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A globalização da indústria de comercialização de produtos alimentares e os recorrentes 
alertas sobre questões de segurança alimentar, resultaram numa crescente 
consciencialização dos consumidores sobre a necessidade de rastrear estes produtos. 
Determinar a origem geográfica de produtos alimentares de origem marinha é fundamental 
para controlar a sua qualidade e salvaguardar o interesse dos consumidores. Este estudo 
utilizou como espécie alvo o berbigão (Cerastoderma edule), focando-se na utilização de 
ferramentas bioquímicas e geoquímicas, tais como perfis de ácidos gordos e a assinatura 
elementar de conchas, respetivamente, para a determinação da origem geográfica. Esta 
espécie de bivalve representa uma grande importância comercial e suporta uma série de 
pescarias nas águas costeiras europeias e, no caso particular da Ria de Aveiro, uma lagoa 
localizada na costa ocidental atlântica de Portugal, onde a apanha de berbigão é superior a 
1000 toneladas por ano.  
O primeiro passo do presente estudo consistiu na avaliação do potencial uso dos perfis de 
ácidos gordos do músculo adutor de C. edule comercializados frescos para rastrear seu local 
de origem. Os resultados mostraram, pela primeira vez, que é possível determinar a origem 
geográfica com resolução espacial < 10 km sem o uso complementar de assinaturas de 
isótopos estáveis. Além disso, o perfil de ácidos gordos do músculo adutor de berbigão fresco 
mostrou ser capaz de discriminar a origem dos espécimes recolhidos em áreas próximas com 
diferentes classificações de acordo com o Regulamento Europeu (CE) n. º 1379/2013 para a 
captura/produção de bivalves. Esta abordagem é primordial para a rastreabilidade, de modo a 
combater a fraude e a segurança alimentar. Os perfis de ácidos gordos do músculo adutor de 
C. edule foram avaliados ao longo da costa Portuguesa, bem como a sua variabilidade inter-
anual dentro do mesmo ecossistema. Os resultados obtidos permitiram diferenciar os 
berbigões produzidos em diferentes ecossistemas ao longo a costa portuguesa, 
desempenhando um papel fundamental para os mariscadores/produtores dispostos a 
diferenciar e agregar valor aos seus produtos. Além disso, esta abordagem foi capaz de 
discriminar os ecossistemas que são microbiologicamente mais seguros. Os perfis de ácidos 
gordos do músculo adutor apresentaram variabilidade inter-anual devendo ser considerada 
para a rastreabilidade, na medida em que compromete a discriminação da origem geográfica. 
Numa outra tentativa de garantir a segurança alimentar, este estudo determinou se o perfil de 
ácidos gordos do músculo adutor de berbigão vivo apresentava mudanças significativas 
durante o tempo de prateleira (sete dias pós-colheita em ambiente refrigerado) e quanto 
tempo pós-colheita esses perfis de ácidos gordos poderiam ser utilizados para rastrear com 
fiabilidade a sua origem geográfica. Os resultados indicaram que os perfis de ácidos gordos 
permanecem estáveis até ao terceiro dia pós-colheita, podendo ser usados para rastrear com 
fiabilidade a origem geográfica. Após este período, os berbigões começaram a exibir perfis 
contrastantes de ácidos gordos no seu músculo adutor, nomeadamente uma elevada 
percentagem do ácido heptadecanóico (17:0), associado ao crescimento de microrganismos 
patogénicos responsáveis pela deterioração dos alimentos. 
Neste estudo foi também avaliada e validada a eficiência da assinatura elementar das 
conchas de bivalves frescos como um proxy para discriminar a origem de espécimes 
coletados em áreas adjacentes no mesmo sistema estuarino, tendo sido quantificados Bário 
(Ba), manganês (Mn), magnésio (Mg), estrôncio (Sr) e chumbo (Pb). Os resultados 
mostraram, pela primeira vez, que este método pode ser utilizado para obter uma certificação 
confiável e precisa da origem para bivalves com resolução espacial < 1 km. A análise 
elementar também foi abordada no sentido de avaliar se a assinatura elementar das conchas 
de espécimes capturados em oito ecossistemas diferentes ao longo da costa atlântica 
portuguesa pode ser usado para discriminar com sucesso a sua origem geográfica. Além 
disso, foi também testado se a assinatura elementar das conchas se altera em dois anos 
consecutivos, em áreas com classificações diferentes dentro do mesmo ecossistema. A 
assinatura elementar exibida pelas conchas de berbigão determinou com sucesso a origem 
geográfica dos berbigões ao longo da costa portuguesa, necessitando, no entanto, de uma 
verificação periódica (> 6 meses e < 1 ano) para controlar a variabilidade temporal sempre 
que comparados espécimes provenientes da mesma área recolhidos com mais de seis meses 
de diferença. As ferramentas moleculares desenvolvidas durante este estudo representam um 
benefício económico se e quando aplicadas ao setor de produção de bivalves. A transferência 
desta tecnologia para a produção de bivalves constitui uma forma de segurança do produto, 
promoção e diferenciação, bem como uma ferramenta de combate à fraude. 
 

 



 



 

keywords 

 
Cerastoderma edule, seafood, geographic origin 
 

abstract 

 
Market globalization and recurrent alerts on food safety issues resulted in a growing 
awareness of consumers on the need for food traceability. Determining seafood geographic 
origin is critical for controlling its quality and safeguarding the interest of consumers. This 
study used as target species the common cockle (Cerastoderma edule) and focused in the 
use of biochemical and geochemical tools, like fatty acid (FA) profiles and shells’ trace 
element fingerprints (TEF), respectively, to determine the geographic origin. This bivalve 
species represents a high commercial importance and supports a number of fisheries in 
European coastal waters and, in the particular case of Ria de Aveiro, a lagoon located in the 
western Atlantic coastal of Portugal, the harvesting of cockle exceeds 1000 tons per year. 
The first step of the present study was to evaluate the potential use of FA profiles of the 
adductor muscle (AM) of C. edule traded as fresh seafood for tracing their harvesting location. 
Results showed, for the first time, that it is possible to achieve the geographic origin with a 
spatial resolution < 10 Km without the complimentary use of stable isotope signatures. 
Besides, FA profile of the AM of fresh cockles showed to be able to discriminate the origin of 
specimens collected in close areas with different classifications according to European 
regulation (EC) No 1379/2013 for the capture/production of bivalves. This approach is 
paramount for traceability, expose fraud and ensure food safety. The way how the spatial 
distribution of C. edule among eight ecosystems along the Portuguese coast affects the FA 
profiles of the AM of this species and the temporal variability of FA profile between two 
consecutive years in areas within the same ecosystem were also tested. Data obtained from 
this research enable to differentiate cockles cultured in different Portuguese ecosystems, 
playing a key role for fishermen / producers willing to differentiate and add value to their 
products. Besides, this approach was able to discriminate the ecosystems which are 
microbiologically safer. The FA profiles presented inter-annual variability which must be 
considered for traceability as it compromise the discrimination of the geographic origin.  In 
other attempt to ensure food safety, this study determined if the FA profile of the AM of live 
cockles displayed any significant shifts during the shelf-life (seven days post-harvest under a 
refrigerated environment) and how long post-harvest can these FA profiles be used to reliably 
trace their geographic origin. Results indicated that FA profiles remained stable until the third 
day post-harvest being able to be used to reliably trace geographic origin. After this period 
cockles started to exhibit contrasting FA profiles on their AM, namely a higher percentage of 
heptadecanoic acid (17:0), associated with the growth of pathogenic microorganisms 
responsible for food spoilage.  
In this study, was also evaluated and validated the efficiency of TEF of shells from fresh 
bivalves as a proxy to discriminate the origin of specimens collected from adjacent areas of 
the same estuarine system. Barium (Ba), manganese (Mn), magnesium (Mg), strontium (Sr) 
and lead (Pb) were quantified in cockle shells. Results showed, for the first time, that this 
method can be used to achieve a reliable and accurate certification of origin for bivalves with a 
spatial resolution < 1 Km. TEF was also approached in the sense of evaluate if TEF of cockle 
shells from specimens captured in eight different ecosystems along the Portuguese Atlantic 
coastline can be used to successfully discriminate their geographic origin and if the temporal 
stability of TEF in cockle shells changes between two consecutive years in areas within the 
same ecosystem but displaying different classifications. TEF displayed by cockle shells 
successfully traced the geographic origin of cockles along the Portuguese coast and a 
periodical verification of TEF (> 6 months and < 1 year) is required to control temporal 
variability whenever comparing specimens originating from the same area collected more than 
six months apart. 
The molecular tools developed during this study represent an economic benefit if and when 
applied to the bivalve production sector. The transfer of this technology to the bivalve’s 
production constitutes a form of product’s safety, promotion and differentiation, as well as a 
tool against fraud 
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1.1.  Seafood trade 

Fish and seafood products are important food resources (Usydus, Szlinder-Richert, 

Adamczyk, & Szatkowska, 2011) with relevant nutritional value and benefits for human health 

(Anacleto et al., 2014; Karl, Lehmann, Manthey‐Karl, Meyer, & Ostermeyer, 2014; Özogul & 

Özogul, 2007). During the last decade, seafood production worldwide increased 25%, mainly due 

to the contribution of aquaculture production (FAO, 2016).  From 2004 to 2013, the worldwide 

import of fishery products increased from 29.910 to 35.203 tons. The value of imports increased 

by 76%, from 71.4 million euros in 2004 to 126.0 million euros in 2013, while that of exports has 

grown from 29.8 to 36.4 tons, representing an increase by 22% in volume during 2004–2013 

(Figure 1). The overall value of exports increased by 102% from 63.9 million euros (2004) to 

129.3 million euros (2013). 

 

Figure 1. Global import and export of fish and seafood products. 

 

 

The continuous growth of the global seafood market promotes a number of challenges at 

an environmental, economic and societal level (Cao et al., 2015). As bivalve shellfish plays an 

important role in global fisheries and aquaculture (FAO, 2016), it is expected that supply chains 

commercializing live bivalves display a growing awareness towards food safety issues in an age 

of global trade (Oliveira, Cunha, Castilho, Romalde, & Pereira, 2011) (Figure 2).  
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Figure 2 illustrates the countries in which the network trade of bivalves (and derived 

products) was above 35.000 tons in the last four years, with real flow values being displayed 

between exporters and importers. China was the most representative country on the export of 

bivalves, with 500.000 tons, representing 1.804.388 million euros (ITC, 2014). Korea imported 

approximately 300.000 tons and France was the second largest importer with 273.000 tons. 

Bivalve products imported to Korea (from clams, cockles and scallops) were provided by China 

(Figure 2), reaching a value of 338.052 million euros. Mussels were the most important group of 

bivalves imported by France, mostly originating from Spain and the Netherlands, while scallops 

were provided from Asian countries, reaching values of 93.676 and 4.724 million euros 

respectively. The most exported bivalves to Portugal during 2010–2015 were clams and cockles. 

On the other side, the imports of bivalves to Portugal were mostly clams, cockles and mussels at 

38.275.000 tons (representing 96% of the total imported bivalve’s). The value of imported clams, 

cockles and mussels added up to 78 million euros, representing 88% of the total value of imported 

bivalve’s by Portugal (Figure 2). 

 

 
 

Figure 2. Chord diagram representing the global trade network of bivalves from 2012 to 2015 considering 

the twelve most relevant importers. China (CHN), Netherland (NED), Spain (ESP), Japan (JPN), Canada 

(CAN), Deutschland (DEU), United Stade of America (USA), Italy (ITA), Korea (KOR), France (FRA), 

Portugal (PRT), Belgium (BEL), Hong Kong (HKG), Asian (AS), Europe (EU), Oceania (OC), Africa (AF) 

and North Central and South America (NSA). Source (ITC, 2014). 
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The trading of bivalve’s is associated with different levels of the supply chain. The 

primary stage contemplates concerns the producers and fishermen, while the second stage in the 

supply chain involves the depuration process, which is followed by a third and fourth stages 

corresponding to first and second buyers/processors and distributors, respectively, often followed 

by a distributor before bivalves reach the end consumer (Figure 3). The long paths from harvesting 

to consumption increase food safety risks inherent to bivalve products. Thus, in order to address 

current legislation and respond to the needs of the global market, it is important to develop 

efficient traceability tools associated with the fishing and aquaculture of bivalves, encompassing 

both processing and trading pathways.  

 

 

 

Figure 3. Bivalve supply chains and its many participants from fishermen/producers to the end consumer. 

Different colour of arrows, correspond to different fishing/production areas for bivalves in the EU and are 

ranked according to the levels of Escherichia coli present in the flesh and intra-valvular liquid of live 

specimens (for more details see section 1.2). 
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1.2.  Cerastoderma edule as case study 

The phylum Mollusca is one of the largest group in the animal kingdom with more than 50 

000 described species (Gosling, 2004). The class Bivalvia is one of six classes of molluscs and 

contains about 7500 species (e.g. mussels, oysters, scallops, cockles and clams) (Gosling, 2004). 

By definition, bivalves possess two shells, called valves, joined together by a ligament along one 

edge, the hinge line that, in conjunction with interlocking "teeth" present in each valve, forms the 

hinge. Bivalves whose valves have the same shape (e.g. mussels, cockles and clams), valves are 

drawn together by an anterior and posterior adductor muscle (Tebble, 1966). 

The mantle is responsible for secreting shell valves, ligament and hinge teeth. The shell is 

mainly formed by the deposition of calcium carbonate crystals in an organic matrix (conchiolin) 

and is structured in three layers: a thin outer periostracum of horny conchiolin, whose thickness 

is influenced by mechanical abrasion, fouling organisms, parasites or disease; a middle layer of 

aragonite or calcite (crystalline form of calcium carbonate); and an inner calcareous (nacreous) 

layer (Gosling, 2004; Tebble, 1966). Shell grows by the addition of material from the edge of the 

mantle and grows in thickness by deposition from all the mantle surface. Calcium is obtained 

from diet or taken up from water and carbonate from the CO2/bicarbonate pool in the animal’s 

tissues (Gosling, 2004). During growth their bivalves record information on environmental 

physico-chemical changes in their shells in the form of variable growth rates and geochemical 

properties (Chauvaud et al., 2005; Wanamaker, Kreutz, Schöne, & Introne, 2011; Williams, 

Arthur, Jones, et al., & Healy-Williams, 1982). Their shells serve not only for muscle attachment, 

but also for protection against predators and mechanical damage, as well as to keep mud and sand 

out of the mantle cavity in the case of burrowing species (Gosling, 2004).  

In borrowing species, the foot has become modified for rapid and effective digging, and 

mantle edges are fused to form long siphons. Both these features allow the organisms to burrow 

deeply within different sediments while in species that live permanently attached to a substrate 

(e.g. oysters and mussels) the foot is very reduced (Gosling, 2004). Bivalves are mainly filter 

feeders, filtering actively water using two siphons (inhalant and exhalant) positioned on the 

surface of the sediment. Water is filtered through gills to keep phytoplankton, zooplankton and 

organic particles (Spencer, 2002). 

The common cockle Cerastoderma edule (Linnaeus, 1758) is a species ecologically important 

species with high socio-economic relevance, as it supports a number of commercial fisheries. This 

ecological and economic relevance have been the main motivation for its selection as a model for 

the study. C. edule is an estuarine/marine species currently placed within family Cardiidae. Its 

two valves are very similar, solid, globular and broadly oval in outline, and may be up to 50 mm 

long. Shell presents 22-28 conspicuous broad ribs that are closely spaced. Outer surface off-white, 

yellowish or brownish (Tebble, 1966). Growth lines are prominent. Inner surface dull white, with 

a brownish or light purple stain on or about the posterior adductor muscle scar. The pallial line 
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lacks a sinus (Tebble, 1966). Both valves have two cardinal teeth, and shallow grooves on their 

inner surface run from their notched margin that, fade before reaching the pallial line (Tebble, 

1966).  

C. edule is one of the most common and widely distributed bivalve species in the estuaries 

and bays of the European Atlantic coastline (Malham, Hutchinson, & Longshaw, 2012; Mariani, 

Piccari, & De Matthaeis, 2002; Reise, 2003). Its preferential distribution goes from the middle to 

the lower intertidal region but, in some cases, it can still be found in subtidal areas. This species 

inhabits on clean sand, muddy sand, mud or muddy gravel sediments, burrowing to a depth of no 

more than 5 cm. It tolerates salinities ranging from 12.5 to 38.5 (Russell & Petersen, 1973) and 

temperatures between 4 and 38 ºC (Compton, Rijkenberg, Drent, & Piersma, 2007).  

Cockles do not present external morphological differences between sexes, being dioecious 

and having a sex-ratio of approximately 1:1 in any given population (Boyden, 1971; Kandeel, 

Mohammed, Mostafa, & Abd-Alla, 2013). A large percentage of their population spawns at the 

same time, with adults typically beginning to spawn in their second summer; fertilisation is 

external, with oocytes and sperm being released into the water. Before undergoing metamorphosis 

into juvenile cockles and settle to the substrate, the free-swimming larvae (veliger larvae) lives 

for 3 to 5 weeks in the plankton (Creek, 1960). Growth rates vary with the season, being lower in 

winter, which leads to the marked growth-bands on the shell. Longevity for this species has been 

estimated to be of 6 years.  

As already referred, the common cockle (C. edule) is commercially harvested in the soft-

sediment shores of the European Atlantic coastline (Malham, Hutchinson, & Longshaw, 2012; 

Mariani, Piccari, & De Matthaeis, 2002; Reise, 2003), supporting several commercially important 

fisheries (Malham, Hutchinson, & Longshaw, 2012). Along the Portuguese coast (e.g. Ria de 

Aveiro, Óbidos lagoon, Ria de Alvor and Ria Formosa) the common cockle is the most commonly 

harvested bivalve and ranks among the most heavily collected molluscs for consumption. Its 

capture, has been increasing considerably in recent years (INE, 2014, 2015) and in 2015 5.000 

tons were captured in national waters, corresponding to an estimated revenue of 4.5 million euros 

(INE, 2014, 2015). 
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1.3.  Traceability associated with seafood safety risks 

In an attempt to reduce supply chain risks and improve food safety and quality, the European 

Union (EU), one of the world´s territories with the highest seafood consumption per capita (FAO, 

2016), established regulatory requirements launched in 2002 (EU directive 178/2002 EC (2002)). 

EU developed specific requirements for seafood traceability, particularly, article 58 of EC 

1224/2009 which requires that “all lots of fisheries and aquaculture products shall be traceable at 

all stages of production, processing and distribution, from catching or harvesting to retail stage”. 

More recently, the European regulation (EC) No 1379/2013 “on the common organization of the 

markets in fishery and aquaculture products” further contributed to the implementation of seafood 

traceability by requiring that the category of fishing gear or production method (i.e. caught or 

farmed) is provided together with geographic details of the catch area (EC, 2013). However, this 

information is not always available to end consumers and is prone to fraudulent use (e.g. 

mislabelling of place of origin). Consequently, even conscientious buyers aware of the potential 

hazards associated with the consumption of bivalves may not be able to securely purchase this 

highly-prized seafood. It is therefore critical to develop and validate reliable techniques that allow 

competent authorities to trace the origin of traded bivalves to ultimately fight fraud and prevent 

major risks to public health. 

As already referred the global production of bivalves (e.g. cockles, clams, mussels and 

oysters) has notably increased since the 1990s, reaching over 16 million tons in 2014 (FAO, 

2016). To protect public health and address current European legislation, it is paramount to trace 

the origin of captured/produced bivalves, not solely to a given estuary/coastal lagoon but 

specifically to its capture/production area. Bivalves are filter-feeders and are able to retain, 

accumulate and concentrate pathogens (e.g. Salmonella and Vibrio). The high trade volume of 

bivalves, combined with its raw or lightly cooked consumption, represents a potential risk to 

global human health (Rippey, 1994) and has been associated with outbreaks of a number of 

diseases, namely typhoid fever, hepatitis A, severe gastroenteritis and cholera (Iwamoto, Ayers, 

Mahon, & Swerdlow, 2010; Lees, 2000; Potasman, Paz, & Odeh, 2002). 

The microbiological safety of bivalves destined for human consumption in member states 

of the European Union (EU) is covered by Council Regulation 853/2004 and 854/2004 (EC, 

2004a, 2004b). Briefly, capture/production areas for bivalves in the EU are ranked according to 

the levels of Escherichia coli present in the flesh and intra-valvular liquid of live specimens and 

quantified through a 5-tubes 3-dilution most probable number (MPN) test. Bivalves originating 

from an area classified as “A” display less than 230 MPN of E. coli per 100 g of flesh and intra-

valvular liquid. Consequently, these bivalves do not require any post-harvest treatment to reduce 

microbiological contamination. Bivalves originating from an area classified as “B” must not 

exceed in 90% of sampled specimens with 4600 MPN E. coli per 100 g of flesh and intra-valvular 

liquid, with the remaining 10% of specimens not exceeding 46000 MPN E. coli per 100 g of flesh 
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and intra-valvular liquid. As a result, these bivalves must be depurated, relayed or cooked by an 

approved method. Bivalves originating from an area classified as “C” must not exceed the limits 

of MPN test of 46.000 E. coli per 100 g of flesh and intra-valvular liquid. These bivalves must be 

relayed or cooked by an approved method (EC, 2004a, 2004b, 2005, 2008). In most EU countries, 

the fishing/production of bivalves is centered in estuaries and coastal lagoons, being common to 

have different classifications within the same aquatic system. Therefore, tracing the origin of 

traded bivalves to their specific fishing/production area, even within the same aquatic system, is 

paramount to ensure public food safety (Leal, Pimentel, Ricardo, Rosa, & Calado, 2015). 

It is important to highlight that, during handling and storage, contamination of bivalves 

by enteric bacteria of human origin may also occur (Oliveira, Cunha, Castilho, Romalde, Pereira, 

2011). In this way, these processes should be performed under controlled conditions to avoid 

contamination and growth of pathogenic microorganisms responsible for food spoilage (Emikpe, 

Adebisi, & Adedeji, 2011). Any change on the taste, smell, appearance or texture of bivalves can 

turn the product unacceptable and/or unsafe for the consumer (Costa, Conte, & Del Nobile, 2014). 

It is well known that the quality of live bivalves can be rapidly lost post-harvest, which ultimately 

conditions the shelf-life of these highly priced products (Lee, Lovatelli, & Ababouch, 2008). As 

live bivalves kept at ambient temperatures post-harvest often display a shorter shelf-life (< 48 h), 

they are most commonly stored on ice or refrigerated environments (0 to 4 ºC) to maintain their 

quality and safety for human consumption (Ashie, Smith, Simpson, & Haard, 1996; Rey, Miranda, 

Aubourg, & Barros-Velázquez, 2012). Under optimal storage conditions, live cockles maintain a 

fresh-like texture for approximately days post-harvesting (Ricardo et al., 2015a). Nevertheless, 

storage at lower temperatures does not impair biochemical reactions (e.g. enzymatic autolysis, 

lipid oxidation) or microbial growth that can affect the level of freshness of live bivalves (Ashie, 

Smith, Simpson, & Haard, 1996). About 4-5 days post-harvest live bivalves start to become slimy, 

produce an off odor, display an increase in pH, loose their water holding capacity and display a 

sharp decrease in their organoleptic acceptability (Ashie, Smith, Simpson, & Haard, 1996; 

Parveen et al., 2008).  

The application of food traceability mechanisms, including biotechnological tools for 

authentication or origin of food products is becoming increasingly relevant, especially in seafood 

(Rasmussen & Morrissey, 2008; Teletchea, 2009). Notable biotechnological advances have been 

made but, despite the development of legal frameworks for seafood traceability, its 

implementation is still facing a number of challenges (Charlebois, Sterling, Haratifar, & Naing, 

2014).  
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1.4.  Biotechnological tools for seafood traceability 

The global trade of seafood products, associated to a number of specific features of these 

highly priced goods, such as being highly perishable and being present in a large number of 

processed products, demanded the development of fast, simple and reliable analytical 

methodologies to trace them. Several different methods have been focused on biotechnological 

tools applied to seafood traceability, namely: biochemical (e.g. fatty acids; Olsen, Grahl-Nielsen, 

& Schander, 2009), geochemical (e.g. trace elemental fingerprinting; Sorte, Etter, Spackman, 

Boyle, & Hannigan, 2013), and DNA tools (e.g. PCR-DGGE; El Sheikha, Durand, Sarter, Okullo, 

& Montet, 2012), barcoding (Galimberti et al., 2013). The present work is focused solely on the 

use of biochemical and geochemical methods for seafood traceability. 

Fatty acids (FA) are essential for life because they are important components of the plasma 

membrane, shifting its composition as a function of intrinsic (e.g. age, sex, reproductive cycle and 

phylogeny) and extrinsic (e.g. diet, temperature, depth and salinity) factors. Thus, as FA 

composition changes according to the physicochemical conditions of each particular 

environment, FA fingerprints can be useful for tracing geographic origin (Elsdon & Gillanders, 

2003; Hall, Parrish, & Thompson, 2002). The diet available for aquatic organisms varies with 

habitat and ecosystem, affecting the FA composition of each organism (Bergé & Barnathan, 2005; 

Dalsgaard, St John, Kattner, Müller-Navarra, & Hagen, 2003). Therefore it is paramount to use 

tissues that are less prone to be affected by seasonal variability (both environmental and dietary), 

such as the adductor muscle of bivalves (Grahl-Nielsen, Jacobsen, Christophersen, & Magnesen, 

2010; Olsen, Grahl-Nielsen, & Schander, 2009). The structural nature of the lipids presents in the 

AM of bivalves (mostly phospholipids and sterols) provides a more stable FA signature that is 

primarily determined by environmental conditions and functions of the cellular membrane, rather 

than dietary regimes (Dalsgaard, St John, Kattner, Müller-Navarra, & Hagen, 2003; Napolitano, 

Pollero, Gayoso, Macdonald, & Thompsan, 1997). At present, most studies available on the FA 

profiles of bivalves are focused on the analysis of the whole body or other organs than the AM 

(e.g. gonads, gills and digestive gland) (Napolitano, Macdonald, Thompson, & Ackman, 1992; 

Perez et al., 2013) that are regulated by intrinsic (e.g. age, phylogeny and sex) and external (e.g. 

diet, salinity and depth) factors (Olsen, Grahl-Nielsen, & Schander, 2009). Conversely, the FA 

signature of the AM is less prone to fast and dramatic shifts as compared to other organs (e.g. 

gonads and the digestive gland) (Dalsgaard, St John, Kattner, Müller-Navarra, & Hagen, 2003; 

Napolitano, Macdonald, Thompson, & Ackman, 1992). This biochemical approach is relatively 

low cost and fast once the FA extraction and quantification protocol has been optimized for the 

tissue of the target species (Ricardo et al., 2015a). However, lipids are susceptible to oxidation, 

which impair their use when monitoring processed products. 

Trace element fingerprinting (TEF), uses the elemental profile recorded in hard biogenic 

structures, such as shells, statolith and otoliths (Carson et al., 2013; Reis-Santos et al., 2012). 
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Several trace elements are found in a wide range of marine species (Albuquerque, Queiroga, 

Swearer, Calado, & Leandro, 2016; Green et al., 2015; Norrie, Dunphy, Baker, & Lundquist, 

2016; Ricardo et al., 2015b), with the most common ones being aluminium (Al), barium (Ba), 

calcium (Ca), cobalt (Co), chromium (Cr), copper (Cu), magnesium (Mg), manganese (Mn), lead 

(Pb), zinc (Zn) strontium (Sr) and uranium (U) (Génio, Simon, Kiel, & Cunha, 2015; Norrie, 

Dunphy, Baker, & Lundquist, 2016; Ricardo et al., 2015b). Considering that trace elements are 

influenced by the environmental features of each ecosystem (Takesue, Bacon, & Thompson, 

2008) and that these mineral structures grow throughout the year, TEF represents a low cost, fast, 

reliable and accurate method, that has already been successfully used to distinguish specimens 

geographically close from populations (Becker, Fodrie, McMillan, & Levin, 2004; Sorte, Etter, 

Spackman, Boyle, & Hannigan, 2013; Zacherl, 2005). However, the need of hard structures to 

successfully use geochemical tools limits their applicability to processed products (e.g. canned 

food and fish fillets). 

 

1.4.1. Fatty acids fingerprints as natural tags 

Lipids are one of the largest groups of nutrients found in seafood products and play several 

important biological functions, namely storage and transport of energy, formation of cell 

membranes, maintenance of their structural integrity, synthesis of prostaglandins and transport of 

fat-soluble vitamins (Arts, Brett, & Kainz, 2009; Nunes, Bandarra, & Batista, 2011). Considering 

their functions in living organisms they can be divided in two main groups: nonpolar lipids (e.g. 

acylglycerols, free (nonesterified) fatty acids, sterols, wax and steryl esters) and polar lipids 

(glycolipids and phospholipids) (Arts, Brett, & Kainz, 2009). Polar lipids are important structural 

components of cell membranes acting as a selective permeable barrier for cells and organelles. 

These lipids have an important role in specific membrane functions providing the matrix for a 

very wide variety of metabolic processes, being directly involved in membrane fusion events. 

Besides, some polar lipids participate in cell signalling pathways (e.g. inositol lipids, 

sphingolipids, oxidative products) acting as key intermediates or precursors of intermediates and 

play a role in responding to changes in the environment (Arts, Brett, & Kainz, 2009). Nonpolar 

lipids can be easily catabolised to provide metabolic energy, being triacylglycerol’s abundant 

storage products (Lucy, 1974). 

Fatty acids (FA) are the main constituents of polar lipids. Its composition is determinant for 

the physical properties, stability and nutritional value of the lipid fraction present in any food 

itens. FA are carboxylic acids (carboxyl group -COOH) with a more or less long chain of carbons, 

(4 to 36 carbons) attached to hydrogen (methylene group CH2) and ending with a methyl group 

(CH3) (Koolman, Röhm, Wirth, & Robertson, 2005) (Figure 4). These compounds can be 

classified as saturated (SFA), monounsaturated (MUFA) or polyunsaturated (PUFA), depending 

on the number of double bonds in the carbon skeleton, zero, one or more than one, respectively. 
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SFA are characterized by the absence of double bonds in the carbon chain, which gives rise to a 

flat molecular structure. Among unsaturated fatty acids, MUFA differ from PUFA because they 

have only one double bond in the carbon chain whereas PUFA have 2 or more double bonds. The 

letter n (n-) is used to indicate the distance, in carbon atoms, from the double bond to the terminal 

methyl group, identifying the different FA families (Figure 4).  

FA can also be classified as non-essential (easily catabolised to provide metabolic energy) 

and essential, when they are not synthesize by the organism and are exclusively acquired from 

ingested food (Arts, Brett, & Kainz, 2009). PUFA, such as linoleic acid (18:2n-6) and linolenic 

acid (18:3n-3) as well as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 

22:6n-3), are essential FA that are vital for maintaining somatic and population growth, survival, 

and reproductive success (Arts, Brett, & Kainz, 2009). Fish and shellfish are dominated by PUFA, 

followed by SFA and MUFA, whose proportions and amounts are regulated by intrinsic (e.g. age, 

phylogeny and sex) and external (e.g. diet, salinity and depth) factors (Olsen, Grahl-Nielsen, & 

Schander, 2009). In marine organisms, such as bivalves, palmitic acid (16:0; Figure 4a) is the 

most relevant within the SFA group, while oleic acid (18:1n-9; Figure 4b) is the dominant in 

MUFA, and eicosapentaenoic acid (EPA, 20:5n-3; Figure 4d) and docosahexaenoic acid (DHA, 

22:6n-3; Figure 4e) are the most well represented within PUFA (Galap, Netchitaı̈Lo, 

Leboulenger, & Grillot, 1999; Grahl-Nielsen, Jacobsen, Christophersen, & Magnesen, 2010; 

Nunes, Bandarra, & Batista, 2011; Olsen, Grahl-Nielsen, & Schander, 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Molecular structures: a) saturated fatty acids (SFA), b) monounsaturated fatty acids (MUFA) and 

c,d,e) polyunsaturated fatty acids (PUFA). 

Oleic acid (18:1n-9) 

Linoleic acid (18:2n-6) 

Eicosapentaenoic acid (20:5n-3; EPA) 

Docosahexaenoic acid (22:6n-3; DHA) 

a) 

b) 

c) 

d) 

e) 

Palmitic acid (16:0) 
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Bivalves are not able to synthesize a number of n-3 and n-6 PUFA that are vital, for their 

growth, reproduction and immunity. Thus, FA composition in bivalves is generally related with 

the availability and composition of their natural diet, water temperature, water depth, salinity and 

reproductive cycle (Caers, Coutteau, & Sorgeloos, 2000; Prato, Danieli, Maffia, & Biandolino, 

2010). Algae (e.g. phytoplankton) are primary producers at the base of the food chain and being 

paramount for primary consumers due to their ability to biosynthesize several PUFA de novo 

(Parrish, 2013). Oleic acid (18:1n-9) is the precursor of all n-3 and n-6, which via Δ9 and Δ12 

desaturases to produce 18:2n-6 (linoleic acid), which can then be further desaturated by Δ15 

desaturase to give origin to 18:3n-3 (α-linolenic acid) (Bergé & Barnathan, 2005). Desaturations 

at the Δ6 and Δ5 positions in the carbon backbone, and an intermediate two carbon chain 

elongation are the pathways from 18:2n-6 to arachidonic acid and from 18:3n-3 to 

eicosapentaenoic acid (EPA, 20:5n-3), while the production of docosahexaenoic acid (DHA, 

22:6n-3) from eicosapentaenoic acid requires an additional desaturation (Δ4) and two carbon 

chain elongation (Adarme-Vega, Thomas-Hall, Lim, & Schenk, 2014; Graham, Cirpus, Rein, & 

Napier, 2004). In the alternative pathway, the elongation (Δ9) step precedes desaturation (Δ9), 

with linoleic acid and α-linolenic acid being elongated to C20 forms which then undergo two 

sequential desaturations (Δ8 and Δ5-desaturation) (Figure 5).   

 

 

Figure 5. Biosynthesis of long chain n-3 polyunsaturated fatty acids (PUFA). The precursor’s linoleic acid 

(LA) and α-linolenic acid (ALA) are the predominant fatty acids synthesised by algae. These then enter the 

bivalve food web and are subsequently metabolised to C20+ PUFA (Adarme-Vega, Thomas-Hall, Lim, & 

Schenk, 2014; Graham, Cirpus, Rein, & Napier, 2004). 
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FA profile of bivalves can provide information about the nutritional value of the food source 

as well its geographic origin. The structural nature of the lipids present in the AM of bivalves 

(mostly phospholipids and sterols) provides a stable FA signature that is mainly determined by 

environmental conditions and functions of the cellular membrane than by dietary regimes 

(Dalsgaard, St John, Kattner, Müller-Navarra, & Hagen, 2003; Napolitano, Pollero, Gayoso, 

Macdonald, & Thompson, 1997). Indeed, salinity and temperature are known to the structure and 

fluidity of cell membranes, with higher saline fluctuations and/or lower water temperatures 

promoting a decrease in the levels of saturated FA (SFA), which are responsible to stabilize the 

bilayer structure, and an increase in the concentration of polyunsaturated FA (PUFA), which 

enhance the bilayer fluidity (Nemova, Fokina, Nefedova, Ruokolainen, & Bakhmet, 2013). For 

this reason, the FA signature of the AM is less prone to fast and dramatic shifts comparatively 

with other organs in bivalves.  

 

1.4.2. Trace element fingerprints as natural tags 

Information on environmental conditions can be retrieved through geochemical signals 

recorded in hard mineral structures, such as coral skeletons (Gaetani & Cohen, 2006; Swart & 

Grottoli, 2003; Swart et al., 1999; Thresher, Fallon, & Townsend, 2016), fish otoliths (Campana 

& Thorrold, 2001; Peacock et al., 2016; Reis-Santos et al., 2012; Riou et al., 2016), foraminifera 

test (Lea, Shen, & Boyle, 1989; Ni Fhlaithearta, Ernst, Nierop, Lange, & Reichart, 2013) and 

bivalves shells (Füllenbach, Schöne, & Mertz-Kraus, 2015; Lazareth, Le Cornec, Candaudap, & 

Freydier, 2013; Lazareth, Putten, André, & Dehairs, 2003; Putten, Dehairs, Keppens, & Baeyens, 

2000), as they accrete through time under the influence of their surrounding environmental 

conditions.  

Indeed, bivalves record and reflect a large amount of environmental information in their shells 

and, for this reason, are used as climate and environmental proxy archives (Schöne & Gillikin, 

2013; Wanamaker, Kreutz, Schöne, & Introne, 2011). During growth bivalves, deposit new layers 

of shell that mirror the chemical composition of their environmental conditions at the time they 

formed. Biomineralization in bivalve’s takes place in a thin film of liquid, the extra pallial fluid, 

located between the calcifying shell surface and the mantle epithelium (Figure 6) (Wheeler, 1992). 

The inner and outer and/or middle shell layers are precipitated from the inner and outer extra 

pallial fluid, respectively. Extra pallial fluid is isolated from seawater and, for this reason, both 

present contrasting elemental concentrations (Wilbur & Saleuddin, 1983). Chemical elements 

present in seawater enter the haemolymph primarily through the bivalve gills; these elements later 

move into the extra pallial fluid through the epithelial mantle cells (Wilbur & Saleuddin, 1983). 

Chemical elements in seawater may also enter the bivalve through their gut or be directly uptaken 

by the mantle outer epithelium (Wilbur & Saleuddin, 1983).  
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Figure 6. Illustration of a cross-section through a bivalve shell with the different shell layers (aragonite and 

calcite), the mantle, and the sites of calcification (central or inner extra pallial fluid and marginal or outer 

shown (figure from Gillikin, 2005). 

 

The growth rate of bivalves is influenced by several variables, such as temperature and food 

supply/quality (e.g. Butler et al., 2010; Mette, Wanamaker, Carroll, Ambrose, & Retelle, 2016; 

Schöne et al., 2004; Witbaard, Duineveld, & De Wilde, 1999; Witbaard, Franken, & Visser, 

1997); moreover, there is a positive correlations between shell growth and higher water 

temperatures and food availability (i.e. Marali & Schöne, 2015; Schöne et al., 2005; Witbaard, 

Franken, & Visser, 1997). Bivalves deposit their biogenic carbonates on a periodic basis and at 

different rates (Deith, 1985; Thompson, Jones, & Dreibelbis, 1980), with periods of fast growth 

contrasting with those of a slower growth (Schöne, 2008; Schöne & Gillikin, 2013). The 

periodicity of deposition displayed by such structures can ranges from daily to annual (Campana 

& Thorrold, 2001; Gordon & Carriker, 1978).  

Trace element fingerprints (TEF) of biogenic carbonates have been successfully used as 

“natural tags” to discriminate specimens from different geographical origins (Ricardo et al., 

2015b; Zacherl, 2005). TEF variability in hard mineral structures such as shells of marine bivalves 

is influenced by the availability of trace elements in seawater, which, as already referred, reflect 

shifts in the environmental features of their ecosystems (Lloyd et al., 2008; Zacherl, Morgan, 

Swearer, & Warner, 2009). Being inert structures, TEF displayed by bivalve shells are 

chronological fingerprints that reflect the geographical surroundings of a given specimen from 

birth to its harvest (Becker, Fodrie, McMillan, & Levin, 2004; Génio, Simon, Kiel, & Cunha, 

2015; Strasser, Mullineaux, & Thorrold, 2008; Zacherl, 2005). A wide range of element/calcium 

ratios are commonly recorded in these calcified structures, the most common ones being Ba/Ca, 

Cd/Ca, Cu/Ca, Cr/Ca, Mg/Ca, Mn/Ca, Pb/Ca, Sr/Ca, U/Ca and Zn/Ca (Carson, 2010; Génio, 

Simon, Kiel,& Cunha, 2015; Ricardo et al., 2015b). Among these ratios the Mg/Ca and Sr/Ca are 

likely the most well studied, being proposed as salinity independent temperature proxies in 

biogenic carbonates. The Ba/Ca and Mn/Ca ratios are often associated with phytoplankton 

variability, being the last one, as well as the ratio Pb/Ca, associated with anthropogenic pressures 
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(historical metal industries and acute pollution from boats using leaded gasoline, respectively) 

(Bourgoin, 1990; Pitts & Wallace, 1994; Vale, Canário, Caetano, Lavrado, & Brito, 2008). The 

presence of other metals in bivalve shells, such as Cu, Zn and Cd, have also been shown to be 

promising proxies for the flagging of environmental pollution (Richardson, Chenery, & Cook, 

2001).  

 

1.5.  Objectives 

Market globalization and recurrent alerts on food safety issues resulted in a growing 

awareness of consumers on the need for food traceability. This is particularly relevant for seafood 

due to its highly perishable nature and importance as the main protein supplier of world’s 

population in 21st century. In 2013, the global production of bivalves from fisheries and 

aquaculture reached approximately 14 million tonnes worldwide with a monetary value of over 

55 million euros. In Portugal, around 7.500.000 tons were captured valued in 9.2 million euros in 

2013. The present study aims to develop efficient protocols for the traceability of bivalves either 

produced or harvested in ecosystems along Portuguese coast (see Appendix A for a detailed 

descriptions of each study area) according to the following null hypotheses: 

 

I. The fatty acid profile of the adductor muscle of C. edule does not differ between 

specimens captured in different channels of Ria de Aveiro (section 2.1); 

II. The fatty acid profile of the adductor muscle of C. edule does not present spatio-temporal 

variability (section 2.2); 

III. The fatty acid profile of the adductor muscle of C. edule does not changed during the 

shelf-life (section 2.3); 

IV. The trace element fingerprints of C. edule shells does not differ between specimens 

captured in different locations of Ria de Aveiro (section 3.1); 

V. The trace element fingerprints of C. edule shells does not present spatio-temporal 

variability (section 3.2); 
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2.1.  Potential use of fatty acid profiles of the adductor muscle of 

cockles (Cerastoderma edule) for traceability of collection site 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The material & methods, results and discussion presented in this section were integrally published 

as follow:  

 

Fernando Ricardo, Tânia Pimentel, Ana S. P. Moreira, Felisa Rey, Manuel A. Coimbra, M. 

Rosário Domingues, Pedro Domingues, Miguel Costa Leal & Ricardo Calado (2015). Potential 

use of fatty acids profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability 

of collection site. Scientific Reports 5, 11125. 
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2.1.1.  Background and aim of the study 

Market globalization and recurrent alerts on food safety issues resulted in a growing 

awareness of consumers on the need for food traceability. This is particularly relevant for seafood 

due to its highly perishable nature and importance as the main protein supplier of world’s 

population in 21st century. Ria de Aveiro is a coastal lagoon located in the western Atlantic margin 

of Portugal (Figure 7) where bivalve fisheries/aquaculture play an important socio-economic role 

(Pereira, Maia, & Gaspar, 2013), especially the harvesting of cockle (Cerastoderma edule) from 

Ria de Aveiro, which exceeds 1000 tons per year. This coastal lagoon currently has four official 

bivalve capture/production areas classified either as B or C (see definition above). To provide a 

potential tool for bivalve’s traceability, the present study aimed to evaluate if the FA profile of 

the AM of fresh cockles could be used as a method to discriminate the origin of specimens 

collected in different channels of Ria de Aveiro, either with identical or different classifications 

for bivalve capture/production. The following null hypothesis was tested: the FA profile of the 

AM of C. edule does not differ between specimens captured in different channels of Ria de 

Aveiro. 

 

2.1.2.  Material and methods 

2.1.2.1. Study area and sample collection 

Samples of C. edule were collected in important fishing areas during June 2013 within 

four main channels (São Jacinto, Mira, Ilhavo and Espinheiro; Figure 7) of Ria de Aveiro 

(Northwestern coast of Portugal), with their current classification under the legislation for 

shellfish production waters being used as rationale for the experimental design used (see 

Introduction). During the study period, the channels of São Jacinto and Mira were classified by 

Portuguese authorities as “B”, while those of Ilhavo and Espinheiro were classified as “C” (DL, 

2013). Two areas were surveyed in each channel (Figure 7; Table S1 on appendix B), and four 

cockles collected per area (4 channels X 2 areas X 4 replicates = 32 samples). All samples were 

collected by hand-raking and stored in aseptic food grade plastic bags that were kept refrigerated 

during sampling and transportation for processing in the laboratory on the same day. Bivalves 

were dissected to extract the AM, which was then stored at − 80 °C for subsequent FA analysis. 
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Figure 7. Sampling locations of Cerastoderma edule in Ria de Aveiro, Portugal: São Jacinto (SJ1: 40°39′ 

23.70″ N,  8°43′ 49.40″ W and SJ2: 40°42′ 34.00″ N,  8°42′ 24.10″ W), Mira (M1: 40°38′ 26.30″ N, 8°43′ 

58.90″ W and M2: 40°35′ 58.30″ N,  8°44′ 47.80″ W), Ilhavo (I1: 40°38′ 22.36″ N,  8°41′ 24.93″ W and 

I2: 40°37′ 03.10″ N,  8°40′ 48.00″ W) and Espinheiro (E1: 40°39′ 48.50″ N,  8°41′ 45.03″ W and E2: 40°40′ 

37.10″ N, 8°40′ 28.90″ W). The map was created using the software ArcGIS v9.2. 



CHAPTER 2. THE USE OF FATTY ACID PROFILES IN BIVALVES TRACEABILITY 

27 

 

2.1.2.2. Fatty acids analysis 

All samples were freeze dried prior to biochemical analysis. Total lipids of the AM of 

each individual were extracted in methanol/chloroform (2:1 v/v) following Bligh & Dyer (1959). 

Fatty acids methyl esters (FAMEs) of the total lipid extracts were obtained by transmethylation 

according to the method described by Aued-Pimentel, Lago, Chaves, & Kumagai (2004). Briefly, 

15 μ g of dried lipid extract was dissolved in 1 mL n-hexane, 0.2 mL of methanolic solution KOH 

(2 M) and 2 mL satured NaCl solution, followed by intense vortexing. After centrifugation at 

2000 rpm for 5 min, the organic phase was collected and dried under a nitrogen stream. The 

resulting FAMEs were dissolved in hexane prior to injection and analysed by gas 

chromatography-mass spectrometry (GC-MS) on an Agilent Technologies 6890N Network 

(Santa Clara. CA) equipped with a DB-1 column with 30 m length, 0.25 mm internal diameter 

and 0.1 μm film thickness (J&W Scientific, Folsom, CA). The GC-MS was connected to an 

Agilent 5973 Network Mass Selective Detector operating with an electron impact mode at 70 eV 

and scanning the range m/z 40-500 in a 1 s cycle in a full scan mode acquisition. The column 

temperature was programmed from 40 °C initial oven temperature at 20 °C min-1 to 220 °C, then 

from 220 to 240 °C at 2 °C min-1 and then from 240 to 260 °C at 5 °C min-1. The detector was 

set at 230 °C and the injector at 220 °C. Helium was used as carrier gas at a flow rate of 1.7 mL 

min-1. Individual FA peaks were integrated using the equipment’s software, and identified 

considering the retention time and mass spectrum of each FA relative to 34 mixed FA standards 

(C6-C24, Supelco 37 Component Fame Mix). The areas of the 20 selected FAMEs were 

integrated setting response factor to 1. Values of FA were reported as mean values ± standard 

deviation (SD) and expressed as relative percentages of the total pool of fatty acids. 

 

2.1.2.3. Statistical analysis 

Biochemical data were represented by the relative abundance of FA per replicate, per area for 

each channel. The resemblance matrix among samples was obtained with the Bray-Curtis 

similarity coefficient, following a log (x + 1) transformation in order to place more emphasis on 

compositional differences among samples rather than on quantitative differences (Anderson, 

2008). A preliminary one-way analysis of similarity (ANOSIM) was performed to detect 

significant differences in FA profiles of C. edule between sampling areas within the same channel. 

Briefly, ANOSIM calculates a global R statistic that assesses the differences between groups, 

where values close to one indicate maximum differences between groups and values near zero 

suggest complete groups overlap (Clarke & Gorley, 2006). As no significant differences were 

recorded between areas within the same channel, all samples per channel were pooled, i.e. a total 

of 8 replicates per channel (see Table S2 on appendix B). 
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The differences in FA profile in C. edule between channels were analysed by ordination 

analysis, using Principal Coordinates Analysis (PCO). This analysis allows the visualization of 

inter-individual differences in FA profiles, representing differences between all channels from 

each FA along the first two axes. ANOSIM was also used (see above for details) to detect 

differences in FA profiles of the AM of C. edule among channels. One-way analysis of variance 

(ANOVA) was used to assess differences among channels for each individual FA after confirming 

normality with the Shapiro test and homogeneity of variance with the Bartlett test. Post hoc 

Bonferroni test was used when ANOVA revealed significant differences (p < 0.05). 

Similarity percentages (SIMPER) were determined to describe the differences in individual 

and classes of FA among channels. SIMPER identifies the FA that contribute most to the 

variations in the assemblage patterns recorded. Only the FA that cumulatively contributed up to 

80% of the dissimilarities recorded were selected to characterize the differences in the FA profile 

of cockles from different channels (Clarke & Gorley, 2006). ANOVAs were performed using 

GraphPad Prism 6 (GraphPad Software. Inc. San Diego, CA, USA), while all multivariate 

statistical tests (ANOSIM, PCO and SIMPER) were performed using PRIMER v6 with the add-

on PERMANOVA+ 

 

2.1.3.  Results 

Saturated FA (SFA) represented 28–41% of all FA identified in the AM of C. edule from 

different channels, whereas mono-unsaturated FA (MUFA) represented 12–13% (Table 1). 

Polyunsaturated FA (PUFA) were the most abundant class of FA recorded in the bivalves 

surveyed as their levels ranged between 45 and 58% of the total pool of FA. The major SFA were 

palmitic (16:0; PA) and stearic acid (18:0), which represented over 50% of all SFA recorded in 

the AM of cockles and varied significantly (p < 0.05) among channels (Table 1). The dominant 

MUFA were elaidic (18:1n-9 trans) and eicosenoic acid (20:1n-9), and their content in the AM of 

cockles was similar across channels (Table 1). The most abundant PUFA were eicosapentaenoic 

(EPA) (20:5n-3) and docosahexaenoic acid (DHA) (22:6n-3), which together accounted for over 

60% of total PUFA and, at least, 35% of the total pool of FA. 

 

 

 

 

 

 



CHAPTER 2. THE USE OF FATTY ACID PROFILES IN BIVALVES TRACEABILITY 

29 

 

Table 1. Fatty acid profile (data presented as percentage of relative abundances) of the adductor muscle of Cerastoderma edule (values are means of 8 replicates ± SD) from 

São Jacinto (SJ), Mira (M), Ilhavo (I) and Espinheiro (E) channels in Ria de Aveiro, Portugal. SFA – saturated fatty acids; MUFA – monounsaturated fatty acids; and PUFA – 

polyunsaturated fatty acids. Values of p highlighted in light grey are < 0.05. 

 

 

 

 

Fatty Acid  São Jacinto  Mira  Ilhavo  Espinheiro  Bonferroni' s pairwise comparisons 

(%) (SJ) (M) (I) (E) SJ vs M SJ vs I SJ vs E M vs I M vs E I vs E 

14:0 2.61 ± 1.30 1.75 ± 0.89 1.57 ± 0.99 2.40 ± 1.23 0.0532 0.0701 >0.9999 >0.9999 0.2342 0.2889 

15:0 0.72 ± 1.07 0.30 ± 0.13 0.42 ± 0.27 0.34 ± 0.12 0.4322 >0.9999 0.7714 >0.9999 >0.9999 >0.9999 

16:0 24.38 ± 5.92 17.76 ± 2.96 14.51 ± 4.10 14.51 ± 6.85 0.0257 <0.0001 <0.0001 0.4131 0.0237 >0.9999 

17:0 1.05 ± 0.24 0.90 ± 0.27 1.50 ± 0.44 1.25 ± 0.42 >0.9999 0.4840 >0.9999 0.0542 0.5449 >0.9999 

18:0 12.66 ± 1.64 12.87 ± 1.24 11.54 ± 1.71 9.93 ± 2.87 >0.9999 >0.9999 0.0632 0.8207 0.0284 >0.9999 

∑SFA 41.42 ± 6.15 33.58 ± 4.17 29.54 ± 6.71 28.43 ± 10.81 0.1747 0.0021 <0.0001 0.7540 0.0745 >0.9999 

16:1n-9 3.10 ± 1.20 2.81 ± 0.88 2.95 ± 0.96 3.03 ± 1.54 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

18:1n-9c 0.69 ± 0.25 0.76 ± 0.23 0.71 ± 0.23 0.54 ± 0.16 >0.9999 0.3857 >0.9999 0.8176 >0.9999 0.0283 

18:1n-9t 3.08 ± 0.90 3.16 ± 0.34 2.90 ± 0.66 3.01 ± 0.57 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

20:1n-9 5.38 ± 1.27 6.56 ± 1.09 6.39 ± 0.57 5.97 ± 0.67 0.4559 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

∑MUFA 12.25 ± 1.85 13.29 ± 1.23 12.95 ± 1.19 12.55 ± 1.99 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

18:3n-6 0.50 ± 0.32 0.58 ± 0.27 0.65 ± 0.33 0.65 ± 0.35 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

18:2n-6 0.25 ± 0.12 0.26 ± 0.07 0.33 ± 0.15 0.30 ± 0.07 >0.9999 0.4382 >0.9999 0.4890 >0.9999 0.8026 

20:5n-3 22.90 ± 1.80 21.16 ± 2.19 22.52 ± 1.56 24.07 ± 3.66 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

20:3n-3 0.75 ± 0.16 0.94 ± 0.23 1.05 ± 0.27 0.80 ± 0.14 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

20:2n-9 0.53 ± 0.23 0.59 ± 0.19 0.54 ± 0.13 0.59 ± 0.13 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

21:5n-3 0.95 ± 0.27 0.92 ± 0.26 1.02 ± 0.33 0.92 ± 0.30 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

22:6n-3 12.98 ± 3.63 15.97 ± 3.40 18.70 ± 4.04 22.07 ± 8.52 0.2539 <0.0001 <0.0001 0.0819 0.0531 >0.9999 

22:4n-6 0.22 ± 0.11 0.25 ± 0.09 0.78 ± 0.93 0.35 ± 0.14 >0.9999 0.9282 >0.9999 >0.9999 >0.9999 >0.9999 

22:4n-3 0.97 ± 0.37 1.71 ± 0.46 2.11 ± 0.73 1.94 ± 0.99 0.0107 0.0001 0.0023 >0.9999 >0.9999 >0.9999 

22:3n-6 0.74 ± 0.27 1.30 ± 0.32 2.11 ± 1.41 1.42 ± 0.59 0.0341 0.0003 0.0113 0.8560 >0.9999 >0.9999 

22:2n-9 4.21 ± 1.81 4.75 ± 0.79 6.21 ± 1.90 4.85 ± 1.76 0.8507 >0.9999 >0.9999 >0.9999 >0.9999 >0.9999 

∑PUFA 45.00 ± 6.59 48.44 ± 5.83 56.02 ± 7.34 57.95 ± 14.07 >0.9999 0.1208 0.0676 0.6951 0.4534 >0.9999 



CHAPTER 2. THE USE OF FATTY ACID PROFILES IN BIVALVES TRACEABILITY 

30 

 

The first two axes of the PCO analysis explained 68.3% of the FA variation in the data set 

(PCO axis 1: 56.8%, PCO axis 2: 11.5%) (Figure 8). ANOSIM revealed significant differences 

among FA profiles of C. edule from different channels (p = 0.041) with the exception of 

specimens sampled in Ilhavo and Espinheiro (p = 0.155). The ANOSIM performed using FA 

classes (i.e. SFA, MUFA and PUFA) also showed significant differences among channels, apart 

from São Jacinto and Espinheiro (p = 0.059) and Ilhavo and Espinheiro (p = 0.296) for SFA, and 

Mira and Espinheiro Channels (p = 0.071) and Ilhavo and Espinheiro Channels (p = 0.179) for 

PUFA (Table 2).  

 

 

 

Figure 8. Principal coordinates analysis of the fatty acid composition of the adductor muscle of 

Cerastoderma edule from São Jacinto, Mira, Ilhavo and Espinheiro channels in Ria de Aveiro, Portugal 
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Table 2. Similarity values (ANOSIM) between all fatty acids (FA), saturated (SFA) and polyunsaturated 

(PUFA) fatty acids in the adductor muscle of Cerastoderma edule from São Jacinto, Mira, Ilhavo and 

Espinheiro channels in Ria de Aveiro, Portugal. 

 

 

SIMPER analysis (Table 3) revealed that PA and DHA were generally among the FA that 

most contributed for the differences recorded among channels (e.g. more than 22% of the 

differences recorded between São Jacinto and Espinheiro were explained by 16:0 and DHA). 

While specimens originating from Espinheiro and Ilhavo channels showed a relatively similar FA 

profile, the content of oleic acid (18:1n9c) in the AM of C. edule was notably different between 

these two locations (p = 0.0283, Table 1). SIMPER also revealed that myristic acid was 

responsible for almost 10% of all differences recorded between the pool of FA displayed by the 

AM of cockles collected in these two channels (Table 3).

Channels 
All FA SFA PUFA MUFA 

R p R p R p R P 

São Jacinto vs Mira 0.238 0.020 0.145 0.045 0.222 0.019 0.112 0.056 

São Jacinto vs Ilhavo 0.358 0.006 0.428 0.002 0.362 0.004 0.046 0.231 

São Jacinto vs Espinheiro 0.196 0.041 0.135 0.059 0.223 0.023 0.020 0.301 

Mira vs Ilhavo 0.199 0.017 0.301 0.003 0.147 0.034 -0.010 0.455 

Mira vs Espinheiro 0.154 0.041 0.182 0.010 0.105 0.071 0.034 0.261 

Ilhavo vs Espinheiro 0.062 0.155 0.022 0.296 0.050 0.179 -0.009 0.402 
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Table 3. Similarity percentage analysis (SIMPER) identifying which fatty acids (FA) contribute to the differences recorded in the adductor muscle of Cerastoderma edule from 

São Jacinto, Mira, Ilhavo and Espinheiro channels in Ria de Aveiro, Portugal. 

 

São Jacinto vs Mira São Jacinto vs Ilhavo São Jacinto vs Espinheiro Mira vs Ilhavo Mira vs Espinheiro Ilhavo vs Espinheiro 

FA Ind      Cum     FA Ind      Cum     FA Ind      Cum FA Ind     Cum     FA Ind      Cum    FA Ind  Cum  
 (%) (%)  (%) (%)  (%) (%)  (%) (%)  (%) (%)  (%) (%) 

14:0 9.42 9.42 22:3n-6 9.69 9.69 16:0 11.53 11.53 22:3n-6 8.73 8.73 22:6n-3 10.31 10.31 14:0 9.30 9.30 

22:4n-3 8.00 17.42 16:0 9.19 18.87 22:6n-3 10.71 22.24 14:0 8.70 17.43 16:0 9.87 20.18 22:6n-3 8.24 17.54 

22:2n-9 7.65 25.07 22:4n-3 8.42 27.29 22:4n-3 8.79 31.03 22:2n9 7.57 25.00 14:0 8.86 29.04 16:0 8.17 25.71 

16:0 7.65 32.72 14:0 8.35 35.64 22:2n-9 7.16 38.19 16:0 6.80 31.81 22:4n-3 7.66 36.70 22:2n-9 7.71 33.43 

22:6n-3 7.27 39.99 22:2n-9 8.15 43.79 14:0 6.98 45.17 22:4n-6 6.70 38.51 16:1n-9 7.48 44.19 22:3n-6 7.70 41.12 

22:3n-6 6.85 46.84 22:6n-3 7.17 50.96 16:1n-9 6.71 51.87 17:0 6.53 45.04 18:0 6.73 50.92 22:4n-3 7.03 48.16 

16:1n-9 6.03 52.88 22:4n-6 5.55 56.51 22:3n-6 6.71 58.58 22:4n-3 6.23 51.28 22:2n-9 5.74 56.66 16:1n-9 7.01 55.17 

15:0 5.68 58.56 15:0 5.18 61.69 18:0 5.47 64.05 22:6n-3 5.89 57.17 22:3n-6 5.43 62.08 18:0 5.31 60.48 

20:1n-9 5.53 64.09 16:1n-9 4.61 66.30 18:3n-6 4.33 68.38 16:1n-9 5.53 62.70 17:0 5.40 67.49 22:4n-6 5.07 65.54 

18:3n-6 5.00 69.09 18:3n-6 4.42 70.72 15:0 4.22 72.60 18:3n-6 4.99 67.69 18:3n-6 4.65 72.14 18:3n-6 4.80 70.34 

18:1n-9t 4.51 73.60 18:1n-9t 4.14 74.85 18:1n-9t 3.99 76.59 15:0 4.21 71.89 21:5n-3 3.73 75.87 17:0 4.09 74.43 

17:0 3.66 77.26 20:1n-9 3.73 78.58 17:0 3.62 80.20 21:5n-3 3.82 75.71 18:1n-9c 3.61 79.48 21:5n-3 3.71 78.14 

21:5n-3 3.60 80.87 17:0 3.65 82.24    18:0 3.61 79.32 20:5n-3 3.21 82.69 20:3n-3 3.50 81.64 

                  20:3n-3 3.53 82.86             
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2.1.4.  Discussion 

Most of the available studies on the FA profile of bivalves focus on the analysis of their whole 

body, gonads, gills or digestive gland (Nemova, Fokina, Nefedova, Ruokolainen, & Bakhmet, 

2013; Pastoriza, Gallardo, Franco, & Sampedro, 1981; Perez et al., 2013). However, results from 

the latter two studies reveal notable variations of the FA profile with diet and environmental 

conditions (Nemova, Fokina, Nefedova, Ruokolainen, & Bakhmet, 2013; Pastoriza, Gallardo, 

Franco, & Sampedro, 1981). In order to minimize variability of FA profile associated with diet, 

this study solely analysed the FA content of the AM of C. edule (Delaporte et al., 2005). This 

approach was already successfully employed to discriminate bivalves originating from different 

locations (Grahl-Nielsen, Jacobsen, Christophersen, & Magnesen, 2010; Olsen, Grahl-Nielsen, & 

Schander, 2009) and contrasting habitats (10 m vs. 31 m depth; Napolitano, Macdonald, 

Thompson, & Ackman, 1992). Moreover, Perez et al. (2013), combined FA analysis with stable 

isotopes to assign the location of the origin of bivalves (Venus verrucosa) with a spatial resolution 

< 10 km. The present study shows, for first time, that the FA profile of the AM alone holds to the 

potential to be used for geographical traceability of bivalves with a similar resolution (< 10 km). 

The dominance of PUFA, followed by SFA and MUFA, in the FA profiles of the AM has 

already been recorded in other bivalve species, such as the fan mussel Pinna nobilis (Najdek, 

Blažina, Ezgeta-Balić, & Peharda, 2013), the scallops Pecten maximus (Grahl-Nielsen, Jacobsen, 

Christophersen, & Magnesen, 2010,) and Placopecten magellanicus (Napolitano, Macdonald, 

Thompson, & Ackman, 1992; Napolitano, Pollero, Gayoso, Macdonald, & Thompson, 1997), in 

Astarte sulcate (Olsen, Grahl-Nielsen, & Schander, 2009), the flat oyster Ostrea edulis, the black 

mussel Mytilus galloprovincialis, the bearded horse mussel Modiolus barbatus and Noah’s ark 

shell Arca noae (Ezgeta-Balić, Najdek, Peharda, & Blažina, 2012). In general, and as in the 

present study, all these works revealed that the dominant SFA was PA, followed by EPA and 

DHA as the most abundant PUFA (see Galap, Netchitaı̈Lo, Leboulenger, & Grillot, 1999). PA 

and DHA were also responsible for most of the differences recorded among Ria de Aveiro 

channels (Table 1). Both PA and DHA showed significant shifts in their relative abundance with 

geographical location, which is likely associated with a differential physiological response to 

variable environmental conditions. Similarities in the FA profile of cockles between São Jacinto 

and Mira, as well as between Ilhavo and Espinheiro (Table 1; Table S1 on appendix B), were 

likely associated with the geographical proximity among these channels and their similar 

environmental conditions. Despite the major axis of variation (axis 1; Figure 8) did not clearly 

separate the specimens originating from each of the four channels of the coastal lagoon, specimens 

from Ilhavo and Espinheiro channels were mostly separated, which contrasted with specimens 

from São Jacinto and Mira channels that were relatively spread throughout the PCO. It is worth 

noting that specimens originating from areas closer to the inlet (São Jacinto and Mira) are likely 

to be less exposed to lower salinities (Table S1 on appendix B) than those originating from 
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channels located more upstream (Espinheiro and Ilhavo) (Figure 8). Bivalves further away from 

the inlet may experience a sharper decrease in salinity during rainfall, due to a notable freshwater 

contribution of small rivers and streams bordering Ria de Aveiro, and a higher increase in salinity 

during the summertime promoted by a lower water exchange due to the distance from the inlet 

and consequent increase in evaporation. Bivalves exposed to higher saline fluctuations are also 

expected to display a decrease in their levels of SFA, which is responsible to stabilize the bilayer 

structure of cell membranes, and an increase in their concentration of PUFA to enhance bilayer 

fluidity (Nemova, Fokina, Nefedova, Ruokolainen, & Bakhmet, 2013).  

The structural nature of the lipids presents in the AM of bivalves (mostly phospholipids and 

sterols) provides a stable FA signature that is primarily determined by environmental conditions 

and functions of the cellular membrane rather than dietary regimes (Dalsgaard, St John, Kattner, 

Müller-Navarra, & Hagen, 2003; Napolitano, Pollero, Gayoso, Macdonald, & Thompson, 1997). 

At present, most studies available on the FA profiles of bivalves are focused on the analysis of 

the whole body or other organs than the AM (e.g. gonads, gills and digestive gland; Napolitano, 

Macdonald, Thompson, & Ackman, 1992; Perez et al., 2013) that are regulated by intrinsic (e.g. 

age, phylogeny and sex) and external (e.g. diet, salinity and depth) factors (Olsen, Grahl-Nielsen, 

& Schander, 2009). Conversely, the FA signature of the AM is less prone to fast and dramatic 

shifts as compared to other organs (e.g. gonads and the digestive gland; Dalsgaard, St John, 

Kattner, Müller-Navarra, & Hagen, 2003; Napolitano, Macdonald, Thompson, & Ackman, 1992). 

As this study was carried out in Ria de Aveiro, which is a system with a remarkable spatial 

variability of environmental conditions among different channels (Dias, Lopes, & Dekeyser, 

1999), particularly saline fluctuations, it is likely that environmental variability plays a major role 

on the FA signature of the AM of cockles from different channels of this ecosystem (see 

supplementary information). 

It is important to note that the FA profile of bivalves may also exhibit temporal variability 

associated with environmental conditions (Birkely, Grahl-Nielsen, & Gulliksen, 2003; Ezgeta-

Balić, Najdek, Peharda, & Blažina, 2012). While such temporal variability may be seen as a 

potential obstacle for using this approach for traceability purposes, it can be circumvented by 

authorities. For instance, the FA profiles of the AM of control samples collected from the 

capture/production area claimed as place of origin by the bivalve trader can be matched with those 

from the batch of bivalves being surveyed. If significant differences are observed, it is likely that 

the place of origin of the bivalves being traded is not the one claimed by the trader. The average 

shelf life of fresh cockles traded is generally ≤ 5 days after harvesting. Therefore, given this 

limited shelf life of fresh bivalves, it is unlikely to find significant differences in the FA profiles 

of the AM of control samples and the batch of bivalves being traded caused by the time frame 

between the collection of both (always ≤ 5 days). Although the dynamics of the FA profile of 

cockles during ice storage has never been assessed, a study performed on the whole body of blue 
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mussels M. edulis revealed no major shifts on the FA profile during a 14-day storage period in 

ice (Khan, Parrish, & Shahidi, 2005). Therefore, while it is likely that the FA profile of C. edule 

may remain stable during a 5-day storage period in ice, this assumption should be tested in the 

future, specifically for the adductor muscle of C. edule. 

In conclusion, our null hypothesis that no significant differences in the FA profile of the AM 

of C. edule was expected between specimens captured in different channels of Ria de Aveiro was 

rejected. Indeed, this biochemical approach allowed us to differentiate cockles originating from 

different channels of this coastal lagoon. The spatial resolution achieved with this methodological 

approach revealed the ability to discriminate capture/production areas for bivalves classified as 

“B” and “C” within the same coastal system (e.g. São Jacinto and Ilhavo). However, this approach 

was unable to discriminate between areas classified as “C” (Ilhavo and Espinheiro). These 

findings are important to guarantee that specimens are not mislabelled and illegally traded, as 

well as address current legislation on seafood traceability (Leal, Pimentel, Ricardo, Rosa, & 

Calado, 2015). Additionally, geographical traceability may play a key role for 

fishermen/producers willing to differentiate and add value to their products by assuring that 

bivalves being traded originate from regions that may be microbiologically safer than others (e.g. 

displaying lower loads of Vibrio spp. or other microorganisms of concern for public health). 

While this approach is relatively low-cost, it can be further simplified, and performed in a faster 

way, by employing a direct esterification of the AM followed by extraction (Grahl-Nielsen, 

Jacobsen, Christophersen, & Magnesen., 2010; Olsen, Grahl-Nielsen, & Schander, 2009). Future 

studies should try to apply this methodology to other commercially important bivalves, as well as 

monitor seasonal and interannual variability to ascertain the suitability of assembling a database 

for tracing their place of origin.
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2.2.  Spatio-temporal variability in the fatty acid profile of the 

adductor muscle of the common cockle Cerastoderma edule and 

its relevance for tracing geographic origin 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The material & methods, results and discussion presented in this section were integrally published 

as follow:  

 

Fernando Ricardo, M. Rosário Domingues & Ricardo Calado (2017). Spatio-temporal variability 

in the fatty acid profile of the adductor muscle of the common cockle Cerastoderma edule and its 

relevance for tracing geographic origin. Food Control 81, 173-180.
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2.2.1.  Background and aim of the study 

Along the Portuguese coast, common cockle (Cerastoderma edule) is the most commonly 

harvested bivalve with an increasing trend in recent years (INE, 2015, 2014). 

FA are considered effective biomarkers of certain groups of organisms (e.g. bacteria, diatoms 

and dinoflagellates) able to provide information about the nutritional value and their geographic 

origin. Therefore, the present study aimed to characterize in which way the spatial distribution of 

C. edule among eight ecosystems along the Portuguese coast (Ria de Aveiro, Óbidos lagoon, 

Tagus estuary, Albufeira lagoon, Sado estuary, Mira estuary, Ria do Alvor e Ria Formosa) affects 

the FA profiles of the AM of this species. This knowledge could also be useful in the assessment 

of the FA profiles of the AM potential for the successfully discriminate their geographic origin. 

In this way, it is of great relevance to evaluate the temporal variability. Thus, this study also aimed 

to determine the temporal variability of FA profile between two consecutive years in areas within 

the same ecosystem.   

 

2.2.2. Material and methods  

2.2.2.1. Study area and sample collection 

A total of 100 samples of C. edule with a shell length > 25 mm (commercial size, 

approximately 3 years old) (Seed & Brown, 1978) were collected during June-July of 2014 from 

eight different Portuguese ecosystems where this species is commercially explored: Ria de Aveiro 

(RAv), Óbidos lagoon (OL), Tagus estuary (TE), Albufeira lagoon (AL), Sado estuary (SE), Mira 

estuary (ME), Ria do Alvor (RAl) e Ria Formosa (RF) (Figure 9). In RAv three of the main 

channels (Mira, Ílhavo and Espinheiro) of this coastal lagoon were sampled. Two areas were 

surveyed in each channel (Figure 9a) and five replicates were collected per area (3 channels X 2 

areas X 5 replicates = 30 samples). For OL, TE, AL, SE and RF two areas were surveyed with 

five cockles being collected per area (5 ecosystems X 2 areas X 5 replicates = 50 samples). In 

RAl and ME due to few abundance of cockles, were collected ten specimens in just one area (2 

ecosystems X 1 areas X 10 replicates = 20 samples). 

In order to evaluate the potential existence of temporal variability in the FA profile of the 

AM, specimens of C. edule from Ílhavo (I) and Espinheiro (E) channels at RAv were collected 

exactly in the same locations in June 2013 and June-July 2014 for comparison. Five specimens 

were collected per area in these two consecutive years (1 ecosystem X 2 channels X 2 areas X 2 

years X 5 replicates = 40 samples). Bivalves were surveyed during the summer time, as the 

consumption of this highly priced seafood significantly increases during this period and thus with 

increasing demand and higher market values fraudulent practices are more prone to occur.  

All samples were collected manually with the help of a hand-rake and stored in aseptic 

plastic bags. After collection, cockles were kept refrigerated and transported to the laboratory and 
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stored at -20 °C for further processing. All collected specimens were dissected to extract the AM, 

which were freeze-dried then stored at − 80 °C for subsequent FA analysis. 

 

Figure 9. Sampling locations of Cerastoderma edule in mainland Portugal: a) Ria de Aveiro (RAv; 

M1:40°38'26.30"N, 8°43'58.90"W; M2: 40°35'58.30"N, 8°44'47.80"W; I1: 40°38′ 22.36″ N, 8°41′ 24.93″ 

W, I2: 40°37′ 03.10″ N, 8°40′ 48.00″ W, E1: 40°39′ 48.50″ N, 8°41′ 45.03″ W and E2: 40°40′ 37.10″ N, 

8°40′ 28.90″ W), b) Óbidos lagoon (OL1: 39°25'20.34"N, 9°13'14.54"W and OL2: 39°24'2.01"N, 

9°12'30.91"W), c) Tagus estuary (TE1: 38°39'27.44"N, 9°6'35.95"W and TE2: 38°44'5.18"N, 

9°0'46.54"W), Albufeira lagoon (AL1: 38°30'36.67"N, 9°10'32.96"W and AL2: 38°31'1.33"N, 

9°9'53.16"W) and Sado estuary (SE1: 38°27'46.00"N, 8°51'32.00"W and SE2: 38°29'13.25"N, 

8°48'52.79"W) d) Mira estuary (ME: 37°43'30.60"N, 8°46'15.40"W), e) Ria de Alvor (RAl: 37°07'55.7"N, 

8°37'27.40"W) and f) Ria Formosa (RF1: 37°00'23.20"N, 7°59'28.40"W and 37°01'24.30"N, 

7°49'49.50"W). The map was created using the software ArcGIS v10.2.2. 
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2.2.2.2. Fatty acids analysis 

Total lipids from the AM of each individual cockle were quantified through gravimetric 

method after extraction following the procedure described by Bligh & Dyer (1959). Methyl esters 

of FA (FAME) were prepared according to Aued-Pimentel, Lago, Chaves, & Kumagai (2004) 

method (by transmethylation of FA using a mixture of methanolic solution KOH (2 M) and 

satured NaCl. Gas chromatography–mass spectrometry (GC–MS) analysis were performed using 

an Agilent Technologies 6890 N Network (Santa Clara, CA) equipped with a DB-FFAP column 

with 30 m of length, 0.32 mm of internal diameter, and 0.25 μm of film thickness (J&W Scientific, 

Folsom, CA). The GC equipment was connected to an Agilent 5973 Network Mass Selective 

Detector operating with an electron impact mode at 70 eV and scanning the range m/z 50–550 in 

a 1 s cycle in a full scan mode acquisition. The oven temperature was programmed from an initial 

temperature of 80 °C, with a linear increase to 220 °C being performed at 14.4 °C min−1, followed 

by a linear increase at 10 °C min−1 to 240 °C and 5 °C min−1 to 250 °C. The injector and detector 

temperatures were 220 and 280 °C, respectively. Helium was used as the carrier gas at a flow rate 

of 0.5 mL min−1. Individual FA peaks were identified by comparing the retention time and mass 

spectra of each FA relative to 34 mixed FA standards (C4-C24, Supelco 37 Component Fame 

Mix), and confirmed by comparison with the spectral library “The AOCS Lipid Library” (AOCS, 

2012). 

 

2.2.2.3. Statistical analysis 

 In order to select the best subset of variables that may explain potential differences 

between the different areas sampled within each ecosystem, FA were grouped by classes as 

saturated FA (SFA), monounsaturated FA (MUFA) and polyunsaturated FA (PUFA). Within each 

class, FA displaying the same pattern were pooled to simplify further statistical analysis. A 

preliminary multivariate analysis of variance (MANOVA; Table S3 on appendix C) was 

performed to detect significant differences in the FA profile displayed by the AM of C. edule 

sampled in different areas of the same ecosystem. As no significant differences were recorded 

between areas within the same ecosystem, samples from each ecosystem were grouped resulting 

in a total of 10 replicates per ecosystem.  

Differences in the FA profile of the AM of C. edule from the eight ecosystems surveyed 

were analyzed through a MANOVA. One-way analysis of variance (ANOVA) was also used to 

detected differences among ecosystems for each individual FA and post hoc Tukey test was used 

whenever ANOVA results revealed the existence of significant differences (p < 0.05). Moreover, 

a linear discriminant analysis (LDA) was used to test the possibility of successfully discriminating 

the geographic origin of sampled specimens through the FA profile of their AM. Concerning the 

potential existence of temporal variability of the FA profile displayed by the AM of common 
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cockles over the two consecutive years that were surveyed in RAv, FA were grouped by classes 

before MANOVA analysis and subsequent statistical tests were performed as already described 

above. Normality and variance homogeneity (Pillai Trace test) were tested and data was 

transformed (log X+1). All statistical analyses were performed using R (R Development Core 

Team, 2015). 

 

2.2.3.  Results  

The FA profile of the AM of C. edule from different ecosystems is shown in Figure 10 and 

Table S4 on appendix C. Twenty-one FA were identified; SFA represented 26-31% of the total 

pool of FA, MUFA represented 12-19% and PUFA represented the majority of FA by ranging 

from 50% to 59% of the whole pool. The most representative SFA were palmitic (16:0) and stearic 

(18:0) acids, while the dominant MUFA were elaidic (18:1n-9) and eicosenoic acid (20:1n-9/11) 

(Figure 10). The most abundant PUFA were eicosapentaenoic (20:5n-3; EPA) and 

docosahexaenoic (22:6n-3; DHA) acids, which together represented at least 60% of all PUFA 

recorded in the AM of common cockles and varied significantly (p < 0.05; Figure S1a-d, Tukey´s 

HSD, p < 0.05) among specimens from different ecosystems. 

 

 

Figure 10. Heatmap representing the relative abundances (%) of fatty acids in the adductor muscle of live 

common cockles Cerastoderma edule from eight ecosystems along the Portuguese coast: Ria de Aveiro 

(RAv), Óbidos Lagoon (OL), Tagus estuary (TE), Albufeira lagoon (AL), Sado estuary (SE), Mira estuary 

(ME), Ria de Alvor (RAl) and Ria Formosa (RF). 
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The MANOVA performed to investigate potential differences on the FA profiles of the AM 

of C. edule from different geographic origins revealed significant levels of variability among the 

eight ecosystems surveyed during the present work (F = 6.47, p < 0.0001). Considering each FA 

individually, 22:3n-6 was the sole FA which did not display any significant difference among 

ecosystems (p > 0.05). Specimens from RAv, RAl and OL recorded higher levels of total n-3 FA 

and lower levels of total n-6 FA that was reflected in higher n-3/n-6 ratios (3.75 for RAv, 2.77 for 

RAl and 2.68 for OL). Nevertheless, significant differences in n-3/n-6 ratio were only recorded 

between RAv and the other ecosystems sampled (p < 0.05; Figure S1a). AL presented 

significantly lower levels of EPA (p < 0.05; Figure S1b) comparatively to the other ecosystems. 

The FA that most contributed for the differences recorded among TE, AL, SE and ME and the 

other ecosystem surveyed were pentadecylic (15:0), margaric (17:0) (Figure S1c), 18:1n-7 and 

arachidonic acid (20:4n-6) (p < 0.05; Figure S1d). Specimens from RF showed higher levels of 

MUFA, namely 18:1n-9, being significantly different from those recorded in other ecosystems (p 

< 0.05; Figure S1d). The first three discriminant functions of the LDA analysis explained 78.9% 

of all FA profiles variation (LDA 1: 44.1%, LDA 2: 20.9% and LDA 3: 13.9%), with results 

revealing an overall accuracy of 100% (Figure 11 and Table 4). 

 

 

Figure 11. Linear discriminant analysis (LDA) of cockles based on trace elements fingerprints of shells 

collected from eight different ecosystems along the Portuguese coast: Ria de Aveiro (RAv), Óbidos lagoon 

(OL), Tagus estuary (TE), Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), Ria de Alvor 

(RAl) and Ria Formosa (RF). 
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Table 4. Classification success (by ecosystem) of a linear discriminant analysis (LDA) based on fatty acid 

profile of the adductor muscle of Cerastoderma edule. Ria de Aveiro (RAv), Óbidos lagoon (OL), Tagus 

estuary (TE), Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), Ria de Alvor (RAl) and Ria 

Formosa (RF). 

 

 % Predicted Ecosystem Total per 

ecosystem 

% correct 

(ecosystem)   RAv OL TE AL SE ME RAl RF 

Original Ecosystem           

RAv 100 0 0 0 0 0 0 0 10 100 

OL 0 100 0 0 0 0 0 0 10 100 

TE 0 0 100 0 0 0 0 0 10 100 

AL 0 0 0 100 0 0 0 0 10 100 

SE 0 0 0 0 100 0 0 0 10 100 

ME 0 0 0 0 0 100 0 0 10 100 

RAl 0 0 0 0 0 0 100 0 10 100 

RF 0 0 0 0 0 0 0 100 10 100 

Average classification 

success                   100 

 

The interaction term [years x areas] revealed the existence of significant differences 

(MANOVA, F = 2.73, p < 0.0001) and the analysis of FA profiles of the AM of C. edule between 

years was made separately for each sampled area, considering a total of seven different groups of 

FA (16:0, 18:0, 14:0+15:0+17:0, MUFA, EPA, DHA and remaining PUFA). An increase in the 

DHA and remaining PUFA groups, along with a decrease in 16:0, 18:0, MUFA and EPA groups 

were observed from 2013 to 2014 in the specimens collected channels I and E of RAv (Figure 

12). Contrarily, in channel E, the relative abundance of FA group 14:0+15:0+17:0 decreased in 

channel I from 2013 to 2014 (Figure 12). ANOVA analysis among FA groups showed that 

MUFA, EPA and PUFA varied significantly between 2013 and 2014 in both channels. The 16:0 

group also showed significant differences between years in channel E, while channel I recorded 

significant difference for the FA group 14:0+15:0+17:0 (Figure 12).  In 2013, 16:0, PUFA and 

DHA showed significant differences between channels, while in 2014, 16:0 was the only FA 

group that revealed significant differences between channels. 



CHAPTER 2. THE USE OF FATTY ACID PROFILES IN BIVALVES TRACEABILITY 

47 

 

 

Figure 12. Evolution of fatty acid profile groups of the adductor muscle of Cerastoderma edule from 2013 

to 2014 in areas: Ílhavo Channel (I) and Espinheiro Channel (E). The dotted lines represent significant 

differences in the fatty acids profiles between years (p < 0.05). 



CHAPTER 2. THE USE OF FATTY ACID PROFILES IN BIVALVES TRACEABILITY 

48 

 

2.2.4.  Discussion  

The significant differences recorded in the FA profile of the AM of cockles collected 

from different ecosystem revealed that this approach can be used to trace their place of origin 

with a high level of certainty (100% success according to LDA results, see Table 4). Specimens 

collected in AL displayed the lowest levels of EPA when compared to conspecifics sampled in 

all other ecosystems surveyed in the present work. The abundance of EPA in FA profiles is 

directly related with the consumption of microalgae (Dalsgaard, St John, Kattner, Müller-

Navarra, & Hagen, 2003). This finding suggests that common cockles in AL may be exposed to 

less favourable trophic scenarios, likely a consequence of the intermittent closure of the inlet of 

this coastal lagoon (Fortunato et al., 2014). This closure promotes dramatic shifts in the water 

mass of AL and may favour blooms of phytoplankton species with higher affinities to brackish-

low salinity conditions that commonly display lower levels of EPA in their FA profiles (Coutinho, 

Brito, Pereira, Gonçalves, & Moita, 2012). Concerning the AM of specimens originating from 

TE, AL, SE and ME, these were characterized by displaying high levels of 15:0, 17:0 and 18:1n-

7. These FA are often present in bivalves tissues due to the ingestion of bacterioplankton (Bergé 

& Barnathan, 2005).  High levels of these FA in the AM of C. edule likely reflect potential sources 

of faecal contamination in bivalve harvesting areas. It is therefore possible that water runoffs, 

livestock production, sewer overflows and the presence of recreational ports and shipyards nearby 

sampling locations may contribute to the occurrence of bacterioplankton whose FA profile is 

fingerprinted in the AM (Anacleto et al., 2013; Coutinho, Brito, Pereira, Gonçalves, & Moita, 

2012; Vasconcelos et al., 2007).  Concerning the significantly higher levels of 20:4n-6 present in 

AM of cockles originating from TE, AL, SE and ME, it is important to highlight that such FA 

fingerprint is commonly recorded in diatom dominated locations (Dalsgaard, St John, Kattner, 

Müller-Navarra, & Hagen, 2003), which often reflect intensive anthropogenic presence (as known 

to occur in these study locations). The AM of specimens from RF exhibited the highest levels of 

18:1n-9 and 20:1n-9/11, two trophic markers associated with the ingestion of zooplankton 

(Maloy, Culloty, & Slater, 2009). Common cockle specimens sampled at OL, RAl and mainly at 

RAv, presented high n-3/n-6 ratios in the FA profiles of their AM. RAl and RAv are two of the 

main bivalve producing areas in mainland Portugal (Leite, Afonso, & Cancela, 2004; Vale, 

Canário, Caetano, Lavrado, & Brito, 2008) and are well known for displaying highly favourable 

trophic conditions for the grow-out of bivalves. In other words, favourable trophic conditions 

likely correspond to marine phytoplankton blooms with n-3 PUFA prevailing in their FA pool. 

The FA profile of the AM of C. edule, namely for specimens in RAv, may also be due to the 

prevalence of upwelling conditions in this areas (Alfaro, Hernández, Le Marc, & Pin, 2013; 

Alvarez et al., 2013), which favours phytoplankton blooms. 

As the present study was performed along a latitudinal gradient, it could be anticipated 

that specimens occurring in ecosystems experiencing lower water temperatures would display a 
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higher level of FA unsaturation, as this feature allows cellular membranes to maintain their 

fluidity without compromising homeostasis between intracellular and extracellular environments 

(Copeman & Parrish, 2004; Napolitano, Macdonald, Thompson, & Ackman., 1992). This 

prediction was confirmed in our study, as common cockles sampled in ecosystems located in the 

southern coast of mainland Portugal, thus experiencing higher temperatures, displayed a lower 

level of unsaturation than northern ecosystems. As referred above, FA profiles of the AM are 

primarily determined by environmental conditions and functions of the cellular membrane, rather 

than short term shifts in dietary regimes (Dalsgaard, St John, Kattner, Müller-Navarra, & Hagen, 

2003; Napolitano, Pollero, Gayoso, Macdonald, & Thompson, 1997). These features are 

paramount for the selection of the AM as the target matrix to be monitored for the purpose of 

tracing the geographic origin of bivalves. While other bivalve organs display a high metabolic 

activity, such as gonads and the digestive gland, and are more prone to be influenced by recent 

dietary items, the AM exhibits a lower turnover rate of FA and rather reflects the “average” 

feeding regime experienced over longer periods of time (Paulet, Lorrain, Richard, & Pouvreau, 

2006).  

Some of the ecosystems surveyed in our study display high spatial variability on their 

environmental conditions, with the conditions experienced by C. edule in RAv in particular being 

remarkably variable among the different channels of this coastal lagoon (Dias, Lopes, & 

Dekeyser, 1999). In order to maintain homeostasis between intracellular and extracellular 

environments, marine organisms need to adjust physiologically to such variable environmental 

conditions, from short term shifts promoted by tidal rhythms to longer term shifts at seasonal or 

annual time scales (Nemova, Fokina, Nefedova, Ruokolainen, & Bakhmet, 2013). These long 

physiological adaptations area perceptible in the significant shifts in displayed the FA profiles of 

the AM of cockles sampled in the two different channels of RAv over two consecutive years. 

Several studies have already reported the existence of temporal variability in the FA profile of the 

AM of bivalves. Ezgeta-Balić, Najdek, Peharda, & Blažina et al. (2012) reported significant 

temporal variability (two-month period) in four commercially important bivalve species in the 

eastern Adriatic Sea (Mali Ston Bay, Croatia), while Puccinelli, McQuaid, & Noyon (2016) also 

recorded inter-seasonal variability under two mesoscale nearshore oceanographic conditions 

(upwelling and non-upwelling) in the FA profiles of the AM of mussels (Mytilus 

galloprovinciallis) in west coast of South Africa. 

Overall, the present study shows that the FA profile displayed by the AM of C. edule can 

be successfully used with a high level of accuracy to trace their geographic origin over a range of 

ecosystems distributed along a latitudinal gradient. These findings reinforce the claims by Ricardo 

et al. (2015a),  that advocated the use of this biochemical approach to put into practice a 

traceability framework that can allow the verification of the geographic origin of claimed by 

traders of fresh bivalves. The existence of temporal variability advises caution on the use of 
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previously available information on the FA profile of the AM of bivalves for traceability purposes, 

as significant shifts do occur and they may lower the accuracy of the analysis by assigning 

specimens to erroneous locations. 
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2.3.  Fatty acid dynamics of the adductor muscle of live cockles 

(Cerastoderma edule) during their shelf-life and its relevance for 

traceability of geographic origin  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The material & methods, results and discussion presented in this section were integrally published 

as follow:  

 

Fernando Ricardo, Tânia Pimentel, Elisabete Maciel, Ana S.P. Moreira, M. Rosário Domingues 

& Ricardo Calado (2017). Fatty acid dynamics of the adductor muscle of live cockles 

(Cerastoderma edule) during their shelf-life and its relevance for traceability of geographic origin. 

Food Control, 77, 192-198.
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2.3.1.  Background and aim of the study 

Cockles (Cerastoderma edule) are commercially important bivalves that support several 

fisheries in European waters. The fatty acid (FA) profile of the adductor muscle (AM) of freshly 

collected live cockles can be used to reliably confirm their geographic origin. This approach is 

paramount for traceability, expose fraud and ensure food safety. However, no study has ever 

addressed if the FA profile of the AM of live cockles remains stable during shelf-life, as 

significant shifts may blur FA signatures recorded at harvest. The present study aimed to 

determine if the FA profile of the AM of live cockles (C. edule) displays any significant shifts 

during the shelf-life of this commercially important species and how long post-harvest can these 

FA profiles be used to reliably trace the geographic origin of these commercially important 

bivalves. 

 

2.3.2.  Material and methods  

2.3.2.1. Study area and sample collection 

Fresh cockles C. edule (n = 80) were collected by hand-raking in Mira Channel (Ria de 

Aveiro, Portugal; 40°36′ 39.50″ N, 8°44′ 47.40″ W), one of the most important commercial 

fishing areas for this species in mainland Portugal. All samples collected were immediately stored 

in aseptic bags and transported to the laboratory within approximately 30 min post-harvest. Packs 

of ten cockles were placed in mesh-bags and kept in a cold room at 4 ºC (Figure 13) during seven 

consecutive days. From the 10 individuals of each mesh-bag were randomly sampled 5 

individuals at times T0 (sampling day), T1 (one day post-harvest), T2, T3, T4, T5, T6 and T7 

(seven days post-harvest) (1 sampling area X 8 time points X 5 replicates = 40 samples). The 

adductor muscle (AM) from each cockle specimen was dissected using a sterilized scalpel and 

stored at -80 ºC until FA analysis. The rationale supporting the time frame of the present study 

(seven days post-harvest) was based upon a preliminary survey performed on five large retail 

surfaces trading live cockles that consider that the average shelf-life of live bivalves is of only 5 

days. By employing a seven days’ time frame, it could be expected that spoilage would occur and 

major shifts in the FA of the AM of live cockles could be recorded. 
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Figure 13. Packs of ten cockles were placed in mesh-bags and kept in a cold room at 4 ºC. 

 

 

2.3.2.2. Fatty acids analysis 

The extraction of total lipids of the AM of each individual cockle was performed 

according to the Bligh & Dyer (1959) method using methanol/chloroform (2:1, v/v). As 

phospholipids (PLs) are the main lipids present in the AM of bivalves (Napolitano, Pollero, 

Gayoso, Macdonald, & Thompson, 1997), PL were estimated through the phosphorus assay 

(Bartlett & Lewis, 1970) and an amount of each lipid extract containing 15 μg of PLs was used 

in the preparation of fatty acid methyl esters (FAMEs) following the procedure described by 

Aued-Pimentel, Lago, Chaves, & Kumagai (2004). The resulting FAMEs were dissolved in n-

hexane (30 μL) and 4 μL of this solution was analyzed by gas chromatography–mass spectrometry 

(GC–MS) on an Agilent Technologies 6890 N Network (Santa Clara, CA) equipped with a DB-

FFAP column with 30 m of length, 0.25 mm of internal diameter, and 0.32 μm of film thickness 

(J&W Scientific, Folsom, CA). The GC equipment was connected to an Agilent 5973 Network 

Mass Selective Detector operating with an electron impact mode at 70 eV and scanning the range 

m/z 50–550 in a 1 s cycle in a full scan mode acquisition. The oven temperature was programmed 

from an initial temperature of 80 °C, with a linear increase to 220 °C at 14.4 °C min−1, followed 

by linear increase at 10 °C min−1 to 240 °C, then at 5 °C min−1 to 250 °C. The injector and detector 

temperatures were 220 and 280 °C, respectively. Helium was used as carrier gas at a flow rate of 

0.5 mL min−1. Individual FA peaks were identified according to the methodology previously 

described by Ricardo et al. (2015a). 
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2.3.2.3. Statistical analysis 

 Biochemical data were expressed as the percentage of relative abundance of each FA 

recorded in each day. For a better understanding of our results, FA classes were separated as 

follows: saturated FA (SFA), monounsaturated FA (MUFA), polyunsaturated FA (PUFA), and 

highlyunsaturated FA (HUFA). It is worth noting that, in general, all FA with 2 ≥ double bonds 

are termed as PUFA; however, in the present study, we distinguished between PUFA (FA with 2 

or 3 double bonds) and HUFA (FA with 4 ≥ double bonds). For statistical analysis, FA with the 

same pattern along the study period were grouped in order to simplify the analysis. 

 An analysis of multivariate (MANOVA) was performed to detect differences in the FA 

profiles of the AM of C. edule sampled along different shelf-life times. One-way analysis of 

variance (ANOVA) was used to assess differences between shelf-life times for each class of FA. 

The post-hoc Tukey test was used whenever the ANOVAs revealed the existence of significant 

differences (p < 0.05). A linear discriminant analysis (LDA) was performed to evaluate the 

potential use of FA profiles of the AM of cockles to discriminate between different shelf-life 

times and reveal the persistence of certain FA post-harvest. 

 All analyses were performed using (log x+1) transformed data in order to meet the 

multivariate normality and homoscedasticity (Pillai Trace test) required for MANOVA, as well 

as meet the normality and homogeneity of variance of ANOVA. Statistical analysis were 

performed using R (R Development Core Team, 2015). 

 

2.3.3.  Results  

The average FA composition recorded for the AM of C. edule along its shelf-life is 

presented in Figure 14 and Table S5 (see appendix D). From the twenty-one FA identified, SFA 

represented 27-32%, MUFA 9-15% and PUFA 12-16%. HUFA were the most significant class 

of FA recorded in the bivalves surveyed, with their levels ranging between 39 and 45% of the 

total pool of FA. The main SFA were palmitic (16:0) and stearic acid (18:0), which represented 

more than 70% of all SFA recorded in the AM of cockles. The major MUFA was eicosenoic acid 

(20:1n-9), while the dominant PUFA were 22:2n-9 and 22:3n-6 with a similar contribution to the 

total pool of FA in the AM of cockles during their shelf-life. Concerning HUFA, the most 

abundant were eicosapentaenoic (EPA) (20:5n-3) and docosahexaenoic acid (DHA) (22:6n-3). 
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Figure 14. Heatmap representing the relative abundances (%) of fatty acids in the adductor muscle of live 

common cockles Cerastoderma edule during their shelf-life at 4 ºC. 

 

The variability of SFA, MUFA, PUFA and HUFA displayed by the AM during the shelf-life 

of cockles is presented in Figure 15. PUFA and MUFA did not show any major fluctuations, with 

similar FA abundances being recorded during the study period. However, SFA and HUFA showed 

a different pattern along cockle’s shelf-life time, with a decrease in 16:0 and 18:0 abundance and 

an increase of heptadecanoic acid (17:0), EPA and DHA.  
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Figure 15. Relative abundances (%) of individual fatty acids within each class in the adductor muscle of 

live common cockles Cerastoderma edule during their shelf-life at 4 ºC: saturated fatty acids (SFA), 

monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA) and highlyunsaturated fatty 

acids (HUFA). 

 

The MANOVA revealed the existence of significant differences among the FA profiles of the 

AM of C. edule during shelf-life (F = 1.47, p = 0.027). Considering the similarity of patterns 

displayed by some FA identified on each class along the study period (Figure 15), the FA varying 

in a similar way were grouped together to further determine any significant differences (this 

procedure allows to minimize type II errors when performing multiple testing on the same 

dataset). Three groups were created for SFA (14:0 +15:0, 17:0 and 16:0 + 18:0) and HUFA 

(20:5n-3, 22:6n-3 and remaining HUFA). For MUFA and PUFA all FA within these classes were 

analysed together (one group for each class). For PUFA and the group of remaining HUFA no 

significant differences were recorded along the shelf-life of cockles, all other groups displayed 

significant differences (Table 5). The highest abundance of 17:0 and the lowest abundances of 

16:0 and 18:0 were usually recorded from T4 to T7 (Figure 14), with their relative contribution 

to the total pool of FA being significantly different from that recorded from T0 to T3 (Figure 16; 

Tukey’s HSD, p < 0.05). The relative abundance of DHA increased along shelf-life, with 

significant differences being recorded between T0 and T3, T5, T6 and T7 (Figure 16; Tukey’s 

HSD, p < 0.05). 
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Table 5. Multivariate analysis of variance (MANOVA) among groups of fatty acids (FA) of the adductor 

muscle of live common cockles Cerastoderma edule during their shelf-life at 4 ºC. 

 

FA Group df sumsq meansq F p.value 

14:0 + 15:0 7 0 0 2.75 0.024 

17:0 7 0.085 0.012 10.70 0 

16:0 + 18:0 7 0.014 0.002 5.55 0 

MUFA 7 0 0 4.65 0.001 

PUFA 7 0 0 1.66 0.154 

20:5n3 7 0.009 0.001 2.48 0.037 

22:6n3 7 0.016 0.002 3.89 0.004 

Remaining HUFA 7 0 0 0.49 0.832 

 

 

 

 
Figure 16. Significant differences (ANOVA; Tukey plot) among fatty acids 14:0+15:0, 16:0+18:0, 17:0, 

monounsaturated fatty acids (MUFA), 20:5n-3 and 22:6n-3 present in the adductor muscle of of live 

common cockles Cerastoderma edule during their shelf-life at 4 ºC. Significant differences (p < 0.05) 

among shelf-life times are highlighted with black lines. 
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The first two discriminant functions of the LDA explained 82.9% of the variation displayed 

by the FA profiles of the AM of cockles during shelf-life (LDA 1: 67.2 and LDA 2: 15.7%) 

(Figure 17). Results revealed an overall high accuracy to correctly predict the time elapsed from 

harvesting for each sample based upon the FA profile displayed by the AM. The overall cross-

validated classification rate was 67.5% (Table 6). Samples from T3 and T7 exhibited the highest 

percentage of correct classifications (100%), which correspond to the upper limit of both groups 

defined in the correlation plot. Two replicates from T0 and T2 were misclassified, which led to 

an overall 80% of correct classifications. Most misclassifications were associated with specimens 

at T4, with no correct classifications.  

 

 

Figure 17. Linear discriminant analysis (LDA) of live common cockles Cerastoderma edule based on the 

fatty acid profiles of their adductor muscle along their shelf-life. The caption of each data point represents 

its true shelf-life time (expressed in days post-harvest), while colours represent the shelf-life time predicted 

by LDA. 
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Table 6. Classification success of a linear discriminant analysis (LDA) based on fatty acid profile of the 

adductor muscle of Cerastoderma edule during its shelf-life at 4 ºC. 

 % Shelf-life time Total per 

Shelf-life 

time 

% correct 

(Shelf-life 

time) 
 

  T0 T1 T2 T3 T4 T5 T6 T7 

Original Shelf-

life time           

T0 80 0 20 0 0 0 0 0 5 80 

T1 0 60 20 20 0 0 0 0 5 60 

T2 20 0 80 0 0 0 0 0 5 80 

T3 0 0 0 100 0 0 0 0 5 100 

T4 20 0 20 0 0 20 20 20 5 0 

T5 0 0 0 20 0 60 0 20 5 60 

T6 0 0 0 0 20 20 60 0 5 60 

T7 0 0 0 0 0 0 0 100 5 100 

Average 

classification 

success                   67.5 

 

 

The correlation plot (Figure 18) suggested the existence of two groups: T0, T1, T2 and T3 vs. T4, 

T5, T6 and T7. The FA 17:0 was the one that mostly contributed for the differences recorded 

between these two groups. 

 

Figure 18. Correlations between shelf-life time (in days post-harvest) and fatty acids 14:0+15:0, 16:0+18:0, 

17:0, monounsaturated fatty acids (MUFA), 20:5n-3, and 22:6n-3 present in the adductor muscle of live 

common cockles Cerastoderma edule during their shelf-life at 4 ºC. 
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2.3.4.  Discussion  

The FA profile of the AM of bivalves has been successfully used to trace the geographic 

origin of bivalves originating from locations hundreds of km apart (> 800 km) (Grahl-Nielsen, 

Jacobsen, Christophersen, & Magnesen, 2010), as well as from adjacent areas in the same 

estuarine ecosystem (separated by less than 10 km) (Ricardo et al., 2015a). However, it remained 

unknown whether the FA signature of the AM of live bivalves would significantly shift during 

their shelf-life and consequently impair the use of this approach for tracing their geographic 

origin. The present study shows, for the first time, that FA profile of the AM of live cockles 

remains stable for most part of their shelf-life and consequently can still be use for the traceability 

of geographic origin of traded specimens. 

The FA profile displayed by the AM of C. edule recorded immediately after their harvest (T0; 

Figure 14; Table S5 on appendix D) revealed that HUFA were predominant, followed by PUFA, 

SFA and MUFA. In general, the data reported in the present study for freshly harvested cockles 

is in line with that already published by Ricardo et al. (2015a) for specimens collected in the same 

arae, as well as for other bivalves, namely the fan mussel Pinna nobilis (Najdek, Blažina, Ezgeta-

Balić, & Peharda, 2013), P. maximus (Grahl-Nielsen, Jacobsen, Christophersen, & Magnesen, 

2010), black mussel Mytilus galloprovincialis, bearded horse mussel Modiolus barbatus and 

Noah’s ark shell Arca noae (Ezgeta-Balić, Najdek, Peharda, & Blažina, 2012). In all these studies 

the dominant HUFA were 22:6n-3 and 20:5n-3, followed by 16:0 and 18:0 as the most abundant 

SFA. The odd numbered SFA 17:0 was only significant beyond T4, with the levels of this FA 

being the main driver for the differences recorded along the shelf-life of C. edule (Figure 16). The 

SFA 16:0 and 18:0, as well as the HUFA 22:6n-3, are the main FA responsible for the peculiar 

taste, texture and odor displayed by seafood, while the presence of the FA 17:0, as recorded from 

T4 to T7, is due to the presence of aerobic and anaerobic bacteria associated with spoilage 

(Mayzaud, Chanut, & Ackman, 1989; Najdek, Debobbis, Mioković, & Ivančić., 2002; Restuccia 

et al., 2015).  

 As live bivalves are highly perishable food items, they need to be properly handled post-

harvesting, with storage at 0 to 4 ºC being a well-known method to extend their shelf-life. 

However, during storage, various chemical (e.g. enzymatic autolysis and lipid oxidation) and 

microbiological changes occur that lead to a reduction of live bivalves quality and may promote 

rejection of these food items by consumer prior to spoilage  (Fernandes, 2016). Along the shelf-

life of live cockles, FA profiles of the AM showed the existence of two main groups, with a strong 

correlation being recorded between specimens sampled at T0 to T3 and specimens sampled from 

T4 to T7 (Figure 17). This shift in FA profile of the AM of live cockles during their shelf-life 

(when stored refrigerated at 4 ºC) had never been reported for bivalves, with previous studies 

focusing on processing and seasonal driven changes (Chu, Webb, & Chen, 1990; Ezgeta-Balić, 

Najdek, Peharda, & Blažina, 2012; Leal, Pimentel, Ricardo, Rosa, & Calado, 2015; Ojea et al., 
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2004). Overall, the FA profile of the AM of live cockles is not constant along shelf-life and at the 

fourth day post-harvest (T4) significant shifts start to be recorded and may confound spatial 

discrimination, thus impairing the traceability of geographic origin. In this way, it can be 

advocated that the use of FA signatures in the AM of live bivalves for traceability of their 

geographic origin, as described by Ricardo et al. (2015a), can be reliably employed in specimens 

kept refrigerated until their third day post-harvest. Moreover, it is also important to highlight that 

employing FA analysis of the AM of live bivalves beyond the tipping point of their FA profile 

post-harvest (from T3 to T4) is likely to be of little use from a commercial point of view. Indeed, 

at the time results will be available to verify geographic origin (1 to 3 days post-sampling), live 

bivalves will be too close to the limit of their shelf-life and spoilage may already start to be 

perceptible. 
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The material & methods, results and discussion presented in this section were integrally published 

as follow:  

 

Fernando Ricardo, Luciana Génio, Miguel Costa Leal, Rui Albuquerque, Henrique Queiroga, Rui 

Rosa & Ricardo Calado (2015). Trace element fingerprinting of cockle (Cerastoderma edule) 

shells can reveal harvesting location in adjacent areas. Scientific Reports 5, 11932.
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3.1.1.  Background and aim of the study 

Determining seafood geographic origin is critical for controlling its quality and safeguarding 

the interest of consumers. Here, we use trace element fingerprinting (TEF) of bivalve shells to 

discriminate the geographic origin of specimens. Barium (Ba), manganese (Mn), magnesium 

(Mg), strontium (Sr) and lead (Pb) were quantified in cockle shells (Cerastoderma edule) captured 

with two fishing methods (by hand and by hand-raking) and from five adjacent fishing locations 

within an estuarine system (Ria de Aveiro, Portugal). The present study aimed to validate TEF of 

shells from fresh bivalves as a proxy to discriminate the origin of specimens collected from 

adjacent areas of the same estuarine system. It is important to highlight, that unlike previous 

studies on TEF that use laser ablation of a small part of the larval or early juvenile shells of 

bivalves (Becker, Fodrie, McMillan, & Levin, 2004; Zacherl, 2005), the present study uses the 

whole shell of adult bivalves. The rationale for using this approach was to somehow minimize the 

temporal variability of TEF in the shells of adult specimens. We used cockle (C. edule) as a model 

species due to its economic importance as a fishery resource (Pereira, Maia, & Gaspar, 2013), 

with the coastal lagoon Ria de Aveiro (Portugal) being selected as the collection site due to its 

diverse tidal system and important role in Portuguese bivalve fisheries (Pereira, Maia, & Gaspar, 

2013). Once cockles are usually fished by hand or hand-raking, this study also aimed to test if the 

use of metal rakes could induce some type of metal contamination and be a source of bias for 

TEF. The following hypotheses were tested i) TEF of C. edule shell does not differ with fishing 

method (i.e. hand-raking vs.by hand), and ii) TEF of C. edule shell is similar among different 

locations within the same coastal lagoon. 

 

3.1.2.  Material and methods 

3.1.2.1. Study area and sample collection 

C. edule with a shell length > 25 mm (i.e. commercial size) (likely displaying an age of 

3+ years; the species lifespan may be up to 6 years (Malham, Hutchinson, & Longshaw, 2012) 

were collected during June 2013 in five different locations of Ria de Aveiro distributed among 

Mira (M1 and M2), Espinheiro (E1 and E2) and Ílhavo (I) Channels (Figure 19). All locations 

play an important role on the fishery of C. edule in Ria de Aveiro, which usually exceeds 1000 

tons per year in this region (Pereira, Maia, & Gaspar, 2013). Two fishing methods were used to 

collect twenty specimens of C. edule at M1: ten by hand-raking and ten by hand (n = 10 *2). 

Subsequently, ten specimens were collected by hand on the other locations: M2, E1, E2 and I 

(Figure 19). All samples were stored in aseptic bags kept refrigerated during sampling and brought 

to the laboratory and frozen at − 20 °C for later processing 
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Figure 19. Sampling locations of Cerastoderma edule in Ria de Aveiro, Portugal: Mira Channel  

(M1/M1A: 40°38'26.30"N, 8°43'58.90"W and M2: 40°35'58.30"N, 8°44'47.80"W), Ílhavo Channel  

(I: 40°38'35.40"N, 8°41'35.40"W) and Espinheiro Channel (E1: 40°39'48.50"N, 8°41'45.03"W and  

E2: 40°40'2.72"N, 8°41'26.08"W). The map was created using the software ArcGIS v9.2. 
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3.1.2.2. Study area and sample collection 

Volumetric polyethylene material and micropipettes with plastic tips were used to prepare 

collected shells for trace elements analysis (Özden, Erkan, & Deval, 2009). Plastic bottles, 

ceramic coated blades and tweezers kept in 2–5% solution of DECON 90 over 2 h were washed 

with running water, immersed in 10% of HNO3 for 24 h, washed with Milli - Q (Millipore) water 

and dried in a laminar flow hood. The preparation for ICP-MS analysis was performed in a class 

100 (ISO class 5) clean room. The valves were separated and the organic tissues were removed 

using ceramic coated blades and tweezers. The right valve was transferred to a previously acid-

washed plastic bottle and the left valve discarded. 

Samples were soaked in 20 mL high-purity H2O2 (30% w/v) (AnalaR NORMAPUR, 

VWR Scientific Products) overnight (14–16 h) to remove organic matter from the shell including 

the periostracum. After organic matter removal, the valve was rinsed in Milli – Q (Millipore) 

water three times. Digestion of entire valves was performed with addition of 20 mL of high-purity 

concentrated (70% w/v) HNO3 (Trace metals; Sigma-Aldrich). To avoid having Ca masking the 

concentrations of the remaining elements (Elsdon & Gillanders, 2003; Ravera, Cenci, Beone, 

Dantas, & Lodigiani, 2003), the resulting solution was diluted with Milli – Q (Millipore) water to 

a final acid concentration of 2% HNO3. 

 

3.1.2.3. ICP-MS analysis 

Samples were analysed for total aluminium (Al), barium (Ba), calcium (Ca), cadmium 

(Cd), copper (Cu), magnesium (Mg), manganese (Mn), lead (Pb), strontium (Sr) and zinc (Zn) by 

an accredited laboratory at the University of Aveiro (Portugal). The concentrations of 27Al, 137Ba, 

111Cd, 65Cu, 55Mn and 66Zn were determined through inductively coupled plasma mass 

spectrometry (ICP-MS), on a Thermo ICP-MS X-Series equipped with a auto sampler CETAX 

ASX-510, Peltier Nebulizing Camera Burgener nebulizer, nickel cones and the CeO+ /Ce+ ratio 

was optimized at < 2%. The concentrations of 48Ca, 24Mg and 88Sr were determined by inductively 

coupled plasma optical emission spectrometry (ICP-OES) on a ICP-OES Jobin Yvon Activa M 

equipped with auto sampler JY-AS500 and Burgener Mira Mist nebulizer. 

 

3.1.2.4. Statistical analysis 

Concentrations of trace elements of the shells were standardized to Ca and all data 

analyses were carried out on the element ratios (X: 48Ca) (Becker, Fodrie, McMillan, & Levin, 

2004; Strasser, Mullineaux, & Thorrold, 2008; Swearer, Forrester, Steele, Brooks, & Lea, 2003). 

To assess if fishing method significantly affected TEF, a resemblance matrix based on the 

normalized Euclidean distance was calculated (Clarke, 1993) for a one-way analysis of similarity 

(ANOSIM) (Clarke & Gorley, 2006), which calculates a global R statistic that assesses the 
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differences in variability between groups when compared to within groups and checks for the 

significance of R using permutation tests (Clarke & Gorley, 2006). Differences among fishing 

locations for each elemental ratio were assessed using a one-way analysis of variance (ANOVA), 

and Tukey’s HSD pairwise comparisons when significant differences were observed (p < 0.05). 

Similarity percentages (SIMPER) were calculated to quantify the contribution of each trace 

element to the dissimilarities recorded among locations. Only trace elements that cumulatively 

contributed up to 80% of the dissimilarities recorded were selected (Anderson & Willis, 2003). A 

Canonical Analysis of Principal Coordinates (CAP) (Anderson & Willis, 2003) was performed to 

test if TEF could be used to predict the fishing location of collected specimens. CAP is a 

constrained ordination tool that discriminates locations defined a priori and determines the level 

of misclassification among sampling locations. Appropriate axis (m) was applied by maximizing 

the leave-one-out allocation success (m = 5) (Anderson, Clarke, & Gorley, 2008). This approach 

tests how well locations were discriminated using CAP. To quantify the effect of each trace 

element to potential differences recorded among locations, Spearman correlation were calculated 

for all trace elements and the CAP axes. Only the trace elements with a correlation coefficient |r| 

> 0.30 were considered. ANOVAs were performed using GraphPad Prism 6 (GraphPad Software. 

Inc., San Diego, CA, USA), and multivariate analyses were performed using PRIMER v6 with 

the add-on PERMANOVA + . 

 

3.1.3.  Results 

Five trace elements (137Ba, 24Mg, 55Mn, 207Pb and 88Sr) were detected in C. edule shells 

from Ria de Aveiro, with Mg and Sr denoting the highest ratios to Ca (Figure 20). While no 

differences between specimens collected by hand or by hand-raking were detected (ANOSIM, p 

= 0.268, R = 0.025), significant differences among locations were observed for each trace element 

ratio (Figure 20; one-way ANOVA, p < 0.05 for all trace elements; Table 7, summarizes 

ANOSIM results). The ratios of Mn and Ba were significantly higher at location M2 (p = 0.0001 

and 0.0001, respectively). In contrast, the Mg ratio was lowest for C. edule shells from M2 (p = 

0.0004). The Pb ratio was only significantly higher (p = 0.0001) at location I, whereas the Sr ratio 

was also higher at this location but only significantly different from shells collected at E2. 
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Figure 20. Ratios of trace elements to Calcium (Ca) concentrations (mmol to mol) (average ± SD; n = 10) 

of Cerastoderma edule shells from five locations within Mira (M1 and M2), Espinheiro (E1 and E2) and 

Ílhavo (I) Channels in Ria de Aveiro (Portugal). Significant differences (p < 0.05) among different locations 

are noted with different letters. 

 

 

Table 7. Similarity (ANOSIM) between trace elements fingerprinting of Cerastoderma edule shell from  

five locations within Mira (M1 and M2), Espinheiro (E1 and E2) and Ílhavo (I) Channels in Ria de  

Aveiro (Portugal). 

 

Locations R p 

M1 vs M2 0.503 0.002 

M1 vs E1 0.238 0.025 

M1 vs E2 0.202 0.028 

M1 vs I 0.401 0.002 

M2 vs E1 0.641 0.001 

M2 vs E2 0.428 0.001 

M2 vs I 0.563 0.001 

E1 vs E2 0.123 0.059 

E1 vs I 0.673 0.001 

E2 vs I 0.643 0.001 

 

Pairwise comparisons revealed significant differences among locations, apart from those 

within the Espinheiro Channel, i.e. E1 and E2 (ANOSIM,  p = 0.059, R = 0.123). SIMPER 

analysis showed that the dissimilarity among locations was associated to five elemental ratios: 

Mg, Sr, Pb, Ba and Mn. (Table 8). Mg and Sr were always among the elements that most 

contributed for the variability between location M1 and locations from Espinheiro Channel (E1 

and E2). Mg and Sr varied significantly between M1 and Espinheiro (p = 0.0001 and 0.021, 
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respectively) and SIMPER revealed that these elements explained more than 55% of the 

differences recorded between these locations (Table 8). Specimens from location I were 

significantly different from other areas due to their concentrations of Pb (Figure 20). SIMPER 

analysis revealed that Pb alone accounted for 28 to 53% of all differences recorded between 

location I and all other locations (Table 8). Ba and Mn together contributed for more than 43% of 

the differences recorded among specimens collected in M2 and other locations. 

 

Table 8. Similarity percentage analysis (SIMPER) identifying the elements contributing to the differences 

recorded in the shell of Cerastoderma edule from five locations within Mira (M1 and M2), Espinheiro (E1 

and E2) and Ílhavo (I) channels in Ria de Aveiro, Portugal (Ind – individual; Cum – cumulative). 

 

M1 vs M2 M2 vs E2 

Element 
Ind     

(%) 

Cum 

(%) 
Element 

Ind     

(%) 

Cum 

(%) 

Mn 38.52 38.52 Mn 25.26 25.26 

Ba 38.47 76.99 Ba 24.96 50.22 

Sr 11.31 88.31 Sr 24.18 74.40 

      Mg 21.73 96.13 

M1 vs E1 M2 vs I 

Element 
Ind     

(%) 

Cum 

(%) 
Element 

Ind     

(%) 

Cum 

(%) 

Mg 38.32 38.32 Pb 28.01 28.01 

Sr 34.08 72.40 Mn 22.23 50.25 

Mn 10.16 82.56 Ba 21.66 71.91 

      Mg 20.40 92.31 

M1 vs E2 E1 vs E2 

Element 
Ind 

(%) 

Cum 

(%) 
Element 

Ind     

(%) 

Cum 

(%) 

Sr 35.57 35.57 Sr 52.55 52.55 

Mg 20.80 56.37 Mg 21.40 73.94 

Ba 17.35 73.72 Ba 11.91 85.85 

Mn 16.86 90.58       

M1 vs I E1 vs I 

Element 
Ind     

(%) 

Cum 

(%) 
Element 

Ind 

(%) 

Cum 

(%) 

Pb 41.50 41.50 Pb 53.86 53.86 

Mg 19.69 61.19 Mg 17.12 70.99 

Sr 16.24 77.42 Sr 12.62 83.60 

Ba 11.41 88.84       

M2 vs E1 E2 vs I 

Element 
Ind     

(%) 

Cum 

(%) 
Element 

Ind     

(%) 

Cum 

(%) 

Ba 29.75 29.75 Pb 46.98 46.98 

Mn 29.56 59.31 Sr 24.10 71.08 

Mg 27.61 86.93 Mg 13.73 84.81 
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TEF differences among locations were strong enough to accurately assign collected 

specimens to their fishing location. The leave-one-out procedure resulted in an average CAP 

classification of 92% (Table 9), i.e. 92% of the specimens were correctly assigned to their origin. 

Locations M1, M2 and I had the highest percentage of correct classification (100%), whereas two 

replicates from E1 and E2 were misclassified, which led to 80% correct classifications. Vector 

overlay of Spearman correlations of TEF with CAP axes are shown in Figure 21. Vectors of Ba 

and Mn ratios were positively correlated with samples from location M2, Mg ratio with areas E1 

and E2, and Pb and Sr ratios associated with samples from location I (Figure 21). C. edule from 

area M1 were not associated with a particular trace element. 

 

Table 9. Classification success of cross-validation for cockle Cerastoderma edule based on trace  elemental 

composition in the shell from five locations within Mira (M1 and M2), Espinheiro (E1 and  E2) and Ílhavo 

(I) Channels in Ria de Aveiro, Portugal. 

 

 Predicted Locations Total per 

location 

% correct 

(location)  M1 M2 E1 E2 I 

Original Area        

M1 10     10 100 

M2  10    10 100 

E1   8 2  10 80 

E2   2 8  10 80 

I     10 10 100 

Average classification success       92 
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Figure 21. Canonical analysis of principal coordinates (CAP) based on Euclidean distances matrices of 

normalized elemental ratios, with axes drawn to maximize discrimination among assemblage types. Vector 

overlay Spearman correlations of trace elements composition with canonical axes are shown if |r| > 0.30. 

 

 

3.2.4.  Discussion 

In general, adult bivalves display a reduced locomotor ability, being their aragonitic shells 

potential biogenic archives of marine ecosystems environmental fingerprints (Lavaud, Thébault, 

Lorrain, van der Geest, & Chauvaud, 2013). This feature prompted the use of trace elements of 

bivalve shells to assess their geographic origin. TEF has been successfully used to geographically 

distinguish populations of blue mussel M. edulis (Sorte, Etter, Spackman, Boyle, & Hannigan, 

2013), black mussel M. galloprovincialis and California sea mussel M. californianus (Becker, 

Fodrie, McMillan, & Levin, 2004; Carson et al., 2013), soft shell clam Mya arenaria (Strasser, 

Mullineaux, & Thorrold, 2008) and Olympia oyster Ostrea lurida (Carson, 2010). This 

geochemical tool also allowed to distinguish juveniles of green-lipped mussel (Perna canaliculus) 

~13 km apart (Dunphy, Millet, & Jeffs, 2011), and to record differences in scallop shells 

(Argopecten irradians) within a small bay (~10 km2) (Broadaway & Hannigan, 2012). The 
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present study shows, for the first time, that TEF of bivalve shells can be used to assign the origin 

location of bivalves with a resolution <1 km. 

While Mg and Sr ratios were relatively higher than Ba and Mn (Figure 20), the latter ratios 

were among the most important to differentiate locations (Table 8). The presence of Ba and Mn 

with elevated concentration, as observed in M2, have been already reported for Isognomon 

ephippium (Lazareth, Putten, André, & Dehairs, 2003), Mercenaria mercenaria, Spisula 

solidissima (Stecher, Krantz, Lord, Luther, & Bock, 1996) and M. edulis (Putten, Dehairs, 

Keppens, & Baeyens, 2000). Such high concentration in Ba and Mn are usually associated with 

freshwater inputs and nutrient runoff to estuarine systems, which ultimately causes phytoplankton 

blooms, particularly diatoms (Gillikin et al., 2006; Putten, Dehairs, Keppens, & Baeyens, 2000; 

Stecher, Krantz, Lord, Luther, & Bock, 1996; Thébault et al., 2009). It is possible that the 

environmental conditions at M2, which is located more upstream and has stronger riverine input, 

causes diatom blooms more often than the conditions observed at others locations such as M1, 

which is located near the inlet (Cerejo & Dias, 2007). Ba and Mn end up in bivalves’ tissue and 

shell as a consequence of the ingestion of Ba and Mn-rich particles associated with such diatom 

blooms. Heavy metals are also incorporated in calcite and aragonite shells of bivalves (Bourgoin, 

1990; Pitts & Wallace, 1994). The high levels of Pb in the shells from location I are likely 

associated with anthropogenic impacts, particularly acute pollution from boats using leaded 

gasoline. Note that location I is relatively close to the commercial harbour of Aveiro. 

Cockle shells from each location displayed a different TEF, with the exception of stations E1 

and E2 that showed no statistical differences between each other (Table 7). Nevertheless, CAP 

results showed a success of 80–100% to identify the origin of cockles collected from Ria de 

Aveiro (Table 9). The important to highlight that the misclassifications were solely associated 

with locations E1 and E2. It is the potential of TEF for geographical traceability purposes as we 

were able to identify the origin of cockles using this statistical tool (CAP) in, at least, 80% of the 

cases. Nevertheless, the average 92% correct classification is still higher than results by Sorte, 

Etter, Spackman, Boyle, & Hannigan (2013) for the blue mussel M. edulis in the Gulf of Maine 

(68%) and by Becker, Fodrie, McMillan, & Levin (2004) for the congeners mussels M. 

californianus and M. galloprovinciallis in Southern California, USA (56%). The latter and other 

studies (Becker, Fodrie, McMillan, & Levin, 2004; Carson, 2010; Carson et al., 2013; Dunphy, 

Millet, & Jeffs, 2011; Sorte, Etter, Spackman, Boyle, & Hannigan, 2013) have also shown that 

Ba, Mn, Mg, Pb and Sr play an important role discriminating specimens among areas, as observed 

here through the magnitude of the vectors of the standardized discriminant functions (Figure 21). 

The chemical nature of the trace elements deposited over time in bivalves is determined by 

metabolic efficiency and environmental conditions (Yan, Chen, & Xiao, 2014). As this study was 

conducted in Ria de Aveiro, which is a highly dynamic tidal-system with notable spatial 

variability in environmental conditions (Dias, Lopes, & Dekeyser, 1999), it is likely that different 
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fingerprints are associated with contrasting environmental conditions recorded at each channel 

(Figure 19). The spatial variability here recorded for TEF of cockle shells thus stresses the 

potential of this method to validate screening for fraudulent use of origin certification. However, 

temporal variability in environmental conditions may also change TEF and interfere with this 

traceability tool. Indeed, it has already been shown that seasonal and annual variation may change 

the TEF of bivalves and other biogenic carbonate structures such as fish otoliths (Becker, Fodrie, 

McMillan, & Levin, 2004; Carson et al., 2013; D’Avignon & Rose, 2013). In opposite, Carré, 

Bentaleb, Bruguier, et al. (2006) showed that environmental changes have minor influence on Sr, 

Ba, Mg and Mn concentration in shell aragonite of the marine bivalve species Mesodesma 

donacium and Chione subrugosa. This study aimed to validate a tool for origin certification of 

bivalves and not to study the temporal variability of TEF. Consequently, we used cockles with 

similar size and, therefore, similar age, in order to minimize any bias associated with potential 

differences in the age of selected specimens. The analyses performed in this study used the whole 

shell and, consequently, averaged the present and the past elemental fingerprints of cockles. While 

this approach may have the TEF over multiple years, notable differences among sites were still 

recorded (Table 7), which emphasizes the robustness of this method for geographical traceability 

purposes. However, if legal authorities aiming to fight the fraudulent mislabelling of origin 

location want to minimize this potential temporal bias associated with the analysis of the whole 

shell, they may rather monitor the elemental fingerprint of the outer margins of bivalve shells 

from each fishing location or, those more prone to fraud, as these will reflect the most recent 

elemental fingerprints from the location where they were collected. By comparing the fingerprint 

of the investigated shells with monitoring data and/or samples from the different sites in the same 

season, legal authorities may minimize the effect of temporal variability and, ultimately, use of 

this tool to expose fraudulent situations. 

Although TEF fails to detect differences associated with fishing method, this information 

would be potentially relevant for legal authorities to manage bivalve trade, from fishing to the 

end consumer, as fishermen using hand-raking usually collect larger volumes of bivalves. The 

effect of environmental conditions on the TEF of bivalves occurs within a relatively long time 

frame, i.e. within weeks or months (Klumpp & Burdon-Jones, 1982), which likely explains the 

lack of differences associated with fishing methods. The effect of fishing method on TEF, if any, 

would probably occur within a very small time frame as fishing duration usually takes less than 

one hour. 

Most traceability tools have been focused on issues associated with species mislabelling 

(Espiñeira, Gonzalez-Lavin, Vieites, & Santaclara, 2009; Garcia-Vazquez et al., 2010; Herrero, 

Lago, Vieites, & Espiñeira et al., 2012) or with identification of geographical origin of specimens 

separated by distances higher than 20 km (Becker, Fodrie, McMillan, & Levin., 2004; Sorte, Etter, 

Spackman, Boyle, & Hannigan, 2013). However this study shows, for the first time, that TEF can 
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be a fast, reliable and accurate method that may be used for origin certification of bivalves 

collected from locations less than 1 km apart. While this is probably associated with the high 

environmental variability observed within Ria de Aveiro, it is still unknown if TEF is a reliable 

tool to accurately identify the origin of bivalves collected from different ecosystems with similarly 

high variability. Follow-up studies are already being developed to clarify if TEF can be used to 

discriminate between bivalve shells from specimens originating from distinct ecosystems (from 

tens to hundreds of km apart). An additional benefit of TEF is that there is no post-harvesting 

shift and/or degradation associated with bacterial action as recorded for biochemical and 

molecular methods. The present approach may also play a relevant role on the conservation and 

management of cockle populations being exploited, namely in the fight against illegal/unreported 

fishing. 
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3.2.  Spatio-temporal variability of trace elements fingerprints in 

cockle (Cerastoderma edule) shells and its relevance for tracing 

geographic origin  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The material & methods, results and discussion presented in this section were integrally published 

as follow:  

Fernando Ricardo, Tânia Pimentel, Luciana Génio & Ricardo Calado (2017). Spatio-temporal 

variability of trace elements fingerprints in cockle (Cerastoderma edule) shells and its relevance 

for tracing geographic origin. Scientific Reports 7, 3475.
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3.2.1.  Background and aim of the study 

Understanding spatio-temporal variability of trace elements fingerprints (TEF) in bivalve 

shells is paramount to determine the discrimination power of this analytical approach and secure 

traceability along supply chains. The aim of this study was to evaluate the spatio-temporal 

variability of trace elements fingerprints (TEF) of cockle (Cerastoderma edule) shells and use 

them to assess their geographic origin. Spatial variability of TEF was determined in specimens 

captured in eight different ecosystems along the Portuguese coast (Ria de Aveiro, Óbidos lagoon, 

Tagus estuary, Albufeira lagoon, Sado estuary, Mira estuary, Ria de Alvor and Ria Formosa). The 

present study also aimed to determine the temporal stability of TEF in cockle shells between two 

consecutive years (2013 and 2014) in areas within the same ecosystem but displaying different 

classifications (according to European regulation (EC) No 1379/2013 (EC, 2013) for the 

capture/production of bivalves. 

 

3.2.2. Material and methods 

3.2.2.1. Study area and sample collection 

Cockles (C. edule) were collected during low tide over June-July (Summer) 2014 on eight 

estuarine ecosystems along the Portuguese coast (Figure 22): Ria de Aveiro (RAv) (Figure 22a), 

Óbidos Lagoon (OL) (Figure 22b), Tagus Estuary (TE), Albufeira Lagoon (AL), Sado Estuary 

(SE) (Figure 22c), Mira Estuary (ME) (Figure 22d), Ria de Alvor (RAl) (Figure 22e) and Ria 

Formosa (RF) (Figure 22f). At the sampling moment, all locations were classified as “B” or “C” 

(Fig. 1) according to Council Regulation 853/2004 and 854/2004 of the European Union (EU) 

(EC, 2004a, 2008). In RAv four different areas were sampled and ten cockles collected per area 

(1 ecosystems X 4 areas X 10 replicates = 40 samples) (Figure 22a). In OL, TE, AL, SE and RF 

two areas were sampled, with ten cockles also being collected on each one them (5 ecosystems X 

2 areas X 10 replicates = 100 samples). As the bivalve species being surveyed was not abundant 

in ME and RAl only one area was sampled per ecosystem, with ten cockles being collected on 

each of them (2 ecosystem X 1 area X 10 replicates = 20 samples).  

To evaluate the temporal variability of TEF in cockle shells, samples collected in the 

present study in RAv (Figure 22a) were compared to those of specimens collected exactly in the 

same locations in the previous year (July (Summer) 2013). Ten specimens were sampled on each 

area in the two consecutive years (1 ecosystem X 4 areas X 2 years X 10 replicates = 80 samples). 

It is important to highlight that only cockles with approximately 3 years old (shell length 20-25 

mm, commercial size) (Seed & Brown, 1978) were sampled and that the time window for the 

present study (summer) matched that when the capture and trade of this bivalve species is higher 

and fraudulent practices are more likely to occur. All samples were collected by hand-raking, 

stored in aseptic food grade plastic bags and kept refrigerated during sampling. All specimens 

were frozen at -20 °C in the same day of collection for further analysis.  
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Figure 22. Sampling locations of Cerastoderma edule in mainland Portugal: a) Ria de Aveiro (RAv; 

M1:40°38'26.30"N, 8°43'58.90"W; M2: 40°35'58.30"N, 8°44'47.80"W; I: 40°38'35.40"N, 8°41'35.40"W 

and E: 40°39'48.50"N, 8°41'45.03"W), b) Óbidos lagoon (OL1: 39°25'20.34"N, 9°13'14.54"W and OL2: 

39°24'2.01"N, 9°12'30.91"W), c) Tagus estuary (TE1: 38°39'27.44"N, 9°6'35.95"W and TE2: 

38°44'5.18"N, 9°0'46.54"W), Albufeira lagoon (AL1: 38°30'36.67"N, 9°10'32.96"W and AL2: 

38°31'1.33"N, 9°9'53.16"W) and Sado estuary (SE1: 38°27'46.00"N, 8°51'32.00"W and SE2: 

38°29'13.25"N, 8°48'52.79"W) d) Mira estuary (ME: 37°43'30.60"N, 8°46'15.40"W), e) Ria de Alvor (RAl: 

37°07'55.7"N, 8°37'27.40"W) and f) Ria Formosa (RF1: 37°00'23.20"N, 7°59'28.40"W and 37°01'24.30"N, 

7°49'49.50"W). The map was created using the software ArcGIS v10.2.2. 
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3.2.2.2. Elemental analysis of cockle shells 

Prior to elemental analysis all shells were prepared as described in detail by Ricardo et 

al. (2015b). The valves were separated and the organic tissues were removed using ceramic coated 

blades and tweezers. The whole right valve was transferred to a previously acid-washed plastic 

bottle and the left valve discarded. Trace elements of the whole valve were obtained by the 

digestion method described by Ricardo et al. (2015b). Briefly, samples were soaked in 20 mL 

high-purity H2O2 (30% w/v) (AnalaR NORMAPUR, VWR Scientific Products) overnight (14–

16 h) to remove organic matter from the shell including the periostracum. After organic matter 

removal Digestion of entire valves was performed with addition of 20 mL of high-purity 

concentrated (70% w/v) HNO3 (Trace metals; Sigma-Aldrich). To avoid having Ca masking the 

concentrations of the remaining elements (Elsdon et al., 2008; Ravera, Cenci, Beone, Dantas, & 

Lodigiani, 2003), the resulting solution was diluted with Milli – Q (Millipore) water to a final 

acid concentration of 2% HNO3. Procedural blanks were prepared using the same analytical 

procedure and reagents of the samples. Barium (measured as 137Ba) and manganese (measured as 

55Mn) present in C. edule shells were measured by inductively coupled plasma mass spectrometry 

(ICP-MS) on a Thermo ICP-MS X-Series equipped with an auto sampler CETAX ASX-510, 

Peltier Nebulizing Camera Burgener nebulizer, with nickel cones and the CeO+/Ce+ ratio being 

optimized at < 2%. Calcium (measured as 43Ca), magnesium (measured as 24Mg) and strontium 

(measured as 88Sr) were determined through inductively coupled plasma optical emission 

spectrometry (ICP-OES) on a ICP-OES Jobin Yvon Activa M equipped with auto sampler JY-

AS500 and Burgener Mira Mist nebulizer. The precision and accuracy of the analytical 

procedures were ensured by the analysis of certified reference materials (MRC’s) for sediments 

(Table S6 on appendix E) while, the operating conditions are showed in Table S7 on appendix E. 

 

3.2.2.3. Statistical analysis 

 The concentration of trace elements present in the shells of cockles was expressed as a 

ratio relatively to Ca (Génio, Simon, Kiel, & Cunha, 2015; Ricardo et al., 2015b), with these 

ratios always being calculated prior to any statistical analysis. A preliminary analysis of 

multivariance (MANOVA) was performed to detect significant differences (p < 0.05) in the TEF 

of shells from specimens originating from different areas within each ecosystem. As significant 

differences were recorded (Table S8 on appendix E), only the closest areas to the inlet from each 

ecosystem were selected for further analysis. The rationale supporting this decision was the 

assumption that the areas closer to the inlet of each ecosystem are more similar among them due 

to the environmental influence of ocean conditions and, consequently, these locations would 

likely be more challenging to discriminate TEF from cockle shells. A total of 10 replicates per 

ecosystem were therefore used for further statistical analysis. In order to determine whether there 

were any significant differences (p < 0.05) in the TEF of cockle shells among ecosystems an 
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analysis of multivariance (MANOVA) was performed. As significant differences were recorded, 

one-way analysis of variance (ANOVA) were performed for each elemental ratio. Whenever the 

ANOVA revealed the existence of significant differences (p < 0.05) a post hoc test (Tukey’s test) 

was performed to identify which ecosystems differed from each other. A linear discriminant 

analysis (LDA) was performed to assess the reliability of using TEF displayed by cockle shells 

to infer their geographic origin.  

A MANOVA was used to evaluate the inter-annual stability of TEF displayed by cockle 

shells over two consecutive years (2013 and 2014) within the four sampled areas of RAv. Due to 

the significant differences recorded, an ANOVA was applied (as detailed above), with post hoc 

tests (Tukey’s test) being employed when applicable. All analyses were performed on log X+1 

transformed data, in order to meet the normality and homogeneity of variance of ANOVA and 

the multivariate normality and homoscedasticity (Pillai Trace test) are required for MANOVA. 

All statistical analysis were performed using R (R Development Core Team, 2015). 

 

3.2.3.  Results 

Trace element fingerprints (TEF) of C. edule shells differed among ecosystems, with the 

exception of Mira estuary (ME) and Ria de Alvor (RAl), with MANOVA analyses revealing 

strong significant differences when considered all trace elements together (Table 10).  

 

Table 10. Multivariate analysis of variance (MANOVA) of trace elements fingerprints of Cerastoderma 

edule shells from eight ecosystems along the Portuguese coast: Ria de Aveiro (RAv), Óbidos lagoon (OL), 

Tagus estuary (TE), Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), Ria de Alvor (RAl) and 

Ria Formosa (RF). 

Ecosystem df pillai approx. F p bonf.p.adjust 

RAv vs OL 1 0.948 67.82 0.000 0.000 

RAv vs TE 1 0.946 66.20 0.000 0.000 

RAv vs AL 1 0.938 56.85 0.000 0.000 

RAv vs SE 1 0.943 62.61 0.000 0.000 

RAv vs ME 1 0.975 147.77 0.000 0.000 

RAv vs RAl 1 0.938 56.84 0.000 0.000 

RAv vs RF 1 0.981 194.73 0.000 0.000 

OL vs TE 1 0.948 68.35 0.000 0.000 

OL vs AL 1 0.950 71.95 0.000 0.000 

OL vs SE 1 0.969 117.21 0.000 0.000 

OL vs ME 1 0.977 158.33 0.000 0.000 

OL vs RAl 1 0.945 63.95 0.000 0.000 

OL vs RF 1 0.881 27.74 0.000 0.000 

TE vs AL 1 0.908 36.99 0.000 0.000 
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Table 10 (cont). Multivariate analysis of variance (MANOVA) of trace elements fingerprints of 

Cerastoderma edule shells from eight ecosystems along the Portuguese coast: Ria de Aveiro (RAv), Óbidos 

lagoon (OL), Tagus estuary (TE), Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), Ria de 

Alvor (RAl) and Ria Formosa (RF). 

 

Ecosystem df pillai approx. F p bonf.p.adjust 

TE vs SE 1 0.699 8.73 0.001 0.021 

TE vs ME 1 0.919 42.28 0.000 0.000 

TE vs RAl 1 0.892 31.12 0.000 0.000 

TE vs RF 1 0.954 77.94 0.000 0.000 

AL vs SE 1 0.838 19.42 0.000 0.000 

AL vs ME 1 0.936 55.20 0.000 0.000 

AL vs RAl 1 0.720 9.63 0.000 0.013 

AL vs RF 1 0.848 20.86 0.000 0.000 

SE vs ME 1 0.935 54.02 0.000 0.000 

SE vs RAl 1 0.821 17.14 0.000 0.001 

SE vs RF 1 0.945 64.73 0.000 0.000 

ME vs RAl 1 0.531 4.24 0.017 0.480 

ME vs RF 1 0.940 59.14 0.000 0.000 

RAl vs RF 1 0.891 30.68 0.000 0.000 

 

 

Considering each element separately, cockles from Ria de Aveiro (RAv) and Óbidos lagoon 

(OL) registered the highest Mg/Ca and were not significantly different from each other (p ≥ 0.05), 

but differed significantly from specimens originating from other ecosystems (p < 0.05) (Figure 

23). Cockles from the Tagus estuary (TE) showed the highest Mn/Ca with significant differences 

being recorded between specimens from this ecosystem and conspecifics collected in all others 

ecosystems that were surveyed (p < 0.05) (Figure 23). Ba/Ca was higher in cockle shells from 

RAv, OL and Ria Formosa (RF), with significant differences being recorded when compared with 

that of cockles from all other ecosystems (p < 0.05) (Figure 23). Concerning’s Sr/Ca, all 

specimens collected in the ecosystems surveyed in this study displayed a similar ratio for this 

element, although significant differences (p < 0.05) were still recorded between C. edule shells 

from different ecosystems (Figure 23). 
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Figure 23. Ratios of trace elements to Calcium (Ca) concentrations (mmol to mol) (average ± SD; n = 10) 

of Cerastoderma edule shells from eight ecosystems along the Portuguese coast: Ria de Aveiro (RAv), 

Óbidos Lagoon (OL), Tagus estuary (TE), Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), 

Ria de Alvor (RAl) and Ria Formosa (RF). Significant differences (p < 0.05) among different ecosystems 

are noted with different letters. 

 

The first two discriminant functions of the linear discriminant analysis (LDA) explained 

77.6% of the TEF variation in the data set (LDA 1: 47.6% and LDA 2: 30%) (Figure 24). 

Specimens collected in RAv, RF, OL and Sado estuary (SE) displayed the highest percentages of 

correct classification (100%), whereas for cockles originating from TE and ME a single specimen 

was misclassified (thus resulting, in 90% of correct classifications). Most misclassifications were 

associated with C. edule collected in Albufeira lagoon (AL) and RAl, with respectively 20 and 

40% of the specimens collected being erroneously assigned to other ecosystems (Table 11).  

 

 

Figure 24. Linear discriminant analysis (LDA) of cockles based on trace elements fingerprints of shells 

collected from eight different ecosystems along the Portuguese coast: Ria de Aveiro (RAv), Óbidos Lagoon 

(OL), Tagus estuary (TE), Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), Ria de Alvor 

(RAl) and Ria Formosa (RF). 
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Table 11. Classification success (by ecosystem) of a linear discriminant analysis (LDA) for Cerastoderma 

edule shells based on trace element fingerprints. Ria de Aveiro (RAv), Óbidos lagoon (OL), Tagus estuary 

(TE), Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), Ria de Alvor (RAl) and Ria Formosa 

(RF). 

 % Predicted Ecosystem 

Total per 

ecosystem 

% correct 

(ecosystem) 

  RAv OL TE AL SE ME RAl RF   

Original Ecosystem           
RAv 100 0 0 0 0 0 0 0 10 100 

OL 0 100 0 0 0 0 0 0 10 100 

TE 0 0 90 0 10 0 0 0 10 90 

AL 0 0 0 80 10 0 10 0 10 80 

SE 0 0 0 0 10 0 0 0 10 100 

ME 0 0 0 0 0 90 10 0 10 90 

RAl 0 0 0 20 0 20 60 0 10 60 

RF 0 0 0 0 0 0 0 100 10 100 

Average classification 

success                   90 

 

 

In RAv, TEF of C. edule shells showed that, with the exception of Mg/Ca, all ratios (Mn/Ca, 

Ba/Ca and Sr/Ca) increased from 2013 to 2014 (Figure 25). As a significant interaction between 

time x areas was recorded for all ratios (MANOVA, F = 8.24, p < 0.0001) and significant 

differences between areas were also recorded for each year (MANOVA, F = 9.44, p < 0.0001), 

the analysis of TEF of C. edule shells was made separately for each area to avoid the masking of 

any potential inter-annual differences. This analysis revealed that Mg/Ca, Mn/Ca, Ba/Ca and 

Sr/Ca, varied significantly between 2013 and 2014 in all areas, with exception of areas E and M2 

for Mn/Ca and Ba/Ca, respectively (Figure 25). TEF of C. edule shells was analysed between 

areas for each year. 

 

Figure 25. Evolution of elemental ratios of Mg, Mn, Ba and Sr in trace elements fingerprints (TEF) of 

cockle shells from 2013 to 2014 in areas: Mira Channel (M1 and M2), Ílhavo Channel (I) and Espinheiro 

Channel (E). The dotted lines represent significant differences in the elemental ratio between years (p < 

0.05). 
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In 2013, Ba/Ca, Mn/Ca and Mg/Ca showed significant differences between area M2 and all 

other areas, except M2 and M1 for Mg/Ca (Figure 26). In 2014, Mg/Ca was the sole element that 

revealed significant differences between area M1 and all other areas. The ratio of Ba/Ca was 

significantly different between area I and areas M1 and M2, whereas the Sr/Ca was significantly 

different between area E and areas M1 and I (Figure 26). 

 

Figure 26. Tukey plot with black lines indicating significant differences in elemental ratios of trace 

elements fingerprints in cockle shells among areas within Ria de Aveiro (ANOVA, Tukey test comparisons, 

p < 0.05) over two consecutively years (2013 and 2014). 

 

3.2.4.  Discussion 

Trace element fingerprints (TEF) displayed by cockle shells exhibited significant differences 

among ecosystems, most likely due to the prevalence of highly dynamic biogeochemical 

processes such as (e.g. in estuaries and coastal lagoons). The recurrent shifting of environmental 

conditions (e.g. salinity, temperature, rainfall) in these ecosystems promotes more or less dramatic 

changes in water chemistry, which are ultimately reflected in the TEF (Chang & Geffen, 2013; 

Elsdon, et al., 2008) of specimens colonizing these habitats. Indeed, the ratios of the trace 

elements monitored in the present study (Mg/Ca, Mn/Ca, Sr/Ca and Ba/Ca) have already been 

reported to display significant spatio-temporal variations in the shells of bivalves as a 

consequence of shifting environmental conditions (Cathey, Miller, & Kimmel, 2014; Ricardo et 

al., 2015b). Hence, as also confirmed by the present study, TEF of bivalve shells are not likely to 

remain stable over two consecutive years (Carson, 2010; Cathey, Miller, & Kimmel, 2014; 

Zacherl, 2005).  

In the present study, cockle shells from each ecosystem displayed contrasting TEF, the sole 

exception being those originating from Mira estuary (ME) and Ria de Alvor (RAl) (Table 10). 

Nevertheless, linear discriminant analysis (LDA) results showed that, over three-quarters (90%) 

of cockles were correctly classified to their areas (Table 12). This result highlights the need to 

combine different statistical tools (other than analysis of variance) when aiming to use 
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biogeochemical signatures to assign a given specimen to a certain geographic origin. The results 

reported in the present study to successfully allocate a sampled specimen to its geographic origin 

are higher than those reported in previous studies addressing other bivalves (mussel species) along 

the coast of California (56%) (Becker, Fodrie, McMillan, & Levin, 2004) and the Gulf of Maine 

(68%) (Sorte, Etter, Spackman, & Hannigan, 2013). Such an accurate identification of geographic 

origin as the one achieved for C. edule in along the Portuguese coast is likely to be due to a 

combination of several factors, such as anthropogenic pressure (influencing Mn/Ca) (Vale, 

Botelho, Rodrigues, Gomes, & Sampayo, 2008) and an increased input level of trace elements 

originating from terrestrial runoff (e.g. Mn/Ca and Ba/Ca) (Thébault et al., 2009) and their 

preferential retention in estuaries and coastal lagoons. It is also worth highlighting that the 

incorporation of trace elements may be significantly affected by shifting water temperature 

(affecting Mg/Ca and Sr/Ca) (Klein, Lohmann, & Thayer, 1996) and salinity (affecting all ratios 

determined in this study) (Poulain et al., 2015), which due to the distinctive morphodynamics of 

each of the ecosystems surveyed may shift in a number of unique patterns and combinations.  The 

higher ratios of Mg/Ca recorded in cockle shells from specimens in the northernmost locations 

surveyed (Ria de Aveiro (RAv) and Óbidos lagoon (OL)) are in accordance with the latitudinal 

temperature gradient displayed by this element in seawater (Poulain et al., 2015; Schöne et al., 

2011). It is also worth highlighting that such differences may also be associated with more or less 

pronounced shifts in water temperature promoted by the size and shape of the estuarine systems 

surveyed (e.g. small and large estuaries and coastal lagoons). 

The highest concentrations of Ba/Ca in TEF is often derived from freshwater inputs and 

nutrient runoffs to estuarine systems, which are known to promote an increase in primary 

productivity (Lazareth, Putten, André, & Dehairs, 2003; Thébault et al., 2009; Putten, Dehairs, 

Keppens, & Baeyens, 2000). It is therefore possible that the runoffs originating from the fertile 

lands in the margins of RAv, OL and Ria Formosa (RF) that are used for agricultural purposes 

may contribute to the occurrence of diatom blooms that can increase the availability of Ba 

(Thébault et al., 2009). Concerning the significantly higher levels of Mn/Ca present in cockle 

shells originating from Tagus estuary (TE) it is likely associated with the legacy of former 

anthropogenic actions on the sampling site (namely historical metal industries), which has 

promoted the build-up of trace metals on surface water and sediment (Vale, Botelho, Rodrigues, 

Gomes, & Sampayo, 2008).  

Estuaries are dynamic environments in which coastal fluxes of trace elements and mixing 

rates with seawater vary from a tidal to an annual time scale (Peters, 1999). In this way, it was 

not surprising to record significant shifts in the TEF of cockle shells of adult specimens 

originating from 4 different areas in RAv over two consecutive years. Indeed, Cathey, Miller, & 

Kimmel (2014) had already reported significant temporal variability (tri-weekly) in the TEF of 

larval bivalve shells being cultured in different hatcheries employing estuarine water in their 
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operation in the southern Delmarva Peninsula (Virginia, USA). Carson (2010) also refers the 

occurrence of inter-seasonal and inter-annual variation in the TEF of Olympia oyster (Ostrea 

lurida) shells sampled in four different estuaries in Southern California (USA). Nonetheless, it is 

important to highlight that although larval and young juvenile TEF of bivalve shells may 

significantly shift in a weekly basis (Becker, Fodrie, McMillan, & Levin, 2004; Fodrie, Becker, 

Levin, Gruenthal, & McMillan, 2011), older juveniles are known to display stable TEF over a 

six-month period (Dunphy, Millet, & Jeffs, 2011). Within the scope of using TEF of bivalve shells 

to verify claims on the geographic origin of adult live specimens traded for human consumption, 

temporal variability likely not be an issue if samples to verify the claim can be collected from the 

same area of the specimens being traded. These TEF will certainly match, as the time scale of 

shelf-life for live bivalves is measured in days and not weeks or months. However, if this 

matching is performed using the TEF of bivalves originating from the same area but analyzed 

more than a year ago (e.g. by using data from a TEF database), temporal variability may 

significantly bias the analysis and an erroneous assignment of geographic origin is likely to occur. 

This pitfall associated with temporal variability is less likely to take place when comparing 

specimens originating from different ecosystems (Carson, 2010). 

Overall, the present study reinforces the potential that the TEF of cockle shells hold to be 

used as proxies for inferring the place of origin in traceability frameworks. Nonetheless, the 

analytical costs associated with the determination of TEF in bivalve shells whenever the need 

arises to verify claims related with their geographic origin can rapidly become prohibitive. In this 

scenario, it may be possible to rely on TEF previously recorded for specimens originating from 

the area being claimed by the producer/collector/trader. The time window during which this 

comparison can be performed without being prone to bias caused by temporal variability is likely 

to span between six months and less than a year. Future studies should try to determine as 

accurately as possible the span of such time window, as well as verifying if it does not change 

among capture/production areas. 
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The biochemical and geochemical tools tested during the present study can open a 

window of opportunity to enhance the economic benefits associated with the trade of bivalves. 

The transfer of this technology to bivalve producers and traders can allow them to add value to 

their products by allowing their differentiation and enhancing their promotion near end 

consumers. Moreover, these tools may also be employed against fraud, namely when enforcing 

food safety issues. Overall, the methodologies employed reveal the potential they hold for 

aggregating an even higher market value for products that continue to be perceived by society as 

a synonym of health and quality. There is a window of opportunity for seafood in general, and 

bivalves in particular, to achieve an even higher commercial revenue if they are traded in niche 

markets that value origin certification of traded products. The use of biochemical and geochemical 

tools will enable fishermen/producers to achieve a certification of origin of their products, 

allowing different stakeholders in the value chain, namely the final consumer, to trace these 

products “from farm to fork”.  

The transfer of the present technology to national (and international) authorities will 

allow a better monitoring of trade chains, as it will allow the exposure of fraudulent practices 

involving inaccurate claims on the geographic origin of traded specimens. The use of biochemical 

and geochemical signatures can be used to differentiate seafood products under different scenarios 

such as: 

 

 allowing bivalve nurseries to track the seeds supplied to producers to manage conflicts 

resulting from claims on bivalves mortality; 

 

 denouncing the trade of bivalves labelled as originating from a specific capture location 

where harvesting is allowed when in fact those specimens originate from a region where 

harvesting is interdicted for any food safety reason (e.g. occurrence of harmful algal 

blooms, high microbial loads, metal contamination).  

 

Product valorisation can be achieved through differentiation and by promoting an active fight 

against fraud. This will pave the way for expansion to new markets of added value, where 

producers and traders can obtain a higher for premium and safe products. The present study 

contributes to the development of innovative traceability tools that add value to seafood, 

contribute to Blue Growth and facilitate strategies that promote the Economy of the Sea in 

national territories and abroad. 
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Appendix A. Study areas 

 

Ria de Aveiro 

Ria de Aveiro is located on the northwestern coast of Portugal, between 40º 38`N and 40º 

57`N. This system is a shallow and well mixed coastal lagoon, characterized by extensive 

intertidal mud and sand flats, salt marshes and islands, forming four main Channels, Mira, Ílhavo, 

Espinheiro and São Jacinto-Ovar. The only connection between Ria’s and the Atlantic Ocean is 

made through an artificial inlet with 1.3 km length, 350 m wide and 20 m depth, constructed in 

1808. Hydrodynamically, Ria the Aveiro is a mesotidal lagoon, characterized by semidiurnal 

tides, which are the main forcing agent driving water circulation in the lagoon (e.g. Dias, Lopes, 

& Dekeyser, 2000; Lopes, Vaz, Vaz, Ferreira, & Dias, 2015). In the upper reaches of the channels, 

the tidal time delay relatively to the mouth is about 6 h. The total catchment area of the Ria de 

Aveiro is 3500 km2 of which 80% is drained by the River Vouga (Stefanova, Krysanova, Hesse, 

& Lillebø, 2015). Rivers Vouga at the Espinheiro channel and Antuã at the Laranjo basin are 

responsible for the major fluvial inputs. The Boco river, at the southern end of Ílhavo channel, 

and the Cáster and the Gonde rivers, discharging at the north end of São Jacinto channel, present 

a negligible flow. At the southern end of Mira channel the input of freshwater corresponds to a 

small system of ponds and rivers. Salinity in Ria de Aveiro is influenced by the combined effects 

of freshwater discharges and tidal penetration, exhibiting a longitudinal gradient of salinity from 

about 0 in freshwaters at upstream areas, to about 36 at the Ocean boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Ria de Aveiro, northwestern coast of Portugal (40° 40′ 37″ N, 8° 40′ 28.90″ W). 
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Óbidos lagoon 

The Óbidos lagoon is located on the north-western coast of Portugal, covering an area 

between 4.4 km2 at mid-tide and 8 km2 at high-tide, with an average depth of 3 m. It is separated 

from the sea by a 1 km long sand spit, interrupted by a 100 m wide wandering inlet. Tidal 

amplitude ranges from 2 to 4 m at the coastal zone and 1 to 2 m inside the lagoon (Oliveira, 

Fortunato, & Rego, 2006). Freshwater enters the lagoon through the Barrosa and Bom Sucesso 

arms, being negligible mainly in Spring/Summer (Rodrigues, Quintino, Pereira, & Freitas, 2012). 

 

Figure S2. Óbidos lagoon, western coast of Portugal (39º23'18" N and 9º13'34" W). 

 

 

Tagus estuary 

Tagus estuary, western coast of Portugal, has a broad shallow bay covering an area of 

320 km2 (Brogueira & Cabeçadas, 2006) from which, 110 km2 corresponds to intertidal areas, 20 

km2 are occupied by salt marsh vegetation and 80 km2 by mudflats 

(http://www.maretec.mohid.com/portugueseestuaries/tagus/Tagus.htm). The main freshwater 

input comes from the Tagus River, a water body with an annual average riverine flow of 

400 mᶟ s− 1 (Santos-Echeandía, Caetano, Laglera, & Vale, 2013).  Seawater enters the estuary 

through a deep narrow inlet channel and, according to the NOAA classification, Tagus is a 

mesotidal estuary, with semi-diurnal tides ranging from 0.4 m to 4.1 m at neap and spring tides, 

respectively (Duarte, Caçador, Marques, & Croudace, 2013). The average depth is < 10 m and 

salinity varies from 0 upstream to nearly 37 at the estuary mouth (França, Vinagre, Caçador, & 

Cabral, 2005). Tagus estuary is surrounded by the Lisbon metropolitan area, receiving effluents 

from agricultural, industrial and urban sources (Gameiro & Brotas, 2010). Tagus estuary presents 

high levels of contamination due to direct discharges of urban and industrial effluents into the 

system (Vasconcelos et al., 2007). Industry (e.g. chemical, petrochemical, metallurgic, 

shipbuilding and cement plants) represents a significant anthropogenic pressure on this area, 

especially taking into account the existing 18000 industries with a corresponding industrial load 

of 75.5 × 106 m3 (Vasconcelos et al., 2007). As a consequence, besides other kid of contaminants, 
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contamination by metals are particularly relevant (Caçador et al., 2012), reaching values 20 times 

higher comparatively with the natural background (Figueres, Martin, Meybeck, & Seyler, 1985). 

 

Albufeira lagoon 

The Albufeira lagoon is located on the western Portuguese coast, about 20 km South of 

Lisbon. The lagoon extends perpendicularly to the coast over 3.6 km, covering an area of 1.3 km2, 

with a maximum depth of 13 m. The lagoon is made up of two basins separated by a narrow and 

shallow channel. Lagoa Grande is the main body, with an average depth of about 10m, although 

it may reach 20 m due to abundant winter rain. In the smaller body, called Lagoa Pequena, the 

average depth is about 2 m (Alday, Cearreta, Freitas, & Andrade, 2013). The lagoon is sheltered 

from the Atlantic Ocean by a narrow littoral barrier with 1.2 Km long and a mixture of mobile 

shallow channels and sandbanks. In front of the lagoon, tides are semi-diurnal and the tidal range 

varies between 0.55 and 3.86 m (Alday, Cearreta, Freitas, & Andrade, 2013). The Albufeira 

lagoon connects with the Atlantic Ocean through an inlet inserted into a 24 km long beach, 

between the mouth of the Tagus estuary and the Espichel Cape. The process of artificial barrier 

breaching is well documented in historical records since the 15th century (Freitas & Andrade, 

1994) and, at present, is done on an annual basis in order to ensure the water quality. The 

occupation of the alluvial plains in the main tributaries for agriculture, the presence of mussel 

aquaculture and the discharge of urban effluents into the lagoon created a permanent need to 

control the water level and quality (Alday, Cearreta, Freitas, & Andrade, 2013). The physical-

chemical characteristics of the water are mainly controlled by the exchanges between the lagoon 

and the sea, and by the amount of freshwater input (Freitas & Andrade, 1994). 

 

Sado estuary 

The Sado estuary is located on the western coast of Portugual, 40 km south of the 

intensive industrialised and populated metropolitan area of Lisbon (Costa, Marques, Freitas, 

Reis, & Oliveira, 2002). This ecosystem covers an area of about 180 km2, corresponding to the 

second largest estuary in Portugal. It has large intertidal areas (78 km2) (Vasconcelos et al., 2007) 

and two channels in the lower estuary, separated by a set of sand banks and 3 main basin in the 

upper part (Marateca, Alcácer Channel and Comporta). Sado River contributes with 80 to 90% of 

the freshwater inflow through Alcácer Channel with average annual pluvial discharge of 10 m3 s-

1. Marateca Stream contributes with approximately 10% of the freshwater input with a flow of 

about 1 m3 s-1. Tides are semi-diurnal, with a tidal range of 1.6 m in spring tides and 0.6 m in 

neap tides (Martins, Leitão, Silva, & Neves, 2001). 

The system presents a relevant ecological importance and also a considerable socio-

economic value due to industry, aquaculture, salt production, fishing and recreational activities 

(Freitas et al., 2011; Rodrigues, Bio, Amat, & Vieira, 2011). Sado estuary supports the 
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industrial zone of the Setubal city located at its northern part, responsible for high 

anthropogenic pressures (Caeiro, Goovaerts, Painho, & Costa, 2003; Martins, Ferreira, & Vale, 

2008). Besides, history of mining activities and pyrite outcrop erosion have contributed to the 

input of metals, namely Cd, Zn, Cu and locally Hg and Pb (Quevauviller, Lavigne, & Cortez, 

1989). 

 

Figure S3. Tagus estuary (38º39'27" N and 9º6'36" W), Albufeira lagoon (38º30'24" N and 9º10'52" 

W) and Sado estuary (38º31'14" N and 9º53'32" W), western coast of Portugal. 

 

Mira estuary 

The Mira estuary is a narrow entrenched estuary located at the southwestern coast of 

Portugal, between Vila Nova de Milfontes at the mouth and Odemira at its upper limit. The 

estuary is approximately 40 km long and 400 m wide near its mouth (Blanton, Ferreira, & 

Andrade, 2000). The mean depths are of about 1.2 m and 8 m upstream and near the river mouth, 

respectively, and the residence time is of fourteen days. This ecosystem comprises an area of 

2.85 km2 of salt marsh, of which 2.5 km2 have been proposed for reclamation for aquaculture. 

Fifty years ago, an agriculture reservoir (Santa Clara) was constructed 50 km upstream of the 

river mouth, influencing the freshwater flow regime (Blanton, Ferreira, & Andrade, 2000). 

Mira estuary is included in a nature protected area (Parque Natural do Sudoeste 

Alentejano e Costa Vicentina) and the level of anthropogenic pressure is reduced and much lower 

than in other Portuguese estuaries (Bettencourt et al., 2004). There are no large urban and 

industrial areas near this system so, it is less exposed to nutrient and chemical pollution. However, 

there are some intensive agriculture units, cattle breeding, aquaculture activities and domestic 

sewage discharge (Castro & Freitas, 2006). The upstream estuarine areas show a slight 

contamination by heavy metals due to previous mineral extraction activities in the river basin 
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Figure S4. Mira estuary, southwestern coast of Portugal (37º43'31" N and 8º46'15" W). 

 

Ria de Alvor 

The Ria de Alvor is a lagoon system located on Lagos Bay, on the south coast of Portugal, 

covering an area of approximately 15 km2. The Ria is separated from Lagos Bay by two barrier 

peninsulas with sand dunes and connects to the Atlantic Ocean by a single inlet which has been 

stabilized by two breakwaters constructed in 1990. The system has two main freshwater inputs, 

the Arão and Odiáxere Rivers, strongly affected by seasonal variation, with torrential flows in 

wet months and dry in summer months (Quintino & Rodrigues, 1989). Outside of the navigation 

channel, which is dredged to maintain navigability to the recreational and fishing port of Alvor, 

the maximum depth of the Ria is about 2 m, depending on the tide. During high tide, around 3 

km2 of the Ria (including intertidal areas) are flooded and, at low tide, the surface area of the 

residual water is approximately of 1 km2, mostly confined to the inner channels and creeks. Given 

these conditions, the water is almost entirely renewed at each tide in the outer part of the Ria, 

resulting in strong tidal currents (Quintino & Rodrigues, 1989). The relatively low freshwater 

input, associated with the tide dominated hydrodynamic regime, result in a salinity range from 30 

to 40.  

 

 

Figure S5. Ria de Alvor, south coast of Portugal (37º7'56" N and 8º37'27" W). 
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Ria Formosa 

The Ria Formosa, located at the south coast of Portugal, is a shallow mesotidal lagoon 

with 55 km long and 6 km wide, and a mean depth of 3 m. It is a system of barrier islands which 

communicates with the Atlantic Ocean by five natural and mobile inlets and two deeper ones, 

maintained through dredging and channel reinforcement (Mudge, Bebianno, East, & Barreira, 

1999). Tides are semi-diurnal with amplitudes ranging from 0.7 m to 3.5 m on neap tides and 

spring tides, respectively, resulting in an exchange of the lagoon water within a few tidal cycles 

of 50%-75% (Bebianno, 1995). The inner regions of the lagoon are less effected by the tides. 

Salinity of the Ria Formosa ranges from 32 to 38 and temperature varies between 16 ⁰C in winter 

and 21 ⁰C in summer (Newton & Mudge, 2003). Five small rivers and fourteen streams flow to 

the lagoon, most of them completely dry out in summer (Dias, Sousa, Bertin, Fortunato, & 

Oliveira, 2009; Dionisio, Rheinheimer, & Borrego, 2000; Newton & Mudge, 2003). 

Ria Formosa consists of 145 km2 of wetland and 4 km2 of salt extraction and mariculture 

ponds, salt marsh, exposed sands and mud banks. This lagoon is a very productive system, with 

high nutrient concentration levels, insolation and good tidal water exchange (Newton & Mudge, 

2005). For many aquatic species it is an important spawning and nursery area, including bivalves, 

due to its sheltered conditions. These circumstances gave rise to the fishing and mariculture 

industries, economically very important to the region. 

 

 

 

 

 

 

 

 

Figure S6. Ria Formosa, south coast of Portugal (37º0'23" N and 7º59'28" W). 
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Appendix B. Supplementary data of section 2.1 

 

SUPPLEMENTARY TABLES 

 

Table S1. Water salinity (S) and linear distances (in km) between the inlet of Ria de Aveiro and sampling 

locations in São Jacinto (SJ), Mira (M), Ilhavo (I) and Espinheiro (E) channels. Please note that a lower 

distance to the inlet may not always mean that the location displays a higher water renewal rate or “more 

marine/less brackish” conditions, as these features are regulated by the geomorphology of the coastal 

lagoon and consequently its dominant currents. 

 

Inlet 
(S 36) 

         

       

2.2 
SJ1 

(S 36) 
       

       

7.6 4.8 
SJ2 

(S 35) 
      

      

2.8 2.1 6.9 
M1 

(S 36) 

      

      

9.1 8.6 13.4 6.4 
M2 

(S 35) 
    

    

7.9 7.2 11.9 4.8 11.5 
I1 

(S 32) 

    

    

11.6 10.2 15.0 8.3 15.0 3.2 
I2 

(S 30) 

   

   

6.3 5.4 10.2 3.3 10.0 3.5 6.6 
E1 

(S 32) 

  

  

8.4 7.8 12.5 5.5 12.1 5.7 8.9 2.4 
E2 

(S 30) 
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Table S2. Similarity values (ANOSIM) between the FA class profiles of the Cerastoderma edule adductor 

muscle from areas within São Jacinto, Mira, Ilhavo and Espinheiro Channels, Ria de Aveiro, Portugal. 

 

Channels R p 

São Jacinto 1 vs São Jacinto 2 0.271 0.114 

Mira 1 vs Mira 2 0.013 0.405 

Ilhavo 1 vs Ilhavo 2 0.081 0.222 

Espinheiro 1 vs Espinheiro 2 0.116 0.190 
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Appendix C. Supplementary data of section 2.2 

 

SUPPLEMENTARY TABLES 

 

Table S3. Multivariate analysis of variance (MANOVA) among groups of fatty acids of the adductor 

muscle of live common cockles Cerastoderma edule from areas within Mira (M1 vs M2), Ilhavo (I1 vs I2) 

and Espinheiro (E1 vs E2) Channels from Ria de Aveiro (RAv), Óbidos lagoon (OL1 vs OL2), Tagus 

estuary (TE1 vs TE2), Albufeira lagoon (AL1 vs AL2), Sado estuary (SE1 vs SE2) and Ria Formosa (RF1 

vs RF2), Portugal. 

 

Area df pillai approx. F p. value 

M1 vs M2 1 0.991 14.1 0.203 

I1 vs I2 1 0.684 0.62 0.735 

E1 vs E2 1 0.894 2.42 0.323 

OL1 vs LO2 1 0.926 6.27 0.080 

TE1 vs TE2 1 0.926 6.30 0.079 

AL1 vs AL2 1 0.991 14.10 0.203 

SE1 vs SE2 1 0.944 8.44 0.540 

RF1 vs RF2 1 0.659 0.97 0.558 
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Table S4. Fatty acid profiles (data presented as % of relative abundances) of the adductor muscle of live common cockles Cerastoderma edule (values are means of 10 replicates 

± SD) from Ria de Aveiro (RAv), Óbidos lagoon (OL), Tagus estuary (TE), Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), Ria de Alvor (RAl) and Ria Formosa 

(RF), Portugal. SFA – saturated fatty acids; MUFA – monounsaturated fatty acids; PUFA – polyunsaturated fatty acids; and HUFA – highlyunsaturated fatty acids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fatty Acid Ecosystem 

(%) RAv OL TE AL SE ME RAl RF 

14:0 1.33±0.44 1.21±0.33 1.22±0.24 1.56±0.63 1.59±0.57 1.57±0.16 1.72±0.36 1.81±0.30 

15:0 0.41±0.10 0.54±0.19 0.54±0.14 0.75±0.25 0.39±0.07 0.52±0.06 0.50±0.07 0.49±0.06 

16:0 12.03±1.61 13.69±1.33 14.22±1.73 11.02±2.75 11.02±1.97 12.28±1.10 11.08±0.81 12.62±1.48 

17:0 1.61±0.19 1.05±0.28 1.69±0.27 2.06±0.53 2.57±0.94 2.00±0.22 1.74±0.29 1.63±0.25 

18:0 12.33±1.23 12.21±0.73 12.92±2.26 10.69±2.54 12.49±1.60 12.86±1.36 11.86±1.05 10.44±1.05 

SFA 27.70±3.56 28.71±2.88 30.59±4.64 26.08±6.70 28.07±5.15 29.22±2.91 26.89±2.56 26.99±3.16 

16:1n9 2.02±0.23 1.92±0.36 2.26±0.40 2.23±0.60 1.90±0.58 2.65±0.82 1.99±0.27 2.40±0.55 

18:1n9 1.44±0.27 5.82±3.74 2.75±1.81 6.45±6.25 3.18±3.19 2.32±1.24 1.72±0.18 8.01±5.72 

18:1n7 2.88±0.42 3.12±0.56 3.18±0.56 2.26±0.42 3.46±0.56 2.96±0.44 3.01±0.49 3.12±0.40 

20:1n9/n11 3.41±0.31 3.89±1.24 3.93±0.92 4.84±1.01 3.27±0.34 3.40±0.67 3.43±0.19 3.69±0.73 

20:1n7 2.72±0.58 3.20±0.49 2.87±0.40 2.71±0.32 2.99±0.39 2.53±0.15 2.97±0.42 2.04±0.32 

MUFA 12.47±1.82 17.94±6.39 15.00±4.08 18.49±8.61 14.80±5.05 13.86±3.31 13.11±1.55 19.26±7.72 

18:2n6 0.84±0.13 3.26±2.56 1.31±0.67 2.73±2.22 1.77±2.37 1.43±0.60 1.14±0.16 3.45±2.09 

20:2n9 1.06±0.20 1.41±0.26 1.32±0.21 1.02±0.21 0.88±0.19 1.18±0.19 1.17±0.16 1.34±0.20 

22:2n9 3.91±0.76 2.90±0.54 3.60±1.02 4.06±1.16 3.52±0.68 3.21±0.56 3.77±0.68 3.28±0.77 

22:2n6 2.06±0.43 2.10±0.42 2.67±1.21 2.97±0.88 3.29±1.02 2.28±0.59 3.02±1.17 1.83±0.47 

22:3n6 3.73±0.58 3.73±0.55 3.99±0.93 4.14±0.83 3.48±0.39 3.72±0.37 4.26±0.60 3.77±0.74 

PUFA 11.59±2.09 13.39±4.34 12.89±4.05 14.92±5.31 12.94±4.65 11.83±2.30 13.36±2.77 13.66±4.26 

20:4n6 3.52±0.58 2.94±0.50 4.23±1.29 6.74±1.13 5.23±0.97 5.67±0.41 4.30±0.45 3.98±0.76 

20:5n3 14.91±0.69 13.33±2.51 13.36±1.30 10.05±1.24 15.34±1.83 13.84±0.76 14.28±1.03 13.34±2.05 

22:4n6 1.45±0.53 1.01±0.30 1.96±0.50 2.49±0.68 2.73±0.49 2.54±0.40 2.21±0.46 1.74±0.35 

22:4n3 1.08±0.15 0.80±0.13 1.71±0.26 1.61±0.38 1.31±0.23 1.33±0.09 1.05±0.07 1.07±0.15 

22:5n3 3.64±0.92 3.00±0.50 4.20±0.52 3.28±0.52 4.26±0.81 3.18±0.27 4.40±0.51 3.46±0.53 

22:6n3 22.68±2.52 17.28±3.31 14.84±2.56 14.19±2.80 14.65±2.51 17.07±2.36 19.39±1.23 13.49±1.68 

HUFA 47.27±5.39 38.36±7.06 40.28±6.43 38.35±6.75 43.53±6.83 43.64±4.29 45.63±3.75 37.09±5.53 

n6/ n3 27.52±4.65 39.84±14.53 42.20±12.11 67.00±15.18 47.34±12.47 44.55±6.08 38.41±7.89 47.78±8.86 
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SUPPLEMENTARY FIGURES 

 

Figure S1a. Significant differences (ANOVA; Tukey plot) among fatty acids 22:4n-3, 22:4n-6, 22:5n-3, 

22:6n-3, PUFA – polysaturated fatty acids and n-3/ n-6 ratio present in the adductor muscle of live common 

cockles Cerastoderma edule from Ria de Aveiro (RAv), Óbidos lagoon (OL), Tagus estuary (TE), 

Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), Ria de Alvor (RAl) and Ria Formosa (RF). 

Significant differences (p < 0.05) among shelf-life times are highlighted with black lines. 
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Figure S1b. Significant differences (ANOVA; Tukey plot) among fatty acids 18:2n-6, 20:2n-9, 22:2n-9, 

22:2n-6, 20:4n-6 and 20:5n-3 present in the adductor muscle of live common cockles Cerastoderma edule 

from Ria de Aveiro (RAv), Óbidos lagoon (OL), Tagus estuary (TE), Albufeira lagoon (AL), Sado estuary 

(SE), Mira estuary (ME), Ria de Alvor (RAl) and Ria Formosa (RF). Significant differences (p < 0.05) 

among shelf-life times are highlighted with black lines. 
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Figure S1c. Significant differences (ANOVA; Tukey plot) among fatty acids 14:0, 15:0, 16:0, 17:0, 18:0 

and sum SFA – saturated fatty acids present in the adductor muscle of  live common cockles Cerastoderma 

edule from Ria de Aveiro (RAv), Óbidos lagoon (OL), Tagus estuary (TE), Albufeira lagoon (AL), Sado 

estuary (SE), Mira estuary (ME), Ria de Alvor (RAl) and Ria Formosa (RF). Significant differences (p < 

0.05) among shelf-life times are highlighted with black lines. 
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Figure S1d. Significant differences (ANOVA; Tukey plot) among fatty acids 16:1n-9, 18:1n-9, 18:1n-7, 

20:1n-9/11, 20:1n-7 and sum MUFA – unsaturated fatty acids present in the adductor muscle of live 

common cockles Cerastoderma edule from Ria de Aveiro (RAv), Óbidos lagoon (OL), Tagus estuary (TE), 

Albufeira lagoon (AL), Sado estuary (SE), Mira estuary (ME), Ria de Alvor (RAl) and Ria Formosa (RF). 

Significant differences (p < 0.05) among shelf-life times are highlighted with black lines. 

 

 

 



 

133 

   

Appendix D. Supplementary data of section 2.3 

 

SUPPLEMENTARY TABLES 

 

Table S5. Fatty acid profiles (data presented as % of relative abundances) of the adductor muscle of live common cockles Cerastoderma edule during their shelf-life at 4 ºC. 

Values are means of 5 replicates ± standard deviation. SFA – saturated fatty acids; MUFA – monounsaturated fatty acids; PUFA –polyunsaturated fatty acids and HUFA – 

highlyunsaturated fatty acids. 

 

 

 

 

 

 

 

 

 

 

 

 

Fatty Acid Shelf-life time (days) 

(%) T0 T1 T2 T3 T4 T5 T6 T7 

14:0 2.19±0.26 1.87±0.19 1.76±0.42 1.70±0.50 1.55±0.25 1.71±0.39 1.62±0.36 1.68±0.13 

15:0 0.70±0.10 0.66±0.12 0.57±0.13 0.49±0.05 0.51±0.14 0.45±0.04 0.44±0.04 0.46±0.14 

16:0 13.59±2.22 13.13±1.76 11.06±0.62 12.65±0.30 9.26±2.81 9.67±1.41 8.97±1.04 8.47±0.72 

17:0 1.29±0.18 1.58±0.18 1.65±0.14 1.60±0.09 8.39±7.98 10.84±4.02 8.69±1.54 13.27±2.82 

18:0 14.16±3.96 12.81±1.72 11.54±0.86 11.62±0.53 10.41±2.34 9.32±5.63 10.11±0.86 7.90±3.75 

SFA 31.94±6.72 30.05±3.96 26.59±2.17 28.07±1.46 30.12±13.52 32.00±11.48 29.83±3.85 31.78±7.56 

16:1n-9 2.14±0.50 2.18±0.32 1.85±0.16 1.96±0.24 1.62±0.30 1.65±0.49 1.79±0.35 1.67±0.15 

18:1n-9 3.28±1.22 2.43±0.70 2.31±0.53 1.84±0.13 2.67±1.98 1.60±0.67 1.89±0.90 1.89±0.73 

18:1n-7 2.57±0.59 2.84±0.33 2.58±0.28 2.81±0.42 2.21±0.54 1.70±0.59 2.45±0.55 2.33±0.78 

20:1n-9/11 4.16±0.33 4.05±0.57 4.36±0.13 3.58±0.24 3.38±0.77 2.70±0.55 3.63±0.52 3.18±0.41 

20:1n-7 2.63±0.31 2.69±0.32 2.57±0.19 2.36±0.24 2.05±0.55 1.78±0.72 2.17±0.25 2.20±0.46 

MUFA 14.77±2.94 14.18±2.24 13.66±1.29 12.54±1.27 11.93±4.15 9.43±3.01 11.92±2.56 11.27±2.53 
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Table S5 (cont). Fatty acid profiles (data presented as % of relative abundances) of the adductor muscle of live common cockles Cerastoderma edule during their shelf-life at 

4 ºC. Values are means of 5 replicates ± standard deviation. SFA – saturated fatty acids; MUFA – monounsaturated fatty acids; PUFA –polyunsaturated fatty acids and HUFA 

– highlyunsaturated fatty acids. 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fatty Acid Shelf-life time (days) 

(%) T0 T1 T2 T3 T4 T5 T6 T7 

18:2n-6 1.45±0.39 1.25±0.19 1.33±0.10 1.25±0.07 1.65±1.56 1.20±0.71 1.19±0.31 1.25±1.05 

20:2n-9 1.58±0.21 1.53±0.17 1.47±0.25 1.60±0.31 1.32±0.33 1.29±0.50 1.44±0.31 1.50±0.77 

22:2n-9 4.11±0.50 3.95±0.90 4.94±0.58 3.76±0.33 4.31±1.09 3.65±0.77 4.12±0.80 3.58±0.97 

22:2n-6 2.37±0.28 2.44±0.70 2.96±0.41 2.31±0.27 2.58±0.70 2.05±0.41 2.53±0.50 1.82±0.58 

22:3n-6 3.76±1.02 3.45±0.97 4.47±0.56 3.73±0.51 4.67±1.15 4.40±1.40 4.80±0.58 4.11±0.69 

PUFA 13.28±2.40 12.63±2.94 15.17±1.90 12.66±1.48 14.53±4.83 12.58±3.79 14.08±2.50 12.26±4.07 

20:4n-6 3.81±0.61 3.47±0.44 3.82±0.45 3.19±0.17 3.53±0.87 5.01±4.60 3.32±0.51 5.00±4.64 

20:5n-3 12.06±1.10 12.94±1.12 12.52±1.35 13.45±0.39 11.72±2.35 9.09±4.35 12.57±1.31 9.37±3.44 

22:4n-6 1.41±0.24 1.34±0.24 1.54±0.24 1.35±0.33 1.32±0.37 1.24±0.40 1.18±0.15 1.12±0.16 

22:4n-3 1.19±0.20 1.15±0.11 1.30±0.09 1.16±0.07 1.16±0.27 1.00±0.15 1.11±0.07 0.97±0.05 

22:5n-3 3.11±0.70 3.33±0.29 3.63±0.39 3.52±0.19 3.10±0.69 3.47±0.62 3.00±0.17 3.32±0.26 

22:6n-3 16.99±3.60 19.48±2.45 20.66±2.48 22.64±0.34 21.49±3.24 23.89±2.76 22.23±1.15 22.37±1.86 

HUFA 38.57±6.45 41.72±4.65 43.48±5.01 45.31±1.50 42.32±7.80 43.69±12.87 43.42±3.36 42.15±10.41 
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Appendix E. Supplementary data of section 3.2 

 

SUPPLEMENTARY TABLES 

 

Table S6. Detection limits (DL), percentages of samples above DL and precision estimates (% relative 

standard deviation, RSD) for the Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) analysis of 

Cerastoderma edule shells. DL are based on blank analyses and are expressed in mmol ratios relative to 

Ca. External precision estimates are based on % RSD standards certified reference materials (MRC’s) for 

sediments. 

 

Element DL (mmol-1 Ca) % above DL % RSD 

Mg 0.619 100 3 

Sr 1.885 100 3 

Ba 0.002 100 3 

Mn 0.009 100 2 

 

 

Table S7. Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) operating conditions 

Data acquisition parameters 

Scanning  Peak jump 

Dwell time (ms) 10 

Reading per replicate 3 

Points per spectral peak 1 

Sweeps 60 

Setup timings 

Uptake 30 s 

Washout 60 s 

Requirements of argon gas 

Purity ≥ 99,996% 

Maximum quantity of water <5 mg L-1 

Flow 14 L min-1 

Isotopes measured 24Mg, 43Ca, 88Sr, 37Ba, 
55Mn  

Internal standard 115In 
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Table S8. Multivariate analysis of variance (MANOVA) of the trace elements fingerprinting (TEF) of the 

Cerastoderma edule shells between areas within Óbidos lagoon (OL), Tagus estuary (TE), Albufeira lagoon 

(AL) and Sado estuary (SE). 

 

 

 

 

 

 

 

 

 

 

 

 

Area df pillai approx. F p. value 

OL1 vs OL2 1 0.910 38.10 1.08e-07 

TE1 vs TE2 1 0.747 11.10 2.19e-04 

AL1 vs AL2 1 0.444 3.00 5.25e-02 

SE1 vs SE2 1 0.459 2.97 5.71e-02 

RF1 vs RF2 1 0.831 18.50 1.15e-05 


