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Palavras-Chave Estampagem incremental, SPIF, comportamento mecânico, textura 

cristalográfica, microestrutura de deslocações. 

  

  

Neste trabalho foi investigado o efeito da deformação plástica por 

estampagem incremental de ponto simples (SPIF) na textura 

cristalográfica, estrutura de deslocações e propriedades mecânicas de 

chapas de alumínio, aço com baixo teor em carbono e aço de fase 

dupla. 

 

Foram realizados ensaios de tração nos materiais iniciais para 

caracterizar as suas propriedades mecânicas. Além disso, foram 

realizadas análises por difração de eletrões retrodispersados (EBSD), 

observações por microscopia eletrónica de transmissão (TEM) e 

cálculos utilizando o modelo viscoplástico autoconsistente para 

caracterizar a influência da textura cristalográfica e da microestrutura 

no comportamento mecânico dos materiais. Foram também realizadas 

medidas de deformação e de espessura, bem como ensaios de 

microdureza nos materiais deformados por SPIF. 

 

Em todos os materiais, a textura cristalográfica inicial revelou-se 

muito estável durante o processo de SPIF e foi observado um 

acentuado aumento da densidade de deslocações bem como o 

desenvolvimento de células equiaxiais de deslocações durante a 

deformação de ambos os aços. No entanto, na chapa de alumínio, não 

foram observadas alterações significativas da microestrutura inicial de 

laminagem. Em todos os materiais foi observado um bom acordo entre 

a espessura das peças obtidas por SPIF e o valor previsto pela lei do 

seno.  
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Keywords Incremental forming, SPIF, mechanical behavior, crystallographic 

texture, dislocation microstructure. 

  

  

In this work, was investigated the effect of the plastic deformation by 

single point incremental forming (SPIF) on the crystallographic 

texture, dislocation structure and mechanical properties of aluminum, 

low carbon steel and dual phase steel sheets.  

 

Tensile tests were conducted on the initial materials to characterize 

their mechanical behavior. Furthermore, electron backscattering 

diffraction (EBSD), transmission electron microscopy (TEM) 

observations and calculations using a polycrystalline viscoplastic self-

consistent (VPSC) model were carried to characterize the influence of 

the crystallographic texture and microstructure on the mechanical 

behavior of the materials. Strain and thickness measurements and 

microhardness tests were also conducted on the SPIF deformed 

materials. 

 

The initial crystallographic texture was very stable during the SPIF of 

all materials and a strong increase of dislocation density and the 

development of equiaxed dislocation cell structure was observed 

during the deformation of both steels. However, for the aluminum 

sheet, no major change was observed on the initial rolling 

microstructure. For all materials, it was observed a good agreement 

between the thickness of the SPIF pieces and the value predicted by 

the sin law.  
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1. Introduction 

 

Historically, the development of a civilization depends on its ability to select, produce and use 

materials for their needs. Nowadays, different materials are used for various applications ranging 

from housing, to medical care, to communication, etc. Before selecting any material, one has to 

consider several factors such as availability, cost, ease of manufacture and the suitable chemical 

and physical properties. Metals form an integral part of several industries such as automobile, 

aerospace, construction and millions of tons of metals are processed every year through various 

forming process.  

The shaping operations can be categorized into bulk and sheet forming. Conventional forming 

processes such as deep drawing, stamping, punching etc. make use dies and punches. These are 

manufactured depending on the shape and dimensions of the components to be produced. 

However, these conventional processes are only suitable for mass-production of components due 

to its high initial investment.  

Recent diversification in customer demand has forced the industry to produce smaller batches at 

the lowest possible price. These requirements have justified an increase interest on incremental 

forming techniques, such as single point incremental forming (SPIF), where a sheet metal is 

deformed using a simple tool without the help of a die. This type of processes are particularly well 

adapted for the production of parts with complex shapes for different industries by rapid 

prototyping . In recent years, many different materials such as aluminum, titanium, PVC, etc. have 

been processed using SPIF.  

Phenomena that can limit the quality of the products, such as springback, sheet thinning and 

localized plastic strain,  obtained by traditional sheet forming operations can also be observed in 

SPIF. Despite all the research, the physical mechanism that governs the plastic deformation during 

the SPIF process is not fully understood and needs to be further investigated. 

The main objective of this work was to study the effect of plastic deformation by SPIF on the 

crystallographic texture, dislocation structure and mechanical properties of aluminum, low carbon 

steel and dual phase steel sheets. 
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The current thesis is organized in six chapters, the Introduction being the first one. 

Chapter 2 presents a bibliographic review of the material properties, applications and the studies 

conducted on them. This chapter also covers the main aspects of forming, plastic deformation, 

crystallographic texture, dislocation structures and their influence on the mechanical behavior of 

metals. 

Chapter 3 describes the initial material, experimental work and the techniques used for the 

material characterization. 

The results and discussions are presented in chapter 4. 

Finally, the conclusions and proposal for future work have been described in chapters 5 and 6, 

respectively. 
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2. Literature Review 
 

 

2.1. Sheet Metal Forming Processes 
 

Since approximately 4000 B.C., mankind has been producing metal components using 

different tools and techniques. Today, metal forming serves as a backbone for the modern 

manufacturing industry. Every year, hundreds of millions of tons of metals undergo metal forming 

process throughout the world, contributing to 15-20% of the gross domestic product (GDP) of 

industrialized nations (Kumar 2015). 

It is usual to classify the metal shaping processes in four major groups: casting, plastic forming, 

cutting and joining. Plastic forming can be further categorized into two types: bulk forming and 

sheet forming. Bulk forming consists of deforming the material in the form of a billet, rod or slab. 

In the second type of forming processes, the initial material is used in the form of sheets and do 

not present significant variation in the thickness during the shaping operation (Wagoner 2002). 

Conventional forming processes such as stamping, deep drawing, punching, etc. makes use of dies 

and punches which are manufactured according to the shape and dimensions of the component. 

Due to very high initial investment to produce these dies, the process is very expensive and it is 

suitable only for mass production of components. In recent years, the needs of the customer were 

so diversified that the lot size had to be reduced. Due to that, the cost of manufacturing the forming 

tools needed to be reduced as well. This paved way for developing production techniques for small 

batches. One idea was to create a deformation of sheets using a simple tool without the help of a 

die. This idea of ‘dieless forming’ was already patented by Leszak in the United States in 1967 

(Leszak 1967), even before it was technically viable. After that, there was a significant interest in 

processes where the sheet metal is deformed plastically in a small zone, enabling a fast and flexible 

production of complex parts (Müller 1998). This method, called incremental sheet forming (ISF), 

has now become very attractive due to the advances in manufacturing technology especially in the 

field of numerical control and automation. Jesweit et al., provided a comprehensive review of the 

process development covering most aspects of incremental sheet forming (Jeswiet 2005). Single 
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point incremental forming (SPIF) is one such process of incremental sheet forming which has been 

receiving great attention from the scientific community in the past few years (Jeswiet 2005) 

(Benedetti 2015).  

 

 

2.1.1. Incremental Sheet Forming 

 

The term incremental forming is a generic term used for a variety of processes that are 

characterized by the fact that at any given time, only a small part of the product is being deformed 

by the application of a step-by-step incremental feed to a deforming tool (Tisza 2012). The ISF 

process can be defined as a manufacturing process done usually with a small sized tool in 

continuous contact with a small zone of the sheet that is deformed without any dedicated die 

(Jeswiet 2005). In conventional sheet forming processes, dedicated tools are necessary which are 

complex to produce and hence, expensive. In incremental forming technique, only a deforming 

tool is required.  

In the most common ISF processes, there are four basic elements: a metallic sheet, a blank 

holder/edge, a deforming tool and a computer control system. The blank edge is clamped and the 

sheet is deformed usually by a hemispherical tool, whose path is defined by the computer control 

system as shown in Figure 1. The incremental step-down size (Δz) affects the surface quality and 

the processing time. A decrease of the step-down size corresponds to an increase of the surface 

quality of the obtained piece, as shown in Figure 2, but also an increase in the processing time. 

Feed rate is the speed with which the forming tool moves around the deformation area. Forming 

angle (β) is defined as the angle between the normal of the un-deformed sheet metal and the 

deformed sheet wall. The maximum forming angle (βmax) is the highest forming angle possible to 

use without the occurrence of failure. This parameter is usually used as a measure of formability 

of the material during the ISF process (Ham 2006) (Ham M 2007). 
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Figure 1: Basic principle of incremental forming (Tisza 2012). β is the forming angle and Δz is the 

incremental step-down size. 

 

ISF, that can be seen as combination of stretch forming and metal spinning processes, is able of 

produce 3D complex shapes (Kumar 2015) and has received a significant increase in the research 

activity during the last years (Jeswiet J. 2001) (Jeswiet 2005) (Leach 2001) (Kitazawa 1997) 

(Powell 1992), (Benedetti 2015), (Milutinović 2014).  

 

Figure 2: Surface roughness in pieces produced by ISF with different incremental step-down sizes 

(M. B. Silva 2008). 
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2.1.2. Classification of Incremental Sheet Forming 

 

Incremental forming may be classified based on forming methods, forming path, applied 

tools, part geometry, etc. However, the most common classification is done based on forming 

methods. They can be categorized into conventional incremental sheet forming (CISF) and hybrid 

incremental sheet forming (HISF). 

 

 

2.1.2.1. Conventional Incremental Sheet Forming 

 

In CISF processes, the sheet of metal is progressively deformed with the help of a 

hemispherical or ballpoint tool, resulting in a localized plastic deformation. The tool moves over 

the surface of the sheet whose path is defined by computer controlled system, resulting in the final 

product. These process can be further classified into: 

 Single point incremental forming (SPIF): It is also called negative dieless forming. In this, 

only one tool moves over the surface, as shown in Figure 3; 

 Two point incremental forming (TPIF): Also known as positive dieless forming, uses two 

tools: one deformation tool and another supporting tool move over the surface of the sheet, as 

shown in Figure 4. 

 

Figure 3: Single point incremental forming (SPIF) (Kumar 2015). 
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Figure 4: Two point incremental forming (TPIF) (Kumar 2015). 

 

 

2.1.2.2. Hybrid Incremental Sheet Forming 

 

The HISF processes are modified versions of CISF. In addition to the deformation tool 

moving over one of the surfaces of the sheet, the other side of the sheet is supported by pressurized 

hydraulic fluid, partial die or a full die to get the desired size and shape. Depending of the selected 

support, the hybrid incremental forming processes are classified into: 

 Single point incremental hydro-forming (SPIHF): In this type of hybrid incremental forming, 

the deformation tool moves over the surface of the sheet while the other side is supported by 

a pressurized hydraulic fluid, as shown in Figure 5; 

 TPIF with partial die (TPIFPD): The desired shape is obtained with the help of the 

deformation tool which moves over one side of the sheet while the other side is supported by 

a partial die, as shown in Figure 6; 

 TPIF with full die (TPIFFD): The partial die is replaced by the full die to get the desired 

shape and size, as shown in Figure 7. 
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Figure 5: Single point incremental hydro-forming (SPIHF) (Kumar 2015). 

 

 

Figure 6: Two point incremental forming with partial die (TPIFPD) (Kumar 2015). 

 

 

 

Figure 7: Two point incremental forming with full die (TPIFFD) (Kumar 2015). 
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Further classification on ISF can be done based on the forming method depending on whether it is 

a single-step or a multi-step process (Echrif 2011). Taking the geometry of the formed sheet into 

account, the ISF processes can be classified as symmetric and asymmetric (Tisza 2012).  

 

 

2.1.3. Single Point Incremental Forming 

 

 

2.1.3.1. The Process 

 

Single point incremental forming is a simple, yet innovative, process to produce both 

axisymmetric and non-axisymmetric parts. It uses simple tools such as, a cylindrical metal tool 

with a spherical tip, to deform the sheet metal and does not require any die to accomplish the 

process. Due to this, the forming forces are much smaller compared to other conventional sheet 

forming processes. It has been shown by several studies that SPIF can be performed with a standard 

three-axis computer numerical control (CNC) mill (Jeswiet J. 2001) (Leach 2001) (Filice 2002).  

The basic components involved in SPIF are shown in Figure 8. The schematic representation of 

the cross-section view of SPIF is shown in Figure 9. 

 

Figure 8: Components in SPIF (Torrão 2013). 
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Figure 9: Schematic representation of SPIF (P. A. Martins 2008). 

 

By applying pressure on the surface of the sheet using the tool, the deformation is accomplished. 

The metal sheet is restrained by the blank holder to avoid displacement and flow of material into 

the forming area. The backing plate supports the sheet and its opening defines the forming area of 

the deformation tool. The computerized system controls the tool path and no back up die is used 

to support the back surface of the metal sheet during the process.  Figure 10 illustrates an 

exemplificative path taken by the forming tool. The tool path can be unidirectional or bi-

directional, although it is mentioned that the unidirectional tool path might lead to twisting in the 

part produced (Jadhav 2004). The thickness of the obtained piece wall (t) can be related with the 

forming angle (β) through the sine law (Jeswiet 2005): 

t =  t0 sin (β)      (1) 

where, t0 is the initial thickness of the sheet. 
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Figure 10: Example of unidirectional path followed by the SPIF tool (M. Martins 2011). 

 

 

2.1.3.2. Advantages and Disadvantages 

 

As a result of several studies conducted on SPIF, some advantages and disadvantages have 

been pointed out by many authors (Jeswiet 2005) (J. M. Allwood 2004).The main advantage lies 

in the fact that it does not require any positive or negative dies, thus saving a lot of time and 

financial investment in the production of these dies. The parts can be formed directly from 

computer aided design (CAD) data files with minimal specialized tooling while the design changes 

can be accounted for easily and quickly, making the process flexible. The deforming tool can be 

controlled entirely by a conventional CNC machine. The small plastic zone and the incremental 

nature of the process result in increased formability, making it easier to deform sheets with low 

formability. Finally, the entire operation is quiet and the applied loads are much smaller. The major 

disadvantage of this process is the longer forming time compared to other forming process, 

resulting in the production of smaller batches in the same timeframe. Also, a multistep process is 

needed to produce the right angles that cannot be done in one step. Depending on the material, the 

springback phenomena during the forming process can give rise to undesired distortions of the 

final shape (Meier 2009) and must be accounted for. 
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2.1.3.3. Applications 

 

SPIF has a vast field of applications such as in the aerospace and automobile industries or 

fields such as health care (Milutinović 2014) (J. M. Allwood 2004). With the help of CAD/CAM 

software, various geometries can be produced and due to its versatility, it can handle different 

kinds of metals such as steel, aluminum, composite and polymeric materials (P. A. Martins 2009) 

(M. B. Silva 2010) (Franzen 2009) (Jesweit 2005). Some of the different geometries that can be 

produced using SPIF are shown in Figure 11. 

 

Figure 11: Examples of geometries produced by SPIF (Jeswiet 2005) (M. Martins 2011). 

In the area of rapid prototyping, SPIF is of major use as it has the capability of attaining functional 

parts such prostheses for the medical industry. A good example was presented by Duflou et al., (J. 

R. Duflou 2005) (Verbert 2008) who produced a cranial implant from the model of a patient’s 

skull.  

 

Figure 12: Cranial implant obtained by SPIF (J. R. Duflou 2005). 

By employing reverse engineering, it is possible to produce replacements for discontinued parts. 

Other areas of products where SPIF is applicable are cellular phone, hard disk drives and sensors. 
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2.1.4. Formability in SPIF process 

 

Incremental sheet forming is characterized by an increase in formability compared to 

conventional methods (Jeswiet 2005) (P. A. Martins 2008) (Fratini 2004). The governing mode of 

deformation which leads to this increase, has been a subject of controversy (M. B. Silva 2008) 

(Emmens 2007). Some have claimed that the deformation is mainly due to shearing rather than 

stretching whereas others have claimed the opposite (Y. H. Kim 2002) (T. J. Kim 2000) (Jackson 

2009) (J. M. Allwood 2007).  

Recent research has shown that the formability in SPIF is in very close correlation with the forming 

angle (β). From the sine law (eq. 1), increasing the forming angle corresponds to a decrease in the 

wall thickness and at a particular point (that defines a maximum forming angle, βmax), it will reach 

its minimum before undergoing fracture. Thus, the forming angle can be used to characterize the 

formability of the material during the SPIF process (Tisza 2012). However, the use of βmax gives 

only a rough approximation as the deformation mechanisms in SPIF are much more complex and 

formability cannot be defined by a single parameter (P. A. Martins 2008) (Tisza 2012) (Jeswiet 

2005). As the process is affected by many parameters, a benchmark method was proposed by 

Micari (Micari 2004): using a truncated cone with a height of 40 mm and a base diameter of 72 

mm as shown in Figure 13. Tests are performed at various cone angles until fracture, which is 

defined as tearing in the specimen wall. Table 1 shows the βmax value for the given initial thickness 

of different materials. 

 

 

Figure 13: Benchmark specimen for testing forming parameters (Jeswiet 2005). 
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Table 1: Maximum forming angle (βmax) for different initial sheet thickness (to) and materials. 

Material βmax (˚) to (mm) Reference 

Aluminum 1050-O 67.5° 1.21 Filice (Filice 2002) 

Aluminum 6114–T4 60° 1.0 Micari (Micari 2004) 

Aluminum 3003 – O 78.1° 2.1 Jeswiet (Jeswiet 2005) 

Aluminum 3003 – O 72.1° 1.3 Jeswiet (Jeswiet 2005) 

Aluminum 3003 – O 71° 1.21 Jeswiet (Jeswiet 2005) 

Aluminum 3003 – O 67° 0.93 Jeswiet (Jeswiet 2005) 

DC04, mild steel 65° 1.0 Hirt (Hirt 2004) 

 

Considering the complexity of the plastic deformation mechanisms involved in SPIF, theoretical 

prediction of formability is very difficult and hence forming limit diagrams (FLD) is the more 

common solution. These diagrams are an important tool to decide if a material with a particular 

thickness can be used in the forming operation to produce a piece without defects due to fracture 

or plastic instabilities. The forming limit diagrams have usually a V-shaped, as shown by the 

dashed lines in Figure 14. Nowadays, tests methods, such as Nakajima (Nakazima 1967) or 

Marciniak (Marciniak 1965) tests, are available to determine the FLD of conventional forming 

processes. Incremental sheet forming is characterized by local deformation modes which 

determine a forming limit curve with a negative slope for positive minor strains (Filice 2002) 

(Kumar 2015).  

 

 

Figure 14: Typical forming limit diagram for conventional and incremental forming. FLC – 

forming limit curve (Jeswiet 2005). 
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Martins et.al (P. A. Martins 2008) performed experiments on 1 mm thickness aluminum AA1050-

H111 sheets by varying the forming angle and found that plastic deformation occurs due to uniform 

thinning until fracture (Figure 15) without any experimental evidence of localized necking before 

fracture. In fact, necks are unable to grow in SPIF due to the small plastic deformation zone in 

contact with incremental forming tool. Even if the conditions for localized necking could be met 

at the small plastic deformation zone, as the surrounding material experiences relatively lower 

stresses, its growth would be inhibited (P. A. Martins 2008) (M. Martins 2011). This means that 

conventional FLDs are not able to describe the failure in SPIF. Instead, fracture forming limit 

diagrams (FFLDs) are usually employed in SPIF (M. B. Silva 2008) (Benedetti 2015). 

 

 

Figure 15: Experimental evidence of SPIF being limited by fracture without necking (P. A. Martins 

2008). 

 

Tisza (Tisza 2012) successfully determined both sides of the FLD in incremental forming (Figure 

16) using a modified version of the conventional Marciniak test (Marciniak 1965). In this study, 

he concluded that the formability in incremental forming increases with the increase of the initial 

sheet thickness. Similar conclusions were drawn by Hirt et.al (Hirt 2004) who performed 

experiments with a mild steel sheet with different thickness.  
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Figure 16: Comparison of FLD for conventional and incremental forming for aluminum 1050 sheet 

(Tisza 2012). 

 

There have been several other studies centered on the formability in incremental forming. Kim and 

Yang suggested a multi-pass technique to improve formability by assuming an occurrence of shear 

deformation in the material (T. J. Kim 2000). This was also suggested by Duflou et.al to avoid 

damage localization. Emphasis was given on the control of the force to improve formability (J. R. 

Duflou 2008). Ambrogio et.al (Ambrogio 2006) and Duflou et.al (Duflou J. 2007) also suggested 

forming forces as a parameter to predict failure. Ambrogio et.al (Ambrogio G. 2008) have shown 

that the formability is enhanced when the sheet metals are deformed in warm conditions and that 

the effect of the tool diameter is negligible in comparison with the temperature and the step-down 

size. Kim and Park observed that as the feed rate decreases, the formability increases (Y. H. Kim 

2002). Hussain et.al did extensive research on several materials to show how some material 

properties, such as strain hardening exponent, tensile and yield strength, anisotropy etc., influence 

the SPIF formability (Hussain 2009).  

Ham and Jeswiet (Ham 2006) reported that the parameters involved in the process such as sheet 

thickness, step-down value, size of the forming tool and the speed of deformation all affect the 

formability of ISF. Micari (Micari 2004) conducted tests on 1mm thick AA1050-0 sheets with a 

cone configuration as shown in Figure 13 and concluded that the formability decreased as the step-

down size increases.  This was further observed by Hagan and Jeswiet (Hagan 2004). The next 
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figure shows the FLDo (maximum major true strain, ε1
max), for different step sizes for AA1050-0 

for a tool diameter of 12mm performed by Micari (Micari 2004). 

 

 

Figure 17: FLDo values for different SPIF step-down sizes of aluminum 1050-O. The upper and 

lower bounds for a tool diameter of 12mm are represented (Micari 2004). 

 

Micari (Micari 2004) also studied the effect the spindle angular speed and the forming tool 

diameter. By increasing the angular speed, local heating of the sheet will take place, which 

increases the formability. The negative aspect of this is that the wear of the tool will occur at a 

faster rate. The forming tool diameter is also an important processing parameter: tool with a small 

radius concentrates the strain in a small deformation zone while a larger radius tool tends to 

distribute it over a wider area. Increasing the tool radius will decrease formability as the process 

becomes similar to a stamping process (Jeswiet 2005) (Micari 2004). Hirt et.al (Hirt G. 2002) 

found out that the formability greatly increased by decreasing the tool radius from 30mm to 6mm. 

The influence of anisotropy on formability was investigated by Kim and Park (Y. H. Kim 2002) 

who concluded that, when small diameter tools are used, the formability differs with the direction 

with respect to the rolling direction of the metallic sheet.  

Although many experiments have been performed in the past by several researchers, a consensus 

has not yet been reached regarding the exact deformation mechanism in SPIF which leads to 

increased formability. Emmens and Boogaard (Emmens 2007) have given a brief overview 

suggesting the possible mechanisms that lead to the increase in formability in incremental forming 



2. Literature Review|2016 
 
 

18 

 

such as a combination of stretching with shear forces, bending or normal forces, non-proportional 

or cyclic deformation paths, too small deformation zones and hydrostatic compressive stresses. 

Other mechanisms such as restriction of neck growth and the effect of hydrostatic pressure have 

also been mentioned in the literature (Emmens 2007) (Hirt G. 2002) (P. A. Martins 2008). 

 

 

2.2. Materials 

 

Over the years, SPIF has been used on many different materials such as aluminum, poly-

vinyl chloride (PVC), steels, magnesium, titanium, brass, copper, etc. (Ambrogio G. 2008) (Ham 

2006) (Hussain 2009) (Jesweit 2005) (Franzen 2009).  

 

 

2.2.1. Aluminum 

 

Aluminum is one of the most commonly used non-ferrous metals in applications which 

require reduced weight, such as the aerospace and automotive sector. Due to the need for fuel 

economy and weight saving, it has been playing an important role in the development of 

lightweight fuel-efficient transportation systems. With a density one-third that of steel, excellent 

ductility and corrosion resistance, pure aluminum can be modified by alloying and processing, 

giving it improved mechanical properties for several industries. 

 

 

 

2.2.2. Steel 

 

Steel is one of the most important engineering material, mainly due to its unique 

combination of strength, toughness and ductility. These properties justify its use in construction, 
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equipment and components, automobile industry, etc. It has become such an essential part of our 

society that the extent of consumption of steel is considered a key economic indicator for assessing 

the development of a country.  

Steel is an alloy of iron and carbon that is usually categorized based on the carbon amount, as 

presented in next the table.  

 

Table 2: Categorization of steels based on the carbon content. 

Type Carbon Content (wt. %) 

Low-carbon steel <0.3 

Medium-carbon steel 0.3 - 0.7 

High-carbon steel               0.7 - 2.0 

 

Depending of the composition and processing, a wide variety of metallurgical structures with 

different properties can be produced. In addition to carbon, other common alloying elements are 

manganese, nickel, molybdenum, vanadium, chromium, etc. 

 

2.2.2.1. Advanced High Strength Steels 

 

Advanced high strength steels (AHSS) are a relatively recent technological advancement 

in steel production. These materials show an improved combination of strength, ductility, 

toughness and fatigue properties as a result of a careful selection of chemical composition and 

processing conditions. The AHSS steels includes the martensitic (MS), dual phase (DP), complex 

phase (CP), ferritic-bainitic (FB), transformation induced plasticity (TRIP) and twinning induced 

plasticity (TWIP) steels.  
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Figure 18: Typical tensile strength and elongation presented by AHSS and conventional steels 

(WorldAutoSteel 2014). 

 

Between these materials,  DP steels are one of the most important type of AHSS due to their 

excellent combination of strength, ductility and price. The microstructure is predominantly 

composed by ferrite and martensite (Figure 19). The hard martensite particles provide substantial 

strengthening while the ductile ferrite matrix gives good formability. This unique combination of 

properties of DP steels allows to produce both thin and high strength components for many 

applications, such as for the automotive industry (Federici 2005).  

 

Figure 19: Schematic microstructure of DP steel (WorldAutoSteel 2014). 
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2.3. Plastic Deformation of Metallic Materials 

 

2.3.1. Plastic Deformation Mechanisms 

 

Plastic deformation occurs when the load applied is enough to prevent the material to 

recover its original shape after unload. Usually, plastic deformation at room temperature takes 

place through non-diffusive mechanisms such as slipping and twinning. Slip is usually seen in 

materials with high stacking fault energy such as aluminum whereas twin occurs in materials with 

low stacking fault energies such as brass (R. E. Smallman 1964) (Karaman 2000) (Abbaschian 

2008).  

Slip takes place by the movement and multiplication of dislocations along planes and directions 

(slip systems) of the crystal lattice with the highest atomic density, producing the movement of a 

portion of the crystal over the other part, as a result of an applied shear stress (τs). In face centered 

cubic (FCC) materials such as aluminum, these planes and directions correspond to {1 1 1} and 

<1 1 0>, respectively. In body centered cubic (BCC) crystals, such as iron, slip can occur at any 

one of the planes {1 1 0}, {1 1 2} and {1 2 3} along the most closed packed direction, <1 1 1> (R. 

E. Smallman 1964) (R. E. Smallman 2007). 

 

Figure 20: Slip in a single crystal (Dieter 1988). 
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The activation of a slip system (s) occurs when the shear stress on this slip system (τs) reaches a 

critical value τc
s (critically resolved shear stress), i.e.: 

{
τs = τc

s → slip system s is active
τs < τc

s → slip system s is latent
                                  (2) 

If σ is the tensile stress applied to the crystal and Φ and λ are the angles between the applied stress 

direction and, respectively, the normal of the slip plane and the slip direction: 

  τs =  σ cos(ϕs) cos (λs)     (3) 

The product cos(ϕs) cos (λs) is called the Schmid factor, ms (Schmid 1924) 

The value τc depends on the dislocation density and the frictional stress for movement of 

dislocation trough the following equation: 

τc =  τo +  α′ Gb√ρ      (4)  

where α′ is the average interaction intensity between the dislocations, G is the shear modulus and 

b is the Burgers vector of the dislocations (Schmid 1924). 

During the plastic deformation, dislocations are accumulated inside the grains and, after a certain 

amount of strain, they tend to organize themselves into structures (dislocation cells) whose shape 

depends upon the number of activated slip systems (Figure 21). When one or two slip systems are 

activated, the development of one or two families, respectively, of dislocation walls parallel to the 

slip planes with highest activity takes place. When more than two slip systems are activated, 

equiaxial dislocation cells are observed. With the increase of strain, the density of dislocations 

increase resulting in the decrease in size of the dislocation cells and an increase in the relative 

crystallographic misorientations between neighboring cells. The degree of organization of 

dislocations depend on the dislocation mobility. In materials where the dislocations have high 

mobility, a well-defined dislocation cell structure can be observed whereas lower dislocation 

mobility leads to a more homogeneous distribution of dislocations and no well-defined cells are 

observed inside the grains (Kuhlmann-Wilsdorf 1989) (Rauch 2004) (Dutta 2011). 
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Figure 21: TEM dislocation microstructure of a) one b) two families of parallel dislocation walls 

and c) equiaxial dislocation cells (Lopes 2001). 

 

 

2.3.2. Crystallographic Texture 
 

The crystallographic texture is the preferential orientation of the grains in a polycrystalline 

material. This preferential orientation of grains occurs during previous heat treatment or plastic 

deformation operations and is many times responsible for an anisotropic behavior of the material.  

The most widespread form of representing the crystallographic texture is by pole figures which is 

a stereographic projection of the distribution density of the given {hkl} crystallographic plane 

normals. For cubic materials, it is necessary at least two different pole figures to define completely 

the crystallographic texture. 
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Figure 22: Typical {111} and {200} pole figures of aluminum after conventional rolling. RD-

rolling direction (Kudrathon 2010). 

 

In case of sheets, the crystallographic planes {hkl} parallel to the sheet plane and directions <uvw> 

parallel to RD can be used to identify the preferential crystallographic orientation of the grains. 

For example, the typical rolling components of aluminum are the copper {112}<111>, 

S{123}<634> and Brass {011}<211> (Engler 2009). 

Other representation of the crystallographic orientation of the grains in the polycrystals is the three 

consecutive rotations (Euler angles: φ1, Φ, φ2) that transform the crystallographic frame (a, b, c) 

to the specimen frame (X, Y, Z) (Bunge 1982) (Suwas 2014).  

 

Figure 23: Definition of crystal axis (a=[100], b=[010] and c=[001]) and macroscopic specimen 

axis for a sheet (X, Y, Z) (Dutta 2011). 

 

Taking into account the orientation of each individual grain (g = (φ1,Φ, φ2)), the texture of the 

polycrystal can be represented in Euler space by 3D iso-surfaces as shown in Figure 24 (a). 
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However, as this representation is complex to analyze, the texture of the polycrystal is usually 

represented by 2D representations of Euler space at constant φ2, as shown in Figure 24 (b) and 

Figure 25. 

 

 

Figure 24: Crystallographic texture representation in Euler’s space a) three-dimensional 

representation; b) two-dimensional representation of sections with constant values of φ2 (Bunge 

1982). 

 

Figure 25: φ2=45º section of Euler space representation of some main crystallographic texture 

components of steel (Suwas 2014). 
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2.3.3. Polycrystalline models of plastic deformation 

 

Polycrystalline materials consist of several grains oriented in different crystallographic 

directions that have mutual interactions which affect the mechanical behavior of each crystal and, 

therefore, of the material. These interactions between the grains leads to local accommodation 

processes resulting in differences between macroscopic and microscopic imposed stress or strain 

states. Depending on how these accommodation processes are considered, different models have 

been proposed to correlate the mechanical behavior in the polycrystal and in each grain (R. A. 

Lebensohn 1993) (Kudrathon 2010) (Dutta 2011). 

 

2.3.3.1. Sachs Model 

 

The Sachs model (Sachs 1928) assumes that there is no interaction between the neighboring 

grains in the polycrystal and hence, it considers that the stress imposed upon each grain is uniform 

and equal to the macroscopic stress, as in monocrystals. The plastic deformation is accommodated 

in each grain by the activation of the slip system with the highest Schmid factor (Schmid 1924). 

In this case, taking into account the different crystallographic orientations of the grains, the entire 

behavior of the polycrystal can be represented by the average behavior of the crystals (Zaoui 1990). 

σ = < M−1 > τ̃       (5) 

where, < M−1 >is the mean value of the inverse Taylor factor and τ̃ is the average shear stress 

acting on the crystals. 

 

2.3.3.2. Taylor Model 

 

The Taylor model assumes that all the grains in the polycrystalline material undergo the 

same homogeneous strain as the polycrystal. This requires the activation of at least five 
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independent slip systems. The activated slip systems are the ones that minimize the deformation 

energy, e.g. (Taylor 1938): 

(Wint)min = (∑ τc
s5

s=1 |γs|)min   (6) 

where, (Wint)min represents the minimum internal work necessary to plastically deform the 

polycrystalline material, τc
s and γs represent the critically resolved shear stress and the shear strain 

in the slip system, s, respectively. 

The limitation of this model lies in the fact that this condition can occur for different sets of five 

independent slip systems giving rise to ambiguity in the selection. 

Assuming that the critical shear stress value is same for all slip systems (τ=τc
s):                                             

σ

τ
=

(∑ |γs|S
s=1 )min

ε
= M                                                 (7) 

where, σ and ε are the macroscopic imposed stress and strain respectively. M is the Taylor factor 

which takes into account the orientation of the grains with respect to the stress applied. If all the 

grains are considered, the Taylor factor should be replaced by the average Taylor factor <M> and 

the expression can be re-written as: 

σ = < M > τ̃      (8) 

 

2.3.3.3. Viscoplastic Model 

 

The viscoplastic model, considers that the shear strain rate, γ̇s in each slip system is 

dependent on the resolved shear stress τs through the equation (Molinari 1987) (Austin 2011):                                                        

γ̇s =  γ̇c
s (

τs

 τc
s) η                                                   (9) 

In the above equation, the γ̇c
s and the τc

s are, respectively, the reference shear strain rate and the 

critical resolved shear stress of the slip system (s) and η is the reciprocal strain rate sensitivity 

coefficient of the material. 
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This model assumes that all slip system are activated during the plastic deformation (with 

different activity) and is usually combined with self-consistent conditions:  

 

 E = < ε >      (10) 

                                                                         Σ =< σ >     (11) 

where E and Σ  are, respectively the macroscopic stress and strain applied to the polycrystal and  

<ε> and <σ> represent the average strain and stress on the individual crystals. 

 

 

2.3.4. Mechanical Behavior 

 

The mechanical behavior of the polycrystal depends upon the individual contribution of 

the grains, considering their crystallographic orientations and the local interactions between the 

neighboring grains. Besides that, other parameters such as prestrain value, amplitude of strain path 

change and strain rate also effect the mechanical behavior of the material. 

 

2.3.4.1. Anisotropy 

 

Anisotropy is the change of a property with the direction of the material. If the property is 

the strain, the anisotropy can be characterized by an anisotropic coefficient (R), also called 

Lankford parameter, given by: 

R =
ε22

ε33
     (12) 

where ε22 and ε33 are the true strains in the width and thickness directions, respectively, (see 

Figure 26) and calculated through the following equations: 

ε22 = ln (
w

wo
)      (13) 
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ε33 = ln (
t

to
)      (14)  

with woand to representing the initial width and thickness and w and t representing the final width 

and thickness of the sheet specimen, respectively. 

 

 

Figure 26: Tensile test specimen of rolled sheet showing strain directions (Vincze 2007) 

(Kudrathon 2010). 

 

Assuming that plastic deformation occurs at constant volume, ε33 can be calculated as: 

ε33 =  −(ε11 + ε22)     (15) 

where: 

ε11 = ln (
l

lo
)         (16) 

with l0 and l being the initial and final length of the sheet specimen respectively. 

Taking into account the equations 12 and 15, R can be calculated using the following equation: 

R =  −
ε22

ε11+ε22
        (17) 
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The average value of R or normal anisotropy coefficient (R̅) is calculated from three R-values 

measured at angles (θ) equal to 0° (R0), 45º (R45) and 90° (R90) with respect to the rolling 

direction (RD), using the equation: 

R̅ =
R0+2R45+R90

4
    (18) 

The variation of the Lankford coefficient with the angle on the sheet plane is given by the planar 

anisotropy coefficient (ΔR): 

ΔR =
R0−2R45+R90

2
    (19) 

An increase of R̅ value is an indication that the material deforms more before rupture and, 

therefore, the formability increases. If the variation of R (ΔR) is high, the final part may present 

“ears” (Figure 27) which represents wastage of material and a need of additional processing 

operations. 

 

 

Figure 27: Typical appearance of a deep drawn cup with ears (Engler 2009). 

 

 

2.3.4.2. Effect of the Amplitude of Strain Path Change 

 

The mechanical behavior of the material depends on the initial texture and the dislocation 

structure and their respective evolutions during plastic deformation. Usually, the sheet forming 
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processes involve several sucessive deformation steps. During each strain path, changes can occur 

on the dislocation structures and crystalographic orientations of the grains that can significantly 

change the mechanical behaviour of the material during the process. 

Depending of the prestrain value and amplitude of the strain path change, the mechanical behavior 

during reloading can be categorized into three different types, which are shown schematically in 

Figure 28. 

 

Figure 28: Stress (σ) – strain (ε) curve showing the consequences of reloading after a pre-

deformation comparing with the initial monotonic test (Vieira 1994) (Lopes 2001). 

 

From the above figure, curve (a) represents the case where the yield stress during reloading is 

lower than the yield stress exhibited by the undeformed material, which is the characteristic of a 

Bauschinger type behavior. In curves (b) and (c), the yield stress during reloading is higher than 

that of the material without pre-deformation. Curve (b) represents the situation of a premature 

failure due to softening during the early stage of reloading whereas in curve (c), the material 

exhibits a similar strain rupture compared with the undeformed material.  

The effect of strain path change can be expressed by the cosine of the angle between the two 

vectors that represent the two successive strain paths defined in the strain space (Schmitt 1994): 

α =
εp:ε

√εp:εp √ε:ε
     (20) 
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where 𝛼 is the amplitude of the strain path change and εpand ε represent the strain tensors of the 

prestrain and reloading, respectively.  The value of 𝛼 is related with the change of slip system 

activity and it varies between -1 (the inversion of strain paths: Bauschinger tests) and 1 (no change 

of strain path: monotonic tests). 

For 𝛼=1, the slip systems activated before and during the reloading are the same and no change in 

mechanical behavior is observed. For 𝛼= -1, the slip systems activated during pre-strain are 

reactivated in the opposite direction during the reloading and the material presents the typical 

mechanical behavior of the curve (a) in Figure 28. 

When 𝛼=0, the slip systems that were latent during the prestrain are activated during reloading. A 

higher reloading stress is required to initiate the movement of dislocations in the new slip systems 

due to the low prestrain dislocation mobility. However, after the initial stage, dislocation 

annihilation occurs replacing the prestrain dislocation structure by a structure typical  to the second 

loading and the effect of prestrain on the flow stress decreases. As a result, transient softening 

occurs (curves (b) and (c) in Figure 28) that can lead to strain localization after the beginning of 

reloading (curve (b) in Figure 28) . For the same strain path change amplitude value, the decrease 

of the formability during the reloading is more significant for higher prestrain values. 
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3. Initial Material and Experimental Procedures 

 

 

The main objective of this work was to study the effect of the plastic deformation by single 

point incremental forming on the crystallographic texture, dislocation structure and mechanical 

properties of aluminum, low carbon steel and dual phase steel sheets. 

To characterize the mechanical behavior of the as-received sheets, tensile tests were conducted at 

angles of 0°, 45° and 90° with respect to the rolling direction. Crystallographic texture 

characterization was done by electron backscattering diffraction (EBSD) whereas scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the 

microstructural characterization. The rolled sheets were deformed using the SPIF machine 

developed at the University of Aveiro (M. Martins 2011) (Torrão 2013) to produce square based 

pyramidal shapes with 40 mm height and 45º wall angle. Strain and microhardness measurements 

were performed on the deformed materials to characterize the mechanical behavior. The 

crystallographic texture and microstructure of the materials after SPIF were characterized by 

EBSD, SEM and TEM techniques. These analyses were complemented with calculations using a 

polycrystal plasticity model.  

 

 

3.1. Initial Materials 

  

The  three different materials studied were the aluminum 1050 (AA1050) produced by 

ALCOA (USA), low carbon (LC) steel from Sollac (France) and dual phase steel (DP780) from 

POSCO (South Korea). The materials were received as sheets with around 1mm thickness and 

their respective chemical compositions are presented in the following tables. 
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Table 3: Chemical composition of aluminum AA1050. 

Element Al Si Fe Cu Mn Mg Cr Ni Zn Ti Ga V 

Mass ,% Bal. 0.089 0.280 0.002 0.001 0.001 0.001 0.003 0.005 0.011 0.016 0.007 

 

Table 4: Chemical composition of LC steel. 

Element Fe C Mn P S N Al Si 

Mass, % Bal. 0.046 0.261 0.012 0.01 0.004 0.043 0.04 

 

Table 5: Chemical composition of DP780 steel. 

Element Fe C Si Mn P S Altot Cr+Mo Nb+Ti V B 

Mass, % Bal. 0.080 0.30 1.56 0.020 0.004 0.020 0.74 0.015 0.02 0.001 

 

 

3.2. Uniaxial Tensile Test 

 

From the initial sheets, rectangular strips were cut at the angle (θ) equal to 0°, 45° and 90° 

with respect to rolling direction of the sheets (RD). A CNC machine was used to produce the 

ASTM standard tensile specimens measuring 150 mm x 24mm, as shown in Figure 29. To confirm 

the reproducibility of the results, at least three samples were tested for each angle and each 

material. 

The tensile properties of the as-received sheets were determined by performing uniaxial tensile 

tests using a universal testing machine, Shimadzu Autograph with a maximum load capacity of 

100kN. A non-contact video extensometer MFA-25 was used to determine the instantaneous 

length and width of the samples during the experiments. All the tests were conducted at room 

temperature and at a strain rate of 10-3 s-1. 
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Figure 29: Uniaxial tensile specimens used to perform tensile tests for all the materials. 

 

From the measured applied force (F) and length (l) of the sample during the tests, were calculated 

the true stress (σ) and true strain (ε) for all the samples using the following equations: 

ε = ln (
l

lo
)             (21) 

σ =
F

Ao
exp (ε)                                                           (22) 

where, ε is the true strain along the tensile axis, lo and Ao are the initial length and cross section 

area of the sample, respectively. 

From the measurement of the width of the initial samples (wo) and during the tensile tests (w), the 

anisotropy coefficients (R) were calculated using the equation: 

R =  
ln (

w

wo
)

−[ln(
l

lo
)+ln(

w

wo
)]

     (23) 

 

 

3.3. Crystallographic Texture Analysis 

 

The crystallographic texture analysis of the samples were performed using the EBSD 

technique. A Bruker CrystAlign QC 400 EBSD system attached to a Hitachi SU-70 SEM was 

employed to map the crystallographic orientations of the grains. The samples were subjected to 

mechanical polishing using 180, 400 and 1000 grit SiC papers and then to electropolishing using 

a Struers Lectropol-5 system and a Stuers A2 electrolyte solution. The other relevant parameters 

used in this process are below in the next table. 
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Table 6: Parameters used for electropolishing of samples before EBSD analysis 

Material Voltage (V) Flow Rate Time (s) 

Aluminum 15 9 15 

LC Steel 40 14 12 

DP780 35 14 20 

 

The EBSD analysis were performed using a 25 keV electron beam and a sample tilt angle of 70º. 

For each area analyzed, the diffraction patterns of 800x600 points were collected and processed 

by the system. This results were used to obtain both the crystallographic orientation maps and the 

data that were used as an input for the crystal plasticity calculations using the viscoplastic self-

consistent (VPSC) code developed by Lebensohn and Tomé (R. A. Lebensohn 1993) (R. A. 

Lebensohn 1994) to evaluate the effect of crystallographic texture on the mechanical behavior of 

the materials. 

 

  

3.4. Transmission Electron Microscopy 

 

To study the evolution of dislocation structure during the SPIF process, TEM observations 

were made in both the as-received and deformed samples using a Hitachi H-9000 microscope. The 

samples were mechanically polished until less than 100μm thickness using 120, 180, 400 and 1000 

grit SiC papers. Discs with 3mm diameter were cut and further thinning was done by Struers 

Tenupol-3 twin-jet electropolishing system until perforation. The composition of the electrolyte 

and the voltage applied for the samples are presented in next table. 
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Table 7: Composition of the electrolyte and voltage applied during the electrolytic thinning process 

for TEM observations 

Material Electrolyte Voltage (V) 

AA1050 
25% (vol.) nitric acid (60% conc.) and 75 % (vol.) 

methanol 

10 

LC and DP780 

steels 

5% (vol.) perchloric acid (60% conc.) and 95% (vol.) 

ethylene glycol  

monobutyl ether 

35 

 

 

3.5. Single Point Incremental Forming (SPIF) 

From the as-received sheets specimens measuring 15 x 15 cm were cut and subjected to 

SPIF to produce square based pyramidal shapes of 40 mm height and 45º wall angle (Figure 30) 

using a dedicated system developed at the University of Aveiro (Figure 31). Prior to deformation, 

the samples were grid marked on the surface in order to perform strain measurements. During the 

SPIF process, the metallic sheet was restrained by a blank holder and deformed in an area of 9x9 

cm with a hemispherical tool tip with 10 mm diameter, using a step down size of 0.5 and a feed 

rate of 3000 mm/min and unidirectional movement. To reduce friction between the sheet surface 

and the tool tip, Finarol Total oil was used as lubricant. The deformed samples were then cut using 

water-jet cutting and smaller samples were further cut from the obtained pieces for additional 

characterization studies.  

  

Figure 30: Samples after SPIF. 
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              Figure 31: SPIF machine used in this work. 

 

 

 

3.6. Strain Measurements 

 

The strain measurements were carried out on the samples by measuring the diameters of 

the circular grid previously marked on the external surface (surface that is not in contact with the 

deformation tool during the SPIF process) of the pieces. The measurements were done using an 

optical microscope with image acquisition and an average of at least three measurements were 

taken for consistency. The true strains were calculated using the following equations: 

ε11 = ln (
d1

d1
o)     (24) 

ε22 = ln (
d2

d2
o)     (25)  
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where ε11 and ε22 represent the major and minor true strains respectively. d1 is the diameter of the 

circle measured perpendicular to the movement of the tool and d2is the diameter measured parallel 

to the direction of the tool movement. d1
o and d2

o are the corresponding initial values of d1 and d2 

measured in as-received sample. 

Thickness measurements were also made on all the SPIF pieces by using optical microscopy and 

an average of three values were used for each point. 

 

 

3.7. Microhardness Measurements 

 

Microhardness tests were performed using a Shimadzu Vickers microhardness tester type 

M with a load of 0.2 kgf for aluminum and 0.3 kgf for LC and DP steel and a dwell time of 30 s. 

These measurements were performed on the external surface of the pieces and an average of at 

least three readings were taken for all samples at different distances from the center. The 

indentations were measured using an optical microscope connected to a previously calibrated 

acquisition image system. The hardness was calculated using the following equation: 

HV = 1.8544 × (
F

d2)     (26) 

where HV represents the Vickers hardness value (kgf/mm2), F is the applied load (kgf) and d is 

the average length of the diagonal of the indentation (mm). 
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4. Results and Discussion 

 

4.1. Initial Material 

 

4.1.1. Aluminum 

 

4.1.1.1. Mechanical Behavior Characterization 

 

Figure 32 represents the true stress-true strain curves obtained from the uniaxial tensile 

tests in the as-received aluminum sheet at different loading angles. The various parameters 

extracted from these tests are shown in Table 8. 

 

Figure 32: True stress vs true strain for as-received AA1050 at 0°, 45° and 90° from RD. 

 

It is possible to see in the above figure that all the curves are almost identical in behavior but, the 

yield stress and the uniform strain for the sample tested at an angle of 90° are higher than that of 

0° and 45°. Moreover, the comparison of the yield stress and uniform deformation values obtained 
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in the tests with the typical values of recrystallized AA1050 (around 50 MPa and 30%) (Lopes 

2001) (Fábio 2008) allow to conclude that the aluminum sheet was supplied in a highly hardened 

state. The R-values measured at the different loading angles showed similar values. 

 

Table 8: Yield stress (σo), maximum stress (σmax), uniform strain (εu), R-value, R̅ and ΔR extracted 

from the tensile tests performed along the different directions of as-received AA1050 sheet. 

Material Θ (°) Yield 

Stress, 

σo 

[MPa] 

Max. 

Stress, 

σmax 

[MPa] 

Uniform 

Strain, 

εu (%) 

R-

value 

Normal 

Anisotropy(R̅) 

Planar 

Anisotropy,(ΔR) 

AA1050 
0° 122 123 0.24 2.69 

2.74 -0.035 
45° 124 126 0.25 2.76 

90° 129 133 0.27 2.76 

 

 

4.1.1.2 Crystallographic Texture Characterization 

 

The {1 0 0} and {1 1 1} pole figures and φ2 = 0°, 45° and 65°  sections of  Euler space 

measured in the as-received aluminum are presented in Figure 33 and Figure 34, respectively. 

 

 
Figure 33: Experimental {1 0 0} and {1 1 1} pole figures of as-received AA1050 sheet. 

RD 
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Figure 34: Crystallographic texture of as-received aluminum at φ2 = 0°, 45° and 65° sections of 

Euler space. 

 

From the analysis of these images, it is possible to conclude that the texture exhibited by the as-

received aluminum is typical of rolled aluminum. Indeed the comparison of Figure 34 and Figure 

24 (b) shows the reinforcements of Copper (Cu) {1 1 2}<1 1 1>, Brass (Bs) {1 1 0}<1 1 2> and S 

{1 2 3}<6 3 4> (Fábio 2008). 

To investigate the contribution of texture on the properties of the as-received material, VPSC 

model was used to predict, from the experimental crystallographic textures, the evolution of the 

average Taylor factor (<M>) with the plastic strain along the tensile direction (ε) (Figure 35). 

Figure 36 shows the variation of the initial average Taylor factor, <M> with the loading angle (θ). 

For comparison, in the same figure is presented the values of yield stress (σo) extracted from the 

experimental σ-ε curves.  
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Figure 35: Average Taylor factor (<M>) – strain (ε) values predicted by the VPSC model for as-

received AA1050 sheet deformed along different directions (θ). 

 

 

Figure 36: Evolution of the initial <M> predicted by the VPSC model and the experimental yield 

stress (σo) value with the tensile test angle (θ) for the as-received AA1050 sheet. 

 

The VPSC model was also used to predict the values of the anisotropic coefficients of the as-

received material. The obtained results are presented and compared with the experimental R values 
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for the different test angles in Figure 37. The respective normal and planar anisotropic values are 

shown in Table 9.  

 

 

Figure 37: Experimental (Exp) and predicted (VPSC) R values for different loading angles (θ) for 

as-received AA1050 sheet. 

 

Table 9: Experimental and predicted normal (R̅) and planar (ΔR) anisotropy values for as received 

aluminum. 

 Experimental VPSC 

Normal Anisotropy(R̅) 2.74 0.96 

Planar Anisotropy(ΔR) -0.035 -0.32 

 

From Figure 36, it is possible to verify that the evolution with the loading angle, of the 

experimental values of yield stress and the predicted <M> values are very different. Namely, the 

yield values show an increase with  and while the VPSC model predict a decrease of the <M> 

value (and therefore of the yield stress) for 45º and a less marked increase for 90º. Also, the 

comparison of the experimental and predicted anisotropy values (Figure 37 and Table 9) show 

significant differences. These discrepancies between the experimental and predicted values 
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strongly suggest that both the stress and strain anisotropy of the AA1050 cannot be attributed to 

the initial crystallographic texture of the material but has a microstructural origin. 

Assuming that the hardened state of the as-received AA1050 sheet is a result of the rolling 

deformation during its production, it was calculated from equation 20 the evolution of the α 

parameter with the reloading angle for a sequence of rolling-tensile tests. The obtained results are 

presented in Figure 38 and allows to see that, for the tensile test performed at 90º from a prestrain 

rolling direction α is zero, which represents a situation where the slip systems that were latent 

during the prestrain are activated during reloading. This condition usually corresponds to a higher 

reloading yield stress, as experimentally observed in this work for AA1050 sheet. For =0º, the  

value is maximum and close from 1, which correspond to a situation where the slip systems 

activated before and during the reloading are the same and therefore, the yield stress presents a 

lower value. For =45º, the  value is 0.4 which correspond to a  yield stress between the values 

presented by the other two tested directions, as was observed during the tensile tests of AA1050. 

 

 

Figure 38: Evolution of α parameter with the reloading angle (θ) for a sequence of rolling-tensile 

tests.  
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4.1.1.3. Microstructure Characterization 

 

The TEM observations performed on the as-received material (Figure 39) revealed a 

microstructure defined by sub-grains with around 2μm size and low concentration of dislocations 

inside. This microstructure is frequently observed in low alloyed and high stacking fault energy 

metals, such the AA1050, deformed up to large strain values. Indeed, several studies showed that 

both characteristics contributes for the high mobility of dislocations in these materials and 

facilitates the development of dislocation cells during the first stage of plastic deformation that 

with the increase of strain, evolve to sub-grains. Therefore, the observed microstructure is another 

experimental result that supports the above conclusion that the AA1050 sheet was supplied in 

highly hardened state. 

In Figure 40 is presented the orientation maps obtained by EBSD analysis where it is 

possible to identify the presence of relatively large regions with similar orientation along the 

rolling direction and, at smaller scale, sub-grains with different crystallographic orientations. It is 

worth to say that the crystallographic misorientations between different sub-grains, characteristic 

of this type of microstructure, was also observed by TEM electron diffraction.  

 

 

Figure 39: TEM image of as-received aluminum. 
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Figure 40: Orientation maps obtained by EBSD on as-received aluminum. 

 

 

4.1.2. Low Carbon Steel 

 

4.1.2.1. Mechanical Behavior Characterization 

 

The true stress-true strain curves obtained from the uniaxial tensile tests performed on the 

as-received LC steel sheet at different loading angles (θ) are presented in Figure 41.  

 

RD 
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Figure 41: True stress vs true strain for as-received LC steel at 0°, 45° and 90° from RD. 

 

These results show a similar tensile behavior for all the three test angles. Indeed, except the lower 

flow stress at the beginning of the tensile tests for the loading at 0°, the three curves almost 

superpose. This similarity is also expressed by the identical values of yield stress, maximum stress 

and uniform strain calculated from the curves and presented in Table 10. However, different R 

values were measured along the three directions. More specifically, the maximum R value occurs 

for a loading angle of 90° and similar R-values are shown for the samples loaded at 0° and 45°. 

These relatively high R values show that the plastic deformation of the LC steel during the tensile 

tests is anisotropic and the strain along the width (ε22) is higher than along its thickness (ε33), which 

corresponds to a relatively high capability of the LC steel sheet to deform before failing due to 

excessive thickness reduction.  
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Table 10: Yield stress (σo), maximum stress (σmax), uniform strain (εu), R-value, R̅ and ΔR of the 

extracted from the tensile tests performed along the different directions of as-received LC steel 

sheet. 

Material Θ (°) Yield 

Stress, σo 

[MPa] 

Max. 

Stress, 

σmax 

[MPa] 

Uniform 

Strain, 

εu (%) 

R-value Normal 

Anisotropy(R̅) 

Planar 

Anisotropy,(ΔR) 

LC 

Steel 

0° 167 380 23.27 1.72 
1.85 0.30 

45° 184 381 23.06 1.70 

90° 184 377 23.40 2.27 

 

 

4.1.2.2. Crystallographic Texture Characterization 

 

Figure 42 and Figure 43 show the {1 0 0} and {1 1 0} pole figures and φ2 = 0°, 45° and 

65° sections of Euler space, respectively, for the as-received LC steel sheet.  

 

Figure 42: Experimental {1 0 0} and {1 1 0} pole figures of as-received LC steel sheet. 

 

RD 
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Figure 43: Crystallographic texture of as-received low carbon steel at φ2 = 0°, 45° and 65° sections 

of Euler space. 

 

The obtained pole figures show a strong γ-fiber ({1 1 1}<u v w>) texture with reinforcement of {1 

1 1}<1 1 0> component (that can be confirmed by comparing the Euler section at φ2=45° in Figure 

43 with Figure 25), that is typical in rolled steel (Suwas 2014).  

Figure 44 shows the evolution of average Taylor factor, <M> calculated from the initial textures 

for different loading angles (θ) with the tensile plastic strain. These results show that the initial 

<M> values for θ=0° is slightly lower for θ=45° and 90°, which are almost coincident for all the 

analyzed range of strain values. However, for higher strains these differences are almost canceled 

and the three curves almost are superimposed. These evolutions of <M> with the strain are very 

similar to the evolution of the flow stress experimentally measured during the tensile tests along 

the three directions. Similar conclusions can also be taken from Figure 45, where are compared 

the values predicted for <M> and the experimental yield stress. In this last figure, both <M> and 

σo values show a minimum for θ=0° and a significant increase for θ=45°, after which, are almost 
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constant. This good agreement between the value of <M> predicted by the VPSC model and the 

experimental values of stress, strongly suggest that the stress anisotropy observed for the LC steel 

sheet during the initial stage of the tensile tests has a crystallographic texture origin. 

 

  

Figure 44: Average Taylor factor (<M>) – strain (ε) values predicted by the VPSC model for as-

received LC steel sheet deformed along different directions (θ). 

 

 

Figure 45: Evolution of the initial <M> predicted by the VPSC model and the experimental yield 

stress (σo) value with the tensile test angle (θ) for the as-received LC steel sheet. 

2.20

2.25

2.30

2.35

2.40

2.45

2.50

0 0.05 0.1 0.15 0.2 0.25

<M
>

ε

θ=0°

θ=45°

θ=90°

166

168

170

172

174

176

178

180

182

184

186

2.36

2.365

2.37

2.375

2.38

2.385

2.39

2.395

0 20 40 60 80 100

Yi
el

d
 S

tr
es

s 
(σ

o
)[

M
P

a]

<M
> 0

.2
%

θ (°)

<M>

σo



4. Results and Discussion|2016 
 
 

52 

 

Similar conclusion about the influence of the initial crystallographic texture on the strain 

anisotropy of the LC steel sheet can be drawn from the comparison of the experimental and 

predicted R, R̅ and ΔR  values (Figure 46 and Table 11). From these analysis it is possible to 

conclude that the VPSC model could predict with a high degree of success both the stress and 

strain anisotropy presented by the LC steel, allowing to attribute the observed differences observed 

during the tensile tests in the flow stress and R values to the initial crystallographic texture of the 

material. 

 

 

Figure 46: Experimental (Exp) and predicted (VPSC) R values for different loading angles (θ) for 

as-received LC steel sheet. 

 

Table 11: Experimental and VPSC predicted normal (R̅) and planar (ΔR) anisotropy values for as-

received low-carbon steel. 

 Experimental VPSC 

Normal Anisotropy(R̅) 1.85 1.66 

Planar Anisotropy(ΔR) 0.30 0.33 
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4.1.2.3. Microstructure Characterization 

 

In Figure 47, is presented the EBSD orientation maps obtained in samples taken from the 

as-received LC steel sheets. In these images it is possible to clearly identify the equiaxed grain 

structure with a size of around 30μm. The high uniformity of the color inside each grain is an 

indication of a low crystallographic misorientation between the different regions of each grain. 

These microstructural characteristics were also observed by TEM, presented in Figure 48, together 

with a dislocation structure defined by a low density and uniform distributed dislocations inside 

the ferrite grains. This dislocation microstructure is typical of recrystallized ferrite, although some 

dislocations may have been originated by a probable skin pass deformation, usually applied during 

the production of steel sheets (Grassino 2012). 

 

 

Figure 47: Superimposed EBSD orientation map of initial low carbon steel. 
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Figure 48: TEM image of LC steel showing the triple point junction. 

 

 

4.1.3. Dual Phase Steel 

 

4.1.3.1. Mechanical Characterization 

 

The uniaxial true stress-true strain curves for the as-received DP780 steel along the 

different loading directions are depicted in Figure 49. In Table 12 are presented, the various tensile 

parameters extracted from these tests. 
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Figure 49: True stress vs true strain for as-received DP780 at 0°, 45° and 90° from RD. 

From the tensile curves it is possible to verify that all the three curves show similar behavior with 

a high initial hardening rate ( /d d   ), which decreases with increasing strain. Moreover, the 

yield point for DP780 is not very clear, leading to a smooth transition between the elastic and the 

plastic regions. This differs in the case of LC steel where hardening rate during the initial stage of 

plastic deformation is significantly lower and the beginning of the plastic deformation is better 

defined. Another difference between the - curves obtained in both steels are the higher values 

of yield and flow stress presented by the DP steel that can be attributed to the presence the 

martensite (Jiecen 2015). Moreover, the decrease in uniform strain of DP780 compared to LC steel 

can be explained based on the lower values of R (Table 11) and on the higher strain value 

accommodated by the ferrite phase in DP steel, for the same macroscopic strain value imposed 

during the tensile test. Indeed, assuming that the martensite phase remains, at a first approximation, 

plastically undeformed (Bergström 2010), a relation between the amount of strain experienced by 

the ferrite grains and the volume fraction of martensite in the material can be formulated: 
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Before deformation After deformation 

 

 

(a) 

 

 

(b) 

Figure 50: Schematic representation of plastic deformation in DP780; (a) before deformation and 

(b) after deformation. 

 

From Figure 50, if M and F represent the volume fraction of martensite and ferrite, respectively, 

lo the initial length before deformation, (lo)m and (lo)f  the initial length fraction of martensite and 

ferrite, l the final length after deformation and Δl the change in length during the deformation, 

the total true strain is given by: 

ε = ln (
∆l

lo
+ 1)                                              (27) 

Because: 

o f o o m(l ) l (l= )          (28) 

the true strain experienced by the ferrite grains (εf ) can be calculated by:  

f

o f o o m

l l
ε ln 1 ln 1

(l ) l (l )

    
      

   
   (29) 

This equation shows that the fraction of the macroscopic tensile strain accommodated by the ferrite 

grains (εf) increases with the volume fraction of martensite (increase of (lo)m) in the material. 
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Table 12: Yield stress (σo), maximum stress (σmax), uniform strain (εu), R-value, R̅ and ΔR of the 

extracted from the tensile tests performed along the different directions of as-received DP780 steel 

sheet. 

Material Test Yield 

Stress, σo 

[MPa] 

Max. 

Stress, 

σmax 

[MPa] 

Uniform 

Strain, 

εu (%) 

R-value Normal 

Anisotropy(R̅) 

Planar 

Anisotropy,(ΔR) 

DP780 
0° 403 990 12.53 0.84 

0.95 -0.12 
45° 363 980 13.02 1.00 

90° 398 994 11.89 0.93 

 

Regarding to the strain anisotropy, Table 12 shows that the R values for all the directions are fairly 

similar and almost equal to 1. As a result, the R̅ values is almost unity (indicating a strain 

distribution in the material almost isotropic) and ΔR is near from zero (indicating a low strain 

anisotropy in the sheet plane). 

 

4.1.3.2. Crystallographic Texture Characterization 

 

In Figure 51, the {1 0 0} and {1 1 0} pole figures of the as-received DP780 is represented 

and the corresponding Euler space representation for φ2= 0°, 45° and 65° sections are shown in 

Figure 52.  

 

Figure 51: Experimental {1 0 0} and {1 1 0} pole figures of as-received DP780 steel sheet. 

RD 
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Figure 52: Crystallographic texture of as-received dual phase steel at φ2 = 0°, 45° and 65° sections 

of Euler space. 

 

From both figures it is possible to conclude that the distribution of crystallographic orientations 

are typical of that of rolled steels, as seen in the case of LC steel (a γ-fiber ({1 1 1}<u v w>) texture 

with reinforcement of {1 1 1}<1 1 0> component). 

To assess the contribution of the ferrite texture on the mechanical behavior, plots of average Taylor 

factor <M> calculated by VPSC model with the plastic tensile strain were made for the different 

loading angles (Figure 53 and Figure 54). During these calculations it was assumed that only the 

ferrite grains would participate in the plastic deformation. From the obtained results it is possible 

to verify that the <M> evolves similarly with the strain value for all the samples. It is also observed 

that the evolution of the initial values of <M> with the loading angle agree qualitatively well with 

the evolution of the yield stress. This is an indication that the difference between the yield stresses 

in DP780 have, as for LC steel, a crystallographic texture origin. 
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Figure 53: Average Taylor factor (<M>) – strain (ε) values predicted by the VPSC model for as-

received DP780 steel sheet deformed along different directions (θ). 

 

 

Figure 54: Evolution of the initial <M> predicted by the VPSC model and the experimental yield 

stress (σo) value with the tensile test angle (θ) for the as-received DP780 steel sheet. 

 

The strain anisotropy coefficients were also computed by the VPSC model for the different test 

angles. These values are presented in Figure 55 and compared with the R values experimentally 

measured during the tensile tests. The experimental and predicted normal and planar anisotropy 

values for the initial material are presented in Table 13. From the analysis of these results it can be 

concluded that, except the small increase predicted of R for θ=45° to θ=90°, the VPSC model 
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correctly, qualitatively predicts the strain anisotropy presented by material. This suggests that even 

the strain anisotropic behavior of the as-received DP780 steel sheet has a crystallographic texture 

origin.  

 

 

Figure 55: Experimental (Exp) and predicted (VPSC) R values for different loading angles (θ) for 

as-received DP780 steel sheet. 

 

Table 13: Experimental and VPSC predicted normal (R̅) and planar (ΔR) anisotropy values for as-

received DP780. 

 Experimental VPSC 

Normal Anisotropy(R̅) 0.95 1.14 

Planar Anisotropy(ΔR) -0.12 -0.03 

 

 

4.1.3.3. Microstructure Characterization 

 

In Figure 56 is presented a SEM image and an EBSD map obtained from the as-reveived 

DP780. In Figure 56 (a), the light grey areas correspond to martensite phase areas and the darker 

grey areas to the ferrite grains. It can be seen from these images that the martensitic islands are 

distributed homogeneously around the grain, usually in the grain boundary, and the ferrite grains 

are almost equiaxial. The grain size is about 7μm which is considerably less compared to LC steel. 
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This lower grain size is an additional factor that explain, together with the presence of the hard 

martensite phase, the higher flow stress presented by the DP steel than by the LC steel.  

 

 

(a) 

 

(b) 

Figure 56: (a) SEM micrograph and (b) EBSD map of the as-received DP780. Due to the small 

size, the EBSD system cannot identified the crystallographic orientations of the martensite 

particles, which are represented in image (b) as a black areas. 

 

From the measurement of the relative area fraction corresponding to each phase using a dedicated 

digital image processing system, the volume fraction of martensite was calculated. From the 

obtained value (around 35%), the equation 29 and taking into account that the length fraction and 

volume fraction and of a phase in a multiphase material are equivalent, is was calculated the true 

strain accommodated by the ferrite phase when a macroscopic tensile strain of 13% (maximum 

macroscopic uniform strain value exhibited by DP780) is applied to the material. The result of 

these calculations show that the ferrite grains must deform more about 6.5% then the macroscopic 

strain imposed to the material during the tensile test (13%) to compensate the inability of the 

martensitic particles to participate in plastic deformation. Taking into account this correction to 

the martensite volume, the strain accommodated by the ferrite grains in DP780 and LC steel are 

more similar (23% and 19%). 
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4.1.3.4. Transmission Electron Microscopy (TEM) 

 

In Figure 57 is presented TEM images from the observations carried out on the as-received 

DP780 steel where it is possible to identify the martensite islands as darker regions mostly located 

in the grain boundaries of the ferrite grains. It is also possible to observe the dislocation structure 

in the ferrite grains with higher dislocation density than in LC steel. The origin of this increase in 

the dislocation density is usually attributed to the residual stresses developed during the austenite-

martensite phase transformation that occurs during the production of the DP steel (Bergström 

2010).  

 

 
 

Figure 57: TEM image of as-received DP780. 
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4.2. Material after SPIF 

 

4.2.1. Aluminum 

 

4.2.1.1. Strain Measurements 

 

The true strains measured perpendicularly (ε11) and along (ε22) the direction of the 

movement of the deformation tool are plotted with respect to the distance from the center of the 

AA1050 piece after SPIF in Figure 58. 

 

Figure 58: Evolution of the true strains (ε11 and ε22) with distance from the center of the AA1050 

SPIF piece. 

 

It is seen that the ε11 is almost zero further away from the center, where the material was not 

deformed by the tool, preceding a significant increase before the stabilization in regions more near 

from the center of the piece. This increase before the stabilization suggests that different 

deformation modes (such as bending and stretching) are imposed to the material during the initial 

and later stages of SPIF process.  
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It should to be highlighted the high values of ε11 achieved during the SPIF process without rupture 

of the material, when compared with the very small uniform deformation showed by the AA1050 

sheet during the tensile test. 

The more stable and almost null value of ε22 is in agreement with the selected shape for the piece 

that can be obtained from a plane sheet without change in dimension along the direction of the of 

the deformation tool movement. Another important observation from the previous figure is the 

more or less regular fluctuation of the strain values that indicates that the plastic deformation is 

not homogeneous along the piece. This can be attributed to a localized plastic deformation 

promoted by the tool that can be minimized by increasing the tool diameter and/or decreasing the 

distance between successive forming steps. 

Assuming that the volume of material remains constant during the plastic deformation, is valid the 

following relationship between the true strain along the thickness (ε33) and ε11 and ε22 values: 

ε11 + ε22 + ε33 = 0                                              30 

For, ε22 = 0, 

ε33 = −ε11                                                    31 

From the definition of true strain,  

ε33 = ln (
tf

to
)                                                   32 

where, tf and to represent the final and initial thickness of the sheet, respectively. Using the sine 

law (eqn. 1) and to=1mm, the previous equations transforms to: 

ε33 = ln(sin(45°)) = −0.347 

And, therefore: 

{
ε11 = 0.347

ε22 = 0
ε33 = −0.347

          33 
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These values are represented as a non-continuous straight lines in next figure, together the 

experimental values of ε11 and ε22 and the calculated values of ε33 using equation 15. This 

representation shows a good agreement between the experimental strain values and the values of 

the previous equation, showing that the sin law (equation 1) can be used to predict the approximate 

thickness of the AA1050 piece in regions away from the clamped zone. 

 

Figure 59: Evolution of the experimental values of ε11 and ε22 (continuous black and blue lines, 

respectively) and ε33 calculated (continuous red line) from equation 15, with the distance from the 

center for the AA1050 piece. The non-continuous lines represent the strain values calculated from 

equation 33. 

 

The comparison of the experimental values of thickness and the values calculated using the 

experimental ε11 and ε22 and eqn. 15 and 32 (Figure 60) show a good quantitative agreement. It is 

also seen that the measured thickness outside from the area deformed by the tool is less than 1mm 

(thickness of the as-received sheet). This reduction can be attributed to the compressive forces 

exerted by the clamping system during the SPIF process. Moreover, the curve also confirms the 

fluctuations observed in the strain measurements of Figure 58. 
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Figure 60: A comparison between the theoretical and experimental thickness of the deformed 

aluminum sheet. 

 

 

4.2.1.2. Microhardness Measurements 

 

Microhardness measurements performed on the AA1050 after SPIF process are plotted as 

a function of the distance from the center of the deformed piece in Figure 61.  

 

Figure 61: Evolution of the microhardness value with the distance from the center of the AA1050 

piece. 

 

Similarly to that observed for the strain, fluctuation of experimental values the microhardeness can 
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the SPIF process is not homogeneous and justify a posteriori the selection of microhardness tests 

to characterize the mechanical behavior of the material after SPIF instead of other type of tests, 

such as tensile tests (used to characterize the initial materials). 

 

 

4.2.1.3. Crystallographic Texture Characterization 

 

Figure 62 shows the {1 0 0} and {1 1 1} pole figures after SPIF process.  No major change 

in the crystallographic texture is seen from the comparison of these pole figures and the ones 

obtained in the as-received AA1050. It is worth to say that additional crystallographic textures 

measurements in different thickness planes also did not show significant changes in the 

crystallographic orientations of the aluminum grains. 

 

 

Figure 62: Experimental {1 0 0} and {1 1 1} pole figures of AA1050 after SPIF process (zone 

near from the center of the piece). 

 

4.2.1.4. Microstructure Characterization 

  

Figure 63 shows a TEM image obtained near from the center of the piece of AA1050 

produced by SPIF. Comparing with the images of as-received aluminum (Figure 39), there is no 

major microstructural differences. Indeed the microstructure of both are characterized by presence 

RD 
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of sub-grains with similar size and shape.  This conclusion is reinforced by the comparison of 

EBSD maps before (Figure 40) and after (Figure 64) SPIF deformation where it is possible to 

identify for both cases, large regions which are preferentially oriented in rolling direction and the 

sub-grain structure. These results show that both initial rolling microstructure and crystallographic 

texture of AA1050 are very stable and do not evolve significantly during the SPIF deformation.  

 

 

Figure 63: TEM image of AA1050 after SPIF process (zone near from the center of the piece). 

 

 

 

(b) 

Figure 64: Crystallographic orientation EBSD maps obtained on AA1050 after SPIF. 
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4.2.2. Low Carbon Steel 

 

4.2.2.1. Strain and Thickness Measurement 

 

In Figure 65 is presented the evolution of the experimental true strain values measured in 

LC steel and the values calculated from eqns. 15 and 33, with the distance from the center of the 

piece. The experimentally measured thickness is compared with the calculated values from eqn. 

32 in Figure 66. 

 

Figure 65: Evolution of the experimental values of ε11 and ε22 (continuous black and blue lines, 

respectively) and ε33 calculated (continuous red line) from equation 15, with the distance from the 

center for the LC steel piece. The non-continuous lines represent the strain values calculated from 

equation 33. 
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Figure 66: A comparison between the theoretical and experimental thickness for LC steel. 

Comparing the Figure 65 and Figure 66 with Figure 59 and Figure 60, similar observations can be 

made with respect to the trend of the curves. Indeed, it can be seen good agreements between 

experimental strain values measure near from the center of the piece and values predicted from the 

sin law (Figure 65) and between experimental and calculated thickness (Figure 66). However, 

comparing with AA1050 sheet, the behavior shown by the LC steel show a less marked fluctuation 

of the strain values and a smaller distance from the center of the piece after which the experimental 

strain diverge from the values predicted by the sin law. These differences suggest that the 

deformation of the LC steel promoted by the SPIF tool is less localized than for AA1050 sheet, 

due to the higher flow stress of the steel. 

 

 

4.2.2.2. Microhardness Measurements 

 

In Figure 67 is presented the evolution of the microhardness along the deformed LC steel. 

Unlike aluminum, there is an increase of hardness with the decrease of the distance to the center 

of the piece. This shows that, due to the low initial hardening state of the LC steel, the increase of 

hardening due to the deformation promoted by the SPIF tool is enough to be detected by 

microhardness tests. 
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Figure 67: Evolution of the microhardness value with the distance from the center of the LC piece. 

 

 

4.2.2.3. Crystallographic Texture Characterization 

 

Figure 68 shows the {1 0 0} and {1 1 0} pole figures of LC steel after SPIF process. As 

for AA1050, no major change in the crystallographic texture is seen from the comparison of these 

pole figures and the ones obtained in the as-received material.  

 

 

Figure 68: Experimental {1 0 0} and {1 1 0} pole figures of LC steel after SPIF process (zone near 

from the center of the piece). 
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4.2.2.4. Microstructure Characterization 

 

TEM observations performed in LC steel deformed by SPIF showed a strong increase of 

the dislocation density, when compared with the as-received material. The resulting dislocation 

structure are characterized by the presence of equiaxed dislocation cells with approximately 1 m 

(Figure 69) and walls less defined than in the AA1050.  

 

  

Figure 69: TEM micrograph of LC steel after deformation. 

 

Additional information about the effect of the SPIF deformation on the microstructure can be 

extracted from the analysis of the EBSD analysis performed on the LC steel pieces (Figure 70 and 

Figure 71). Indeed, the comparison of the misorientation maps obtained from the EBSD maps of 

LC steel before and after SPIF (Figure 71) show significant differences in the homogeneity of the 

strain distribution inside each grain. More specifically, in the as-received material all points of 

each ferrite grains show similar crystallographic orientation and only low misorientation angles 

are measured. However, after the SPIF deformation, higher misorientation angles are observed in 

the LC steel, usually in the grain boundary regions. This heterogeneous deformation of the ferrite 

grains is a result of accommodation process of strain incompatibilities between neighbor ferrite 

grains.  



4. Results and Discussion|2016 
 
 

73 

 

 

Figure 70: Crystallographic orientation EBSD maps obtained on LC steel after SPIF. 

 

 

(a) 

 

  

 

(b) 

 

(c) 

 

 

(d) 

Figure 71: Misorientation maps of as-received (a) and after SPIF deformation (c) of LC steel. In 

(b) and (d) are presented misorientation angle frequency distribution before (b) and after (d) 

deformation. 
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4.2.3. Dual Phase Steel 

 

4.2.3.1. Strain and Thickness Measurements 

 

The evolution of the experimentally measured true strains in deformed DP780 piece is 

compared with the calculated values Figure 72 and Figure 73. 

 
Figure 72: Evolution of the experimental values of ε11 and ε22 (continuous black and blue lines, 

respectively) and ε33 calculated (continuous red line) from equation 15, with the distance from the 

center for the DP780 steel piece. The non-continuous lines represent the strain values calculated 

from equation 33. 

 

The same trend observed for AA1050 and LC steel is also observed for DP780 sheet. Although a 

good general agreement between the values measured and predicted by sin law values, significant 

differences are observed for the first point of the graph which can be explained by an additional 

deformation of the piece during the water jet cutting performed before the measurements. Also as 
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expected, taking into account the highest flow stress showed by the DP780 sheet, it is observed a 

less marked fluctuation of the strain values and decrease of the distance after which the 

experimental strain diverge from the values predicted by the sin law. 

 

Figure 73: A comparison between the theoretical and experimental thickness for DP steel. 

 

Another interesting comparison is the between thickness of clamped zone before and after 

SPIF (Figure 74). Assuming that the compressive forces applied by the clamp during SPIF is the 

same for all materials, the thickness reduction is, as suggested before, related with flow stress of 

the as-received materials.  

 

 

Figure 74: Thickness in the undeformed zone before and after SPIF. 
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4.2.3.2. Microhardness measurements 

 

Figure 75 shows the microhardness measured for DP780 after deformation. Compared to 

aluminum and LC steel, the DP780 steel shows higher hardness values, as expected taking into 

account the presence of a relative large fraction of martensite in this material. Moreover, the 

hardness shows a decreasing trend as we move away from the center, confirming the strain gradient 

experimentally measured. The higher dispersion of the experimental values is attributed to the 

heterogeneous distribution of the martensite phase. 

 

Figure 75: Evolution of the microhardness value with the distance from the center of the DP780 

piece. 

 

 

4.2.3.3. Crystallographic Texture Characterization 

 

Figure 76 shows the experimental {1 0 0} and {1 1 0} pole figures of DP780 after SPIF 

process. As for the other materials, no noticeable change in texture is seen between before and 

after SPIF deformation. 

 

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8

H
ar

d
n

es
s 

(H
V

)

Distance From Center of the piece (cm)



4. Results and Discussion|2016 
 
 

77 

 

 

Figure 76: Experimental {1 0 0} and {1 1 0} pole figures of DP780 after SPIF process (zone near 

from the center of the piece). 

 

 

4.2.3.4. Microstructure Characterization 

 

TEM images obtained on deformed DP780 steel are presented in Figure 77. Comparing 

with the microstructure of the initial DP780 steel sheet, a strong increase on the dislocation density 

is seen. 

 

  

Figure 77: TEM micrograph of DP780 after deformation. 
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Comparing these results with images obtained on LC steel after the same forming conditions, it is  

noted also a significant increase in the dislocation density, which is justified by the increase of 

strain in ferrite grains due to the presence of relatively large fraction of undeformable material 

(around 35% of volume fraction of martensite), as discussed in section 4.1.3.1. It is likely that 

some strain accommodation incompatibilities between the ferrite and martensite particles can 

contribute also for an increase of plastic strain in ferrite grains near the grain boundaries. These 

strain incompatibilities between ferrite-ferrite and martensite-ferrite grains allows to explain the 

high misorientation angles observed near the grain boundaries (where most of the martensite 

particles are usually located) and the strong broadening of the frequency curve for higher 

misorientation angles observed on DP780 steel (Figure 76). 

  

 

Figure 78: Crystallographic orientation EBSD maps obtained on DP780 after SPIF. 
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(a) 

 

 

 (b) 

 

(c) 

 

(d) 

Figure 79: Misorientation maps of as-received (a) and after SPIF deformation (c) of DP780 steel. 

In (b) and (d) are presented misorientation angle frequency distribution before (b) and after (d) 

deformation. 
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5. Conclusions 

 

5.1. Initial Materials 

 

1. The AA1050 sheet shows a high yield stress and very low uniform strain values in tensile tests, 

indicating that the material was supplied in a hardened state.  This was further confirmed by 

the crystallographic texture analysis, which revealed a typical crystallographic texture of rolled 

aluminum, and by TEM observations that show a sub-grains dislocation structure in the as-

received material; 

2. The analysis of tensile test curves and the VPSC model results showed that crystallographic 

texture of AA1050 was not the major influencing factor on the observed anisotropic behavior. 

For this material, the mechanical behavior can be explained based on the initial dislocation 

microstructure of the as-received material; 

3. The anisotropic behavior of LC and DP780 steels were successfully predicted by the VPSC 

model, strongly suggesting that it has a crystallographic texture origin; 

4. The microstructure of the as-received DP780 steel sheet is characterized by the presence of 

ferrite grains with around 30 m and martensite particles, usually located in the grain 

boundaries. The measured volume fraction of martensite was around 35%; 

5. The DP780 steel showed higher values of flow stress and a lower uniform strain, compared to 

LC steel. These differences were explained by the presence of martensite particles. 

 

5.2. After SPIF  

 

1. For all materials, a good agreement was observed between the thickness near the center of the 

piece produced by SPIF and the value predicted by the sin law (equation 1); 

2. In spite of the very low uniform tensile strain value presented by the AA1050 sheet, it was 

possible to produce by SPIF a piece with the defined shape. 
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3. The deformation promoted by the SPIF tool decreased near the clamped area of the sheet, 

suggesting that different deformation modes are imposed to the piece during the initial and 

later stages of the SPI process; 

4. There was a reduction of thickness in the clamped zone of the pieces as a result of the 

compressive forces induced by the clamping system; 

5. Both the strain measurements and the microhardness tests showed a heterogeneous 

deformation of the pieces produced by SPIF. This was attributed to the localized plastic 

deformation promoted by the SPIF tool; 

6. No significant change in the crystallographic texture or in the microstructure of AA1050 sheet 

before and after SPIF was observed, showing that the initial rolling microstructure and the 

crystallographic texture are very stable during the SPIF process; 

7. There was no major change in the crystallographic texture during the SPIF deformation in both 

LC and DP780 steels. However, the TEM observations showed a strong increase of dislocation 

density and the development of equiaxed dislocation cell structure in both materials; 

8. EBSD analysis showed a heterogeneous distribution of the strain along the ferrite grains in the 

two steels. More specifically, an increase of the misorientation angles was observed in both 

materials, usually near the grains boundaries. This misorientation between different regions of 

the ferrite grains is higher for DP780 and put in evidence the occurrence of strain 

accommodation process between neighbor ferrite grains and, in case of the DP780 steel, also 

between ferrite grains and the martensite particles. 
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6. Proposals for Future Work 

 

 

Based on the results achieved in this study, it is proposed for future work a study of the 

evolution of crystallographic texture and dislocation microstructure along the process, rather than 

after the end of process, to understand more about the physical mechanisms involved in the plastic 

deformation at each instant of the SPIF process. Also, should be analyzed the influence of different 

processing parameters, such as tool size and step size, feed rate, etc. The results from this study 

would be used in finite element simulations code in order to predict the behavior of the material 

during the SPIF process and to select the optimized conditions to produce a specific product. 
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