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resumo 

 

 

Os nanomateriais (NMs) tanto podem surgir no ambiente através de fontes 

naturais (ex. poeira vulcânica, processos de queima), como também ocorrem 

devido a atividades antropogénicas. A nanotecnologia, que estuda a 

manipulação de NMs, tem a capacidade de produzir muitos produtos distintos 

explorando várias características particulares destes materiais, tais como o 

tamanho e reatividade. Esta capacidade de criar materiais com características 

específicas tem atraído a indústria de diversas áreas, associadas por exemplo 

à medicina e eletrónica. Apesar dos benefícios claros dos NMs em várias 

áreas da sociedade, o crescimento exponencial do seu uso e a sua 

consequente libertação para o ambiente tem alertado a comunidade científica 

para os possíveis efeitos adversos que os NMs podem provocar no biota. 

O presente estudo pretendeu avaliar os efeitos subletais de nanopartículas de 

ouro (Au-NP) em três organismos dulçaquícolas, representativos de níveis 

inferiores de cadeias tróficas. Para atingir este objetivo, foram delineados dois 

objetivos específicos: i) estudar os efeitos subletais de Au-NP em Raphidocelis 

subcapitata e Chlorella vulgaris (produtores) e em Daphnia magna 

(consumidor primário); ii) avaliar os efeitos geracionais das Au-NP nas duas 

espécies de microalgas. As microalgas foram expostas durante 72h e o 

consumidor primário durante 21d, a uma ampla gama de concentrações de Au-

NP. Foram avaliados efeitos no crescimento populacional e somático e na 

reprodução, para as microalgas (o primeiro parâmetro) e para D. magna (os 

três parâmetros). Em todas as espécies foram encontradas diminuições 

significativas ao nível do crescimento populacional comparativamente ao 

respetivo controlo. No entanto, as Au-NP não induziram qualquer efeito ao 

nível da reprodução de D. magna. 

A exposição geracional de C. vulgaris a Au-NP provocou uma resposta de 

aclimatação por parte desta alga, sendo que a partir da terceira geração 

apresentou um aumento de tolerância à nanopartícula. No entanto, no caso de 

R. subcapitata esta aclimatação não foi observada, e a microalga apresentou 

maior sensibilidade após ter sido exposta durante quatro gerações a esta 

nanopartícula. 
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Nanomaterials (NMs) may occur in the environment through multiple natural 

sources such as volcanoes (as volcanic dust). However, they may as well 

occur in the environment originated from anthropogenic activities. 

Nanotechnology, studies the manipulation of nanomaterials (NMs), producing 

many different products exploiting some particularities, such as size and 

reactivity. This capacity to manipulate materials at the nanoscale attracted 

industry from different areas, namely associated with medicine and electronics. 

However, the exponential growth in the use of these materials and subsequent 

release to the environment has alerted the scientific community to the possible 

adverse effects that NMs may induce to biota.  

The main aim of this study was to evaluate the sublethal effects of gold 

nanoparticles (Au-NP) in three freshwater species representatives of low 

trophic levels. To achieve this major aim, two specific objectives were 

delineated: i) assess the sublethal toxicity of Au-NP to producers and a primary 

consumer and ii) evaluate the generational effects of Au-NP in microalgae. The 

microalgae were exposed for 72h and the primary consumer for 21d to a wide 

range of Au-NP concentrations. Alterations in the population and somatic 

growth, and reproduction were evaluated to microalgae (only the first endpoint) 

and D. magna (the three endpoints). A significant decrease in the population 

growth was found for all tested species. However, no significant alterations 

were found in D. magna reproduction. 

Generational exposure of C. vulgaris to Au-NP caused an acclimation response 

of this alga that became less sensitive to the nanoparticle after generational 

exposure. Contrarily, for R. subcapitata this acclimation was not observed and 

the microalga was more sensitive to the nanoparticle after being exposed for 

four generations to Au-NP.  
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General Introduction
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Nanotechnology and nanomaterials   
 

 

 

The term “nanotechnology” was first used in 1974 by Norio Taniguchi, who described it as 

consisting of “processes of separation, consolidation, and deformation of materials by one atom 

or one molecule” (Taniguchi, 1974). At present, and according to the National Nanotechnology 

Initiative, nanotechnology is defined as “the understanding and control of matter at dimensions 

between approximately 1 and 100 nanometers” (Subcommittee on Nanoscale Engineering and 

Nanotechnology, Committee on Technology, & National Science and Technology Council, 2010). 

The European Commission define nanomaterials (NMs) as “natural, incidental or 

manufactured material containing particles, in an unbound state or as an aggregate or as an 

agglomerate and where, for 50 % or more of the particles in the number size distribution, one or 

more external dimensions is in the size range 1 nm-100 nm” (The European Commission, 2011). 

However, the definition of NMs has been controversial. Currently, new definitions and revisions 

have been proposed (Kreyling et al. 2010; Rauscher et al., 2015). In the present work, the 

definition of the European Commission (2011) was adopted. Nanomaterials may exhibit some 

characteristics that are not present in the corresponding bulk material, such as high 

surface:volume ratio and high reactivity, which may contribute to an increase on its redox 

reaction and consequently to the formation of reactive species of oxygen (ROS) when they enter 

living organisms (Auffan et al., 2009). In addition, other nanosize-associated characteristics have 

attracted industry, just by changing their geometric configuration, nanomaterials may exhibit 

different characteristics allowing its use in different industrial areas (Tiwari et al. 2012). The shape 

anisotropy of gold nanorods is a typical example; while nanospheres of gold possess single surface 

plasmon resonance, gold nanorods have two plasmon resonance peaks (originated from the 

longitudinal and transversal radius) that renders them different optical properties and long-term 

photostability (Burrows et al., 2016). In figure 1 are summarized the main characteristics of 

nanomaterials that makes them more attractive to industry than their bulk counterparts. The 

ability to manipulate these characteristics has raised a great interest from the industries, which 

increased research and production of NMs at global levels. However, these various properties also 

influence their toxicity to biota (Shin et al., 2015): 

 

o Small size and large surface area:volume ratio: the large surface area (greater than the 

bulk material) and their small size can make them more reactive (Elsaesser & Howard, 
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2012; Rosenkranz, 2010). Park et al. (2011) studied the effects of different sizes of Ag-NPs 

(20, 80, 113 nm) on murine peritoneal macrophage cell line. The smallest NPs (20 nm) 

were more toxic than the others on cytotoxicity, inflammation, genotoxicity and 

developmental toxicity. Hua et al. (2014) obtained the same correlation between size and 

toxicity of nanoparticles when they studied the effects of Cu-NPs (25, 50, 100 nm) on 

zebrafish embryos. The 25 nm Cu-NPs exhibited a higher percentage of mortality than the 

50 and 10 nm. Moreover, the percentage of mortality was more relevant at 120h post-

fertilization than at 24h. Contrarily, Nasser et al. (2016) showed that survival of Daphnia 

magna was more affected by long gold nanorods (length 146 nm) than short gold 

nanorods (length 60 nm), thus, suggesting that though it is common for smaller particles 

to be more toxic, size is not the only characteristic influencing their toxicity. 

o Shape: Different forms of nanoparticles can cause different toxicity (Albanese et al., 

2012). Nasser et al. (2016) evaluated and compared the toxicity of Au nanorods (diameter 

25 nm) and nanospheres (diameter 25 nm), negatively and positively charged. Within 

each category of surface charge, the lethal toxicity of Au to D. magna was higher for 

nanorods than for nanospheres. Ispas et al. (2009) studied the effects of different shapes 

(dendritic and spheres) of Ni-NPs in zebrafish embryos. For all tests, the dendritic NPs 

showed higher toxicity than spheres NPs. Prevailing theories suggest that acicular 

particles induce enhanced toxicity over isotropic ones through obstacle of phagocyte-

mediated clearance mechanisms and through the aggravation of proximal cells via 

mechanical interactions (Brown et al., 2007). 

o Chemical composition: Nanoparticle toxicity can be influenced by the chemical toxicity of 

its individual constituents (Lopes, 2012). For example, gold nanoparticles have been 

considered to be of low toxicity for organisms whether silver NPs have a higher toxicity 

(Moreno-Garrido et al., 2015). Knowing the toxicity of the main element of the 

nanoparticle, may help to understand the toxicity of the corresponding NP, especially if 

the rate of dissolution of ions from the NP is high. However, many elements that are 

considered non-toxic can become toxic when combined with coating agents, such as gold, 

which often becomes toxic when combined with the stabilizing agent  

hexadecyltrimethylammonium bromide (CTAB) (Schachter, 2013).  

o Solubility: Solubility is a very important factor for aquatic toxicity (Kahru & Dubourguier, 

2010). The potential for NPs components to dissolve can influence their persistence in the 

environment (Misra et al., 2012). Dissolution can lead to the delivery of highly toxic ions, 
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such as Zn2+, Cu2+, Cd2+ and Ag+ to biota (Brunner et al., 2006; Misra et al., 2012). Solubility 

is dependent on particle’s chemicals and surface properties and as well by the medium 

where they are suspended. Several abiotic factors may influence the solubility of NPs, 

such as pH, temperature, salinity. Studer et al. (2010) exposed on centrifugation Cu-NPs 

(diameter 20 nm) in Mili-Q water at different pH values. At pH=7.4 the dissolution of Cu-

NPs was <0.1 % and in pH=7 the dissolution was 0.3 %. However, when they acidified the 

pH for the value 5.5, the dissolution of ions increased to 95 %, thud, becoming more 

available to be uptake by organisms. On the other hand, insoluble nanoparticles, due to 

their weak capacity of dissolution, if small enough can pass through different biological 

barriers and accumulated in organisms tissues/organs (Rana & Kalaichelvan, 2013). 

o Aggregation and agglomeration: Agglomerates are a cluster of primary particles (particles 

with a defined geometric shape) and/or aggregates whose total surface does not differ 

from the sum of surface areas of primary particles (Walter, 2013). Agglomerates are 

connected by weak physical interactions. Aggregates are developed when primary 

particles form a common crystalline structure, that usually are formed when particles 

growth together and are aligned side by side. In aggregates, the total surface area is less 

than the sum of the surface area of the primary particles (Walter, 2013). Yang et al. (2008) 

observed that carbon nanotubes are mainly accumulated in liver, spleens and lungs in 

mice without manifesting any acute toxicity, but induce cytotoxicity when carbon 

nanotubes accumulated begins to aggregate. Kalbassi et al. (2013) studies the effects of 

colloidal Ag-NPs and suspended powder Ag-NPs in fish. Suspended Ag-NPs in contact with 

medium form agglomerates. For all tests performed at different hours and organisms 

(rainbow trout at different stages of the life-cycle), for concentrations until 100 mg/L, the 

colloidal Ag-NPs were more toxic than suspended powder Ag-NPs agglomerates. They 

suggested that the agglomeration caused sedimentation of the Ag-NPs, thus eliminating 

most of these agglomerates from the water column. Furthermore, the formation of 

agglomerates reduces considerably the surface area available of NPs to bind or react with 

biological membranes.  
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Figure 1: Physical and chemical parameters with particular importance in nanomaterials. 

(Source: Barkalina et al., 2014) 

 

 

Nanomaterials in the environment 
 

Fate of nanomaterials in the aquatic systems 

Due to the high application and use of engineered nanomaterials in the last decades, it is 

inevitable that these compounds emerge into the environment via different routes, such as 

(Klaine et al., 2008; Vale et al., 2016): 

o Wastewater treatment plants effluents (WWTP); 

o Direct use; 

o Deposition from the air compartment; 

o Accidental spillages;  

o Rainwater runoff. 

 

Methods to determine the presence of NMs in the aquatic environment are still 

underdeveloped and the expected concentration of many NMs remain mostly unknown (Selck et 

al. 2016). 
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In the aquatic environment, the NMs can experiment several transformations (Figure 2). 

They can form large aggregates of NMs (homoaggregation) whose transport in this environmental 

compartment is dominated by sedimentation (Klaine et al., 2008). The aggregation process can 

also occur with another particles available in the environment (heteroaggregation) such as 

organic matter (Cupi et al., 2015). Aggregation can modify the toxicity of the NP by decreasing 

their surface and consequently their reactivity, by increasing their size that reduces their capacity 

to cross biological barriers (Lowry et al., 2012). Furthermore, aggregation promotes NMs 

sedimentation, which become more available for benthonic and epibenthonic organisms. 

However, the particles can suffer resuspension due to turbulence of the water returning to the 

water column and being again available to planktonic and pelagic organisms (Markus et al. 2015). 

Dissolution occur frequently in metal NMs because the formation of soluble metal-oxide, the 

oxidation of the NMs constituents and the complexation of its constituents with constituents 

available in the environment easily occurs (Vale et al., 2016). Dissolution reactions can play an 

important role in the toxicity of nanoparticles.  The potential for NPs to dissolve can influence 

their persistence in the environment and change their biological response. It is already know that 

dissolution can lead to the delivery of highly toxic ions, such as Zn2+, Cu2+, Cd2+ and Ag+ to biota 

(Brunner et al., 2006; Misra et al., 2012). When NM dissolve in the exposure media, speciation of 

ions with other ligands can be prominent and the uptake path and uptake mechanism of ions in 

organisms will be different from the NPs themselves. In nanotoxicologic context, an important 

challenge is important to ascertain whether the toxicity observed is due to the NPs, perhaps as a 

result of their novel properties, or caused by the release of ions, or a combination of both (Misra 

et al., 2012). 

 

Figure 2: Representation of the main transformation processes of nanomaterials in the aquatic 

systems. (Source: Markus et al., 2015) 
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Interactions between nanomaterials and aquatic organisms 

 After the entrance of NMs in the aquatic environment, through different sources (as 

previously mentioned), it is expected that they will interact with organisms (e.g. microorganisms, 

algae, invertebrates, plants, fish) and possibly exert adverse effects on them (Ma & Lin, 2013). 

Actually, several works have already been published in the last decade illustrating several toxic 

effects that NMs may induce in biota (Botha et al., 2016; Dědková et al., 2014; Schirmer et al., 

2013)  Shading, agglomeration and internalization have been identified as playing an important 

role on NMs toxicity. Shading is particularly harmful for autotrophic organisms, that require light 

for their survival (Gong et al., 2011; Ma & Lin, 2013; Schwab et al., 2011;).  

 Algae generally have a cell wall that can play a protective role in supporting the cell 

structure and defend from the external adverse environments. However, the interaction between 

NMs and cell wall is poorly understood (Ma & Lin, 2013). But, some authors have reported that 

some types of NMs can interact directly with algal cells surface through adsorption to the cell wall 

(Ma & Lin, 2013). Furthermore, the formation of NMs aggregates reduce the amount of light 

reaching the algal cell and/or blocks the cell wall hindering the acquisition of nutrient and leading 

to the inhibition of algae growth (Oukarroum et al., 2012; Sadiq et al., 2011; Van Hoecke et al., 

2008; Wei et al., 2010). 

 In animal cells (without cell wall) or in the case of NMs that are capable of crossing the 

cell wall, NMs enter in contact with the cell membrane. When this occurs, several factors come 

into play, as some examples (Figure 3): 

o NMs with hydrophobic surfaces can be adsorbed in the hydrophobic surfaces zones of the 

cell membrane (Xiao & Wiesner, 2012);  

o Electrostatic attraction may occur when NMs and the cell membrane exhibit different 

surface charges (Cho et al., 2009); 

o Occurrence of hydrogen bond and receptor-ligand interaction (Liang et al., 2016; Yue et 

al., 2015); 

o NMs may disrupt the cell membrane and directly enter the cells (Chen et al., 2009); 

o In metallic NMs when the dissociation of ions occurs, they may be transported into the 

cells via membrane transport channels (Dobson, 2008). 

o Endocytosis may occur directly across the membrane (Ma & Lin, 2013) This is the most 

common route for NMs internalization into cells. 
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Figure 3: Interactions between nanomaterials and cell membrane (Source: Ma & Lin, 2013). 

 

 

 

Gold nanoparticles 

 Gold nanoparticles (Au-NPs) are a colloidal suspension of gold particles with nanometer 

size (Tiwari et al., 2011). These nanoparticles have been analyzed and studied due to their unique 

characteristics – gold nanorods have particular interest due to their anisotropic shape, which 

makes them attractive in biological imaging and sensing (Zhang et al., 2012). The optical and 

electric properties of Au-NPs are tunable by changing the size, shape, surface chemistry, or 

aggregation state. Gold NPs, as any other NPs, can be classified according to their dimensionality, 

morphology, composition, uniformity and agglomeration/aggregation (Buzea et al., 2007). Figure 

4 illustrates the wide diversity of existing types of Au-NPs.  
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Figure 4: Gold nanoparticles of various sizes and shapes (a) Smal nanospheres, (b) large 

nanospheres, (c) nanorods, (d) sharpened nanorods, (e) nanoshells, (f) nanocages/frames, (g) 

hollow nanospheres, (h) tetrahedra/octahedra/cubes/icosahedra, (i) rhombic dodecahedra, (j) 

octahedra, (k) concave nanocubes, (l) tetrahexahedra, (m) rhombic dodecahedra, (n) obtuse 

triangular bipyramids, (o) trisoctahedra, and (p) nanoprisms. (Source: Dreaden et al., 2012) 

 

Gold NPs are used in several areas such as (Sharma & Singh, 2016): 

o Electronics – In the manufacture of connect resistors, conductors, chips (Gutiérrez-

Sańchez et al., 2012). 

o Cancer treatment – Gold-NPs bind to tumor cells and may kill them in a hyperthermia 

therapy (Jain et al., 2012). 

o Therapeutic agent delivery – The large surface area to volume ratio allows many 

molecules to be coupled at Au-NPs surface (Arvizo et al., 2011). 

o Sensors – As a constituent of various sensors (Yue et al., 2016). 

o Biological imaging applications – Due to their special optical characteristics (Tong et al., 

2009) . 
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o Disease diagnostics – They can behave as biomarkers in the diagnosis of many diseases 

(Mieszawska et al., 2013). 

o Catalysis – They are used as a catalyst in number of a chemical reaction, which make 

them attractive to the industry (Thompson, 2007). 

 

The assessment of Au-NPs toxicity may be quite complex due to its great variety in form, 

stabilizing coating agents (such as cetyltrimethylammonium bromide-CTAB), physicochemical 

parameters, incubation conditions, type of specimens used, types of assay, among other factors 

(Soenen et al., 2011). At the cellular level, spherical Au-NPs may interact with cell membranes, 

mediated by their strong electrostatic attraction to the negatively charged bilayer (Goodman et 

al., 2004). Kang et al. (2009) evaluated the effects of spherical Au-NPs (diameter 4, 15, 100, 200 

nm) on a mouse cell line at concentrations as high as 200 μg/mL of Au-NPs. The Au-NPs with 4 nm 

of diameter induced cellular toxicity (assessed by cell counting) at concentrations above 25 

μg/mL. Furthermore, the Au-NPs with diameter of 100 and 200 nm induced DNA damage also at 

concentrations above 25 μg/mL. Dreaden et al. (2012) revised the toxicity of Au-NP and reported 

that in general these NPs can accumulate in tumor cells and penetrate the cell much faster than 

other small molecules. Due to their comparable size relative to proteins, Au-NP can selectively 

perturb and modify cellular processes in ways that small molecules and proteins cannot, allowing 

them to act as intrinsic drug agents. 

At the individual level, Au-NPs may accumulate in the different tissues. Larguinho et al. 

(2014) reported that the algae Dunaliella salina was able to accumulate the major part of 

spherical Au-NPs to which was exposed (76%) for 24h at concentrations of 0.1–1 nM. García-

Negrete et al. (2013) exposed the bivalve Ruditapes philippinarum to spherical Au-NPs for 

different periods of time (3h, 6h, 12h, 24h, 7 days, 14 days, 28days) at concentrations of 6 and 30 

μg/L. These authors observed that the accumulation of spherical Au-NP in R. philippinarum 

occurred mainly in the gills and in the digestive gland, for the two tested concentrations. This 

accumulation was visible even for the lowest exposure period of time (3h). Botha et al. (2016) 

observed that after a period of 14 days of exposure to concentrations of spherical Au-NPs above 

20mg/L, the cladocera D. magna, accumulated large amounts of these NPs mainly in its 

exoskeleton, which may constitute a way to excrete the NP, since these organisms release molts 

as they grow. Lee et al. (2015) studied the effects in the somatic growth of D. magna exposed to 

colloidal gold nanospheres (size between 8.5 and 12 nm) during 48h and they found an inhibition 

of growth at concentration of 5 μg/L. Dědková et al., (2014) analyzed the effects on growth of 
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green algae Desmodesmus subspicatus and R. subcapitata exposing during 72h to gold 

nanospheres. These researchers observed significant effects in the growth of both algae and 

reported EC50 of 28 μg/mL and 14 μg/mL for D. subspicatus and R. subcapitata, respectively. 

 

 

Model organisms 
 

In this work, three different species were studied, the microalgae (producers) 

Raphidocelis subcapitata and Chlorella vulgaris and the microcrustacean (primary consumer) 

Daphnia magna. 

 

Raphidocelis subcapitata 

Raphidocelis subcapitata (also known as Pseudokirchneriella subcapitata) is a planktonic 

microalga frequently found in freshwater ponds, lakes and rivers. Its taxonomic classification is 

(Nygaard et al., 1987):  

 

Kingdom: Plantae 

Phylum: Chlorophyta 

Class: Chlorophyceae 

Order: Sphaeropleales 

Family: Selenastraceae 

Genus: Raphidocelis 

Specie: Raphidocelis subcapitata 

 

Cells of R. subcapitata are semicircular curved and most of time the cells are solitary 

(Figure 5; Aruoja, 2011). The reproduction of this microalgae is by division of the cell into 2, 4 or 8 

autospores (Nygaard et al. 1986). 
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Figure 5: Raphidocelis subcapitata cells view in the optical microscope. (Source: Culture 

Collection of Autotrophic Organisms, 2013b) 

 

 This species has been widely used in nanotoxicology as a model species. As an example, 

Nogueira et al. (2015) studied the effects of four metal nanoparticles – TiO2, Fe2O3, NiO (10-20 

nm) and NiO (100 nm) to a battery of aquatic organisms. For R. subcapitata, no significant effects 

on growth occur after being exposed to 20.0 mg/L of nano-Fe2O3. The two types of NiO 

nanoparticles induced a significant decrease in the growth rate of R. subcapitata, with an EC50 of 

8.24 mg/L and of 15.2 mg/L for NiO (100 nm) and NiO (10-20 nm), respectively. Exposure to nano-

TiO2 caused an increase in growth rate comparatively to control at concentrations of 16 and 20 

mg/L. Regarding the effects of nano-TiO2 in microalgae are still controversial.  

Studies with another nanoparticles has been performed and showed as well the sensitivity of 

these microalgae to nanoparticles (Aruoja, 2011; Radix et al., 2000). 

 

Chlorella vulgaris 

Chlorella vulgaris, as R. subcapitata, is a planktonic microalga frequently found in 

freshwater ponds, lakes and rivers. Its taxonomic classification is (Beyerinck, 1900): 
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Kingdom: Plantae 

Phylum: Chlorophyta 

Class: Trebouxiophyceae 

Order: Chlorococcales 

Family: Chlorellaceae 

Genus: Chlorella 

Specie: Chlorella vulgaris 

 

Cells of C. vulgaris are globular with a diameter between 4-10 nm (Figure 6; Geiger, 2014). 

 

Figure 6: Chlorella vulgaris cells view in the optical microscope. (Source: Culture Collection of 

Autotrophic Organisms, 2013a) 

 

Chlorella vulgaris, as R. subcapitata, have been used in many studies to assess the toxicity 

of NPs. Oukarroum et al. (2012) studied the effects of 50 nm silver NPs in C. vulgaris. Silver NPs at 

a concentration between 0-10 mg/L exerted a negative effect on C. vulgaris manifested by a 

strong decrease on chlorophyll values, viable algal cells and increase of reactive oxygen species 

formation. Gong et al. (2011) reported that nickel oxide NPs caused a significant effect on C. 

vulgaris growth, with an EC50 of 32.28 mg/L. Moreover, under stress of nickel oxide NPs, until 50 

mg/L of concentration, cells of C. vulgaris showed plasmolysis, cytomembrane breakage and 

thylakoids disorder. 
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Daphnia magna 

Daphnia magna is a well-studied planktonic cladoceran that belongs to the phylum 

Arthropoda. Daphnia magna possesses an exoskeleton, jointed limbs and a hemocoel as primary 

internal cavity (Figure 7) (Rosenkranz, 2010). The taxonomy of D. magna is (Boxshall, 2015): 

 

Kingdom: Animalia 

Phylum: Arthropoda 

Class: Branchiopoda 

Order: Diplostraca 

Family: Daphniidae 

Genus: Daphnia 

Species: Daphnia magna 

 

 
Figure 7: Schematization of Daphnia morphology. This figure shows an adult female with 

parthenogenetic embryos in her brood chamber. (source: Ebert, 2005) 

 

  Daphnia magna reproduces through cyclic parthenogenesis (Rosenkranz, 2010). During 

the asexual phase, D. magna reproduces by parthenogenesis, which allows to keep the same 

clone in laboratory for several generations (Tavares, 2014). The asexual life-cycle occurs in four 
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distinct stages: the egg formation, juvenile (3-5 juvenile phases between molting), adolescent 

(more one phase between molting) and adult (6-22 phases between molting) (Mitchell, 2001; 

Rosenkranz, 2010). Under unfavorable environmental conditions (e.g. low temperatures, low food 

levels) females may switch to sexual reproduction, by producing males and haploid eggs. The 

graphic representation of D. magna life cycle can be found in Figure 8.  

 

 

Figure 8: Representation of Daphnia magna life cycle  

(source: Ebert, 2005) 

 

Daphnia magna has been used in ecotoxicology since 1960s (Botha et al., 2016), being the 

most widely used model species in ecotoxicity studies. Being a primary consumer, it holds an 

intermediate position in the transfer of energy and biomass from the producers to other 

consumers (Baun et al., 2008). Another particularity of D. magna is to be a filter feeder organism, 

allowing them to filter large volumes of water compared to body size (Baun et al., 2008). This 

capacity has been explored in some studies that found nanoparticles in the digestive tract of D. 

magna (Baun et al., 2008; Matos et al., 2009). 

Lovern & Klaper, (2006) assessed the lethal effects of filtered nano TiO2 and C60 in D. 

magna and observed that the nano-C60 (LC50,48h=0.46 mg/L) exerted a higher toxicity 
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comparatively to nano-TiO2 (LC50,48h)=5.5 mg/L). Latter, these same authors assessed the lethal 

effects of fullerene (C60) and nano-TiO2 on neonates of D. magna after an exposure for 48h to 

these NPs (Lovern & Klaper, 2008). For daphnids exposed to C60, mortalities of 12% and 100% was 

registered at 40 μg/L and 880 μg/L of C60, respectively. Regarding nano-TiO2, the lowest 

concentration tested (200 μg/L) caused mortality of daphnids below 2 %. However, 100% of 

mortality occurred when D. magna neonates were exposed to 10 000 μg/L of nano-TiO2. 

Oberdörster et al. (2006) studied the effects of long-term exposure to 2.5 mg/L of C60 in D. magna. 

These authors observed a significant decrease in the total number of offspring produced by 

daphnids and a delay in time to molting. Botha et al. (2016) studied the same parameters but by 

exposing D. magna to spherical Au-NP and they did not found significant effects in offspring 

production and molting patterns at concentrations equal or below 20 mg/L. 

 

 

 

Aims 
 

The general aim of the present work was to evaluate the sublethal effects of gold-

nanorods to freshwater organisms. To attain this major goal, two specific objectives were 

delineated: (i) to assess the sublethal toxicity of gold-nanorods to producers and a primary 

consumer and ii) to evaluate the generational effects of gold-nanorods in microalgae. 

 

This work was divided into four chapters. In the first chapter a brief contextualization of 

the thematic of the present work is provided. The state of the art is presented followed by the 

objectives. The second chapter corresponds to the work developed to attain the first specific 

objective. The sublethal effects caused by exposure to gold nanorods was assessed in three 

freshwater species, representative of different trophic levels: Chlorella vulgaris and Raphidocelis 

subcapitata (producers) and Daphnia magna (consumer). The third chapter describes the work 

developed to attain the second specific objective. Taking into account the results obtained in the 

second chapter, the multigenerational effects of gold nanorods in Chlorella vulgaris and 

Raphidocelis subcapitata were evaluated to try to predict the impact that long-term exposure to 

these chemicals may have on the trophic chain. Finally, in the fourth chapter, the major finding 

and conclusions of this work are summarized and research lines for prospective work are 

suggested. 
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Chapter 2 
Sublethal effects of gold nanorods to algae 
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Abstract 

 Gold nanorods (Au-NP) have been deeply studied aiming its application, among others, in 

diagnostic procedures. The aim of this study is to evaluate the sublethal effects caused by 

exposure to Au-NP on species representative of two trophic levels: Chlorella vulgaris and 

Raphidocelis subcapitata (as primary producers), and Daphnia magna (as primary consumer). The 

three species were exposed for 72h and 21 days to serial dilutions of Au-NP, respectively for the 

microalgae and D. magna. Effects on time to release the first reproduction, total reproduction and 

somatic growth of D. magna and in the population growth rate of all tested species were 

monitored. For the two species of microalgae the concentrations of Au-NP inducing 20 and 10% of 

effect in the population growth rate were as follows: EC20,72h= 39 μg/L and EC20,72h= 79 μg/L for R. 

subcapitata and C. vulgaris, respectively; and EC10,72h= 22 and EC10,72h= 21 for R. subcapitata and C. 

vulgaris, respectively. As for the effects on the somatic growth of D. magna, a statistically 

significant decrease for all tested Au-NP concentrations was observed, being computed an EC10,21d 

of 2.45 μg/L. However, no significant effects were observed in the total number of released 

neonates between control and Au-NP exposed groups. The low levels at which the Au-NP exerted 

sublethal effects in the studied species suggest that its release in a long run into freshwater 

ecosystems may constitute an ecological risk. 
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Introduction 
 

Nanotechnology explores particular features of nanosize, like increased reactivity, that make NMs 

attractive to produce a vast panoply of consumer products (Völker et al., 2013). Specifically, gold 

nanoparticles (Au-NP) have received a special interest from several industrial areas due to their 

singular characteristics such as extraordinary optical and electronic properties, high stability, 

biological compatibility, controllable morphology, size dispersion and facility of its surface 

functionalization (Conde, 2013). Anisotropic nanoparticles – non-spherical structures (such as 

nanorods and nanostars) can be used in a number of important applications ranging from 

catalysis to sensing to optics. These nanoparticles have plasmon resonances (local of collective 

oscillation of electrons) that can be tuned by their size and morphology (Chandra et al., 2016; 

Novikov et al., 2014). Gold nanorods have a transversal and a longitudinal plasmon – one along 

the short axis (transversal) and the other along the long axis (longitudinal) (Fratoddi et al., 2015). 

These characteristics are widely used in medicine mainly to develop diagnostic procedures. 

Actually, Au-NP based diagnostic devices are already being commercialized or are at evaluation 

stages of clinical trials and Au-NP based therapeutics and theranostics (combined diagnostic and 

treatment modality) are in the phase of research and development. Though these advantages are 

associated with diverse benefits to the society, they may as well be associated with unwanted 

effects in the environment. Therefore, understanding the adverse effects that Au-NP may pose in 

the environment is mandatory since, due to its diverse application in products to be 

used/consumed by society it is predicted that it will be release in the environment (Dědková et 

al., 2014).  

The toxicity of Au-NP may be influenced by several factors, namely their intrinsic nature 

and capacity to form larger aggregations (in size and shape), the route of exposure, exposure 

time, the interactions with mechanisms involved in the physiological process of uptake, among 

others (Lapresta-Fernández et al., 2012; Dědková et al., 2014). Some studies have already been 

performed to assess the toxicity of Au-NP to freshwater biota, namely for cladocerans (Botha et 

al., 2016; Galindo, 2014; Lovern & Klaper, 2006; Völker et al., 2013), green algae (Aruoja, 2011;  

Galindo, 2014; Geiger, 2014), fishes (Bar-Ilan et al., 2009; Farkas et al., 2010), mollusks (Renault et 

al., 2008; Tedesco et al., 2010), among others. For example, Dědková et al., (2014) evaluated the 

effects of gold nanospheres on the growth of two green algae (Desmodesmus subspicatus and R. 

subcapitata) after an exposure of 72h. These researchers observed significant effects in the 
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growth of both algae and reported EC50 of 28 000 μg/L and 14 000 μg/L for D. subspicatus and R. 

subcapitata, respectively. Nasser et al. (2016) reported that both surface charge and geometric 

configuration influence the toxicity of Au-NP. These authors evaluated the effects of different Au-

NPs (nanospheres with diameter of 25 nm; short nanorods with diameter of 25 nm and length of 

60 nm; long nanorods with diameter of 25 nm and length of 146 nm), positively and negatively 

charged, on D. magna. After 24h of exposure to these NP the authors found that, regardless of 

shape, positively charged Au-NPs were more toxic, with an EC50=6 μg/L and EC50=18 μg/L for short 

nanorods and nanospheres, respectively. For the negatively charged Au-NPs a maximum of 40% 

of mortality was only observed at 50 000 μg/L. The authors suggested that such highest toxicity of 

positively charged NP was due to the highest attraction for the negatively charged phospholipid 

bilayer of the cell membrane. Regarding the influence of geometric configuration, these authors 

reported spheres to be the most toxic followed by short rods and long rods. Corroborating the 

results obtained at the individual level, Nasser et al. (2016) also reported that the negatively 

charged gold nanospheres induced minimal production of reactive oxygen species (ROS), while 

positive nanospheres induced a significant production of ROS. Jensen et al. (2016) evaluated the 

uptake of spherical Au-NP (size 10 nm) into the D. magna gut lumen and also the potential 

internalization into gut cells, by exposing this species to 400 μg/mL for 24h. At the end of 

exposure, the authors verified Au-NP attached to the intestinal epithelial cells of D. magna.  

 Though some studies on the toxicity of Au-NP to aquatic biota have already been carried 

out, most of them deal with short-term exposures. Only a few studies have studied chronic or life-

cycle effects of these NP to aquatic biota (Baun et al., 2008). For example, Botha et al. (2016) 

studied the sublethal effect of Au-NP in reproduction the of D. magna. After 14 days of exposures, 

no significant effects were observed at concentration equal or below 20000 μg/L. Bozich et al. 

(2014) exposed D. magna for 21 d to Au-NP coated with different stabilizing agents: trisodium 

citrate-Cit-Au-NP, poly(allylamine) hydrochloride-PAH-Au-NP, mercaptopropionic acid MPA-Au-NP 

and trimethylammonium bromide-CTAB-Au-NP. Initial particle charge significantly impacted the 

observed toxicity, with positively-charged particles (PAH and CTAB–Au-NP) being more toxic than 

their negatively-charged counterparts. The CTAB-Au-NP affected negatively the reproduction of D. 

magna at 10 μg/L, while PAH–Au-NP significantly affected daphnid reproduction at 5 μg/L. The 

Cit–Au-NP and MPA-Au-NP affected Daphnia magna reproduction at concentration of 25000 

μg/L. The possible reason that PAH and CTAB–Au-NPs were more toxic than their negatively-

charged Au-NP is potentially due to these positive particles having a high affinity for the cellular 

membranes. In addition to the need of generating data on the sublethal effects of Au-NP, the 
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examples given above highlight the difficulty on characterizing the ecological risk of the group of 

Au-NP since its toxicity is influenced by several properties (e.g. size, shape, charge, capping 

agents), thus, suggesting the need to perform ecotoxicological evaluations to the diverse range of 

Au-NP being produced. Aiming to contribute to fill some of these knowledge gaps, the aim of this 

study was to evaluate the sublethal effects of gold nanorods to three freshwater species, 

representative of different trophic levels: Chlorella vulgaris and Raphidocelis subcapitata 

(producers) and Daphnia magna (consumer).  

 

 

Materials and methods 
 

Tested substance 

 Gold nanorods (Au-NP) (A12-10-780) were supplied by Nanopartz™ (Salt Lake City, UT, 

USA) as dispersion in deionized water with hexadecyltrimethylammonium bromide surfactant 

capping agent (CTAB) (the concentration of CTAB is maintained below 10mM) with a 

concentration of Au-NP of 35 μg/ml. The primary size (given by the manufacturer) of Au-NP in the 

dispersion was as follows: diameter=10 nm, length=38 nm. The surfactant 

hexadecyltrimethylammonium bromide (CTAB), used as a capping agent of the Au-NP, was 

supplied by Sigma-Aldrich® as a powder (purity of 95%). 

 

Test species 

 Cultures of Raphidocelis subcapitata and Chlorella vulgaris were maintained at 20˚C with 

continuous light (fluorescent light tubes: OsramL36W/10) and aeration. Four-day inoculates, i.e. 

in the log growth phase of the algae cultures, were used to run the ecotoxicological assays. 

Woods Hole MBL culture medium was used and prepared according to Stein, 1973. The medium, 

such as all the material used to prepare the cultures and assays, were previously sterilized in an 

autoclaved at 121°C and 1 Bar, for 30 minutes. Raphidocelis subcapitata and C. vulgaris are two 

species of freshwater green microalgae representatives of primary producers.  

Daphnia magna BEAK culture was maintained in ASTM medium (ASTM, 2002) and held in 

1L glass vessels with 16:8h light:dark cycle, under controlled temperature (19-22˚C). Medium was 

changed three times per week and organisms were fed daily with the green algae Raphidocelis 
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subcapitata (density=3.0×105 cell/mL/daphnia) and organic additive Marinure 25 (an extract from 

the algae Ascophyllum nodosum; Pann Britannica Industries Ltd., Waltham Abbey, UK) (Baird et 

al., 1989). All cultures were maintained under asexual reproduction (parthenogenesis), which 

allowed maintaining in the laboratory the same clone for several generations. Cultures were 

renewed with neonates from third, fourth or fifth brood. 

Both the species of microalgae and D. magna have been recommended as standard species 

for testing of chemicals. They are easily maintained in the laboratory, very sensitive to different 

contaminants and they have short life cycles (Martins, 2010; Tavares, 2014). 

 

Gold nanorods characterization 

The physical characterization of the stock Au-NP suspension was performed. The surface 

charge, the zeta potential and the hydrodynamic diameter of the Au-NP in dispersions were 

determined in a Zetasizer Nano ZS with Zetasizer Software (Malvern ZetaSizer, 2013). 

Ultraviolet/visible/infrared (UV/Vis/IR) Jasco U-560 UV–Vis spectrophotometer was used to 

determine the spectra of light that is absorbed and scattered by the Au-NP dispersions 

(NanoComposix, 2012). 

 

72h-growth inhibition assays with microalgae  

The effects of Au-NP on the growth rate of microalgae was assessed by exposing R. 

subcapitata and C. vulgaris to this NP according to the OECD Guideline 201 (OECD, 2004). 

Preliminary assays were carried out to select the concentration range to which algae were 

exposed. Raphidocelis subcapitata was exposed to seven concentrations ranging from 8 μg/L to 

53 μg/L, using a dilution factor of 1.3, plus a control that consisted in medium MBL. For Chlorella 

vulgaris eight concentrations of Au-NP were tested ranging from 11 to 90, using a dilution factor 

of 1.3, plus a control of MBL. To evaluate the effects of the Au-NP stabilizer CTAB, both algae 

were also exposed to the concentration of CTAB present in the highest tested concentration of 

Au-NP (90 μg/L for C. vulgaris and 53 μg/L for R. subcapitata). All assays were conducted at 

23±1°C of temperature, under continuous light of 4000 lux, approximately. Assays were 

performed in 24-well plates and eight replicates were made for each concentration and control. In 

order to minimize evaporation, the outer wells of the plate were filled with 1 mL of autoclaved 

distilled water and only the inner wells were filled with test solutions.  The test wells were filled 

with 900μl of: MBL solution solely (control), MBL with Au-NP or with MBL with CTAB. To all test 
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wells were added 100μl of algae inoculum, 4-5 days old, at a concentration of 105 cell/mL, to start 

the test with a cell density of 104 cell/mL (Figure 9). 

 

 

Figure 9: Scheme illustrating how the 24-well microplates were filled with test solutions to run 

the assays with the microalgae. 

 

To avoid the settling of algae and subsequent shadow effects on their growth, all test plates were 

re-suspended for a few minutes every day on an orbital shaker. After 72h of exposure the assay 

ended and absorbance (ABS) was measured for each replicate in a spectrophotometer (Jenway, 

6505 UV/Vis) at 440nm, and converted in cell density per volume according to the following 

equations: 

𝐶𝑒𝑙𝑙/𝑚𝐿 = −17107.5 + Abs440 ×  7925350 (R. subcapitata; r2=0.98; p≤0.05) 

 

𝐶𝑒𝑙𝑙/𝑚𝐿 = −155820 + Abs440 × 13144324 (C. vulgaris; r2=0.91; p≤0.05) 

 

The population growth rate (r) was calculated according to the following equation:  

r =
ln NF–  ln NI

t
 

where NF is the mean number of algae at the end of assay (cell/mL), NI is the mean number of 

algae at the start of the assay (cell/mL) and t is the time of exposure (days). 

The percentage of growth inhibition was calculated according to: 

I(%)  =  ((NC –  Ncon)/NC) x 100 

where NC is the mean number of algae in control and Ncon is the mean number of algae in 

respective concentration. 
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Reproduction assays with Daphnia magna 

The effects of Au-NP in the reproductive output of D. magna was assessed by preforming 

the 21-day reproduction assay according to the guideline OECD 211 (OECD, 2012). A preliminary 

assay was carried out to establish the following range of Au-NP concentrations to which D. magna 

were exposed: 1, 1.4, 1.96, 2.74 and 3.84 μg/L. Neonates (<24h old) were exposed to these 

concentrations and to a control (ASTM medium). Ten neonates were exposed individually in 50-

mL glass vessels containing 40 mL of the test solution, per treatment. Organisms were fed daily 

with R. subcapitata (density=3.0×105 cell/mL/daphnia) and test medium was changed three times 

per week. Exposure occurred under controlled conditions of 16:8 light:dark and of temperature 

between 19˚C-22˚C. After females started releasing the broods, neonates were counted on a daily 

basis and the time to the first brood was monitored. At the end of 21 days of exposure, the 

females of each replicates were measured in a binocular microscope (Zeiss mod. Stemi 2000C). 

Twenty neonates, collected from the same pool from where neonates were sampled to initiate 

the assay, were measured at the beginning of the assay. Daily somatic growth rate (mmday-1) was 

calculated according to the following formula: 

𝑘 (𝑚𝑚𝑑−1) =
ln(𝑙𝑓) − ln (𝑙𝑖)

∆𝑡
 

Where 𝑘 corresponds to growth rate (d-1), 𝑙𝑖 is the initial size (mm), 𝑙𝑓 is the final size (mm) and 

∆𝑡 is the time interval (days) (Antunes et al. 2003; Galindo, 2014). 

 The intrinsic rate of population increase (r) was computed by using the Euler-Lotka 

equation, 

1 = ∑ 𝑒−𝑟𝑥

𝑛

𝑥=0

𝑙𝑥𝑚𝑥 

Where r is the intrinsic rate of population increase (d-1), 𝑥 is the age class (days), 𝑙𝑥 is the 

probability of surviving to age 𝑥 and 𝑚𝑥 is the fecundity at age 𝑥. The estimation of standard 

errors was calculated according to the jack-knifing method (Meyer et al.  1986). 

During the assays the following parameters were measured, before and after renewing the 

test media: conductivity (Wissenschaftlich Technische Werkstätten-WTW conductivity 440i, 

Weilheim, Germany) pH (WTW pH 330i) and dissolved oxygen (WTW OXI 330i). 
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Data analysis  

For the test with R. subcapitata and C. vulgaris, the effective concentration inducing 20% 

and 10% (EC20,72h and EC20,72h, respectively) of growth inhibition was calculated with STATISTICA 8.0 

software™ (Zar, 1999) by fitting the data to a logistic model. 

After confirmed the ANOVA assumptions (Kolmogorov–Smirnov test for normality of data, 

and Bartlett’s test for homoscedasticity of variance), a one-way ANOVA analysis was performed to 

determine if there were significant differences between treatments regarding growth rate (algae 

and daphnids), reproduction and somatic growth. The Dunnett’s multiple comparison test was 

performed to compare results between Au-NP and the control (Zar, 1999). To evaluate significant 

differences in time to release the first brood between treatments an ANOVA on ranks was carried 

out followed by the Dunn’s test. 

To assess the effects of CTAB on the microalgae species, a student-t test was performed to 

compare responses between CTAB treatment with the control. A student-t test was also 

performed to evaluate the differences between growth of algae exposed to CTAB and to the 

highest Au-NP tested concentration. All analyses were done using the SigmaPlot 11.0 software™. 

 

 

Results 
 

Gold nanorods characterization 

The measured value of zeta potential of the stock solution, was 71.6 mV, the conductivity 

0.176 mS/cm, the hydrodynamic diameter 30.81 nm and the polydispersity index was 1.0. The 

value for absorbance of stock solution had a principal absorption peak at 780 nm.  

 

72-growth inhibition assay with microalgae 

Concentrations of Au-NP above 24 μg/L induced a significant decrease in the growth rate 

of C. vulgaris, comparatively to the control (Dunnett’s test: p<0.001, Figure 10). Nevertheless, the 

percentage of growth inhibition relatively to the control never exceeded 25% ( 

Figure 11). The concentration of Au-NP inducing 20% and 10% of growth inhibition in this 

algal species was 79 μg/L (95% confidence limits-CL: 57-100 μg/L) and 21 μg/L (95% CL: 10-32 

μg/L), respectively. 
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The tested concentration of CTAB induced a significant decrease of 15.5% in the growth 

rate of C. vulgaris relatively to the control (Student-t test: p=0.001). No significant differences 

were observed in the growth rate of this alga when exposed to CTAB compared to the highest 

tested concentration of Au-NP (CTAB vs 90 μg/L; Student-t test: p=0.442). 

Figure 10: Average of daily growth rate for 

Chlorella vulgaris after being exposed, for 

72h, to a range of concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the control 

(p=<0.001). 

Figure 11: Percentage of growth inhibition 

relatively to the control for Chlorella 

vulgaris after being exposed, for 72h, to a 

range of concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the respective 

control (p=<0.001). 

 

Concentrations of Au-NP above 31 μg/L induced a significant decrease in the growth rate 

of R. subcapitata, comparatively to the control (Dunnett’s test: p<0.001; Figure 12). The highest 

observed percentage of growth inhibition relatively to the control was 29 %, at the highest tested 

Au-NP concentration (53 μg/L; Figure 13). The concentrations of Au-NP inducing 20% and 10% of 

growth inhibition in this algal species were 39 μg/L (95% CL: 30-48 μg/L) and 22 μg/L (95% CL: 13-

33 μg/L), respectively. 

The tested concentration of CTAB induced a significant decrease of 15.5% in the growth 

rate of R. subcapitata relatively to the control (Student-t test: p=0.012). Significant differences 

were also observed between the growth rate of R. subcapitata exposed to CTAB and to the 

highest tested concentration of Au-NP (CTAB vs 53 μg/L; Student-t test: p=0.039) - the percentage 

of inhibition being higher for Au-NP. 
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Figure 12: Average of daily growth rate for 

Raphidocelis subcapitata after being 

exposed, for 72h, to a range of 

concentrations of gold nanoparticles. Error 

bars - standard deviation. * represents 

significant differences relatively to the 

control (p=<0.001). 

Figure 13: Percentage of growth inhibition 

relatively to the control for Raphidocelis 

subcapitata after being exposed, for 72h, to 

a range of concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the respective 

control (p=<0.001). 

 

21d-reproduction assay with Daphnia magna 

No relevant changes were observed in the physico-chemical parameters that were 

monitored along the assay. Dissolved oxygen was always above 20 mg/L. The pH of the medium 

varied within 7.7 and < 8.5. The temperature was maintained between 21 ˚C and 23 ˚C. 

Exposure to Au-NP induced a significant change in time to release the first brood in 

daphnids exposed to 1.96 μg/L, which released the first brood approximately one day later than 

the control (Dunn’s test: p<0.05; Figure 14). Daphnids exposed to 1.96 and 3.84 μg/L of Au-NP 

released, in total, less neonates than the control (Dunnett’s test: p<0.05; Figure 15). However, for 

the intrinsic rate of population growth increase significant differences relatively to the control 

were only detected at 1.4 and 1.96 μg/L of Au-NP (Dunnett’s test: p<0.05; Figure 16). 

All tested concentrations of Au-NP caused a significant reduction in the somatic growth 

rate of the daphnids (Dunnett’s test: p<0.05; Figure 17), though these reductions never exceeded 

13% (only the two highest tested concentrations caused reduction in growth above 10%). The 

concentration causing 10% (EC10,21d) of reduction in the somatic growth rate was 2.45 μg/L (95% 

CL: 1.43-3.47 μg/L).  
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Figure 14: Average of time (in days) until 

the release of the first brood by females of 

Daphnia magna after being exposed for 21 

days to several concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the respective 

control (p=<.001). 

Figure 15: Average of the total number of 

neonates released per female of Daphnia 

magna after being exposed for 21 days to 

several concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the respective 

control (p=<0.001). 

 

 

Figure 16: Average of increase rate of 

population growth increase (r value) for 

Daphnia magna after being exposed for 21 

days to several concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the respective 

control (p=<0.001). 

 

Figure 17: Average of daily somatic growth 

rate of Daphnia magna after being exposed 

for 21 days to several concentrations of 

gold nanoparticles. Error bars - standard 

deviation. * represents significant differences 

relatively to the respective control (p=<0.001).
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Discussion 

  

In this study, we investigated the sublethal effects of gold nanorods in tree species: the 

microalgae R. subcapitata and C. vulgaris and in the cladoceran D. magna. This type of Au-NPs 

induced a significant decrease in the growth of the two algae at concentrations as low as 31 µg/L. 

For D. magna, in general, significant effects were mainly observed for somatic growth rate that 

significantly decreased at concentrations of Au-NP as low as 1 µg/L. For reproduction, though 

significant effects occurred (at 1.96 and 3.84 µg/L), a dose-effect relationship was not observed 

with increasing Au-NP concentrations. The occurrence of significant effects at low concentrations 

of Au-NP where expected since other authors already reported the toxicity of this type of gold 

nanorods at the level of micrograms per liter. Galindo (2014) studied the effects on growth of Au-

NP capped with CTAB (diameter=10 nm; length=35 nm) for R. subcapitata and C. vulgaris after 

72h of exposure. He reported values of EC20,72h of 59.7 μg/L for R. subcapitata and of 95.2 μg/L for 

C. vulgaris, thus showing similar results to the ones obtained in the present study (EC20,72h of 39 

and 79 μg/L, respectively). The two green algae appear to be less sensitive than D. magna. The 

highest sensitivity of D. magna to other chemicals has already been reported. For example, 

Blaylock et al., (1985) reported that D. magna was more sensitive to copper, by one to two orders 

of magnitude, than Selenastrum capricornutum (now R. subcapitata) and C. vulgaris. Garric et al., 

(2007) also reported the algae Pseudokirchneriella subcapitata (now R. subcapitata) to be less 

sensitive than D. magna to ivermectin, reporting values of lowest observed effect concentration 

of 1250 and 0.001 ng/L, respectively. 

Comparing the toxicity of CTAB capped Au-NP to D. magna observed in this study with 

that reported by other works already published, it can be seen that it is similar. Galindo (2014) 

assessed the toxicity of CTAB capped Au-NP to D. magna for approximately 21 days. This author 

did not found significant effects in the time to release the first brood neither in the total 

reproduction at concentrations as high as 2.92 μg/L. In the present study, these endpoints were 

adversely affected by exposure to Au-NP at the concentration of 1.96 μg/L, which may due to the 

fact that the Au-NP studied by Galindo (2014) exhibited a slightly smaller longitudinal size. Lopes 

et al. (2012) also studied the toxicity of gold nanorods capped with CTAB (diameter=10 nm, length 

=35 nm), similar to the ones used in the present work. These authors exposed the bacterium 

Vibrio fisheri to several Au-NP concentrations for a period of 30 minutes and found EC20 values for 

the production of bioluminescence of 140 μg/L, which corroborates the high toxicity of this type 
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of Au-NP to aquatic biota. When comparing these results obtained with CTAB capped Au-NP with 

the toxicity of other Au-NP it is possible to observe that these particular CTAB capped Au-NP are, 

in general, more toxic. For example, Dědková et al. (2014) assessed the toxicity of Au-NP, as 

colloidal nanogold, to R. subcapitata and reported an EC50,72h of 14×106 μg/L. Botha et al. (2016) 

studied the effects of gold nanospheres (size= 14 nm) on the reproduction of D. magna after long-

term exposure (14 days) and did not found significant differences comparatively to the control 

group until the concentration of 20000 μg/L. These differences in the toxicity of the different 

types of Au-NP can be associated with both the geometric configuration of the NP being tested 

and with the capping agents. Apparently, the mentioned studies suggest gold nanorods capped 

with CTAB to be more toxic than colloidal or gold nanospheres prepared in laboratory (Dědková et 

al., 2014; Botha et al., 2016). Actually, other researchers have already reported this. Yah (2013) 

and Fratoddi et al. (2015) revised the toxicity of gold nanoparticles and reported nanospheres to 

be less toxic to biota than nanorods. Lee et al. (2015) evaluated the effects of colloidal gold 

nanospheres (size between 8.5 and 12 nm) on the somatic growth of D. magna during 48h and 

they found an inhibition of growth at concentration of 5 μg/L. Again, the Au-nanorods tested in 

our study revealed a higher toxicity in this endpoint, since a significant reduction in the growth 

rate of daphnids was observed at concentrations as low as 1 μg/L, comparatively to this study 

with colloidal gold nanospheres. 

The high toxicity of CTAB capped Au-NP may be associated with the capping agent, which 

has been suggested to be very toxic to biota (Rayavarapu et al., 2010; Schachter, 2013; Soenen et 

al., 2011). For example, Rayavarapu et al., (2010) exposed several cell lines to a concentration of 

1.0 mol/L CTAB and observed 100% of cell death. As well, Takahashi et al. (2006) suggested that 

CTAB toxicity is much higher than other stabilizing agent, the phosphatidylcholine after comparing 

the toxicity of NP capped with both agents in HeLa cell line. While no effects were observed at a 

concentration of 0.73 mM of gold nanorods coated with phosphatidylcholine, for gold nanorods 

coated with CTAB 50% inhibitory effects of cell viability was found at concentration of 9.1 μM. The 

surfactant CTAB is also recommended for DNA extraction protocols in algae, which also evidences 

its potential to cause adverse effects in biological matrices (Varela-Álvarez et al., 2006; Wang et 

al., 2011). However, to date, no literature was found that evaluated the toxicity of the CTAB 

isolate at the individual level, hindering the direct comparison of the results obtained here for 

CTAB with other studies. In the present study, for the algae R. subcapitata, the value of inhibition 

growth was statistically different between the CTAB and the highest tested concentration of Au-

NP, pointing to the possible toxic effects caused by the capping agent. 
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The values of EC20 reported in the present study for Au-NP, and according to the 

Commission of the European Communities (1996), these gold nanorods should be placed in the 

category of  “extremely toxic” (EC20 <0.1 μg/mL). Galindo et al. (2013) also studied the effects of 

gold nanorods (coated with CTAB; size=35 nm) for white rot fungi species exposed until fungi 

achieved the maximum growth. For the most sensitive fungi, Trametes versicolor, the EC20 was 

27100 μg/L, placing this Au-NP in the category “harmful”. Lopes et al. (2012) evaluated the effects 

of gold nanorods (coated with CTAB; size=35 nm) to Vibrio fisheri (gram-negative bacteria) 

evaluated at different times during 30 minutes. For all EC20 measured in this work, the values 

were between 0.1 and 1 μg/mL, placing this Au-NP in the category “very toxic”. These results 

suggested that toxicity differ according to the organism. Comparatively to the previously 

mentioned studies and to the microalgae species tested in this work, daphnids were more 

sensitive to Au-NP.  

 

Conclusions 
 

 

The results obtained in this work suggest that gold nanorods capped with CTAB may pose 

severe risks to aquatic biota (mainly producers and primary consumers), since they cause adverse 

effects at low concentrations. Furthermore, the obtained results allow to hypothesized that this 

high toxicity was mainly caused by the capping agent. 
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Chapter 3 
Multigenerational effects of gold nanorods 

to freshwater microalgae
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Abstract 

 

The exponential increase in the use of nanoparticles over the past years, without an 

accurate understanding of their effects on the environment, has caused concern to the 

ecotoxicologists. The aim of this study was to evaluate the generational effect of sublethal levels 

of gold nanorods (Au-NP) in the growth rate of two microalgae. The green algae Chlorella vulgaris 

and Raphidocelis subcapitata was exposed to the corresponding EC10,72h for growth for four 

generations and they were exposed to serial dilutions of Au-NP to evaluate effects on growth. To 

assess generational effects, each algae was exposed to the corresponding EC10,72h for growth for 

four generations. The sublethal sensitivity of each generation to Au-NP was assessed. For C. 

vulgaris, an increase on its tolerance to Au-NP was observed at the third generation since no 

significant effects on growth were observed between control and Au-NP treatments from this 

generation onwards. As for R. subcapitata, overall, the generational exposure to Au-NP increased 

its sensitivity to this NP. These results suggested that long-term effects should be included in 

ecological risk assessments since standard toxicity may either over or underestimate the risk.  
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Introduction 
 

Nanomaterials (NMs) exist in the environment originated either from natural or artificial 

sources (Rosenkranz, 2010). However, in the last decades the unique characteristics of NMs 

started to be exploited by the industry and its production and applications experienced a boom. 

Although NMs bring many important benefits to the society, such as in areas of diagnosis of 

diseases, their unique characteristics have been associated with several adverse effects to biota 

(Farkas et al., 2010; Larguinho et al., 2014; Rosenkranz, 2010; Van Hoecke et al., 2008). Among 

the wide diversity of NM being produced, gold nanoparticles (Au-NP) have been increasingly used 

in the society due to the fact that their optical and electric properties may be easily tunable by 

changing their size, shape or surface chemistry (Barkalina et al., 2014). These characteristics make 

Au-NP attractive for different areas, namely for medicine that has mainly explored these NMs to 

be used in diagnostic procedures (e.g. markers for tumor cells). Though these beneficial 

applications of Au-NP to the society, some works have already identified several adverse effects 

that these NP may pose to biota, and that the severity of such observed toxic effects is not only 

influenced by the Au-NP concentration but also by other characteristics intrinsic to the NP (e.g. its 

geometric configuration, size, surface charge, chemical composition of the capping/stabilizing 

agents) (Nasser et al., 2016; Wan et al., 2015; Yah, 2013; Zhang et al., 2012). Bozich et al. (2014) 

studied the effects of Au-NP bearing different stabilizing agents (trisodium citrate-Cit, 

poly(allylamine) hydrochloride-PAH, mercaptopropionic acid and trimethylammonium bromide-

CTAB) in Daphnia magna. After exposure to lethal and sublethal concentrations (below 50 µg/mL) 

of the Au-NPs these authors reported that positively-charged particles (with PAH and CTAB) were 

more toxic and exhibited a lower aggregation rate than the negatively-charged ones. Bozich et al. 

(2014) suggested that these results were related with the fact that positively charged Au-NP had a 

higher affinity to the negatively charged cellular membranes. Browning et al., (2009, 2013) 

exposed zebrafish embryos to Au-NPs with different sizes (11.6±0.9 nm and 86.2±10.8 nm) and 

observed that the smaller caused higher mortality and deformities in the embryos.  

Though some works on the toxic effects of Au-NP already exist, most are focused on the 

effects in cell lines and small mammals in order to assess their biocompatibility (Conde et al., 

2012; Moretti et al., 2013; Rayavarapu et al., 2010). Studies on their effects in aquatic biota are 

scarce and most of them use standardized approaches that, though being important for first stage 

risk assessment, lack some ecological relevancy and neglect potential adverse effects that may 



78 
 

appear or disappear across generations. Recently, some works started to focus on the long-term 

effects of Au-NP in biota trying to increase the ecological relevancy of the generated ecotoxicity 

data, but they are focused only in one model organism, the nematode Caenorhabditis elegans. 

Kim et al., 2013exposed C. elegans to Au-NP by feeding them with contaminated food (with 

5x1010, 25x1010 and 50x1010 particles of Au-NP/mL) items through four generations. 

Independently of the Au-NP concentration, the authors observed no significant changes in lethal 

sensitivity to Au-NP across generations. However, for reproduction and abnormalities in the 

reproductive system, the authors observed that at F2 these parameters were more affected than 

in F0, but organisms were able to recover in F3 and F4. More recently, Moon et al. (2017) 

investigated the multigenerational effects of Au-NP (colloids; size between 8.5 and 12 nm) on C. 

elegans after continuous or intermittent supply with food items contaminated with Au-NP. 

Intermittent exposure to Au-NP caused a decrease in F3 reproduction, comparatively to control, 

of 63%, 53%, and 40%, at concentrations of 5×1010, 25×1010, and 50×1010 particles Au-NP/mL, 

respectively. In continuous exposure, an increase in the total abnormalities rate were observed 

for F1 (13.3%), F2 (15%), F3 (17.5%) and F4 (23.3%) generations of C. elegans exposed at 50×1010 

particles/mL. This study showed the effects of multigenerational assay may vary according to 

different exposure patterns, exposure levels, and recovery periods. 

 To the present, there is no information on the effects of multigenerational exposure to 

Au-NP on freshwater organisms. Therefore, the aim of this study was to evaluate the 

multigenerational effects of gold nanorods in two microalgae, Chlorella vulgaris and Raphidocelis 

subcapitata. 

 

 

 

Materials and methods  
 

Tested substance 

 Gold nanorods (Au-NP) capped with the surfactant cetyltrimethylammonium bromide 

(CTAB) (A12-10-780) were purchase to Nanopartz™ (Salt Lake City, UT, USA) as dispersion in 

deionized water with less than 10mM of CTAB. The concentration of the Au-NP in the dispersion 

was 35 μg/ml and their primary sizes were 10 nm for diameter and 38 nm for length (information 
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specified by NanopartzTM, 2006). The surfactant hexadecyltrimethylammonium bromide (CTAB) 

95% was supplied by Sigma-Aldrich® as a powder. 

 

Gold nanorods characterization 

The physical characterization of the stock Au-NP suspension, the highest tested 

concentration for each alga (90 μg/L for C. vulgaris and 53 μg/L for R. subcapitata), and the 

concentrations causing 10 % of growth inhibition in each algae (21 μg/L for C. vulgaris and 22 μg/L 

for R. subcapitata) was carried out. This characterization was performed at time 0h (just after the 

preparation of the suspension) and after 72h (corresponding to the duration of the toxicity 

assays). During this period of time the suspensions were maintained under the same exact 

conditions as those of the ecotoxicity assays that were carried out.  

Ultraviolet/visible/infrared (UV/Vis/IR) spectroscopy was used to determine the spectra 

of light that is absorbed and scattered by the Au-NP dispersions (NanoComposix, 2012). This 

allowed determining the absorbance peak of the stock dispersion (to compare with the value 

provided by NanopartzTM) and of the Au-NP concentrations in the assay medium. 

The surface charge and the zeta potential of the Au-NP in dispersions were determined 

through electrophoretic light scattering (ELS) in a Zetasizer Nano ZS with Zetasizer Software 

(Malvern ZetaSizer, 2013). This technique was performed in a disposable folded capillary cell 

(Figure 18). 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Disposable folded capillary cell for measurement of zeta potential (source: 

LabBulletin, 2009)
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 The hydrodynamic diameter was measured by dynamic light scattering (DLS), as well in a 

Zetasizer Nano ZS with Zetasizer Software, (Malvern ZetaSizer, 2013), to estimate size. Size was 

also characterized by using Transmission Electronic Microscopy (TEM) (Philips CM100). For this, 

2mL of stock solution were centrifuged at 10630 rpm during 30 minutes to separate CTAB from 

Au-NP. After this, the supernatant was discarded and 0.5mL of Milli-Q water were added and the 

solution was resuspended. One drop of centrifuged solution was placed on a carbon coated 

copper grid and left to dry for 24h. The values of EC10 for both microalgae were similar (EC10=21 

and 22 μg/L), so, the results of characterization of EC10 solution are the same for both microalgae 

(22 μg/L). 

 

Test species 

 The effects of multigenerational exposure to Au-NP on two species of microalgae: 

Raphidocelis subcapitata and Chlorella vulgaris, were studied. The cultures of R. subcapitata and 

C. vulgaris were maintained at the same conditions as those described in Chapter 2 in Woods Hole 

MLB culture medium (Stein, 1973; please see section Materials and Methods – Test species). The 

MBL medium, as all material used to prepare cultures and ecotoxicological assays, was previously 

sterilized in an autoclaved at 121°C at 1 Bar, for 30 minutes. 

Generational exposure of microalgae to gold nanorods 

The two species of microalgae were exposed to the respective Au-NP concentration 

causing 20% of reduction in growth rate after 72h of exposure (EC20,72h, computed in Chapter 2). 

The EC20,72h was selected because it is considered the threshold for effect. However, after several 

attempts, it was observed that after being exposed for one generation, to the respective EC20,72h, 

the two microalgae were not capable to attain the log growth phase, which impaired the 

continuity of the experiment. Therefore, generational exposure was afterwards performed at the 

concentration causing 10% of growth inhibition (EC10,72h) after 72h of exposure. Accordingly, both 

algae were exposed for four generations, from F1 to F4, to the respective EC10,72h of Au-NP. 

Inoculation from one generation to the other was made with inoculates at exponential growth 

phase (Figure 19). All generations of each alga were maintained under the same conditions, at 

20±1ºC with continuous cool-white fluorescent light (fluorescent light tubes: OsramL36W/10; 100 

µE/m2/s).  
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Figure 19: Scheme illustrating the sequential exposure of generations of Raphidocelis subcapitata and 

Chlorella vulgaris to the respective EC10,72h for growth rate. C=algae concentration. 

 

72h-growth inhibition assay 

The 72h-growth inhibition assays was performed with all the generations of each 

microalgae and followed the OECD Guideline 201 (OECD, 2004). All generations of Raphidocelis 

subcapitata and C. vulgaris were exposed to the same concentrations of Au-NP and of CTAB as F0 

generation in Chapter 2. All the assays were conducted in 24-wells microplates at 23±1°C under 

continuous light of 4000lx, using the same experimental design as that described in Chapter 2 

(please see section 72h-growth inhibition assays with microalgae - Chapter 2). 

 At the end of 72h, the absorbance (ABS) was measured at 440 nm in a 

spectrophotometer (Jenway, 6505 UV/Vis) and converted in cell density per volume according to 

the following equations: 

𝐶𝑒𝑙𝑙/𝑚𝐿 = −17107.5 + Abs440 ×  7925350 (R. subcapitata; r2=0.98; p≤0.05) 

 

𝐶𝑒𝑙𝑙/𝑚𝐿 = −155820 + Abs440 × 13144324 (C. vulgaris; r2=0.91; p≤0.05) 

 

The population growth rate (r) was also calculated, according to the following equation:  

r =
ln NF–  ln NI

t
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where NF is the mean number of algae in the end of test (cell/mL), NI is the mean number of algae 

in the start of the test (cell/mL) and t is the time of exposure (days) 

 

The percentage of population growth inhibition was also calculated, by using the 

equation: 

I(%)  =  ((NC –  Ncon)/NC) x 100 

 

where NC is the mean number of algae in control and Ncon is the mean number of algae in 

respective concentration. 

 

Data analysis  

The effective concentration causing 10% of growth inhibition was computed for each 

generation of each algae by fitting a logistic model with STATISTICA 8.0 software™ (Zar, 1999). 

After confirmed the ANOVA assumptions (Kolmogorov–Smirnov test for normality of data, and 

Bartlett’s test for homoscedasticity of variance), a two-way ANOVA analysis of variance was 

performed to determine if there were significant differences among treatments and interaction 

between factors. The two-way ANOVA was followed by the multicomparison Holm-Sidak test.  

 

 

 

Results 
 

Gold nanorods characterization 

The zeta potential of the stock solution, was 71.6 mV, the conductivity 0.176 mS/cm, the 

hydrodynamic diameter 30.81 nm and the polydispersity index was 1.0 (Table 1; Fig. 21). The 

value for absorbance of stock solution had a principal absorption peak at 780 nm confirming the 

value provided by the company (NanopartzTM, 2006) (Figure 20).  

For the others solutions (prepared with MBL medium) the values of conductivity did not 

change much, ranging from 0.461 to 0.501 mS/cm (Table 1). As for the zeta potential, the values 

at 0h and 72h, for the EC10 and the highest tested concentrations (53 and 90 μg/L) were similar 

being within the range of low stability. The surface charge of the Au-NPs was negative with the 
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exception of concentration 90 μg/L, at 0h, where they exhibited a positive surface charge (Table 

1). The hydrodynamic size of the EC10,72h and of the two highest concentrations of Au-NP was 

much higher than the primary size, always higher than 631.9 nm (Table1). Furthermore, the 

hydrodynamic diameter increased with concentrations, being higher at 90 μg/L. Differences in this 

parameter were also observed between dispersions with 0h and 72h, being at least 2-fold higher 

at 72h comparatively to 0h (Table 1). The polydispersity index (ranging from 0 to 1) was high for 

the three characterized Au-NP concentrations, being always higher than 0.573 (Table 1). 

 

 

Table 1: Physical characterization of Au-NP dispersions. 
 

 

 

 

 

 
Figure 20: Spectra of light absorbance of the stock solution of Au-NP. 

 EC10 (22 μg/L) 
(both 

microalgae) 

53 μg/L 
(Raphidocelis 
subcapitata) 

90 μg/L 
(Chlorella 
vulgaris) 

Stock solution 
(35 000 μg/L) 

0h 72h 0h 72h 0h 72h 
Supplier 

information 
Measured in 

this study 

Conductivity 
(mS/cm) 

 
0.462 0.492 0.501 0.461 0.480 0.471 - 0.176 

Zeta 
Potential 

(mV) 
 

-6.63 -14.1 -6.68 -12.4 6.45 -11.0 ≈0 71.6 

Diameter size 
(nm) 

 
631.9 1834 672.8 1121 714.2 2323 10 30.81 

Polydispersity 
index  

 
0.741 0.922 0.596 0.799 0.573 0.589 - 1.0 
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Figure 21: Transmission-electron microscope images of gold nanorods of the stock solution 

(20 000x). 

 

72h-growth inhibition assay 

 

 Concentrations of Au-NP above 24 μg/L induced a significant decrease in the growth rate 

of C. vulgaris in F0, comparatively to the control (Figure 22; Holm-Sidak: p=<0.001). The 

generational exposure of this algae to the EC10,72h, tended to decrease the effects caused by the 

Au-NP on its population growth rate relatively to the respective control. After exposure for just 

one generation to the EC10,72h (F1), a significant decrease in growth rate, comparatively to the 

respective control, was only observed for Au-NP concentrations of 40, 53 and 90 μg/L (Figure 23; 

Holm-Sidak: p=<0.001). And at F2, similar results to F1 were obtained (Figure 24; Holm-Sidak: 

p=<0.001). The concentrations of Au-NP causing 10% of effect in growth rate of C. vulgaris were:  

21 μg/L (95% CL: 10-31 μg/L) for F0, 46 μg/L (95% CL: 16-76 μg/L) for F1 and 86 μg/L (95% CL: 49-

123 μg/L) for F2. For generations F3 and F4, no significant differences were observed in growth 

rate of C. vulgaris exposed to the control and to all tested Au-NP concentrations (Figure 25). 

 and Figure 26; Holm-Sidak: p=0.135 to F3 and p=0.051 for F4). Furthermore, growth rate of C. 

vulgaris in the control was higher in F0 comparatively to F1, F2 and F4.  

Moreover, a significant decrease in growth rate, when exposed under controlled 

conditions, was observed between generations F1, F2 and F4 and generation F0 (Holm-Sidak: 

p=<0.001). 
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Exposure to 0.257 mM of CTAB, induced a decrease in growth rate of C. vulgaris 

comparatively to the control, for all tested generations (Table 2; Holm-Sidak test: p=<0.001).  

 

 

Figure 22: Average of daily growth rate for 

F0 of Chlorella vulgaris after being exposed, 

for 72h, to a range of concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the control 

(p=<0.001). 

Figure 23: Average of daily growth rate for 

F1 of Chlorella vulgaris after being exposed, 

for 72h, to a range of concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the control 

(p=<0.001) 
 

 

 

  
 

Figure 24: Average of daily growth rate for 

F2 of Chlorella vulgaris after being exposed, 

for 72h, to a range of concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the control 

(p=<0.001). 

Figure 25: Average of daily growth rate for 

F3 of Chlorella vulgaris after being exposed, 

for 72h, to a range of concentrations of gold 

nanoparticles. Error bars - standard 

deviation. * represents significant 

differences relatively to the control 

(p=0.264). 
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Figure 26: Average of daily growth rate for 

F4 of Chlorella vulgaris after being exposed, 

for 72h, to a range of concentrations of gold 

nanoparticles. Error bars - with respective 

standard deviation. * represents significant 

differences relatively to the control 

(p=0.070). 

 

 
 

 

 

 

Table 2: Average of the percentage of growth inhibition relatively to the control (and standard 

deviation within parenthesis) of Chlorella vulgaris exposed, for 72h, to CTAB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concentrations of Au-NP above 40 μg/L induced a significant decrease in the growth rate of R. 

subcapitata in F0, comparatively to the control (Figure 27; Holm-Sidak: p=<0.001). After one 

generation (F1) of exposure to the EC10,72h the sensitivity of R. subcapitata to Au-NP increased, 

since significant effects in growth rate, comparatively to the control, were observed at 

concentrations equal or higher than 14 μg/L (Figure 28; Holm-Sidak: p=<0.001). At F2, a significant 

decrease, comparatively to control, in the growth rate was observed at concentrations of Au-NP 

above 24 μg/L concentration (Figure 29; Holm-Sidak, p=<0.001). In this generation, it was visible a 

much larger decrease in the growth rate for higher concentrations, comparatively to the F0 and 

F1 generations (at 53 μg/L: F0=29.5%, F1=24.6% and F2=75.8%). Significant differences were 

observed in growth rate between F3 and the other generations for concentrations of 11, 14, 40 

and 53 μg/L (Figure 30; Holm-Sidak: p=0.048). However, in F4, significant reduction in growth 

rate, relatively to the control, occur again at Au-NP concentrations above 14 μg/L (Figure 31; 

 % of growth inhibition P value 

F0 15.5 (±6.9)% <0.001 

F1 9.6 (±9.6)% 0.024 

F2 16.7 (±5.1)% <0.001 

F3 36.3 (±19)% <0.001 

F4 19.0 (±4.8)% <0.001 
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Holm-Sidak: p=<0,001). The concentrations of Au-NP causing 10% of effect in growth rate of R. 

subcapitata were:  22 μg/L (95% CL: 13-33 μg/L) for F0, 8 μg/L (95% CL: 2-13 μg/L) for F1, 9 μg/L 

(95% CL: 3-15 μg/L) for F2, 14 μg/L (95% CL: -46-67 μg/L) for F3, 9 μg/L (95% CL: 4-13 μg/L) for F4 

(EC20 were also computed and are shown in Table 4 – Annex 1).  Moreover, significant decrease 

in growth rate, when exposed under control conditions, was observed between generations F2 

and F4 and generation F0 (Holm-Sidak: p<0.001).). 

Exposure to 0.152 mM of CTAB, caused a significant decrease in growth rate in all 

generations except for F3 (Table 3 Holm-Sidak test: p<0.001).  

 

 

 

 

Figure 27: Average of daily growth rate for 

F0 of Raphidocelis subcapitata after being 

exposed, for 72h, to a range of 

concentrations of gold nanoparticles. Error 

bars - standard deviation. * represents 

significant differences relatively to the 

control (p=<0.001).  

Figure 28: Average of daily growth rate for 

F1 of Raphidocelis subcapitata after being 

exposed, for 72h, to a range of 

concentrations of gold nanoparticles. Error 

bars - standard deviation. * represents 

significant differences relatively to the 

control (p=<0.001). 
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Figure 29: Average of daily growth rate for 

F2 of Raphidocelis subcapitata after being 

exposed, for 72h, to a range of 

concentrations of gold nanoparticles. Error 

bars - standard deviation. * represents 

significant differences relatively to the 

control (p=<0.001)). 

Figure 30: Average of daily growth rate for 

F3 of Raphidocelis subcapitata after being 

exposed, for 72h, to a range of 

concentrations of gold nanoparticles. Error 

bars - standard deviation. * represents 

significant differences relatively to the 

control (p=0.0048). 

 

 

 

 

 

 

 

 

 

Figure 31: Average of daily growth rate for F4 of 

Raphidocelis subcapitata after being exposed, 

for 72h, to a range of concentrations of gold 

nanoparticles. Error bars - standard deviation. * 

represents significant differences relatively to 

the control (p=<0.001). 
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Table 3: Average of the percentage of growth inhibition relatively to the control (and standard 

deviation within parenthesis) of Raphidocelis subcapitata exposed for 72h to CTAB. 

 

 

 

 

 

 

 

 % of growth inhibition P value 

F0 15.5 (±10.4)% 0.012 

F1 33.3 (±6.50)% <0.001 

F2 41.9 (±25.0)% =0.001 

F3 6.9 (±6.90)% =0.076 

F4 31.2 (±16.1)% =<0.001 
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Discussion 
 

 All the concentrations of Au-NPs tested in MBL medium showed a high level of 

aggregation at time 0h and this aggregation increased with time, being higher at 72h of exposure. 

This is corroborated by the increase in size that was observed in the tested Au-NP concentrations 

comparatively to the stock solution. One more indication that aggregation occurred was the 

values of zeta potential remained in a range considered typically unstable (-30 mV to +30 mV) 

(Rogers et al., 2010). These results were expected, because MBL medium has a high ionic 

strength. In these conditions the electrical double layer at the NPs surface may become thinner, 

with a decrease in the zeta potential, thus, lowering the repulsion between the NPs in suspension 

and increasing the probability of aggregation.  Lopes et al., 2012 tested the diameter values by 

DLS of gold nanorods in two different mediums: Milli-Q water (low ionic strength) and ASTM (high 

ionic strength) and they observed an increase in size from 52 to 308 nm, respectively. 

Furthermore, the results here obtained shown that time influenced the aggregation of the NPs. 

The size of Au-NPs almost doubled from time 0h to 72h. Other authors have already observed this 

time-dependency in size of Au-NP aggregates. Afrooz et al. (2014) reported a gradual increase in 

the size of gold nanopsheres over time. These authors also observed that within a 6h period 

aggregates attained a critical size that acted as a critical nucleating size for fast growing 

aggregates. Afrooz et al. (2014) suggested that the low electrokinetic energy barrier of Au-NP 

promoted a short-range interaction between the NP, promoting the occurrence of a process 

similar to the aggregative nucleation, where particles or aggregates are forced to join already 

existing aggregates. Since, the zeta potential of the here tested Au-NP was low it is hypothesised 

that a similar processes could have occurred over time, increasing the size of the aggregates from 

time 0h to 72h. 

 Raphidocelis subcapitata showed higher sensitivity to the Au-NP coated with CTAB than C. 

vulgaris. In addition to this higher sensitivity to Au-NP, overall R. subcapitata became more 

sensitive to the Au-NPs after generational exposure, while C. vulgaris was able to acquire an 

increased tolerance to this NP. The different responses of the two algae may be related to the 

different surface area:volume ratios. Based on the size of the two microalgae (given by Nygaard et 

al. (1986); Geiger, 2014) and in the formulas to compute biovolumes and surface areas (Sun & Liu, 

2003) the ratio surface area:volume computed for R. subcapitata ranges approximately from 5.83 

to 199, being higher than those computed for C. vulgaris (between 1.5 and 6). This is inline with 

data reported in scientific literature that states that cells with large surface area to volume ratios 



91 
 

tend to be more sensitive than those with smaller ratios (Levy et al., 2007). Furthermore, R. 

subcapitata by exhibiting a higher surface area relatively to C. vulgaris could exhibit more binding 

sites and receptor–ligand interactions at the cell membrane level promoting a higher biding of Au-

NP to the cell membrane and a higher internalization of Au-NP (Schwab et al., 2011; Ma and Li, 

2013). 

Regarding the effects of the Au-NP after generational exposure, as mentioned above, 

different outputs were observed for the two algae. While C. vulgaris was capable of acquiring an 

increased tolerance to this chemical, R. subcapitata, exhibit some variability throughout the 

generations, but mainly its sensitivity increased. This consistent higher sensitivity of R. 

subcapitata relatively to C. vulgaris to Au-NP could be associated with the fact that C. vulgaris 

tend to form aggregates more easily than R. subcapitata (Environmental Protection Series, 2007; 

Fisher et al. 2016). These aggregates may reduce the exposure of inner cells of the algae-

aggregate to the Au-NP, thus, reducing toxicity. Furthermore, the fact that R. subcapitata exhibits 

a higher surface area:volume ratio comparatively to that of C. vulgaris could also explain the 

higher sensitivity of the former species, since in the literature has been reported that cells with 

large surface area to volume ratios tend to be more sensitive than those with smaller ratios (Levy 

et al., 2007). Furthermore, R. subcapitata by exhibiting a higher surface area relatively to C. 

vulgaris could exhibit more binding sites and receptor–ligand interactions at the cell membrane 

level promoting a higher biding of Au-NP to the cell membrane and a higher internalization of Au-

NP (Schwab et al., 2011; Ma and Li, 2013). None of the algae acquired an increased tolerance to 

the capping agent CTAB, though generational exposure to Au-NP involved the presence of Au and 

of CTAB. It is suggested that CTAB is mostly bond to Au-NP and probably the increased tolerance 

to the Au-NP is related with tolerance to the ions dissociating from the NP.. The generational 

effects of nanoparticles, namely Au-NP, has not been much studied, and no studies have been 

published with microalgae. However, some studies published with other species report both the 

maintenance and the increase of sensitivity to NPs. Moon et al. (2017) evaluated the 

multigenerational effects of Au-NP (colloids; size between 8.5 and 12 nm) on Caenorhabditis 

elegans after continuous or intermittent exposure through Au-NP contaminated food items. Both 

continuous and intermittent generational exposure to Au-NP caused adverse effects in 

reproduction. However, continuous exposure affected reproduction from F2 to F4 while 

intermittent exposure caused more pronounced effects on F3. But, in both types of exposure 

after four generations, C. elegans did not acquired and increased tolerance to Au-NP exposure. 

Ma et al. (2016) studied the effects on plant growth and the oxidative stress after multi-
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generational cerium oxide nanoparticles (spherical CeO2-NP; size=20 nm) exposure over a range 

of concentrations (0–1000 mg/L) on the terrestrial plant Brassica rapa, during 3 generations (F0, 

F1 and F2). Multigenerational exposure to CeO2-NP caused a significant reduction of seed yield 

and seed quality, which is critical for continued food security. Multigenerational exposure to 

CeO2-NPs altered the plant physiological and biochemical responses in subsequent generations of 

plants, and caused greater reductions in plant growth and development and an increased on the 

ROS production, i.e. increased the sensitivity of the plants to the NP. 

Though no studies on the multigenerational effects of Au-NP exist for microalgae, the effects that 

generational exposure of this group of organisms to some chemicals (including metals) has 

already been reported, and no clear pattern of increasing sensitivity or tolerance to the chemical 

can be identified. For example, Muyssen and Janssen (2001) exposed R. subcapitata and in C. 

vulgaris, to a concentration of 65µg/L of zinc and observed if these algae were capable to acquire 

an increased tolerance to this metal comparatively to a F0 (not exposed to increased zinc 

concentrations). They observed that both algae species acquired and increased tolerance to zinc 

through physiological acclimation. However, Stachowski-Haberkorn et al. (2013) evaluate the 

capacity of microalgae Tetraselmis suecica to develop long-term tolerance to the herbicide 

diuron. During the first 25 generations this alga exhibited a high sensitivity to this pesticide, by 

exhibiting a 2 to 2.5-fold increase in the doubling-time of growth when exposed to the pesticide. 

But, after being exposed 25 to 32 generations of exposure to of 5 μg/L to diuron, T. suecica was 

able to tolerate the pesticide, showing doubling-time of growth similar to that in the control.  

 

 

Conclusions 
 

 The results obtained in the present work reveal that long-term effects of Au-NP are 

species dependent. The standard 72h growth inhibition assay revealed to over- (for C. vulgaris) or 

underestimate (for R. subcapitata) the long-term effects that Au-NP may pose to microalgae, 

highlighting the need to study the long-term effects of NPs to different taxonomic groups in order 

to increase the accuracy of ecological risk assessment. 
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Conclusions and major findings 

 

The results obtained in Chapter 2 revealed that the gold nanorods capped with CTAB are 

extremely toxic to aquatic biota, accordingly with the classification of the European Commission 

(1996). The assays carried out with the three model species (C. vulgaris, R. subcapitata and D. 

magna) demonstrated the occurrence of significant effects at micrograms per liter of Au-NP. For 

D. magna, significant effects in somatic growth were observed at concentrations as low as 1 µg/L. 

At present, there are any works, published in the scientific literature, describing measured 

environmental concentrations of Au-NP, but, probabilistic models estimate that these 

concentrations will be very low (Mahapatra et al., 2015). Mahapatra et al. (2015) modeled the Au-

NP and predicted their environmental concentrations, by using information on the maximal 

consumption of Au-NP from medical applications in the United Kingdom and United States. These 

authors estimated concentrations of Au-NP (originated only from medical use) in surface waters 

of 468 and 4.7 pg L−1, respectively for the UK and US. Therefore, the toxicity results obtained in 

the present work for the microalgae and cladocera suggest that Au-NP will not constitute a risk 

for freshwater biota. Of course, it must be considered that this model lacks the input of other 

sources of Au-NP and it does not take into consideration the increasing use of Au-NP in the future, 

which, may in the future change the evaluation of the risk of these NP.  

The cladoceran D. magna revealed to be the most sensitive species to the gold nanorods, 

comparatively to the two tested species of microalgae and to other species studied in other works 

where gold nanorods, similar to the ones used here, were tested (Lopes et. al., 2013; Galindo, 

2014). This highlights the need to assess the toxicity of Au-NP to several taxonomic groups and as 

well assess different sublethal endpoints in each group. In this particular case of the gold 

nanorods, the inclusion of the results obtained for somatic growth with D. magna, to the dataset 

obtained with the microalgae and from other published works, led to the classification of the Au-

NP to the category of “extremely toxic” (EC, 1996). Furthermore, the obtained results suggested 

that the high observed toxicity was associated not only to the Au-NP but as well to its capping 

agent CTAB. Though significant differences in the toxicity of CTAB and the corresponding tested 

Au-NP concentrations (having the same CTAB concentration) were only observed for the algae R. 

subcapitata, the percentage of growth inhibition of the two algae was slightly higher when 

exposed to the Au-NP (C. vulgaris: 15.5% vs 20% and R. subcapitata: 15.5% vs 29%, for CTAB vs 

Au-NP, respectively), suggesting the effect induced by the Au-NP in addition to that induced by 
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CTAB. These results highlight the care to be taken when selecting the capping agent to stabilize 

this type of Au-NP. The surfactant CTAB is indeed widely used to produce Au nanorods because it 

presents several advantages that makes it more efficient, namely CTAB forms a lipid bilayer with a 

positive surface charge that strongly adsorbs to the gold nanorod surface (Rayavarapu et al., 

2010). This bilayer is very important in the formation of rod-shaped morphology, since it restricts 

the normal growth of the NP in on direction. However, its use should be thought due to its high 

toxicity to biota and other surrogates should be explored. 

In chapter 3, the highest sensitivity of R. subcapitata to the Au-NP, relatively to C. vulgaris, 

was corroborated even after the generational exposure to the NP. While C. vulgaris was able to 

acquire an increased tolerance to the Au-NP (significant reduction of population growth between 

control and Au-NP disappeared after exposure to the Au-NP for three generations), R. 

subcapitata, in general, showed an equal or increased sensitivity to this NP, after both algae being 

exposed for four generations to the corresponding EC10,72h. Interestingly, none of the algae 

acquired an increased tolerance or sensitivity to the capping agent CTAB. Probably this occurred 

because, during generational exposure to Au-NP, most of the CTAB was bound to the NP and, 

therefore, the algae were not exposed to the CTAB isolated. For the Au-NP, most probably the 

highest tolerance shown by C. vulgaris was related with and increased tolerance to Au dissociated 

from the NP. These results, obtained after generational exposure to Au-NP, emphasize the need 

to include the assessment of long-term effects of Au-NP in ecological risk assessment studies, 

since the use of standard protocols may lead to both over or underestimation of risk. 

 

 

 

Prospective work 
 

 

 

 Currently, only few studies have investigated the long-term effects of Au-NPs to 

freshwater biota (Baun et al., 2008). Accordingly, one of the major goals of the present work was 

to contribute to decrease this knowledge gaps by generating information on the long-term effects 

that gold nanorods may cause in microalgae (that as producers are at the base of the trophic 

chain). However, further knowledge is still needed in order to allow a more accurate extrapolation 

of the effects that Au-NP may pose to freshwater ecosystems and, consequently, improve 

conservation actions. Following the study developed within this thesis and the identified 

knowledge gaps, it would be interesting to:  
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(i) further assess the long-term effects of Au-NP for longer periods of time, involving the 

testing of more generations. This topic follows the results obtained with generational 

exposure of R. subcapitata Au-NP. This alga exhibited some variability in the 

generational sensitivity to Au-NP, exhibiting higher or lower sensitivity to Au-NP 

comparatively to F0. It is important to understand if this pattern will prevail over 

generations or if after several generations the sensitivity of the algae to the NP 

stabilizes (either as becoming more or less sensitive) 

(ii) determine long-term effects of Au-NP to other freshwater biota, namely 

invertebrates representative of different trophic levels (primary, secondary 

consumers). Namely, the results obtained in the present work indicate Daphnia 

magna as an interesting model species. It exhibited a higher sensitivity to the tested 

Au-NP comparatively to the algae, therefore is important to assess if this higher 

sensitivity persists or increases (worst case-scenario) after generational exposure to 

the Au-NP or if it becomes more tolerant (as observed for the alga C. vulgaris). To 

follow up the assays run in chapter 2 with this species, it will be needed to find a 

concentration that would cause effect on reproduction after a generational exposure 

to Au-NP, in order to allow proceeding with the generational assays. We found effects 

on growth at the concentrations tested, but it would be important at the population 

level to try to understand if there may be a decrease in the number of the species at 

long-term.  

(iii) Within the framework of a changing world (e.g. involving climate changes, pop-up of 

new industries/activities that release new chemicals into de environment), long-term 

studies should also involve exposure to the Au-NP in mixture with other 

environmental perturbations (e.g. other chemicals) in order to simulate more real and 

ecologically relevant scenarios of exposure. Galindo (2013) already studied the 

influence of temperature, hardness and humic substances in the toxicity of gold 

nanorods to cladocerans. However, his studies did not involve long-term exposures. 

(iv) Inorganic elements may accumulate in the biota, and, for in the case of some 

elements, biomagnification may occur. These processes are especially relevant and 

may be potentiated if exposure occurs for a long-term, even if it occurs at very low 

levels (as expected for NPs). Simple food web may be simulated in laboratory 

experiments to understand these processes. For example, a simple lab-food web 

could be constituted by the species studied in this study and by hydra (predatory 
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Daphnia magna): micoalgae (producer) – cladocera (primary consumer) – cnidaria 

(secondary consumer). (Figure 32). 
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Annex 1 
 

 
Table 4: Results of EC20,72h calculation for Raphidocelis subcapitata and Chlorella vulgaris with respective 95% 

confidence limits (CL). 

 

 

 Raphidocelis subcapitata Chlorella vulgaris 

F0 39 μg/L (95% CL: 30-48 μg/L) 79 μg/L (95% CL: 52-90 μg/L) 

F1 25 μg/L (95% CL: 16-34 μg/L) >90 μg/L 

F2 14 μg/L (95% CL: 7-20 μg/L)* >90 μg/L 

F3 >53 μg/L >90 μg/L 

F4 17 μg/L (95% CL:11-22 μg/L)** >90 μg/L 

 
For F2 and F4 of Raphidocelis subcapitata, an EC50,72h was also calculated: 
*F2: EC50,72h = 27 μg/L (95% CL: 21-34 μg/L) 
**F4:  EC50,72h = 50 μg/L (95% CL: 42-59 μg/L) 
 


