
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

André Filipe
Domingues Malta

Sistema open-source de registos clínicos de saúde
em doenças tropicais

Open-source electronic health record system for
neglected diseases

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

André Filipe
Domingues Malta

Sistema open-source de registos clínicos de saúde
em doenças tropicais

Open-source electronic health record system for
neglected diseases

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor José
Luís Guimarães Oliveira, Professor associado do Departamento de Eletró-
nica, Telecomunicações e Informática da Universidade de Aveiro.

Dedico este trabalho aos meus pais.

o júri / the jury

presidente / president Prof. Doutor Joaquim Manuel Henriques de Sousa Pinto
Prof. Auxiliar do Dep. Eletrónica, Telecomunicações e Informática da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Joel Perdiz Arrais
Prof. Auxiliar Convidado do Dep. de Engenharia Informática da Fac. de Ciências e Tecnologia da

Universidade de Coimbra

Prof. Doutor José Luís Guimarães Oliveira
Prof. Associado do Dep. Eletrónica, Telecomunicações e Informática da Universidade de Aveiro

agradecimentos /
acknowledgements

Agradeço aos meus pais por me terem sempre apoiado, são eles a quem eu
devo ser quem sou.
Ao meu orientador José Luis Guimarães Oliveira, pela sua direção, sabedoria
e apoio.
Agradeço aos meus colegas e amigos que me foram acompanhando durante
estes anos, bem como há paciência de todos nesta última etapa do meu
percurso académico.

Palavras Chave Registos Clinicos de Saude, Open-Source Software.

Resumo Países sub-desenvolvidos são os principalmente afectados por um conjunto
de doenças tropicais onde factores ambientais desempenham uma contribui-
ção maior na sua origem. No geral estes países não dispõem de métodos
para controlar estas doenças eficazmente, em parte devido à fraca implemen-
tação de Tecnologias da Informação em Saúde. Atualmente, com o avanço
em standards e software na área da saúde, existem diversos sistemas open-
source de registos clínicos que podem auxiliar centros de cuidados médicos
na captura de informação útil à melhoria dos serviços prestados e há investi-
gação de doenças negligenciadas. Nesta dissertação efectuámos uma revi-
são sistemática de tais soluções de maneira a escolher um candidato apro-
priado aos requisitos de uma cama de teste de um país sub-desenvolvido -
Gondar, Etiópia. A implementação foi conduzida com ênfase à adaptação do
fluxo de trabalho baseado em papel da instituição para o sistema proposto,
assegurando que toda a informação gerada pelo centro pode ser capturada
de forma digital. Como resultado final, um protótipo foi criado e algumas con-
clusões obtidas de todo este processo.

Keywords Electronic Health Records, Open-Source Software.

Abstract Low-resource countries are primarily the ones afected by tropical diseases
where environmental factors play a major role. Means for controlling these
diseases are often lacking in these countries in part due to their poor support
of Health Information Technology. Nowadays, with the advances of standards
and software in the health-field, several open-source electronic health record
systems (EHR) exist which can assist facilities to capture of information, aiding
to research and better health-care of neglected diseases in these countries.
In this work, we performed a systematic review of several of such solutions
to select the most appropriate candidate to satisfy the requirements of a test-
bed in a low-resource country - Gondar in Ethiopia. The implementation was
conducted with a strong focus on adapting the existing paper-based workflow
of the institution to the proposed system, to assure that all the information
generated in this center can be captured in a digital way. As a final result, a
working prototype was deployed and some conclusions are obtained from all
this process.

Contents

Contents . i

List of Figures . iii

List of Tables . v

Acronyms . vii

1 Introduction . 3
1.1 Motivations . 4
1.2 Objectives . 5
1.3 Thesis Outline . 5

2 Background . 7
2.1 Electronic health record . 7
2.2 Some challenges in switching . 8
2.3 Free and open-source software . 9
2.4 An open-source EHR system . 10
2.5 A software model . 10
2.6 Server and client software . 11
2.7 Persistence support . 12
2.8 Medical standards support . 13
2.9 Operating-system support . 13

3 Related work . 15
3.1 Open-source EHR software . 15
3.2 GNU Health . 16
3.3 OpenEMR . 20
3.4 FreeMED . 25
3.5 OpenMRS . 28
3.6 Bahmni . 33
3.7 Software comparison . 36

4 System Requirements . 39
4.1 Scope . 39
4.2 Functional requirements . 40

i

5 System Architecture and Implementation 45
5.1 Software Architecture . 46
5.2 Technologies and communication . 48
5.3 Data model . 49
5.4 Bahmni EHR-OpenELIS interoperability . 51
5.5 Network and security . 54
5.6 Off-line support . 58
5.7 Installation . 58
5.8 Configuration and customization . 62

5.8.1 Patients attributes and registration form 63
5.8.2 Address system . 67
5.8.3 Appointments . 70
5.8.4 Providing custom forms . 71
5.8.5 Enabling off-line features . 72
5.8.6 Security configuration . 73

6 Results . 77
6.1 Users and roles . 77
6.2 Registration extension . 79
6.3 Patient management extension . 81
6.4 Clinical extension . 85
6.5 Validation . 88

7 Conclusions . 91
7.1 Future Work . 92

References . 93

Appendix . 99

ii

List of Figures

3.1 User-interface of GNU-Health’s client application 19
3.2 User-interface of OpenEMR’s platform . 24
3.3 User-interface of FreeMED platform . 27
3.4 OpenMRS’s legacy UI user-interface . 31
3.5 OpenMRS’s modern UI user-interface . 31

4.1 Use case diagram . 41

5.1 Bahmni EHR architecture overview . 47
5.2 Supporting technologies and intercommunication. 49
5.3 Overview of how feed producers and clients work 52
5.4 Representation of a feed and feed linkage . 52
5.5 Relationship between user, roles and privileges in Bahmni EHR 55
5.6 List of access roles, some of which are custom. 55
5.7 VPN entry point with firewall, and server firewall 56
5.8 SELinux decision process logic . 57
5.9 Bahmni components used on the solution implementation. 60
5.10 Adding a person custom attribute . 65
5.11 Custom OpenMRS concept "Occupation" . 66
5.12 Person attribute "Occupation", mapped to a custom OpenMRS concept 66
5.13 Customized person attributes . 67
5.14 The common address hierarchy in Ethiopia . 67
5.15 Custom XML address template for Ethiopia. 68
5.16 Hierarchy and mapping of an address field . 68
5.17 Expanded mapped addressing system . 69
5.18 Address hierarchy file created for Ethiopia addressing system 70
5.19 Alternative to the above method by using a Liquibase change set 71
5.20 Configuration for integrating the appointments feature with the Bahmni EHR

user-interface . 71
5.21 SELinux configuration file ’conf’ in /etc/selinux/ 74
5.22 SELinux configuration file ’jail.local’ in /etc/fail2ban/ 74

6.1 Gondar EHR main page, presenting all the available feature tiles. 78
6.2 List of users of Bahmni EHR and their associated roles. Includes the created users

for doctor, nurse and registrant members. 78
6.3 Registration clerk available features in Gondar EHR 79
6.4 Customized patient registration page . 80

iii

6.5 Patient printable card, english version . 81
6.6 Search page which is displayed before registration. 81
6.7 View and filter active patients in the clinic . 82
6.8 Admit, Discharge, Transfer . 82
6.9 Patient movement control, with additional notes support. 83
6.10 In-patient management area, showing a patient assigned to a bed in the "General

Ward". 83
6.11 Appointment scheduling user-interface (modern UI). 84
6.12 Patient dashboard . 85
6.13 Gondar EHR available tests in laboratory orders 86
6.14 Entering results for multiple ordered tests in OpenELIS. 86
6.15 Laboratory workflow between Gondar EHR and OpenELIS and different users on

both platforms . 87

1 Bahmni EHR "openmrs" database schema - all tables and their attributes 106
2 OpenELIS "clinlims" database schema - all tables and their attributes 107

iv

List of Tables

3.1 Matrix with several aspects of the evaluated EHR software 37

5.1 Bahmni EHR-OpenELIS event fields . 52

1 Login to system . 99
2 Search a patient . 99
3 Register a patient . 100
4 Schedule patient appointment . 100
5 Examine a patient . 100
6 Manage a patient . 101
7 Place an order . 101
8 Receive order results . 101
9 Make a diagnosis . 102
10 Discharge a patient . 102
11 Make a report . 102
12 Receive an order . 103
13 Enter order results . 103
14 Validate order results . 103
15 Send order results . 104
16 Add a staff member . 104
17 Edit a staff member . 104
18 Delete a staff member . 105

v

Acronyms

2FA Two factor authentication

ACL Access Control Lists

Ajax Asynchronous JavaScript and XML

API Application Programming Interface

AtomPub Atom Publishing Protocol

CPT Current Procedural Terminology

CSV Comma-separated values

DBMS Database Management Systems

DICOM Digital Imaging and
Communications in Medicine

DSV Delimiter-separated values

DWR Direct Web Remoting

EDI Electronic Data Interchange

EHR Electronic Health Record

ERP Enterprise Resource Planning

FHIR Fast Healthcare Interoperability
Resources

FLOSS Free/libre and open-source software

FOSS Free and open-source software

FSF Free Software Foundation

GPL GNU General Public License

GSP Groovy Server Pages

GUI Graphical User Interface

HCPCS Healthcare Common Procedure
Coding System

HIPAA Health Information Portability and
Accountability Act

HIS Health Information System

HIS Health Information System

HL-7 Health Level-7
HTML HyperText Markup Language
HTTPS Hyper Text Transfer Protocol Secure
HTTP Hypertext Transfer Protocol
ICD International Classification of

Diseases
ICT Information and Communications

Technology
ID Identifier
IHE Integrating the Healthcare

Enterprise
IRC Internet Relay Chat
JavaEE Java Platform, Enterprise Edition
JRE JAVA Runtime-Environment
JSON JavaScript Object Notation
JSP JavaServer Pages
JS JavaScript
LDAP Lightweight Directory Access

Protocol
LIS Laboratory Information System
LRTC Leishmaniasis Research and

Treatment Center
MPL Mozilla Public License
MRI Magnetic Resonance Imaging
MVC Model-view-controller
NGO Non-governmental organization
NPO Non-profit organization
ODF OpenDocument Format
ONC Office of the National Coordinator

for Health Information Technology

vii

ORDBMS Object-Relational Database
Management System

OSI Open Source Initiative

OTP One-time-password

PACS Picture Archiving and
Communication SSystem

PDF Portable Document Format

PGP Pretty Good Privacy

PHP PHP Hypertext Preprocessor

PMS Medical Practice Management
Software

RBAC Role-Based Access Control

RDBMS Relational Database Management
Systems

REST Representational State Transfer

RPM RPM Package Manager

SMS Short Message Service

SNOMED CT Systematized Nomenclature of
Medicine - Clinical Terms

SQL Structured Query Language

SSH Secure Shell

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UID Unique identifier

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

VPN Virtual Private Network

WAN Wide Area Network

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

viii

1

1

chapter 1
Introduction

The use of Health Information it often used at tertiary levels in the health-care field
of low-resource countries. Nowadays, modern information systems are an important
part in many fields but are generally unavailable in these countries as consequence of
many adversary conditions. Poor infrastructure in health facilities and low education
levels in these leads to the poor development and under-use of Health Information
Technology.

Environmental factors are one of the main causes for the prevalence of several
tropical diseases on these countries. Low-income and poor quality of living conditions
plays a major role in treatment and spread of the disease, which affect specially the
poorest in society.

Health facilities in these countries deal with diseases hard to control and the means
to provide better understanding of these are often out of reach. These usually lack the
means to efficiently store and share valuable information about the disease treatment
or other important aspects of patients such as socio-economic and lifestyle data. As
information is key to this process, stronger and modern health information systems
need to be deployed in order to break this perpetuating cycle.

There is a need to build information out of many data produced in health-care. The
use of paper-based work-flows hinders the management, occupies space and its prone to
degeneration with time or subject to be lost in problematic events like floods or fires.
Time is lost for staff during the information retrieval process, so storing and managing
information in a digital manner is important for aiding the work-flow for health-care
center staff for providing better health-care, and for better sharing of information with
aiding organizations and researchers.

3

Health information systems store information in a system that uses electronic health
records. Nowadays there is a great number of feature-rich electronic health records
software developed, including open-source works. Characteristics like historical views,
management of medications, appointment scheduling, integration with billing systems
or laboratory can also be important to provide an efficient work-flow and better services
to patients.

Today, there are several open-source electronic health record (EHR) software that
provide a great number of features such as OpenEMR [1] or OpenMRS [2] which are
used in health-care applications from small clinics to district hospitals. Understanding
the challenges of low-resource settings provides helpful knowledge on what is needed
for implementing such solutions. A number of these open-source works are designed
from the ground with low-resource settings in mind, besides, their open-source nature
is a beneficial aspect that enables adapting them to accommodate even more particular
settings.

1.1 motivations
This work contributes to the objectives of an international project between the

Institute of Tropical Medicine in Antwerp, Belgium, the BMD Software/University of
Aveiro in Portugal and the University of Gondar in Ethiopia. One of the project’s goals
is to develop Information and Communications Technology (ICT) solutions to streamline
the diagnosis and treatment of cutaneous leishmaniasis in under-served regions, with
Gondar’s LRTC serving a test bed. The project is part of the Euroleish-Net programme
of Leishmaniasis control.

The Leishmaniasis Research and Treatment Center (LRTC) was established in 2004
and provides medical care for patients infected by leishmaniasis parasite, carries clinical
trials and has its own laboratory and a bed ward for accommodating patients. The
LRTC works under a low-resource environment where health-records and work-flow are
paper-based and the supporting infrastructure is very basic. Maintenance, organization,
efficient retrieval and integrity of the records is dependent on human-factors and involves
itself a lot of care. Modernizing its health-records system and work-flow is not only
necessary for the benefit of the health-care services provided, but also to the work of
other organizations such as Drugs for Neglected Diseases initiative, which rely on this
information for providing research on the aforementioned diseases. In return this can
generate new opportunities for providing better health-care and disease control.

The main motivation of this work is to contribute to the advancement of the current
health-record system and work-flow in place in similar health-centers, by providing a
centralized health record database to link patient’s data collection, clinical images and

4

lab test results for diagnosis and treatment monitoring.

1.2 objectives
The focus of this dissertation is centered around the implementation of a solution

for use in aforementioned scenarios using only open-source technologies. The scope of
this dissertation does not include all the possible applications of the area, but focus
mainly on a robust EHR implementation. The electronic health record be considered
the most important part of the system since it gives support for other applications to
be laid on its foundations.

The objectives are, on a first phase, to understand how a health-record is defined
and how the model is used in EHR. After, to comprehend how EHR can be built today
using open-source technologies. On a second phase, to identify current open-source
software which implement EHRs and determine if one can be used for the main focus of
the dissertation. On a final phase, to implement the necessary aspects of the software
to satisfy the requirements gathered from our low-resource setting, and to validate the
system.

1.3 thesis outline
This document is organized in 7 chapters. With chapter 1 containing the introduction

and this outline, the remaining chapters are:

• Chapter 2 gives a general overview of health records and depicts some supporting
technologies and related standards for handling, storing or exchanging electronic
health records.

• Chapter 3 presents an evaluation and comparison of several open-source software
for EHRs and recommends one appropriate candidate for use in low-resource
settings.

• Chapter 4 shows the system requirements for an electronic health records solution
gathered from traditional paper-based workflows and use-cases of a health-care
center in a low-resource country.

• Chapter 5 presents the architecture and implementation of the solution, and
includes installation and configurations made to customize it according to the
system requirements described in the previous chapter.

• Chapter 6 presents the results of the deployed demo and validation.

5

• Chapter 7 shows some conclusions obtained from the work done in this thesis,
and future work is proposed.

6

chapter 2
Background

In this chapter we describe what is a health data and how meaning is obtained from
it, which includes how it is categorized and how relations to a subject are established.
We describe former methods used for collecting, storing and handling health data and
contrast with the electronic health record, highlighting some challenges which hinder
transition to modernized methods. From there, we give an overview of how an EHR
software can be build using only available open-source technologies.

2.1 electronic health record
Data is a frequently used word with different connotations. It can be described as

source data, data which was not yet processed for meaningful use. When a meaningful
interpretation can be taken from data, it becomes information. Categorizing a source
data is one example of representing information.

In health care systems, data related to patients can be categorized as follows:
information which makes one person differ from the rest, for example his name, address,
date of birth and so on comes under the category of demographics; information obtained
from a patient’s visit to a health-care provider or regarding admittance of the patient in
the hospital is recorded by heath-care professionals for the analysis of ones health comes
under the clinical category; information regarding the bill payer, like his insurance
company details, telephone number, comes under the category of the financial data.
When we specify data under one of these categories, we are implicitly relating it to
some subject. These examples portray data that is related to different subject types:

7

a person, a patient or a bill payer. Categorizing the data is not the only process for
building information from it, establishing relations to subjects and between subjects
also builds information. The design of of how each piece of data is organized and related
to one another is often regarded as a data model.

Health record is the collection of all the data elements related to a patient in a
health system. A health record can be a collection of the patient’s life long medical
history that are maintained by a given health care provider. For simplicity, health
records are often referred as the patient’s information regarding a single visit to the
health care facility or the collective experience.

In a health-record, a relation between patient and all of his data needs to be
established. This is often represented by a unique identifier attributed to the patient,
and associated directly or indirectly to all his related information. On a health facility
it is called a patient index, which is uniquely taken from a master patient index and
associated with the patient typically the first time he visits the health facility. Other
indexes are often attributed to a patient in other services of a health-facility. For
example, billing services identify a patient with an account number. Both these indexes
are associated together through the master patient index, hence linking both subjects
as one.

Identifying a patient uniquely in the system and linking this identity to the account
number and hence linking the account number to the clinical or demographical data is
the foundation of an health-record. Representing this model in an information system
supported by computer technology leads to the creation of an EHR system [3].

2.2 some challenges in switching
Computer technology and literacy
As we have advancing to the new era of technology there are still people out there

that aren’t computer literate or want to stick to the same ways of doing things which
they learned while growing up. Sometimes it is the feeling of being uncomfortable that
drags them away from using the electronic means while in other cases it is the lack
of knowledge that hinders this process. In a health-facility it is more likely to have
staff for nursing than other kind of staff that is computer literate. In such situation
they may be unable to input any form of information into the system as they don’t
know how to communicate with the machine itself. To solve this issues there can be an
arrangement of free computer classes and software formation given to the people who
are already working in the facilities.

8

Funding and cost of change
Setting up an electronic system for storing data in big facilities comes with

the burden of the cost of setting it up. Lack of funds for the health care is one
of the major issues these facilities are dealing with. Health administrations and
governments frequently consider if health-centers should invest their own money into
such a setup as funding availability is low. The initial steps of setting up an EHR
system are very important in the aspect of finance and in the aspect of upcoming
time. As the data grows and the organizations change, the EHR system should
handle these changes seamlessly and continue to provide desired results. Therefore
the administrators who are in charge of planning the implementation of such system
should take into the consideration requirement of the health organization and also
their current clinical practice guidelines. In addition to this the administrator should
calculate the current system cost plus the cost to change the system in the future to
accommodate the changes and should determine the long term value of the EHR system.

Software adaptability
If a health-care institution has the means and reasons the change, functional features

of the EHR system are not the only important characteristics for selection. An evalua-
tion of different EHR systems should be done in order to identify if they are appropriate
to replace whatever system the institution has currently in use and understanding which
issues can appear from such transitions. The potential adaptability of such a system is
an important aspect for knowing if these issues can be reduced. EHR systems are config-
urable up to some extent, but often a serious adaptation is needed for accommodating
it to a specific setting. Software licensing may pose a problem to this as this control
is generally in the hands of the software’s author and not on the hands of the licensee [4].

Comprehending this enables the possibility to draw a line between proprietary
software and free-software.

2.3 free and open-source software
While a universally agreed definition of free/libre and open-source software (FLOSS)

software does not exist, it is commonly defined as software which is under a compatible
license for this purpose, a FLOSS license. The free part refers to the licensing, which
in this case has no legal restrictions enforcing commercial or proprietary aspects on
the software, while the open part refers to the source-code. Software licensed in this
way is expected to be freely obtainable and the source-code available publicly. Various
groups like the Free Software Foundation (FSF) and Open Source Initiative (OSI),

9

which support FLOSS software, maintain lists of approved licenses [5].
For implementing a EHR system, free/libre and open-source software licensing is

can be desirable for its permissive licenses and availability of code. Proprietary and
FOSS licensed EHR have their differences and depending on the usage scenarios they
can be more or less appropriate, but on the latter case, one can, if necessary, implement
required features or adapt the software according to his requirements himself, without
the need to deal with commercial license agreements that often do not provide or allow
modifications to its source code. Being able to understand what the software is doing
by looking at the source code is also an important factor as EHR deals with sensitive
information. In low-resource countries FLOSS can be more appealing than proprietary
software by looking at cost of software licensing, providing these funds to be available
for use on other things.

2.4 an open-source ehr system
With EHR described as such, an EHR system can be built. In these following

sections, we try to find some software components and models which can support such
system for low-resource settings, with examples of free and open-source technologies
that can be used for its implementation. OpenEHR 1 provides open source specifications
and reference implementations of future proof EHR systems. Despite this, OpenEHR
proposes very advanced software models for EHR which branch out of the complexity
and scope of this thesis, so a simpler model is presented.

2.5 a software model
An EHR system is typically used at the same time by health-care professionals

from different fields of activity. These sometimes need to access EHR platforms while
away from their work-place, where typically they would not have access to it. Also,
in low-resource settings, the available computer hardware is often outdated and not
capable of running a EHR system. The architecture of the software should be designed
with these aspects considered. One software model which is appropriate for this scenario,
is the client-server model.

The client-server model is a distributed application structure where there is a division
between a server, that provides the services or resources, and the clients that access
these.

1http://www.openehr.org

10

http://www.openehr.org

Typically servers await for client to communicate their requests through a protocol
agreed upon, and process or provide accordingly. A server requires a program that
listens for the communications, implements the protocol and handles the requests,
and the client requires a program that implements the same protocol and initiate the
requests Typically, most of the logic and resources reside on the server side, so that
the client can be very simple and generic, a so-called "thin-client", thus, enabling the
user to request only what it needs when it is needed. It is advisable to have a EHR
system using this architecture because it enables isolation of server functionality and
data model into a a separate system, and having the access mediated through a thin
client that only gets or controls what it can on the system. One obvious advantage of
this is data privacy. In low-resource countries it is also advantageous to use software
with this architecture because it makes possible the use of outdated, simple or more
mobile devices to interact with the platform, like donated old computers, laptops or
smart-phones.

2.6 server and client software
One popular application which implements the client-server model is a web server.
A web server is a computer program that speaks the HTTP protocol and serves

clients requests, typically web content. The web server program can provide static
content without applying any processing to it or provide dynamic content based on the
client session or other conditions. At first, gateway interfaces that allow the web servers
to interface with executable programs were implemented on the web servers. Later, new
programming languages that enable the creation of runtime code to be run server-side
were born and integration added to web servers. These can provide environments to
run for instance Perl or PHP code server-side.

A popular open-source web-server is Apache [6], licensed under Apache License 2.0.
There are currently two supported branches of the software, the former, version 2, and
the latest, version 3, which diverged from version 2 run-time support compatibility and
provides new features. Version 2 is however still actively maintained and frequently
receives security updates.

A web application server is similar to a web-server but provides a given platform
with a wide range of functionality frequently used in server software for web application
developers to use or extend. These features usually include persistence APIs with access
and connection management, managing of web server requests, web application crashes,
mitigations and security policies. A useful advantage of a web application server is to
serve several web applications under the same server. This is useful for example for a
health-care provider to have different web applications providing services of different

11

domains.
A popular open-source software for this is Tomcat by the Apache Software Foundation

which is licensed under the Apache License 2.0. It is a servlet container which supports
web applications written for a given Java environment.

In order to interact with the server, a client application is required. In a EHR
system implemented using one of the two types of servers depicted above, a client for
interacting with the system would be a browser application. Although the openness
nature of the client is not a requirement for the EHR system to be open-source, it is if
the whole environment is considered. Examples of these are Firefox 2 or Otter Browser
3.

2.7 persistence support
A EHR system needs persistence support for its data model. One example for

providing persistence support to building robust applications is a Database Management
Systems (DBMS).

DBMS were born for processing large amounts of information, and to provide access
to this data in a standard way. EHR systems typically store and access large amount
of data from different sources and with various degrees of sensitivity and preservation
importance, so there is a need for having a system for management and error recovering.
Popular and robust open-source implementations of these are MySQL and PosgreSQL,
which EHR systems can use for the implementation of their data models.

MySQL [7] was initially released as open-source and licensed in GPL. MySQL is
nowadays a proprietary RDBMS widely adopted in the area, under its new owner,
Oracle. Created as a combination of open-source and proprietary effort from Oracle, this
aquisition worried many as they feared a relicensing from Oracle to a more restricted
license and so the open-source project was continued under a new fork called MariaDB.
Under the hood, MySQL has the InnoDB storage engine and a new update from it,
called XtraDB, with better multi-proccessor management, while still keeping its ACID-
compliant design. MySQL is distributed in an enterprise edition, with a proprietary
license, and in a community edition, licensed under GPL.

2https://www.mozilla.org/en-US/firefox/products/
3https://otter-browser.org/

12

https://www.mozilla.org/en-US/firefox/products/
https://otter-browser.org/

2.8 medical standards support
With the development of health-care information systems over the years, some

medical standards for these types of systems were also created.
Some EHR systems can be lacking in features more commonly found in other health

information system (HIS). Nonetheless, this can be solved by combining them with
complementary systems so interoperability between them is often required.

HL-7 is a international standard from Health Level Seven International which
defines a messaging standard for transmitting messages with clinical data between
health information system. There are two currently popular versions of the standard,
version 2 [8], which uses a specific encoding comprised of reserved words, delimiters
and data, and version 3 [9], which uses XML format. There are several standards
based on both versions, one of major importance is Fast Healthcare Interoperability
Resources (FHIR) [10].

Open-source EHR software can benefit from the use of already established open-
source projects that implement medical standards. For instance,providing HL-7 version
2 capabilities or support for FHIR can be done by using HAPI 4, a Java library dual
licensed in MPL and GPL.

Digital Imaging and Communications in Medicine (DICOM) [11] is a standard
created by the DICOM Standards Comittee that defines a network protocol and a file
format for medical imaging. In EHR systems it is commonly used for handling, storing,
printing and transmitting information obtained from DICOM-compatible devices, like
MRI scans from radiology equipment.

One implementation of the DICOM standard, is dcm4chee 5, developed in JAVA.
It is part of the dcm4che project, a collection of open source tools for the healthcare
enterprise. It is licensed under MPL/GPL/LGPL triple license. It can also be setup
purely as a picture archiving and communication sSystem (PACS) service and supports
the HL-7 standard for data exchange.

2.9 operating-system support
FLOSS EHR software can be paired with a supported operating system based

on the technologies it uses. This can include proprietary operating systems such
as Microsoft Windows, however, in the non-proprietary world there are free and
open-source operating systems such as GNU/Linux or BSD distributions which can be

4http://hl7api.sourceforge.net
5http://www.dcm4che.org/

13

http://hl7api.sourceforge.net
http://www.dcm4che.org/

used to keep the whole ecosystem open.

Using these open-source and cross-platforms technologies under the described soft-
ware model, EHR software can be implemented with the advantage that a fully open
system gives.

In conclusion, in the present there are open-source technologies which can leverage
the creation of an EHR system. While with them the development of a new EHR
system is possible, there are related works which bring other advantages with their use
such as established communities, development progress or support.

14

chapter 3
Related work

This chapter presents a review of open-source software which implement electronic
health records, based on public available information sourced from the Internet and
on personal evaluation. The evaluation will focus on each tool features and standards
supported, software design, development progress, popularity, community adoption and
support. Although some of the software tools provide on-line demos for demonstra-
tion purposes, the evaluations depicted here were obtained through analysis of local
installations of the software.

3.1 open-source ehr software
On a first phase, EHR software was selected based on several aspects like openness

(license), development progress, community support and popularity. This process
reduced the candidates to the following: GNU Health, OpenEMR, FreeMED, OpenMRS
and Bahmni. This chapter purpose is to choose one software which is capable of
providing an appropriate solution for health-care applications in low-resource countries
from evaluation and comparison of potential candidates.

15

3.2 gnu health
GNU Health 1 is a electronic health records software and health information system

developed by GNU Solidario 2, a non-profit and non-governmental organization for
health and education development. It was adopted by the Free Software Foundation in
2011, becoming official software of the GNU project with the goal to contribute to the
improvement of lives of the underprivileged by providing a free system that optimizes
health promotion and disease prevention [12].

The main areas GNU Health supports are: 1) individual management; 2) patient
management; 3) health center management; 4) information management.

Individual management regards to a person’s basic information, genealogy, household,
domiciliary infrastructure and so on. For GNU Health project, an individual is a person
first and then a patient. It encourages the health organization or institution to perform
a census, at least on the habitants part of the operational sector it covers, so that it
knows its population first-hand [13]. GNU Health project empathizes the importance
of social and economic development, giving a strong focus to relevant factors like
education level, occupation, living conditions and family relations. Patient management
comprises the collection of different types of data related to a patient’s health, for
instance lifestyle parameters like diet and exercise, addictions, sexuality or safety. It
also includes management of the patient’s health-care like encounters and evaluations,
medical procedures, laboratory test requests or results and so on.

Health center management is mainly comprised of enterprise resource planning
(ERP), for instance financial and human resources management, sales, invoicing and
accounting, inventory, stock and supply chain management. It also features stronger
focus on pharmacy and laboratory management. The managed subject can either be
the institution itself or individual departments within.

Information management covers the tasks that combine data produced in the
platform. This includes building reports or presenting demographics with configurable
parameters, which are useful for epidemiology studies or crossing different data for
instance.

The areas explained above generally involve teams with different fields of activity, on
which members generally only work with the domain of information corresponding to it.
For example a team of social workers may perform individual interviews to people for
demographic analysis, nurses or doctors may handle patients’ health-related tasks and
information, administrative staff may do health center management and so on. GNU
Health’s access management allows this separation of responsibilities by creating users
with different access rights for respecting the information domains that different teams

1http://health.gnu.org/
2http://www.gnusolidario.org/

16

http://health.gnu.org/
http://www.gnusolidario.org/

work with. The platform provides an access control system that follows the Role-Based
Access Control (RBAC) model. In this model, roles, known as groups in GNU Health,
define a list of rights a user can have in the system. A user’s access is defined by the
roles he is associated with. The default access management is supported through a
password-authentication method but it is also possible to authenticate via external
methods like Lightweight Directory Access Protocol (LDAP).

For exchanging health-care information with different platforms, GNU Health
implements FHIR. To assist this transfer it employs a separate server supporting the
Representational State Transfer (REST) protocol. The access management of this
server uses the same access model depicted above, and the exchanged data is encrypted
on the application layer by using TLS.

There are two modes available for synchronizing data between multiple GNU
Health servers, centralized or satellite. In the former, synchronization is made from
independent servers to a central server that aggregates all the information, for example
several institutions synchronizing their data with the Ministry of Health. In the latter,
synchronization is made between each independent server with each server acting as a
master and sharing data between themselves, for instance used in the case of several
cooperating branches of the same institution. Synchronization is backed by a server-side
message broker software on master servers, and a message broker client running on any
server that pulls synchronization data. Secure communication is attained by the use of
TLS in the communication between the previously designated systems.

As the information stored by GNU Health is highly sensitive, the platform is devel-
oped with a strong focus on data confidentiality and integrity. It provides serialization,
hashing, signing and verification which are commonly used in features that handle
or produce sensitive information such as reports, prescriptions or laboratory tests. It
allows doctors to digitally sign death certificates or for users to verify the authenticity
of reports compiled on other GNU Health systems. This is achieved via a bundled
client-side plug-in for Pretty Good Privacy (PGP) that uses GNU Privacy Guard
implementation.

The report sub-system makes heavy use of these cryptographic functionalities,
supports creation of charts and outputs to ODF and PDF formats.

The support for medical imaging in the DICOM format is not one of GNU Health’s
strengths. It directs this support to other softwares such as Aeskulap or Ginkgo CADx
[14], which are also open-source. GNU Health project releases public security advisories
when they are aware of a vulnerability, allowing implementers to mitigate the issue
earlier [15].

GNU Health is written in Python 2 and uses the Tryton framework, both licensed
in GPL v3+. Tryton is a high-level general purpose application platform that provides
GNU Health with an extensible, scalable, secure and modular framework. It also provides

17

specific software components generally suited for ERPs. The modular approach inherited
from Tryton gives the possibility for implementers to choose only the components they
need to satisfy their requirements.

The platform supports UTF-8 and is translated in many different languages, with
official support for English, Chinese, French, Greek, Italian, Japanese, Portuguese and
Spanish [16]. Support to a new language is made available through installation of a
corresponding language module on the server.

Most of GNU Health’s functionality is provided by the official add-on modules which
extend the core module. These are separated into general domains or specialties, e.g.
pediatrics, surgery or gynecology. Modules add new functionality to these domains by
re-using models of given entities and creating specification classes designed in other
modules. As it creates dependencies between modules, in order for a target module to
work its parent modules need to be installed too.

In GNU Health, the way to provide new functionality such as custom forms for
collecting patient information is through development of modules for it. Since this
requires programming knowledge, building and adding custom forms becomes a difficult
task for non-developers. GNU Health provides official modules for several neglected
tropical diseases including visceral leishmaniasis. However, a more simple way for
building custom forms should exist to empower health-organizations that do not have
the required resources or staff with the skills to do so.

GNU Health user-interface contains a global menu where functionalities are presented
in a tree-style structure (Figure 3.1). The menu supports filtering by text, providing
easier and quicker ways to find the desired functionality. To the right of it is a content
panel, dependent on the active menu item. Several items can be active at the same
time, making use of tabs for arranging the multiple content panels. It is not uncommon
for some features to present a multitude of functionalities separated into their own tabs,
adding to navigation and display complexity.

18

Figure 3.1: User-interface of GNU-Health’s client application

GNU Health client does not provide off-line support, i.e., interactions made in the
client while there is a disconnection to the server are lost. There is a workaround by
deploying a GNU Health server on each client machine, synchronized in centralized
mode with the main server. On the other hand, replicating sensitive data on to each
client device would raise complexity, security and privacy issues and would also require
different and more expensive hardware than the one needed for running just a GNU
Health thin-client.

By using Tryton as its core, GNU Health software model is made alike to the Tryton
three-tier application architecture composed of a client-server model supported by a
DBMS. In practice this involves three main applications: 1) the Tryton-server, instanced
as GNU Health server application; 2) the supporting DBMS, generally PostgreSQL; 3)
the GNU Health client application, a generic Tryton thin-client.

The server application is cross-platform, meaning it can be run on different operating
systems given that there is a compatible Python interpreter present. The Tryton
framework provides a platform that enables Tryton thin-clients to fully interact with
the server which means a generic Tryton client application can connect to Tryton server
applications independently of the type of the server application. Therefore by connecting
a generic Tryton client application to a GNU Health server, the client displays the
associated GUI supplied by the latter, as it was designed and intended server-side. The
communication between client and server uses the JSON-RPC protocol over HTTP,
which does not provide a secure transmission of data, thus, an alternative method
should be used to provide a secure channel between both parties.

The GNU Health project provides the official Tryton client, part of the Tryton
project, as its own client application. It is also cross-platform, written using the GTK+

19

graphical toolkit for its graphical user interface (GUI) interface. The GTK+ toolkit
libraries can be compiled for GNU/Linux, Mac OS and Microsoft Windows operating
systems, thus the client application is generally more suited for office desktops. There is
also a Tryton client application developed for Android, consequently enabling on-the-go
and instant access to GNU Health servers for mobile users. A web-interface provided
by the Tryton framework was recently integrated into GNU Health’s server application.
Consequently a greater number of different devices can now interact with it by using a
compatible web-browser [17]. The web user-interface presentation is very similar to the
one on the official GNU Health client application.

The development of the GNU Health project is very active, two major versions of
the server were released in 2015, and another one in 2016. This success is owned in
part to Tryton framework since its development directly contribute to GNU Health’s
improvement. It is also owned to the GNU Health’s strong community which put an
active effort to improve and translate the documentation and create third-party modules
[18]. The documentation contains user, developer manuals and installation guides in
many languages. There is also an open on-line process for translating its interface to
other languages [19]. A mailing list is available for announcements and support in
different languages, which can also be provided through the project’s IRC channel [20].

3.3 openemr
OpenEMR 3 is a electronic health records software, medical practice management

software and enterprise resource planning software mainly supported by OEMR 4,
an non-profit organization which has as a goal to ensure that all people have access
to high-quality medical care through its software and services. The project accepts
monetary and development contributions, which already attained OpenEMR with Office
of the National Coordinator for Health Information Technology (ONC) certifications,
the latest released version being certified as 2014 Modular Ambulatory EHR [21].

It is licensed under GPL and is one of the most popular open-source software in its
area, with many success stories around the world, ranging from small clinics to district
hospitals [22].

OpenEMR comes with a numerous amount of functionality for covering a wide range
of areas of a HIS besides patient records and management, including support for billing
and claims management, ERP and information management.

Regarding patient records, clinical observations can be made through a variety of
forms already provided. Captured observations on different visits of a patient can be

3http://www.open-emr.org/
4http://www.oemr.org/

20

http://www.open-emr.org/
http://www.oemr.org/

presented later through graphical charts or tables showing changes in values along
time. Free-text type notes can be attached to a patient’s encounter, and medical
issues registered in a flexible system of coding which supports CPT, HCPCS, ICD-9,
ICD-10 and SNOMED CT codes. In the prescription management area, doctors can
register prescriptions and their frequency, which can then be printed, faxed, or sent
electronically to a few supported third-party platforms. This can be complemented
with the pharmacy dispensary module which enables in-house drug dispensing with
support for inventory, integration with drug databases and stocks tracking. In the area
for patient’s history, medical procedures, immunizations and laboratory tests made can
be registered along with results.

Medical billing includes sales and patient ledgers with support for medical claims,
insurance management and tracking.

OpenEMR provides a robust calendar sub-system which is capable of handling
different kinds of events and assists many other sub-systems of the platform. Some
examples of features assisted by it are: appointments and provider scheduling on
patients management sub-system, or automated generation of reports on the clinical
decision rules sub-system. The latter is a flexible sub-system on which rules execute
actions based on different parameters, conditions or frequency. Subsequent actions can
be notifications, alerts or report generation. With this sub-system it is possible, for
example to automatically send an e-mail reminder to a patient each time he needs to
take his medication, or, to automatically run reports of weight assessment for children
and adolescents each month.

OpenEMR provides a native portal aimed at use from patients and other kinds of
users and also integrates support with other external patient portals. In practice, this
means that OpenEMR can provide external access to its information for instance to
allow patients to view their medical history or even make payments or doctors to edit
patients information, prescribe new medications and communicate with the patient
through the portal, among many other uses [23].

The report sub-system comes with an extensible profile of reports that cover many
of the platform’s different areas. Some of these are configurable, for instance, patient
reports can include medical history, encounters, billing, communications or other
patient-related information. Adding custom reports to the OpenEMR platform is
possible through the same method as the one used by the pre-loaded reports. These
are built with PHP programming, for which a specific PHP template for coding reports
is provided. There is not an alternative method to create custom reports and as a
consequence, programming knowledge and other advanced computer skills are required
for the creation of new reports.

OpenEMR comes with several forms designed for use during patient encounters.
Creating custom forms is also possible and there are several methods to achieve this:

21

1) through layout based visit forms; 2) through nation notes; 3) through Extensible
Markup Language (XML) forms [24].

Layout based visit forms are built by specifying each field and its data type directly.
Forms built with this method can only be used in association to a patient’s encounter.
This feature automatically tries to lay the needed structures on the persistence side,
i.e., create entities, fields and associations (e.g. with a patient’s visit), however it is a
crude way and is not well supported, as the project states that forms are lost between
re-installation or upgrades of OpenEMR [25].

Nation notes brings a "What You See Is What You Get (WYSIWYG)" editor with
a template engine built on top of the layout based forms module, thus inheriting its
drawbacks [26].

XML forms is another way for writing forms using the XML format, following a
given form specification. The forms are integrated with the user-interface and report
sub-system by using a separate form generator application that takes the XML form as
input and generates SQL code that creates the supporting structures on the database
and PHP code that uses the Forms API to. This method is less straightforward than the
previous ones, however, provides a way for reusing forms in other OpenEMR platforms
by sharing the XML files that defines them [27].

For interoperability, OpenEMR supports the HL-7 standard which is used for
exchanging patient data between other systems and the ANSI X12 Electronic Data
Interchange (EDI) standard, mainly used on billing and invoicing in the ERP. It is also
HIPAA compliant, which focus on ensuring the privacy and security [28] of this data.
There is no native support for the DICOM standards, nevertheless, there is at least one
project that demonstrates practical interoperability of DICOM in OpenEMR via Mirth
Connect5 [29].

OpenEMR has had many security audits from independent groups which have
found a great number of vulnerabilities [30]. OpenEMR project gives importance to
security by releasing information and fixes about vulnerabilities and by having security
recommendations and assessments [31]. OpenEMR provides encryption and decryption
for external documents, which can then be associated to internal categories or patients
[32]. However, support for digital signing of documents in the platform is not available.

Access control management in OpenEMR uses Access Control Lists (ACL), where
each resource or feature has a list of permissions attached [33]. In ACL, access is granted
for a subject to handle a particular object if the subject is associated to permissions of
that object. In OpenEMR this subject is either a user or a group, on which users can
be members of and inherit their permissions. If users are given access only based on
these groups then access control follows a RBAC model [34]. Each resource features a
list of permissions which can be assigned individually to groups or associated directly

5https://www.nextgen.com/Interoperability/Mirth-Solutions/Connect-Overview

22

https://www.nextgen.com/Interoperability/Mirth-Solutions/Connect-Overview

with users. For instance, a user is allowed to create or edit notes if the write permission
of that resource is associated with him, or, if the user has membership to any group
containing that permission.

The OpenEMR platform has support for more than 20 languages and is compatible
with UTF-8. The display language of the user interface is user-dependent, meaning
that multiple users can use the platform simultaneously in their desired languages.

User interaction with OpenEMR is done via a web-interface. The user-interface
arranges active content in a dual panel mode. The first panel is always shown and is used
to display primary content of the active area or context. The second panel either shows
a given global functionality of the active context such as past encounters and documents
while browsing the patient’s context or is used to show selected content in addition
to the first panel This proves useful for showing related information side-by-side, but
quickly builds up complexity in the interface. Some functionality also opts to open a
separate frame inside the content panel, or even a new pop-up window to display or
gather information, again, adding complexity. The top section of the user-interface
displays the current active patient (even if the active context is not the patient) and a
menu with encounter operations for that patient which is redundant since these are
also present on a global menu, under the visits name.

The content shown on both panels is defined by item selected on a global menu
present on the left side. The menu aggregates features into a tree-style structure, color
coding the parent and child in different background colors, which happen to have the
same background color of items of upper levels, and presenting items that cannot be
operated by the user in a lighter shade of gray. For the interface to enable this items or
operations, the user is required to previously make a selection of a given entity in the
content panel. This adds unnecessary complexity to the menu since these are dependent
on the selected and shown content, but despite this, they are part of the global menu
and always present (see Figure 3.2).

23

Figure 3.2: User-interface of OpenEMR’s platform

An alternative method to provide a more clear menu would be to move these
operations from it to the context itself where they can be called from, e.g. move the
patient visit operations from the menu to the content panel that shows the patient.
The menu also does not have item filtering by a text query, so a user needs to manually
navigate through the tree-structured items to find the desired one. These issues,
inconsistencies and the overwhelming presentation of the user interface adds complexity
to the user experience.

OpenEMR does not provide off-line support, for instance, users cannot navigate
on the web-interface while a connection to the server is unavailable. This may pose a
bigger problem on intermittent network connections since there are no warnings when
the connection is off-line and can result in loss of entry data.

OpenEMR is written in PHP and runs in a compatible PHP runtime, PHP 5
as of the reviewed version (4.2.1), with the most recent version already supporting
PHP 7. PHP provides OpenEMR with a scripting language that is widely supported
and has cross-platform run-times. The use of web technologies makes the platform
accessible through many different devices, provided they have a compatible web-browser.
OpenEMR uses the ADOdb PHP library which allows transparent usage of many
different DBMSs, however OpenEMR install manuals suggest using MySQL. The ACL
is provided by the PHP library phpGACL, which is used in all OpenEMR subsystems.

Despite its software architecture not being designed in a truly modular way, new
features can be integrated with OpenEMR by writing a native PHP module or by using
the PHP framework Zend, which OpenEMR integrates support with [35]. OpenEMR
provides an API for accessing its functionalities, however not all is documented or

24

accessible [36].
OpenEMR project development is active, with an average of two major releases

per year. The project has a strong community of users and companies backing, with
many OpenEMR modules developed by third-parties and contributed to OpenEMR
which now make part of the project. The on-line documentation has extensive user and
implementation guides, however the documentation for developers is lacking behind.
There are a number of companies providing professional support in many different
countries, some of which are certified by the OpenEMR project itself [37]. The OpenEMR
project has an Internet Relay Chat (IRC) channel [38] and a community on-line forum
6 for users or implementers to get help and support and for development discussions.
Several on-line demos of the software are officially provided by the project [40].

3.4 freemed
FreeMED is an electronic health records software and medical practice management

software by FreeMED Software Foundation 7, a NPO whose primary goal is the better-
ment of open-source software community and the world in general through promoting
development and adoption of FreeMED and other open-source medical software projects
[41].

The software is licensed under GPL.
FreeMED is by default an EHR mainly designed from the health-care practice

standpoint and generally aimed at health-care providers, registration secretaries and
administrative professionals. Its offered features come under the categories: patient,
documents, billing, system, reporting and utilities. Independent and inter-operable
modules give support for both static and dynamic portions of these.

A patient record in FreeMED contains personal and demographics information, and
information about insurance type and coverage. Patients can be assigned to multiple
health-care professionals such as family doctors or other types of care. Pre-loaded form
templates are provided which can be used for collecting clinical observations during
patient visits. Medical issues support is provided by the diagnosis family module and
can be coded using CPT and ICD codes. It is possible to assign medications to a
patient and manage a registry with them. Patients can be arranged in groups which are
assigned to doctors or referenced in programs. There is an area for triage and call-ins
useful for registration secretaries. These can be complemented by the appointment
scheduling sub-system. By default there are appointment templates for either patient
consultations or other kind of services. Appointments can be scheduled for either an

6https://sourceforge.net/p/openemr/discussion/
7http://freemedsoftware.org/

25

https://sourceforge.net/p/openemr/discussion/
http://freemedsoftware.org/

individual or groups of patients and the interface has safeguards for double-booking,
presenting warnings in case that two patients get booked for the same provider at the
same time.

FreeMED offers document management support which can be also used for managing
external documents, e.g. reports or medical images in formats not supported natively
by FreeMED like DICOM [42]. FreeMED has an internal messaging system that allows
different users to post global messages or communicate between themselves.

Regarding PMS functionality, FreeMED has integration with an extra application
called REMITT 8, a billing and remittance package. REMITT is also from the FreeMED
Software Foundation and under the GPL license. It has support for professional EDI
standards like ANSI X12 and automatic insurance claims generation of HCFA-1500
forms, while being HIPAA compliant [43].

The intercommunication between FreeMED and REMITT is done via a remote
procedure call protocol, in this case the XML-RPC, and is transported over HTTP.
The protocol provides access management through basic authentication, but not secure
communication. This can be attained by using HTTPS instead of HTTP as the
transport protocol, which provides security by using Transport Layer Security (TLS) at
the application layer.

FreeMED uses HL-7 for the exchange of medical data. This support is obtained via
integration with Mirth Connect, a cross-platform HL-7 interface engine.

FreeMED comes already with some configured reports, and adding new ones requires
related technical skills and also knowledge of the FreeMED data model. The reporting
subsystem is dependent on the Java library JasperReports for report generation. Jasper-
Reports is accessible from FreeMED through a wrapper called JasperWrapper, which
allows FreeMED to call JasperReports functionality from within the PHP runtime.
There is no documentation about either the process or support for adding custom forms
to FreeMED. An official module which claims support for custom forms exists, however
a brief analysis of its source code did not reveal to which extent it supports them [44].

User interaction with the FreeMED platform is done through a web-interface.
After language selection and user-authentication, different functionalities are displayed
depending on the user’s access clearance. Access is controlled with ACL in the same
way described previously for OpenEMR, with implementation also making use of the
phpGACL library.

The user-interface has an always-present menu which groups functionalities in
categories. The active functionality is displayed on a content panel to the right of
the menu, and while several items from the menu can be opened at the same time,
only one is displayed at a moment, the remaining items being grouped into tabs that
keep its current state in the background without interrupting the user experience. The

8http://remitt.org

26

http://remitt.org

content has a clean presentation, and while some more complex features may show
different functionality grouped into their own tabs, there is an option for choosing the
arrangement between tabbed and flat presentation.

Figure 3.3: User-interface of FreeMED platform

FreeMED is written mostly in PHP and Perl. Additionally, it requires a JAVA
Runtime-Environment (JRE) for the report subsystem and a supporting JavaEE web
application server for REMITT as they are written in Java. Since all the technologies
used in the software are cross-platform, FreeMED can be run in different operating
systems, ranging from POSIX-compatible like Linux or BSD to Microsoft Windows and
others. The software is designed in a client-server application model. The platform
does not provide off-line support, so if the communication is interrupted between client
and server, users cannot operate the platform from the client-interface and need to wait
for the re-establishment of the connection. In the same way as OpenEMR, access to
the database is made through the ADOdb PHP library, which allows transparent usage
of many different DBMSs, nevertheless, there are parts of the code base that are not
DBMSs agnostic and thus, the project recommends using a compatible MySQL DBMS.

FreeMED has a modular architecture, which is designed with functionality and
interface separation. This allows the platform or the interface to be customized without
having to rewrite core components of the system, and to group functionality in modules,
allowing to bundle new functionality into new modules.

FreeMED supports localization and the project claims multiple languages support
besides English, including German, French and Polish. There is also an on-line public
project for contributing translations, which already attained complete localization
in Portuguese and Russian languages [45]. We could not test other user-interface
localizations besides English, probably as a result of a software bug. FreeMED supports

27

multiple ISO character-set formats and stores entry data with it, making it possible
to maintain demographic database in one language and ISO set independently of the
localization that displays.

The source code is available on an on-line public repository website, which also
provides a brief installation guide and a Virtual Machine (VM) image of FreeMED for
demoing. There are no development guides and the project lacks proper documentation
overall. There is also a FreeMED demo available on-line, but there are no user guides
neither in the official mediums neither in the FreeMED software itself. FreeMED
advertises a commercial support from Foundation’s support partners, although the URL
is down as of this writing. 9.

There is a community support page for users and developers, although with very
low activity on both of the previous subjects. 10.

3.5 openmrs
OpenMRS11 is a electronic health records software lead by two collaborative non-

profit organizations, Regenstrief Institute, a world-renowned leader in medical infor-
matics research, and Partners In Health, a Boston-based philanthropic organization
with a focus on improving the lives of underprivileged people worldwide through health
care service and advocacy [46].

One of the main objectives of the project is to build a robust solution for health-
care with special focus on resource constrained environments. There is a worldwide
community of volunteers from many fields of activity including health-care, international
development and technology, contributing on many levels to the software and project
[2].

OpenMRS is designed in the perspective of health-workers, following a typical
health-care work-flow: first, patients are registered in the system. A visit is opened
for a walk-in patient, afterwards the patient goes for an encounter with health-care
providers which register observations and manages the patient (e.g. admits the patient,
schedules appointments), and the visit is closed with notes optionally attached.

At OpenMRS platform’s core is a centralized dictionary of concepts, a customizable
part of OpenMRS that strongly defines each implementation. In the dictionary, concepts
are meta-data of given entities, defined by name, data-type, appropriate attributes and
relationships to other concepts. These are used as models or latter instanced in some
form. For example a value collected during a patient encounter is an instance of a

9http://freemedsoftware.org/commercial_support
10https://groups.google.com/d/forum/freemed-support
11http://openmrs.org/

28

http://freemedsoftware.org/commercial_support
https://groups.google.com/d/forum/freemed-support
http://openmrs.org/

given concept that takes the form of an observation. As a model, concepts work as the
building blocks that describe forms, orders, clinical summaries, reports and so on. The
extent of these is directly related to the richness of the dictionary.

OpenMRS is a highly modular platform. Most of the official features it provides
are external to the platform and added through add-on modules. A standardized API
plays a major role in this by allowing access to OpenMRS platform functionality, which
modules use or extend, providing their own functionality to other modules. The API is
accessible directly to installed modules and is also made available via REST, through a
complementary module that enables managed access to it [47].

OpenMRS is officially released in two different distributions, one which contains
just OpenMRS platform, and another called the Reference Application, which packs
selected modules that extend and add features to the platform.

The reference application includes a new framework for other modules to interface
with the platform. The framework standardizes modules and defines their interface
presentation, communication, behavior and security, enabling the creation of an Open-
MRS application ecosystem. Through modules OpenMRS extends its platform features,
providing appointment scheduling and management, a event system for notifications,
a sub-system for allergies registration, representation of patient observations through
charts and so on.

OpenMRS has a robust form sub-system for creation of custom forms. Any form
relies on a form schema that defines the fields and concepts the form will use, which are
supported by the concept dictionary. While custom forms can be created and their form
schema can be designed from within OpenMRS legacy UI, the methods for designing
the forms are independent of the platform. There are several modules that add these,
each using different techniques to achieve the same goal.

One, the Infopath Form Entry or (also) simply Form Entry, allows the design and
filling of forms using Microsoft Infopath templates. From a form schema, the module
produces a XSN form template that the client downloads in order to design the intended
form in an external application, for instance, Microsoft Infopath. The result can then
be uploaded back through the module interface, completing the form creation process.
A form of this kind is made available as a download in the Forms tab of the patient’s
dashboard (legacy UI), requiring again the use of Microsoft Infopath for data entry and
submission [48]. Although the module itself is open source, this method is not favored
since it deviates from a fully open source system by using proprietary formats or tools
to manipulate it, consequently, other alternatives were sought.

Another alternative, the HTML Form Entry, provides enough flexibility for the form
layout by using HyperText Markup Language (HTML) while requiring knowledge of the
HTML language[49], which may not be suitable in some cases. There is a WYSIWYG
module that produces HTML Forms for the HTML Form Entry (HTML Form Entry

29

Designer), but we could not get access to its source code and the latest available version
for download is not up-to-date since it has hard dependencies on older modules which
are not compatible with current OpenMRS versions [50].

An up-to-date alternative, the XForms module, allows building forms based on the
XForms standard [51], [52]. The module bridges forms of this standard and OpenMRS
forms, enabling the possibility of designing and using forms with external application.
XForms Designer provides a WYSIWYG interface from within the OpenMRS user-
interface itself for designing forms for XForms [53]. The form’s model and layout
are defined in XML and can be shared to other OpenMRS implementations while
keeping the same presentation. An example of compatible external applications are the
XForms Mobile Data Collection tools for OpenMRS. They enable off-line form filling
provided that the necessary XForms and auxiliary data are previously downloaded to
the device. Sending the data entered on the form back to OpenMRS can be done via
HTTP/HTTPS, Bluetooth and SMS.

A robust reporting sub-system brings three ways for building reports: indicator
reports, row-per-patient reports or custom reports. A report is built through associations
to dataset definitions that acts as a key to values to include in the report. The dataset
can generally refer person or patient properties and similar attributes that contain only
one recorded value stored since its last entry, commonly used on row-per-person reports.
Combination of values from multiple observations is possible, and it is used for building
indicator reports. A report definition can be programmed to filter (cohort) a defined
set of patients for use as the input of the report generation. Multiple dimensions can
be added, e.g. only males, farmers. A report definition is finished through the use
of indicators". These represent logic types or functions to be applied in the report
generation process.

OpenMRS provides two user-interfaces with different feature set support, one called
legacy UI (Figure 3.4), and another added with the reference application called modern
UI (Figure 3.5). One obvious example of the difference in features is the administrative
area of OpenMRS available only in the legacy UI. It is used for managing the dictionary,
set providers schedules, add patient attributes or create forms, reports, users and so
on. Nonetheless, the platform and reference application provide frameworks which
enable the interfaces to be extended. The reference application UI framework has design
guidelines and support for presenting clean and simple user-interfaces adopting a one
question-per-screen approach, which the modern UI follows. Many external modules
do this by adding features and functionality and extending the modern UI to support
those.

30

Figure 3.4: OpenMRS’s legacy UI user-interface

Figure 3.5: OpenMRS’s modern UI user-interface

The access management in OpenMRS follows RBAC. This system covers both the
user-interface and the access to OpenMRS API via REST services.

Importing and exporting meta-data between platforms can be done either manually
or automatically, using the meta-data sharing module. The module is advanced enough
to provide automatic synchronization mechanisms, with support for merging and conflict
resolution.

OpenMRS has native support for the HL-7 standard and can export its data
directly to other applications [54]. There is support for DICOM and IHE radiology 12

12https://www.ihe.net/Radiology/

31

https://www.ihe.net/Radiology/

work-flow standards, via a third-party module called Radiology Module in conjunction
with dcm4chee, a medical imaging archive and manager. Communication between the
module and dcm4chee is a practical example of the use and support in OpenMRS of
the HL-7 standard for exchanging of health-care information with external platforms.
Alternatively it is possible to connect it to other systems using Mirth Connect which has
native support for OpenMRS achieved via use of the OpenMRS API on Mirth Connect’s
side [55]. Native support for FHIR is also present natively in the platform since version
2.0 [56]. Other recent development assigned for this version was to decouple OpenMRS
legacy user-interface from the core platform and moving the respective functionality to
separate modules, which enables the possibility to distribute OpenMRS as a more true
platform [57].

This version OpenMRS also added support for running on JRE 1.8, where previously
it required JRE 1.7. OpenMRS runs on an compatible web application server, e.g.
Tomcat or Jetty, alongside a compatible MySQL RDBMS for persistence support,
cross-platform technologies which allow OpenMRS to be run in GNU/Linux, Microsoft
Windows or other operating systems where they are supported.

Officially the project provides an extensive wiki which features content for developers,
implementers, and end-users. Two on-line demos are provided, one of the reference
application and another which is a customized implementation of OpenMRS at for
management of drug-resistant tuberculosis can show the level of customization that
OpenMRS offers. Currently more than 175 separate modules are available, although
compatibility with OpenMRS is dependent on its version because of changes in the
OpenMRS API. [58]

OpenMRS has full UTF-8 support and some extra localizations besides English,
with possibility to add more. The project provides an on-line portal for collaborative
translation of its user-interface, reference application and commonly used third-party
modules [59].

All of this makes OpenMRS one of the most promising, customizable and used
platforms in the area with many implementations around the world [60]. Other softwares
exist which use OpenMRS at a lower-level and provide other implementations and
features. Examples of these include Bahmni, Kenya EMR, an EHR officially maintained
and administered by the government of Kenya, UgandaEMR, a custom implementation
mandated by the Ministry of Health of Uganda and eSaude, developed by a regional
community based in Mozambique and built meeting the requirements of MISAU (the
country’s Ministry of Health) for HIV Care & Treatment and Maternal and Child
Health [61].

OpenMRS development is very active on three major branches: 1.9 which is still
very popular among implementers, latest release on December 2015, 1.11 and the
most recent, 2.0 [62]. The maintenance of older versions occurs mostly for security

32

vulnerabilities fixes, for which OpenMRS also announces through its security advisories
[63]. OpenMRS is licensed under MPL v2.0 with an additional disclaimer of warranty
and limitation of liability (for United States or other jurisdictions where they may
apply) which does not alter its FLOSS nature [64].

3.6 bahmni
Bahmni 13 is an hospital system for low resource settings built on top of OpenMRS.

It incorporates most of the OpenMRS platform functionality and extends it with
support for PACS, laboratory information system (LIS) and ERP features. This is
done via integration with three separate applications: dcm4chee, which provides the
first, OpenELIS, which provides the second and OpenERP (currently named Odoo),
which provides the third. Bahmni provides a new user-interface and features for EHR
in a system called Bahmni EHR. All together these systems form Bahmni.

Bahmni is mainly developed by ThoughWorks Global Health 14. ThoughWorks
Global Health’s focus is to improve quality and expand access to care in low-resource
settings and works alongside those who stand in solidarity with the poor and oppressed
to eliminate health disparities.

In Bahmni EHR, features come distributed under several areas: patient registration,
clinical services, inpatient management and reporting.

In a registration process, information like identity, demographics, photograph,
contacts and other socio-economic details of a patient can be captured, and associated
to a person via a new generated patient identifier. A sub-set of this collected information
is used for printing patient ID cards, which can be handed to the patient for his next
visits. Hand-outs also be printed containing details of the health-center like contacts,
and can be customized to have also some life-style or useful recommendations. Different
types of relationships can be registered, including genealogical or patient-provider
relationships. When a patient does a registration in an institution, there is a strong
possibility that he already has health-related documents stored on other institutions,
like record scans, x-ray images or other types. Bahmni EHR gives support for storing
these within the system and attaching them to a patient’s profile. The profile of a
patient is displayed through a modular dashboard, where customizable widgets display
most recent information from several different categories of the patient’s medical records.
These can be for instance laboratory tests and results, programs enrolled, last visit
observations and so on. From observations made in several encounters, history of
changes and graphs can be presented.

13http://www.bahmni.org/
14https://www.thoughtworks.com/global-health

33

http://www.bahmni.org/

Clinical services in Bahmni EHR are centered around the patient’s profile. These
services become available in the consultation area of the dashboard after a patient is
active in the system, i.e. he is in a given encounter with a provider. From here, several
kinds of services are provided: capture observations, make laboratory or radiology orders,
register diagnosis and medications, manage patient disposition or take consultation
notes.

Regarding clinical observations, Bahmni already provides multiple forms by default.
The forms sub-system is very customizable and can easily be extended with more forms.
These can be built by creating and changing specific concepts of the dictionary. The
form’s layout and other parameters can be defined in JSON and, if necessary, there
is support for integration with a server-side framework for advanced customization of
a form’s logic and other aspects. Current and past diagnosis can be associated to a
patient and registered along some attributes like order, confidence and status. Diagnosis
made can also be mapped to ICD-10 codes.

In regards to laboratory orders, Bahmni provides a panel of tests divided in several
categories. The laboratory sub-system is flexible, allowing for choosing just the needed
tests, categories or arrange them all together. New laboratory tests can be easily created
and added just by using the concepts dictionary.

In regards to radiology orders, integration between Bahmni EHR and a PACS is
assisted by dcm4chee. Radiology orders containing patient and the investigation details
can be requested within Bahmni EHR, which are sent to a modality via acsHL-7. The
results are integrated with the patient profile even if they come as native unsupported
formats, on which references to them are shown. For instance, results that come as
DICOM images are archived in an accessible PACS and referenced from the patient
profile, from which they can be opened in compatible DICOM viewers.

Management of medications include registration of past and current medications
from customizable drug registry which has route, frequency, dosage and instructions for
each. The drug registry provides sensible defaults for medications wherever possible,
nonetheless medication parameters can always be overridden. There is a drug dispensing
service which is integrated with OpenERP and supports in-house dispensing with
segregation of stocks. Patient disposition refers to a patient’s state usually set at the
end of a provider encounter. For instance a disposition of a patient that has a severe
medical issue and needs to be hospitalized can be set as admitted or patients on that
state but now recovered may be set as discharged and so on.

While using services from the consultation area, a background sub-system assists the
user by automatically creating encounters whenever necessary. However, for starting
the consultation itself, a visit needs to be opened previously, which makes sense but
was not executed properly in Bahmni EHR. A user can’t start a consultation from the
patient’s dashboard if an active visit was not opened previously, and needs to navigate

34

to the patient registration form to register a visit. A suggestion to avoid this issue
is to enable patient’s visit operations from its dashboard since it is from there that
consultations are also started.

OpenERP is used predominantly for sales and purchase management including
inventory and accounting. These are integrated to some extent in Bahmni EHR,
for instance registration fees or payment of drugs dispensed under Bahmni EHR are
registered under patient billing in OpenERP and track of stocks is kept.

The reporting area comes with many pre-loaded reports, which can be run within a
given date period and be exported in CSV, PDF, HTML or Excel formats. Additionally
the platform also provides integration with JasperReports, giving support for custom,
flexible and more varied reports.

The administrative functionality in Bahmni EMR is very basic since it only allows
for customizing an implementation by importing files with specific concepts of several
domains to the dictionary. There is support for the reverse operation, exporting to
a file, which gives at least a easy way to share customizations between instances of
Bahmni EMR. Nevertheless, the remaining administrative functionality can be done
from OpenMRS legacy UI.

The access control on Bahmni EHR is provided by the OpenMRS platform. However
there are new access roles associated to the new functionalities and services of Bahmni
EHR. Additionally, user access can now be set to use two-factor authentication.

Bahmni EHR supports off-line network alerts by displaying a notification in the
user-interface when the connection is down. This is helpful in order to avoid loss of
filled-in data by submitting it unknowingly when a connection to the server was down.
True off-line support is also provided via a browser extension or a mobile application,
offering the possibility of filling forms and other user-interface functionalities without
an active connection to the server. The data produced with this functionality is saved
locally on the device and can be uploaded at a latter time.

Bahmni EHR does not provide support for appointment scheduling or management.
This functionality can be achieved by installing the appointment sheduling of OpenMRS
which integrates with its own user-interfaces. However, this is a workaround and poses
some problems like user-interface consistency and navigation issues since the UIs are
not linked to each other.

Bahmni is built through separate OpenMRS modules and its user-interface com-
municates with these using the OpenMRS API via REST. The integration between
platforms is done in order to share data and create a flow between them, resulting in
less work than needed in creating a new platform. All these software are open source,
Bahmni is AGPL licensed, includes a customized OpenELIS version that was forked
from version 3.1 and is under Mozilla Public License 1.1, and the particular OpenERP
version used is a Community edition which is under AGPL.

35

Bahmni is distributed through either a VM or via software packages for CentOS
GNU/Linux distribution. Although CentOS is currently maintained under two branches,
version 6 and 7, Bahmni requires other open-source technologies currently under version
6 and thus recommends the use of this branch instead [65] (n.b. development is
progressing for making it compatible with version 7) [66]. The documentation is well
organized, with different sections providing feature, installation and setup guides. There
are manuals for implementers, users and developers. The community is closely tied with
the OpenMRS community as both are under the same forum and are very active [67].
The same applies to the documentation, which is under the same Wiki. The project
also provides an IRC channel. Bahmni EHR is multi-lingual, and has near-complete
support for Spanish and Portuguese languages. There is an on-line platform that
allows to collaborate in translating Bahmni to other languages and accepts community
contributions [68] Diverse health-care institutions including district hospitals make
use of Bahmni, which already counts with many implementations in India, Nepal and
Bangladesh, the latter even adopting it for use in Ministry of Health [69].

On-line demos are provided from the official project.

3.7 software comparison
From the software evaluated, we summarize some aspects in the following table from

the perspective of EHR. There are more characteristics that could be shown but we
mainly considered the ones who differ between the software.

36

Table 3.1: Matrix with several aspects of the evaluated EHR software

GNU Health OpenEMR FreeMED OpenMRS Bahmni

Integrated applications EHR,HIS EHR,PMS,
ERP

EHR,PMS EHR
EHR,PMS,
ERP,LIS,
PACS

Configurable reports YES YES NO YES YES
Custom reports NO NO NO YES YES
Custom forms NO YES NO YES YES
Data exchange FHIR,custom HL7 HL7 HL7,FHIR HL7,FHIR
Coding systems Few Many Few Many Many
External auth. methods LDAP LDAP,AD - - -
Patient portal NO YES NO NO NO
Access control model RBAC ACL ACL RBAC RBAC
Cryptographic features Sign, encrypt Encrypt - - -
Flexible data model NO NO NO YES YES
Modularity rank FFF F FF FFF FFF
Off-line support YES NO NO NO YES
Native client YES NO NO NO NO
Web client YES YES YES YES YES
Other clients YES NO NO NO YES
User-interface rank FF F FFF FF FFF
Code-base language Python PHP PHP Java Java
Development progress Active Active Slow Active Active
Community support rank FFF FFF F FFF FFF

User-interface refers to personal evaluation of the software primary interface made
with other team members. Clean presentation, clear arrangement of navigation and
issues present were taken in consideration for the rank. Modularity refers to the software
modularity, i.e., if features are hard-coded; if it provides a rich API and well documented
API. Community support is ranked according to forum activity and other contributions
to the project, for instance translations or third party module availability.

From the evaluation and comparison of EHR software, Bahmni proved to be the
most appropriate candidate for use in our low-resource setting. From its overall
characteristics, the key aspects for choosing Bahmni were the solid facility it gives
for creating observation and laboratory forms, report configuration, off-line support
and the integration with a laboratory information system. Since Bahmni integrates
other services with OpenMRS and is possible to integrate other OpenMRS features in a
Bahmni solution, this made it a more advantageous choice than OpenMRS itself; hence,
Bahmni is overall the solution with most potential for our scenarios.

37

chapter 4
System Requirements

This chapter describes the system requirements for the Gondar EHR system of Leish-
maniasis Research and Treatment Center (LRTC). It covers overall description of LRTC,
a routine work-flow, functional requirements as well as non-functional requirements, a
use case diagram and a specification for each use case.

4.1 scope
The LRTC is a part of Gondar University and was established in 2004. The center

provides medical care for patients infected by leishmaniasis parasite, carries clinical
trials and has its own laboratory. Moreover, the LRTC has a bed ward, which can
accommodate up to 24 patients. The team consists of 15 employees, including physicians,
nurses, pharmacists, and laboratory technologists.

The center was visited in early February 2016 with the main goal to gather user
requirements, interview the clinical staff, check available equipment and verify infrastruc-
ture. A routine work-flow of LRTC was observed and analyzed in order to implement
the Gondar EHR system. As a result, the functional requirements of the application
were established by the end of the trip. The objectives of the Gondar EHR system
are to provide clinical staff with cumulative health history of patients, integrate LRTC
with its laboratory and generate reports.

During the observation process and interviewing it was identified that the present
work-flow was paper-based and there was a need in the digitization of patient records.
Another problem was faced in communication between laboratory and clinic, where

39

two LRTC divisions were transitioning their paperwork to each other. Moreover, the
LRTC clinical staff prepare periodic reports for governmental and non-governmental
organizations such as World Health Organization, Drugs for Neglected Diseases initiative
and others. This manual process involves coping data from paper-based registration
books to an excel spreadsheet, use an appropriate template and send by email. There
is also some resource management done in assigning beds for inpatients.

4.2 functional requirements
The identification of actors and use cases play an important role in establishing

requirements. There are four actors which make use of the Gondar EHR System: a
physician, a nurse, a lab technologist and a system administrator. A physician is the
main actor who is in charge of patient treatment. He also examines a patient, makes a
diagnose and prepares reports. The next actor is a nurse, who is responsible for patient
registration, physical examination of vital signs and making orders for laboratory. A
lab technologist tests samples such as blood and skin tissues, then provides results to
the system. An administrator is non-clinical staff member, who maintains the system.

The use case diagram below (Figure 4.1) has been created to illustrate the interactions
between a system and its environment, showing the functionality of the system from
the perspective of each actor.

40

Figure 4.1: Use case diagram

The textual models that capture the requirements in context are depicted in the
tables 1 to table 18 in the appendix.

From these, functional requirements were drafted. Summarizing, a system for
Gondar LRTC must:

• A. Manage patients
– A1. Register a new patient. The system should capture the following

demographic information:
∗ A patient must have a unique medical number within the system

41

∗ Patient’s first name, surname, name in native language (not mandatory)
∗ Sex, date of birth, place of birth, physical address, telephone contact
∗ Biometric parameters as height, weight, blood pressure, BMI (calcu-

lated).
∗ Allergies on medicine or products
∗ Social history elements: marital status, occupation, socioeconomic status,

and education.
∗ Hospital visit dates, admission, discharge dates (if applicable), chief

complaint, diagnosis, procedures performed.
– A2. Edit a patient information
– A3. Search a patient
∗ A3.1. Search patient by medical number, names.

• B. Out Patient Department (OPD)
– B1. Consultation chambers
– B2. Examination rooms
∗ B2.1. Send test request to the laboratory
∗ B2.1 Receive/have an access the laboratory test results.

– B3. Diagnostics
∗ B3.1. Laboratory must receive requests from examination room
∗ B3.2. Lab assistant can create requests other than from LRTC
∗ B3.3. Lab assistant can enter test results into the system
∗ B3.4. Test result must be verified by lab staff member
∗ B3.5. When test results have been verified, they must be available

• C. In Patient Department (IPD)
– C1. Set total number of beds grouping by children, men and women.
– C2. Change patient status from outdoor to indoor and vice-versa.
– C3. Show number of occupied and available beds.

• D. Alerts and appointments

– D1. Create an appointment with a physician (up to 6-9 months)
– D2. Send alert messages to a patient before 1-3 days of scheduled visit
– D3. Edit an appointment
– D4. Delete an appointment

• E. Reports

– E.1. The system should build reports with set period. (The list of reports
must be received by LRTC staff.)

42

• F. System logs
– F1. The system must track dates and time stamps all entries.

• G. Confidentiality and Security
– G1. System should support secure logon into the LRTC system.
– G2. System should provide analysis of audit trails and unauthorized access

attempts.

Non-functional requirements were also drafted:

• The user-interface should be simple to use.

• The system should be secure on the network level.

43

chapter 5
System Architecture and
Implementation

To address the system requirements present in the previous chapter, we imple-
mented a solution which uses a subset of Bahmni software. We show the architecture,
implementation, installation and configuration of the system.

We tried to satisfy the requirements by customizing and adapting the systems of
Bahmni. Since there was no need to develop new functionality, this section will not
focus on source code from the Bahmni project.

The features and model for EHR are implemented with Bahmni EHR. Three user-
interfaces are available. Bahmni EHR provides its own, called Bahmni MRS. In addition
to it, the two OpenMRS user interface (UI)s are also used: legacy UI, for the platform’s
administration and the modern UI, for the appointments management. The laboratory
system requirements are satisfied by use of OpenELIS and through integration with
Bahmni EHR.

The OpenERP platform, dcm4chee and PACS integration services, part of Bahmni,
are not used in this implementation since they are not needed per system-requirements
and therefore are not contemplated in the architecture overview. Nonetheless, the
resulting solution is still compatible with these software components so they can be
added on at any time if required. Since Bahmni EHR uses OpenMRS as its underlying
platform this thesis will contemplate a in-depth analysis of OpenMRS architecture in
this chapter.

45

The operating system chosen for server side is version 6.7 of GNU/Linux distribution
CentOS1, a community spin-off of RedHat Enterprise Linux2 for maintenance, stability
and security [70].

5.1 software architecture
The Bahmni EHR architecture can be represented as an extension of the OpenMRS

three-layered architecture. The presentation layer has three separate user interfaces,
written with different motives and needs of the OpenMRS and Bahmni projects devel-
opment, each providing a overlapping and an exclusive set of features from the others.
Success in satisfying the system requirements is obtained through the combination
of the three user interfaces’ resulting feature set, thus, for this reason, all the three
presentation interfaces are used in our given solution. The diagram in Figure 5.1 shows
the three-layered architecture and OpenMRS module architecture-layer integration. 3

• Data Layer: In the lower-layer is the Bahmni Data Model, a customization of
the OpenMRS data model for Bahmni EHR. The data model is a relational
model represented in SQL and supported by the MySQL RDBMS, in which
it is instanced under the database name ’openmrs’. The OpenMRS platform
and Bahmni EHR projects use the same technology for keeping the data model
compatible between released versions, the Liquibase library. The integration of
new changes on the data model is assisted by Liquibase that keeps the history
track between schema versions, thus enabling older OpenMRS platform database
instances to be updated for compatibility with a new OpenMRS platform, the
same is applied between Bahmni EHR database schema versions.

• Service Layer: Present in the middle-layer is the logic of the OpenMRS platform’
customized for Bahmni. It is supported by the Spring Framework4 and runs on a
Java EE-compatible web application server. The middle-layer communicates with
the database-layer in an object-oriented way through the Hibernate framework5.
The Hibernate framework maps the relational model to an object oriented model
that is then used on the Java code. The middle-layer also provides the OpenMRS
API that enables usage or extension of the OpenMRS platform functionality.

• Presentation Layer: The presentation layer contains the three user-interfaces
used. The OpenMRS classic interface, legacy UI, is assembled by interfacing

1https://www.centos.org
2https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
3https://openmrs.github.io/openmrs-contrib-radar/
4https://spring.io
5http://hibernate.org

46

https://openmrs.github.io/openmrs-contrib-radar/

JSP with Spring controllers. For background communication through Ajax, the
DWR framework is used, by mapping certain Java objects and methods of the
OpenMRS platform to JavaScript (JS), which are then used through jQuery6 or
DOJO7 libraries. The OpenMRS modern interface, modern UI, is built through
a set of new OpenMRS modules added to the top of the OpenMRS platform.
A REST interface to the service layer is exposed by the OpenMRS REST API
module. Among other possible uses, this enables asynchronous communication
from the front end to the back end using Ajax techniques. The modern UI uses
this method of interfacing through the JS library AngularJS 1.x8. Angular is also
the framework used for the client-side MVC. In contrast with the legacy UI, the
modern UI presentation is now assembled by using GSP instead of JSP, with
Spring being replaced with a more recent version with Groovy support [71].

Figure 5.1: Bahmni EHR architecture overview

OpenMRS modules are transient to all layers, since they can interface with any layer
directly. Bahmni EHR extends and adapts most of the OpenMRS platform functionality
through an additional set of OpenMRS modules called Bahmni Core.

6https://jquery.com
7https://dojotoolkit.org
8https://angularjs.org

47

5.2 technologies and communication
The technologies which support the solution are distributed in a client-server model.

The server-side architecture is comprised of three technology layers (see Figure 5.2):
On the top layer is the Apache HTTP Server9 (colloquially Apache), handling all
communication with the client side. Apache maps paths for the OpenMRS REST
API, OpenELIS and OpenMRS server web content on their respective listening ports
encapsulating all these services transparently under the same web server domain,
effectively working as a reverse proxy. Separately, Apache directly serves Bahmni MRS
front end to the client side, which uses the AngularJS library to interact asynchronously
with the back end. The OpenMRS REST API module is the endpoint of this interactions,
which are made via REST protocol.

Present on the middle layer are the Java EE web application servers, Apache Tomcat,
running the customized Bahmni EHR version of OpenMRS and OpenELIS servers. The
integration between OpenMRS and OpenELIS is made for the laboratory features of
the latter, and is supported by two modules that feed and consume the information
on both directions on each platform. The communication is done in the background
through a protocol similar to HTTP, Atom Publishing Protocol (AtomPub).

The lower layer is comprised of DBMSs supporting the Bahmni EHR custom data
model and the OpenELIS custom data model, accessed by their respective applications.
The first one is supported by MySQL server, and the latter by PostgreSQL server. In
the diagram of Figure 5.2, the dashed entities represent modules or extensions to the
software that they are connected to (via dashed line).

As consequence of custom Apache URL rewrite rules, a client connection made to an
HTTP URL will be redirected to the corresponding HTTPS URL. Client applications
can only interface with the web server through the HTTPS protocol, resulting in more
secure interactions than plain HTTP. This prevents snooping from third-party listeners
observing the data flow between the two parties since the data is encrypted by TLS
protocol at the application layer.

9https://httpd.apache.org

48

Figure 5.2: Supporting technologies and intercommunication.

The client accesses the desired platform by using its corresponding mapped URL
where then Apache will either perform forwarding or resolve the request itself, giving the
illusion that both platforms are present on the same web server. Requests directly aimed
at OpenMRS legacy UI URL are rewritten to go to the Uniform Resource Locator (URL)
and port where the web application server running OpenMRS is listening on, the same
applies to the modern UI interface. Using Bahmni MRS front end, REST requests
made through AngularJS are forwarded by Apache to the respective endpoint.

5.3 data model
The Bahmni EHR data model is a more complex extension of the OpenMRS

platform data model, represented in a relational model with 178 tables. For reference,
the database schema of OpenMRS Platform version 1.11 has 99 and the database
schema OpenMRS Reference Application 2.3.1 has 146[72]. The difference comes from
extra modules that Bahmni EHR uses on top of the platform, some of which are part
of the Reference Application while others are specific to Bahmni EHR. Although the
number of tables is not directly comparable between the three projects since each use a
different set of modules, it can still be revealing of Bahmni EHR’ data model added
complexity. In order to explain the data model without undergoing an exhaustive
analysis, we divide it into eleven basic domains, specific to our system requirements:

• Person: Aggregation of the personal information about a person, like name, gender
or current address.

49

• Patient: Basic information about a patient, like registration date and an UID
which establish a connection to all of its related domains. A patient is always
associated to the person domain.

• User: Information about a user that can interact with the system. A user can be
associated to a person and have different privileges in the system.

• Encounter: Contains meta-data resultant of health-care provider meeting with
a patient. An Encounter has observations or actions made besides the provider-
patient association.

• Observation: Observations contain an actual record of data defined by a concept.
Observations are recorded on a given Encounter.

• Concept: A strongly coded data definition for mapping concepts of the real-world
into concepts in the system. An Observation can have an instanced Concept for
recording its value. A form, for instance, is a concept that aggregates multiple
observation concepts.

• Order: An Order is a request made by a health-care provider to a patient. Some
order types inter-operate with a secondary platform, OpenELIS, as in the case of
laboratory orders.

• Groups/Work-flow: Domain for patient programs, workflows and appointments
and cohort data.

• Business: Domain that comprises OpenMRS’ administrative part.

• System operation: Domain that refers to the system itself and is comprised of
interoperability, system configuration and schema versioning, e.g. system events,
quartz triggers, module management.

• Custom domains of OpenMRS Module: Independent domain created by a Open-
MRS module. An OpenMRS module can change the database schema, generally
extending it for supporting the additional functionality it will provide.

In a standard Bahmni installation, the data model represented by the database
schema is combined with pre-constructed data that enables the Bahmni EHR standard
feature set. The full data model of Bahmni EHR can be seen in Figure 1 of the
appendix.

OpenELIS uses a object-relational data model, supported by the PostgreSQL Object-
Relational Database Management System (ORDBMS). In the Bahmni project, Post-
greSQL is also used for supporting OpenERP, dcm4chee and PACS Integration Service
data models [73], nevertheless, these services are not used in this implementation. The
data model of OpenELIS is represented in a object-relational manner, composed of 184

50

tables. For easier overview of the data model, we can segment it into 8 basic domains
directly related to our requirements:

• Person: Domain of information that identifies a person.

• Patient: Domain that comprises patient information.

• Orders: Domain of laboratory orders. An order can exist either from a request
coming from Bahmni EHR side or from local creation. Orders associate with
registered samples, the tests made, their results and validation.

• Analysis: Domain that comprises the analysis of given tests and its results.

• Organizations: Domain of organizations that have orders on the laboratory system.

• User: Domain comprised of users that can interact with the laboratory system.

• Business: Domain that comprises OpenELIS’ administrative part, like system
roles and users clearance.

• System operation: Domain that refers to the system itself and is comprised of the
interoperability, system configuration and schema versioning, e.g. events, quartz
triggers.

In a standard Bahmni installation the database schema is combined with pre-
constructed data that enables OpenELIS standard feature set. The Liquibase library is
also used for management of different OpenELIS schema versions, in the same way as
done for Bahmni EHR.

OpenELIS’ full data model can be seen in Figure 2 of the appendix.

5.4 bahmni ehr-openelis interoperability
The feature set of Bahmni EHR is complemented with a separate platform for the

laboratory sub-system, called OpenELIS. Both platforms interact together, providing
a seamless work-flow through them with separation of responsibilities A doctor on
the Bahmni EHR side can, for example request laboratory orders to be made to a
patient, and these are transparently sent to the OpenELIS subsystem, where for example
a laboratory clerk will view and process them. The data produced on each system
that is needed on the other is sent through the Atom Publishing Protocol. In the
designated protocol, a producer acts as a server, broadcasting events to whoever listens
on them, and consumers act as clients, consuming these events (Figure 5.3). In our
implementation, both OpenELIS and Bahmni EHR act as server and client, since both
produce and consume information from one another.

51

Figure 5.3: Overview of how feed producers and clients work

A feed holds multiple entries in series to a maximum of M entries, which is a
configuration of the Atom publisher modules of Bahmni. In a feed, once this number
of entries is reached, the feed is said to be full and another feed is created and linked
using the previous ’next’ field, and this new feed links to it using its ’previous’ field
(Figure 5.4).

Figure 5.4: Representation of a feed and feed linkage

Each event is defined in XML using the ATOM Syndication Format, for the need of
having syndicated events between this two different applications.

An event is an entity detailed as seen in Table 5.1:

Table 5.1: Bahmni EHR-OpenELIS event fields

Field Description
UUID Alpha-numeric identifier which uniquely identifies an event.
Title Identifies the event in human readable form.
URI URI pointing to an accessible location containing the content depicted by the event.
Timestamp Time at which the event was created.
Contents The data encapsulated by the event as string.

For some events, e.g. ones which has as category either Patient or Laboratory
(results), URI references an HTTP obtainable resource through REST protocol holding
the specific data the event designates.

52

Bahmni EHR uses AtomFeed 10, a open source implementation of the ATOM protocol
in JAVA, licensed in Apache Version 2.0. This implementation is used by the Atom Feed
OpenMRS module (openmrs-atomfeed), responsible for publishing events produced by
Bahmni EHR. The OpenMRS module that consumes events from OpenELIS to Bahmni
EHR side is OpenELIS Atom Feed Client (openelis-atomfeed-client).

Bahmni’s OpenELIS fork includes an Atom server and client component integrated
with the platform events, working in the same manner as depicted for Bahmni EHR.
Also, a REST endpoint is available in order to give access to Bahmni EHR to resources
present on OpenELIS side, only referenced on some specific event types.

The persistent nature of the events in Bahmni EHR is achieved through an extension
of the OpenMRS data model, made by the Atom Feed OpenMRS modules on their
initial run. The same extension was made for OpenELIS data model. Persistence is
necessary since the clients don’t need to be active at the time of a event broadcast to
consume it, thus, in their respective databases, producers keep the information needed
for generating events while consuming keep track of the last event received, processed
or failed.

To familiarize the reader with the subsequent event logic processing without under-
going an exhaustive analysis, we present just the main extension to the data module
for interoperability, represented by tables while explaining their need11.:

• event_records: This table holds the events to be published by Atom Feed for
others to consume. Besides having the depicted entry fields, the table has an extra
column named ’category’, used to indicate the type of the event (e.g. patient,
encounter, lab).

• markers: This table holds marker entries referencing feed URIs indicating the
last processed records. This way the client module can know what he already
consumed and get the next new entry in the feed or the next new feed when the
previous is full.

• event_records_offset_marker: This table holds maker entries of the records
cached for faster event process by the consumer.

• failed_events: This table holds events which could not be consumed and are
consequently marked as failed. They are retried later by a different event handler.

An event represents its domain by a field named category. The categories used
belong to a well-defined set, allowing consumers to fetch events of the domains they need
by filtering them by the categories they want. The categories of the events created and

10https://github.com/ICT4H/atomfeed
11https://bahmni.atlassian.net/wiki/display/BAH/Atom+Feed+Based+Synchronization+

in+Bahmni

53

https://github.com/ICT4H/atomfeed
https://bahmni.atlassian.net/wiki/display/BAH/Atom+Feed+Based+Synchronization+in+Bahmni
https://bahmni.atlassian.net/wiki/display/BAH/Atom+Feed+Based+Synchronization+in+Bahmni

published by OpenMRS or OpenELIS for their counter-part consumption, concerning
our implementation, are:

• Patient: For updating changes to the patients’ basic information or address.

• Relationship: Event that carries inter-patient relations, e.g. father, sibling.

• Encounter: Event detailing an open or closed encounter where observations were
collected.

• Lab: Events pertaining laboratory, like test results or validation, and new or
updated definitions of tests.

5.5 network and security
The security of the solution is comprised of different domains - the domain of service

usage, comprehending the EHR interfaces provided to the end-users, including Bahmni
EHR, OpenMRS and the OpenELIS platforms, and the domain of server administration,
comprehending the system services accessible to server administrators.

The access management model in our EHR implementation follows RBAC, where
a user is given access to interact with resources based on roles assigned to him which
define access to resources [74]. In Bahmni EHR, this security model is made effective
by the OpenMRS platform.

In Bahmni EHR one needs to be a user to interact with the system. A user in the
system is either associated with a person or is an independent user used by software
systems. In this security model, users access is defined based on the different system
privileges associated with them.

A privilege is the basic unit that defines the access control to a particular feature,
e.g. "Edit Observations" or "Get Orders". Privileges can be grouped under an umbrella
called role, with a more generic name to what access it gives. New roles can be created
as an extension of previous roles by a mechanism of inheritance, where the active
privileges of the parent role are also active on the new role. Later modification to the
list of active privileges on a parent role also propagate to its children inherited privileges
list. By themselves, privileges and roles don’t do anything on systems interaction access
control, as they need to be associated to a user to complete the model. Multiple roles
assigned to an user defines his clearance on the system. A OpenMRS module can add
new privileges to the OpenMRS privileges list as another base for its functionality and
resources’ access control.

54

Figure 5.5: Relationship between user, roles and privileges in Bahmni EHR

A system administrator can assign a set of roles to a user to increase access to new
resource domains. The Figure 5.6 shows the roles in Gondar EHR, where some are
provided in a Bahmni standard installation while others are custom.

Figure 5.6: List of access roles, some of which are custom.

OpenELIS also adopts the same access management model. In contrast with Bahmni
EHR, roles in OpenELIS are not composed of smaller units, they are instead the single
unit of access control. Despite OpenELIS not having a privilege grouping feature or
role inheritance, its underlying security model remains the same as the Bahmni EHR
model, by mapping roles in the first one to privileges in the latter.

Security also applies to the server system and what services it exposes to the network.
The implementation server exposes its services and functionality remotely on the

network, e.g. for providing the Bahmni EHR or OpenELIS front ends to a remote
location. For a production environment it would be more secure to only allow communi-
cation with the system services from the local network by adjusting the its architecture
to not bridge access from outside or alternatively firewall it to the WAN side. Since
the services will then be inaccessible from outside the server local network, this creates
hindrances, e.g. a doctor traveling to another city would not be able to update a
patients’ information remotely.

This issue can be solved with a secure Virtual Private Network (VPN) that bridges
an authorized client accessing from the Wide Area Network (WAN) with the server
private network. The server services can be set to only be accessible from the private
network and a firewall on the server machine can enforce this behavior, allowing only the
required communications. In our solution, platforms are exposed to end-users through
port 80 or 443 for either HTTP redirection or HTTPS communication respectively,

55

and port 23 is exposed for SSH for server administration. The server firewall blocks
outbound communication to all the other remaining TCP or UDP ports of the server.

Figure 5.7: VPN entry point with firewall, and server firewall

Multiple user-space applications will be running in the system, each with a different
purpose. A system administrator can improve his systems security better by giving just
enough access to the applications running. This can be applied to the application layer
by a sandbox layer that controls access from and to all resources in order to secure
applications from other applications trying to tamper with them or with the system.

In our implementation this is achieved by using SELinux. SELinux adds a layer of
security with policies in the Linux kernel by supervising access to the system resources.
Figure 5.8 illustrates the decision process logic12. SELinux comes already installed and
enabled by default in a standard installation of CentOS. Specific policies needed to be
added for our solution to work after installation, which can be seen in the configuration
section.

12https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/
Deployment_Guide/ch-selinux.html

56

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/ch-selinux.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/ch-selinux.html

Figure 5.8: SELinux decision process logic

Remote access to a production environment is often needed for administration or
maintenance tasks. Enabling remote access requires not only a secure authorization
methods, but also policies for login in.

If the enabled authorization methods contain a password-based method, then, brute
force or dictionary attacks are possible. The use of public-key cryptography for remote
authentication to the SSH service is a proven secure method that greatly invalidates
this kind of attacks.

Having a strong password, containing mixed letters, numbers and symbols is one
way to invalidate plain dictionary attacks, but in the case of a brute forcing attack, an
attacker might have success if the size of a users’ password is small or if it is made of
simple combination of characters without mixing types. The default SSH installation
under CentOS is not secured against this kind of attack since an attacker can try as
many passwords as the network communication and the SSH authentication processing
overhead allow.

Fail2Ban is a free and open-source software (FOSS) software framework for protecting
against brute force attacks. In order to refrain an attacker attempt to successfully login
by exploiting password-based authentication methods that contain insecure passwords,
Fail2Ban is one part-solution that was enabled for SSH authentication, by restricting
the number of login attempts coming of a given IP address. With Fail2Ban set up,
after a defined number of failed attempts, the IP address is banned for a duration, and
for that duration the packets are dropped at the network layer by Netfilter subsystem,
the second-part of the solution. This invalidates brute-force attacks from the same IP
address, and despite distributed attacks (many organized login attempts from different
IP addresses) being possible, they are greatly restrained.

57

5.6 off-line support
The client-server model used in Bahmni requires a network for the interactions

between both parties. At a time of an interaction by an authenticated user, presence
of a network is required for making the changes or operations at that moment. In
low-development countries interruptions to the network occur frequently, either by
failure of the network itself or as result of external factors like power outages.

When failures occur, sometimes a user loses filled-in data by submitting it unknow-
ingly while the connection to the server was down. In order to avoid this, Bahmni EHR
can present an active notification in the user-interface with the status of the connection.

Support for using some of the Bahmni EHR functionality while off-line can also be
achieved.

Bahmni provides two client applications for off-line support: a browser extension
and a mobile application. These make some features available off-line by packaging in
the client the corresponding user-interfaces and logic. This does not apply only to static
content; dynamic content like for instance patient information can also be pre-loaded
beforehand so that off-line features have the necessary data to work with. There is
also support for caching custom form templates off-line. This can be added through
configuration on the server-side, and can be seen below in the "Configuring off-line
support" section.

While using the client application, interactions are queued in order. Periodically
the client checks if the network recovered by trying to re-establish a connection with
the server. When the network recovers, the client can send all the queued interactions
to the server, effectively making the changes that were previously on hold.

5.7 installation
Focusing on the server-side, the solution is installed on computer hardware satisfying

the software implementation requirements. This comprises the operating system and
required software installation, as well the configuration and deployment of the EHR
software as described in the previous sections.

The version of Bahmni used in this implementation, is Bahmni version 0.80. This
version brings and OpenMRS version 1.12-dev, an in-development version that adds
some new features but which is not OpenMRS platform-stable yet. Several minimum
hardware components are required for a successful implementation as described. A
display monitor connected to the server hardware is not required, but can be useful for
local installation or troubleshooting. The CPU must respect either the i386 or IA64
specification, and although the RAM required to run a full Bahmni installation is 8GB,

58

on our implementation 4GB is the minimum. Disk free-space should be at least 10GB
for the installation, and be scaled accordingly to contain the expected produced data.
For client-server interaction, network support is necessary and connections between
both devices should be possible, at least the ones initiated from client to server.

The Bahmni project provides a repository with a set of RPM Package Manager
(RPM)s for installing the different parts of the Bahmni software using a compatible
RPM package manager. The following components were used in our solution:

• bahmni-web is a package that installs Apache HTTP Server version 2.x, the con-
figuration that sets the default implementation behavior and installs the Bahmni
MRS front end. The package files are placed under "/var/www", the common
directory for Apache HTTP Server data, and the service name associated with it
is httpd, Apache. The base default config is a default configuration for Bahmni
EHR, which includes customizable front end applications, internationalization
files, document and report templates, all which can be adapted to suit specific
use cases.

• openmrs RPM brings an embedded Tomcat server and a customized version of
OpenMRS, and is already configured to deploy the OpenMRS platform on it.

• bahmni-emr RPM is the set of OpenMRS modules critical for bahmni functionality
and OpenMRS integration, called Bahmni core modules, that installs under the
modules folder in "/opt/openmrs". Includes openmrs-atomfeed.omod (publisher
for openmrs info).

• bahmni-lab RPM also brings an embedded Tomcat server already configured for
deploying the OpenELIS laboratory system. This package places its files under
"/opt/bahmni-lab".

• bahmni-lab-connect is the package that provides an Atom Feed Client, responsible
for providing and consuming background feeds between OpenELIS and OpenMRS.
The component is an OpenMRS module, thus requiring the OpenMRS platform
to work. It is used for interoperability between Bahmni EHR and OpenELIS and
OpenELIS interacts with this module indirectly. The dashed line in Figure 5.9
represents this relationship.

• bahmni-reports RPM provides the reporting sub-system via a webapp which uses
the DynamicReports library for reporting generation. The webapp runs on an
embedded Tomcat server. The package places its content under "/opt/bahmni-
reports".

• bahmni-event-log-service RPM provides the event-log sub-system via a webapp for
supporting Bahmni off-line synchronization. The webapp runs on an embedded

59

Tomcat server. The package places its content under "/opt/bahmni-event-log-
service".

Java Runtime Environment, MySQL and PostgreSQL are low-level dependencies
of the project components. The first one is a direct dependency of Tomcat and the
others are DBMS that give the persistence support for Bahmni EHR and OpenELIS
respectively. The Bahmni project provides two database dumps which besides the
database schema, contains filled data for a standard Bahmni EHR and OpenELIS
configuration. Figure 5.9 shows the components used and the dependencies between
them (represented by the connecting lines). In the figure, the arrow represents the
direction of the dependency.

Figure 5.9: Bahmni components used on the solution implementation.

There are three provided ways to automate an installation of Bahmni and its
environment: a bash script, Ansible setup, and Vagrant image. The first two installation
methods require a working GNU/Linux distribution set up before their usage. The
first is a bash script that relies only on the GNU tools of the operating system and a

60

compatible RPM package manager. The latter, used on the newer Bahmni versions, is
built using the Ansible framework. Ansible is a FOSS platform that can be used for
creating parametrized setup configurations and deploy those configurations on a wide
array of different machines. The third being Vagrant, that uses either one of the first
methods and gives as output a full virtual machine image.

The first methods allows more flexible setups because one can choose the underlying
RPM-based GNU/Linux distribution, or use an already deployed one. For the imple-
mentation of our solution, we chose CentOS 6.7 as the GNU/Linux distribution, also
recommended by the Bahmni project. The provided bash script can be easily adapted
to install only the desired components. The script is responsible for making some
adjustments to PostgreSQL DBMS configuration and also fetches using the wget tool
the database dumps provided by Bahmni project and installs them under the respective
DBMS.

The second method is through the Ansible setup system, which is the method
that Bahmni will adopt for the newer versions. In Ansible setup configuration made
for Bahmni, it is possible to set well-documented configuration parameters of the
installation process to desired values and deploy it easily on different machines, where
the selected components will be installed and configured as it was previously defined.
Existing configuration parameters are, for instance, listen ports to use for each platform,
OpenMRS modules to install additionally and authentication parameters like passwords
or certificates, among others. This new install method also lowers the differences between
implementations so that implementers experience less issues resultant of installation or
configuration methods.

The Bahmni project also provides a method of deployment automation that outputs
a Vagrant image as result, using the Vagrant tool.

Vagrant gives a way to create a virtual machine image out of a well-defined machine
environment. Vagrant is responsible for applying customizations to virtual machine
parameters, e.g. specific network configurations, shared directories or authentication
setup. In the Vagrant Bahmni installation, Vagrant relies on Packer. Packer is a FOSS
tool that enables the automated creation of machine images and software provisioning
out of a single configuration file. In the Vagrant Bahmni installation, Packer is used
transparently for setting up the operating system by using the GNU/Linux CentOS 6.7
distribution, and for installing and configuring the software within. For the latter, it
relies on a configured provisioner which, in the case of Bahmni software is either the bash
installation script or the Ansible tool. After Packer finishes configuring the machine,
the management of it is passed again to Vagrant which makes final adjustments before
outputting a Vagrant-compatible virtual machine image. The resultant image is not
only useful to developers, but also to implementers for the standard and well-configured
environment, more easily achieved and less prone to miss-configurations.

61

In any of the above methods, after the Bahmni installation, there is a step where
both MySQL and PostgreSQL databases are set under the respective DBMS. These
databases, two dumps comprised of schema and data, are retrieved from a remote
repository managed by the Bahmni project, and part of the official installation. At
the moment (for Bahmni 0.80 version), there is not a clean database dump (without
test data) provided. There is an undergoing efforts to change this in order to provide
in the future a database dump with just the necessary information and no test data.
Nonetheless, a custom bash script adapted from one distributed by Bahmni project was
made, which interfaces with both MySQL and PostgreSQL DBMSs removes this extra
test data from openmrs and clinlims databases [75] [76]. The custom script resets the
auto-incrementing IDs and history of modifications, truncates the database tables for
test data including patient’s personal information, encounters, orders, samples, test
results and so on and corrects the event sub-system correspondent to the interoperability
between the platforms so that there is no data buffered for exchange and processing on/to
the complementary platform. On our implementation, at the end of the installation
process, the databases don’t contain any test data.

The software package of each service brings a bash script file for the traditional
SysVinit system service control of GNU/Linux that is installed under "/etc/init.d/",
and can be used for starting, stopping or enabling at boot the installed service.

On the fist run of the OpenMRS platform, the Liquibase tool will check if the
database schema of openmrs database is the latest available, by comparing the new
schema version that the software installation brings with the schema version present
in the database’s DBMS. If the installation software provides a higher version of the
schema, an update to the database schema of openmrs is issued and the database is
migrated to the new version.

For providing Bahmni off-line support, manual installation of Bahmni event log
service component is required if using installation via the official methods. It is present
in the repository which is added on installation to the operating system’s package
manager. Therefore issuing an installation instruction with the component name as
"bahmni-event-log-service" should be enough for installing it locally.

5.8 configuration and customization
After the task of software installation is done, configurations to each component are

made in order to satisfy the system requirements for Gondar’s LRTC. The results are
depicted in the following chapter.

An extra OpenMRS module required besides the ones already provided by Bahmni
EHR is the Appointments module, which is needed for adding appointment scheduling

62

functionality to the platform. The module depends on the modern UI and its supporting
modules, therefore they also need to be installed.

5.8.1 patients attributes and registration form
The patient registration in Bahmni EHR has been adapted and extended to support

Gondar’s LRTC paper-based registration form.
A new patient Unique identifier (UID) was added to the platform and configured in

such a way that it is automatically assigned to a new patient on a registration in Gondar.
Creating a new UID can be done through the OpenMRS legacy UI by configuring an
Identifier (ID) generator which specifies the ID format, followed by a definition of an
identifier source, Gondar ID, which makes use of this generator. In our case, the UID
is configured as a mix of letters and digits, starting with a prefix defined as the three
letters GLC and followed by 6 minimum digits, which can go up to 9 in length. The
UID is auto-incrementing, meaning the next patient registered will have the next UID
in the sequence compared to the one attributed to the previous registered patient.

This ID references a patient through all the Bahmni systems. Exchanging patients’
information to OpenELIS makes use of the same ID for referencing patients between
both platforms. The patient ID is also required to be recreated on OpenELIS side,
which can be done in OpenELIS administration area.

Gondar’s LRTC registration clerk gives a hospital chart number to a patient on
registration for associating multiple records with the same person. This ID is composed
by 5 or 6 digits followed by back-slash and the year of registration. The former ID used
in Gondar’s, called hospital chart number, is also added to the system and kept for
compatibility reasons for patients which have been previously registered through their
registration books.

Customizing registration page or search features is done by modifying app.json in
default-config/openmrs/apps/clinical/app.json.

Support for the former ID was made as a person attribute. If an attribute requires to
be unique between patients, this can be done by setting the supporting structure to be
a concept or a custom a database field that only accepts unique values. The attributes
can be validated against a pattern, which can be defined by a regular expression in
app.json, as can be seen in the listing.

"fieldValidation" : {
"Telephone␣Number" : {"pattern" : "[0-9]{9,14}" , "errorMessage" : "Should␣

be␣at␣least␣9␣numbers␣(country␣code␣is␣+251)" } ,
"postalCode" : {"pattern" : "[0-9]{1,}" , "errorMessage" : "Should␣contain␣

only␣numbers"} ,

63

"glcidformer" : {"pattern" : "[0-9]{5,6}\/[0-9]{2}" , "errorMessage" :
"Should␣be␣5␣or␣6␣digits ,␣slash ,␣year␣of␣registration"}

} ,

The mandatory registration fee field, enabled by default, was disabled by setting
the required value to false as seen in the following code (app.json).

"conceptSetUI" : {
"REGISTRATION␣FEES" : {
"required" : false ,
"label" : "Fee"
} ,

The search can be extended to support other fields as search parameters. was
extended to support searching using a patient’s name in his local language, and filtering
by the village field of the addressing system, which can be done.

"patientSearch" : {
"address" : {

"label" : "Village" ,
"placeholder" : "Search␣by␣village" ,
"field" : "address3"

} ,
"customAttributes" : {

"label" : "Amharic␣name" ,
"placeholder" : "Amharic␣given ,␣middle␣or␣family␣name" ,
"fields" : ["givenNameLocal" , "middleNameLocal" , "familyNameLocal"]

}

In the health area, registration forms generally have some questions for capturing
more information regarding to a patient’s health or demographics. Bahmni supports
custom person attributes, where questions and the type of its data can be specified.
A patient attribute always use the same field in the database for storing the most
recent answer value, therefore there is no track of answer history in this feature. These
questions are present to a patient during his registration, and answers should not be
subjective to change with time, hence should only be used only for questions where
only the most recent value matters.

Custom attributes can be defined data types or a OpenMRS concept. In the case of
the latter, the "Foreign Key" field be the ID of the wanted concept to map. A privilege
for editing this attribute can be set so that only users with assigned role matching that
privilege can edit a given person attribute (Figure 5.10).

64

Figure 5.10: Adding a person custom attribute

Figure 5.11 shows the creation of the attribute "Occupation", with format of type
"org.openmrs.concept", used for creating an attribute referencing an OpenMRS concept.
The foreign key field in this case is a reference to an OpenMRS concept ID already
created, pointing to the concept Occupation.

65

Figure 5.11: Custom OpenMRS concept "Occupation"

The concept which the attribute Occupation points to, can be created through the
dictionary section (Figure 5.12). Other previously created concepts were assigned as
the answers to this concept. This defines which values can be set on an instance of an
attribute of this type.

Figure 5.12: Person attribute "Occupation", mapped to a custom OpenMRS concept

A list with some of attributes configured for Gondar can be seen in Figure 5.13.
Attributes which contain a strike line over their text are marked as disabled, meaning

66

they are not displayed on the registration form. Attributes can be marked as required,
meaning that data entry is mandatory on registration, e.g. "Able to work".

Figure 5.13: Customized person attributes

The registration page allows printing of a card for handing out to the pa-
tient. The hand-out can be customized with patient recommendations in local
languages and extended to support other fields and details. This was done by
editing (accordingly) the files: print.html and print_local.html under "default-
config/openmrs/apps/registration/registrationCardLayout".

5.8.2 address system
Each country has some governance system that defines how zones and boundaries are

set in the country, leading to the creation of multiple addressing systems over different
countries. For electronic health records, the addressing system supported should match
the one of a patients’ country. The address hierarchy in Ethiopia starts with regions.
These are sub-divided into zones, which are sub-divided into districts. Under districts is
the smallest administrative unit, the kebele. Kebeles delimit a group of people, similar
to a ward. This hierarchy is represented on Figure 5.14.

Figure 5.14: The common address hierarchy in Ethiopia

For providing support to this addressing system, an address template in the XML
format is built for Bahmni EHR (Figure 5.15). This template defines each field name and

67

mapping to a corresponding database field which gives support to addresses’ instances.
The template can also define the layout of the fields, like order and size of the text
fields for legacy and modern UI, however ignored in Bahmni EHR.

Figure 5.15: Custom XML address template for Ethiopia.

OpenMRS provides a user-interface in the legacy UI for building the address system.
After the template is submitted to OpenMRS, the fields become defined but do not have
a hierarchical relationship established between them. In the address system management
of legacy UI, a user can specify the hierarchy between fields while OpenMRS deals with
the internal entities associations automatically. Any address field can be marked as
required, providing a minimum precision to addresses registered for a person. Fields
down to kebele level are marked as required but not the house number field, since in
Ethiopia not all addresses contain this field.

Figure 5.16: Hierarchy and mapping of an address field

Bahmni EHR supports auto-completion of address fields which are provided based
on a user customized hierarchical list of addresses. A representation of this can be seen
in Figure 5.17. Ethiopia contains 9 regions which are divided into a total of 68 zones,
sub-divided into more than 600 districts. Some administrative divisions do not follow
the depicted hierarchy in a straight manner.

68

Figure 5.17: Expanded mapped addressing system

The support for providing address hierarchy data to the OpenMRS platform is also
available via the legacy UI. Firstly, a delimiter-separated values file containing addresses
represented in an hierarchical manner needs to be created. In this delimiter-separated
values (DSV) file, the first row is the first and most outer-level, the second row is one
level down under in the hierarchy where the first row value is its parent, and so on. In
our implementation, the delimiter used for the DSV file is the special symbol ’|’, used
through all the document since it is a unique character that is not used in any address
value of Ethiopia. In our address data file, we have addressed hierarchically 11 regions,
93 zones and 749 districts of Ethiopia (Figure 5.18). This differs from the current official
system as some former districts and zones were included for backwards-compatibility
with the older address system used before 1991. The hierarchy of the addressing system
in Ethiopia goes deeper but it would require too much effort to map and structure the
remaining fields in the file.

69

Figure 5.18: Address hierarchy file created for Ethiopia addressing system

5.8.3 appointments
In order to have working appointments functionality in Bahmni EHR, three steps

need to be done.
The first step is to modify the Bahmni EHR data model, by adding two fields

to the person attribute types: "Telephone Number" and "Unknown Patient", which
are required by the appointments module. This can be done directly on the openmrs
database by using SQL insert statements or alternatively by creating (and running) a
Liquibase change set with this changes to be added, which is advantageous because it
keeps a consistent and upgradeable data model whenever there are major changes to it
e.g. upstream changes like in the case of a data model update (Figure 5.19).

70

Figure 5.19: Alternative to the above method by using a Liquibase change set

The second one is to enable managed access to the appointments module functionality
on the Bahmni EHR user-interface, the following JSON code shown (Figure 5.20) needs
to be added to the file extension.json (present in /default-config/openmrs/apps/home/).

Figure 5.20: Configuration for integrating the appointments feature with the Bahmni
EHR user-interface

Finally, in order to interact with the module, users that will require in-
teraction with the appointment features need to be associated with the role
"App:appointmentschedulingui.home". The module brings other roles for managing
access to other appointments functionalities, which also need assignment to users that
require them. The URL field in the code points to the root point of the appointments
module user-interface, from which the functionality is mapped. This mapped URL is
under the modern UI interface, which the appointments module depends on.

5.8.4 providing custom forms
In Bahmni EHR, the method with which the form-subsystem defines forms is

supported by the OpenMRS concept dictionary. Both observations and laboratory tests
can be defined by using the dictionary, by configuring the respective defining concepts.
Once a new concept defining a form is created, adding it to the observations area is done

71

by making it an answer of the concept named "All Observation Templates". Concepts
defining panel tests can be added as answer to the concepts relevant to laboratory tests,
either by categorizing them under the concepts of "Panel concept sets" or "All tests and
panels" adds it to the respective section laboratory orders’ area.

The interoperability support between Bahmni EHR and OpenELIS not only syn-
chronizes order requests and results, but also the laboratory tests themselves, i.e., the
structures that define them. When a user defines a new or an existent laboratory test
in Bahmni EHR, the definition is sent and replicated on OpenELIS and vice-versa.

5.8.5 enabling off-line features
In order to enable the active notification for network status on the client, modifica-

tions need to be done in the file app.json in default-config/openmrs/apps/clinical/:

{
"config" : {

"networkConnectivity" : {
"showNetworkStatusMessage" : true ,
"networkStatusCheckInterval" : 5000

}
}

}

This is achieved by setting the field "showNetworkStatusMessage" to the value "true".
Optionally a interval for polling the connection status can also be set (in milisseconds)
on the field "networkStatusCheckInterval".

Off-line support is enabled in the server by the installation of the event-log service.
Off-line support of some dynamic functionality on the client applications requires

that given supporting structures and data is available client-side. These can include for
instance the observation templates. The supporting structures to be exported are the
concepts that define each observation form. The integration is automatic but requires
making the server aware of which structures are to be exported. This can be achieved
by running a python script containing this logic. 13.

After running the script, these concepts become marked in the database and are
automatically exported via the event-log service to its clients when needed.

13https://github.com/Bahmni/event-log-service/blob/master/
event-log-service-webapp/src/main/resources/sql-scripts/copyOfflineConcepts.py

72

https://github.com/Bahmni/event-log-service/blob/master/event-log-service-webapp/src/main/resources/sql-scripts/copyOfflineConcepts.py
https://github.com/Bahmni/event-log-service/blob/master/event-log-service-webapp/src/main/resources/sql-scripts/copyOfflineConcepts.py

5.8.6 security configuration
Before entering production, some configurations for enhancing the server security

and Bahmni login policies should be made.

Two-factor authentication
Bahmni EHR includes support for additional login protection. In Bahmni EHR, users
and the system itself can benefit of added security mechanisms in case of vulnerable
authentication credentials, e.g. in the case that given user credentials are known to an
unwanted person. This can be done user-wide, by enabling two factor authentication on
the accounts. In Bahmni EHR, the second factor is a one-time-password which is sent
to the user through Short Message Service (SMS). The system requires configuration
of a compatible SMS gateway for sending the messages, and each user account requires
entry of a phone number. In the case that any of these fails, the user is unable to login.

The SMS gateway can be added to Bahmni through the creation of a plug-in for
the Two factor authentication (2FA) sub-system. Bahmni project provides a plug-in
that connects to a third-party service, https://smsgateway.me, which leverages the
sending of SMS to an actual phone with that capability. 14

The second step is to add a phone number for each user account, however since
there is no way for configuring a telephone number through the user-interface, it needs
to be added directly on the database. This can be done by executing, for example,
the following Structured Query Language (SQL) statement in the ’openmrs’ database,
which adds a phone number and associates it with the user "doctor1":

INSERT INTO contact (user_name , country_code , mobile_number)
values (’doctor1’ , ’251’ , ’9123456’) ;

Additionally, the role "bypass2fa" needs to be assigned to users which cannot use
2FA, for example, the reports-user used by the reports module.

Optionally, the One-time-password (OTP) generated by 2FA has some configurable
parameters which can increase or relax its security, like code expiration time (minutes)
and length and maximum number of accepted attempts and retries, with default values
15, 6, 3, 3 respectively.

User-space isolation
The example vagrant machine provided by the Bahmni project that deploys Bahmni’s
version 0.80 comes with SELinux security policy set with the permissive value, effectively
not enforcing any security policy provided by this subsystem. However, the GNU/Linux

14sms-gate-way-me plug-in: https://github.com/Bahmni/bahmni-sms-plugins/

73

https://smsgateway.me
https://github.com/Bahmni/bahmni-sms-plugins/

distribution used, CentOS, comes with SELinux enabled by default, with the security
policy set to enforcing, which is preferred to keep. However, preserving this configuration
value created some issues when running Bahmni EHR because some components could
not communicate since SELinux would block the connection. The result was that Bahmni
could not access the OpenMRS backend, making its web interface output an access error.
Solving this issue was overcome by setting the role "httpd_can_network_connect" to
enabled. This role is assigned to the Apache HTTP Server, so enabling it allowed
Apache to communicate with the OpenMRS backend that is running on Tomcat, in our
case, on the same machine.

Figure 5.21: SELinux configuration file ’conf’ in /etc/selinux/

SSH authentication policy
In order to configure an authentication policy, Fail2Ban was installed in the server.
Fail2Ban is configured by the file present in /etc/fail2ban/jail.local. It uses the Netfilter
subsystem that is already configured in CentOS.

Figure 5.22: SELinux configuration file ’jail.local’ in /etc/fail2ban/

The bantime configuration parameter is responsible for the period in which a client
that tried authenticate himself during a findtime value and failed a number of times
defined in the maxretry configuration, is banned from authenticating again. The figure

74

shows that the configuration was made so that the client will be banned for one hour,
if he failed to authenticate 5 times in a duration of 10 minutes or less.

Server firewall
Firewalling the server at the operating system level can be provided by Netfilter.
Netfilter is a networking subsystem of the Linux kernel that provides stateful or stateless
packet filtering, as well as NAT and IP masquerading services15. This subsystem can
be controlled by using the IPTables tool. It comes set by default in CentOS and with
standard firewall rules. For the EHR solution, new rules were configured for white
listing the ports necessary for the EHR systems.

Software updates
As security vulnerabilities are identified and fixed in the software used in the CentOS
distribution, new packages are distributed through the respective repositories. The
same happens for new releases of the Bahmni software, which when pushed through
the respective repository, are then upgradeable using the same distribution’s package
manager. Administrative intervention is required in case of any technical difficulties or
for issuing the update of system software for keeping the system secure.

15https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/
Deployment_Guide/ch-fw.html

75

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/ch-fw.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/ch-fw.html

chapter 6
Results

In this chapter we present the deployed solution, Gondar EHR System, implemented
as seen in the previous chapter. The results presented show what is changed for this
implementation when compared to a standard Bahmni implementation. Some features
that correspond to given functional requirements but that were not modified in some
way are not presented (for instance, the reporting functionality or patient’s document
management). The implementation is set up on a managed server running CentOS
6.7 64-bit on a quad-core Intel Xeon X5650 @ 2.67GHz, with 8 GB of RAM assigned
to the operating system and 100GB of disk space, divided in half to two Extended-4
file system partitions, 50GB for the root directory and another 50GB partition for the
home directory.

6.1 users and roles
Users are created with associations to system-present roles that dictate what the

user can do in that system. The roles list is exhaustive, divided in groups of features,
subdivided in access conditions related to those features, enabling a system administrator
to create different users with different fields of activity.

The web interface presents an unverified user with a login screen. A user specifies
the credentials of his account in order to access the Gondar EHR system. The location
parameter associates the selected location to actions that are made during the user’s
session, for instance, laboratory tests ordered from the consultation office.

The web interface presents the main panel to an authorized user where the different
areas of the system are represented by feature tiles. These are available if they are

77

configured as so in the implementation and based on the user access permissions. The
system limits the user access based on the roles associated with his account. Figure 6.1
shows all the feature tiles available, since all the existent system roles are associated
with this user. A staff member from another field of activity should be assigned roles
that match his work-counterpart. For instance, a user representing a registrant clerk
should be given roles corresponding to registration functionality, which would also make
available to him the feature tile "Registration".

Figure 6.1: Gondar EHR main page, presenting all the available feature tiles.

The system administrator, or a user with the assigned roles "Edit User" or "Edit
Privilege", is responsible for user creation and role assigning. Figure 6.2 shows some
users with the different tasks that have been associated with them.

Figure 6.2: List of users of Bahmni EHR and their associated roles. Includes the created
users for doctor, nurse and registrant members.

The administration area of the system allows an administrator to create multiple
users, and assign roles to them. This allows designing and mapping real-life staff roles
to users within the system.

78

For Gondar EHR three new users were created: doctor, nurse and a registrant. These
are representational of their work and can be used as models for creating other similar
users. For instance, the registrant user models a staff member which is responsible for
registering patients, managing appointment scheduling or in-house patient management.
For this, the registrant user is only associated to roles which only provide access to this
functionality. The main page (Figure 6.3).

Figure 6.3: Registration clerk available features in Gondar EHR

6.2 registration extension
The registration page in Gondar EHR is the entry point of patients in the system,

analog to a patient registration sheet in Gondar LRTC. In this page, the patient’s
basic information like name, gender and birth date is entered. When the birth date is
unknown, not an uncommon event in low-resource countries, an estimated age can be
set. A photograph of the patient can be optionally attached or taken through a camera
connected to the device that is presenting the web page.

The registration form allows the capture of patient names in their local language
alphabet in the field "Name in local language", and a language or alphabet translation
can be registered under "Patient Name". This gives foreigners not accustomed to the
local language alphabet an easier way to read or search a patient’s name. In Figure
6.4 we see an example of a patient being registered with his name in Amharic, the
local language in Ethiopia, and his name in Latin alphabet. The system supports the
Unicode encoding, thus multiple alphabets are supported in both fields.

79

Figure 6.4: Customized patient registration page

The registration page was also extended to support Ethiopia’s addressing system
and person attributes that were captured in Gondar LRTC from their paper forms.
One example of this is the former ID used in Gondar LRTC called "Hospital chart
number". Attributes have a regular expression that validates its pattern, for instance in
the case of the former ID the expression is: [0-9]{5,6}\/[0-9]{2}. This validation is
not ony applied on registration, but at any time of modification of the given attributes.

The addressing system was complemented by providing input choices and auto-
completion of real-world addresses in specific fields, e.g. zones, regions and districts.
The auto-completion of Ethiopian addresses works down-to-top, so, if a lower-level
address field is uniquely identified in the interface, the upper-levels are automatically
filled in, a feature that prevents human typing mistakes and speeds up the inputting of
an address. Each level can be selected independently, i.e., the user is not constrained
to start filling the lower level, he can start from the most upper-level and work down,
while the interface keeps filtering down based on his upper-level selections. It is also
helpful for keeping address fields coherent, meaning that it is less likely to have two
different textual representations of the same address.

The registration page allows printing of a card for handing out to the patient, which

80

contains a generated UID, basic personal information and/or recommendations. The
patient can bring this card when he visits the health care center to aid the reception
clerk to open his profile more quickly. The card information was extended to support
some custom fields of Gondar LRTC, like primary relative, and can also be printed
in the local language (Amharic). Figure 6.5 shows the English version of the card
customized for patients of Gondar LRTC.

Figure 6.5: Patient printable card, english version

6.3 patient management extension
In Gondar EHR, the system work-flow for creating a new patient goes through a

patients search page. Making a search for a patient before registering it minimizes the
chances of duplicate registrations.

The search uniquely identifies a patient if an UID is provided. The search page was
adapted for Gondar LRTC through the addition of other fields that can be used to
search patients, for instance by their local names (usually registered in Amharic), or by
a given village of their address (Figure 6.6).

Figure 6.6: Search page which is displayed before registration.

81

While patients have a visit opened in Gondar LRTC, they become active in the
clinical area in Gondar EHR. The search page of the clinical area can quickly provide a
preview of active patients in the clinic along with their current hospitalization status
while providing different types of filtering. An active patient can have a separate patient
clinical status in the system which represents if he is an in-patient or out-patient. Figure
6.7 shows this:

Figure 6.7: View and filter active patients in the clinic

Gondar EHR is equipped to handle hospitalization of patients, for instance, a
out-patient under visitation can be admitted to the clinic under some conditions and
become an in-patient. This flow between states is represented on the Figure 6.8.

Figure 6.8: Admit, Discharge, Transfer

Managing a patient between these states is done under consultation by using
admission, discharge and transfer controls (Figure 6.9). Discharging a patient will also
release a bed resource automatically.

82

Figure 6.9: Patient movement control, with additional notes support.

Management of in-patients and available bed resources can also be done separately
from consultation and may be available to other users since it is associated with a
separate access role (Figure 6.10).

Figure 6.10: In-patient management area, showing a patient assigned to a bed in the
"General Ward".

Support for editing the room layout and bed count in the user-interface is not
provided by Bahmni EHR. Changes to these required direct modification of the corre-
sponding entities in the database.

Bahmni EHR was extended with basic support for appointment management (Figure
6.11). Administrators can configure provider schedules, their duration and available

83

days, and other users with the right roles can schedule patients visits on provider
schedules open slots. This integration is a workaround for presenting the feature in
Bahmni EHR. It uses the OpenMRS modern UI for leveraging the appointment schedule
features from the provided module. Its access control is integrated with Bahmni EHR
and there is no need to re-login, however the user-interface is not linked back to Bahmni
EHR, which can pose a navigation issue. This can be solved by opening the feature in
a separate browser window.

Figure 6.11: Appointment scheduling user-interface (modern UI).

84

6.4 clinical extension
The clinical area in Gondar EHR provides most of medical practice management

software features and is where integration with the other platforms come useful. The
patient profile window presents an overview of patient clinical information, like latest
observations, test results from the laboratory, medications prescribed, and so on (Figure
6.12). If the patient is active in the clinical area, meaning that a visit is opened for
him, a provider can start a consultation and produce medical information associated
with that encounter.

Figure 6.12: Patient dashboard

85

One important feature in Gondar EHR is the management of laboratory orders.
This feature shows the integration between Gondar EHR and OpenELIS for achieving a
laboratory workflow encompassing several users across these two platforms. On Gondar
EHR several tests are available organized under different categories and types. Single
or multiple tests can make part of a laboratory order (Figure 6.13).

Figure 6.13: Gondar EHR available tests in laboratory orders

When in consultation, a doctor can order a set of tests which are sent automatically
to the laboratory platform. A laboratory clerk can then collect samples, execute these
tests and input the results on the respective orders in OpenELIS (Figure 6.14).

Figure 6.14: Entering results for multiple ordered tests in OpenELIS.

86

A separate member validates the test in OpenELIS, after which the results are sent
automatically back to Gondar EHR. The doctor can view the test results on the patient
profile without ever needing to access the laboratory platform, and laboratory staff can
manage the orders, results and validation in their own platform without ever needing
to access Gondar EHR. This enables segregation of responsibilities between the teams,
which have access only to the domains of information needed on each work part. This
is illustrated in Figure 6.15.

Figure 6.15: Laboratory workflow between Gondar EHR and OpenELIS and different
users on both platforms

The laboratory orders has new available tests that were created for Gondar EHR
following their laboratory forms.

The Possibility to create new laboratory tests or observation forms was one of the
requirements for the LRTC. Our EHR solution offers a system to build new observation
templates and laboratory tests just by using the concept dictionary management features
from OpenMRS legacy UI. This method works the same way as in a Bahmni EHR
standard installation and was explained briefly on the implementation section.

87

6.5 validation
Validating the Gondar EHR System can be done by demonstrating that the system

requirements are satisfied.
On a first phase, the process of validation comprises collecting data from usage of the

Gondar EHR System by staff members of Gondar’s LRTC. For this, a user-manual and
testing scenarios for Gondar EHR and OpenELIS were developed and sent to Gondar’s
LRTC staff members.

The Gondar EHR System was deployed by July, however at that time there was
lack of availability of staff to test the system. The start of an internal war in Ethiopia
and other external factors also contributed to the absence of required data for providing
a validation at the time of this thesis presentation.

Internal testing was made between members of the team to test requirements in the
prototype. The next list shows which ones are in a functional state, marked by

√
and

others which were not tested or unimplemented are unmarked.

• A. Manage patients
– A1. Register a new patient. The system should capture the following

demographic information:
√

∗ A patient must have a unique medical number within the system
√

∗ Patient’s first name, surname, name in native language (not mandatory)
√

∗ Sex, date of birth, place of birth, physical address, telephone contact
√

∗ Biometric parameters as height, weight, blood pressure, BMI (calculated).
√

∗ Allergies on medicine or products
√

∗ Social history elements: marital status, occupation, socioeconomic status,
and education.

√

∗ Hospital visit dates, admission, discharge dates (if applicable), chief
complaint, diagnosis, procedures performed.

√

– A2. Edit a patient information
√

– A3. Search a patient
√

∗ A3.1. Search patient by medical number, names.
√

• B. Out Patient Department (OPD)
– B1. Consultation chambers
– B2. Examination rooms
∗ B2.1. Send test request to the laboratory

√

∗ B2.1 Receive/have an access the laboratory test results.
√

88

– B3. Diagnostics
∗ B3.1. Laboratory must receive requests from examination room

√

∗ B3.2. Lab assistant can create requests other than from LRTC
√

∗ B3.3. Lab assistant can enter test results into the system
√

∗ B3.4. Test result must be verified by lab staff member
√

∗ B3.5. When test results have been verified, they must be available
√

• C. In Patient Department (IPD)
– C1. Set total number of beds grouping by children, men and women.
– C2. Change patient status from outdoor to indoor and vice-versa.

√

– C3. Show number of occupied and available beds.
√

• D. Alerts and appointments

– D1. Create an appointment with a physician (up to 6-9 months)
√

– D2. Send alert messages to a patient before 1-3 days of scheduled visit
– D3. Edit an appointment

√

– D4. Delete an appointment
√

• E. Reports

– E.1. The system should build reports with set period. (The list of reports
must be received by LRTC staff.)

√

• F. System logs
– F1. The system must track dates and time stamps all entries.

√

• G. Confidentiality and Security
– G1. System should support secure logon into the LRTC system.

√

– G2. System should provide analysis of audit trails and unauthorized access
attempts.

√

The system lacks a proper validation of these requirements and also the remaining
non-functional requirements. Despite this, we are confident that the implemented
system will satisfy their requirements and be used in the future at Gondar’s LRTC.

89

chapter 7
Conclusions

In this chapter we take a retrospective view of the work done, and propose opportu-
nities to its continuation.

We started by defining what constitutes an electronic health record, which techno-
logical foundations can it use or lay on, and give practical open-source examples that
can leverage its development, along with some medical standards for interoperability
with other applications. This made possible to do a reflection on the possibility of
building an EHR system for use in low-resource settings, and provided an insight into
potential issues that happen on these scenarios. From this, research was done to identify
open-source EHR software which could be used in a low-resource setting implementation,
which gave a perspective on the overall state and development progress of open-source
EHR projects. After evaluation of several software and a drawn comparison, one suitable
solution was found.

From gathered use-case scenarios of a real health-care center of a developing country,
the system requirements were defined for the low-resource setting. From these, and
assisted by all the previous investigation and further analysis of the chosen software,
the system architecture was defined along with its implementation, which gave direction
for building a prototype. This prototype was built and deployed locally with success
and provides a good basis for understanding strengths and weaknesses.

Test scenarios and manuals were developed in order to gather feedback for providing
system validation, however there was not enough data for demonstrating fulfillment of
all the system-requirements. Although we failed to provide a validation, many important
conclusions were obtained in the process.

91

7.1 future work
First and foremost the most obvious work proposed to be done future is to do

a system validation. Although the provided implementation is a working version of
Bahmni software, there are still functionalities that it provides but that were not
integrated and others which were not tested. There is a lot of potential in this solution
to build an even more advanced EHR system.

Proposed future work can be:
• Notification system: implement a flexible notification sub-system for Bahmni EHR.

The sub-system could be used by other services to provide notifications like system
messages, users communications or external events like new patient documents being
available in the PACS system or laboratory results.
• Events agenda: implement a flexible calendar sub-system for Bahmni EHR. This

would be a flexible sub-system for other services to provide actions based on certain
conditions, like generating reports and sending them by email on a set frequency.
• Development of native appointment feature for Bahmni EHR: as seen in the

system implementation, the appointment feature was integrated through a workaround
to the appointment scheduling provided in another user-interface. Providing a new
appointment management would not only provide a better user-experience but could
also provide integration with the notification sub-system above.

92

References
[1] OpenEMR. OpenEMR, [Online]. Available: http : / / www . open - emr . org (Accessed on

07/25/2016).

[2] OpenMRS. OpenMRS, [Online]. Available: http://openmrs.org/ (Accessed on 03/25/2016).

[3] N. A. Davis and M. LaCour, Health information technology. Elsevier Health Sciences, 2014.

[4] F. Trotter and D. Uhlman, Meaningful use and beyond. Farnham: O’Reilly, 2011, isbn: 978-1-
4493-0502-4 1-4493-0502-4.

[5] Open Source Initiative. Licenses by name, [Online]. Available: https://opensource.org/
licenses/alphabetical (Accessed on 03/01/2016).

[6] Apache Software Foundation. Welcome! - the apache http server project, [Online]. Available:
https://httpd.apache.org/ (Accessed on 03/31/2016).

[7] Oracle. Mysql, [Online]. Available: http://www.mysql.com/ (Accessed on 03/31/2016).

[8] T. Benson, “HL7 Version 2”, in Principles of Health Interoperability HL7 and SNOMED,
London: Springer London, 2012, pp. 101–119, isbn: 978-1-4471-2801-4. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4471-2801-4%3Csub%3E7%3C/sub%3E.

[9] G. W. Beeler, “HL7 Version 3—An object-oriented methodology for collaborative standards
development”, International journal of medical informatics, vol. 48, no. 1, pp. 151–161, 1998.

[10] D. Bender and K. Sartipi, “HL7 FHIR: An Agile and RESTful approach to healthcare information
exchange”, in Proceedings of the 26th IEEE International Symposium on Computer-Based
Medical Systems, IEEE, 2013, pp. 326–331.

[11] N. E. M. Association et al., Digital Imaging and Communications in Medicine (DICOM).: Parts
1-10. The Association, 1993.

[12] Luis Falcon. GNU Health - Summary [Blog post], [Online]. Available: http://savannah.gnu.
org/projects/health/ (Accessed on 04/10/2016).

[13] WikiBooks. GNU Health/The core module, [Online]. Available: https://en.wikibooks.org/
wiki/GNU_Health/The_core_module (Accessed on 04/10/2016).

[14] Luis Falcon. Success of GNU Health goes beyond free software [Interview], [Online]. Available:
http://opensource.com/health/13/3/interview-luis-falcon-gnu-health (Accessed on
10/10/2016).

[15] WikiBooks. GNU Health/Security, [Online]. Available: https://en.wikibooks.org/wiki/
GNU_Health/Security (Accessed on 10/10/2016).

[16] Luis Falcon. (2015). GNU Health - News: GNU Health 2.8 series released [Blog post], [Online].
Available: http://savannah.gnu.org/forum/forum.php?forum_id=8199.

93

http://www.open-emr.org
http://openmrs.org/
https://opensource.org/licenses/alphabetical
https://opensource.org/licenses/alphabetical
https://httpd.apache.org/
http://www.mysql.com/
http://dx.doi.org/10.1007/978-1-4471-2801-4%3Csub%3E7%3C/sub%3E
http://savannah.gnu.org/projects/health/
http://savannah.gnu.org/projects/health/
https://en.wikibooks.org/wiki/GNU_Health/The_core_module
https://en.wikibooks.org/wiki/GNU_Health/The_core_module
http://opensource.com/health/13/3/interview-luis-falcon-gnu-health
https://en.wikibooks.org/wiki/GNU_Health/Security
https://en.wikibooks.org/wiki/GNU_Health/Security
http://savannah.gnu.org/forum/forum.php?forum_id=8199

[17] Tryton. New Tryton release 3.8 [Blog post], [Online]. Available: http://www.tryton.org/
posts/new-tryton-release-38.html (Accessed on 10/10/2016).

[18] WikiBooks. GNU Health/Modules, [Online]. Available: https://en.wikibooks.org/wiki/
GNU_Health/Modules (Accessed on 04/10/2016).

[19] Unknown. GNU Solidario: Translation Server, [Online]. Available: http : / / translate .
gnusolidario.org/projects/GNUHEALTH/ (Accessed on 10/11/2016).

[20] Luis Falcon. GNU Health - News: GNU Health 3.0 released (Translation portal moves to Pootle)
[Blog post], [Online]. Available: http://savannah.gnu.org/forum/forum.php?forum_id=8437
(Accessed on 10/11/2016).

[21] ONC-Authorized Certification Body. OpenEMR Certification, [Online]. Available: https://
chpl.healthit.gov/#/product/43 (Accessed on 11/20/2016).

[22] Unknown. OpenEMR Success Stories, [Online]. Available: http://www.open-emr.org/wiki/
index.php/OpenEMR_Success_Stories (Accessed on 04/25/2016).

[23] OpenEMR Wiki. Patient Portal - OpenEMR, [Online]. Available: http://www.open-emr.org/
wiki/index.php/Patient_Portal (Accessed on 08/25/2016).

[24] ——, OpenEMR Form Creation Tools, [Online]. Available: http://www.open-emr.org/wiki/
index.php/OpenEMR_Form_Creation_Tools (Accessed on 07/25/2016).

[25] ——, LBV Forms - OpenEMR, [Online]. Available: http://www.open-emr.org/wiki/index.
php/LBV_Forms (Accessed on 07/25/2016).

[26] ——, Nation Notes - OpenEMR, [Online]. Available: http://www.open-emr.org/wiki/index.
php/Nation_Notes (Accessed on 07/25/2016).

[27] ——, OpenEMR XML Form Generator, [Online]. Available: http://www.open-emr.org/wiki/
index.php/OpenEMR_Xml_Form_Generator (Accessed on 07/25/2016).

[28] Sreevidya Krishna. Taking medical records into the digital age, [Online]. Available: https://www.
ibm.com/developerworks/websphere/library/techarticles/ind-openemr/ (Accessed on
11/20/2016).

[29] ViSolve, Inc. OpenEMR: Achieving DICOM Interoperability using Mirth, [Online]. Avail-
able: http : / / www . visolve . com / uploads / resources / vicareplus / OpenEMR _ DICOM _
Interoperability_using_Mirth.pdf (Accessed on 11/25/2016).

[30] OpenEMR Wiki. Codebase Security - OpenEMR, [Online]. Available: http://www.open-
emr.org/wiki/index.php/Codebase_Security (Accessed on 11/25/2016).

[31] ——, Security Assessment - OpenEMR, [Online]. Available: http://www.open-emr.org/wiki/
index.php/Security_Assessment (Accessed on 11/25/2016).

[32] ——, Encryption and Decryption of Documents - OpenEMR, [Online]. Available: www.open-
emr . org / wiki / index . php / Encryption _ and _ Decryption _ of _ Documents (Accessed on
11/25/2016).

[33] ——, ACL Fine Granular Control - OpenEMR, [Online]. Available: http : / / www . open -
emr.org/wiki/index.php/ACL_Fine_Granular_Control (Accessed on 11/25/2016).

[34] J. Barkley, “Comparing simple role based access control models and access control lists”, in In
Proceedings of the Second ACM Workshop on Role-Based Access Control, ACM Press, 1997,
pp. 127–132.

[35] OpenEMR Wiki. Zend - OpenEMR, [Online]. Available: http://www.open-emr.org/wiki/
index.php/Zend (Accessed on 11/25/2016).

94

http://www.tryton.org/posts/new-tryton-release-38.html
http://www.tryton.org/posts/new-tryton-release-38.html
https://en.wikibooks.org/wiki/GNU_Health/Modules
https://en.wikibooks.org/wiki/GNU_Health/Modules
http://translate.gnusolidario.org/projects/GNUHEALTH/
http://translate.gnusolidario.org/projects/GNUHEALTH/
http://savannah.gnu.org/forum/forum.php?forum_id=8437
https://chpl.healthit.gov/#/product/43
https://chpl.healthit.gov/#/product/43
http://www.open-emr.org/wiki/index.php/OpenEMR_Success_Stories
http://www.open-emr.org/wiki/index.php/OpenEMR_Success_Stories
http://www.open-emr.org/wiki/index.php/Patient_Portal
http://www.open-emr.org/wiki/index.php/Patient_Portal
http://www.open-emr.org/wiki/index.php/OpenEMR_Form_Creation_Tools
http://www.open-emr.org/wiki/index.php/OpenEMR_Form_Creation_Tools
http://www.open-emr.org/wiki/index.php/LBV_Forms
http://www.open-emr.org/wiki/index.php/LBV_Forms
http://www.open-emr.org/wiki/index.php/Nation_Notes
http://www.open-emr.org/wiki/index.php/Nation_Notes
http://www.open-emr.org/wiki/index.php/OpenEMR_Xml_Form_Generator
http://www.open-emr.org/wiki/index.php/OpenEMR_Xml_Form_Generator
https://www.ibm.com/developerworks/websphere/library/techarticles/ind-openemr/
https://www.ibm.com/developerworks/websphere/library/techarticles/ind-openemr/
http://www.visolve.com/uploads/resources/vicareplus/OpenEMR_DICOM_Interoperability_using_Mirth.pdf
http://www.visolve.com/uploads/resources/vicareplus/OpenEMR_DICOM_Interoperability_using_Mirth.pdf
http://www.open-emr.org/wiki/index.php/Codebase_Security
http://www.open-emr.org/wiki/index.php/Codebase_Security
http://www.open-emr.org/wiki/index.php/Security_Assessment
http://www.open-emr.org/wiki/index.php/Security_Assessment
www.open-emr.org/wiki/index.php/Encryption_and_Decryption_of_Documents
www.open-emr.org/wiki/index.php/Encryption_and_Decryption_of_Documents
http://www.open-emr.org/wiki/index.php/ACL_Fine_Granular_Control
http://www.open-emr.org/wiki/index.php/ACL_Fine_Granular_Control
http://www.open-emr.org/wiki/index.php/Zend
http://www.open-emr.org/wiki/index.php/Zend

[36] ——, The OpenEMR API - OpenEMR, [Online]. Available: http://www.open-emr.org/wiki/
index.php/The_OpenEMR_API (Accessed on 11/25/2016).

[37] ——, OpenEMR Professional Support, [Online]. Available: http://www.open-emr.org/wiki/
index.php/OpenEMR_Professional_Support (Accessed on 04/25/2016).

[38] ——, OpenEMR IRC, [Online]. Available: http://www.open-emr.org/wiki/index.php/
OpenEMR_IRC (Accessed on 04/25/2016).

[39] Unknown. OpenEMR / Discussion / Forum, [Online]. Available: https://sourceforge.net/
p/openemr/discussion/ (Accessed on 04/25/2016).

[40] OpenEMR Wiki. Demos - OpenEMR, [Online]. Available: http://www.open-emr.org/wiki/
index.php/OpenEMR_Wiki_Home_Page#Demos (Accessed on 04/25/2016).

[41] FreeMED Software Foundation. FreeMED Software Foundation, [Online]. Available: http:
//freemedsoftware.org/ (Accessed on 05/08/2016).

[42] LinuxMedNews. (2003). FreeMED Stable Release!, [Online]. Available: http://linuxmednews.
com:8080/linuxmednews/1055991998/.

[43] FreeMED. REMITT Electronic Medical Information Translation and Transmission, [Online].
Available: http://remitt.org (Accessed on 05/30/2016).

[44] ——, freemed-0.8.x/modules/forms.emr.module.php at master - Github, [Online]. Available:
https://github.com/freemed/freemed-0.8.x/blob/master/modules/forms.emr.module.
php (Accessed on 05/30/2016).

[45] ——, FreeMED localization, [Online]. Available: https://www.transifex.com/freemed/
freemed/ (Accessed on 05/30/2016).

[46] OpenMRS. About OpenMRS, [Online]. Available: http://openmrs.org/about/ (Accessed on
03/25/2016).

[47] ——, REST Module - Documentation - OpenMRS Wiki, [Online]. Available: https://wiki.
openmrs.org/display/docs/REST+Module (Accessed on 06/20/2016).

[48] Unknown. Form entry module, [Online]. Available: https://wiki.openmrs.org/display/
docs/FormEntry+Module (Accessed on 03/29/2016).

[49] ——, Html form entry module, [Online]. Available: https://wiki.openmrs.org/display/
docs/HTML+Form+Entry+Module (Accessed on 03/29/2016).

[50] ——, Html form entry designer module, [Online]. Available: https://wiki.openmrs.org/
display/docs/HTML+Form+Entry+Designer+Module (Accessed on 03/29/2016).

[51] J. M. Boyer et al., Xforms 2.0, w3c, 2015.

[52] W3C. XForms 2.0 - XForms Users Community Group, [Online]. Available: https://www.w3.
org/community/xformsusers/wiki/XForms_2.0 (Accessed on 11/01/2016).

[53] Unknown. Xforms module, [Online]. Available: https://wiki.openmrs.org/display/docs/
XForms+Module (Accessed on 03/29/2016).

[54] OpenMRS. OpenMRS and Health Interoperability Standards, [Online]. Available: https :
//wiki.openmrs.org/display/docs/OpenMRS+and+Health+Interoperability+Standards
(Accessed on 06/20/2016).

[55] ——, Connecting OpenMRS to Other Systems Using Mirth - Documentation - OpenMRS Wiki,
[Online]. Available: https://wiki.openmrs.org/display/docs/Connecting+OpenMRS+to+
Other+Systems+Using+Mirth (Accessed on 06/20/2016).

95

http://www.open-emr.org/wiki/index.php/The_OpenEMR_API
http://www.open-emr.org/wiki/index.php/The_OpenEMR_API
http://www.open-emr.org/wiki/index.php/OpenEMR_Professional_Support
http://www.open-emr.org/wiki/index.php/OpenEMR_Professional_Support
http://www.open-emr.org/wiki/index.php/OpenEMR_IRC
http://www.open-emr.org/wiki/index.php/OpenEMR_IRC
https://sourceforge.net/p/openemr/discussion/
https://sourceforge.net/p/openemr/discussion/
http://www.open-emr.org/wiki/index.php/OpenEMR_Wiki_Home_Page#Demos
http://www.open-emr.org/wiki/index.php/OpenEMR_Wiki_Home_Page#Demos
http://freemedsoftware.org/
http://freemedsoftware.org/
http://linuxmednews.com:8080/linuxmednews/1055991998/
http://linuxmednews.com:8080/linuxmednews/1055991998/
http://remitt.org
https://github.com/freemed/freemed-0.8.x/blob/master/modules/forms.emr.module.php
https://github.com/freemed/freemed-0.8.x/blob/master/modules/forms.emr.module.php
https://www.transifex.com/freemed/freemed/
https://www.transifex.com/freemed/freemed/
http://openmrs.org/about/
https://wiki.openmrs.org/display/docs/REST+Module
https://wiki.openmrs.org/display/docs/REST+Module
https://wiki.openmrs.org/display/docs/FormEntry+Module
https://wiki.openmrs.org/display/docs/FormEntry+Module
https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Module
https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Module
https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Designer+Module
https://wiki.openmrs.org/display/docs/HTML+Form+Entry+Designer+Module
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://wiki.openmrs.org/display/docs/XForms+Module
https://wiki.openmrs.org/display/docs/XForms+Module
https://wiki.openmrs.org/display/docs/OpenMRS+and+Health+Interoperability+Standards
https://wiki.openmrs.org/display/docs/OpenMRS+and+Health+Interoperability+Standards
https://wiki.openmrs.org/display/docs/Connecting+OpenMRS+to+Other+Systems+Using+Mirth
https://wiki.openmrs.org/display/docs/Connecting+OpenMRS+to+Other+Systems+Using+Mirth

[56] ——, Platform Release Notes 2.0.0 - Resources - OpenMRS Wiki, [Online]. Available: https:
/ / wiki . openmrs . org / display / RES / Platform + Release + Notes + 2 . 0 . 0 (Accessed on
11/29/2016).

[57] ——, User Interface Modules - Documentation - OpenMRS Wiki, [Online]. Available: https:
//wiki.openmrs.org/display/docs/User+Interface+Modules (Accessed on 06/20/2016).

[58] Unknown. Openmrs modules, [Online]. Available: https://modules.openmrs.org (Accessed
on 03/30/2016).

[59] OpenMRS. OpenMRS localization, [Online]. Available: https://www.transifex.com/openmrs/
OpenMRS/ (Accessed on 03/11/2016).

[60] ——, OpenMRS Atlas, [Online]. Available: https : / / atlas . openmrs . org (Accessed on
04/19/2016).

[61] ——, Service Providers - Documentation - OpenMRS Wiki, [Online]. Available: https://wiki.
openmrs.org/display/docs/Service+Providers (Accessed on 11/10/2016).

[62] ——, Releases OpenMRS, [Online]. Available: http://openmrs.org/category/releases/
(Accessed on 03/01/2016).

[63] ——, OpenMRS localization, [Online]. Available: https://talk.openmrs.org/tags/security-
advisory (Accessed on 03/11/2016).

[64] ——, OpenMRS License Information, [Online]. Available: http://openmrs.org/license/
(Accessed on 03/25/2016).

[65] Bahmni Project. Install Bahmni on CentOS - Bahmni Documentation Wiki, [Online]. Avail-
able: https://bahmni.atlassian.net/wiki/display/BAH/Install+Bahmni+on+CentOS
(Accessed on 04/01/2016).

[66] Bahmni - Mingle. Support for CentOS v7.x - Bahmni-EMR - Mingle Card, [Online]. Available:
https://bahmni.mingle.thoughtworks.com/projects/bahmni_emr/cards/1922 (Accessed
on 07/11/2016).

[67] Bahmni. Bahmni localization, [Online]. Available: https://talk.openmrs.org/c/software/
bahmni (Accessed on 04/11/2016).

[68] ——, Bahmni localization, [Online]. Available: https://www.transifex.com/openmrs/bahmni/
(Accessed on 11/01/2016).

[69] ——, Implementations - Bahmni, [Online]. Available: http : / / www . bahmni . org /
implementations/ (Accessed on 04/01/2016).

[70] “Introducing CentOS”, in The Definitive Guide to CentOS, Berkeley, CA: Apress, 2009, pp. 3–11,
isbn: 978-1-4302-1931-6. [Online]. Available: http://dx.doi.org/10.1007/978-1-4302-1931-
6%3Csub%3E1%3C/sub%3E.

[71] Darius Jazayeri. (2015). AngularJS and REST - omrs15 tutorial, [Online]. Available: http:
//www.slideshare.net/sunbiz/angularjs- and- rest- omrs15- tutorial (Accessed on
04/20/2016).

[72] OpenMRS. Data Model - Documentation - OpenMRS Wiki, [Online]. Available: https://wiki.
openmrs.org/display/docs/Data+Model (Accessed on 04/16/2016).

[73] Bahmni Project. Connecting to various databases - Bahmni Documentation Wiki, [Online].
Available: https://bahmni.atlassian.net/wiki/display/BAH/Connecting+to+various+
databases (Accessed on 04/16/2016).

96

https://wiki.openmrs.org/display/RES/Platform+Release+Notes+2.0.0
https://wiki.openmrs.org/display/RES/Platform+Release+Notes+2.0.0
https://wiki.openmrs.org/display/docs/User+Interface+Modules
https://wiki.openmrs.org/display/docs/User+Interface+Modules
https://modules.openmrs.org
https://www.transifex.com/openmrs/OpenMRS/
https://www.transifex.com/openmrs/OpenMRS/
https://atlas.openmrs.org
https://wiki.openmrs.org/display/docs/Service+Providers
https://wiki.openmrs.org/display/docs/Service+Providers
http://openmrs.org/category/releases/
https://talk.openmrs.org/tags/security-advisory
https://talk.openmrs.org/tags/security-advisory
http://openmrs.org/license/
https://bahmni.atlassian.net/wiki/display/BAH/Install+Bahmni+on+CentOS
https://bahmni.mingle.thoughtworks.com/projects/bahmni_emr/cards/1922
https://talk.openmrs.org/c/software/bahmni
https://talk.openmrs.org/c/software/bahmni
https://www.transifex.com/openmrs/bahmni/
http://www.bahmni.org/implementations/
http://www.bahmni.org/implementations/
http://dx.doi.org/10.1007/978-1-4302-1931-6%3Csub%3E1%3C/sub%3E
http://dx.doi.org/10.1007/978-1-4302-1931-6%3Csub%3E1%3C/sub%3E
http://www.slideshare.net/sunbiz/angularjs-and-rest-omrs15-tutorial
http://www.slideshare.net/sunbiz/angularjs-and-rest-omrs15-tutorial
https://wiki.openmrs.org/display/docs/Data+Model
https://wiki.openmrs.org/display/docs/Data+Model
https://bahmni.atlassian.net/wiki/display/BAH/Connecting+to+various+databases
https://bahmni.atlassian.net/wiki/display/BAH/Connecting+to+various+databases

[74] ——, EMR Security and Access Control (OpenMRS) - Bahmni Documentation Wiki, [On-
line]. Available: https://bahmni.atlassian.net/wiki/pages/viewpage.action?pageId=
48889893 (Accessed on 04/20/2016).

[75] ——, bahmni-environment/scripts/deletePatientData at GitHub, [Online]. Available: https:
//github.com/Bahmni/bahmni-environment/blob/master/scripts/deletePatientData/
(Accessed on 04/01/2016).

[76] Bahmni Forums. How to start with a fresh / clean database for Bahmni?, [Online]. Available:
https://talk.openmrs.org/t/how- to- start- with- a- fresh- clean- database- for-
bahmni/ (Accessed on 04/01/2016).

97

https://bahmni.atlassian.net/wiki/pages/viewpage.action?pageId=48889893
https://bahmni.atlassian.net/wiki/pages/viewpage.action?pageId=48889893
https://github.com/Bahmni/bahmni-environment/blob/master/scripts/deletePatientData/
https://github.com/Bahmni/bahmni-environment/blob/master/scripts/deletePatientData/
https://talk.openmrs.org/t/how-to-start-with-a-fresh-clean-database-for-bahmni/
https://talk.openmrs.org/t/how-to-start-with-a-fresh-clean-database-for-bahmni/

Appendix
Relevant information to the subject matter.

Table 1: Login to system

Use case title Login to system
Brief description A user logs into the system. This use case establishes

access permissions for various categories of users.
Primary actors Nurse, physician, lab technologist, administrator
Secondary actors None
Preconditions A user starts the application
Main flow 1. The system displays the login screen

2. A user enters his credentials (username and password)
3. The system verifies provided information and estab-
lishes permissions for a user
Login failure:
a) If a username or password is incorrect, the system
displays an appropriate message
b) If a username does not exists in the system, a user
needs to register in the system

Postconditions A user entered the system

Table 2: Search a patient

Use case title Search a patient
Brief description A user submits a search request
Primary actors Nurse or physician
Secondary actors None
Preconditions A user is logged into the system
Main flow 1. A user submits a search request. Possible parameters

to search a patient are: patient name, patient ID, region
2. System returns matching results

Postconditions System displays results for a user

99

Table 3: Register a patient

Use case title Register a patient
Brief description A user creates a new patient in the system
Primary actors Nurse, physician, lab technologist
Secondary actors None
Preconditions A user is logged into the system. A new patient arrives.
Main flow 1. A user enters personal data of a patient

2. A user saves patient information
Postconditions A new patient information is successfully saved in the

system

Table 4: Schedule patient appointment

Use case title Schedule patient appointment
Brief description A user schedules a new patient appointment with a

physician
Primary actors Nurse, physician
Secondary actors None
Preconditions A user is logged into the system. A patient is registered

in the system and needs to schedule an appointment with
a physician

Main flow 1. A user checks doctor’s availability
2. A user finds a slot in a doctor’s calendar and creates
an appointment
3. A user saves an appointment

Postconditions A new patient information is successfully saved in the
system

Table 5: Examine a patient

Use case title Examine a patient
Brief description A nurse or physician examines a patient for vital signs

and visual screening
Primary actors Nurse, physician
Secondary actors None
Preconditions A user is logged into the system. A patient arrives to

consultation
Main flow 1. A user finds a patient in the system

2. A user enters examination results into the system
3. A user saves examination information

Postconditions A patient’s physical examination information is saved in
the system

100

Table 6: Manage a patient

Use case title Manage a patient
Brief description The use case describes indoor and outdoor patient man-

agement. An additional use case "Bed allotment" is
required for indoor patients

Primary actors Physician
Secondary actors None
Preconditions A user is logged into the system. An outdoor patient

needs to be treated in the hospital
Main flow 1. A user finds a patient

2. A user checks bed availability
3. A user allots a bed for a patient

Postconditions An outdoor patient changes his status to indoor patient

Table 7: Place an order

Use case title Place an order
Brief description A user places an order for laboratory
Primary actors Nurse, physician
Secondary actors None
Preconditions A user is logged into the system. A patient is under

examination
Main flow 1. A user chooses necessary lab tests for a patient

2. A user saves an order
3. After saving an order, the system sends request to
laboratory

Postconditions A test order is sent to laboratory

Table 8: Receive order results

Use case title Receive order results
Brief description After an order results are validated, a lab technologist

sends results to a physician
Primary actors Nurse, physician
Secondary actors None
Preconditions A user is logged into the system. An existing order has

results and is validated by lab technologist
Main flow The system displays lab test results to a user
Postconditions Order results are available for physician and nurse

101

Table 9: Make a diagnosis

Use case title Make a diagnosis
Brief description After receiving physical examination and lab test results

a doctor makes a diagnosis for a patient and identifies a
disease

Primary actors Physician
Secondary actors None
Preconditions A user is logged into the system. Clinical examination

and lab test results of patient are received and seen by a
physician

Main flow 1. A user finds a patient in the system and opens his
medical records
2. A user make a diagnosis according patient tests
3. A user saves a diagnosis

Postconditions A patient diagnosis is successfully saved in the system

Table 10: Discharge a patient

Use case title Discharge a patient
Brief description An inpatient is discharged when a clinical treatment

finishes or he leaves a hospital
Primary actors Physician
Secondary actors None
Preconditions A user is logged into the system. An inpatient is ready

to leave a hospital
Main flow 1. A physician decides to discharge an indoor patient

2. A physician changes a patient status to discharged
Postconditions An indoor patient is successfully discharged from hospital

Table 11: Make a report

Use case title Make a report
Brief description The system creates a report according to given parame-

ters by a user
Primary actors Physician
Secondary actors None
Preconditions A user is logged into the system
Main flow 1. A user enters report parameters such as period, report

type and exported document format
2. The system builds a report, opens the file in a new
window and displays it to a user

Postconditions A report is built and exported

102

Table 12: Receive an order

Use case title Receive an order
Brief description A lab order is requested by clinical staff
Primary actors Lab technologist
Secondary actors None
Preconditions A user is logged into the system. A new order arrives.
Main flow 1. The system notifies a user about new order

2. A user accepts a new order
Postconditions A new order is accepted in laboratory

Table 13: Enter order results

Use case title Enter order results
Brief description After making laboratory tests a user enters results of a

requested order
Primary actors Lab technologist
Secondary actors None
Preconditions A user is logged into the system. A laboratory tests are

done by a lab technologist
Main flow 1. A user finds an order

2. A user enters results of laboratory tests
3. A user sends results for further validation

Postconditions Test results are sent for validation

Table 14: Validate order results

Use case title Validate order results
Brief description Laboratory test results require validation by another lab

technologist
Primary actors Lab technologist
Secondary actors None
Preconditions A user is logged into the system. Lab test results are in

the system
Main flow 1. A user double checks results

a) If lab test results are correct, a user validates them
b) If lab test results have mistakes, a user does not
validate them and another lab test is required

Postconditions Order results are checked and validated

103

Table 15: Send order results

Use case title Lab technologist
Brief description A user sends validated order results to clinical staff
Primary actors Lab technologist
Secondary actors Nurse, physician
Preconditions A user is logged into the system. Order results are

validated
Main flow 1. A user sends validated results to clinical staff

2. The system notifies clinical staff that results are
received
3. The system displays order results in patient’s history

Postconditions Order results successfully transferred

Table 16: Add a staff member

Use case title Add a staff member
Brief description A user creates a new staff member according to a request
Primary actors Administrator
Secondary actors None
Preconditions A user is logged into the system. A new staff member

arrives.
Main flow 1. A user enters personal data of an employee and gives

appropriate permissions
2. A user saves information

Postconditions A new user is created in the system

Table 17: Edit a staff member

Use case title Edit a staff member
Brief description If an existing user needs changes in his account this use

case is employed
Primary actors Administrator
Secondary actors None
Preconditions A user is logged into the system. A change into account

is requested
Main flow 1. A user finds an account

2. A user changes account setting according to a request
3. A user saves changes

Postconditions New settings are applied for a staff member in the system

104

Table 18: Delete a staff member

Use case title Delete a staff member
Brief description A user deactivates a staff member in the system. Remov-

ing users from the system is not allowed
Primary actors Administrator
Secondary actors None
Preconditions A user is logged into the system. An account deactivation

request is received
Main flow 1. A user finds an account of a staff member

2. A user deactivates an account
3. A user saves changes

Postconditions A staff member account is successfully deactivated in the
system

105

Figure 1: Bahmni EHR "openmrs" database schema - all tables and their attributes

106

Figure 2: OpenELIS "clinlims" database schema - all tables and their attributes

107

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivations
	Objectives
	Thesis Outline

	Background
	Electronic health record
	Some challenges in switching
	Free and open-source software
	An open-source EHR system
	A software model
	Server and client software
	Persistence support
	Medical standards support
	Operating-system support

	Related work
	Open-source EHR software
	GNU Health
	OpenEMR
	FreeMED
	OpenMRS
	Bahmni
	Software comparison

	System Requirements
	Scope
	Functional requirements

	System Architecture and Implementation
	Software Architecture
	Technologies and communication
	Data model
	Bahmni EHR-OpenELIS interoperability
	Network and security
	Off-line support
	Installation
	Configuration and customization
	Patients attributes and registration form
	Address system
	Appointments
	Providing custom forms
	Enabling off-line features
	Security configuration

	Results
	Users and roles
	Registration extension
	Patient management extension
	Clinical extension
	Validation

	Conclusions
	Future Work

	References
	Appendix

