This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A Robust Fluorescent Chemosensor for Aluminium Ion Detection Based on Schiff base Ligand with Azo Arm and Application in Molecular Logic Gate

Saikat Banerjee, Paula Brandão and Amrita Saha

Department of Chemistry, Jadavpur University, Kolkata- 700032, India.
E-mail: asaha@chemistry.jdvu.ac.in; amritasahachemju@gmail.com; Tel. +91-33-24572941

TEMA−NRD, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

In this present work we reported synthesis and structural characterisations of a N2O2 donor Schiff base chemosensor with azo arm (H₂L). Various spectroscopic tools like single crystal X-ray, NMR, UV-vis, FTIR, ESI-Mass etc have been deployed to develop the present work. In recent past years a number of azo derived chemosensors have been reported by different research groups. This is first time we are reporting designing and properties of an azo derived chemosensors (H₂L) for detection of aluminium ion in semi aqueous medium. It has been found that it selectively senses Al³⁺ ion in semi aqueous solution. Here, the sensing process is mainly based on Chelation enhanced fluorescence process (CHEF). It has very high selectivity over other metal ions and anions. A detailed literature survey has been carried out and compared with this work. It has appreciably low detection limit i.e. 6.93 nM.¹HNMR titration was done to support the plausible complexation process. 1:1 stoichiometry binding between the chemosensor and Al³⁺ ion has been confirmed from Job’s plot. An inhibition molecular logic gate has been constructed using Chemosensor (H₂L), where Al³⁺ and EDTA act as inputs and Fluorescence
emission as output. The structural and electronic parameters of the chemosensor \((H_2L)\) and complex \([AL(L)]NO_3\) have been studied in details using theoretical tools like DFT and TDDFT.

Introduction

The design and construction of powerful and highly selective fluorescent chemosensors have attracting considerable attention in biomimetic chemistry.\(^1\) Among various heavy metal ions Aluminium is an essential element due to its abundance and use in every sphere of life as utensils, electronic and electrical components of different gadgets, building equipment, different packaging items, water treatments, food additives, pharmaceutical products, occupational dusts etc. Aluminum is a known neurotoxin to organisms\(^1\) and is believed to cause Alzheimer’s disease,\(^2\) osteomalacia\(^3\) and breast cancer.\(^4\) Toxicity due to the presence of excess aluminium in human health may arise as it inhibits several essential elements of similar size and charge like Mg\(^{2+}\), Ca\(^{2+}\) and Fe\(^{3+}\). It is also responsible for retarded growth of plants\(^5\) and oxidative damage of the cell membrane.\(^6\) In spite of its many drawbacks, the enormous use of Al in daily life causes accumulation of Al\(^{3+}\) and hence toxicity towards human health and the environment. WHO recommended the average weekly human body dietary intake of Al\(^{3+}\) of around 7 mg/kg body weight.\(^7\) Thus, it is utmost urgent to detect Al\(^{3+}\) ion in environment in trace level i.e. in ppb, ppm or nano level. Unfortunately, the determination of Al\(^{3+}\) is complicated mainly due to its poor coordination ability, strong tendency to hydration, and lack of suitable spectroscopic characteristics.\(^8\) Some analytical methods are available for detection of Al\(^{3+}\) such as graphite furnace atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, atomic absorption spectra,\(^9\) electrochemistry,\(^10\) mass spectrometry,\(^11\) and \(^{27}\)Al NMR technology.\(^12\) Most of them are expensive and time consuming. Optical detection
particularly fluorescence spectroscopic technique is advantageous over the other techniques because of its operational simplicity, low cost, low detection limit, real-time detection, selectivity, time saving and environmental friendly property. Therefore design and synthesis of new chemosensor for the detection of Al$^{3+}$ has received considerable attention. Recently various research groups have reported different organic probes which can selectively detect Al$^{3+}$. Although example of such Al$^{3+}$ detecting chemosensors are still less compared with other metal ions detecting chemosensors like Zn$^{2+}$ mainly due to less coordinating ability of Al$^{3+}$ compared to other metal ions. Therefore, more improvement in this field is still required. Current literature survey (Table S1) reveals that preparation of most of the chemosensors for detection of Al$^{3+}$ involves expensive starting materials, multiple reaction steps, use of different solvent mixtures and maintenance of drastic reaction conditions i.e. very high or low temperature, presence of catalyst etc. G. Das and et al. in a recent work14n have reported an Al$^{3+}$ sensing organic probe viz. (E)-N’-((E)-3-(4-(dimethylamino)phenyl)allylidene)picolinohydrazide using starting materials picolinohydrazide and 4-(dimethylamino)cinnamaldehyde. Preparation of picolinohydrazide involves multiple steps. Preparation of another chemosensor viz. 2-((naphthalen-6-yl)methylthio)ethanol involves inert atmosphere and finally the product has been purified through column chromatography with 65% yield.14e S. Goswami and coworkers have reported a spirobenzopyran-quinoline (SBPQ) based sensor which selectively detects Al$^{3+}$ along with Fe$^{3+}$ and Cr$^{3+}$. Preparation of this type of chemosensors also involves multiple steps.14o It is also important to mention that 2-hydroxynapthaldehyde based organic probes are mostly used for fluorescence sensing of Al$^{3+}$. 14p

Different mechanistic pathway like intramolecular charge transfer (ICT),15 photo induced electron transfer (PET),16 chelation-enhanced fluorescence (CHEF),17 metal–ligand charge
transfer (MLCT), excimer/exciplex formation, imine isomerization, intermolecular hydrogen bonding, excited-state intramolecular proton transfer, displacement approach, and fluorescence resonance energy transfer are adopted to explain the action of different fluorescence probe. Among different types of chemosensors, Schiff bases incorporated with different functionalized moiety are widely used mainly due to their ease of synthesis and low cost.

In this work an azo based salen-type of Schiff base ligand (E)-6,6'-(1E,1'E)-(propane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(2-methoxy-4-((E)-phenyldiazenyl)phenol) \((H_2L) \) is structurally characterized and it exhibit high selectivity towards \(Al^{3+}(3.31 \times 10^3 \, M^{-1}) \) with low detection limit (6.93 nM). Azo derivatives have prevalent use in different fields like pharmaceuticals, optical data storage, non-linear optics, photo switching devices, textile industry dye-sensitized solar cells and they also act as fluorescent chemosensors. Our work is important and novel in this aspect because although various azo containing chemosensors are reported in literature but to the best of our knowledge in this work we are first time reporting one such sensor which can selectively detect \(Al^{3+} \). Our organic probe possesses some extra advantages. We have prepared \(H_2L \) using easily available starting materials. The azoaldehyde was prepared from well known easy diazotization process with very high yield. The azoaldehyde upon reaction with a simple diamine produced \(H_2L \) with >90% yield. We have successfully isolated both the azoaldehyde and Schiff base \(H_2L \) in highly crystalline form. The ligand is characterized by different techniques including x-ray crystallography. The composition of the \(Al^{3+} \)-ligand complex (Complex 1) has been established by different spectroscopic data like IR, Mass, Job's plot and \(^1H\) NMR. The DFT computation of optimized geometry of \(H_2L \) and the complex \([Al(L)]^+\) has been used to support the electronic spectral properties.

Experimental

Materials and Physical measurements

All reagent or analytical grade chemicals and solvents were purchased from commercial sources and used without further purification. Elemental analysis for C, H and N was carried out using a Perkin–Elmer 240C elemental analyzer. Infrared spectra (400–4000 cm\(^{-1}\)) were recorded from KBr pellets on a Nicolet Magna IR 750 series-II FTIR spectrophotometer. Absorption spectra were measured using a UV-2450 spectrophotometer (Shimadzu) with a 1-cm-path-length quartz cell. Measurements of NMR spectra were conducted using a Bruker 300 spectrometer in DMSO-\(d_6\) and CDCl\(_3\) respectively. Emission was examined by LS 55 Perkin–Elmer spectrofluorimeter at room temperature (298 K) in HEPES buffer at pH= 7.4 solution under degassed condition. Fluorescence lifetimes were measured using a time-resolved spectrofluorimeter from IBH, UK.

Synthesis of (E)-5-(2-phenyldiazenyl)-2-hydroxy-3-methoxybenzaldehyde

4 mL conc. HCl was added to 15 mL water and kept in an ice bath keeping the temperature 0\(^\circ\)C. To it, aniline (4.0 mmol, 0.372 g) was added. To this mixture an aqueous solution of sodium nitrite (6.0 mmol, 0.414 g) was drop wise added over a time of 30 mins. The mixture was stirred for 1 h at 0\(^\circ\)C. Then the resultant solution was added to the alkaline o-Vanillin (4.8 mmol, 0.732 g) which is kept in another ice bath. The mixture was further stirred for 1 h at 0\(^\circ\)C. The solution was neutralised using dilute HCl and pH was maintained around 7.0. The mixture was extracted with chloroform and evaporated to result red coloured crystals of the aldehyde.
Synthesis of Schiff base ligand (H₂L)

A mixture of (E)-5-(2-phenyldiazenyl)-2-hydroxy-3-methoxybenzaldehyde (2.0 mmol) and 1,3-diaminopropane (1.0 mmol, 0.074 g) was heated to reflux for 4 h in methanol-chloroform solvent mixture (1:1, v/v). Upon slow evaporation of the solvent mixture deep red colored crystals were obtained.

Yield: 0.5282 g (96%). Anal. Calc. for C₂₉H₂₆N₆O₂: C 67.62%; H 5.49%; N 15.26%. Found: C 66.86%; H 5.31%; N 14.97%. IR (cm⁻¹, KBr): ν(C=N) 1648 s; ν(N=N) 1455 s; ν(C-H) 764 s. ESI-MS (positive) in MeOH: The base peak was detected at m/z = 551.21, corresponding to [M+1]+.

UV-Vis, λ_max (nm), (ε (dm³ mol⁻¹ cm⁻¹)) in Acetonitrile: 290 (4533) and 388 (5736).

¹H NMR (CDCl₃, 300 MHz) δ ppm: 2.25 (-CH₂) (m, 1H), 3.82-3.84 (-CH₂) (bs, 2H), 4.01 (-OCH₃) (s, 3H), 7.42-7.90 (Ar-H) (m, 7H), 8.43 (-CH=N) (s, 1H).

¹H NMR (DMSO-d₆, 300 MHz) δ ppm: 2.08 (-CH₂) (m, 2H), 3.74-3.82 (-CH₂, -OCH₃) (bs, 10H), 7.30-7.48 (Ar-H) (m, 8H), 7.66-7.74 (Ar-H) (m, 6H), 8.66 (-CH=N) (s, 2H).

¹³C NMR (DMSO-d₆, 75 MHz) δ ppm: 31.46 (-CH₂), 56.34 (-CH₂), 118.22, 122.58, 126.93, 127.41, 129.08 and 130.47 (Ar-C), 165.38 (-CH=N).
Synthesis of [Al(L)](NO$_3$)$_3$ complex

A 2 ml methanolic solution of aluminium nitrate nonahydrate (1.0 mmol, 0.375 g) was added drop wise to 20 mL methanolic solution of H$_2$L (1.0 mmol, 0.551 g) followed by addition of triethylamine (2.0 mmol, ~0.4 mL) and the resultant reaction mixture was stirred for 4 h under nitrogen atmosphere. Then the resultant mixture was dried to powdered form and further characterizations were carried out.

Yield: 0.6246 g (98%). Anal. Calc. for AlC$_{29}$H$_{24}$N$_7$O$_5$: C 67.62%; H 5.49%; N 15.26%. Found: C 66.86%; H 5.31%; N 14.97%. IR (cm$^{-1}$, KBr): ν(C=N) 1646 s; ν(N=N) 1545 s; ν(C-H) 770 s.

ESI-MS (positive) in MeOH: The base peak was detected at m/z = 575.25, corresponding to [Al(L)]$^+$. UV-Vis, λ_{max} (nm), (ε (dm3mol$^{-1}$cm$^{-1}$)) in Acetonitrile: 286 (5083) and 375 (5949).

1H NMR (DMSO-d$_6$, 300 MHz) δ ppm: 2.16 (-CH$_2$) (bs, 2H), 3.89-3.95 (-CH$_2$, -OCH$_3$) (bs, 10H), 7.54-7.81 (Ar-H) (m, 14H), 9.24 (-CH=N) (s, 2H).

X-ray crystallography

Single crystal X-ray data of azoaldehyde and Schiff base ligand (H$_2$L) were collected on a Bruker SMART APEX-II CCD diffractometer using graphite monochromated Mo Kα radiation (λ = 0.71073 Å) at room temperature. Data processing, structure solution, and refinement were performed using Bruker Apex-II suite program. All available reflections $2\theta_{\text{max}}$ were harvested and corrected for Lorentz and polarization factors with Bruker SAINT plus.31 Reflections were then corrected for absorption, inter-frame scaling, and other systematic errors with SADABS.32 The structures were solved by the direct methods and refined by means of full matrix least-square technique based on F2 with SHELX-1997 and SHELX-2013 software package.33 All the non-hydrogen atoms were refined with anisotropic thermal parameters. C-H
hydrogen atoms were inserted at geometrical positions with \(U_{\text{iso}} = \frac{1}{2} U_{\text{eq}} \) to those they are attached. Crystal data and details of data collection and refinement are summarized in Table 1.

Computational method

All computations were performed using the GAUSSIAN09 (G09)33 software package. Coordinates obtained from single crystal X-ray data were used for optimization of structure of Ligand (\(\text{H}_2\text{L} \)). For optimization we used the density functional theory method at the B3LYP level35,36 and the standard 6-31+G(d) basis set for C, H, N and O atoms36,38 and the lanL2DZ effective potential (ECP) set of Hay and Wadt39–41 for aluminum atom have been chosen for optimization.

TDDFT calculation was performed with the optimized geometry to ensure only positive eigen values. Time-dependent density functional theory (TDDFT)42–44 was performed using conductor-like polarizable continuum model (CPCM)44–47 and the same B3LYP level and basis sets in aqueous solvent system. GAUSSSUM48 was used to calculate the fractional contributions of various groups to each molecular orbital.

Results and discussion

Synthesis and Characterization

The azoaldehyde5-(2-phenyldiazenyl)-2-hydroxy-3-methoxybenzaldehyde is synthesized by first diazotization of primary aromatic amine (aniline) followed by coupling with an aromatic alcohol (o-vanillin). Azoaldehyde reacted with 1,3-diamino propane in 2:1molar ratio at ambient temperature in methanol to generate the Chemosensor \(\text{H}_2\text{L} \) (Scheme 1). The yield of both the aldehyde and \(\text{H}_2\text{L} \) is >90%. Both of them are crystallized from slow evaporation of methanol-chloroform (3:5) mixture. They are well characterized by \(^1\text{H} \) NMR, \(^{13}\text{C} \) NMR, mass and IR
spectroscopy. In IR spectrum, azo (N=N) band of both azoaldehyde and H2L appear at 1459 cm⁻¹ and 1455 cm⁻¹ respectively (Fig. S1). Other important stretching vibrations of H2L are 1648 (s, u(C=N)); 3100 cm⁻¹ (u(-OH)); 764 cm⁻¹ (v(C-H)) respectively. Similar characteristic stretching frequencies of [Al(L)]NO₃ are obtained at 1646 (s, u(C=N)); 1530 cm⁻¹ (u(N=N)); 770 cm⁻¹(v(C-H)), respectively (Fig. S2). In complex 1, nitrate ion is present as a counter anion. The characteristic stretching frequencies are obtained at 765 cm⁻¹ (planar rock), 815 cm⁻¹ (NO, deformation) and 1375 cm⁻¹ (NO, asymmetric stretch), respectively, which are comparable with that of previously reported literature values.⁴⁹ In ¹H NMR spectrum of azoaldehyde (CDCl₃ solvent), aldehyde proton (-CH=O) appeared at 10.02 ppm whereas –OCH₃ and phenolic –OH protons appeared at 4.01 ppm and 11.05 ppm respectively. Azoaldehyde contains two aromatic rings. Aromatic protons came as multiplate at two different regions i.e. from 7.25 to 7.35 ppm and from 7.74 to 7.86 ppm respectively. In case of the H2L (CDCl₃ solvent), aromatic protons appear around 7.74-7.30 ppm whereas azomethine proton, -OCH₃ protons and aliphatic protons appeared at 8.43, 4.01, 3.95 and 2.25 ppm respectively. Here, Phenolic –OH proton is so labile that it becomes very difficult to arrest in both CDCl₃ and DMSO-d₆ solvent system. In ¹³C spectra of H2L (DMSO-d₆ solvent), aliphatic carbon signals appeared at 31.46 ppm and 56.34 ppm respectively, whereas aromatic carbons appeared in the region of 118 ppm to 130 ppm. The signal at 165 ppm is the characteristic signal for imine carbon (>C=N) (Fig. S3-S6). Mass spectral analysis of starting azoaldehyde and H2L exhibit m/z peaks at 279.00 and 551.21, respectively (Fig.S7-S9). Mass spectrum of H2L in the presence of Al³⁺ shows peak m/z at 575.25 which is corresponding to [(Al(L)]⁺ (Fig. S10).

The structure of both azoaldehyde and H2L has been established by single crystal X-ray diffraction measurement. Crystals of both the organic compound are obtained from slow
evaporation of CH\textsubscript{2}Cl\textsubscript{2}-CH\textsubscript{3}OH solvent mixture. The ORTEP plot of azoaldehyde and H\textsubscript{2}L are shown in Fig. 1 and Fig. 2 respectively and the selected bond parameters are listed in Table 2.

The azoaldehyde crystallizes with a monoclinic space group Cc. It has almost planer structure where the azo nitrogen atoms and the aromatic ring containing –CHO, -OCH\textsubscript{3}, -OH groups belong in the same plane. The remaining aromatic ring deviates from the plane to a small extent (10.71°). The N=N and C=O (-CHO) bond distances are 1.252Å and 1.224Å respectively which are similar with other reported values.50 Aromatic C-C bond distances observed around 1.368 - 1.404 Å. In solid state it form 2D network through intermolecular hydrogen bonding between the phenoxy o-atom and aromatic hydrogen atom and edge to edge π-π stacking interaction between two phenyl rings. The distances are 2.704 Å and 3.70 Å respectively (Fig. S11).

The Schiff base ligand (H\textsubscript{2}L) crystallizes with a triclinic space group \textit{P}\text{\textbar}\text{I}. The azo -N=N-bond distances are 1.217 Å and 1.268 Å respectively. The average C=N- bond distance is 1.287 Å. The C-C bond distances of the phenyl rings found around 1.342-1.472 Å, whereas aliphatic C-C bond distances appear around 1.511-1.531 Å. The propylenic part of the Schiff base, N3–C15–C16–C17–N4, is to some extent puckered due to the sp3 hybridization of the saturated portion of the ligand. The bond angle (C15–C16–C17, 114.35(6)° deviates appreciably from its ideal value. OH group of the both of phenyl ring are placed 180° apart from each other to minimize the dipole-dipole interaction. In the Schiff base ligand each azo nitrogen atoms, imine atoms and the aromatic ring containing –CHO, -OCH\textsubscript{3}, -OH groups belong in the same plane. The remaining aromatic ring deviates from the plane significantly by an angle of 83.03°.The molecule dimerizes in solid state through intermolecular H-bonding between the two –OH groups as well as between the –OH group and imine nitrogen atom. –O-H…O bond distance is 3.879Å whereas –O-H…N (imine) bond distance is 2.357Å (Fig. S12).
Structural parameters are again calculated from optimized structure using DFT where bond distances are marginally elongated by 0.0023–0.0435 Å and bond angles varies within the range of 0.05–1.39° (Table 2) compare with the X-ray crystallographic data. Therefore, the optimized results are helpful to explain the electronic structure and electronic properties of the ligand H_2L.

Absorption study

The UV–Vis spectrum of the Chemosensor H_2L was recorded at 25°C in aqueous buffer-acetonitrile solution (1:100 v/v, HEPES buffer at pH 7.4) which exhibited well-defined bands at 290 and 388 nm respectively. In order to study the binding property of H_2L toward Al$^{3+}$ ion, UV–Vis spectra of H_2L (10 µM) in the presence of various concentrations of Al$^{3+}$ (0–10 µM) were recorded at room temperature, as shown in Fig. 3. It has been observed that old peaks disappear and two new absorption bands emerge at 286 and 375 nm respectively, and its absorbance gradually increases with the gradual addition of Al$^{3+}$ and it gets saturated upon addition of 1.0 equivalents of Al$^{3+}$ keeping the concentration of H_2L fixed at 10 µM. These observations indicate the coordination of H_2L with one eq. of Al$^{3+}$ (Fig. 3).

Al$^{3+}$ ion sensing by fluorescence studies

The fluorescence property of H_2L was also investigated in HEPES buffer solution at pH 7.4 at room temperature. The ligand, H_2L, emits weakly at 510 nm when excited at 388 nm and the fluorescence quantum yield is $(\Phi= H_2L)$ 0.00939. Upon excitation at 290 nm we observed similar emission at 510 nm. Low fluorescence intensity of free H_2L probably due to photo induced electron transfer process (PET) caused by electron delocalization from the two phenoxyd oxygen atoms to the π-conjugated system of two aromatic rings, >C=N– group and azo (-N=N-) group. Here presence of extended delocalization through azo group (-N=N-)
initiates appearance of fluorescence pick at 510 nm. After gradual addition of Al$^{3+}$ ion with various concentrations (0-10 µM), a significant changes in emission spectra have been noticed. In presence of metal ion the emission band of H$_2$L is blue shifted to 478 nm. This result also confirms a high sensitivity of the receptor towards Al$^{3+}$. A plot of fluorescence intensities at 478 nm (I$_{478}$) vs concentration of aluminum has been given in Fig. 4. : inset. It shows that sensing character of H$_2$L (I$_{478}$) increases with the increasing concentration of Al$^{3+}$ and a clear bend of the curve was observed at 1.0 equivalent of added Al$^{3+}$ which prove 1:1 stoichiometry of the [Al(L)]$^+$. Such type of sigmoid curve reflects nature of interaction between the organic probe and Al$^{3+}$ ion. Upon addition of 1-3 µM of Al$^{3+}$ to 10 µM solution of chemosensor, very small change of fluorescence intensity of the probe at wavelength 478 nm has been observed. Upon gradual addition of Al$^{3+}$ from 4-9 µM fluorescence intensity increases from 300-1400 a.u. which indicates strong interaction between Schiff base ligand and Al$^{3+}$. Maximum increase of fluorescence intensity has been observed upto 10 µM addition of Al$^{3+}$. This clearly indicates a 1:1 binding between H$_2$L and Al$^{3+}$. The curve became a plateau with further addition of Al$^{3+}$, when further increment in fluorescence intensity has not been observed.

Enhancement in fluorescence intensity of H$_2$L in presence of Al$^{3+}$ probably due to elimination of photoinduced electron transfer (PET) in free H$_2$L followed by chelation enhancement effect (CHEF) through the co-ordination of azomethine-N and phenolic-O to metal ion (Scheme 2). Hence, upon complexation a large CHEF effect is observed because of the rigid framework and thereby obstructs the PET process. Thus, upon coordination with Al$^{3+}$ ion, the PET process within the ligand system would become weak by reduction of either the electron-accepting ability of the π-conjugated system of two aromatic rings, >C=N– and azo (-N=N-) groups or the electron-donating ability of the phenoxido oxygen atoms.
Fluorescence intensity of \(H_2L\) has been examined with various cations (\(Cd^{2+}, Co^{2+}, Cr^{3+}, Cu^{2+}, Fe^{3+}, Hg^{2+}, K^+, Mn^{2+}, Na^+, Ni^{2+}, Sn^{2+}, Zn^{2+}, Ag^+, Fe^{2+}\) and \(Ca^{2+}\)) using their nitrate salt. (Fig. S13). Fig. S13 shows that only \(Al^{3+}\) can induce significant enhancement of fluorescence intensity. Interestingly, upon addition of different metal ions the intensity of the fluorescence either remains unchanged or weakened. In presence of \(Co^{2+}, Cr^{3+}, Cu^{2+}, K^+, Mn^{2+}, Na^+, Ni^{2+}, Fe^{2+}\) and \(Ca^{2+}\) metal ions emission intensity remain almost unchanged and in presence of \(Fe^{3+}, Cd^{2+}, Sn^{2+}, Ag^+, Hg^{2+}\), and \(Zn^{2+}\) metal ions emission intensity slightly increased (Fig. S13). A competition assay of \(H_2L\) in the presence of \(Al^{3+}\) and other metal ions have also been studied and presented in Fig. 5, which prove that fluorescence enhancement due to \(Al^{3+}\) nullify the possible interference of other metal ions. Upon addition of different anions viz. \(S_2O_3^{2-}, S^{2-}, SO_3^{2-}, SO_4^{2-}, SCN^-, N_3^-, AsO_4^{3-}, PO_4^{3-}, ClO_4^-, AcO^-, Cl^-, NO_2^-, NO_3^-\) and SCN' in HEPES buffer at pH 7.4 (Fig. 6) chemosensor \(H_2L\) showed no significant fluorescence enhancement. Thus, the probe is an excellent example of fluorescence chemosensor towards \(Al^{3+}\) in the presence of different metal ions.

To find out the binding ability of our chemosensor \(H_2L\) with \(Al^{3+}\) ions, binding constant was calculated using Benesi-Hildebrand equation (Equation 1) involving fluorescence titration curve.

\[
\frac{F_{max}-F_0}{F_x-F_0} = 1 + \left(\frac{1}{K[C]^n}\right)
\]

(1)

Where, \(F_{max}\), \(F_0\) and \(F_x\) are fluorescence intensities of \(H_2L\) in the presence of \(Al^{3+}\) at saturation, free \(H_2L\) and any intermediate \(Al^{3+}\) concentration at \(\lambda_{max}= 478\) nm. \(K\) is the dissociation constant of the complex. Concentration of \(Al^{3+}\) ions is represented by \(C\) and slop \(n\) is measured with Hill plot. Then Binding constant (\(K_a\)) of the complex has been determined using
the relation, $K_a = 1/K_d$. A plot of $\frac{F_{\text{max}} - F_0}{F_x - F_0}$ vs $\left(\frac{1}{[M]} \right)$ provides the apparent binding constant value as $3.31 \times 10^3 \text{ M}^{-1}$ (Fig. S14) ($n=1.0$). The Job’s plot suggests that the ligand H_2L forms 1:1 complex with Al^{3+} ions (Fig. S15-16). To determine the binding stoichiometry of H_2L and Al^{3+} fluorescence intensity is plotted against different mole fractions of Al^{3+} while volume of solution has remained constant (Fig. S16). Maxima in this plot has been obtained at 0.5 mole fraction, which suggests about 1:1 complex formation of H_2L and Al^{3+}. The formation of the complex further confirmed from ESI Mass spectroscopy. Mass spectrum of H_2L in the presence of Al^{3+} shows peak m/z at 575.25 which is corresponding to cationic part of the complex 1 $[\text{Al}(\text{L})]^+$ (Fig. S10). The simulated pattern shows well agreement with that of experimental values (Fig. S17). Experimental findings (absorption spectra and fluorescence spectra of Al^{3+} and other cations and various anions with chemosensor H_2L) clearly revealed that H_2L has strong affinity towards Al^{3+}. Here Al^{3+} acts as strong Lewis acid which can simply binds with two phenoxido oxygen atoms and two imine nitrogen atoms of the Schiff base ligand. Thus the chemosensor acts as a tetradentate N2O2 donor ligand and form a distorted tetrahedral complex with Al^{3+}. Comparable size of the inner-cavity of the chemosensor and Al^{3+} i.e. suitable size and high charge density of Al^{3+} permits strong interaction between H_2L and the metal ion.

Fluorescence decay behavior of H_2L and complex 1 has been studied. Decay curves have been given in Supplementary Information (Fig. 7). Fluorescence life time of H_2L is found to be quite low (1.324 ns). Fluorescence life time of H_2L in presence of one eq. of Al^{3+}, increases up to 2.058 ns. Quantum yields of H_2L and complex 1 are calculated using equation 2 and found to be very low. These have been measured to be 0.00939 and 0.2133, respectively (Table S1). It is to be noted that although quantum yield of the complex is low but it is almost ~22 folds greater compared to free H_2L.

Where F_x, F_s are the wavelength integrated emission intensities of the samples and reference (here reference is Coumarine); A_s, A_x are the optical densities at their corresponding wavelengths of excitation.

Free ligand upon excitation gives peak at 510 nm. In presence of Al^{3+} there is a slight blue shift ~32 nm of intensity and emission peak observed at 478 nm. Upon gradual addition of Al^{3+} to H_2L a steady increase in emission intensity at 478 nm has been observed.

Sensitivity of H_2L towards Al^{3+} has been checked by determining limit of detection (LOD) value. The detection limit of the chemosensor was calculated using 3σ method51 and it is found to be 6.93×10^{-9} mol/L.$^{14\text{e}}$ Low LOD value clearly indicate high sensitivity of H_2L towards Al^{3+} ion. In Table S1 some recently published chemosensors for Al^{3+} ion has been reported along with their LOD values.$^{14\text{a},14\text{e},14\text{g},14\text{i}-14\text{o}}$ The reported chemosensor has some advantages over the others while it has some draw backs also. Our probe is synthesized by easy single step Schiff base condensation process. LOD value is significantly low but not the lowest among all.

We also examined fluorescence intensity of H_2L in absence and presence of Al^{3+} ion at various pH values. We have maintained the pH range from 3 to 10. The solution concentration of both H_2L and Al^{3+} is 10 µM respectively. It has been observed that the chemosensor in free condition exhibit very little fluorescence in the acidic condition ($p^H = 3$ to $p^H = 7$). Fluorescence intensity remains unchanged within this p^H range. Upon increasing pH from 7 to 10 a slight increase in fluorescence intensity has been observed. In presence of Al^{3+}, in acidic condition ($p^H = 3$ to $p^H = 5$) fluorescence intensity of the chemosensor remain unchanged due to protonation of phenolic hydroxyl group of the ligand, therefore nullifying chelation ability with Al^{3+}. Al^{3+} ion
sensing abilities were exhibited by the ligand when pH was increased from 5.0 to 8.0. Thus, H_2L

exhibited good fluorescence sensing ability towards Al^{3+} ion over a wide range of pH (Fig. 8).

Based on the experimental results we can conclude that our chemosensor can be utilized as a
selective fluorescent probe to recognize and distinguish Al^{3+} ion in presence of other metal ions
in biological system under physiological condition.

DFT study

Geometry optimization of both H_2L and $[Al(L)]^+$ has been performed using DFT/B3LYP
method. Mass spectral data analysis has confirmed that the composition of the complex ion is
$[Al(L)]^+$. The energy minimized structure of both H_2L and $[Al(L)]^+$ are shown in Fig 9. Some
selected bond distances and bond angles of the optimized geometries of $[Al(L)]^+$ are listed in
Table 3. DFT optimized structure reveals that Al^{3+} is tetra-coordinated and distorted tetrahedral
in geometry (Fig. 9) where the chemosensor H_2L act as a N2O2 donor center and binds to Al^{3+}
through phenolic-O atom and imine-N. Theoretically calculated Al–N(imine) and Al–
O(phenolato) distances are around 1.906Å and 1.326Å, respectively and have been comparable
with similar structure.\(^{14e}\) It is interesting to mention that upon complex formation the C(15)–
N(3), C(17)–N(4), C(1)–O(1) and C(20)–O(2) bond distances have been significantly elongated
compared to free ligand (Table 3). Theoretical calculations show that electron density in both
HOMO and LUMO of H_2L is mainly distributed on the one part of the aromatic moiety. In metal
complex ion i.e. $[Al(L)]^+$ electron density in both HOMO and LUMO is allocated over the entire
ligand system. Energy of some selected M.O. of both H_2L and $[Al(L)]^+$ are given in Table S3.
Mulliken charge distribution shows positive charge on aluminium ion i.e. 1.227343. Mulliken
charge distribution of $[Al(L)]^+$ is provided in Table S4.
For better understanding of electronic transition, TDDFT calculations were performed using B3LYP/CPCM method using same basis sets in acetonitrile. The calculated electronic transitions are given in Table 4. H_2L shows intense absorption band for ligand based $n-\pi$ and $\pi-\pi^*$ transitions around 290 nm and 388 nm respectively. The band at 290 nm is due to the contribution of $\text{HOMO-4} \rightarrow \text{LUMO}+1$ and $\text{HOMO} \rightarrow \text{LUMO}+2$ transitions, whereas the band at 388 nm is due to the contribution of $\text{HOMO-1} \rightarrow \text{LUMO}$, $\text{HOMO-1} \rightarrow \text{LUMO}+1$ and $\text{HOMO} \rightarrow \text{LUMO}$ transitions. For the L–Al species the intense absorption band around 375 nm corresponding to $\text{HOMO} \rightarrow \text{LUMO}+1$, $\text{HOMO} \rightarrow \text{LUMO}+2$, $\text{HOMO} \rightarrow \text{LUMO}+3$ and $\text{HOMO-2} \rightarrow \text{LUMO}$ transitions (Fig. 10). The spectra calculated for the ligand and L–Al species were found to be compatible with those obtained experimentally. It is important to mention that in case of $[\text{Al (L)}]^+$ species all transitions are ligand based.

In order to have better understanding of the emission spectrum we have optimized the triplet state (T1) of both ligand (H_2L) and ($[\text{Al(L)}]^+$) using same basis set. The emission wavelength obtained from the computation is very much comparable with that of experimental data. The data i.e. emission wavelength, emission energies and the nature of the transition obtained from the computation are given in Table 5. The emission band of the chemosensor (H_2L) at 510 nm was theoretically obtained at 509.84 nm with major key transitions of $\text{HOMO}(\alpha) \rightarrow \text{LUMO}(\alpha)+1$(58%), $\text{HOMO}(\alpha) \rightarrow \text{LUMO}(\alpha)+2$(10%) and $\text{HOMO}(\beta)-1 \rightarrow \text{LUMO}(\beta)$ (11%) respectively. Whereas for the $[\text{Al(L)}]^+$ the emission band at 478 nm was theoretically obtained at 476.93 with major key transitions viz. $\text{HOMO}(\beta) \rightarrow \text{LUMO}(\beta)+2$(22%) and $\text{HOMO}(\alpha)-1 \rightarrow \text{LUMO}(\alpha)$ (66%) respectively.
NMR studies

Firstly, the chemosensor was well characterized in CDCl$_3$ solvent. In CDCl$_3$, imine proton appeared at 8.43 ppm. Aromatic, aliphatic and methoxy protons appeared at 7.42-7.90 ppm, 3.82-3.84 ppm, 2.25 ppm and 4.01 ppm respectively. Then, we have performed 1H NMR studies of both free H$_2$L and H$_2$L+Al$^{3+}$ in 1:1 molar ratio in DMSO-d$_6$ solvent (Fig. 11). The free chemosensor (H$_2$L) exhibit clear peaks for different protons. Imine proton appears at 8.66 ppm. All aromatic protons appear as multiplet at around 7.74-7.30 ppm. Aliphatic protons appear as multiplet at 3.74 and 2.06 ppm respectively. –OCH$_3$ protons appear around 3.74 ppm. In NMR spectrum signal of aliphatic one –CH$_2$ got merged with that the signal of –OCH$_3$.

Unfortunately we could not identify signal for phenolic OH proton due to extensive hydrogen bonding with solvent molecules. Upon addition of Al$^{3+}$ to the chemosensor peak positions of different protons have changed significantly. Imine protons have shifted notably from 8.66 ppm to 9.24 ppm indicating coordination of imine nitrogen with aluminium ion. In case of aromatic and aliphatic protons broadening and overlapping of signals observed. Therefore, formation of complex 1 in the presence of Al$^{3+}$ is strongly evidenced from the NMR spectral studies.

Molecular logic gates

The property of this chemosensor encourages us to construct a molecular logic gate with two binary inputs. The two inputs are Al$^{3+}$ and Na$_2$EDTA where the output is monitored as change in fluorescence emission spectrum at 478 nm. In absence of both of the inputs there is no significant change in emission band which implies that the gate is ‘OFF’. On addition of Na$_2$EDTA to the chemosensor there is no significant changes, rather the emission band remained
unchanged. So, in presence of Na$_2$EDTA the output was considered to be zero. On the other hand, upon addition of Al$^{3+}$ ion solution alone to the chemosensor shows significant enhancement of the fluorescence intensity at 478 nm and now the output signal is 1 i.e. the gate is ‘ON’. However in presence of both of the inputs the fluorescence intensity is significantly quenched and the output is zero implying that the gate is ‘OFF’ again. These studies suggest that this molecular gate is acting as INHIBIT (INH) logic gate where the inputs and output are Al$^{3+}$, Na$_2$EDTA and change in fluorescence intensity at 478 nm, respectively. It is basically an ‘AND’ gate which has one of its inputs is negated. The input which is negated, acts to inhibit the gate. We can say that the gate will behave like an ‘AND’ gate only when the negated input is set at a logic level ‘0’. Here the negated input is Na$_2$EDTA. The respective truth table and pictorial diagram of the INH logic gate is depicted in Fig.12 and Table 6.

Conclusion

In summary, an azo based low cost, simple, easy to prepare, chemosensor H$_2$L has been successfully prepared which is capable of recognizing Al$^{3+}$ ion in presence of large number of other metal ions in HEPES buffer solution (1:100 v/v, HEPES buffer at pH 7.4) at 25 °C. The chemosensor has been structurally characterized. Fluorescence intensity of the probe has enhanced by ~61 fold in presence of Al$^{3+}$. The low detection limit of H$_2$L for Al$^{3+}$ (6.93 nM) suggests that the chemosensor could be a good choice for efficient monitoring of the Al$^{3+}$ in real samples. H$_2$L forms 1:1 complex with Al$^{3+}$ which has been established by 1H NMR, MS studies and further supported by DFT calculations. H$_2$L exhibited good fluorescence sensing ability towards Al$^{3+}$ ion over a wide range of pH, therefore, H$_2$L could be successfully applied to living cells for detecting Al$^{3+}$. We also establish Molecular logic gates (INH) based on two inputs (Al$^{3+}$...
and EDTA) and one Output. Thus, this probe could be considered as a potential candidate for sensing Al$^{3+}$ in less organic solvents.

Acknowledgments

A. S. gratefully acknowledges the financial support of this work by the DST, India (Sanction No. SB/FT/CS-102/2014, dated- 18.07.2015). The authors are thankful to Prof. Mahammad Ali and Mr. Pravat Ghorai, Department of Chemistry, Jadavpur University, India for their scientific suggestions. The authors also acknowledge the use of the DST-funded National Single Crystal X-ray Diffraction Facility at the Department of Chemistry, Jadavpur University, Kolkata-700032, India for X-ray crystallographic studies.

Appendix A. Supplementary data

CCDC 1478332-1478333 contain the supplementary crystallographic data for azoaldehyde and H$_2$L. This data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or email:deposit@ccdc.cam.ac.uk.

Notes and References

a Department of Chemistry, Jadavpur University, Kolkata- 700032, India.

E-mail: asaha@chemistry.jdvu.ac.in; amritasahachemju@gmail.com; Tel. +91-33-24572941

b TEMA−NRD, Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
References

Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar,
J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C.
Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski,
D.J. Fox, GAUSSIAN09, Revision D.01, Gaussian Inc. Wallingford, CT, 2009.

40 G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley and J. Mantzaris,
4449.

Scheme 1. The route to the syntheses of H_2L.
Scheme 2. Schematic diagram for photoinduced electron transfer (PET) in free H_2L and chelation enhancement effect (CHEF) in $[\text{Al(L)}]^+$.
Table 1. Crystal parameters and selected refinement details for H$_2$L.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Azoaldehyde</th>
<th>H$_2$L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C${14}$H${12}$N${2}$O${3}$</td>
<td>C${31}$H${28}$N${6}$O${4}$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>256.26</td>
<td>548.59</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>155(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.7683(4)</td>
<td>8.648(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>13.4401(5)</td>
<td>11.051(3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>8.4892(3)</td>
<td>13.816(4)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90.00</td>
<td>91.833(9)</td>
</tr>
<tr>
<td>β (°)</td>
<td>93.755(2)</td>
<td>97.710(9)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90.00</td>
<td>92.902(8)</td>
</tr>
<tr>
<td>Volume (Å3)</td>
<td>1225.98(8)</td>
<td>1305.8(6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>D_{calc} (g cm$^{-3}$)</td>
<td>1.388</td>
<td>1.395</td>
</tr>
<tr>
<td>Description</td>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Absorption coefficient (mm(^{-1}))</td>
<td>0.100</td>
<td>0.095</td>
</tr>
<tr>
<td>(F(000))</td>
<td>536</td>
<td>576</td>
</tr>
<tr>
<td>(\theta) Range for data collection (°)</td>
<td>2.43-26.40</td>
<td>2.326-23.559</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>4910</td>
<td>12084</td>
</tr>
<tr>
<td>Independent reflections / (R_{int})</td>
<td>2204/0.0313</td>
<td>3806/0.0726</td>
</tr>
<tr>
<td>Observed reflections ([I>2\sigma(I)])</td>
<td>1980</td>
<td>2308</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2204/2/175</td>
<td>3806/0/373</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>1.029</td>
<td>1.752</td>
</tr>
<tr>
<td>Final indices ([I>2\sigma(I)])</td>
<td>R1 = 0.0331</td>
<td>R1 = 0.1611</td>
</tr>
<tr>
<td></td>
<td>wR2 = 0.0812</td>
<td>wR2 = 0.4280</td>
</tr>
<tr>
<td>(R) indices (all data)</td>
<td>R1 = 0.0378</td>
<td>R1 = 0.2089</td>
</tr>
<tr>
<td></td>
<td>wR2 = 0.0842</td>
<td>wR2 = 0.4619</td>
</tr>
<tr>
<td>Largest diff. peak / hole (e Å(^{-3}))</td>
<td>0.150/-0.120</td>
<td>0.968/-0.620</td>
</tr>
</tbody>
</table>
Table 2. Selected bond lengths (Å) and bond angles (°) for Azoaldehyde and H$_2$L

<table>
<thead>
<tr>
<th></th>
<th>Azoaldehyde</th>
<th></th>
<th>H$_2$L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X-ray Calculated</td>
<td>X-ray Calculated</td>
<td></td>
</tr>
<tr>
<td>C3-O2</td>
<td>1.340 1.3450</td>
<td>N1-N2</td>
<td>1.22(1) 1.2645</td>
</tr>
<tr>
<td>C8-O1</td>
<td>1.224 1.2264</td>
<td>N5-N6</td>
<td>1.267(9) 1.2647</td>
</tr>
<tr>
<td>N1-N2</td>
<td>1.252 1.2611</td>
<td>C15-N3</td>
<td>1.29(1) 1.2853</td>
</tr>
<tr>
<td>C2-O3</td>
<td>1.362 1.3631</td>
<td>C17-N4</td>
<td>1.28(1) 1.2845</td>
</tr>
<tr>
<td></td>
<td>C15-C16-C17 114.4(7) 115.79</td>
<td>C1-O1</td>
<td>1.259 1.275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2-O2</td>
<td>1.286 1.297</td>
</tr>
</tbody>
</table>
Table 3. Selected bond lengths (Å) and bond angles (°) of DFT optimized structure of $[\text{Al(L)}]^+$. (B3LYP/6-31+G(d) basis set)

<table>
<thead>
<tr>
<th></th>
<th>Calculated</th>
<th></th>
<th>Calculated</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N1-N2</td>
<td>1.26019</td>
<td>C1-O1</td>
<td>1.32767</td>
<td>Al-O1</td>
</tr>
<tr>
<td>N5-N6</td>
<td>1.26320</td>
<td>C2-O2</td>
<td>1.32668</td>
<td>Al-O2</td>
</tr>
<tr>
<td>C15-N3</td>
<td>1.31355</td>
<td>Al-N3</td>
<td>1.90639</td>
<td></td>
</tr>
<tr>
<td>C17-N4</td>
<td>1.31661</td>
<td>Al-N4</td>
<td>1.92372</td>
<td></td>
</tr>
<tr>
<td>C15-C16-C17</td>
<td>115.79</td>
<td>C15-C16-C17</td>
<td>116.50435</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Electronic transition calculated by TDDFT using B3LYP/CPCM method in Acetonitrile solvent of Ligand (H$_2$L) and [Al(L)]$^+$.

<table>
<thead>
<tr>
<th>Ligand (H$_2$L)</th>
<th>$E_{\text{excitation}}$ (ev)</th>
<th>$\lambda_{\text{excitation}}$ (nm)</th>
<th>Osc. Strength (f)</th>
<th>Key transition</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.60</td>
<td>344.43</td>
<td>0.1608</td>
<td>HOMO-4→LUMO+1 (42%)</td>
<td>π (L)→π^* (L)</td>
<td></td>
</tr>
<tr>
<td>3.57</td>
<td>346.63</td>
<td>0.0469</td>
<td>HOMO→LUMO+2 (29%)</td>
<td>π (L)→π^* (L)</td>
<td></td>
</tr>
<tr>
<td>3.19</td>
<td>388.28</td>
<td>0.902</td>
<td>HOMO-1→LUMO (56%)</td>
<td>π (L)→π^* (L)</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>394.53</td>
<td>0.6101</td>
<td>HOMO-1→LUMO+1 (48%)</td>
<td>π (L)→π^* (L)</td>
<td></td>
</tr>
<tr>
<td>3.019</td>
<td>410.64</td>
<td>0.0149</td>
<td>HOMO→LUMO (71%)</td>
<td>π (L)→π^* (L)</td>
<td></td>
</tr>
<tr>
<td>[Al(L)]$^+$</td>
<td>3.17</td>
<td>390.79</td>
<td>0.2576</td>
<td>HOMO-1→LUMO+1 (86%)</td>
<td>π (L)→π^* (L)</td>
</tr>
<tr>
<td></td>
<td>3.15</td>
<td>393.75</td>
<td>0.0254</td>
<td>HOMO→LUMO+2 (82%)</td>
<td>π (L)→π^* (L)</td>
</tr>
<tr>
<td></td>
<td>3.02</td>
<td>411.01</td>
<td>0.0011</td>
<td>HOMO-1→LUMO (86%)</td>
<td>π (L)→π^* (L)</td>
</tr>
<tr>
<td></td>
<td>2.95</td>
<td>419.85</td>
<td>0.6153</td>
<td>HOMO→LUMO (89%)</td>
<td>π (L)→π^* (L)</td>
</tr>
</tbody>
</table>
Table 5. Emission spectrum calculated by TDDFT using B3LYP basis set for Ligand (H₂L) and [Al(L)]⁺.

<table>
<thead>
<tr>
<th></th>
<th>E\text{excitation} (eV)</th>
<th>\lambda\text{emission} (nm)</th>
<th>Excited State</th>
<th>Osc. Strength (f)</th>
<th>Key transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand</td>
<td>2.43</td>
<td>509.84</td>
<td>5</td>
<td>0.0116</td>
<td>HOMO(\alpha)→LUMO(\alpha)+1 (58%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HOMO(\beta)-1→LUMO(\beta) (11%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HOMO(\alpha)→LUMO(\alpha)+2 (10%)</td>
</tr>
<tr>
<td>[Al(L)]⁺</td>
<td>2.17</td>
<td>476.93</td>
<td>8</td>
<td>0.2476</td>
<td>HOMO(\alpha)-1→LUMO(\alpha) (66%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HOMO(\beta)→LUMO(\beta)+2 (22%)</td>
</tr>
</tbody>
</table>
Table 6. Truth Table

<table>
<thead>
<tr>
<th>IN1 (Al³⁺)</th>
<th>IN2 (EDTA)</th>
<th>Output (Emission at 478 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Fig. 1. Ortep view of azoaldehyde. Atoms are shown as 30% thermal ellipsoids. H atoms are omitted for clarity.
Fig. 2. Ortep view of the ligand (H$_2$L). Atoms are shown as 30% thermal ellipsoids. H atoms are omitted for clarity.
Fig. 3. Absorption titration of H_2L (10 µM) with gradual addition of Al^{3+}, 0-10 µM in MeCN/HEPES buffer at pH 7.4.
Fig. 4. Fluorescence titration of H_2L (10 µM) in HEPES buffer at pH = 7.4 by gradual addition of Al^{3+} (0–10 µM) with $\lambda_{em} = 478$ nm (5/5 slit). Inset: non-linear plot of fluorescence intensity vs. concentration of Al^{3+} ion.
Fig. 5. Relative fluorescence intensity profile of [H$_2$L-Al$^{3+}$] system in the presence of different cations in HEPES buffer at pH 7.4. H$_2$L (10 µM) + Al$^{3+}$ (10 µM) + M$^{n+}$ (500 µM), where M$^{n+}$ = (1–Cd$^{2+}$, 2–Co$^{2+}$, 3–Cr$^{3+}$, 4–Cu$^{2+}$, 5–Fe$^{3+}$, 6–Hg$^{2+}$, 7–K$^+$, 8–Mn$^{2+}$, 9–Na$^+$, 10–Ni$^{2+}$, 11–Sn$^{2+}$, 12–Zn$^{2+}$, 13–Ag$^+$, 14–Fe$^{2+}$, 15–Ca$^{2+}$).
Fig. 6. Relative fluorescence intensity profile of \(H_2L\) (10 µM) in the presence of various common anions (50 µM) in HEPES buffer at pH 7.4.

1- \(H_2L+Al^{3+}\), 2- 14 \(H_2L+\) Anions, Anions = 2-S\(_2\)O\(_3\)\(^{2-}\), 3-S\(^{2-}\), 4-SO\(_3\)\(^{2-}\), 5- SO\(_4\)\(^{2-}\), 6-SCN\(^{-}\), 7-N\(_3\)\(^{-}\), 8-AsO\(_4\)\(^{3-}\), 9-PO\(_4\)\(^{3-}\), 10-ClO\(_4\)\(^{-}\), 11-OAc\(^{-}\), 12-CI\(^{-}\), 13-NO\(_2\)\(^{-}\), 14-NO\(_3\)\(^{-}\)
Fig. 7. Time-resolved fluorescence decay curves (logarithm of normalized intensity vs time in ns) of H₂L in the absence (○) and presence (■) of Al³⁺ ion, (●) indicates decay curve for the scattered (λex= 478 nm).
Fig. 8. Fluorescence intensity of H_2L (black box; 10 µM) in the absence and presence of Al^{3+} ion (red circle, 10 µM) ion at various pH values in HEPES buffer.
Fig.9. DFT optimized structures of H_2L and $[\text{Al(L)}]^+$. H-atoms are omitted for clarity.
Fig. 10. Pictorial representation of key transitions of H_2L and $[\text{Al(L)}]^+$.
Fig. 11. NMR titration of H_2L in presence of 1 eq. of Al^{3+} ion.
Fig. 12. Pictorial representation of Logic Gate.
A Robust Fluorescent Chemo sensor for Aluminium Ion Detection Based on Schiff base Ligand with Azo Arm and Application in Molecular Logic Gate

Saikat Banerjeea, Paula Brand\~aob and Amrita Sahaa,*

Herewith, we have reported a new Schiff base chemosensor with azo arm for Al3+ ions. The sensor has been well characterized using different techniques like single crystal x-ray, NMR, IR, UV etc. It shows excellent selectivity over other cations and anions. Detection limit of the sensor was found to be 6.93 nM.
Graphical Abstract (Pictogram)

A Robust Fluorescent Chemo sensor for Aluminium Ion Detection Based on Schiff base Ligand with Azo Arm and Application in Molecular Logic Gate

Saikat Banerjeea, Paula Brandãob and Amrita Sahaa*