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 Chronic kidney disease (CKD) is a serious and increas-
ingly common condition ( 1 ). Patients with CKD have a 
greatly increased risk of CVD, which represents the most 
common cause of mortality and morbidity in these pa-
tients, to the extent that CKD is considered an indepen-
dent risk factor for CVD ( 2, 3 ). In CKD, many conventional 
risk factors for CVD are prevalent, including hypertension, 
dyslipidemia, and insulin resistance. Underlying condi-
tions that are typical of CVD also occur, such as heightened 
infl ammatory status, oxidative stress, endothelial dysfunc-
tion, and arterial stiffness ( 3, 4 ). Consequently, under-
standing the factors in CKD that could contribute to 
increased CVD risk is very important. 

 In CVD there is a clearly established link between dys-
lipidemia (specifi cally hypercholesterolemia and hyper-
triglyceridemia) and atherosclerosis, an underlying 
pathology of most CVD ( 5, 6 ). In view of the clear cardio-
renal relationship, there has been considerable interest in 
the possible contribution of hyperlipidemia to CKD-associ-
ated CVD ( 7, 8 ). The nature of this lipid imbalance is sig-
nifi cantly different to nonrenal-related CVD; in particular, 
the relationship with cholesterol level is less clear than in 
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 MATERIALS AND METHODS 

 Materials 
 All chemicals used were of analytical quality and purchased 

from Sigma-Aldrich (UK) or ThermoFisher (UK) unless stated 
otherwise. Organic solvents were HPLC-grade and purchased 
from Fisher Scientifi c (Loughborough, UK). 

 Subjects and blood collection 
 Male CKD patients (stage 4/5) were recruited from the renal 

outpatient clinic at the Royal Infi rmary of Edinburgh following 
ethical approval by NHS   Lothian Research Ethics Committee 
and gave informed consent as described previously ( 25 ). Renal 
patients were excluded on the basis of renal transplant, dialysis, 
systemic vasculitis or connective tissue disease, a history of estab-
lished CVD, peripheral vascular disease, diabetes mellitus, respi-
ratory disease, neurological disease, alcohol abuse, or treatment 
with an organic nitrate or  � -agonist. The causes of kidney disease 
in patients were autosomal dominant polycystic kidney disease (n 
= 4), IgA nephropathy (n = 2), refl ux nephropathy (n = 3), and 
neurogenic bladder (n = 1). Smokers and hypercholesterolemic 
patients were not excluded, but the latter were controlled by 
statin medication (two individuals in the disease group) and sta-
ble on treatment for 3 months prior to inclusion in the study. 
Subjects refrained from alcohol for at least 24 h, and caffeinated 
drinks and smoking for at least 12 h before the study. 

 Blood samples were collected in polypropylene tubes contain-
ing EDTA (fi nal concentration, 1 mg/ml of blood); plasma was 
promptly separated by centrifugation (2,500  g , 20 min, 4°C) and 
stored in 2 ml aliquots at  � 80°C in the dark. 

 Clinical and biochemical measurements 
 Blood pressure, high sensitivity C-reactive protein, oxidized LDL 

(OxLDL), and interleukin (IL)-6 were determined as described pre-
viously ( 25 ). Other parameters [plasma glucose, total choles-
terol, triglyceride, lipoproteins, creatinine, and glycated hemoglobin 
(HbA 1c )] were determined in the hospital biochemistry laboratory 
by assays validated to Good Laboratory Practice standard. 

 Plasma samples and LDL separation 
 LDL was isolated from plasma aliquots essentially as described 

previously ( 26 ). KBr (0.3816 mg) was dissolved in 1 ml of plasma 
at 4°C and underlaid below 4.1 ml of a deoxygenated EDTA solu-
tion, before centrifuging in a Beckman VTi 90 rotor for 2 h at 
60,000 rpm to generate a density gradient. LDL formed bands in 
the density range 1.019–1.060 g/ml. The LDL collected was 
stored in sterile vials under nitrogen and desalted before deter-
mining the cholesterol content using CHOL PAD reagent 
(Roche Diagnostics), and protein concentration of isolated LDL 
was determined by the Bradford assay as reported by Yue et al. 
( 27 ). Purity of isolated LDL was confi rmed by polyacrylamide gel 
electrophoresis ( 24, 28 ). 

 Vitamin E content 
 Vitamin E content ( � -tocopherol) in LDL was determined by re-

verse-phase chromatography using spectrophotometric detection as 
described previously ( 29 ). The samples and standards were injected 
randomly in triplicate and area under the curve was plotted against 
the calibration curves and used to calculate the concentration of 
vitamin E in the samples ( � g/mg protein). Standards (0.1–10 
 � g/ml), made up in methanol and extracts redissolved in 100  � l 
methanol, were analyzed in triplicate by injection of 20  � l. The intra-
day cross-validation (CV; n = 3) at a concentration of 2.5  � g/ml was 

the general population and is dependent on the stage of 
disease ( 9, 10 ). In some patients, total cholesterol and 
LDL-cholesterol are not elevated, while patients on hemo-
dialysis may even have reduced cholesterol compared with 
control subjects ( 11 ). It is apparent that CKD involves mul-
tiple lipid abnormalities, some of which may contribute to 
increased CVD risk. However, most studies in lipid abnor-
malities in CKD have focused on lipoprotein profi le or on 
overall lipid classes such as triglycerides. While in many 
infl ammatory diseases, including preeclampsia ( 12 ), dia-
betes ( 13 ), rheumatoid arthritis ( 14 ), and Crohn’s disease 
( 15 ), lipidomic studies have identifi ed characteristic lipid 
signatures that have potential as diagnostic tools, there 
have as yet been few attempts at profi ling individual lipids 
in CKD. Evidence for an altered phospholipid profi le in 
CKD ( 16 ) and a decrease of serum sulfatide (ST) levels in 
patients with end-stage renal failure (ESRF) ( 17 ) have 
been reported, but otherwise little is known about molecu-
lar changes. 

 Modern lipidomics depends almost entirely on analy-
sis by electrospray MS, as this is able to identify a very 
wide variety of individual lipid species in several classes. 
Both shotgun lipidomics, involving direct infusion of the 
sample into the instrument, and LC/MS are widely used 
for this purpose ( 18 ). Chromatographic separation pro-
vides additional information to facilitate lipid identifi ca-
tion, and separation of the lipids reduces interference 
( 19 ). Although with lower-resolution instruments MS/
MS is necessary to distinguish lipids of similar mass but 
different formula, modern high-resolution instruments 
such as orbitraps offer suffi cient mass accuracy that iso-
baric species can be distinguished, thus allowing classifi -
cation of lipid analytes and identifi cation of the total 
number of carbons and double bonds in the acyl chains 
by a top-down approach ( 20 ). It has been demonstrated 
that this untargeted approach, coupled with principle 
component analysis, can be used without internal stan-
dards for comparative analysis of lipidomes, owing to the 
high dynamic range of the orbitrap ( 21 ). Similar “semi-
quantitative” approaches on a triple quadrupole instru-
ment have also been used for comparative lipidomics in 
CVD ( 22, 23 ). However, MS/MS or MS n  is still required 
for confi rmation of individual acyl chain length and 
double bonds. 

 We recently demonstrated that a top-down lipidomics 
approach using LC/MS on a high resolution instrument 
(Orbitrap Exactive) was able to identify more than 350 in-
dividual lipid species or isomeric lipid clusters in normo-
lipidemic LDL ( 24 ). The lipids were identifi ed by matching 
the experimental  m/z  for the molecular ions to calculated 
mono-isotopic masses available in lipidomic and meta-
bolic databases. LDL is an important carrier of a wide vari-
ety of lipid species within the plasma and refl ects systemic 
changes in lipid metabolism. We hypothesized that the ap-
plication of this methodology to CKD would identify novel 
differences in lipid profi le at a molecular level between 
disease and control samples that would enhance under-
standing of the disease mechanisms and offer potential as 
diagnostic markers. 
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to the monoisotopic mass calculated from the theoretical for-
mula. A total of 352 lipids were identifi ed by this approach. 

 Subsequently, LC/MS data were analyzed by fi ltering with MZ-
Match ( 32 ) followed by using the XCMS pipeline [XCMS Online 
version 0.0.83, Scripps Center for Metabolomics, https://xc-
msonline.scripps.edu/ ( 33 )] for peak detection, alignment, and 
isotope annotation as described previously ( 24 ). Ions with inten-
sity <5,000 cps were excluded. Integration of features extracted 
in different samples corresponds to the reported extracted ion 
chromatogram areas. Peak intensities for the ions identifi ed 
from individual lipid classes in the data sets were summed and 
used to evaluate overall differences in disease versus age-matched 
control groups. Extracted features were included if they were 
present in >50% of the samples in each group, within 2.5 ppm 
from the exact monoisotopic mass, and with <5 s retention time 
deviation. In order to prevent overestimation of the number of 
lipid species identifi ed, all lipid species detected in positive and 
negative ion modes were manually cross-referenced. Overall, 
142 and 158 individual lipids were identifi ed in positive and 
negative ion modes, respectively. Isomeric species are reported 
as one single ion, for instance PC(16:0/18:1), PC(18:1/16:0), 
PC(16:1/18:0), PC(18:0/16:1), PC(14:0/20:1), and others are 
expressed as PC(34:1). The data processing steps and number 
of features or lipids identifi ed at each stage are summarized in 
supplementary Fig. 1. 

 Statistical analysis 
 The merged data set comprising 300 lipids species (supple-

mentary Fig. 1) was further analyzed using partial least squares 
discriminant analysis (PLSDA) ( 34, 35 ). PLSDA calibration mod-
els were validated using segmented CV, and optimization of 
PLSDA models was achieved using the variable importance in 
projection (VIP) score ( 36 ). A VIP cut-off value of 0.8 was repeat-
edly applied to eliminate less discriminating variables, with a cut-
off of 0.85 for the merged set. The fi nal classifi cation model 
included 48 species detected in the positive mode and 55 in the 
negative mode. The statistical signifi cance of the classifi cation 
PLSDA models was assessed using permutation testing with 1,000 
permutations ( 37 ).  Q  2  was used as quality-of-fi t criterion for the 
permutation test ( 38 ). Further details are given in supplemen-
tary Methods. 

 Statistical analysis of clinical and biochemical parameters was 
conducted using nonparametric  t -tests (Mann-Whitney) using 
two-tailed  P  value calculation, and values with  P  < 0.05 were con-
sidered statistically signifi cant. 

 RESULTS 

 Evaluation of clinical and biochemical parameters in 
kidney disease 

 Baseline measurements of clinical and biochemical pa-
rameters for age- and body mass-matched subjects in-
cluded in this study are summarized in   Table 1  .  Glomerular 
fi ltration rate (GFR) was estimated using the Modifi cation 
of Diet in Renal Disease study equation and confi rmed all 
patients as stage 4 or 5 CKD; they also had signifi cantly 
increased systolic blood pressure. There were no signifi -
cant differences in levels of glycated hemoglobin and 
plasma glucose. The infl ammatory marker C-reactive pro-
tein was signifi cantly elevated, although IL-6 was not. The 
levels of total plasma cholesterol and LDL were not altered 
with CKD, and there was no change in OxLDL. In contrast, 

3.1%. Statistical analysis was carried out using an unpaired  t -test, 
with Welch's correction to estimate the  P  values. 

 Electrophoretic mobility of LDL 
 The particle size of LDL was assessed by 1% agarose gel elec-

trophoresis in barbital buffer as described previously ( 30 ). Retar-
dation factors were defi ned as the distance (cm) traveled by 
sample/distance (cm) traveled by dye front. 

 Lipid extraction 
 LDL lipids were extracted from LDL containing 25  � g pro-

tein by the Folch method as described recently ( 24 ). The lipid 
extracts were combined into an amber vial (Supelco), dried under 
a stream of nitrogen fi ltered with a 0.22 µm mesh (Millipore), 
and stored at  � 70°C until further analysis. Mean recovery (%) 
of phosphatidylcholine (PC; 13:0/13:0) lipid standard in spiked 
LDL samples by the Folch method was 103.9 ± 8.6. Similar recover-
ies were achieved with dehydroepiandrosterone sulfate as a 
representative of more polar lipid classes, and d5-myristic acid 
(Sigma Aldrich Chemical Co., UK) as a representative of less 
polar lipids. 

 Top-down LC/MS analysis of lipidomic profi le 
 Lipid extracts were solubilized in 100 µL CHCl 3 -methanol (1:1, 

v/v), further diluted in methanol and analyzed by LC/MS essen-
tially as described previously ( 24 ). Separation of LDL lipid classes 
was performed using a Dionex Ultimate 3000 HPLC system 
(Thermo Scientifi c, Hemel Hempstead, UK) by injection of 10  � l 
sample onto a silica gel column (150 mm × 3 mm × 3 µm; 
HiChrom, Reading, UK) used in hydrophilic interaction chroma-
tography mode ( 24 ). Two solvents were used: (A) 20% isopropyl 
alcohol (IPA) in acetonitrile and (B) 20% IPA in ammonium for-
mate (20 mM). Elution was achieved using the following gradient 
at 0.3 ml/min: elution at 5% B for 1 min, followed by a rise to 9% 
B at 5 min, to 15% B at 10 min, to 25% B at 16 min, to 35% B at 
23 min, and from 28 to 40 min a decrease to 5% B. Detection of 
lipids was performed in a Orbitrap Exactive Mass Spectrometer 
(ThermoFisher Scientifi c Inc., Bremen, Germany) equipped with 
polarity switching. The instrument was calibrated according to the 
manufacturer specifi cations to give an rms mass error <2 ppm. The 
following electrospray ionization settings were used: source volt-
age, ±4.50 kV; capillary voltage, 25 V; capillary temperature, 320°C; 
sheath gas fl ow, 50 AU; aux gas fl ow, 17 AU; sweep gas fl ow, 0 AU. 
All LC/MS spectra were recorded in the  m/z  range 100–1200 at 
50,000 resolution (Full Width at Half Maximum at  m/z  =500). 
Three microscans were collected per data point with the injection 
time limited by either an automatic gain control target ion inten-
sity of 10 6  or a maximum inject time of 250 ms. 

 For certain lipids of interest, MS/MS was carried out on an LTQ 
Orbitrap instrument (ThermoElectron, Hemel Hempstead, UK) 
controlled by Xcalibur (version 2.0, Thermo Fisher Corporation) 
in either positive or negative ion modes as appropriate for the best 
detection of the parent ion. The capillary voltage was set at 4.5 kV, 
capillary temperature at 275°C, with sheath gas and sweep gas fl ow 
rates set at 30 and 10 AU, respectively. Collision energy was set ac-
cording to the ion of interest, typically between 25 and 35 (arbi-
trary units). 

 LC/MS data processing 
 In the fi rst stage, LC/MS data were analyzed and lipid species 

identifi ed by manual matching of retention times and accurate 
mass data to a home-built database and the Human Metabolome 
project database (HMDB) ( 31 ), with identifi cations based on 
ions showing a mass error of <5 ppm (and in most cases <2 ppm) 
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 Analysis of LDL from control and CKD samples by 
manual matching to databases identifi ed more than 
300 different lipid species 

 In order to investigate the lipidome of LDL from control 
and CKD patients, LDL extracts were analyzed by normal-
phase LC/MS in both positive and negative ion modes as 

HDL levels showed a signifi cant decrease, and plasma tri-
glycerides were elevated, as expected for patients with 
CKD and published previously ( 25 ). LDL vitamin E con-
tent and particle heterogeneity (electrophoretic mobility) 
were also determined, but there was no statistical differ-
ence ( Table 1 ). 

 TABLE 1. Clinical biochemistry parameters in plasma for control subjects and CKD patients     

Clinical Parameters Controls CKD  P 

n 10 10 —
Age (years) 47 ± 6 44 ± 3 0.111
BMI (kg/m 2 ) 26 ± 2 29 ± 6 0.113
Smokers/ex-smokers/nonsmokers 0/1/9 2/2/8 —
Systolic blood pressure (mm Hg) 113 ± 12 124 ± 10  0.049 
Diastolic blood pressure (mm Hg) 72 ± 11 78 ± 6 0.103
Mean arterial pressure (mm Hg) 85 ± 11 93 ± 7 0.065
Pulse pressure (mm Hg) 42 ± 6 46 ± 7 0.189
Plasma glucose (mg/dl) 5.1 ± 0.5 4.8 ± 0.4 0.231
HbA 1c  (% of Hb) 5.3 ± 0.40 5.6 ± 0.50 0.117
Serum creatinine (mg/dl) 85 ± 11 460 ± 179  <0.0001 
MDRD eGFR (ml/min/1.73 m 2 ) 91.2 ± 14.1 14.8 ± 5.3  <0.0001 
High sensitivity C-reactive protein (µg/ml) 1.2 ± 1.5 4.2 ± 3.5  0.027 
IL-6 (pg/ml) 9.6 ± 10.5 7.9 ± 8.7 0.713
Total cholesterol (mg/dl) 5.1 ± 0.8 4.5 ± 0.8 0.130
Triglycerides (mM) 1.0 ± 0.3 1.8 ± 0.7  0.004 
HDL (mM) 1.4 ± 0.5 1.0 ± 0.2  0.020 
LDL (mM) 4.8 ± 0.7 (n = 9) 4.2 ± 0.8 0.091
OxLDL (U/l) 56 ± 18 51 ± 12 0.475
LDL vitamin E ( � g/mg protein) 2.43 ± 0.540 2.39 ± 0.524 0.65
LDL particle size (nm) 0.24 ± 0.02 0.24 ± 0.03 0.387

Values are given as mean ± SD. Signifi cance ( P  values) was calculated using a two-tailed Student’s  t -test, and 
statistically signifi cant differences are indicated by bold typeface. MDRD, Modifi cation of Diet in Renal Disease.

  Fig.   1.  Typical normal-phase LC/MS chromatograms of normolipidemic LDL lipid extract (Control, top) 
and LDL extract from CKD patients (Disease, bottom) in positive (+ve, left) and negative ( � ve, right) ion 
mode. Lipid extracts were prepared according to the Folch method, and chromatograms were normalized 
to relative intensity (%). Labeled peaks are triacylglycerides and cholesteryl esters (TAG + CE), phosphati-
dylinositols (PI), phosphatidylethanolamines (PE), PCs (PC), and SMs (SM). The insets depict a zoomed 
region for the elution of cholesterol sulfate (CS),  N -acyltaurines (NAT), ceramides (Cer), and fatty acids 
(FA) in negative ion mode.   
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to those reported previously in healthy volunteers ( 24 ). 
 The full list of lipid species detected is given in supple-
mentary Table 1. 

 Comparative analysis showed changes in CKD LDL lipid 
classes including CS, STs, Cer’s, and lysolipid ratios 

 In order to investigate the hypothesis that changes in 
molecular composition of LDL occur in CKD, an auto-
mated analysis of the LC/MS data using the XCMS and 
MZMatch platform was undertaken. This procedure iden-
tifi ed 300 lipid features, 142 in positive ion and 158 in 
negative ion mode, which after manual cross-checking for 
removing adducts and duplicates corresponded to ap-
proximately two-thirds of the lipid species identifi ed by 
manual analysis. The smaller number of positive identifi -
cations results from several factors, including the exclu-
sion of ions with intensity <5,000 cps, the requirement that 
peaks were present in >50% of samples in either group, 
and the ability of the program to adjust for minor differ-
ences in retention times. 

 The intensities of ions identifi ed in this data set were 
summed to provide an estimate of the total lipid inten-
sity and the lipid intensity in each of the identifi ed 
classes, following a previously published procedure ( 24 ). 
The variability of total lipids extracted (extraction repeat-
ability and analytical reproducibility) between replicates 

reported previously ( 24 ). Representative chromatograms 
for control and CKD samples in each mode are shown in 
  Fig. 1  .  The various chromatographic peaks observed cor-
respond to the elution of different lipid classes. Some lipid 
species were observed in both positive and negative ioniza-
tion modes, as indicated by the appearance of peaks with 
the same retention times, notably in the retention time 
ranges 2–3.5 and 20.5–22.5 min. It can be seen that there 
were no gross changes in the profi le of either positively or 
negatively charged lipids between sample types, although 
some minor changes in intensity of chromatographic 
peaks eluting with retention times shorter than 5 min were 
apparent. 

 All features (ions) detected in the chromatograms using 
XCMS software were recorded by retention times, accu-
rate mass/charge measurement, and intensity, to generate 
a combined list of 1,619 distinct features. Manual match-
ing of the experimental values with theoretical databases 
was carried out to identify lipid species, as well as manual 
cross-checking for multiple adducted forms of some lipids 
(e.g., [MH] + , [MNa] + , or [M+NH 4 ] +  in positive ion mode; 
[M-H]  �   and [M+HCOO]  �   in negative ion mode) to avoid 
duplication, and isomeric species are reported as one sin-
gle ion. A summary list corresponding to 352 individual 
lipid and lipid-related species covering 18 lipid classes or 
subclasses was compiled (  Table 2  ), which were very similar 

 TABLE 2. List of lipid classes and subclasses identifi ed in LDL using dual polarity detection in a high-resolution 
mass spectrometer by manual analyte identifi cation using the HMDB     

Search Criteria

Lipid Classes
Number of Molecular 

Ions Identifi ed Formula
Adducts Searched and 

Ionization Mode

Glycerolipids 72
 TAGs 72 C n H m NO 6 ([M+NH 4 ] + )
Sterols and steroids 14
 Cholesterol 1 C n H m O ([M+H-H 2 O] + )
 CSs 4 C n H m O 4 S ([M-H]  �  )
 CEs 8 C n H m NO 2 ([M+NH 4 ] + )
 Steroid conjugates 1 C n H m O z ([M+H] + )/([M-H]  �  )
FAs 24
 Free FAs 24 C n H m O 2 ([M-H]  �  )
Sphingolipids 96
 SMs 41 C n H m N 2 O 6 P ([MH] + )
 Cer’s 15 C n H m NO 5 ([M+HCOO]  �  )
 Hexosyl-Cer’s 8 C n H m NO 8 ([M-H]  �  )
 Lactosyl-Cer’s 5 C n H m NO 13 ([M-H]  �  )
 Acidic glycosphingolipids (STs) 27 C n H m NO 11-13 S ([M-H]  �  )
Glycerophospholipids 140
 PIs 15 C n H m O 13 P ([M-H]  �  )
 Phosphatidylglycerols 6 C n H m O 10 P ([M-H]  �  )
 PEs 47
  Diacyl-PE  15 C n H m NO 8 P ([M-H]  �  )
  pPE 32 C n H m NO 7 P ([M-H]  �  )
 LPEs 5 C n H m NO 7 P ([M-H]  �  )
 PCs 63
  Diacyl-PC 41 C n H m NO 8 P ([MH] + )
  pPC 22 C n H m NO 7 P ([MH] + )
 LPCs 4 C n H m NO 7 P ([MH] + )
Lipid-related compounds 6
 Prenols 1 C n H m Oz ([M+H] + )/([M-H]  �  )
 NATs 5 C n H m NO 4 S ([M+H] + )/([M-H]  �  )
Total 352

LPC, lyso-phosphatidylcholine; LPE, lyso-phosphatidylethanolamine; pPC, plasmanyl/plasmenyl phospha-
tidylcholine; pPE, plasmanyl/plasmenyl phosphatidylcholine.
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 Statistical analysis discriminated control and CKD LDL 
lipidomes based on individual species of unsaturated 
phospholipids and triglycerides 

 For a full statistical analysis of the MS data and to iden-
tify the contribution of individual lipid species to differ-
ences between the control and CKD samples, PLSDA was 
used. The classifi cation summary for three optimized 
models calculated using lipid profi les measured in positive 
and negative ion modes and the merged (+ve plus –ve 
mode) data set are shown in   Table 3  .   Q  2  values, which are 
a measure of the ability of the model to predict correctly 
the class, lie between 0.79 and 0.82. Values of 0.5 are often 
classed as acceptable, and 0.8 as good, for PLSDA analysis 
of data sets with a limited number of classes. The power of 
the discrimination is further illustrated by the PLSDA 
score plot for the merged data (  Fig. 4  ), which shows the 
samples from control and CKD cluster together, and that 
the classes are well separated from each other within the 
plot.  Similar statistical results were obtained for all three 
data sets, with a correct classifi cation rate (percentage of 
samples assigned to the correct class) between 94% and 
98%, sensitivity (true positive rate, a measure of the pro-
portion of positive correctly assigned) between 0.93 and 
0.97, and specifi city (true negative rate, a measure of the 
proportion of negatives correctly assigned) between 0.96 
and 1 for the CV data, though slightly better results were 
obtained using merged data ( Table 3 ). The closer the val-
ues are to 1 the better the quality of the model. The ions 
that contributed most strongly to the discrimination can 
be determined from their contribution to the PLSDA 
model and were unsaturated lipid species from the most 
abundant lipid classes, namely PC, TAG, and PE; the com-
plete set of discriminating ions is indicated in supplemen-

in the samples of control and disease group was <10%, 
thus enabling this approach to be used for comparisons 
of lipid content between samples for any one lipid 
class, although it cannot be used for comparisons be-
tween lipid classes owing to differences in ionization 
effi ciencies. 

 The total lipid in LDL remained essentially unaltered 
in the CKD patient group compared with the age-
matched control group (  Fig. 2A  ), but changes in the in-
tensity of a number of lipid classes were observed in 
LDL.  There was an observed statistically signifi cant in-
crease in TAGs ( Fig. 2B ), in agreement with the clinical 
data in  Table 1 , whereas the content of PCs decreased 
signifi cantly in the CKD group ( Fig. 2C ). There were no 
changes in the intensities of total cholesterol and SMs, 
or in the total levels of PEs (data not shown), although 
the contribution of PE containing a vinyl ether linkage 
to the total PE pool was signifi cantly lower in CKD sam-
ples ( Fig. 2C ). Interestingly, the total content of lyso-
lipids (LPC + LPE) in LDL in disease patients was similar 
when compared with age-matched controls ( Fig. 2E ), 
but the ratio of lyso-lipid types (LPC/LPE) showed a sig-
nifi cant decrease in LDL from CKD samples ( Fig. 2F ). In 
addition, changes in CKD were observed in four other 
lipid class that constitute minor components of LDL; 
specifi cally, the content of Cer’s (  Fig. 3A  ), CS ( Fig. 3B ), 
and STs ( Fig. 3D ) decreased signifi cantly in LDL from 
CKD patients, whereas a signifi cant increase was ob-
served in the content of NATs ( Fig. 3D ).  Thus, in addition 
to changes in commonly assessed lipid class triglycer-
ides, CKD patients show changes in both abundant and 
minor lipid components of LDL that are not apparent 
simply from standard lipoprotein assessment. 

  Fig.   2.  Box plots showing changes in major lipids in the disease group (n = 10) against the age-matched control group (n = 10). Samples 
were analyzed in triplicate (n = 3), and statistical analysis was carried out using the Mann-Whitney test to estimate the  P  values. Differences 
were considered statistically signifi cant at  P  < 0.05. Plots are total lipids detected (A), TAGs (B), total PC (C), ratio of pPE   to total PE (D), 
total LPC and LPE (E), and ratio of LPC to LPE (F).   
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classes ( 7, 11, 39 ). To test the hypothesis that molecular 
information about LDL lipidomic profi le would reveal 
novel details of dyslipidemia in CKD, we used a top-down 
lipidomic approach that allows a comparative analysis ( 20, 
22, 23 ) of the LDL lipid profi le from age-matched controls 
and patients with stage 4/5 CKD. This identifi ed signifi -
cant differences in LDL lipidome of CKD patients. Multi-
variant analysis by PLSDA showed very good discrimination 
of the control and disease data sets, with a combination of 
positively and negatively charged lipids providing the best 
discrimination. The lipid species that contributed most 
were specifi c isomeric clusters from the abundant lipid 
classes, namely PCs (decreased), triglycerides (increased), 
and pPEs   (decreased as a proportion of total PE), as these 
contain a large number of individual lipids, many of which 
are known to be present at relatively high levels in LDL 
( 40 ). However, minor lipid subclasses also showed signifi -
cant differences in CKD and control LDL, specifi cally CS, 
STs, and Cer’s, which were lower in CKD LDL, and NATs, 
which increased in CKD LDL, compared with control. 
Thus, although the clinical lipoprotein profi le only 
showed an increase in triglycerides and a decrease in HDL, 
detailed molecular analysis identifi ed several lipid classes 
and subclasses that are altered in LDL, and within these 
classes, changes in several molecular lipid species. 

 Some of the molecular changes observed in the LDL 
lipidome in CKD are linked to atherogenic mechanisms 
and therefore could explain the increased risk of CVD in 
these patients. PCs are phospholipids present in the sur-
face monolayer of LDL and are important for the confor-
mation of ApoB-100, macrostructure of LDL, and its 
correct interaction with LDL receptors ( 41, 42 ). Interest-
ingly, the overall decreased PC observed in this study was 
apparently not suffi cient to cause major structural changes 
in the LDL, as there was no signifi cant change in the size 
of the LDL particles in CKD. The decrease in PCs observed 
is in agreement with a previous report on levels of PC in 
plasma of ESRF patients ( 43 ), and also with the observa-
tion that PCs are lost in urine of patients with CKD ( 44 ). 
The lower levels of STs and CSs in LDL of CKD patients 
are in agreement with some previous studies ( 17 ). STs 
are anionic glycosphingolipids that are known to have 

tary Table 2. Comparison of PLSDA score and loading 
plots obtained using the merged (+ve plus –ve mode) data 
set shows that higher levels of lipid species from the PE 
class and some species from TAG and SM classes are pres-
ent in the samples from the disease group, while all other 
lipid species are present at lower concentration. Two ex-
amples of the lipids that contributed strongly to the lipido-
mic alteration in LDL from CKD patients include pPC 
40:7 at  m/z  818.6060 (  Fig. 5A  , decreased in CKD) and pPE 
38:7 at  m/z  746.5137 ( Fig. 5B , decreased in CKD).   

 DISCUSSION 

 CKD is associated with increased risk of CVD, and dys-
lipidemia contributes to this increased risk ( 2–4 ), but until 
recently, studies in lipids in CKD have mainly focused on 
lipoprotein balance or measured total levels of major 

  Fig.   3.  Box plots of minor lipids that showed signifi cant change 
in disease. Samples from the disease group (n = 10) and the age-
matched control group (n = 10) were analyzed in triplicate, and 
statistical analysis was carried out using the Mann-Whitney test to 
estimate the  P  values. Differences were considered statistically sig-
nifi cant at  P  < 0.05. The plots are Cer’s (A), NATs (B), CS (C), and 
STs (D)  .   

 TABLE 3. Summary of classifi cation of plasma from CKD patients and controls using lipids profi les measured in 
either positive or negative ion modes, or the merged data set         

Data Set  Q  2   a  

Correct 
Classifi cation, %  b  Sensitivity  c  Specifi city  d  

Cal CV Cal CV Cal CV

Lipids positive 0.83 100 94 1 0.93 1 0.96
Lipids negative 0.81 100 96 1 0.96 1 0.96
Merged data 0.79 100 98 1 0.97 1 1

Results for calibration (Cal) and CV are shown.

  

a

    

2

2
2

1  
i i

i

i
i

y y
Q

y y
.

  b    Correct classifi cation – percentage of cases assigned to correct classes.
  c    Sensitivity = True Positives/(True Positives + False Negatives).
  d    Specifi city = True Negative/(True Negatives + False Positives).
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and they have only recently been detected in LDL ( 24 ). In 
neuronal ischemia these lipids have been reported to show 
protective and anti-infl ammatory effects ( 51 ), but they can 
also induce apoptosis of macrophages ( 52 ). As yet, their 
role in lipoproteins and potential atherogenic contribu-
tion has not been elucidated. 

 A limitation of this study is that only patients with severe 
kidney disease and age-matched controls were compared, 
so, in the absence of intermediate stages, limited conclu-
sions about the role of these changes in disease progres-
sion can be drawn. Also, the CKD patients studied here 
had minimal comorbidity with no current clinically appar-
ent CVD, despite the high risk of developing CVD. Although 
in this cohort the levels of high sensitivity C-reactive protein 
were high, indicating some infl ammation, IL-6 and mea-
sures of oxidative stress (OxLDL) were low. These fi ndings 
differ from some previous studies ( 3, 4 ) where both infl am-
mation and oxidative stress were substantially increased in 
CKD and contribute signifi cantly to its accelerated vascu-
lar pathology. Our data suggest that uremia is not itself 
prooxidant, and this feature may be driven largely by co-
morbidity. However, it is unclear whether uremia or in-
creased infl ammation is responsible for the LDL lipidomic 
changes or results from them. These changes in CKD pa-
tients are unlikely to be the consequence of lipid-lowering 
drugs, as only two patients were on statin therapy and 
none were on fi brate therapy. A full understanding of the 
role of LDL lipidomics in CVD risk in CKD patients would 
require a prospective study with comparison of intermedi-
ate stages of CKD, as well as CKD with and without CVD 
complications. 

 A limitation of the top-down lipidomic methodology is 
that some features in the mass spectra remain unidenti-
fi ed, and it is not possible to discriminate some individual 
lipids within isomeric clusters, so further differences could 
be present that are not reported here. It should be noted 
that as internal standards were not used, the analysis is 
comparative and semiquantitative. Such approaches have 
been reported previously ( 21–23 ) and have the advantage 
of avoiding the high expense of labeled compounds, al-
though they do not allow the fully quantitative analysis 
that can be achieved with use of isotope-labeled internal 
standards ( 53 ). Finally, although, bootstrapping of the test 
data gave very good sensitivity and selectivity for discrimi-
nation, demonstrating the robustness of the analysis, fur-
ther analysis on a validation data set would be desirable as 
the next stage of study. 

 In summary, using an LC/MS approach, we report the 
fi rst comprehensive top-down lipidomic signature of LDL 
in kidney disease patients with normocholesterolemia. 
Patients with stage 4/5 CKD demonstrated significant 
changes in the lipidome of their LDL compared with age-
matched controls, and multivariant analysis gave very good 
discrimination of control and disease samples, despite the 
small cohorts used (n = 10). These fi ndings illustrate the 
point that although the clinical biochemistry parameters 
may not appear abnormal, there may be important under-
lying lipidomic changes that contribute to disease pathol-
ogy. The lipidomic profi le of CKD LDL offers potential for 

antithrombotic effects, although opposing effects have 
also been reported under certain experimental conditions 
( 17, 45 ). Within LDL, they confer negative charge at the 
particle surface and have been suggested to act as endog-
enous ligands for chemokines ( 46 ) and some selectins 
( 47 ). Thus, it is clear that they have complex effects within 
the cardiovascular system and decreased levels could upset 
delicately balanced processes such as thrombosis and 
LDL-endothelial cell interactions. Hu et al. ( 17 ) reported 
that STs were the only factor that discriminated control 
from ESRF groups in their study, and that they have prom-
ise as biomarkers for CKD. We observed a decrease in the 
level of Cer’s in LDL from CKD patients; however, as in-
creased sphingomyelinase activity and free Cer’s are 
thought to be linked to atherogenesis ( 48, 49 ), this does not 
appear to contribute to the proatherogenic profi le of CKD. 
Finally, it was also noted that there was a signifi cant increase 
in N-acyltaurines (NATs) in LDL from CKD patients. NATs 
are well known as components of mammalian nervous tis-
sue and are involved in signaling neuronal events ( 50 ), 

  Fig.   4.  PLSDA scores plot for merged data (lipids detected in 
positive and negative ion mode). Numbers adjacent to the symbols 
are patient sample codes.   

  Fig.   5.  Boxplots of two individual lipid species that were altered 
in positive (PC) and negative (PE) ion mode. Samples from the 
CKD group (n = 10) and age-matched control group (n = 10) were 
analyzed in triplicate, and statistical analysis was carried out using 
the Mann-Whitney test to estimate the  P  values. Differences were 
considered statistically signifi cant at  P  < 0.05. Plots are pPC 40:7 
(A) and pPE 38:7 (B), where the numbers (C:n) correspond to the 
total number of carbon atoms:number of double bonds present in 
the acyl and alkyl chains (including the vinyl ether bond).   
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new biomarkers and novel insights into lipid metabolism 
and cardiovascular risk in this disease. Further work with 
early disease stages is now warranted to enable the rela-
tionship of these lipids with disease severity and cardiovas-
cular events to be correlated.  
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