects of the speech production chain are the movement of the lips,
tongue, lower jaw and indirectly the chin.

2.1.2 Speech perception

As humans, we can understand and process a large amount of words in a small amount
of time. Just with the speech information, we can take conclusions about the genre of the
speaker, the age or the regional dialect. Humans are capable of processing words from another
person even in noisy environments.

Speech perception is one of the main issues regarding the building of systems concerning
the processing of speech. The human system for speech recognition and understanding is the
one known example of a robust speech recognizer, since it is insensitive to variability over the
range of non-linguistic factors in the speech signal [Gold et al., 2011].

Unlikely what people may think, the speech perception process is not only based in some-
thing we hear, it is a multimodal process. There is now overwhelming evidence that the brain
treats speech as something we hear, see, and even feel [Rosenblum, 2013]. Humans speech
perception rely on sound and visual information like visible movements of the lips, tongue
and gestures.

7



2.1.3 SSI basics

A Silent Speech interface comprises a system that interprets human signals other than the
audible acoustic signal enabling speech communication [Denby et al., 2010].

A SSI system is commonly characterized by the acquisition of information from the human
speech production process such as articulations, facial muscle movement or brain activity.
These systems represents a potential solution for communications in noisy environments, a
help for people with disabilities at the vocal tract level such as the elderly.

It is possible to say that the SSI systems extends the human speech production process
by exploring biometric signals other that voice, using sensors, cameras, ultrasonic waves and
so on [Freitas et al., 2016].

Nowadays there are multiple works in SSI done in every stage of the speech production
stage. For example in the first stage (Conceptualization) works were done on the interpolation
of the signals from implants in the speech-motor cortex [Brumberg et al., 2010] and from
Electroencephalography (EEG) sensors [Porbadnigk et al., 2009]. In Articulation stage works
were made regarding the movement of the lips [Wand et al., 2016] , [Abreu, 2014] or the
movements of a speaker’s face through Ultrasonic Doppler sensing for example [Freitas et al.,
2012]. The usual architecture of a SSI system is depicted in Figure 2.3. It is composed by
some Facial Image Processing, Features Extraction, Classification process and Fusion.

Figure 2.3: SSI system usual architecture.

The signals from the selected stage of the human speech production process can be done
using an invasive or obtrusive modality or non of them. The invasive modality needs a medical
attention to be used or requires the use of sensors. The obtrusive modality requires wearing
some type of equipment like gloves. Choosing the best between these implementations is not
an easy task because they have different advantages and disadvantages such as the price, the
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usability, the accuracy, the speaker’s independence.

An example of a SSI system that is invasiveness and obtrusiveness is the one used by
Helder Abreu in his dissertation [Abreu, 2014]. For the system to be able to understand
what a speaker is saying (in a speech perception scenario but taking into account a machine
approach), it is common to extract features like the width and height of the mouth and then
a classification process is done to classify the words. These kind of characteristics are stored
in a suitable model (commonly known as feature vector) to be used next in the classification
process of the word. This process can be compared with the meaning attribution on the
human perception [Moore and Cutler, 2001].

2.1.4 Methods to collect visual information in SSI systems

The most used way to collect visual information from the speech production process that
is non-invasive and non-obtrusive is through cameras. There are some different cameras on
the market like RGB cameras that collect information on the color space, depth cameras
that collect depth information through the stereo vision approach, infrared or time of flight
technology. Since 2012, the Kinect for Windows camera is available, and it uses both types
of technologies at an affordable price. In this subsection these cameras will be discussed.

2.1.4.1 RGB cameras

RGB cameras are used to collect information pixel per pixel in a RGB color space. Today
these kind of cameras uses CMOS or charge-coupled device (CCD) image sensor and operate
in a Bayer filter arrangement (see Figure 2.4) where green gives twice as many detectors as
red and blue (red-green-blue-green (RGBG) color filter array (CFA)) in order to give better
luminance resolution than chrominance resolution.

Figure 2.4: The Bayer color filter array arrangement [Schafer and Mersereau, 2005].
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2.1.4.2 Depth cameras

Recognizing human actions can have many potential applications including video surveil-
lance, human computer interfaces, sports video analysis and video retrieval. Detecting human
motion taken from video sensors can be a very difficult task. However, with the recent intro-
duction of the cost-effective depth cameras may change the picture by providing 3D depth
data of the scene [Wang et al., 2012]. To get the information of depth of the various pix-
els in a image, depth cameras can perform that in two different ways [Henry et al., 2012].
The first one is by active stereo or stereo vision (Figure 2.5). In stereo vision, features in
two (or more) images taken at the same time from separate cameras are matched with the
corresponding features in the other images, and the differences are analyzed to yield depth
information [Bradski and Kaehler, 2008].

Figure 2.5: Stereo Vision System [Instruments, 2013].

The second one is by Time of Flight (TOF) technology. TOF cameras produces intensity
modulated infrared light, which is not visible to humans. Then, a Photon Mixing Device
sensor captures the reflected light and evaluates the distance information in every pixel to
get depth information, allowing to obtain the distance to objects in the scene [Gokturk et al.,
2004].
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Figure 2.6: Time of Flight [TeraRanger, 2016].

In Visual Recognition Systems, the camera is one of the key issues. The resolution of
the camera is extremely important since it will define the detail of each image representing
the data collected. Frame rate is another important specification regarding the amount of
information that the camera could record in a second. This becomes a key factor in terms of
speech recognition systems considering the movement of the lips.

2.1.4.3 Kinect

Back in 2010 Microsoft and Prime Sense released the Kinect (for Xbox 360 and Xbox
One) and Kinect for Windows in 2012. With its capability of tracking 48 points from the
human skeleton, this camera brought a complete new approach in fields like human gesture
recognition, face tracking, Audio-Visual Speech Recognition and so on. It features a RGB
camera, a depth sensor (infrared) and a microphone array (see Figure 2.7).

Figure 2.7: Kinect released in 2010 [Ron, 2013]

Many systems were born using this kinect camera since its release [Yargic and Dogan,
2013], [Galatas et al., 2012], [Oikonomidis et al., 2011]. However, this camera was far from
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being perfect because of its low resolution (640x480) and its depth information technique
known as structured light which is problematic in contours regions.

2.1.4.4 Kinect One

In July 2014 Microsoft released the second version of the Kinect camera, called the Kinect
One (see Figure 2.8), along with the public preview of the Kinect for Windows SDK 2.0.

Figure 2.8: Kinect One for Windows

This new version brought several improvements such as a better resolution (Full HD,
1920x1080 in RGB images), way better depth images thanks to the Time of Flight (TOF)
technology, has greater accuracy over its predecessor, processing 2 gigabits of data per second,
the new version can track up to 6 skeletons at once and a wider field of view.

This new version soon became an important piece in visual speech recognition systems
because of its relation in performance over price.

2.2 Related work and State-of-the-art

2.2.1 Recent developments in SSI

On this section recent works in SSI will be presented. These works do not use just visual
information taken from a camera, which means that the works depicted in this section can
be either invasive or obtrusive. On the next section works will be presented based only on
visual, which is a more important section for the purpose of this dissertation.

In 2014 João Freitas et. al. created a SSI system, for European Portuguese language, fol-
lowing sensing technologies such as Video and Depth input, Ultrasonic Doppler sensing (UDS)
and Surface Electromyography. These independent streams of information are synchronously
acquired with the aim of supporting research and development of a multimodal SSI [Freitas
et al., 2014a]. His work is non-invasive, however it is obtrusive, as Electromyography (EMG)
sensors were needed for the Surface Electromyography signals (see Figure 2.9).
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Figure 2.9: Diagram of the alignment scheme of João Freitas, António J. S. Teixeira and
Miguel Sales Dias work [Freitas et al., 2014a].

A vocabulary of 32 words in European Portuguese were used regarding an AAL context,
divided in sets of digits, pairs of common words and AAL words. For classification, Dynamic
Time Warping (DTW) and k-Nearest Neighbor (KNN) classifiers were used. His results points
towards performance advantages using a multimodal solution to implement an SSI, especially
for Ultrasonic Doppler sensing and Surface Electromyography. However, a final conclusion
can not be taken regarding which approach represents a higher gain. The best results had
nearly 94 percent accuracy (for ALL words with features from Video+Depth+UDS+EMG
with DTW classification) and the worst were nearly 65 percent (for a Vocabulary Mix using
features from Video+Depth with DTW+k-NN classification).

A study from Japan (2014) regarding Silent Speech (in Japanese), with EEG signals
from 63 channels (obtrusive) shown that previous SSI without adaptative collection could
have better classification accuracies if they have adaptative collection, an increase from 56-72
percent to 73-92 percent [Matsumoto, 2014]. The only classification algorithm used in this
study was Support Vector Machine (SVM) with Gaussian Kernel.

Still in 2014, from Georgia Institute of Technology, USA, a wearable system (obtrusive and
intrusive) was created [Sahni et al., 2014] to capture tongue and jaw movements during silent
speech (in English), during pronunciation of 11 distinct phrases (Figure 2.10). To achieve
that, a two system part was created: one part with a Tongue Magnet Interface, which utilizes
the 3-axis magnetometer aboard Google Glass to measure the movement of a small magnet
glued to the user’s tongue, and the second part a Outer Ear Interface which measures the
deformation in the ear canal caused by jaw movements using proximity sensors embedded in
a set of earmolds. The classification was done using hidden Markov model-based techniques
to select one of the 11 phrases. The average user dependent recognition accuracy was 90.5
percent using both parts of the system. Using just the part of the Outer Ear Interface (non-
intrusive but still obtrusive) the system performs with an accuracy of 85.45 percent.
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Figure 2.10: Tongue magnetometer and Outer Ear Interface [Sahni et al., 2014].

2.2.2 Silent Speech based on visual - Visual Speech Recognition

One of the first studies in VSR was in 1994. This study was based on a word recognition
system with a lip modeling approach for the recognition task [Rao and Mersereau, 1994]. This
system had a 85 percent accuracy using the height and width of the lips, but only 2 words
were tested.

In 2007, Werda created an Automatic Lip Feature Extraction prototype (named as ALiFE)
that could automatically localize lip feature points in a speaker’s face and carry out a spatial-
temporal tracking of these points [Werda et al., 2007]. The points of interest in Werda work
were the top center of the upper lip, bottom center of the lower lip and corners (Figure 2.11).

By using these points it was possible to extract features like the width (distance between
the corners points), the height (distance between the top and bottom points) and also the
area consisting of the inside of the mouth. They used multiple speakers in their tests (females
and males), French was the used language in the tests and the accuracy obtained was 72.73
percent.
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Figure 2.11: Points of interest detection by the projection of final contour on horizontal and
vertical axis (H and V) [Werda et al., 2007]

In a more recent scenario and regarding the Kinect camera, using the RGB camera and
depth information, without the information of sound (VSR), using 18 points of the lips (Figure
2.15) and extracting the angles between all these points, [Yargic and Dogan, 2013] created a
system with a Turkish vocabulary of 15 words obtaining an accuracy rate of 78.22 percent.
One more recent system based on visual lip movement recognition was proposed [Frisky et al.,
2015] by applying video content analysis technique. Using spatiotemporal features descriptors,
features were extracted from video containing visual lip information. A preprocessing step
is employed by removing the noise and enhancing the contrast of images in every frames of
video. This system had an accuracy beetwen 25.9 percent and 89.02 percent.

2.2.3 Silent Speech for Portuguese

Regarding SSI for European Portuguese (EP), in 2010 João Freitas started working, during
his PhD, on a multimodal solution that addressed the issues raised by adapting existing work
on SSIs to a new language. His SSI was aimed as a HCI modality to interact with computing
systems and smartphones, respectively, in indoor home scenarios and mobility environments.
His paper was focused on the approaches of VSR and Acoustic Doppler Sensors (ADS) for
speech recognition, evaluating novel methodologies in order to cope with EP language char-
acteristics. João Freitas, in his work, used a classification scheme based in Dynamic Time
Warping (DTW) technique, achieved a Word Error Rate (WER) of 8.63 percent (STD 4.01
percent) with the best figure of 2.5 percent WER for the best run [Freitas et al., 2011].

Back in 2013, João Freitas has done another work about SSI for EP. This time, he selected
4 non-invasive modalities Visual data from Video and Depth, Surface Electromyography and
Ultrasonic Doppler - and created a system that explores the synchronous combination of
all 4, or of a subset of them, into a multimodal SSI. For classification, an example based
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recognition approach based on Dynamic Time Warping followed by a weighted k-Nearest
Neighbor classifier. His results showed that a significant difference in recognition rates can be
found between unimodal and multimodal approaches in favor or the latter, and that benefits
can be obtained by aligning several modalities, especially when registering Video, Depth and
UDS, or Video and Depth. Results also indicate a slight better performance when using a
decision fusion approach with DTW followed by a k-NN classifier [Freitas et al., 2013].

In 2014, another work from João Freitas was done, about the SSI for EP as well [Freitas
et al., 2014b]. This time, Freitas et al. proposed a non-invasive method surface Electromyog-
raphy (EMG) electrodes - positioned in the face and neck regions (see Figure 2.12) to explore
the existence of useful information about the velum movement. The applied procedure takes
advantage of Real-Time Magnetic Resonance Imaging (RT-MRI) data, collected from the
same speakers, to interpret and validate EMG data. The results of his study showed that, in
a real use situation, error rates as low as 23.4 percent can be achieved.

Figure 2.12: EMG electrodes [Freitas et al., 2014b].

One of the most recent works in a Silent Speech for Portuguese (and also Visual Silent
Recognition) is the Master’s Dissertation by Hélder Abreu from University of Minho, Portugal.
On his dissertation Abreu used the last version of Kinect (Kinect One) to extract geometric
and articulatory features from the lips. To obtain the lips region, Region of Interest (ROI),
Abreu made some pre-processing using the collected depth images from the speaker that is
talking in front of the camera. The Kinect Software Development Kit (SDK) gives information
abount the head joint position and, knowing that the speaker has his face turned frontally to
the Kinect camera, the coordinates of the tip of the nose can be obtained by searching the
point with the closest depth value in the center of the frame. The lips are located under the
nose, therefore the region of interest (lips region) are located under these coordinates (see
Figure 2.13).

16



Figure 2.13: Tip of the nose detected (left) and the region of interest including the lips (right)
[Abreu, 2014].

For the lip segmentation, Abreu considered two color spaces: RGB and YCbCr. From
the RGB frames he used the green channel in order to extract the external points of the lips
and from the YCbCr color space the Cr channel was used to obtain the internal points of the
lips. These color spaces have shown a higher contrast in the ROI with emphasis on the lips.
Then, a Convex Hull technique was applied in order to have a set of points representing the
lips (see Figure 2.14) which were used for feature extraction purposes.

Figure 2.14: Set of points (in red) obtained with the Convex Hull technique [Abreu, 2014]

After the features taken Abreu made some normalizations like length normalizations to
the feature vectors to be sent to the classifiers and some distance normalization.

The selected vocabulary consisted of 25 European Portuguese words, which were divided
into 2 sets: one with a widely used set of words used in speech recognition literature, digits
from zero to nine and the other taken from a Ambient Assisted Living context.

The classification process was done using SVM classifiers and the best accuracy of his
system (ViKi - Visual Speech Recgnition for Kinect) was 68 percent based on geometric
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features using Inverse Multiquadric kernel and 34 percent of recognition accuracy based on
articulatory features using Gaussian kernel. A hybrid solution using both geometric and
articulatory was also tested achieving an accuracy of 49 percent using Inverse Multiquadratic
kernel.

One of the main features that is extracted in SSI based in visual information is the lips
and its position/movement over time. Studies are being developed to find them as accurate
and quick as possible [Dalka et al., 2014].

About the study from [Yargic and Dogan, 2013] regarding the lips using the kinect camera,
the features were extracted using 18 point of the lips as depicted in (Figure 2.15).

Figure 2.15: 18 lip feature points and their assigned ID values [Yargic and Dogan, 2013].

Next, a set of isolated words about Turkish color names are constructed and they are
classified by the KNN classifier. The features are selected from the angles of some points on
the lip and reasonable results are obtained by using angle features.

2.2.4 Classifiers

To classify the data from the features that are extracted, some machine learning is manda-
tory. To achieve that, learning algorithms that analyze the feature data are needed.

The most common used algorithm in Visual Speech Recognition Systems is SVM. SVM is
a regression analysis model, which given a set of training data decides each class the examples
belong to, separated by an hyperplane (i.e. decision boundary) linearly separating our classes
(see Figure 2.16).
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Figure 2.16: SVM model example with decision boundary separating the two different classes
[Gavrilov, 2012].

.

This decision is done by finding the hyperplane (decision boundary) linearly separating
the two classes. It’s intuitive that the decision boundary must have a maximized distance
between both classes in order to not have classification mistakes [Gavrilov, 2012].

Anything above the decision boundary should have label 1 and, similarly, anything below
the decision boundary should have label -1.

Another common used learning algorithm is the Random Forest tree based algorithm.
Tree based methods, unlike linear models, map non-linear relationships quite well and are
adaptable at solving any kind of problem at hand (classification or regression). In Random
Forest learning algorithm the feature vectors are given as inputs in each trees created for
classification task and classification is done for the tree that has more ”votes” (see Figure
2.17).

A decision tree splits the nodes with respect to the target variable and in pursuit to a
most homogeneous sub-nodes [Saraswat, 2016].

Other types of classifiers can also be used in the classification task of visual speech recog-
nition systems. Classifiers like AdaBoost (Adaptative Boosting, used in conjunction with
other learning algorithms to improve performance), Naive Bayes (is a probabilistic classifier
that uses Bayes theorem with indepencence assumptions between features) and Sequential
Minimal Optimization (SMO, an algorithm made to deal with the quadratic programming
problem that arises during training SVM’s).
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Figure 2.17: Decision tree example [Saraswat, 2016].

2.3 Summary

Speech perception is a task that is easy for human beings, with one or two fails in 1000
words. However, the speech perception using machines represents a huge challenge.

Speech production by humans is divided in 3 different steps: Conceptual preparation,
Formulation and Articulation. Many SSI systems were made regarding one of these 3 phases
or, in some cases, more than one phase in the same system.

The first studies in speech recognition were done in the beginning of the 50’s but rely only
on audio information. Visual speech systems are needed in cases like noisy environments or
people with speech issues, so studies started to be done regarding this task.

Regarding the field of features extraction, SSI systems can be invasive, obtrusive or none
of them. A system is invasive if it requires medical expertise or permanent attachment of
sensors and obtrusive if it requires wearing or using sensors. A system can be non-invasive
and non-obtrusive, like visual speech recognition systems using Kinect (RGB-D camera). All
systems have advantages and disadvantages such as the price, accuracy or practicality.

Many types of classification algorithms are available for the classification process, like
Dinamic Time Warping, k-Nearest Neighbor, hidden Markov, SVM, etc. The most commonly
used of all is the SVM classifier.
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Chapter 3

SSI prototype

In this chapter the created prototype is presented. The first section presents the require-
ments needed for the prototype and explains the AAL scenario chosen. The system overview
is presented and next a detailed description of all steps presented in it. It is described how the
activity detection was done, as well as the features extraction, classification and data bases.

3.1 Requirements

As requirements the system has to permit some real daily life experiences, for example
the controlling of a television from the sofa at a certain distance. However, with a turned
on television a noisy ambient is created and the system has to work without using audio
information. A SSI with visual speech recognition must be implemented.

Another requirement is that the prototype must detect the speaker’s face automatically
and start and stop recording features also automatically (push to talk implementations cannot
be used). So, a more user friendly solution is made for people with some kind of motor
limitations for deaf people.

3.2 AAL Scenario

The most important areas in AAL are related in allowing the user with some kind of
limitations to control entertainment systems, access to social networks, etc.

The AAL scenario chosen was the controlling of a media player, increasingly important
to access memories and information from friends and family.

Regarding these interests, the VLC player was chosen, because it’s the world’s most used
open multimedia player [Lanaria, 2016], it is simply to use, can load up content that other
players simply can’t, it’s open source and can aim directly at AAL scenario, which is the
objective of this dissertation.

In VLC is possible to load a set of videos in the interest of the user. The speaker can
control the sound, the video that he wants to watch, the speed of the video and stop and play
functions, all of these controls are used with Silent Speech detection by the movements of the
lips and the chin of the speaker. This allows the user to control the system either in a noisy
ambient, in case the user wants some privacy or if there is some speech production limitation
from the speaker.
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The words that were considered in this work are in European Portuguese and were con-
sidered to be the most intuitive and short as possible. Several iterations were done to reach
the set of words that better affords the interests of this dissertation. These words were chosen
regarding the AAL scenario of controlling the VLC player. The Table 3.1 has, in the first
column, the set of words chosen in Portuguese and in the second column their translation in
English. The commands with two words were also chosen to be the most different as possible
one from the other.

Portuguese English

Ver Filme Watch a Movie

Parar Stop

Continuar Continue

Aumentar Volume Increase Volume

Baixar Volume Decrease Volume

Mais Rápido Faster

Mais Lento Slower

Próximo Filme Next Movie

Table 3.1: Set of words chosen regarding the AAL context of using the VLC

3.3 System Overview and Global architecture

The global architecture of the work is presented in Figure 3.1. The system created in this
dissertation follows the architecture of traditional VSR systems [Abreu, 2014];[Saenko et al.,
2004];[Galatas et al., 2012] and takes the advantages of the Kinect One Camera to extract
the features from the lips and chin of the speaker.

The system is divided into 4 main blocks (Activity Detection, Feature Extraction, Classi-
fication and Data Base Creator). Two paths can be previously chosen before the start of the
usage of the system: Train or Test. All these paths and blocks will be explained in detail in
the next section.
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Figure 3.1: System Architecture

3.4 Activity detection

The first step is the Activity Detection. In this step the system searches for the face
of the speaker, from every frame that arrives from the Kinect Camera, and when it finds it
(with Microsoft Kinect SDK), a rectangular box is drawn surrounding the face of the speaker.
Points are drawn in the speaker’s eyes, nose, lips and chin as well. Other kind of information
are also available like if the speaker is happy, wearing glasses, if the right or left eye is closed
etc. All these informations are presented in Figure 3.2.

As we are working in a prototype that can be used by people with some kind of movement
limitations, an automatic recording of the movement of the lips and chin in the beginning of
the word is mandatory. So, the speaker can give the commands to VLC only with the lips
and chin detection, the system does not need for example a click of the mouse to inform that
a word will be pronounced.
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Figure 3.2: Face detection by Kinect and other speaker information shown.

To achieve this, first the speaker has to have the face and lips stable for around one second.
Then, the system informs the speaker that it is ready to record a word by displaying in the
window program a text message showing this and the window background turns green to be
easier for the speaker to see this state change. In the state of Ready to Record, the system
starts recording as soon as the speaker opens his mouth (information obtained with Kinect for
Windows SDK 2.0, using ”MouthOpen” and ”MouthMoved” properties [Microsoft, 2016b]).
This is used as a sign that the speaker is starting to say a word.

With the same approach, the system stops recording when the speaker has the face and
lips stable for around one second.

Figure 3.3: SSI system not ready (left) and ready (right) to record the command ”Ver Filme”.

3.5 Feature extraction

The features to be extracted to send to the classifier will be the position of the lips (width
and height), the protrusion of the lips (upper lip and bottom lip) and the chin position (X
and Y coordinates), see Figure 3.4. The position of the lips was chosen because it has proven
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to give good results in previous works. The Chin position was chosen because the lower
jaw takes part of the speech production process by humans, so the chin position could be
interesting to have as a feature as well.

A total of 6 features were taken in consideration in this work for the recognition task
of the words. To obtain these points, Microsoft Kinect packages were used, precisely the
HighDetailFacePoints in Kinect20.face.lib [Microsoft, 2016a].

Lip width is the distance between the left and rigth corners of the lips. Lip height is the
distance between the top and bottom corners of the lips. Lip Protrusion represents how close
or how far the top and bottom lips are to the Kinect sensor.

To track the Chin position in each frame, the HighDetailFacePoints.ChinCenter in Kinect20.face.lib
was used to store the X and Y position of the chin in each frame.

Figure 3.4: Points tracked in mouth and chin for feature extraction proposes.

In the previous section was presented the method of automatic recording when the speaker
can start to say a word. In this moment, the features regarding the lips and chin are starting
to be stored in different queues, each of them representing one different feature of the word
itself. These queues are filled up to the time that the recording stops. However, the numbers
representing the features must be normalized to deal with the different distances that the
speaker could be to the Kinect and some normalization to better focus the major changes
of the movements of the lips and chin are also considered. To solve this distance issue, a
distance normalization is applied to a fixed distance (see Equation 3.1).

Nd =
Cd ∗ Fd
dFN

(3.1)

where Nd is the normalized distance, Cd is the current distance to the Kinect (before
normalization), Fd is the depth value of the forehead which every frame is normalized (also
obtained with HighDetailFacePoints from Microsoft Kinect library) and dFN is the depth
value for which every frame is normalized.

To achieve a better focus on the major changes of the movements, a z-score normalization
is implemented (see Equation 3.2).

z =
X − µ

σ
(3.2)

where z is the result of the z-score normalization, X is the current feature value, µ is the
mean obtained in one database and σ represents the variance.

So at this point we have a set of queues with features already normalized but with different
sizes (because of the time duration of the different commands). Due to a fixed size needed
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in the Classification part which is going to be done later in Weka (will be explained in more
detail in next section) a length normalization of the features matrix is needed.

The fixed length was chosen regarding the 30fps recording rate of the Kinect One and
since 2 seconds was enough to record the total of the words pronounced, the fixed length
decided for each array was 60.

The normalization method consists in reading each queue of features (6 queues, each one
representing a different feature) and removing the first 10 numbers and, after this, the removal
of the numbers beyond the position number 60 (see Figure 3.5).

Figure 3.5: Process of length normalization of each array of features regarding the fixed size
needed in the classification part.

Now, after a word being said and features captured and recorded, we have 6 arrays already
normalized and with a fixed length. Next, two different paths can be chosen: Train or Test.
The Train path consists in creating a database regarding the speaker that will use the SSI
system. The test path is the path where the system is used to control the VLC. The Test
path cannot be used without creating previously a database regarding the speaker in the
Train path first, otherwise the system will not have data to compare in order to decide which
word the speaker is saying. A database from a different speaker can be used, however the
results are expected to be much worst (this part will be shown in more detail later in this
dissertation).

3.6 Classifiers / Classification

In the previous section, feature vectors (or feature arrays) with fixed size and needed
normalizations are created. Now, it is time to analyze each one of them in order to give a
correct hint and return a correct command to VLC regarding the command that the speaker
just said, in a Live usage scenario application.

To classify the words, Weka software [Witten et al., 2011] was used for the training,
validation and classification processes of this dissertation. The algorithms that are used in
this work are: Random Forest, SMO, Naive Bayes, AdaBoost and SVM. The Kernel used for
the SVM classifier was the linear one and the classification algorithm used with the AdaBoost
was the SMO algorithm.

Classification experiments were made to the recorded databases in the Train part was
done. All five classification algorithms were used and a Cross-Validation technique was used
with a different number of folds (5, 10, 15, 20, 25 and 30 folds).

The classification in the Test part is the most important one this dissertation, because it’s
in the Test part that VLC is controlled by the commands recorded regarding the created Silent
Speech system. Since this is a real time implementation, the usage of the five classification
algorithms turned out to not be the best solution, due to the amount of time taken by the
AdaBoost and SVM classifiers. So, the other three classification algorithms were taken to work
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in a ”Winner Takes All” perspective (the most common hint between the three classifiers is
the hint that is selected).

3.7 Databases

Beyond the prototype created, several databases for training and evaluation were also
made.

The databases created in this dissertation are created regarding the ”Arff” file format,
making it possible to use them directly in Weka [of Waikato, 2008]. Every row recorded
represents all features arrays, each of them already normalized and with size equals to 60, as
depicted in Feature Extracted section. Two types of data bases are created in this dissertation:
data bases for Train part and data bases for Test part. Both of them have the same structure,
composed of the same Sources, Relation, Attributes and Classes. The difference between the
two data bases resides in their length, due to the different repetitions of every word in the
different usage of the two data bases.

3.7.1 Databases - Train part

In the Train part, the database is recorded in sets of 10 repetitions of every command,
which gives a total of 80 commands spoken per set and a time taken for every set of around
5 minutes to record.

It was decided to record databases of 30 repetitions of every command in the Train part.
So, the data bases in the Train part have a total of 86400 numbers representing every feature
in every frame of the recordings (30 repetitions * 8 commands * 60 frames * 6 different
features).

3.7.2 Databases - Test part

In the Test part, the databases created are a set of 6 arff files, each of them represents one
feature and has only one row of information, because in the test part we want a system that
works in real time for the recognition of one command at the time the speaker announces the
word. So, when the speaker ends the announcement of one command, every queue of features
is normalized and forced to a fixed size (60). Then, all the arrays are stored in the same row
in the database. This gives a total of just 360 numbers representing every feature in every
frame recorded.

3.8 Summary

This chapter introduced the developed SSI prototype for VLC controlling created in this
dissertation: the global architecture, how the activity detection works, how the features are
extracted and normalized, which classifiers were used and how and how the data bases were
created.

When the system finds a face in front of the Kinect One camera, an output is given to
the speaker. After that, the speaker needs to have his head stable and his mouth closed for
around one second so the system starts recording a word. When the system is recording, the
system window turns green for better announcement to the speaker of this state change. To
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stop recording, the speaker just needs to have his head stable and lips closed again for around
one second again.

Six different features are extracted during the recording (4 regarding the lips and 2 re-
garding the chin). All these features recorded are z-score normalized and size fixed after the
recording.

Two different paths can be used in the system: Train or Test. In the Train path is
possible to train the system in order to have a better performance later in the Test path (live
usability) to control the VLC player. In both paths data bases are created, however with
different purposes and lengths.
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Chapter 4

Results

This chapter presents several results from the evaluations that were made. Databases
with three different persons were evaluated and, to test these databases and to classify the
words, Weka software and libraries were used [Witten et al., 2011].

4.1 Databases for evaluation

Before going for the Test part, which is using the system to control the VLC using Silent
Speech, data bases must be recorded in order to train the classifiers.

Three different persons participated in the evaluation of the system: Speaker1 (author of
the dissertation, finalist of the Integrated Masters Degree in Electronics and Telecommuni-
cation Engineering, 23 year old male), Speaker2 (22 year old male, student of the Integrated
Masters Degree in Electronics and Telecommunication Engineering, University of Aveiro) and
Speaker3 (29 year old female (Master in Gerontology and PhD in science and health technolo-
gies, University of Aveiro), from the island of Madeira, Portugal, where the pronunciation is
different when compared to other regions of the country.

In this dissertation, 5 different databases were created: 3 databases regarding the Speaker1
(one recorded at 0.6 meters, 1 meter and 2 meters away from the Kinect Camera), 1 database
regarding the Speaker2 and 1 database regarding the Speaker3, both recorded at 1 meter
away from the Kinect Camera.

Every database took about half an hour to record. For the other two speakers besides
the author of this dissertation, the time taken was way bigger (twice), perhaps they were not
comfortable to be sat talking in front of the camera. With Speaker2 and Speaker3 the first
databases recorded by each were not well recorded and the tests in Weka showed an accuracy
that was too low when compared to the Speaker1. The second database recorded on both
cases proved to be way better than the first one and closer to the results from Speaker1.

The databases were recorded in a IEETA lab (Institute of Electronics and Informatics
Engineering of Aveiro), in conditions of low noise, during July of 2016. The Speaker1, author
of the dissertation, recorded all the databases in Silent Speech and Speakers 2 and 3 recorded
the databases pronouncing the words.
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4.2 Evaluation - Effect of classifiers

In this section, all databases are evaluated in Weka with a set of five different classifiers
that were chosen to evaluate all these databases. After a experiment with all the classifiers
available in Weka software, the five that proved to be the best in the classification task were
chosen: Random Forest, SMO, Naive Bayes, AdaBoost and SVM. The evaluation of the
databases was done for each speaker and the results presented in this section are showed
separately.

4.2.1 Evaluation with Speaker1

Speaker1 was the only one between the 3 Speakers that recorded at different distances
from the Kinect camera. The results of the databases evaluation are shown in Table 4.1.

Fold

Distance
from

Kinect
(m)

Random
Forest
(%)

SMO
(%)

Naive
Bayes
(%)

AdaBoost
(%)

SVM
(%)

0.6 79.6 76.7 72.9 76.3 79.6
1 70.4 66.7 65.8 67.1 69.25
2 77.1 78.8 67.5 78.3 78.3

0.6 78.8 78.8 75.8 77.1 79.1
1 72.5 65.8 64.6 67.1 68.810
2 80 79.6 72.5 78.8 79.2

0.6 78.3 80 74.2 77.9 79.6
1 72.5 65.8 65 66.7 67.115
2 79.6 79.1 72.9 78.8 79.2

0.6 79.6 78.3 74.2 77.1 78.6
1 72.5 66.3 64.2 65.8 69.220
2 82.5 78.8 73.8 79.6 78.3

0.6 80 80 75.8 78.3 78.3
1 71.3 63.8 62.1 67.1 68.325
2 79.6 80 73.8 79.2 80

0.6 77.5 80.4 76.3 77.9 77.9
1 70.4 65 62.9 64.6 66.330
2 80.8 80.8 73.3 80 80

Table 4.1: Results of cross-validation using five different classifiers regarding the Speaker1 at
0.6, 1 and 2 meters away from the Kinect.

By analyzing Table 4.1 we can conclude that the database recorded at 1 meter did not
have results as good as the ones recorded at 0.6 and 2 meters away from the Kinect. This
data base may have not be well recorded, with the words recorded less articulated compared
with the other two data bases. The best result achieved by the system with the Speaker1 was
82.5 percent for the Random Forest classification and cross-validation of 20 folds at 2 meters
from the Kinect. The average accuracy of the system (for all distances and for all classifiers)
was 74.3 percent with a standard deviation of 5.7. The best classification algorithm, in this
case, proved to be the Random Forest (76.8 percent average accuracy, for all Random Forest
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values) and the second was the most common SVM (75.4 percent average accuracy, for all
SVM values). The SMO, Naive Bayes and AdaBoost reached an average accuracy of 74.7,
70.4 and 74.3 percent, respectively.

To give a better understanding of the system accuracy word by word, a confusion matrix
is presentend in Figure 4.1. This confusion matrix was obtained the best result presentend
in Table 4.1 (Random Forest Algorithm at 2 meters with 20 folds).

Figure 4.1: Confusion Matrix obtained in Weka software with Speaker1 database recorded at
2 meters, classified with Random Forest algorithm and fold of 20.

The words/commands ”Parar”, ”Continuar”, ”Aumentar Volume” and ”Próximo Filme”
showed to be the ones with less errors (just 2 mistaken hints by the classifier in 30 repetitions).
The word/command that had the worst result was ”Mais Rápido”, with only 19 correct hints
in a total of 30 repetitions and in 5 hints the classifier classified this command as ”Mais
Lento”.

4.2.2 Evaluation with Speaker2

Regarding the Speaker2 data base evaluation, the same process of classification was done
with the same algorithms. However, was depicted in the beginning of this chapter, Speaker2
only recorded one database at 1 meter distance. The results are presented in Table 4.2.

Fold
Random
Forest
(%)

SMO
(%)

Naive
Bayes
(%)

AdaBoost
(%)

SVM
(%)

5 56.3 55 42.5 54.6 55.4
10 63.3 57.1 46.3 55.8 53.3
15 61.7 59.6 44.2 56.3 61.3
20 57.5 57.5 46.3 59.6 58.3
25 58.8 61.3 47.5 58.8 62.1
30 60.8 58.8 48.3 58.8 60

Table 4.2: Results of cross-validation using five different classifiers regarding the Speaker2 at
1 meter away from the Kinect.

Once again, the best result achieved by the system was obtained by the Random Forest
classification algorithm, 63.3 percent (with cross-validation of 10 folds). The average accuracy
of the system was 55.9 percent with a standard deviation of 5.7. The best classification
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algorithm was the Random Forest once again, with 59.7 percent accuracy and the second
was the most common SVM (58.4 percent accuracy). The SMO, Naive Bayes and AdaBoost
reached an accuracy of 58.2, 45.8 and 57.3 percent, respectively.

These results from the Speaker2 compared to the previous results obtained with the
Speaker1 are considerably worst. There are at least three possible reasons that can explain this
lack of accuracy: First is that the Speaker1 is the author of this dissertation and is the person
that better knows how the system works. Second the Speaker2 tended to Hyper-Articulate
too much and in the cases that the commands recorded had two words (cases like ”Ver Filme”,
”Aumentar Volume”, ”Baixar Volume”, ”Mais Rápido”, ”Mais Lento”, ”Próximo Filme”),
Speaker2 made a unnatural pause among the two words. In those pauses between two words
the system was recording information that did not help in the task of classifying the different
words. Third the Speaker2 tended to be too slow and took too much time saying the words
and as the system only records each command for 2 seconds, Speaker2 exceeded the time
limit several times.

4.2.3 Evaluation with Speaker3

Regarding the Speaker3 data base evaluation, the same process of classification was done
with the same algorithms. Again, as depicted in the beginning of this chapter, Speaker3 (as
well as Speaker2) only recorded one database at 1 meter distance. The results are presented
in Table 4.3.

Fold
Random
Forest
(%)

SMO
(%)

Naive
Bayes
(%)

AdaBoost
(%)

SVM
(%)

5 46.3 43.8 31.6 42.5 43.8
10 52.5 43.8 39.2 45.8 43.8
15 49.2 45.4 37.1 42.1 43.8
20 53.8 44.2 40.8 45 43.8
25 50 44.6 39.2 43.8 42.9
30 53.3 43.3 40 43.8 42.1

Table 4.3: Results of cross-validation using five different classifiers regarding the Speaker3 at
1 meter away from the Kinect.

Once again, like in both Speaker1 and Speaker2 evaluations, the best result achieved by
the system was obtained regarding the Random Forest classification algorithm and it was
53.8 percent (with cross-validation of 20 folds). The average accuracy of the system was 44
percent with a standard deviation of 4.6. The best classification algorithm was the Random
Forest one more time (50.9 percent accuracy) and the second was the SMO (44.2 percent
accuracy). The SVM, Naive Bayes and AdaBoost reached an accuracy of 43.4, 37.9 and 43.8
percent, respectively.

These results from the Speaker3 compared to the previous results depicted for the Speaker1
and Speaker2 are worst. In this case, the worst results can be explained by the native region
of the speaker, which is a Portuguese Island, Madeira, and her pronunciation is a lot different
compared to the Speaker1 and Speaker2 (Portugal Continental). Her pronunciation tended
to be faster and a lot less articulated than the other two speakers. Other factor can be some
nervousness to be talking in front of a camera.
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4.3 Live evaluation

In this section, the results of live evaluation are presented. These evaluations consist in
classifying a word in real time for VLC controlling proposes.

In a Live system performance, the speed of the evaluation algorithm is mandatory. The
best case scenario would be to have all the 5 algorithms tested in the previous section working
together at the same time to give the best hint in a work recognition task, in a perspective of
”Winner Takes All”. However, this scenario proved to be quite slow for a real time purpose,
sometimes taking more than 5 seconds to select a word. So, instead of heading for 5 classifiers,
only 3 were chosen. The first classifier chosen (and the obvious choice) was the Random Forest
Algorithm, regarding its results (it outperforms the other four) and it is quite fast to decide
a word as well. Regarding the other 2 classifiers, the choice turned out to be the SMO and
the Naive Bayes Algorithms. Despite the good results on the SVM classifier (that proved to
be in much cases the second best classifier), the SVM turned out to be too slow for the real
time scenario that we want, as well as the AdaBoost classifier.

In conclusion, the Live evaluation of the words, regarding the control of the VLC player,
are in charge of tree different types of classifiers: Random Forest, SMO and Naive Bayes.
The classification decision of the word is made adopting a ”Winner Takes All” strategy. The
mean time of the all tree classifiers regarding the word recognition task was 1.3 seconds. The
tests for the Live performance were made by the same three speakers already presented. In
all of these tests, 10 repetitions were made, each repetition has the words already presented
in the Table 3.1, which gives a total of 80 words spoken for each test that was made.

The first tests to be presented correspond to a match of a Speaker talking with the
system evaluating the corresponding Speaker’s database already recorded. Additionally, some
Speaker Dependency tests were made to figure out if the system can perform well in an
evaluation of the data bases of the other speakers. In addiction, distance tests were made to
verify the Equation 3.1’s performance.

4.3.1 Live evaluation - Train and test with same speaker

In this subsection, Live performances were made and the evaluation task considered the
appropriate data base for the Speaker that was talking. It is important to say that regarding
the special case of Speaker1, for the 3 different distances tested the training models were
recorded at the same distance the Live evaluation took place. In the Table 4.4 the results
achieved by the system can be seen.

Speaker Distance (m) Hit Miss Hit (%)
0.6 52 28 65
1 44 36 55Speaker1
2 56 24 70

Speaker2 1 46 34 57.5
Speaker3 1 25 55 31.3

Table 4.4: Live performance of the system using the corresponding data bases of the speaker
talking.

With this live performance we can conclude that the results turned out to be similar to
the ones obtained with the evaluation of the data bases with Weka. The best result was
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achieved with the Speaker1 at a distance of 2 meters away from the Kinect, with 70 percent
hits. The Speaker3 had the worst results, which was expected as well regarding the results
from the data base recordings.

4.3.2 Live evaluation - Effect of distance of the speaker

To test the distance dependency, 4 live recordings were made, all by Speaker1 but tested
at different distances from the Databases that were recorded in the Train part, contrary to
what was done in the previous subsection (4.3.1): the speaker at 0.6 meters away from the
Kinect and the classification with the data base at 1 meter and 2 meters and the speaker at
1 meter away from the Kinect and the classification with the data base at 0.6 meters and 2
meters. The results can be seen in the Table 4.5 down below.

Speaker Distance (m) Classifiers trained with (m) Hit Miss Hit (%)
1 42 38 52.5

0.6
2 44 36 55

0.6 49 31 61.3
1

2 65 15 81.3

Table 4.5: Live recordings comparative with data bases recorded at different distances for the
same speaker (Speaker1)

The results proved that the distance is not an issue (the hits are similar to the ones
obtained in Table 4.4) and proved that the Equation 3.1 is useful regarding the different
distances that the Speaker can be from the Kinect camera in a AAl scenario. In Table 4.5 the
best live performance of this work was obtained (81.3 percent) with the Speaker at 1 meter
away from the Kinect and the data base recorded at 2 meters.

4.3.3 Live evaluation - Speaker Dependency

To finish the evaluation, the Speaker Dependency of the system was tested. The objective
was to understand if the system is capable of being used by a Speaker that has no training
data. In other words, if the system can perform with Speaker X in the Test part against the
Speaker Y data from Speaker Y Train part.

To test the Speaker Dependency of the system, 3 tests are made: Speaker1 at 1 meter
away from the Kinect performing against the databases of the Speaker2 and Speaker3 and
another test with the Speaker2 at 1 meter away from the Kinect performing against the data
base of the Speaker1 also at 1 meter. The results can be seen at Table 4.6 down below.

Speaker Data Base to be Compared Hit Miss Hit (%)
Speaker2 14 66 17.5

Speaker1
Speaker3 12 68 15

Speaker2 Speaker1 17 63 21.3

Table 4.6: Live recordings results regarding the Speaker Dependency tests.

The results have shown that the system accuracy decreases dramatically in comparison to
the results obtained if the data base corresponded to the Speaker that is talking. Analyzing the
results presented in Table 4.6 we can conclude that the system is clearly speaker dependent.
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4.4 Summary

In this chapter the accuracy of the system obtained from 3 different Speakers with different
ages, genres and pronunciations was tested. First the data bases were recorded and their
evaluation was made with the classification being done by 5 different algorithms (Random
Forest, SMO, Naive Bayes, AdaBoost and SVM). The best global performance was achieved
by the Random Forest which gave also the best result of all tests (82.5 percent hits in cross-
validation with 20 folds).

The results for the 3 speakers turned out to be quite different, especially with Speaker3,
a 29 year old female from the Portuguese Island Madeira. With her low articulation of the
words and fast pronunciation, the accuracy of the system dropped to 50.9 percent.

The system proved not to have much dependence on distance, with similar results at any
distance of recording. In the field of Speaker Dependency the results are worst. The best
result obtained in a Speaker Dependency test was 21.3 percent and the worst was 15 percent,
which can be conclusive about the non independence of the system to classify a word with a
different data base that the speaker that is talking.

Considering the AAL scenario of controlling the VLC, the system have shown to perform
reasonably well even in real time. The best classification result achieved was 81.3 percent to
a distance of 1 meter compared to a data base recorded at 2 meters away from the kinect,
with a classification time of around 1.3 seconds.
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Chapter 5

Conclusions

To conclude this dissertation in this chapter is presented the summary of work, main
results and ideas/suggestions for future work.

5.1 Summary of work

In this dissertation the first working SSI prototype for Portuguese was created, regarding
a AAL scenario of controlling the VLC player, with interesting results for at least a speaker.
The requirements for the prototype were defined based only on visual information.

Different parts of the prototype were developed: activity detection (automatic recording
started by movements of the lips), features extraction, train of classifiers and integration with
VLC player. The Microsoft Kinect for Windows was used to read the lips of the speaker.

Three different adults, with different ages, genres and pronunciations, tested the system.
Databases for each of them were recorded and were evaluated with different distances from
the Kinect and also the Speaker Dependency of the system.

5.2 Main results

Using the Kinect One, the system created obtained an accuracy of 82.5 percent in a pre-
recorded database and 81.3 percent during the live recordings. The first step to use the system
stands to create a data base with 30 repetitions of every 8 words regarding the AAL scenario
of controlling the VLC player. After the data base is created, some tests can be done with
classifiers using the Weka classifier, to see if the results were good. The results can vary a lot
from Speaker to Speaker. Some people pronounce the words too slow with hyper articulation
of the lips, others talk too fast and almost do not move the lips at all. The system performs
better if the words are correctly articulated during all the repetitions and if the words are
correctly recorded during the 2 seconds available to extract the features from the lips and
chin.

The system revealed to perform well at the job of real time VLC controlling with recogni-
tion of the commands in SS using the Kinect Camera, with an accuracy of 81.3 percent and
a time of around 1.3 seconds taken in classification. The effect of distance of the speaker was
also tested, proving to not be an issue in terms of the system accuracy.
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5.3 Future Work

There are multiple possibilities of future work in this dissertation. Some future work
can be done in controlling other applications regarding other AAL scenarios, for example
Youtube, Facebook or Spotify.

In therms of the Live usage of the system, the liberty of speaker to start saying a command
needs to be improved. The best case scenario would be a system in which the speaker could,
for example, be sited on the couch and just say the command whenever he wants, like turn
up or down the volume, change movie etc. The implementation of this dissertation does not
give this liberty for the speaker. It is hard for a visual speech recognition system to know the
exact moment that the speaker starts to say the command that he wants, while the speaker
is talking to his family, for example.

A non limited time to record the features extracted from the lips and chin is also needed
due to the different ways that people talk, some people talk faster, someones do not. For people
that talk slower, recording a large command like ”Aumentar Volume” (Increase Volume) can
take more that 2 seconds and the implementation of this dissertation will not record all the
needed information to take the decision.

The system that was created is a Visual Speech Recognition system, non-invasive and
non-obtrusive. However, it would be interesting to create and evaluate the results from a
multimodal system using the features extracted with the created prototype in this dissertation
and using information from other phases of the humans speech production, for example from
the Conceptual Preparation, using signals from electroencephalographic sensors.

The speaker independency needs to be improved, since the results from this dissertation
have shown that the prototype created is without doubt speaker dependent, which means
that every user needs to record a database for himself before using the system.
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