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resumo 
 

 

134,137Cs são dois isótopos de tempo de meia vida longo, 
produzidos durante a fissão nuclear e que contribuem 
significativamente para a radioatividade das águas residuais 
nucleares produzidas em todo o Mundo. Presentemente, assiste-se 
ao crescimento demográfico e económico de países como a China, 
Brasil e Índia, o que coloca as centrais nucleares como opções 
fortes para a geração de energia. Todavia, as águas residuais 
radioativas são geralmente armazenadas em tanques metálicos 
soterrados que, ao longo do tempo, padecem de fugas que 
contaminam os terrenos confinantes, um facto registado 
atualmente em Hanford Site (pertencente ao Departamento de 
Energia dos EUA) onde estão armazenados cerca de 250,000 m3 
de resíduos. 
Estão publicadas várias famílias de materiais para o tratamento de 
águas residuais nucleares, entre as quais se encontram 
permutadores inorgânicos como zeólitos, hexacianoferratos e 
titanossilicatos. Estes materiais podem assumir um papel 
importante por possuirem elevadas estabilidades térmica e 
química, mesmo na presença de níveis significativos de radiação. 
Por outro lado, a síntese de novos materiais siliciosos conheceu, 
nas últimas décadas, a incorporação de elementos terras raras (em 
particular lantanídeos), tendo surgido sólidos que combinam 
microporosidade estrutural com fotoluminescência. Este facto 
confere aos novos silicatos de terras raras um enorme potencial, 
uma vez que suas propriedades óticas podem ser exploradas em 
funções de deteção (i.e., na construção de sensores), sendo que a 
sua emissão de luz pode ser alterada por modificação da 
vizinhança do lantanídeo. Por exemplo, a variação da natureza dos 
contra-iões do sorvente fotoluminescente pode resultar num 
espectro de emissão diferente.  
Esta dissertação tem os seguintes objectivos: estudar a síntese e a 
caracterização de materiais microporosos de metais de transição e 
lantanídeos, e avaliar a sua possível aplicação como permutadores 
de Cs+ e em sensores deste ião. Numa primeira fase, o 
titanossilicato ETS-4 e os lantanossilicatos Eu-AV-20 e Tb/Eu-AV-9 
foram sintetizados e caracterizados por microscopia eletrónica de 
varrimento, difração de raios-X de pós, espectroscopia de emissão 
atómica por plasma acoplado indutivamente, entre outras. De 
seguida, foram realizadas experiências de permuta iónica em vaso 
fechado (descontínuo) com Eu-AV-20 e Tb/Eu-AV-9, e em coluna 



de leito fixo (contínuo) com Eu-AV-20 e ETS-4. Os silicatos 
luminescentes Eu-AV-20 e Tb/Eu-AV-9 foram caracterizados por 
espectroscopia de fotoluminescência, antes e depois dos ensaios 
de sorção, por forma a avaliar o seu potencial como sensores de 
Cs+. As isotérmicas de todos os sistemas foram determinadas em 
vaso fechado, fazendo variar a massa de sólido e fixando a força 
iónica da solução. No caso dos materiais investigados em 
descontínuo (Eu-AV-20 e Tb/Eu-AV-9), foram medidas curvas 
cinéticas de remoção de Cs+ para diferentes massas de silicato, 
enquanto que nos ensaios efetuados em coluna de leito fixo (com 
Eu-AV-20 e ETS-4) se mediram curvas de rutura para diferentes 
velocidades superficiais. Os resultados experimentais mostram que 
a capacidade de permuta do Eu-AV-20 é muito inferior à do Tb/Eu-
AV-9, como os patamares máximos das suas isotérmicas 
confirmam: 0,09 eq·kg-1 vs. 3,47 eq·kg-1, respetivamente. Para 
além disto, a cinética de remoção com o Eu-AV-20 é muito mais 
lenta do que com Tb/Eu-AV-9: 0,5 g do primeiro silicato removeram 
1 ppm de césio em 80 horas, enquanto que o Tb/Eu-AV-9 
permutou trinta vezes mais Cs+ em menos de 2 horas. 
As experiências de permuta em leito fixo mostram que os silicatos 
Eu-AV-20 e ETS-4 podem ser usados em contínuo, tendo-se ainda 
constatado que o ETS-4 pode ser utilizado em ciclos de sorção-
regeneração sem prejuízo estrutural. Em termos de capacidade de 
permuta iónica, o Eu-AV-20 foi novamente o sólido com o 
desempenho mais fraco, 0,09 eq·kg-1 vs. 1,86 eq·kg-1 . 
Foram realizados estudos com o intuito de relacionar a 
concentração de Cs+ na fase sólida com as variações observadas 
nos espectros de fotoluminescência do Eu-AV-20 e do Tb/Eu-AV-9. 
De um modo geral, a permuta iónica diminui a intensidade da 
emissão. A transição não degenerada 5D0

7F0 do ião európio foi a 
mais relevante neste estudo, dado ser a que melhor testemunha as 
modificações que ocorrem na vizinhança do lantanídeo. No caso 
particular do silicato Tb/Eu-AV-9, foram realizadas medições de 
tempos de vida que confirmaram a existência de uma relação linear 
entre estes e a concentração de Cs+ no sólido. 
Esta tese compreendeu ainda a modelação de todos os resultados 
experimentais de equilibro e cinética usando modelos baseados 
nas equações de fluxo de Maxwell-Stefan e Nernst-Planck, e onde 
se combinaram as limitações internas e externas para a 
transferência de massa. As difusividades dos contra-iões 
otimizadas têm valores na gama 10-18–10-15 m2 s-1, típicos de 
materiais microporosos. Como esperado, a difusividade do par 
Cs+/sólido assumiu um valor mais baixo do que a do par Na+/sólido, 
o que pode ser imputado ao maior raio iónico de Cs+. 
Relativamente ao transporte iónico no filme, o coeficiente de 
transferência de massa por convecção estimado pela correlação 
generalizada de Armenante e Kirwan forneceu valores coerentes 
com os otimizados a partir dos pontos experimentais.  
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abstract 

 

134,137Cs are two long-lived isotopes produced during nuclear fission 
and are among the biggest contributers to the radioactivity of 
nuclear wastewaters produced around the World. At present, the 
economic and demographic evolution of countries such as China, 
Brazil and India raises the possibility of nuclear power plants 
becoming an excelent alternative for clean energy generation. 
Furthermore, radioactive wastewaters are commonly kept in 
underground stainless-steel tanks that may leak and contamine the 
confining land. Indeed, this is already observed at the Hanford Site 
(belonging to de Department of Energy, USA) where some of the 
tanks storing almost 250.000 m3 of radioative solutions are leaking. 
The literature reports several good materials for nuclear wastewater 
treatment, particularly inorganic exchangers, such as zeolites, 
hexacyanoferrates and titanosilicates, that may play an important 
role due to their good thermal and chemical properties, preserved 
even in the presence of high doses of radiation. On the other hand, 
in the last two decades, the synthesis of new materials 
incorporating rare-earth elements (in particular lanthanides) 
enabled the appearance of solids combining microporosity and 
photoluminescence properties. This fact may be explored for 
detection purposes (e.g., in sensors) because the material’s 
emission may change upon modification of the lanthanide vicinity. 
For example, counter-ions composition variation of a luminescent 
sorbent results in different emission spectra.  
This thesis aimed at studying the synthesis and characterization of 
transition metal and rare-earth (lanthanide) microporous materials 
and applying them as Cs+ exchangers and sensors. Firstly, the 
titanosilicate ETS-4 and the lanthanide silicates Eu-AV-20 and 
Tb/Eu-AV-9 were synthesized and characterized by scanning 
electron microscopy, powder X-ray diffraction, inductively coupled 
plasma mass spectroscopy, among others. Then, the batch ion 
exchange was performed with Eu-AV-20 and Tb/Eu-AV-9, while the 
fixed-bed ion exchange was performed with Eu-AV-20 and ETS-4. 
The parent and Cs+-exchanged silicates Eu-AV-20 and Tb/Eu-AV-9 
were characterized by photoluminescence spectroscopy, in order to 
evaluate their capacity for Cs+ sensing. All the equilibrium isotherms 
were determined using batch ion experiments and manipulating the 
mass of solid with defined solution’s ionic strenght. For the 
materials (Eu-AV-20, Tb/Eu-AV-9) tested during the batch ion 



exchanges, Cs+ removal curves for different masses of solid were 
measured, while in the fixed-bed assays (with Eu-AV-20 and ETS-
4) breakthrough curves were measured varying the superficial 
velocity.The exchange capacity of Eu-AV-20 is much lower than 
that of Tb/Eu-AV-9, as the isotherm’s thresholds confirmed, 0.09 
eq·kg-1 vs. 3.47 eq·kg-1, respectively. Furthermore, the Eu-AV-20 
removal kinetics is slower than that of Tb/Eu-AV-9: while 0.5 g of 
the first removed 1 ppm of cesium in 80 hours, the latter exchanged 
an amount 30 times higher in less than 2 hours.  
The fixed-bed experiments show that Eu-AV-20 and ETS-4 may be 
used in a continous mode. Moreover, ETS-4 can perform sorption-
regeneration cycles whitout structural losses. Again, Eu-AV-20 is 
the weakest performer, 0.09 eq·kg-1 vs. 1.86 eq·kg-1. 
Photoluminescence studies were performed in order to relate the 
Cs+ concentration in the solid phase with changes in the Eu-AV-20 
and Tb/Eu-AV-9 emission. In general, the ion exchange decreased 
the emission intensity. In this study, the Eu3+ non-degenerated 
5D0

7F0 transition was the most informative spectral feature since it 
is the one that changes most upon modification of the local 
environment of the emmitter lanthanide. In the particular case of 
Tb/Eu-AV-9, lifetime measurements were also measured and 
confirmed the existence of a linear relation between the average life 
time in the solid and the solid’s Cs+ concentration. 
Finally, this thesis also considers the modelling of all the equilibrium 
and kinetic experimental data. For that, Maxwell-Stefan and Nernst-
Plank based models combining internal and external mass transfer 
limitations were used. The optimized counter-ion diffusivities are in 
the range 10-18 to 10-15 m2·s-1, values that are typical of microporous 
materials. As expected the diffusivity of the pair Cs+/solid assumed 
a value lower than the pair Na+/solid, which may be ascribed to the 
larger Cs+ ionic radius. Concerning the ionic transport in the film, 
the convective mass transfer coefficient estimated by the 
Armenante and Kirwan correlation provided results similar to those 
optimized from the experimental data.   
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1) Radionuclide 137Cs (half-life of 30 years) accounts for most of the radioactivity of the 

nuclear wastewaters produced around the World [1]. These wastes (acidic or alkaline) 

may be treated by ion exchange using inorganic solids, typically, possessing high thermal, 

chemical and radiation stability [2,3], such as microporous mixed octahedral-pentahedral-

tetrahedral (OPT) silicates, which are inorganic ion exchangers that may offer excellent 

selectivity. Perhaps more important than their capacity to selectively confine ions in a 

stable solid matrix is their ability to reduce the volume occupancy of radioactive wastes, 

from thousands of liters of solutions to a few grams of solids. 

OPT materials may be photoluminescent when (stoichiometric) amounts of 

lanthanides are embedded in their framework, a property endowing them with sensing 

ability for target ions or molecular species [4–6]. 

 The progress of countries such as China, Brazil and India will require more 

energy, making nuclear power plants part of the solution for achieving such a demand [1], 

and increasing radioactive wastewaters. On the other hand, there is also the need for 

remediation solutions since, for instance, following the Fukushima Daichii disaster tons of 

radioactive waters have leaked into the Pacific Ocean and surrounding soils, that must be 

treated [7,8]. Additionally, in Hanford Site (Department of Energy, USA), some stainless-

steel underground tanks containing radioactive solutions leaked due to corrosion and 

contaminated groundwater and confining land. 

 

2) The work reported in this thesis is developed at the interface of Chemistry, Chemical 

Engineering and Materials Science, encompassing the synthesis, structural 

characterization, assessment of Cs+ ion exchange capacity (batch and fixed-bed 

operations) and sensing ability (based on photoluminescence) of microporous transition-

metal and lanthanide silicates. Accordingly, the following specific objectives were 

accomplished: 

 

 Synthesis of microporous transition metal and lanthanide silicates; 

 

 Characterization of the prepared materials by powder X-ray diffraction (PXRD), 

scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), 

inductively coupled plasma mass spectroscopy (ICP-MS). Also, the characterization 

of the emitting lanthanide silicates by photoluminescence spectroscopy (PLS) and 

lifetime (LT) measurements aiming at their application as hybrid Cs+ cation 

exchangers and sensors; 
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 Batch and fixed-bed experiments (kinetic and equilibrium measurements) to 

evaluate the ion exchange capacity of the microporous silicates; 

 

 Modelling ion-exchange equilibrium and uptake kinetic curves. 

 

3) Besides this current chapter, the thesis comprises additionally four main parts. 

 

 Chapter II (“Theoretical Introduction”) consists of two sections reviewing the main 

materials used in the treatment of radioactive wastewater (in particular for cesium 

removal) and the family of microporous lanthanides silicates. Thus, the first section 

informs the reader about the three major families used in the radioactive wastewater 

treatment domain, namely, zeolites, hexacyanoferrates and titanosilicates. Section 

two reviews the rare earth and in particular the lanthanides silicates family, mainly 

relevant structural features, such as the number luminescent sites, framework or 

layered structure, crystal size (bulk or nanoparticles), and type of lanthanide 

incorporation (ion exchange or embedment). 

 

 Chapter III (“Optical sensing of Cs+ and Na+ by Eu-AV-20”) describes the studies 

concerning the assessment of the Cs+ and Na+ sensing ability of Eu-AV-20. The 

work involves fifteen different batch ion exchange experiments. SEM, PXRD, ICP-

MS and PLS fully-characterize the solid after the experiments. The optical properties 

of the exchanged materials focus mainly on the relationship between the intensity of 

the non-degenerated 5D0
7F0 Eu3+ transition and the cesium and sodium molar 

ratios in the solid phase. 

 

 Chapter IV studies the Cs+ removal from aqueous solutions in batch experiments 

using the Eu-AV-20 and Tb/Eu-AV-9 materials. Results on the influence of the mass 

of exchanger on the final uptake are presented. Accurate modelling of the obtained 

experimental data (equilibrium and kinetic) is also described, using Maxwell-Stefan 

equations to represent intraparticle diffusion. Some photoluminescence results are 

also reported in this chapter. 

 

 Chapter V is devoted to the removal of Cs+ from aqueous solutions in fixed-bed 

experiments. It essentially discusses the bed efficiency on the uptake of cesium in a 

continuous mode, using microporous titanium silicate ETS-4 and the lanthanide 
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silicate Eu-AV-20. Among others, the influence of the superficial velocity and mass 

of exchanger on the removal behaviour (via breakthrough curves) are discussed in 

detail. The experimental data are modelled by two distinct approaches: 1) simplified 

analytic models taken from the literature, such as Thomas, Bohart-Adams, Clark 

and Yoon-Nelson; and 2) a Nernst-Planck based model. In order to assess the 

sensing ability of Eu-AV-20 towards different cesium loadings, two different 

photoluminescent studies are presented disclosing the potential of the material to be 

used as Cs+ sensor. In the particular case of ETS-4, a loading-regeneration-loading 

assay was additionally performed, bringing to light its capability to be used in several 

ion exchange cycles.  

 

 Chapter VI brings this thesis to an end, presenting the general conclusions, outlook 

and future work. 
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V 
Removal of Cs+ from aqueous 

solutions through fixed-bed 
experiments 

 

This chapter is devoted to the removal of Cs+ ion from aqueous solution using two different 

silicates – Eu-AV-20 and ETS-4 – carrying out fixed-bed ion exchange experiments; in the case 

of ETS-4 a set of batch assays were also performed. The parent and exchanged materials were 

characterized by several techniques, such as scanning electron microscopy (SEM), energy-

dispersive X-ray spectroscopy (EDS), powder X-Ray diffraction (PXRD), inductively coupled 

plasma mass spectroscopy (ICP-MS) and photoluminescent spectroscopy (PLS). Several 

breakthrough curves were measured and, in the specific case of ETS-4, a complete loading-

regeneration-loading assay was performed in order to assess its ability to be used in ion 

exchange cycles. The experimental data were modelled using: 1) a Nernst-Planck based model 

taking into account the internal and external limitations to the mass transfer; and 2) simplified 

analytic models from the literature such as Thomas, Bohart-Adams, Clark and Yoon-Nelson 

models. In the particular case of the Eu-AV-20, photoluminescent spectroscopic studies were 

also performed aiming the evaluation of its sensing ability towards cesium.  
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Abstract 

 

Microporous silicate Eu-AV-20 has recently proved to be a promising ion exchange material for 

cesium removal from aqueous solutions, and its potential for Cs+ photoluminescence sensing 

was additionally demonstrated. In this work, Cs+ removal was performed in a fixed-bed column, 

and the influence of linear velocity and mass of ion exchanger on the breakthrough curves was 

analyzed. The experimental data were modelled on the basis of Nernst-Planck (NP) equations 

and with four well-known analytic models. The analytic expressions provided low errors (root 

mean square deviation, RMSD, between 3.20% and 6.47%); the 2-parameter NP-based model 

fitted the data quite well (RMSD = 6.66% for correlation and 6.54% for prediction), yielding 

crucial information on both the transport mechanism within the Eu-AV-20 particles, and the 

intrinsic dynamic behaviour of the fixed-bed ion exchange column. Taking into account that Eu-

AV-20 samples loaded with different amounts of Cs+ exhibited distinct photoluminescence 

spectra, our results reinforce the potential of AV-20 materials for Cs+ sensing, which raises the 

possibility of online monitoring the ion exchange in a fixed-bed column using an optical fiber 

and a spectrometer.  
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V.1. Cs+ removal and optical detection by microporous lanthanide silicate Eu-

AV-20 in a fixed-bed column 

 

V.1.1. Introduction 

 

Nuclear wastes are complex systems containing fission products including two long-lived 

cesium isotopes (135Cs and 137Cs with a half-life of 2.3 million years and 30.17 years, 

respectively). The negative effects of cesium are well known and encompass medullar 

dystrophy, disorders of the reproductive function, and adverse effects on the liver and renal 

functions of mammals [1]. In soil and water environments cesium exists predominantly as a 

free monovalent ion (Cs+) since the formation of organic and inorganic cesium complexes is 

insignificant [2]. Several approaches may be deployed to eliminate cesium from radioactive 

aqueous wastes, such as chemical precipitation, evaporation, reverse osmosis, filtration, 

solvent extraction, ion exchange and adsorption [3]. However, ion exchange is usually 

preferred for water and wastewater remediation, particularly when high-purity water is required 

[3–5], since they allow concentrating metal ions to a level where disposal, destruction, or 

subsequent use are affordable. 

Ion exchange can be implemented as a batch process in a stirred tank or in a continuous 

fixed-bed (column) operation. The last alternative is preferred from an industrial point-of-view 

because: (i) it is the most effective configuration for cyclic sorption-desorption stages; (ii) a 

nearly solute-free effluent may be obtained until the exchanger agent in the bed approaches 

equilibrium; (iii) the removal efficiency is usually better due to higher sorbate concentration 

gradients between solution and solid. Some examples of ion exchange studies in fixed-beds 

include the uptake of zinc by NaY zeolite [6], the removal of mercury and lead by titanosilicates 

ETS-4 and ETS-10, respectively [7,8], and the sorption of cesium by titanosilicate granules [9]. 

Most recently, the elimination of Hg(II) and Pt(IV) from aqueous solutions have been studied 

using fixed-beds composed of chelating resins [10–12]. 

Inorganic ion exchangers are well-known for their chemical, thermal, mechanical and 

radiation stabilities, and typically exhibit high capacity and selectivity towards a wide variety of 

monovalent and divalent metal cations [3,4,10–20]. Concerning the specific use of inorganic 

solids for Cs+ removal, three main families have been studied, zeolites [18,19], 
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hexacyanoferrates [20,21] and titanosilicates [9,22,23]. Nevertheless, their use in fixed-bed 

experiments is limited [9,24,25].  

In the early years of this century, the synthesis of zeolite-type rare-earth or lanthanide-

silicate (Ln-silicates) materials was an emerging field due to their interesting optical properties 

associated to transitions between 4f orbitals, which generate atomic-like emission spectra 

displaying characteristic sharp lines [26,27]. The existence of other species in the vicinity of the 

emitter lanthanide may affect the photoluminescence spectra, which raises the possibility of 

exploring such optical properties for sensing the presence of molecules/ions [27]. 

The microporous Ln-silicate Eu-AV-20 and the mineral tobermorite 11 Å [28] have a 

similar crystal structure, encompassing 5.8 Å x 6.8 Å channels and cavities containing 

exchangeable Na+ and K+ ions coordinated with framework oxygen atoms and water molecules 

[29]. Furthermore, the presence of stoichiometric amounts of europium affords 

photoluminescence properties to Eu-AV-20 [29,30]. Figueiredo et al. [31] assessed the ion-

exchange capacity of Eu-AV-20 for Cs+ removal from aqueous solutions in a stirred batch tank, 

and found that indeed the photoluminescence of Eu-AV-20 does change upon Cs+ uptake.  

Here, we study Cs+ removal in a fixed-bed column and evaluate the photoluminescence 

properties of Cs+-exchanged Eu-AV-20. The experimental breakthrough curves were modelled 

using two distinct approaches: Nernst-Planck (NP) based model, and commonly used analytic 

models, such as the Thomas, Bohart-Adams, Yoon-Nelson and Clark models. 

 

V.1.2. Materials and Methods 

 

V.1.2.1. Chemicals and materials  

 

Extra pure sodium silicate solution (HS code 2839 19 00), potassium hydroxide (CAS number 

1310-58-3) and sodium hydroxide (CAS number 1310-73-2) were supplied by Merck. 

Europium(III) chloride hexahydrate (CAS number 13759-92-7) and cesium nitrate (CAS 

number 7789-18-6) were purchased from Sigma-Aldrich. High-purity water (18.2 MΩcm) was 

produced in a Milli-Q Millipore water purification system and the cellulose acetate membrane 

disc filters were bought from Sterlitech Corporation. 
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V.1.2.2. Synthesis and characterization of Eu-AV-20 

 

The hydrothermal synthesis of Eu-AV-20 was performed as previously described [29]. Briefly, 

an alkaline solution was prepared by mixing a sodium silicate solution (Na2O(SiO2)x·xH2O , 5.75 

g), with H2O (16.51 g), KOH (3.25 g) and NaOH (1.07 g) followed by the addition of 

(1.37 g) and stirring the mixture thoroughly. The resulting gel (with molar ratios 

0.79 Na2O : 1.10 K2O : 1.0 SiO2 : 0.07 Eu2O3 : 35 H2O) was transferred to a Teflon-lined 

autoclave and heated at 230 °C under autogenous pressure, during 3 days. After quenching 

the autoclave in cold water the off-white microcrystalline powder was filtered-off, washed at 

room temperature with distilled water, and dried overnight at 100 °C [29]. The relevant features 

of this material are summarized in Table V.1.1. 

 

Table V.1.1 – Features of the synthesized Eu-AV-20 lanthanide silicate [28]. 

Formula Na1.08K0.5Eu1.14Si3O8.5∙1.78H2O 

Density, 𝜌s (kg m-3)  3080 

Cation exchange capacity, 𝑄 (eq. kg-1)  2.55 

Equivalent particle diameter (10-6 m) 23.1 

Pore diameter (10-10 m) 5.8 x 6.8  

 

V.1.2.3. Characterization and analytic methods 

 

Photoluminescence spectroscopy.  

The photoluminescent spectra of native and Cs+-exchanged Eu-AV-20 samples (oven-dried at 

353.15 K during 48 h) were recorded in the visible region, at room temperature, using a Jobin 

Yvon-Spex spectrometer (HR 460) fitted with a 1200 grooves mm-1 grating blazed at 500 nm, 

coupled to a R928 Hamamatsu photomultiplier. A 150 W Xenon arc lamp coupled to an 

excitation monochromator Jobin Yvon-Spex (TRIAX 180) fitted with a 1200 grooves mm-1 

grating blazed at 330 nm was used as excitation source. All spectra were corrected for the 

response of the detectors. 

 

Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDS). 

Particle dimensions and morphology of native and Cs+-exchanged Eu-AV-20 samples were 

O6HEuCl 23 
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assessed by SEM analysis using a Hitachi S4100 microscope. EDS was used to confirm the 

cesium uptake by Eu-AV-20. 

 

Powder X-Ray Diffraction (PXRD).  

PXRD was carried out on a PANalytical Empyrean diffractometer (Cu Kα1,2X-radiation, 

λ1 = 1.540598 Å; λ2 = 1.544426 Å) equipped with an PIXcel 1D detector and a flat-plate sample 

holder in a Bragg-Brentano para-focusing optics configuration (45 kV, 40 mA). Intensity data 

were collected by the step-counting method (step 0.04º), in continuous mode, in the range ca. 

5 ≤ 2θ ≤ 50º.  

 

Cesium concentration in solution.  

The concentration of Cs+ in solution was measured with a Perkin Elmer AAnalyst 100 atomic 

absorption spectrometer, in the emission mode (with a wavelength of 852.1 nm and a slit of 0.2 

nm) and using an air-acetylene flame. The ionization was controlled by the addition of 0.5% 

(wt.) of potassium chloride to samples and standards. Each sample was 

 

V.1.2.4. Fixed-bed and batch ion experiments 

 

Preparation of the fixed-bed column. The column consisted of a vertical stainless steel tube 

(length 10.0 cm and internal diameter 1.30 cm) containing a precise amount of Eu-AV-20 

(Figure 1). The solid was placed in the tube and confined at both ends by four to six quartz 

wool discs (from Elemental Microanalysis), followed by one stainless steel net, and the 

assembly was closed with Swagelok® fittings. The bottom of the column was connected to the 

influent reservoir and the top of the column was connected to a sampler (Figure V.1.1).  

 

Preparation of solutions. A Cs+ stock solution (10.0 mol m-3) was prepared by dissolving CsNO3 

(0.0980x10-3 kg, 5.03x10-4 mol) in high-purity water (50.0 mL). Working solutions were prepared 

by diluting the stock solution to the desired concentration, using high-purity water, immediately 

before their usage to avoid cation adsorption on the glassware and lab material. 

 

Fixed-bed ion exchange experiments. In a typical experiment a freshly prepared solution 

containing a known concentration of Cs+ was fed to the bottom of the column (up-flow mode) 

at constant flow rate using a peristaltic pump (Knauer Smartline pump 100). The pH and 
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temperature were measured at column inlet using a pH meter (Crison Basic 20). Periodically, 

15 mL samples were collected at the outlet of the column after passing an acid washed 

cellulose acetate membrane disc filter (0.45 µm). The concentration of Cs+ in the samples was 

measured by atomic emission spectroscopy. Operation of the column was stopped for equal 

influent and effluent concentrations of Cs+. A control experiment (i.e. without Eu-AV-20 in the 

column) was run to check that Cs+ removal occurred by ion exchange with the solid rather than 

by adsorption on the lab material. 

A set of five experiments (Table V.1.2) was performed to assess the influence of 

superficial velocity (0.40–1.03×10-3 m s-1) and mass of ion exchanger (0.42–0.85×10-3 kg) on 

the Cs+ removal efficiency. Exps. 1–3 were performed for similar cesium influent concentration 

(ca. 1.4 ppm) and mass of solid (ca. 0.43×10-3 kg) to study the influence of the superficial 

velocity. The effect of exchanger mass can be evaluated from Exps. 2 and 4. The last run (Exp. 

5) was carried out for a shorter period, under the same conditions of Exp. 3, to obtain Eu-AV-

20 with an intermediate amount of Cs+ (ca. 65% of the breakthrough curve, 80% of the 

exchange capacity) in order to assess reproducibility and the dependence of 

photoluminescence on the cesium content in the sorbent. 

 

Batch ion experiments. An additional set of four batch experiments (Table V.1.3) was carried 

out to evaluate the selectivity of Eu-AV-20 towards Cs+ in the presence of Na+. The initial 

concentration of cesium was fixed around 5×10-3 mol m-3 and the initial sodium nitrate 

concentrations were 0, 1.02, 10.00 and 52.42 mol m-3, which means the molar ratios were 0, 

193, 2000 and 9456, respectively. The mass of Eu-AV-20 was always ca. 3×10.4 kg and the 

run time 150 h to ensure system equilibration. Preparation of the solutions and cesium 

quantification were performed as described above. 
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Figure V.1.1 – Experimental setup of the ion exchange unit: 1) influent reservoir tank; 2) 

peristaltic pump; 3) fixed-bed column in up-flow mode; 4) Eu-AV-20 powder bed; 5) membrane 

disc filter; and 6) sample collecting tube. 

 

Table V.1.2 – Eu-AV-20 fixed-bed ion exchange experiments performed at 295 ± 1 K. 

Experiment number 1 2 3 4 5 

Inlet concentration of Cs+ (mol m-3) 0.0107 0.0108 0.0108 0.0111 0.0107 

Inlet concentration of Cs+ (ppm) 1.422 1.435 1.435 1.475 1.422 

Bed height (m) 0.010 0.010 0.010 0.016 0.010 

Mass of Eu-AV-20 (10-3 kg) 0.424 0.424 0.436 0.853 0.438 

Superficial velocity (10-3 m s-1) 1.03 0.618 0.399 0.618 0.402 

Run time  (h) 50 50 50 50 15 

 

Table V.1.3 – Eu-AV-20 competitive ion exchange in batch experiments performed at 295 ± 1 

K. 

Experiment number 1 2 3 4 

Initial concentration of Cs+ (mol m-3) 0.0055 0.0050 0.0053 0.0047 

Initial concentration of Na+ (mol m-3) 52.42 10.00 1.02 0 

Initial Na+/Cs+ molar ratio 9456 2000 193 0 

Mass of Eu-AV-20 (10-3 kg) 0.301 0.308 0.306 0.302 

Run time  (h) 150 
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V.1.3. Modelling isotherms and breakthrough curves 

 

V.1.3.1. Equilibrium Isotherm 

 

Ion exchange is often represented as a conventional chemical reaction, since it is a 

stoichiometric process by which two counter ions, A𝑧A and B𝑧B , are exchanged between an 

electrolyte solution and a solid exchanger [32,33]. Generically, an ion exchange process is 

represented by: 

 

𝑧A𝐵𝑧B̅̅ ̅̅ ̅ + 𝑧B𝐴𝑧A ⇋ 𝑧B𝐴𝑧A̅̅ ̅̅ ̅ + 𝑧A𝐵𝑧B  (V.1.1) 

 

where 𝑧A and 𝑧B are the electrochemical valences of both counter ions, and the capping bar 

denotes the exchanger phase. According to Eq. (V.1.1), the exchanger is in B𝑧B  form and is 

converted into A𝑧A form. For the particular case in analysis, A𝑧A = Cs+, B𝑧B  = Na+,K+, which, for 

simplicity, will be henceforth designated by A and B. 

The isotherm of Cs+/(Na+,K+)/Eu-AV-20 system was determined by Figueiredo et al. 

[31], who represented the equilibrium data with 5.3% of error by the Langmuir equation: 

 

𝑞A,eq =
125048 × 𝐶A,eq

1 + 437.5 × 𝐶A,eq

 (V.1.2) 

 

where 𝐶A, eq is the equilibrium concentration of A in solution (mol m-3) and 𝑞A,eq is the equilibrium 

concentration of A in the solid, here expressed in mol m-3.  

 

V.1.3.2. Nernst-Planck based model for fixed-bed ion exchange 

 

The ion-exchange process was modelled using the Nernst-Planck equations, which state that 

the net intraparticle fluxes (𝑁i, mol m-2 s-1) result from molar concentration (𝑞𝑖 , mol m-3) 

gradients and electric potential gradient. For counter ion A, the flux is given by [16,17,32,33]: 

 

𝑁A = −
𝐷A𝐷B(𝑧A

2𝑞A+𝑧B
2𝑞B)

𝐷A𝑧A
2𝑞A+𝐷B𝑧B

2𝑞B
(

𝜕𝑞A

𝜕𝑟
) = −𝐷AB (

𝜕𝑞A

𝜕𝑟
),      𝐷AB ≡

𝐷A𝐷B(𝑧A
2𝑞A+𝑧B

2𝑞B)

𝐷A𝑧A
2𝑞A+𝐷B𝑧B

2𝑞B
 (V.1.3) 
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where 𝐷A and 𝐷B (m2 s-1) are the self-diffusion coefficients of both counter ions, 𝑟 (m) is the 

radial position in the particle, and 𝐷AB (m2 s-1) is the interdiffusion coefficient. The ion exchanger 

capacity is given by: 𝑄(eq m−3) = 𝑞A𝑧A + 𝑞B𝑧B.  

The fixed-bed model encompasses a material balance to the column, Eq. (V.1.4), with 

an axial dispersion term, a convective term, and two accumulation terms for the fluid and solid 

phases, whose boundary conditions are given by Eqs. (V.1.5) and (V.1.6): 

 

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑡
= 𝐷L

𝜕2𝐶A(𝑙, 𝑡)

𝜕𝑙2
− 𝑢

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑙
−

1 − 𝜀

𝜀

𝜕𝑞̅A(𝑙, 𝑡)

𝜕𝑡
 (V.1.4) 

𝑙 = 0 , 𝐷L

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑙
|

l=0+

= −𝑢(𝐶A,0 − 𝐶A|l=0+) (V.1.5) 

𝑙 = 𝐿 ,
𝜕𝐶A(𝑙, 𝑡)

𝜕𝑙
|

𝑙=𝐿
= 0 (V.1.6) 

 

Here, 𝐶A is the molar concentration of species A in solution (mol m-3),  𝑢 is the superficial 

velocity (m s-1), 𝑙 is the position along the bed length (m), 𝐿 is the total length of the bed (m), 𝑡 

is time (s), 𝐷L is the axial dispersion coefficient (m2 s-1), 𝜀 is the average bed porosity (𝜀 = 0.88), 

𝑞̅A is the average concentration of A in the solid (mol m-3), and 𝐶A,0 is the concentration of A at 

the column inlet. 𝐷L was estimated using the following correlation [34]: 

 

𝐷L = (20 + 0.5 × Sc × Re) ×
𝐷m

𝜀
 (V.1.7) 

 

where 𝐷𝑚 is the diffusivity of Cs+ in water (2.06x10-9 m2 s-1 at 298.15 K [35]) and Sc and Re are 

the Schmidt and Reynolds numbers, respectively.  

The material balance to the ion exchanger is given by Eq. (V.1.8). Eqs. (V.1.9)-(V.1.11) 

represent its initial and boundary conditions, and Eq. (V.1.12) translates the equality of fluxes 

at the interface: 

 

𝜕𝑞A

𝜕𝑡
= −

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑁A) (V.1.8) 
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𝑡 = 0, {
𝑞A = 0

𝐶A = 𝐶A,0
 (V.1.9) 

𝑟 = 0,
𝜕𝑞A

𝜕𝑟
= 0 (V.1.10) 

𝑟 = 𝑅𝑝, 𝑞A = 𝑞A,Rp
 (V.1.11) 

𝑁𝐴|𝑅p
= 𝑘f (𝐶A − 𝐶A|𝑅p

) (V.1.12) 

 

𝑅p is the particle radius (m), 𝐶A|𝑅p
 is the concentration at the interface, and 𝑘f is the convective 

mass transfer coefficient (m s-1) of counter ion A. The value of 𝑘f was estimated by the following 

correlation involving classical Sherwood (Sh), Reynolds (Re) and Schmidt (Sc) numbers [8]: 

 

Sh =
1.13

ε
Re0.21Sc1 3⁄  (V.1.13) 

 

The average loading per unit particle volume needed in Eq. (V.1.4) is calculated by: 

 

𝑞̅𝐴 =
3

𝑅p
3

∫ 𝑟2𝑞A𝑑𝑟
𝑅p

0

 (V.1.14) 

 

The stoichiometric time, 𝑡st (h), of a breakthrough curve can be calculated by Eq. 

(V.1.15) using experimental data or estimated on the basis of the solute movement theory by 

Eq. (V.1.16): 

 

𝑡st = ∫ (1 −
𝐶A(𝑡)

𝐶A,0
)  𝑑𝑡

∞

0

 (V.1.15) 

𝑡st =
𝐿

𝜐
(1 +

1 − 𝜀

𝜀

𝑞A,0

𝐶A,0
) (V.1.16) 

 

where 𝑞A,0 is the solid loading in equilibrium with feed concentration, 𝐶A,0.  
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V.1.3.3. Analytic breakthrough models 

 

The equations of Clark [36], Yoon-Nelson [37], Bohart-Adams [38], and Thomas [39] were 

adopted in this study to model  the breakthrough curves along with the Nernst-Planck based 

model.  

The Thomas model [39] assumes Langmuir kinetics for sorption-desorption, negligible 

axial and radial dispersion, and a second-order reversible kinetics. The most common version 

of this model in environmental sorption and biosorption literature is given by: 

 

𝐶A(𝑡)

𝐶A,0
=

1

1 + 𝑒
[
𝑘Th

𝑣 (𝑄Th𝑚−𝐶A,0𝑣𝑡)]
 (V.1.17) 

 

where 𝑘Th is the Thomas rate constant (m3 mol-1 s-1), 𝑄Th is the maximum concentration of the 

solute in the solid phase (mol kg-1), 𝑚 is the mass of solid (kg), and 𝑣 is the volumetric flow rate 

(m3 s-1).  

The Bohart-Adams model, initially developed to describe the adsorption of chloride on 

charcoal [38], assumes that the sorption rate is proportional to the residual capacity of the 

exchanger and to the concentration of the solute species in solution. Its equation may be 

expressed as: 

 

𝐶A(𝑡)

𝐶A,0
=

1

1 + 𝑒[𝑘BA( 𝑞A,max 𝜏 −  𝐶A,0 𝑡) ]
 (V.1.18) 

 

where 𝑘BA is the Bohart-Adams mass transfer coefficient (m3 mol-1 s-1), 𝑞A,max is the saturation 

concentration (mol m-3), and 𝜏 = 𝐿 𝑢⁄  is the space time (s).  

The major difference between the Thomas and Bohart-Adams models lies in the 

embodied isotherms: the first one uses Langmuir and the latter adopts a rectangular or 

irreversible isotherm. Therefore, for highly favourable isotherms the Thomas model reduces to 

the Bohart-Adams equation and their parameters become interchangeable, i.e. 𝑘Th = 𝑘BA and 

𝑄Th𝑚 𝑣⁄ = 𝑞A,max 𝜏 [40]. 

The Clark model [36] combines mass transfer concepts and the Freundlich isotherm, 

and it assumes plug flow and negligible dispersion phenomena. It is mathematically given by: 
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𝐶A(𝑡)

𝐶A,0
= [

1

1+𝐴𝐶 𝑒−ωt]

1

𝑛−1
     with     𝐴𝐶 =  (

𝐶A,0
𝑛−1

𝐶b
𝑛−1 − 1) 𝑒ω 𝑡b (V.1.19) 

 

where 𝑛 is the Freundlich constant, and 𝐶b is the solute concentration (mol m-3) at breakthrough 

time, 𝑡b (h), and 𝜔 is a rate parameter (h-1). 

The Yoon-Nelson model [37] assumes that the rate of decrease in the probability of 

sorption for each sorbate molecule is proportional to the probability of sorbate sorption and 

sorbate breakthrough on the sorbent. The model does not require detailed data concerning 

solute characteristics, type of sorbent and physical properties of the bed. For a single 

component system it is expressed by: 

 

𝐶A(𝑡)

𝐶A,0
=

𝑒[𝑘YN(𝑡−𝑡50)]

1 + 𝑒[𝑘YN(𝑡−𝑡50)]
 (V.1.20) 

 

where 𝑘YN denotes the Yoon-Nelson rate constant (h-1), and 𝑡50 is the time for 𝐶A 𝐶A,0⁄ = 0.5 . 

 

V.1.3.4. Numerical methods and calculations approach 

 

The Method of Lines was applied for the numerical calculation of the concentration profiles of 

Cs+, and their evolution along time in the solution and in the solid phase, for the case of the 

NP-based model. The required spatial discretization in the particle and bed length was 

accomplished by Finite Differences. The resulting initial-value problem set of ordinary 

differential equations was solved numerically using 51 grid points for the particle radius and 31 

grid points for the bed length. 

Regarding the NP-based model, the self-diffusion coefficients (𝐷A and 𝐷B) were fitted to 

the data of Exp. 1 only, while 𝑘𝑓 values were estimated by Eq. (V.1.13). Therefore, only two 

initial guesses were required to model Exp. 1, and the breakthrough curves of Exps. 2–4 were 

completely predicted.  

In what concerns the so-called Thomas and Bohart-Adams models, Eqs. (V.1.17) and 

(V.1.18), the calculations involved four individual constants (𝑘Th or 𝑘BA), one for each run, plus 

one shared parameter (𝑄Th or 𝑞A,max ). In turn, the Clark and Yoon-Nelson models (Eqs. 
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(V.1.19) and (V.1.20)) were adjusted considering one pair of parameters per curve: (ω, 𝐴𝐶) and 

(𝑘YN, 𝑡50). Moreover, for the Clark model the values of 𝐴𝐶 and ω were determined by nonlinear 

regression of breakthrough data, using the Freundlich constant (𝑛 = 2.368) obtained by fitting 

the adsorption isotherm to published equilibrium points [31]. Although the Freundlich isotherm 

is not the best model to represent the Cs+/(Na+,K+)/Eu-AV-20 system, the fitting was acceptable 

(9.74% error). 

The Nelder-Mead and the Marquardt-Levenberg algorithms were adopted in this work 

for all optimizations using the root mean square deviation (RMSD) as objective functions: 

 

RMSD (%) = 100 × √∑
(𝐶A,calc|

i
− 𝐶A,exp|

i
)

2

NDP

NDP

i=1

 (V.1.21)  

 

where NDP is the number of data points, and the subscripts ‘exp’ and ‘calc’ denote measured 

and calculated concentrations, respectively. All programs were written and coded in Matlab 

R2013a®. 

 

V.1.4. Results and discussion  

 

V.1.4.1. Materials characterization  

 

SEM images of native and Cs+-exchanged Eu-AV-20 crystals are similar (Figure V.1.2) and 

reveal microcrystalline pseudo hexagonal thin plates with a lateral dimension lower than 20×10-

6 m, which is consistent with previous reports [31]. With respect to EDS results, Figure 3 

confirms that the Cs+ was sorbed because cesium is absent in the native material (see Figure 

V.1.3.a) while it appears in the solid after ion exchange (see Figure V.1.3.b). 

The experimental PXRD pattern of native Eu-AV-20 (Figure V.1.4) shows all the 

characteristic reflections [29] and no impurity phases are detected. The PXRD patterns of the 

samples collected after the fixed-bed experiments (Exps. 1–5, Table V.1.2) exhibit some 

changes, such as peak shifts from 14.21º to 14.36º, from 31.25º to 31.38º and from 32.27º to 

32.43º, the increment of intensity of the peak at 28.95º and the presence of a new peak at 

30.09º. Altogether, these results indicate slight changes in the crystalline structure of Cs+-
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exchanged Eu-AV-20, which may result in alterations in the local Eu3+ environment that impact 

on the photoluminescence properties (to discuss in Section V.1.4.4). 

 

 

Figure V.1.2 – SEM image of Eu-AV-20 crystals. 

 

 

Figure V.1.3 – EDS spectra of (a) native and (b) Cs+-exchanged Eu-AV-20 samples. 
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Figure V.1.4 – PXRD of native and Cs+-exchanged Eu-AV-20 samples collected after the fixed-

bed experiments (Exps. 1–5, see Table V.1.2). Inset: PXRD on an expanded scale in the range 

28-31º. 

 

V.1.4.2. Fixed-bed experimental results and selectivity assessment 

 

The breakthrough curves (Exps. 1–4, Table V.1.2) are plotted in Figure 5 grouped according 

to the different variables under study, namely, the superficial velocity (varied via flow rate 

modification) (Exps. 1–3, Figure V.1.5.a), and the mass of ion exchanger (Exps. 2 and 4, Figure 

V.1.5.b). The plots illustrate the evolution of the normalized cesium concentration in solution at 

the column outlet, 𝐶A(𝑡) 𝐶A,0⁄ . 
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Figure V.1.5 – Normalized experimental breakthroughs for Cs+ removal in a fixed-bed of Eu-

AV-20. (a) Effect of superficial velocity (via flow rate variation); (b) Effect of the mass of ion 

exchanger. Symbols: data (experimental conditions in Table V.1.2); lines: NP-based model. 

 

Considering that the isotherm of the Cs+/(Na+,K+)/Eu-AV-20 system is favourable, i.e., 

convex upward (see Eq. (V.1.2)), in the absence of dispersive phenomena (such as axial 

dispersion and/or film and intraparticle resistances to mass transfer) a step-function would 

propagate ideally without changes along the fixed-bed and would exit the column at a precise 

instant, the stoichiometric time (𝑡st) given by Eqs. (V.1.15) or (V.1.16). Hence, the experimental 

ion exchange breakthrough curves shown in Figure 5 clearly disclose that mass transfer effects 

prevail in this system.  
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The influence of axial dispersion is certainly negligible since the calculated axial Peclet 

numbers (𝑃𝑒L = 𝑢𝐿 𝐷ax⁄ ) were 174.5, 115.1, 78.7 and 178.6 for Exps. 1–4, and the well-known 

relation 𝐿 > 50 𝑑𝑝 was largely obeyed (𝑑𝑝 = 2.3 × 10−5 m and 𝐿 was 0.010 m (Exps. 1–3) or 

0.016 m (Exp. 4)). Regarding external resistance to mass transfer, the width of the 

breakthrough curves changed with flow rate variation, i.e., they increased with decreasing 

superficial velocity (Exps. 1–3), which indicates the existence of film diffusion limitations. This 

observation was also confirmed by simulation (to be further discussed below).  

According to the breakthroughs curves (Exps. 1–3, Figure V.1.5.a), lower superficial 

velocities require higher operating times to exhaust the solid phase, and vice-versa. This result 

is in agreement with the solute movement theory, Eq. (V.1.16), since the stoichiometric time 

(𝑡st) is inversely proportional to superficial velocity. The 𝑡st values calculated from experimental 

data were 4.96, 7.53 and 13.80 h (for Exps. 1, 2 and 3, respectively). 

To study the impact of ion exchanger mass on the breakthrough curves, the mass of Eu-

AV-20 was increased 100% (Exp. 4 versus Exp. 2). The two breakthrough curves (Figure 

V.1.5.b) are considerably different especially in what concerns the 5 h delay period observed 

in Exp. 4, before the consistent and visible rise of 𝐶A(𝑡). Once again, the solute movement 

theory provided excellent results, since 𝑡st,4 𝑡st,2⁄ = 15.62 7.53⁄ = 2.07, which is almost equal to 

the ratio of sorbent masses, 𝑚4 𝑚2⁄ = 0.853 0.424⁄ = 2.0 (calculated by Eq. (V.1.16) 

considering also that 𝐿 ∝ 𝑚). 

A preliminary study of ion exchange competition was performed in order to analyse the 

influence of the presence of Na+ upon cesium uptake (see experimental conditions in Table 

V.1.3). The final uptake of Cs+ is plotted in Figure V.1.6 against the initial molar ratio of Na+ and 

Cs+, being possible to conclude that Eu-AV-20 reached Cs+ removals of 76.0, 70.2, 39.5 and 

20.0% for 0, 193, 2000 and 9456 ratios, respectively. These values confirmed the exchanger 

affinity to cesium as 20% uptake was attained even when the initial sodium concentration was 

three orders of magnitude higher.  
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Figure V.1.6 – Final uptake of cesium as function of the initial molar ratio of Na+ and Cs+ 

(experimental conditions in Table V.1.3). 

 

V.1.4.3. Fixed-bed modelling results  

 

A model can be validated through the fitting of experimental results, but its usefulness comes 

mainly from its ability to predict the behaviour of a process under operating conditions different 

from those used to obtain its parameters [33]. In the present section, the calculated results 

obtained with NP-based model and by the analytic equations of Thomas, Bohart-Adams, Clark 

and Yoon-Nelson are presented and discussed, being demonstrated the prediction ability of 

the NP-based model. 

Nernst-Planck based model. The results achieved in this case are plotted in Figure V.1.5 

together with the experimental data (Exps. 1–4). The model parameters (𝐷A and 𝐷B) were 

obtained by fitting the data of Exp. 1 only, with good correlation (RMSD = 6.66%), while for 

Exps. 2–4 pure prediction provided deviations of 6.55%, 5.24% and 7.95%, respectively (Table 

V.1.4) The self-diffusivities (𝐷A = 2.324x10-16 m2 s-1 and 𝐷B= 6.134×10-15 m2 s-1) are of the same 

order of magnitude of those reported for the system Cd2+/Na+/ETS-10 [16], and bigger than 

those published for Cd2+/Na+/ETS-4 [14] and Hg2+/Na+/ETS-4 [41]. Despite the exchanged 

counter ions are different (Cs+ against of Cd2+ or Hg2+), the diffusion coefficients are consistent 

with the pore sizes of ETS-4 (3×4 Å), Eu-AV-20 (5.8×6.8 Å) and ETS-10 (4.9×7.6 Å). With 

respect to the film diffusion coefficients, their values were estimated by Eq. (V.1.13) and gave 

rise to 4.119x10-4 (Exp. 1), 3.700x10-4 (Exp. 2 and 4) and 3.381x10-4 (Exp. 3) m s-1. During the 
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course of the simulations it was observed that 𝑘f influences the results, meaning that the 

external limitation to mass transfer are not negligible. 

An advantage of the Nernst-Planck based model is its breadth to understand the kinetic 

processes governing ion exchange in a fixed-bed column. For instance, the model describes 

the time evolution of the outlet cesium concentration but, above all, it discloses the 

concentration profiles of cesium along the column in the bulk and inside the Eu-AV-20 particles. 

Accordingly, the normalized Cs+ concentration in solution, 𝐶A(𝑡)/𝐶A,0, and the normalised 

average solid loading, 𝑞̅A 𝑞A,max⁄ , were computed and plotted against time and longitudinal bed 

position for the conditions of Exp. 3, in Figure V.1.7.a and Figure V.1.7.b, respectively. The 

independent variables were also normalized, being 𝑍 = 𝑙 𝐿⁄  and 𝜃 = 𝑡 𝜏⁄ , where 𝜏 = 𝐿 𝑢⁄  is the 

space time (s). 

In terms of bulk solution concentration, the surface in Figure V.1.7.a illustrates both the 

decreasing profiles along the column (as 𝑍  goes from 0 to 1) for different exchange times, and 

the attenuation of these curves as time increases. As a particular case of Figure V.1.7.a, the 

breakthrough curve previously represented for Exp. 3 in Figure 5.a becomes visible at the 

column outlet (𝑍 = 1). 

If the focus is placed on the solid, Figure V.1.7.b evidences that Cs+ concentration 

profiles follow the same tendency as in bulk solution, displaying a delay due to the effect of 

mass transfer kinetics. Specifically, Cs+ load decreases along the column (when 𝑍  goes from 

0 to 1) and increases with time, reaching 80% of the capacity established by the Langmuir 

isotherm, Eq. (2), for 𝜃 ca. 7000. This is expected because Eu-AV-20 particles positioned at 

the top of the bed contact with less concentrated solutions throughout the process and, thus, 

require a longer time to reach equilibrium. 
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Figure V.1.7 – Normalized Cs+ concentration in bulk solution (a) and normalized Cs+ loading in 

the solid (b) as function of dimensionless time and longitudinal bed position. Simulations were 

performed for the conditions of Exp. 3 (Table V.1.2). 

 

Analytic models. The data from Exps. 1–4 were fitted to four conventional analytic 

models, Eqs. (17)–(20), with good accuracy: RMSDs in the range 3.20–6.47% and R2 between 

0.962 and 0.985 (Table V.1.3). The fitting quality of the analytic models can also be assessed 

in Figure 8, which presents calculated versus experimental normalized fluid concentrations at 

the column outlet. In general, the four models fit the data fairly well, but consistently 

overestimate at low/high outlet concentrations and underestimate for intermediate 

concentrations, i.e., in the steep rise branches of the breakthrough curves. 
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The smaller deviations were found for the Clark and Yoon-Nelson models (RMSD 

3.64% and 3.20%, respectively) not surprisingly since both models rely on eight regressed 

parameters. The usefulness of such models is therefore questionable.  

The other two models comprise five parameters each, with the Thomas model, which is 

frequently used in the literature, behaving slightly better than the Bohart-Adams model (RMSD 

5.15% and 6.47%, respectively). As discussed in section V.1.3.3, a correlation between the 

parameters was expected in advance due to the mathematical equivalence of the models, 

namely 𝑘BA = 𝑘Th and 𝑄Th𝑚 𝑣⁄ = 𝑞A,max𝐿 𝑢⁄ . From Table V.1.3  it is possible to conclude that 

𝑘BA and 𝑘Th are quite similar with an average absolute relative deviation of only 12.4%. 

Additionally, the average value of the ratio 𝑄Th𝑚𝑢 (𝑣 𝑞A,max 𝐿)⁄  was 0.99, very close to the 

theoretical value of 1.  

In comparison, the 2-parameter Nernst-Planck based model presents higher deviations 

with a RMSD of 6.53% (Table V.1.3) which is quite similar to the deviations reported in the 

literature for zeolite-type materials [14,16,17,41]. Despite being less expedite to implement than 

the four analytic models, the NP-based model presented in this work provides crucial 

information about the transport mechanisms inside and outside the Eu-AV-20 particles, and 

predicts the dynamic behaviour of the fixed-bed ion exchange column. Such potential relies on 

its theoretically sound assumptions. 
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Figure V.1.8 – Comparison of the four conventional analytic models for fixed-bed ion exchange: 

calculated versus experimental normalized fluid concentrations at column outlet. (Experimental 

conditions in Table V.1.2). 
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V.1.4.4. Photoluminescence results  

 

Three samples were studied, native Eu-AV-20 and two Cs+-exchanged materials collected 

after fixed-bed experiments under similar conditions, except for the time of operation (Exps. 

3 and 5, Table V.1.2). Exp. 3 was performed until exhaustion of the solid’s exchange 

capacity (ca. 50 h) while Exp. 5 was run for a shorter period (ca. 15 h) to accomplish only 

80% of  𝑞A,max (see Figure 9.a). Therefore, in view of the different contact times the three 

Eu-AV-20 samples have different Cs+ contents. Figure V.1.9.b reveals differences in the 

normalized emission spectra for the non-degenerated 5D0
7F0 transitions. The native 

washed Eu-AV-20 possesses two distinct europium sites (Eu1 and Eu2), which give peaks 

at 577.9 nm and 578.9 nm. However, the replacement of sodium and potassium cations by 

Cs+ introduces small modifications in the crystalline structure, as discussed previously 

(section V.1.4.1 and Figure V.1.4), leading to changes in the vicinity of Eu3+ cations and in 

the photoluminescence spectra: higher Cs+ loads decrease the intensity of the Eu1 

emission and shift the Eu2 peak to lower wavelengths (Figure V.1.9.b). Even these are 

preliminary results they suggest that photoluminescence may be an expedite method to 

assess ion exchange phenomena in Cs+/Eu-AV-20 systems, and in addition disclose the 

potential of microporous Ln-silicate Eu-AV-20 solids for cesium sensing purposes.  

The fact that the Eu-AV-20 photoluminescence varies upon Cs ion exchange raises 

the intriguing possibility of following up this process on-line by coupling to the fixed-bed 

column an optical fiber and a spectrometer. In this way the solid loading can be assessed 

online, complementing the usual sampling of the bulk liquid along the column. This 

combined information is important if one takes into account that mass transfer limitations 

always exist which means both phases are not in equilibrium. Work along these lines is in 

progress. 

 



V. Removal of Cs+ from aqueous solutions through fixed-bed experiments 

 

237 

 

Figure V.1.9 – a) Measured breakthrough curves for two different run times (Exps. 3 and 5; 

experimental conditions in Table V.1.2); b) Normalized 5D0
7F0 transition of the 

photoluminescence emission room temperature spectra of the native and Cs+ exchanged 

Eu-AV-20 with excitation at 393 nm. 

 

V.1.5. Conclusions 

 

The use of Eu-AV-20 for Cs+ removal from aqueous solutions was studied in a fixed-bed 

column. The dynamic behaviour of the ion exchange column was in accord with theory, 

namely, higher solid masses and lower superficial velocities (via inferior flow rates) delayed 

the breakthrough curves. Moreover, the experimental stoichiometric times followed the 

solute movement theory.  

The proposed Nernst-Planck based model (2 parameters) achieved RMSD = 6.66% 

for the correlation of one breakthrough curve, and only 6.54% for the prediction of the 

others. The optimized self-diffusivities were consistent with data from the literature, and 

followed essentially the pore size diameter of the solids. The RMSDs of Thomas, Bohart-
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Adams, Clark and Yoon-Nelson models ranged between 3.20% (Yoon-Nelson, 10 

parameters) and 6.47% (Bohart-Adams, 5 parameters). These reliable results are ascribed 

to the number of fitting parameters.  

Regarding the photoluminescence of native and ion-exchanged Eu-AV-20, the 

uptake of Cs+ modifies the local environment of the Eu3+ emitter resulting in changes in the 

5D0
7F0 transition intensities and line positions, indicating the potential of Eu-AV-20 for 

sensing purposes. 

 

V.1.6. Nomenclature 

 

A or A𝑧A Counter ion initially in solution 

𝐴𝐶  Clark model parameter 

B or B𝑧B  Counter ion initially in the exchanger 

𝐶b Solute concentration at breakthrough time in Clark model (mol m-3) 

𝐶A Concentration of counter ion A in solution (mol m-3) 

𝐶A,0 Initial concentration of counter ion A in solution (mol m-3) 

𝐷i Self-diffusion coefficient of counter ion 𝑖 (m2 s-1) 

𝐷L Axial dispersion coefficient (m2 s-1) 

𝐷AB Interdiffusion coefficient of NP model (m2 s-1) 

𝐷m Diffusion coefficient of Cs+ in water (m2 s-1) 

Exp. j Experiment number j 

𝑖 and 𝑗 Generic counter ions 

𝑘BA Bohart-Adams mass transfer coefficient (m3 mol-1 s-1) 

𝑘f Convective mass transfer coefficient (m s-1) 

𝑘Th Thomas rate constant (m3 mol-1 s-1) 

𝑘YN Yoon-Nelson rate constant (h-1) 

𝑙 Column longitudinal coordinate (m) 

L Length of the fixed-bed (m) 

Ln-silicate Lanthanide silicate 

𝑚 Mass of ion exchanger (Eu-AV-20) (g) 

𝑛 Freundlich isotherm constant  

NDP Number of data points 

NP Nernst-Planck 

PXRD Powder X-ray diffraction 
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 𝑞A,max Maximum solute concentration in the particle in Bohart-Adams model 

(mol m-3) 

𝑞A,0 Solid loading in equilibrium with feed concentration, 𝐶A,0 

𝑞i Molar concentration of counter ion i in the particle (mol m-3) 

𝑞̅i Average concentration of counter ion i in the particle (mol m-3) 

𝑄Th Thomas model parameter: maximum solute concentration in the solid 

(mol kg-1) 

𝑟 Radial position in the particle (m) 

R2 Coefficient of determination 

𝑅p Particle radius (m) 

RMSD Root Mean Square Deviation (%) 

SEM Scanning Electron Microscopy 

𝑡50 Yoon-Nelson parameter: time for 𝐶A 𝐶A,0⁄ = 0.5, (h) 

𝑡 time (h or s) 

𝑡st Stoichiometric time (h) 

𝑡b Breakthrough time (h) 

𝑇 Absolute temperature (K) 

𝑢 Superficial velocity (m s-1) 

𝑣 Flow rate (m3 s-1) 

𝑍 Dimensionless longitudinal coordinate in the column 

𝑧i Electrochemical valence of counter ion 𝑖 

 

Greek letters 

 

𝜀 Bed void fraction 

𝜌s Density of ion exchanger  

𝜃 Dimensionless time 

 Space time (s) 

𝜔 Clark model rate parameter (h-1) 

 

Subscripts 

 

0 Initial conditions  

A Counter ion initially present in the bulk solution (Cs+) 
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B Counter ions initially present in the ion exchange (K+ and Na+) 

BA Bohart-Adams model 

calc Calculated value 

eq Equilibrium value 

exp Experimental value 

Th Thomas 

s solid 

YN Yoon-Nelson model 
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Work reported in the scientific article 

 

Batch and fixed-bed removal of Cs+ from aqueous solutions using ETS-4: 

Measurement and modeling of loading-regeneration cycles and equilibrium 

 

published on Chemical Engineering Journal 301 (2016) 276–284 

 

 

 

 

Abstract 

 

ETS-4 was prepared by hydrothermal synthesis and characterized by powder X-ray 

diffraction in order to assess its ion exchange capacity towards the removal of Cs+ from 

aqueous solutions in both batch and fixed-bed operation modes. Several assays were 

carried out to measure isotherm (8 experiments) and breakthrough curves (5 experiments); 

a set of loading-regeneration-loading experiments was also performed highlighting the 

ability of ETS-4 to be used in cyclic ion exchange. Powder X-ray diffraction showed that 

parent and Cs+-exchanged ETS-4 are isostructural. The Langmuir equation achieved good 

correlation results (average deviation of 6.58%), while the Nernst-Planck based model 

proposed for the fixed-bed assays fitted one breakthrough curve with 18.66% error, and 

was able to predict the remaining four experiments with 9.55% error. The Nernst-Planck 

parameters are the self-diffusion coefficients of Cs+ and Na+ in ETS-4, whose values 

(𝐷C𝑠+ = 3.193x10-16 m2 s-1 and 𝐷Na+ = 6.088x10-15 m2 s-1) are consistent with the 

microporosity of ETS-4 framework and with the size of the counter ions. 
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V.2. Batch and fixed-bed removal of Cs+ from aqueous solutions using ETS-

4: Measurement and modeling of loading-regeneration cycles and equilibrium 

 

V.2.1. Introduction 

 

The removal of long-lived radionuclides generated by nuclear power plants represents an 

important environmental aspect in nuclear waste management. For instance, the medium-

lived radioisotopes strontium (90Sr) and cesium (137Cs), whose decay half-lives are, 

respectively, 28.9 and 30.1 years are responsible for most of the accumulated radiation on 

the produced effluents. Therefore, their removal is imperative and can be seen as an 

effective strategy to minimize such nuclear waste volumes [42,43]. To achieve the desired 

separation, various physicochemical processes may be applied, namely, co-precipitation, 

solvent extraction, coagulation, electrochemical, membrane processes, and adsorption/ion 

exchange [3,44].  

In this context, inorganic ion exchangers are widely employed for the removal and 

safe storage of radionuclides from nuclear wastes due to their high mechanical, thermal 

and radiation stabilities and potential selectivity. On the other hand, due to the unique pore 

structure and cation exchange properties of natural and synthetic zeolites, this class of 

materials has attracted significant attention [33]. For instance, clinoptilolite has been used 

for cesium and strontium uptake before effluents discharge in the Irish Sea [45]. Mordenite 

and chabazite also found application in treating hazardous solutions from nuclear power 

plants [46,47]. Very recently, two microporous lanthanide silicates have been tested for the 

first time as Cs+ exchangers, Eu-AV-20 [31,48] (mineral tobermorite analogue) and Tb/Eu-

AV-9 [49] (mineral montregianite analogue), where AV-n stands for Aveiro material number 

n.  

Microporous titanosilicates are also a successful class of zeolite-like materials for 

the uptake of long- and medium-lived radionuclides from nuclear waste effluents. In this 

class, sitinakite [50,51] and pharmacosiderite [52,53] stand out, with the former having a 

synthetic counterpart commercially available from UOP [9,54,55]. Many other such 

materials deserve mention, such as the ETS (Engelhard Titanosilicates) [56–60] and AM 

(acronym of Aveiro-Manchester) [2,61–63] families. Titanosilicate ETS-4, in particular, 

comprises SiO4 tetrahedra and TiO5 and TiO6 polyhedra, exhibiting high ion exchange 

capacity and, in the parent form, exchangeable Na+ and K+ cations [64]. ETS-4 has the ideal 

composition M8Ti5Si12O38∙nH2O (M=K,Na), essentially, the structure of zorite, comprising 

8-membered rings and an effective pore size of 0.37 nm that may be fine-tuned by 
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progressive dehydration [64]. The Na-form of ETS-4 collapses at ca. 473 K, a limitation that 

may be overcome by ion exchange, for example with strontium [64].  

Most of articles dealing with ion exchange focuses on batch assays for equilibrium 

and kinetic studies [15–17,41,45,60,65]. Nonetheless, fixed-bed experiments comprising 

both loading and regeneration steps are crucial for commercial/industrial applications, as 

their accurate design requires not only isotherms but also the knowledge of the dynamic 

behaviour of the system. For instance, the well-known breakthrough experiments are 

indispensable to measure the length of unused bed for the accurate scale-up of industrial 

sorption units. To accomplish this, the development of theoretically sound models for the 

representation of ion exchange data and subsequent simulations is also necessary for 

reliable optimization and scale-up. Some examples of fixed-bed assays include studies 

performed with titanosilicates ETS-10 [7,8] and CST [9], NaY zeolite [6], and lanthanide 

silicate Eu-AV-20 [31]. 

Here, the removal of Cs+ from aqueous solutions by ETS-4 is investigated using 

batch and fixed-bed experiments. Complete loading-regeneration cycles are performed and 

they are simulated using Nernst-Planck equations and Langmuir isotherm. 

 

V.2.2. Modelling 

 

Ion exchange is often represented as a chemical reaction because of the stoichiometric 

nature of the process by which two counter ions, 𝐴𝑧A and 𝐵𝑧B, are exchanged between an 

electrolyte solution and a solid sorbent according to: 

 

zABzB̅̅ ̅̅̅ + zBAzA ⇋ zBAzA̅̅ ̅̅̅ + zABzB (V.2.1) 

 

where 𝑧A and 𝑧B are the electrochemical valences of counter ions, and the capping bar 

denotes the exchanger phase. In this study, AzA is Cs+, BzB is Na+, 𝑧A = 𝑧B = +1, and the 

exchanger (ETS-4) is converted from the BzB̅̅ ̅̅̅ to the AzA̅̅ ̅̅̅ form. For simplicity, AzA and BzB will 

be henceforth designated as A and B. To describe the fixed-bed ion exchange of the 

Cs+/Na+/ETS-4 system, a Nernst-Planck (NP) based model was written and coded in Matlab 

R2013a®. 

The following equations were used successfully to represent the intraparticle mass 

transport of Hg2+/Na+ and Cd2+/Na+ pairs through ETS-4 [16,17]. Briefly, the NP equations 

state that the fluxes (𝑁i, mol m-2 s-1) of counter ions result from both concentration (𝑞𝑖, mol 
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m-3) and electric potential gradients. For a binary A/B system, the internal flux of A is given 

by [16,17,32,33]: 

 

𝑁A = −
𝐷A𝐷B(𝑧A

2𝑞A + 𝑧B
2𝑞B)

𝐷A𝑧A
2𝑞A + 𝐷B𝑧B

2𝑞B

(
𝜕𝑞A

𝜕𝑟
) = −𝐷AB (

𝜕𝑞A

𝜕𝑟
) (V.2.2) 

𝐷AB ≡
𝐷A𝐷B(𝑧A

2𝑞A + 𝑧B
2𝑞B)

𝐷A𝑧A
2𝑞A + 𝐷B𝑧B

2𝑞B

 (V.2.3) 

 

where 𝐷A and 𝐷B (m2 s-1) are the self-diffusion coefficients of A and B, 𝑟 (m) is the radial 

coordinate in the particle, and 𝐷AB (m2 s-1) is taken as an interdiffusion coefficient. The 

exchange capacity of the sorbent is calculated by 𝑄(eq m−3) = 𝑞A𝑧A + 𝑞B𝑧B.  

The fixed-bed model encompasses the material balance to the column (Eq. (V.2.4)), 

which contains the accumulation contributions in the fluid and solid phases, an axial 

dispersion term and a convective term. The appropriate initial and boundary conditions are 

given by Eqs. (V.2.5) and (V.2.6). 

 

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑡
+

1 − 𝜀

𝜀

𝜕〈𝑞A〉(𝑙, 𝑡)

𝜕𝑡
= 𝐷L

𝜕2𝐶A(𝑙, 𝑡)

𝜕𝑙2
− 𝑢

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑙
 

 

(V.2.4) 

𝑡 = 0, 𝐶A = 𝐶A,in = 0 (V.2.5) 

𝑙 = 0, 𝐷L

𝜕𝐶A

𝜕𝑙
= −𝑢(𝐶A,0 − 𝐶A) 

𝑙 = 𝐿,
𝜕𝐶A

𝜕𝑙
= 0 

(V.2.6) 

 

In Eqs. (V.2.4)-(V.2.6), 𝐶A (mol m-3) is the molar concentration of species A in solution, 𝑢 (m 

s-1) the superficial velocity, 𝑙 (m) the position along the bed, 𝐿 (m) the bed length, 𝑡 (s) time, 

𝜀 the bed porosity (𝜀 = 0.88), 〈𝑞A〉 (mol m-3) the average concentration of A in the solid, 𝐶A,in 

the initial concentration of A in the fluid inside the bed, and 𝐶A,0 the concentration of A in the 

feed. The axial dispersion coefficient 𝐷L (m2 s-1) was estimated here using the following 

correlation [34]: 

 

𝐷L = (20 + 0.5 × Sc × Re) ×
𝐷m

𝜀
 (V.2.7) 
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where 𝐷m is the diffusivity of Cs+ in water (2.06x10-9 m2 s-1 at 298.15 K [35]), and Sc and Re 

are the well known Schmidt and Reynolds numbers, respectively.  

The material balance to the exchanger particle is given by Eq. (V.2.8), and the initial 

and boundary conditions for the ion exchange experiment are represented by Eqs. (V.2.9)-

(V.2.11).  

 

𝜕𝑞A

𝜕𝑡
= −

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑁A) (V.2.8) 

𝑡 = 0, 𝑞A = 𝑞A,in = 0 (V.2.9) 

𝑟 = 0,
𝜕𝑞A

𝜕𝑟
= 0 (V.2.10) 

𝑟 = 𝑅𝑝, 𝑞A = 𝑞A,Rp
 (V.2.11) 

 

where 𝑅p (m) is the particle radius, 𝑞A,in (mol m-3) the initial concentration of A in the solid 

along the bed, and 𝑞A,Rp
 (mol m-3) the concentration of A in the solid at the interface, which 

is in equilibrium with fluid concentration 𝐶A,Rp
 (i.e., they are related by the isotherm).  

In consecutive loading-regeneration operations, the initial conditions of step 𝑛, 

(𝐶A,in|
n
 and 𝑞A,in|

n
) must equal the final concentration profiles of step 𝑛 − 1, (𝐶A,final|n−1

 and 

𝑞A,final|n−1
). Accordingly, Eqs. (V.2.5) and (V.2.9) should be substituted by the following 

conditions: 

 

𝑡 = 𝑡in|𝑛, {
𝐶A,in|

𝑛
= 𝐶A,final|𝑛−1

𝑞A,in|
𝑛

= 𝑞A,final|𝑛−1

, 2 ≤ 𝑛 <∞ , (V.2.12) 

 

The equality of fluxes at the surface of the particle is expressed by Eq. (V.2.13), 

which involves the convective mass transfer coefficient of counter ion A, 𝑘f (m s-1), estimated 

here by Eq. (V.2.14) in terms of Sherwood (Sh), Reynolds and Schmidt numbers, and 𝑑p =

2𝑅p is the equivalent particle diameter (m) [8]. 

 

𝑁𝐴,𝑅p
= 𝑘f (𝐶A − 𝐶A,Rp

) (V.2.13) 
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Sh =
𝑘f𝑑p

𝐷m
=

1.13

ε
Re0.21Sc1 3⁄  (V.2.14) 

 

The average loading per unit particle volume, included in the material balance to the 

column, Eq. (V.2.4), is calculated by: 

 

〈𝑞A〉 =
3

𝑅p
3

∫ 𝑟2𝑞A𝑑𝑟
𝑅p

0

 (V.2.15) 

 

The equilibrium isotherm of the system Cs+/Na+/ETS-4 is given by the Langmuir 

equation: 

 

𝑞A,eq = 𝑞A,max

𝐾L𝐶A,eq

1 + 𝐾L𝐶A,eq
 (V.2.16) 

 

where 𝑞A,max (mol m-3) and 𝐾L (mol-1 m3) are parameters to fit the experimental data. 

The Method of Lines was selected to solve the concentration profiles of Cs+ and 

their evolution along time, in solution and in the solid phase, and the spatial discretization 

was accomplished by finite differences of second order. The resulting ordinary differential 

equations of the initial-value type were solved applying numerical differentiation formulas 

using 31 grid points for particle radius and bed length.  

Concerning the methodology, the self-diffusion coefficients (𝐷A and 𝐷B) of the NP-

based model were adjusted to the experimental data (section V.2.4.4), the Nelder-Mead 

and the Marquardt-Levenberg algorithms were adopted for the optimizations, and the root 

mean square deviation (RMSD) was the objective function: 

 

RMSD (%) = 100 × √∑
(𝐶A,calc|

i
− 𝐶A,exp|

i
)

2

NDP

NDP

i

 
(V.2.17) 

 

Here NDP is the number of data points, and subscripts ‘exp’ and ‘calc’ denote measured 

and calculated cesium concentrations, respectively. 

 

 

 

 



V. Removal of Cs+ from aqueous solutions through fixed-bed experiments 

 

247 

V.2.3. Materials and Methods 

 

V.2.3.1. Chemicals and materials  

 

Sodium hydroxide (CAS number 1310-73-2), potassium chloride (CAS number 7447-40-7) 

and titanium(III) chloride (15 wt% TiCl3 and 10 wt% HCl) were supplied by Merck. Sodium 

metasilicate (CAS Number 13517-24-3) was purchased from BDH Chemicals. Cesium 

nitrate (CAS number 7789-18-6) and sodium nitrate (CAS Number 7631-99-4) were 

acquired from Sigma-Aldrich. Cellulose acetate membrane disc filters were bought from 

Sterlitech Corporation, and quartz wool discs were purchased from Elemental 

Microanalysis. The high-purity water (18.2 MΩ cm) was generated in a Milli-Q Millipore 

water purification system. 

 

V.2.3.2. Synthesis and characterization 

 

ETS-4 synthesis was performed as follows [13,15]. An alkaline solution was prepared by 

dissolving sodium metasilicate, NaOH and KCl in high-purity water (18.2 MΩcm). Then, 

TiCl3 was added to this solution and stirred thoroughly. The resulting gel, with molar 

composition 5.9 Na2O : 0.7 K2O : 5.0 SiO2 : 1.0 TiO2 : 114 H2O, was transferred to a Teflon-

lined autoclave and heated at 230 °C for 17 h under autogenous pressure without agitation. 

The product was filtered off, washed at room temperature with distilled water, and dried at 

70 °C overnight. The sample crystallinity and purity were ascertained by powder X-Ray 

Diffraction (PXRD) collected on a PANalytical Empyrean diffractometer (CuKα1,2 X-radiation, 

λ1 = 1.540598 Å; λ2 = 1.544426 Å), equipped with an PIXcel 1D detector and a transmission-

spinner sample holder in a Bragg-Brentano para-focusing optics configuration (45 kV, 40 

mA). Intensity data were collected by the step-counting method (step 0.04º), in continuous 

mode, in the range ca. 5 ≤ 2θ ≤ 50º. Table V.2.1 summarizes the important features of this 

material. 

 

Table V.2.1 – Features of the synthesized titanosilicate ETS-4 [66]. 

Formula M8Ti5Si12O38∙nH2O (M=K,Na) 

Density (kg m-3) 2200 

Theoretical cation exchange capacity (eq kg-1) 6.39 

Measured equivalent particle diameter (10-6 m) 12 

Pore diameter (10-10 m) 3.7 
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V.2.3.3. Fixed-bed and batch ion exchange experiments 

 

Preparation of solutions. Measurement of Cs+ concentration. 

A 0.01 mol L-1 Cs+ stock solution was prepared by dissolving 0.098 g of CsNO3 in 50 mL of 

high-purity water (18.2 MΩ cm). The Cs+ operational solutions were obtained by diluting the 

stock solution to the desired concentration with high-purity water, prepared immediately 

before use in order to reduce cation adsorption on the vessel walls and remaining glassware 

and lab material.  

The cesium concentration of the solutions was measured by atomic emission 

spectroscopy (AES) with a Perkin Elmer AAnalyst 100 atomic absorption spectrometer, in 

the emission mode (with a wavelength of 852.1 nm and a slit of 0.2 nm) and using an air-

acetylene flame. The ionization was controlled by the addition of a potassium chloride 

solution to all samples and standards until they all contained 0.5 wt.% of such alkali. Each 

sample was analysed in triplicate and the results are the average of concordant values (less 

than 5% variation between measurements of the same sample). 

 

Batch ion exchange experiments 

Batch experiments were performed contacting cesium solutions with known masses of 

powdered ETS-4 in volumetric flasks (2 dm3) under agitation (ca., 300 rpm) at room 

temperature (295 K) and initial pH 4. The initial cesium concentrations were fixed at ca. 40 

ppm in order to maintain constant the ionic strength of the solutions, while the masses of 

ETS-4 were varied as shown in Table V.2.2. The assays started when the exchanger was 

added to the solution and the stirring initiated. Aliquots (10 mL) were collected, (before 

adding the solid and at the end of the experiment), filtered through an acid washed cellulose 

acetate membrane disc filter of 0.45 µm, and the cesium concentration was measured by 

AES. A blank experiment (without ETS-4) was always run as a control to check that the 

removal of Cs+ occurred by ion exchange with the solid and not by adsorption on the lab 

material.  

 

Fixed-bed ion exchange experiments 

A stainless steel fixed-bed column was mounted on a support and filled with a precise 

amount of ETS-4 confined by four to six quartz wool discs plus two stainless steel nets, one 

at the bottom and other on top. Swagelock fittings were used to close the assembly and to 

connect the bottom and the top of the column to an influent reservoir and to a sample 

collector, respectively (Figure V.2.1).  
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Figure V.2.1 – Experimental setup for the fixed-bed ion exchange experiments. 

 

Three fixed-bed experiments (Exps. 9, 10 and 11 of Table V.2.3 were performed 

isothermally at 295 ± 1 K to study the influence of the flow rate on cesium exchange over 

ETS-4. The influent solution containing ca. 40 ppm Cs+ was continuously fed to the column 

in the up-flow mode. The pH was measured at the column inlet using a pH meter Crison 

Basic 20. The volumetric flow rate was regulated with a variable peristaltic pump (Knauer 

Smartline pump 100). Aliquots of 10 mL were collected periodically at column outlet, filtered 

through acid washed cellulose acetate membrane (0.45 µm) disc filters, and then analysed 

for Cs+ concentration by AES. The experiments were stopped when the effluent and the 

influent Cs+ concentrations were equal.  

To assess the regeneration capacity of ETS-4, an additional experiment was 

performed after Exp. 11 (Table V.2.3) using a solution of Na+ (1.72 mol·m-3) continuously 

fed to the column for 75 hours (Exp. 12 in Table V.2.3). Then, a second cycle began using 

a cesium solution and operating conditions equivalent to those of Exp. 11 (Exp. 13 in Table 

V.2.3). The ion exchange process was always controlled through Cs+ measurement by AES 

as described above. 

 

Table V.2.2 – Experimental conditions for batch ion exchange assays with ETS-4 to obtain 

isotherm data. (Fixed conditions: T = 295 ± 1 K, Vliquid = 2x10-3 m3, pH = 4). 

Experiment No. 1 2 3 4 5 6 7 8 

Mass of ETS-4 (10-6 kg) 8 60 157 206 314 418 524 804 

Initial Cs+ conc. (mol m-3) 0.288 0.295 0.308 0.285 0.295 0.291 0.294 0.303 
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Table V.2.3 - Experimental conditions for fixed-bed ion exchange assays using ETS-4. 

(Fixed conditions: T = 295 ± 1 K, pH 4, 𝜀 = 0.88, L = 0.01 m). 

Experiment No. 9 10 11 12 13 

Type of experiment / cycle Loading Loading 
Loading 

1st cycle 

Regeneration 

1st cycle 

Loading 

2nd cycle 

Mass of ETS-4 (10-6 kg) 501 509 503 503 503 

Initial Cs+ conc. (mol m-3) 0.311 0.305 0.301 - 0.293 

Initial Na+ conc. (mol m-3) - - - 1.720 - 

Superficial velocity (m s-

1) 
6.366x10-4 3.893x10-4 2.567x10-4 2.567x10-4 2.567x10-4 

𝐷L (m2 s-1) by Eq. (7) 5.895x10-8 5.556x10-8 5.350x10-8 5.350x10-8 5.350x10-8 

 

V.2.4. Results and discussion 

 

This section starts with the characterization of the synthesised ETS-4 by PXRD, before and 

after ion exchange. Then, the measured and modelled isotherms of the Cs+/Na+/ETS-4 

system are analysed, followed by the breakthrough curves obtained under fixed-bed 

operation. The regeneration and the second cycle of ion exchange are also examined. 

Finally, the results achieved with the Nernst-Planck based model (developed in Section 

V.2.2) are presented and discussed in detail.  

 

V.2.4.1. Materials characterization 

 

The PXRD pattern of the parent sample is characteristic of ETS-4 providing no evidence for 

the presence of any additional impurities (Figure V.2.2). Cs+-exchanged ETS-4 reveals 

some modifications in the peaks intensities and positions, which may be ascribed not only 

to crystal orientation effects but also to the introduction of cesium in its framework. The 

major differences are found at 23.21º, where a new peak appears, and at 30.37º and 31.17º, 

where two peaks substituted the native 30.79º peak. Despite these differences, parent ETS-

4 and the Cs+-exchanged solid are isostructural. 
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Figure V.2.2 – Normalized PXRD patterns of native and Cs+-exchanged ETS-4 (after Exp. 

9; see experimental conditions in Table V.2.3). 

 

V.2.4.2. Ion exchange isotherm 

 

The equilibrium data were obtained from batch Exps. 1-8 (Table V.2.2) and fitted with the 

Langmuir isotherm, Eq. (V.2.16), with an average absolute relative deviation (AARD) of 

6.58%. The analytical equation is depicted in Figure V.2.3 and exhibits the Langmuir 

parameters 𝑞A,max = 1.86 mol kg-1 and 𝐾L = 43.46 m3 mol-1, similar to previously published 

data [57]. Freundlich and Langmuir-Freundlich isotherms were also considered, but the 

former fails to represent the experimental points, while the latter adds an additional 

parameter but no substantial gain. 
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Figure V.2.3 – Measured (solid circles) and calculated (line) Langmuir isotherms of 

Cs+/Na+/ETS-4 system at 295 K. 

 

V.2.4.3. Fixed-bed experimental results 

 

The breakthrough curves obtained from Exps. 9-11 were evaluated at different superficial 

velocities in the range (2.5–6.4)x10-4 m s-1 for 75 hours (Table V.2.3). The experimental 

data plotted in Figure V.2.4 represent the time evolution of the normalized cesium 

concentration in solution at column outlet, i.e., 𝐶A(𝑡, 𝐿) 𝐶A,0⁄ . Because the three 

breakthrough curves deviate significantly from (displaced) Heaviside functions, these 

results reveal mass transfer limitations in the system.  

When equilibrium is favourable (which is the case for the Langmuir isotherm) and 

dispersive phenomena (e.g., axial dispersion, film and intraparticle resistances to mass 

transfer) are negligible, an ideal wave front propagates unchanged along the bed and exits 

the column at the stoichiometric time, 𝑡st. On the other hand, the occurrence of transport-

rate resistances broadens the traveling wave front, which reaches a constant pattern flow 

due to the simultaneous effect of the self-sharpening favourable isotherm [67,68]. The 

stoichiometric time can be calculated from the experimental breakthrough curve using Eq. 

(V.2.18) or estimated from Eq. (V.2.19) on the basis of the solute movement theory: 

 

𝑡st = ∫ (1 −
𝐶A(𝑡)

𝐶A,0
)

∞

0

𝑑𝑡 (V.2.1) 
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𝑡st =
𝐿

𝑢
(1 +

1 − 𝜀

𝜀

𝑞A,0

𝐶A,0
) (V.2.2) 

 

where 𝑞A,0 is the solid loading in equilibrium with feed concentration, 𝐶A,0. For the 

regeneration step, the concept of stoichiometric time was extended with the objective of 

computing the process efficiency using: 

 

𝑡st = ∫
𝐶A(𝑡)

𝐶A,0

∞

0

𝑑𝑡 (V.2.3) 

 

 

 

Figure V.2.4 – Effect of the feed flow rate on the normalized breakthrough curves for Cs+ 

removal in a fixed-bed of ETS-4. Symbols: data (experimental conditions in Table V.2.3); 

lines: NP-based model (parameters in Table V.2.4).  

 

According to the breakthrough curves (Exps. 9, 10 and 11 in Figure 4), lower 

superficial velocities require higher operating times to deplete the solid phase, and vice-

versa, in agreement with the solute movement theory, Eq. (V.2.19), since 𝑡st is inversely 

proportional to the superficial velocity, 𝑢. The experimental values obtained were 𝑡st = 13.9, 

21.9 and 30.8 h, for 𝑢 = 6.366x10-4 (Exp. 9), 3.893x10-4 (Exp. 10) and 2.567x10-4 m s-1 (Exp. 

11), respectively.  
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Concerning axial dispersion, its influence was negligible because the 𝐿 𝑑𝑝⁄  ratio was 

833, clearly obeying the well-known relation 𝐿 > 50 𝑑𝑝, and the axial Peclet numbers (𝑃𝑒 =

𝑢𝐿 𝐷L⁄ ) attained were 108.0, 70.1 and 48.0, for Exps. 9, 10 and 11, respectively. 

Nonetheless, external mass transfer limitations were confirmed, experimentally and 

theoretically (further discussion in Section V.2.4.4) because the spreading of the 

breakthrough curves increased with decreasing superficial velocities. For example, the 

widths of the mass transfer zone (MTZ) based on 0.01 and 0.99 limits (i.e., 0.01 ≤

𝐶A(𝑡, 𝐿) 𝐶A,0 ≤ 0.99⁄ ) were 42.4, 46.3 and 48.1 h for Exps. 9, 10 and 11, respectively; for the 

more flexible limits 0.05 and 0.95, the corresponding MTZ widths were 27.2, 30.1 and 31.5 

h.  

The regeneration experiment (Exp. 12) was subsequently performed using a Na+ 

solution (ca. 40 ppm) to convert the ETS-4 bed at the end of Exp. 11 into its original Na-

form, in order to evaluate the Cs+ uptake capacity after regeneration (Exp. 13). The results 

for the normalized cesium concentration at column outlet are shown in Figure V.2.5, where 

time was measured continuously, without interruption, with the successive regeneration and 

loading experiments (Exps. 12 and 13, respectively) having the same time extension of Exp. 

11. As expected, the regeneration curve is highly dispersed (75 < 𝑡(h) < 150) because a 

favourable isotherm broadens the wave front during a desorbing step and the mass transfer 

limitations reinforces even more this thermodynamic behaviour along the bed.  

Since all experimental conditions were preserved during Exps. 11, 12 and 13, except 

the Cs+ concentration of the feed, the efficiency of the regeneration and second loading 

steps may be unveiled by the ratio between their stoichiometric times and that of Exp. 11. 

With respect to this, Figure V.2.5 encompasses three different areas (A1, AR and A2) whose 

values correspond to the experimental stoichiometric times, 𝑡st = 31.0, 23.8 and 23.0 h, 

respectively. Thus, the ratio AR/A1 indicates that the regeneration process (Exp. 12) 

attained ca. 76.8% of efficiency, a value confirmed by the experimental A2/A1 ratio that 

attained 74.2%. It is worth mentioning that after ca. 150 h (i.e., at the end of ca. 75 h of 

regeneration) the Cs+ concentration of the effluent was ca. 20% of its initial concentration, 

i.e., the regeneration was incomplete. To convert all ETS-4 in its Na-form, long ion exchange 

runs would be necessary under the same experimental conditions. Alternatively, to 

accelerate the regeneration process, the inlet counter ion (Na+) concentration and flow rate 

could be increased. In both cases, the mass transfer driving force would be increased, while 

the second possibility would also to reduce the external film thickness with advantage. In 

industrial applications the residual loading after regeneration is usually finite and frequently 

non-uniform, constituting the well-known delta loading of steady state cyclic processes. 
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Figure V.2.5 – Normalized cesium concentration at column outlet for Exps. 11, 12 and 13 

in a loading-regeneration operation. Symbols: data (experimental conditions in Table V.2.3); 

lines: NP-based model (parameters in Table V.2.4); A1 = area above the breakthrough of 

the 1st ion exchange cycle; AR = area below the regeneration curve of the 1st cycle; A2 = 

area above breakthrough of the 2nd cycle. 

 

The ability of spent ETS-4 to enter a second ion exchange cycle after intermediate 

regeneration is a valuable outcome of this essay. ETS materials have been much studied 

for the removal of several hazardous metals [4] but their regeneration and utilization in 

subsequent ion exchange cycles is scarcely assessed. Lopes et al., [7] studied the uptake 

of Hg2+ from aqueous solutions on a packed-bed of ETS-4, and the regeneration was carried 

out with a chelating agent, namely a concentration gradient EDTA-Na2 solution (0.05–0.25 

mol dm-3), attaining an elution efficiency of 98% only after 50 hours. If, alternatively, a simple 

aqueous solution of a counter ion had been used the fixed-bed cleaning would be 

impractical. This is in accord with the large selectivity of titanosilicates towards divalent 

cations such as Hg2+ and Cd2+ [13–15,41,65,69] . In our case the counter ions Cs+ and Na+ 

possess the same valence (+1) and, as mentioned above, the PXRD patterns of parent and 

Cs+-exchanged ETS-4 show that the solids are isostructural. Hence, both loading and 

regeneration steps were expected in advance to be essentially and effectively reversible 

despite the differences imparted by the distinct ionic radius of Cs+ and Na+ (170 versus 102 

pm [70], respectively). 
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V.2.4.4. Fixed-bed modelling results – Nernst-Planck based model 

 

Modelling results for the fixed-bed operation are plotted together with data for Exps. 9-11 in 

Figure V.2.4, and Exps. 11 (loading, 1st cycle), 12 (regeneration, 1st cycle) and 13 (loading, 

2nd cycle) in Figure V.2.5. The axial dispersion (𝐷L) and convective mass transfer 

coefficients (𝑘f) were estimated by Eqs. (7) and (14), respectively, and the model 

parameters (𝐷A and 𝐷B) were fitted to the data of Exp. 11 only, with RMSD = 18.66 %. The 

remaining four curves were predicted, providing deviations of 15.20% (Exp. 9), 13.27% 

(Exp. 10), 4.17% (Exp. 12) and 5.88% (Exp.13), and global RMSD of 9.55% (see Table 

V.2.4). Globally, these are reliable results for an ion exchange process embodying several 

runs with different operating conditions and distinct cycle steps. 

Considering that the system’s counter ions are monoatomic and monovalent, the 

adjusted self-diffusivities for Cs+ (𝐷A = 3.193x10-16 m2 s-1) and Na+ (𝐷B = 6.088x10-15 m2 s-

1) must reflect their ionic radius, i.e., 𝐷A < 𝐷B because 𝑟ion(Cs+) =  170 pm > 𝑟ion(Na+) =

 102 pm [70]. Furthermore, 𝐷A and 𝐷B are of the same order of magnitude of those published 

recently for the system Cs+/Na+/Eu-AV-20 [48] and three times larger than the values for 

Cd2+/Na+/ETS-4 [14] and Hg2+/Na+/ETS-4 [41] systems. In all cases, the small magnitudes 

of the diffusion coefficients are consistent with the presence of small micropores [14,71–

73], since the cations never escape from the force field of the matrix co-ions, mainly due to 

the strong and long-range nature of the electrostatic interactions, which imply the 

intraparticle transport mechanism is surface diffusion. 

As mentioned above, the self-diffusivity found for Cs+ is approximately three times 

higher than those reported for Cd2+ and Hg2+ in ETS-4 [14,41]. Despite the ionic radius of 

cadmium(II) and mercury(II), respectively, 95 and 102 pm [70], their double charge 

originates stronger interactions with the solid surface, increasing their activation energy for 

diffusing through the channels (remember that the ionic radius of Cs+ is 170 pm). An 

additional feature that penalizes Cd2+ and Hg2+ in comparison to Cs+ is the magnitude of 

their molar Gibbs free energy of dehydration: ∆dehyd𝐺 =1755, 1760 and 250 kJ mol-1 [70], 

respectively, which means the energy required by the divalent cations for accessing the 

microporosity of ETS-4 is ca., seven times higher than that of monovalent cesium ion, just 

for the dehydration step. 

The convective mass transfer coefficients estimated by Eq. (V.2.14) are 3.775x10-4 m s-1 

(Exp. 9), 3.416x10-4 m s-1 (Exp. 10) and 3.122x10-4 m s-1 (Exps. 11-13), following the 

decreasing superficial velocity of the fluid (i.e., 6.366x10-4, 3.893x10-4 and 2.567x10-4 m s-

1, respectively). These values are consistent with the increasing widths of the mass transfer 
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zones (cited in Section V.2.4.3) for Exps. 9-11, because the film contribution to the second 

moment (i.e., dispersion) of a pulse response of a chromatographic model is proportional 

to 𝑅p 𝑘f⁄  [67,68]. It is interesting to confront the following ratios for qualitative but 

theoretically sound purposes: 𝑘f (Exp. 10) 𝑘f (Exp. 9)⁄ =0.905 and 

𝑘f (Exp. 11) 𝑘f (Exp. 10)⁄ =0.914, versus MTZ(Exp. 9) MTZ(Exp. 10)⁄ =0.904 and 

MTZ(Exp. 10) MTZ(Exp. 11)⁄ =0.956. 

 To access the performance of the NP-based model, the calculated versus 

experimental normalized cesium concentrations at column outlet are plotted in Figure V.2.6. 

As expected from the RMSD values listed in Table V.2.4, the rough linearity observed 

between both sets of data highlights the model’s ability to correlate and predict the ion 

exchange behaviour of the Cs+/Na+/ETS-4 system under the various experimental 

conditions, in particular, different superficial velocities and loading-regeneration steps. 

Despite the reliable results achieved, the model overestimates Exp. 9, while the points of 

the remaining experiments are well distributed near the diagonal. Figure V.2.6 also reveals 

that the proposed model is less reliable at the beginning of the breakthrough curves, where 

errors are more likely to occur due to the detection limits of the analytical method (AES). 

The fact that the proposed NP-based model can be used to study the different stages of a 

cyclic ion exchange operation is of major importance, since it is a fundamental tool for the 

accurate scale-up and optimization of a fixed-bed unit. 

 

Table V.2.4 – Optimized parameters and calculated deviations for the Nernst-Planck based 

model applied to the fixed-bed assays. (Experimental conditions in Table V.2.3). 

Exp. NDP Type of calculation 𝐷A (m2 s-1) 𝐷B (m2 s-1) RMSD (%) Global RMSD (%) 

9 35 Prediction - - 15.20 9.55 (prediction)* 

10 34 Prediction - - 13.27  

11 31 Correlation 3.193x10-16 6.088x10-15 18.66 18.66 (correlation) 

12 35 Prediction - - 4.17  

13 35 Prediction - - 5.88  

* 9.55% is the calculated RMSD for the set of Exps. 9,10,12 and 13. 
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Figure V.2.6 – Calculated versus experimental normalized Cs+ concentration in solution 

(experimental conditions in Table V.2.3). 

 

V.2.5. Conclusions  

 

The cesium exchange capacity of ETS-4 was assessed in batch and fixed-bed experiments 

aiming at: measuring the isotherm of the system Cs+/Na+/ETS-4, assessing the influence of 

the superficial velocity on the fixed-bed operation (via breakthrough curves), and evaluating 

the regeneration ability of ETS-4 for future cyclic operation. The Langmuir isotherm fitted 

the equilibrium data reliably (AARD = 6.58%), while the experimental breakthrough curves 

exhibited the expected trend characterized by a sigmoidal shape. The proposed Nernst-

Planck based model achieved global deviations of 18.66% and 9.55%, respectively, for 

correlation (1 curve) and prediction (4 curves) of cesium concentration in the fluid at column 

outlet. The correlated parameters were the NP self-diffusivities of Cs+ and Na+ in ETS-4, 

and the determined values (𝐷C𝑠+ = 3.193x10-16 m2 s-1 and 𝐷Na+ = 6.088x10-15 m2 s-1) were 

consistent with the microporosity of ETS-4 and the size of the exchanged cations. The 

embodied axial dispersion and convective mass transfer coefficients (estimated by 

dimensionless correlations) confirmed external limitations and ruled out axial dispersion 

phenomena. The good results obtained in consecutive loading-regeneration steps evidence 

the ability of ETS-4 to be used in cyclic ion exchange operations, while the NP-based model 

proved to be reliable for process design and optimization. 
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V.2.6. Nomenclature 

 

A𝑧𝐴  Counter ion initially in solution (Cs+) 

A1, A2 Areas above breakthrough curves in Figure V.2.5 (h) 

AARD = 100

NDP
∑ |𝐶A,i,calc − 𝐶A,i,exp| 𝐶A,i,exp⁄NDP

𝑖=1 ,  Average absolute relative deviation (%) 

AES Atomic emission spectroscopy 

AR Area below regeneration curve in Figure V.2.5 (h) 

B𝑧𝐵 Counter ion initially in the exchanger (Na+) 

𝐶A Concentration of counter ion A in solution (mol m-3) 

𝐶A,0 Concentration of counter ion A in the feed (mol m-3) 

𝐶A,in  Initial concentration of counter ion A in solution (mol m-3) 

𝐶A,eq Concentration of counter ion A in solution in equilibrium with solid loading 

concentration, 𝑞A,eq (mol m-3) 

𝐶A,𝑅p
 Concentration of counter ion A in solution at the interface (mol m-3) 

𝑑p Equivalent particle diameter (m) 

𝐷i Nernst-Planck self-diffusion coefficient of counter ion 𝑖 in theexchanger (m2 

s-1) 

𝐷L Axial dispersion coefficient (m2 s-1) 

𝐷AB Interdiffusion coefficient of Nernst-Planck model (m2 s-1) 

𝐷m Diffusion coefficient of Cs+ in water (m2 s-1) 

ETS-4 Engelhard titanosilicate number 4  

Exp. 𝑛 Experiment number 𝑛 

𝑖 and 𝑗 Generic counter ions 

𝑘f Convective mass transfer coefficient (m s-1) 

𝐾L Langmuir parameter (m3 mol-1) 

𝑙 Column longitudinal coordinate (m) 

𝐿 Length of the fixed-bed (m) 

MTZ Mass transfer zone 

𝑁𝐴,𝑅p
 Net intraparticle flux of counter ion A at the interface (mol m-2 s-1) 

NDP Number of data points 

𝑁i Intraparticle flux of counter ion 𝑖 (mol m-2 s-1) 

NP Nernst-Planck 

Pe Peclet number 
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PXRD Powder X-ray diffraction 

𝑞max Langmuir parameter (mol kg-1) 

𝑞A,0 Solid loading in equilibrium with feed concentration, 𝐶A,0 

𝑞A,eq Solid loading in equilibrium with concentration of counter ion A in solution, 

𝐶A,eq (mol kg-1) 

𝑞i Molar concentration of counter ion 𝑖 in the particle (mol m-3) 

〈𝑞〉i Average concentration of counter ion 𝑖 in the particle (mol m-3) 

𝑄 Total amount of sorbed species per unit mass of exchanger (eq m-3) 

𝑟 Radial coordinate in the particle (m) 

Re Reynolds number 

RMSD Root mean square deviation (%) 

𝑅p Particle radius (m) 

Sc Schmidt number 

Sh Sherwood number 

𝑡 Time (h or s) 

𝑡st Stoichiometric time (h) 

𝑇 Absolute temperature (K) 

𝑢 Superficial velocity (m s-1) 

𝑉s Volume of exchanger (m3) 

𝑧i Electrochemical valence of counter ion 𝑖 

  

Greek letters 

  

∆dehyd𝐺 Molar Gibbs free energy of dehydration (kcal mol-1) 

𝜀 Bed void fraction 

  

Subscripts 

  

0 Feed condition 

A Counter ion initially present in the bulk solution (Cs+) 

B Counter ion initially present in the exchanger particle (Na+) 

calc Calculated 

eq Equilibrium 

exp Experimental 
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in Initial condition 

𝑛 Step 𝑛 in a loading-regeneration setup 

 





V. Removal of Cs+ from aqueous solutions through fixed-bed experiments 

 

263 

V.3. References 

 

[1] X. Liu, G.R. Chen, D.J. Lee, T. Kawamoto, H. Tanaka, M.L. Chen, Y.K. Luo, 
Adsorption removal of cesium from drinking waters: A mini review on use of 
biosorbents and other adsorbents, Bioresour. Technol. 160 (2014) 142–149. 

[2] G. Lujaniene, J. Šapolaite, A. Amulevičius, K. Mažeika, S. Motiejunas, Retention of 
cesium, plutonium and americium by engineered and natural barriers, Czechoslov. 
J. Phys. 56 (2006) D103–D110. 

[3] K. Popa, C.C. Pavel, Radioactive wastewaters purification using titanosilicates 
materials: State of the art and perspectives, Desalination 293 (2012) 78–86. 

[4] C.B. Lopes, P.F. Lito, S.P. Cardoso, E. Pereira, A.C. Duarte, C.M. Silva, Metal 
Recovery, Separation and/or Pre-concentration, in: Inamuddin, M. Luqman (Eds.), 
Ion Exchange Technology II - Aplications, Springer Netherlands, Dordrecht, 2012. 

[5] P.F. Lito, J.P.S. Aniceto, C.M. Silva, Removal of Anionic Pollutants from Waters and 
Wastewaters and Materials Perspective for Their Selective Sorption, Water, Air, Soil 
Pollut. 223 (2012) 6133–6155. 

[6] I.C. Ostroski, C.E. Borba, E.A. Silva, P.A. Arroyo, R. Guirardello, M.A.S.D. Barros, 
Mass Transfer Mechanism of Ion Exchange in Fixed Bed Columns, J. Chem. Eng. 
Data 56 (2011) 375–382. 

[7] C.B. Lopes, E. Pereira, Z. Lin, P. Pato, M. Otero, C.M. Silva, J. Rocha, A.C. Duarte, 
Fixed-bed removal of Hg2+ from contaminated water by microporous titanosilicate 
ETS-4: Experimental and theoretical breakthrough curves, Microporous Mesoporous 
Mater. 145 (2011) 32–40. 

[8] L. Lv, Y. Zhang, K. Wang, A.K. Ray, X.S. Zhao, Modeling of the adsorption 
breakthrough behaviors of Pb2+ in a fixed bed of ETS-10 adsorbent, J. Colloid 
Interface Sci. 325 (2008) 57–63. 

[9] I.M. Latheef, M.E. Huckman, R.G. Anthony, Modeling Cesium Ion Exchange on 
Fixed-Bed Columns of Crystalline Silicotitanate Granules, Ind. Eng. Chem. Res. 39 
(2000) 1356–1363. 

[10] C. Xiong, Q. Jia, X. Chen, G. Wang, C. Yao, Optimization of Polyacrylonitrile-2-
aminothiazole Resin Synthesis, Characterization, and Its Adsorption Performance 
and Mechanism for Removal of Hg(II) from Aqueous Solutions, Ind. Eng. Chem. Res. 
52 (2013) 4978–4986. 

[11] C. Xiong, Y. Zheng, Y. Feng, C. Yao, C. Ma, X. Zheng, J. Jiang, Preparation of a 
novel chloromethylated polystyrene-2-amino-1,3,4-thiadiazole chelating resin and its 
adsorption properties and mechanism for separation and recovery of Pt(iv) from 
aqueous solutions, J. Mater. Chem. A 2 (2014) 5379–5386. 

[12] C. Xiong, Y. Li, G. Wang, L. Fang, S. Zhou, C. Yao, Q. Chen, X. Zheng, D. Qi, Y. Fu, 
Y. Zhu, Selective removal of Hg(II) with polyacrylonitrile-2-amino-1,3,4-thiadiazole 
chelating resin: Batch and column study, Chem. Eng. J. 259 (2015) 257–265. 



V. Removal of Cs+ from aqueous solutions through fixed-bed experiments 
 

 

264 

[13] S.P. Cardoso, C.B. Lopes, E. Pereira, A.C. Duarte, C.M. Silva, Competitive Removal 
of Cd2+ and Hg2+ Ions from Water Using Titanosilicate ETS-4: Kinetic Behaviour and 
Selectivity, Water, Air, Soil Pollut. 224 (2013) 1535–1541. 

[14] T.R. Ferreira, C.B. Lopes, P.F. Lito, M. Otero, Z. Lin, J. Rocha, E. Pereira, C.M. Silva, 
A. Duarte, Cadmium(II) removal from aqueous solution using microporous 
titanosilicate ETS-4, Chem. Eng. J. 147 (2009) 173–179. 

[15] C.B. Lopes, M. Otero, Z. Lin, C.M. Silva, J. Rocha, E. Pereira, A.C. Duarte, Removal 
of Hg2+ ions from aqueous solution by ETS-4 microporous titanosilicate - Kinetic and 
equilibrium studies, Chem. Eng. J. 151 (2009) 247–254. 

[16] E.D. Camarinha, P.F. Lito, B.M. Antunes, M. Otero, Z. Lin, J. Rocha, E. Pereira, A.C. 
Duarte, C.M. Silva, Cadmium(II) removal from aqueous solution using microporous 
titanosilicate ETS-10, Chem. Eng. J. 155 (2009) 108–114. 

[17] L.D. Barreira, P.F. Lito, B.M. Antunes, M. Otero, Z. Lin, J. Rocha, E. Pereira, A.C. 
Duarte, C.M. Silva, Effect of pH on cadmium (II) removal from aqueous solution using 
titanosilicate ETS-4, Chem. Eng. J. 155 (2009) 728–735. 

[18] M. Endo, E. Yoshikawa, N. Muramatsu, N. Takizawa, T. Kawai, H. Unuma, A. Sasaki, 
A. Masano, Y. Takeyama, T. Kahara, The removal of cesium ion with natural Itaya 
zeolite and the ion exchange characteristics, J. Chem. Technol. Biotechnol. 88 
(2013) 1597–1602. 

[19] J. Mon, Y. Deng, M. Flury, J.B. Harsh, Cesium incorporation and diffusion in 
cancrinite, sodalite, zeolite, and allophane, Microporous Mesoporous Mater. 86 
(2005) 277–286. 

[20] Z. Du, M. Jia, X. Wang, Cesium removal from solution using PAN-based potassium 
nickel hexacyanoferrate(II) composite spheres, J. Radioanal. Nucl. Chem. 298 
(2012) 167–177. 

[21] J. Lehto, S. Haukka, R. Harjula, M. Blomberg, Mechanism of caesium ion exchange 
on potassium cobalt hexacyanoferrates(II), J. Chem. Soc. Dalt. Trans. (1990) 1007–
1011. 

[22] A.J. Celestian, J.D. Kubicki, J. Hanson, A. Clearfield, J.B. Parise, The mechanism 
responsible for extraordinary Cs ion selectivity in crystalline silicotitanate, J. Am. 
Chem. Soc. 130 (2008) 11689–11694. 

[23] A. Clearfield, D.G. Medvedev, S. Kerlegon, T. Bosser, J.D. Burns, M. Jackson, Rates 
of Exchange of Cs+ and Sr2+ for Poorly Crystalline Sodium Titanium Silicate (CST) in 
Nuclear Waste Systems, Solvent Extr. Ion Exch. 30 (2012) 229–243. 

[24] A.M. El-Kamash, Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions 
from aqueous solutions using batch and fixed bed column operations, J. Hazard. 
Mater. 151 (2008) 432–445. 

[25] R. Cortés-Martínez, M.T. Olguín, M. Solache-Ríos, Cesium sorption by clinoptilolite-
rich tuffs in batch and fixed-bed systems, Desalination 258 (2010) 164–170. 

[26] J. Rocha, Z. Lin, Microporous mixed octahedral-pentahedral-tetrahedral framework 



V. Removal of Cs+ from aqueous solutions through fixed-bed experiments 

 

265 

silicates, Micro- Mesoporous Miner. Phases 57 (2005) 173–201. 

[27] J. Rocha, L.D. Carlos, Microporous materials containing lanthanide metals, Curr. 
Opin. Solid State Mater. Sci. 7 (2003) 199–205. 

[28] S. Komarneni, D.M. Roy, Tobermorites - A New Family of Cation Exchangers, Sci. 
Class. 221 (1983) 647–648. 

[29] A. Ferreira, D. Ananias, L.D. Carlos, C.M. Morais, J. Rocha, Novel microporous 
lanthanide silicates with tobermorite-like structure, J. Am. Chem. Soc. 125 (2003) 
14573–14579. 

[30] R.C. Evans, L.D. Carlos, P. Douglas, J. Rocha, Tuning the emission colour in mixed 
lanthanide microporous silicates: energy transfer, composition and chromaticity, J. 
Mater. Chem. 18 (2008) 1100–1107. 

[31] B.R. Figueiredo, D. Ananias, J. Rocha, C.M. Silva, Cs+ ion exchange over lanthanide 
silicate Eu-AV-20: Experimental measurement and modelling, Chem. Eng. J. 268 
(2015) 208–218. 

[32] F. Helfferich, Ion Exchange, Courier Dover Publications, New York, 1995. 

[33] P.F. Lito, S.P. Cardoso, J.M. Loureiro, C.M. Silva, Ion Exchange Equilibria and 
Kinetics, in: Inamuddin, M. Luqman (Eds.), Ion Exchange Technology I - Theory and 
Materials, Springer Netherlands, Dordrecht, 2012. 

[34] N. Wakao, T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid mass 
transfer coefficients in packed beds, Chem. Eng. Sci. 33 (1978) 1375–1384. 

[35] H. Sato, M. Yui, H. Yoshikawa, Ionic Diffusion Coefficients of Cs+, Pb2+, Sm3+, Ni2+, 
SeO2

-4 and TcO−4 in Free Water Determined from Conductivity Measurements, J. 
Nucl. Sci. Technol. 33 (1996) 950–955. 

[36] R.M. Clark, Evaluating the cost and performance of field-scale granular activated 
carbon systems, Environ. Sci. Technol. 21 (1987) 573–580. 

[37] Y.H. Yoon, J.H. Nelson, Application of Gas Adsorption Kinetics I. A Theoretical Model 
for Respirator Cartridge Service Life, Am. Ind. Hyg. Assoc. J. 45 (1984) 509–510. 

[38] G.S. Bohart, E.Q. Adams, Some aspects of the behavior of charcoal with respect to 
chlorine, J. Am. Chem. Soc. 42 (1920) 523–544. 

[39] H.C. Thomas, Heterogeneous ion exchange in a flowing system, J. Am. Chem. Soc. 
66 (1944) 1664–1666. 

[40] K.H. Chu, Fixed bed sorption: setting the record straight on the Bohart-Adams and 
Thomas models., J. Hazard. Mater. 177 (2010) 1006–1012. 

[41] C.B. Lopes, P.F. Lito, M. Otero, Z. Lin, J. Rocha, C.M. Silva, E. Pereira, A.C. Duarte, 
Mercury removal with titanosilicate ETS-4: Batch experiments and modelling, 
Microporous Mesoporous Mater. 115 (2008) 98–105. 

[42] E.A. Behrens, P. Sylvester, A. Clearfield, Assessment of a sodium nonatitanate and 



V. Removal of Cs+ from aqueous solutions through fixed-bed experiments 
 

 

266 

pharmacosiderite-type ion exchangers for strontium and cesium removal from DOE 
waste simulants, Environ. Sci. Technol. 32 (1998) 101–107. 

[43] A. Clearfield, Ion-exchange materials: seizing the caesium, Nat. Chem. 2 (2010) 
161–162. 

[44] R.O.A. Rahman, H.A. Ibrahium, Y.T. Hung, Liquid Radioactive Wastes Treatment: A 
Review, Water 3 (2011) 551–565. 

[45] C.C. Pavel, M. Walter, P. Pöml, D. Bouëxière, K. Popa, Contrasting immobilization 
behavior of Cs+ and Sr2+ cations in a titanosilicate matrix, J. Mater. Chem. 21 (2011) 
3831–3837. 

[46] H. Mimura, T. Kobayashi, K. Akiba, Chromatographic Separation of Strontium and 
Cesium with Mixed Zeolite, Column, J. Nucl. Sci. Technol. 32 (1995) 60–67. 

[47] E.H. Borai, R. Harjula, L. Malinen, A. Paajanen, Efficient removal of cesium from low-
level radioactive liquid waste using natural and impregnated zeolite minerals, J. 
Hazard. Mater. 172 (2009) 416–422. 

[48] B.R. Figueiredo, M.M.R. de Melo, I. Portugal, D. Ananias, J. Rocha, C.M. Silva, Cs+ 
removal and optical detection by microporous lanthanide silicate Eu-AV-20 in a fixed-
bed column, Chem. Eng. J. 286 (2016) 48–58. 

[49] B.R. Figueiredo, D. Ananias, I. Portugal, J. Rocha, C.M. Silva, Tb/Eu-AV-9: A 
lanthanide silicate for the sensing and removal of cesium ions from aqueous 
solutions, Chem. Eng. J. 286 (2016) 679–688. 

[50] A.I. Bortun, L.N. Bortun, A. Clearfield, Ion exchange properties of a cesium ion 
selective titanosilicate, Solvent Extr. Ion Exch. 14 (1996) 341–354. 

[51] D.M. Poojary, R.A. Cahill, A. Clearfield, Synthesis, Crystal-Structures, and Ion-
Exchange Properties of a Novel Porous Titanosilicate, Chem. Mater. 6 (1994) 2364–
2368. 

[52] A.M. Puziy, Cesium and strontium exchange by the framework potassium titanium 
silicate K 3HTi4O4(SiO4)3 4H2O, J. Radioanal. Nucl. Chem. 237 (1998) 73–79. 

[53] E.A. Behrens, A. Clearfield, Titanium silicates, M3HTi4O4(SiO4)3.4H2O 
(M=Na+,K+), with three-dimensional tunnel structures for the selective removal of 
strontium and cesium from wastewat, Microporous Mater. 11 (1997) 65–75. 

[54] C. V. Philip, S.H. Kim, M. Philip, R.G. Anthony, The Effect of Hydrogen Peroxide on 
a CST Under Cesium Ion Exchange Conditions, Sep. Sci. Technol. 38 (2003) 3009–
3029. 

[55] T.A. Todd, K.N. Brewer, D.J. Wood, P.A. Tullock, N.R. Mann, L.G. Olson, Evaluation 
and testing of inorganic ion exchange sorbents for the removal of cesium-137 from 
actual Idaho nuclear technology and engineering center acidic tank waste, Sep. Sci. 
Technol. 36 (2001) 999–1016. 

[56] K.P. C. Borcia, Sorption of thallous ion from acidic aqueous solutions onto as-made 
and modified ETS-10, J. Radioanal. Nucl. Chem. 288 (2011) 25–30. 



V. Removal of Cs+ from aqueous solutions through fixed-bed experiments 

 

267 

[57] H. Liu, A. Yonezawa, K. Kumagai, M. Sano, T. Miyake, Cs and Sr removal over highly 
effective adsorbents ETS-1 and ETS-2, J. Mater. Chem. A 3 (2015) 1562–1568. 

[58] K. Popa, C.C. Pavel, N. Bilba, A. Cecal, Purification of waste waters containing 60Co2+, 
115mCd2+ and 203Hg2+ radioactive ions by ETS-4 titanosilicate, J. Radioanal. Nucl. 
Chem. 269 (2006) 155–160. 

[59] L. Al-Attar, A. Dyer, R. Blackburn, Uptake of Uranium on ETS-10 Microporous 
Titanosilicate, J. Radioanal. Nucl. Chem. 246 (2000) 451–455. 

[60] C.C. Pavel, K. Popa, Investigations on the ion exchange process of Cs+ and Sr 2+ 
cations by ETS materials, Chem. Eng. J. 245 (2014) 288–294. 

[61] N. Döbelin, T. Armbruster, N. Dobelin, T. Armbruster, Microporous titanosilicate AM-
2: Rb-exchange and thermal behaviour, Mater. Res. Bull. 42 (2007) 113–125. 

[62] N. Dobelin, T. Armbruster, Microporous titanosilicate AM-2: Ion-exchange and 
thermal stability, Microporous Mesoporous Mater. 99 (2007) 279–287. 

[63] L. Al-Attar, A. Dyer, R. Harjula, Uptake of radionuclides on microporous and layered 
ion exchange materials, J. Mater. Chem. 13 (2003) 2963–2968. 

[64] S.M. Kuznicki, V.A. Bell, S. Nair, H.W. Hillhouse, R.M. Jacubinas, C.M. Braunbarth, 
B.H. Toby, M. Tsapatsis, A titanosilicate molecular sieve with adjustable pores for 
size-selective adsorption of molecules, Nature 412 (2001) 720–724. 

[65] M. Otero, C.B. Lopes, J. Coimbra, T.R. Ferreira, C.M. Silva, Z. Lin, J. Rocha, E. 
Pereira, A.C. Duarte, Priority pollutants (Hg2+ and Cd2+) removal from water by ETS-
4 titanosilicate, Desalination 249 (2009) 742–747. 

[66] L. Liu, W. Tan, P. Xiao, Y. Zhai, A novel synthesis process of ETS-4 titanosilicate 
using commercial anatase in the absence of fluoride ions, Int. J. Miner. Metall. Mater. 
19 (2012) 675–678. 

[67] D.M. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley & 
Sons, New York, 1984. 

[68] J.P.S. Aniceto, C.M. Silva, Preparative Chromatography: Batch and Continuous, In: 
J. L. Anderson, A. Berthod, V. Pino, A. Stalcup (Eds.), Analytical Separation Science 
(Vol. 5) Wiley-VCH, 2015. 

[69] C.B. Lopes, M. Otero, Z. Lin, C.M. Silva, E. Pereira, J. Rocha, A.C. Duarte, Effect of 
pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate, J. 
Hazard. Mater. 175 (2010) 439–444. 

[70]  Y. Marcus, Thermodynamics of solvation of ions. Part 5.-Gibbs free energy of 
hydration at 298.15 K, J. Chem. Soc. Faraday Trans. 87 (1991) 2995–2999. 

[71] P.F. Lito, J.P.S. Aniceto, C.M. Silva, Modelling ion exchange kinetics in zeolyte-type 
materials using Maxwell-Stefan approach, Desalin. Water Treat. (2013) 1–10. 

[72] C.M. Silva, P.F. Lito, Application of the Maxwell–Stefan approach to ion exchange in 
microporous materials. Batch process modelling, Chem. Eng. Sci. 62 (2007) 6939–



V. Removal of Cs+ from aqueous solutions through fixed-bed experiments 
 

 

268 

6946. 

[73]  P.F. Lito, J.P.S. Aniceto, C.M. Silva, Maxwell–Stefan based modelling of ion 
exchange systems containing common species (Cd2+, Na+) and distinct sorbents 
(ETS-4, ETS-10), Int. J. Environ. Sci. Technol. 12 (2015) 183–192. 

 



 
 

 
 

 

 

 

 
 
 

 

III 
Optical sensing  

of Cs+ and Na+ by Eu-AV-20 
This chapter is devoted to the assessment of the Cs+ and Na+ sensing ability of Eu-AV-20. 

Fifteen different batch ion experiments were performed in order to relate the non-

degenerated 5D0
7F0 Eu3+ transition with cesium and sodium molar ratios of the exchanged 

and fully-characterized materials.
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Abstract 

 
The ability of Eu-AV-20 to sense the Cs+ and Na+ ions based on photoluminescence was 

assessed. Eu-AV-20 was prepared by hydrothermal synthesis and characterized by 

Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), 

Powder X-Ray Diffraction (PXRD), Inductively Coupled Plasma – Mass Spectrometry (ICP-

MS) and Photoluminescent Spectroscopy (PLS). Fifteen batch ion exchange experiments 

were carried out with cesium, sodium and equimolar cesium and sodium solutions until 

reaching the equilibrium (5 different concentration experiments each). The emission 

photoluminescence spectra of native and ion exchanged Eu-AV-20 samples were collected 

at room temperature and significant changes were detected and correlated with the cations 

molar ratio in solid Eu-AV-20. Concerning the non-degenerated transition 5D0
7F0 of the 

Eu3+ septet, the intensity of the emissions attributed to Eu1 and Eu2 were reversed upon 

increasing the cesium concentration in the solid. 

 

III.1. Optical sensing of Cs+ and Na+ by Eu-AV-20 

 

III.1.1. Introduction 

 

The synthesis of zeolite-type rare-earth or Ln-silicates was initiated in the beginning of the 

century, aiming at their use as phosphors and as probes for the structure and the 

environment of the guest cations in the cages [1,2]. Such materials exhibit interesting optical 

properties and have the possibility of emitting over the entire spectral range. The electronic 

transitions of the Ln-solids take place between 4f orbitals which are well shielded from their 

chemical environment by 5s2 and 5p6 electrons, [3] resulting in atomic-like emission spectra 

displaying characteristic sharp lines. Since the emission spectra of a given material depend 

on the presence of chemical species such as molecules and ions in the vicinity of the emitter 

lanthanide, the possibility of sensing the presence of the former may be explored [3,4]. An 

interesting recent development has been the use of a lanthanide silicate as the first 

ratiometric luminescent thermometer operative at cryogenic temperatures (<100 K) [5]. 

 In this context, AV-n (Aveiro microporous silicates) solids may play an important role 

in the development of sensors for future use in wastewater control because they combine 

in a single and stable solid microporosity and tuneable optical properties [6]. During the 

synthesis of the AV-9 materials [7], a new crystalline microporous lanthanide silicate, AV-

20, appears. This material is formulated as Na1.08K0.5Ln1.14Si3O8.5∙1.78H2O, with Ln = Eu, 

Ce, Nd, Sm, Gd or Tb [8]. The structure of AV-20 is amenable to the incorporation of a 
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second type of Ln3+ ion [6] and presents optical properties characteristic of the incorporated 

lanthanide, i.e., red (Eu3+) and green (Tb3+) and infrared (Nd3+) emissions. Interestingly, 

when the crystal structure of AV-20 was solved, Ferreira et al.,[8] found that it was related 

to the structure of a fascinating group of calcium hydrated silicate minerals known as 

tobermorites. Special attention has been payed to the ion exchange properties of these 

minerals [9] and their potential application in the decontamination of waters containing 

metals, such as cesium [10]. Some studies showed that their exchange capacity may be 

enhanced by increasing the number of exchangeable cations by insertion of Na+ and Al3+ 

[10,11]. The structure of AV-20 is related with the structure of “normal” tobermorite 11 Å 

[8,12]. However, in the dense layers of Eu-AV-20 (Figure III.1.1.a) there are 

heptacoordinated europium and sodium instead of the calcium present in tobermorites (Ca2+ 

↔ Eu3+ + Na+). Additionally, ca. 10% of the Na+ present in the dense AV-20 layers is 

substituted by disordered Eu3+. The layers are connected through double silicate chains of 

8-membered rings forming the framework channels, running along the [110] direction 

(Figure III.1.1.b). The 5.8 Å x 6.8 Å channels contain K+ ions coordinated by four oxygen 

framework atoms and three water molecules, and Na+ ions coordinated by three framework 

cations and three water molecules. Both sites, particularly the sodium site, may be partially 

occupied by water molecules. The sodium population ratio in the layer/channels cavities is 

ca. 4 [8].   

 

 

Figure III.1.1 – a) Eu-AV-20 sheets comprising alternating chains of Na+ and Eu3+ polyhedra; 

b) framework channels running along the [110] direction and housing Na+ and K+ ions and 

water molecules. Crystal structure drawn using Diamond software. 
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Assessing the potential use of AV-20 materials in wastewater treatment by ion exchange is 

of interest because they may allow swiftly detecting and quantifying the presence of 

contaminants by photoluminescence. In the nuclear energy field such applications are of 

particular importance because this type of sensing materials does not require direct contact 

with the radioactive samples. A case in point is Cs+ sensing: 137Cs, is a long-lived isotope 

produced during the nuclear fission and is the main responsible for the majority of the 

radioactivity of nuclear wastewaters produced around the World. However, some of the 

radioactive wastewaters are in extreme conditions (acidic or alkaline) and in the present of 

large quantities of salinity which creates the necessity to have high selective 

exchangers/sensor. 

In this chapter, I report my studies on the Cs+ and Na+ sensing ability of Eu-AV-20 

based on photoluminescence was assessed in order to evaluate its potential as both a 

decontaminating agent and a sensor. Eu-AV-20 was, thus, synthesized and characterized 

in detail, and batch ion exchange experiments were carried out until reaching the 

equilibrium. After ion exchange, the solids were characterized again and underwent a 

microwaved-assisted acid digestion to determine their composition. Photoluminescence 

studies gave particular attention to the non-degenerated transition 5D0
7F0 of the Eu3+ 

septet, the transition that changed most with the modifications in the vicinity of the emitter 

lanthanide. 

 

III.1.2. Materials and Methods 

 

III.1.2.1. Chemicals and materials 

 

High-purity water (18.2 MΩcm) was generated from a Milli-Q Millipore water purification 

system. Extra pure sodium silicate solution (HS code 2839 19 00), potassium hydroxide 

(CAS number 1310-58-3) and sodium hydroxide (CAS number 1310-73-2) were supplied 

from Merck. Europium(III) chloride hexahydrate (CAS number 13759-92-7), sodium nitrate 

(CAS number 7631-99-4) and cesium nitrate (CAS number 7789-18-6) were purchased 

from Sigma-Aldrich.  

 

III.1.2.2. Synthesis procedures 

 

The synthesis of the native Eu-AV-20 [8] comprised the preparation of an alkaline solution 

obtained by mixing 5.75 g of sodium silicate solution, 16.51 g of H2O, 3.25 g of KOH, and 

1.07 g of NaOH. The gel, with composition 0.79 Na2O : 1.10 K2O : 1.0 SiO2 : 0.07 Eu2O3 : 
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35 H2O was autoclaved under autogenous pressure for 3 days at 230 °C. After the 

synthesis, the autoclave was removed and quenched in cold water. The off-white 

microcrystalline powder was filtered, washed at room temperature with distilled water, and 

dried at 100 °C. Table III.1.1 summarizes the relevant features of this material. 

 

Table III.1.1 – Features of the synthesized Eu-AV-20 lanthanide silicate [8]. 

Formula Na1.08K0.5Eu1.14Si3O8.5∙1.78H2O 

Density, 𝜌solid (kg m-3) 3080 

Cation exchange capacity, 𝑞S (eq kg-1) 2.55 

Equivalent particle diameter (10-6 m) 23.1 

Pore diameter (10-10 m) 5.8 x 6.8 

 

III.1.2.3. Batch ion exchange experiments 

 

The batch ion exchange experiments were performed contacting, under stirring, the 

prepared Cs+ solutions (Exps. 1 to 5, Table III.1.2), Na+ (Exps. 6 to 10, Table III.1.2) and 

equimolar Na+ and Cs+ (Exps. 11 to 15, Table III.1.2), with the powdered (ca. 250 mg) Eu-

AV-20 in volumetric flasks of 1 L, at room temperature. The stirring velocity was maintained 

at ca. 300 rpm and the initial pH of the solution was 4. 

 The experiments started when Eu-AV-20 was added to the prepared solutions and 

the stirring initiated. After the sorption experiments, the solids were separated from the 

solution by sedimentation and washed with high-purity water in order to avoid remaining 

impurities from the solution.  

 The chemical formulae of the native and exchanged Eu-AV-20 samples were 

determined by ICP-MS and EDS. The solids underwent a microwave-assisted digestion 

(with sequences of 3 minutes at 70% of 600 W for 30 minutes) with the use of strong acids, 

i.e., 150 mg of solid was dissolved in 100 mg of high purity water and 2 mL of nitric acid 

(65%) and 0.15 mL of fluoride acid. 
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Table III.1.2 – Batch ionexchange experimental conditions; fixed: V = 1 L and T = 294.15 K. 

Experiment number 1 2 3 4 5 

Exchanged cation(s) Cs+ 

Mass of Eu-AV-20 (g) 0.253 0.254 0.253 0.252 0.255 

Mass of CsNO3 (g) 0.201 0.976 1.953 4.877 9.751 

Concentration of CsNO3 (mol dm-3) 0.001 0.005 0.010 0.025 0.050 

      

Experiment number 6 7 8 9 10 

Exchanged cation(s) Na+ 

Mass of Eu-AV-20 (g) 0.248 0.256 0.254 0.244 0.256 

Mass of NaNO3 (g) 0.088 0.429 0.847 2.124 4.248 

Concentration of NaNO3 (mol dm-3) 0.001 0.005 0.010 0.025 0.050 

      

Experiment number 11 12 13 14 15 

Exchanged cation(s) Cs+ and Na+ 

Mass of Eu-AV-20 (g) 0.246 0.246 0.249 0.241 0.251 

Mass of CsNO3 (g) 0.098 0.490 0.975 2.495 4.870 

Mass of NaNO3 (g) 0.046 0.217 0.427 1.064 2.128 

Concentration of CsNO3 (mol dm-3) 0.0005 0.0025 0.0050 0.0128 0.0250 

Concentration of NaNO3 (mol dm-3) 0.0005 0.0026 0.0050 0.0125 0.0250 

 

 

III.1.2.4. Equipment and techniques 

 

SEM and EDS 

The crystal phase and chemical purity of the Cs+- and Na+-exchanged samples were 

assessed using SEM and EDS. The SEM microscope used was a SEM Hitachi S-4100. The 

EDS coupled Römteck system with a polymeric window was also used to establish the 

chemical formula of Eu-AV-20 and Cs+-exchanged samples. 

 

PXRD 

The crystallinity and purity of the cesium exchanged samples was also unveiled by PXRD 

collected at ambient temperature on a PANalytical Empyrean diffractometer (Cu Kα1,2X-

radiation, λ1 = 1.540598 Å; λ2 = 1.544426 Å), equipped with an PIXcel 1D detector and a 

flat-plate sample holder in a Bragg-Brentano para-focusing optics configuration (45 kV, 40 

mA). Intensity data were collected by the step-counting method (step 0.04º), in continuous 

mode, in the ca. 5 ≤ 2θ ≤ 50º range.  
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ICP-MS 

The chemical formula of the Eu-AV-20 and Cs+- and Na+-exchanged samples were 

determined by ICP-MS on a Jobin-Yvon JY70 Plus Spectrometer. 

 

PLS 

The photoluminescent spectra in the visible region were recorded at room temperature on 

a Jobin Yvon-Spex spectrometer (HR 460) fitted with a 1200 grooves mm-1 grating blazed 

at 500 nm-coupled to a R928 Hamamatsu photomultiplier. A 150 W Xe arc lamp coupled to 

an excitation monochromator Jobin Yvon-Spex (TRIAX 180) fitted with a 1200 grooves mm-

1 grating blazed at 330 nm was used as excitation source. All spectra were corrected for the 

response of the detectors. 

 

III.1.3. Results and discussion 

 

This section starts with the crystallinity and purity characterization of the native and 

exchanged Eu-AV-20 samples by SEM and PXRD, after which it presents and discusses 

the PLS results. Finally it discusses the relation between the cation molar ratio in the Eu-

AV-20 solid (after ion exchange) and the ratio of the areas of the Eu1 and Eu2 5D0
7F0 

transitions. 

 

III.1.3.1. Materials characterization 

 

Figure III.1.2 shows the SEM images of the exchanged Eu-AV-20 samples (experimental 

conditions in Table III.1.2). The results indicate that material preserves its crystallographic 

pseudo hexagonal habit after ion exchange. Negligible amounts of nitric salts impurities 

were confirmed by PXRD (asterisks on Figure III.1.3, Figure III.1.4 and Figure III.1.5). PXRD 

confirmed that the crystallinity of the samples is also preserved after ion exchange. 

Relatively to the impurities observed by SEM, PXRD allowed their estimation at less than 

5% (wt/wt) and revealed that the solids exchanged with cesium nitrate had the highest 

amounts. 
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Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

     
     

Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10 

     
     

Exp. 11 Exp. 12 Exp. 13 Exp. 14 Exp. 15 

     

Figure III.1.2. – SEM images of exchanged Eu-AV-20 (see experimental conditions in Table 

III.1.2).  

 

 

Figure III.1.3 – PXRD patterns of the Cs+-exchanged Eu-AV-20 (Exps. 1-5, see 

experimental conditions in Table III.1.2). The asterisks depict impurities. 
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Figure III.1.4 – PXRD patterns of the Na+-exchanged Eu-AV-20 (Exps. 6-10, see 

experimental conditions in Table III.1.2). 

 

 

Figure III.1.5 – PXRD patterns of the (Cs+,Na+)-exchanged Eu-AV-20 (Exps. 11 to 15, see 

experimental conditions Table III.1.2). The asterisks depict impurities. 
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III.1.3.2. Photoluminescence studies 

 

The full room-temperature (RT) photoluminescence emission spectra of the native and Cs+-

exchanged Eu-AV-20 materials recorded with excitation at 393 nm are qualitatively 

compared in Figure III.1.6, where five of the transitions ascribed to the Eu3+ septet (5D0
7Fj, 

j = 0-4), due to its relevance, are identified. All the spectra were measured keeping the 

experimental set-up fixed (slits width, irradiated area, and optics geometry) and using the 

same amount of sample in the form of pellets pressed at a constant pressure of ca. 2 Ton 

cm-2. Figure III.1.6 shows the RT emission spectra of the native and Cs+-exchanged Eu-

AV-20 (from Exp. 1) and reveals a high sensitivity of the europium(III) emission to the Cs+ 

incorporation into the solid since big differences in all transitions are observable. 

 

 

Figure III.1.6 – RT emission spectra of native and Cs+-exchanged Eu-AV-20 materials 

(excitation at 393 nm). See experimental conditions in Table III.1.2. 

 

Figure III.1.7 shows the non-degenerated 5D0
7F0 transition of the emission spectra of the 

native and Cs+-exchanged Eu-AV-20 (Exp. 1) from which two local Eu3+ environments are 

clearly inferred by the presence of two lines. The native Eu-AV-20 and Cs+-exchanged are 

distinct because of the presence of this ion and some quenching effects provoked by the 

presence of additional sorbed water molecules. The intensity of Eu1 peak decreases, while 

the Eu2 band broadens and slightly shifts. Similar features were observed by Ferreira et al. 
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[8], when the native Eu-AV-20 was exposed to vacuum. In this case, the unit cell shrunk 

upon sample dehydration, inducing slight changes in the local environments of Eu1 and 

Eu2. 

 

 

Figure III.1.7 – 5D0
7F0 transition region of the luminescence spectra of the native and Cs+-

exchanged Eu-AV-20. 

 

The full RT emission spectra (with excitation at 393 nm) of Cs+-exchanged Eu-AV-20 from 

Exps. 1-5 are shown in Figure III.1.8. The spectra unveil an emission increase in 5D0
7F1, 

5D0
7F2 and 5D0

7F4 transitions (identified by arrows) as consequence of higher Cs+ 

exchanged concentration. This event is better observable in the 5D0
7F0 region of the 

photoluminescence spectra of Cs+-exchanged Eu-AV-20 presented in Figure III.1.9: the 

ratio Eu1/Eu2 increases (the area of the Eu1 band increases) with the cesium solid 

concentration (Exps. 1-5, Table III.1.2). This is also perceived in Figure III.1.12 where the 

Eu1/Eu2 areas ratio plotted as function of the Cs+/Eu molar ratio is almost linear (coefficient 

of determination R2=0.83). 

 



III. Optical sensing of Cs+ and Na+ by Eu-AV-20 
 

 

139 

 

Figure III.1.8 – RT emission spectra of Cs+-exchanged Eu-AV-20 materials from Exps. 1-5 

(excitation at 393 nm). See experimental conditions in Table III.1.2. 

 

 

Figure III.1.9 – 5D0
7F0 transition region of the luminescence spectra of Exps. 1-5 (see 

experimental conditions in Table III.1.2). 

 

Similar results were observed for the Na+-exchanged Eu-AV-20 (Exps. 6-10). For instance, 

the full RT emission spectra (with excitation at 393 nm) shown in Figure III.1.10 unveils a 

slight increase (identified by arrows) in the emission of 5D0
7F1 and 5D0

7F2 transitions. 
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Figure III.1.11 discloses a weaker Eu1 band and smaller Eu1/Eu2 ratios for the Na+-

exchanged Eu-AV-20 (see Exps. 6-10, Table III.1.2). In this case, a linear trend is also 

observed but with a higher coefficient of determination (R2=0.94, see Figure III.1.12) than 

that achieved for the Cs+-exchanged materials from Exps. 1-5. 

 

 

Figure III.1.10 - RT emission spectra of Na+-exchanged Eu-AV-20 materials from Exps. 6-

10 (excitation at 393 nm). See experimental conditions in Table III.1.2. 

 

 

Figure III.1.11 – 5D0
7F0 transition region of the luminescence spectra of Exps. 6-10 (see 

experimental conditions in Table III.1.2).  
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Concerning Exps. 11-15, the results obtained with the equimolar Na+, Cs+ solutions are very 

interesting because increasing both concentrations decreases the emission intensity of the 

5D0
7D0, 5D0

7F1 and 5D0
7F2 transitions (identified by arrows), as can be seen in Figure 

III.1.12. In fact, Eu1 and Eu2 bands decrease and the Eu1/Eu2 ratio changes little in the 

range ca. 0.32-0.37 (Table III.1.3 and Figure III.1.14, excluding Exp. 14). These results are 

probably ascribed to the competition of sodium and cesium during ion exchange, resulting 

in the absence of a clear trend. Indeed, the ionic radius of the involved cations (𝑟𝐶𝑠+ =  170 

pm > 𝑟𝑁𝑎+ =  102 pm [13]) indicates the sodium higher accessibility to the porous structure 

of Eu-AV-20 while the magnitude of the molar Gibbs free energy of dehydration (∆dehyd𝐺) 

of Cs+ and Na+, 365 and 250 kJ mol-1 [13], respectively, shows that the energy required by 

the sodium for accessing the microporosity of Eu-AV-20 is ca. 1.5 times higher than that of 

cesium.  

 

Figure III.1.12 - RT emission spectra of (Cs+,Na+)-exchanged Eu-AV-20 materials from 

Exps. 11-15 (excitation at 393 nm). See experimental conditions in Table III.1.2. 

 

Figure III.1.14 reveals a higher sensitivity of the Eu-AV-20’s emission to Cs+ incorporation 

since a difference of 52% in its solid molar ratio (Exps. 1-5) caused a ca. 60% increase of 

the Eu1/Eu2 ratio, while an increment of 67% on the sodium molar ratio (Exps. 6-10) caused 

an increase of ca. 64% on the Eu1/Eu2 ratio. This is evident by considering the data slopes 
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in Figure III.1.14.a and Figure III.1.14.b, whose values are ca. of 2.03 and 0.28, for cesium 

and sodium exchange, respectively.  

 

 
Figure III.1.13 – 5D0

7F0 transition region of the luminescence spectra of Exps. 11-15 (see 

experimental conditions in Table III.1.2).  

 

Table III.1.3 – Eu1 and Eu2 peak areas, their respective ratio and standard errors 

(experimental conditions in Table III.1.2). 

Exp. number 1 2 3 4 5 

Eu1 19.616 ± 0.182 22.435 ± 0.242 25.399 ± 0.244 26.973 ± 0.284 28.845 ± 0.320 

Eu2 45.990 ± 0.200 45.707 ± 0.264 45.955 ± 0.265 46.085 ± 0.307 40.875 ± 0.344 

Eu1 / Eu2 0.427 ± 0.004 0.491 ± 0.006 0.553 ± 0.006 0.585 ± 0.007 0.706 ± 0.010 

Cs+ / Eu 0.12 ± 0.01 0.16 ± 0.02 0.19 ± 0.03 0.23 ± 0.01 0.23 ± 0.02 

      

Exp. number 6 7 8 9 10 

Eu1 13.541 ± 0.224 14.755 ± 0.379 14.096 ± 0.346 17.651 ± 0.370 20.564 ± 0.401 

Eu2 39.819 ± 0.234 36.229 ± 0.377 37.488 ± 0.349 38.209 ± 0.378 39.156 ± 0.419 

Eu1 / Eu2 0.340 ± 0.006 0.407 ± 0.011 0.376 ± 0.010 0.462 ± 0.011 0.525 ± 0.012 

Na+ / Eu 1.09 ± 0.40 1.25 ± 0.44 1.15 ± 0.31 1.57 ± 0.77 1.64 ± 0.44 

      

Exp. number 11 12 13 14 15 

Eu1 16.605 ± 0.157 15.672 ± 0.220 15.109 ± 0.219 18.533 ± 0.171 12.585 ± 0.211 

Eu2 45.546 ± 0.172 43.127 ± 0.235 41.551 ± 0.229 38.841 ± 0.182 39.421 ± 0.222 

Eu1 / Eu2 0.365 ± 0.004 0.363 ± 0.005 0.364 ± 0.006 0.477 ± 0.005 0.319 ± 0.006 

Cs+ / Eu 0.12 ± 0.02 0.18 ± 0.02 0.20 ± 0.02 0.24 ± 0.03 0.27 ± 0.03 

Na+ / Eu 0.93 ± 0.19 1.26 ± 0.19 1.20 ± 0.50 1.47 ± 0.16 1.25 ± 0.25 
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Figure III.1.14 – Eu1/Eu2 areas ratio as a function of: a) Cs+/Eu molar ratio (Exps. 1-5); b) Na+/Eu 

molar ratio (Exps. 6-10); and c) Cs+/Eu and Na+/Eu molar ratios (Exps. 11-16). Red circles depict the 

Cs+/Eu molar ratio and blue triangles the Na+/Eu molar ratio (see experimental conditions in Table 

III.1.2.) 

 

III.1.4. Conclusions 

 

In this chapter, the Cs+ and Na+ sensing ability of Eu-AV-20 materials, based on 

photoluminescence, was assessed. Fifteen batch ion exchange experiments were carried 

out until equilibrium was reached using cesium, sodium and equimolar solutions of both. 

After ion exchange the solids were characterized by several techniques. SEM, EDS and 

PXRD results revealed negligible amounts of impurities. Uptake of cesium and sodium 

resulted in changes in the emission spectrum of native Eu-AV-20, due to slight changes in 

the local environment of the Eu3+ emitter. Intriguingly, when the materials are ion exchanged 

with only sodium or cesium, the Eu1/Eu2 intensity ratio of the non-degenerated 5D0
7F0 

transition increases, whereas when an equimolar solution of both cations is used this ratio 

remains essentially the same. These results suggest that AV-20 materials have potential 
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for being used as luminescence sensors for Cs+ (and Na+) cations in aqueous solutions. 

However, further work is needed, as witnessed by the results in Figure III.1.14.  
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IV 
Removal of Cs+ from aqueous 

solutions through batch experiments 
 

This chapter concerns the study of two lanthanide silicates, Eu-AV-20 and Tb/Eu-AV-9, for 

the removal of Cs+ ion from aqueous solution performing batch ion exchange experiments. 

Both materials were synthesized and characterized by several techniques such as scanning 

electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS),  powder X-Ray 

diffraction (PXRD), inductively coupled plasma mass spectroscopy (ICP-MS) and 

photoluminescent spectroscopy (PLS). Several experiments were carried out to measure 

isotherm and kinetic removal curves. The kinetic data were modelled using a Maxwell-

Stefan based model taking into account internal and external limitations to mass transfer. 

The photoluminescent spectra of the parent and Cs+-ion exchanged solids were obtained 

in order to evaluate their sensing ability towards cesium. 
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Abstract 

 

The ion exchange of Cs+ from aqueous solutions was studied using for the first time a 

microporous lanthanide silicate with photoluminescence properties, Eu-AV-20. It was 

prepared by hydrothermal synthesis, characterized by SEM, PLS, PXRD and ICP-MS, and 

several batch ion exchange experiments were performed to measure isotherm and removal 

curves. Additional curves were measured to evaluate the competition with Na+. The results 

evidenced the great selectivity of Eu-AV-20 towards Cs+ since cesium removal was slightly 

modified even for Na+/Cs+ concentrations ratio of 190. The emission photoluminescent 

spectra of native and Cs+-exchanged Eu-AV-20 were also determined for the first time, and 

significant modifications were detected, which discloses the potential of Eu-AV-20 for Cs+ 

sensing purposes. 

The Langmuir equation provided a good fit to the equilibrium data, with average 

error of 5.3%, and the Maxwell-Stefan based model adopted to represent the kinetic curves 

(i.e., concentration versus time) achieved a deviation of 19.0%. An analysis of variance 

confirmed that the model was statistically significant to represent the uptake curves.  

The Maxwell-Stefan based model comprises three parameters, namely, the diffusion 

coefficients associated to the interactions of Cs+ and Eu-AV-20, Na+/K+ and Eu-AV-20, and 

Cs+ and Na+/K+, whose fitted values were 2.706x10-15, 5.713x10-15 and 9.446x10-17 m2 s-1. 

Such low values evidenced that the intraparticle mass transport mechanism is surface 

diffusion. This fact is ascribed to the small pores of the Eu-AV-20 crystal, 5.8x6.8 Å, because 

the counter ions never escape from the force field of the framework co-ions, mainly due to 

the strong and long range nature of the electrostatic interactions. 
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IV.1. Cs+ ion exchange over lanthanide silicate Eu-AV-20: Experimental 

measurement and modelling 

 

IV.1.1. Introduction 

 

The World, particularly the United States of America, inherited a massive amount of highly 

radioactive wastes generated in the weapon and electrical power production [1], which have 

been stored in large underground tanks filled with a complex triphasic system containing a 

metal hydroxide sludge, a high concentrated alkaline supernatant, and a salt cake where 

cesium (135,137Cs), strontium (90Sr) and technetium (99Tc) are the predominant radioactive 

elements [2–4]. Due to corrosion associated to such high salinity, these tanks suffered 

leakage allowing the radionuclides to enter the surrounding soils and groundwater [1,2].  

The undesirable effect of the radiation associated with these wastes raised the 

awareness towards its secure management, protecting the human health and environment. 

Furthermore, the reduction of the volume of these wastes with the purpose to enhance 

safety and/or decrease their supervision cost makes treatment processes imperative. 

Several approaches may be adopted like ion exchange/sorption, chemical precipitation, 

evaporation, reverse osmosis, filtration, and solvent extraction [5,6].  

When dealing with the requirement of high purity water for several applications and 

water/wastewater remediation in general, ion exchange may be recommended [6–8]. It is 

well known in the nuclear industry field [2,6,7,9,10] as, for example, in the separation of 

zirconium and hafnium [9] (the former is essentially transparent to free neutrons while the 

latter is a very strong absorber of neutrons used in reactor control rods). 

The utilization of inorganic exchangers is well established due to their advantageous 

properties [6–8,11]. When compared with conventional resins, they present higher 

chemical, thermal, and radiation stabilities. Furthermore, inorganic sorbents typically exhibit 

high capacities and selectivities for a wide variety of monovalent and divalent metal cations 

[11–18]. 

Concerning the specific removal of radioactive cesium and strontium, many classes 

of inorganic materials have been proposed: zeolites [19], zeolite-like materials [2,11,20–

25], titanates [26,27], zirconium phosphates [28,29], phyllosilicates [30–32] and pillared 

clays [33]. Among zeolite-like sorbents, microporous mixed octahedral-pentahedral-

tetrahedral (OPT) materials offer great opportunities for selective ion exchangers.  

Much attention was focused on two structurally-related titanosilicates: synthetic 

sitinakite has great affinity for Cs+ [20,34], while the synthetic pharmacosiderite is only 
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selective in very dilute solutions (ppm) at pH 7 [2,23,35]. Dyer et al. [36] reported the 

removal of traces of 137Cs and 90Sr by different cationic forms of synthetic pharmacosiderite. 

Later, germanate forms of pharmacosiderite (Ge, TiSi, TiSiGe, TiGe) were also 

investigated, and such modification caused drastic changes on the Cs+ distribution 

coefficient (from 0 to ~46000) [11,37]. Tripathi and co-workers [38] improved the Cs+ 

exchange using titanosilicate with pharmacosiderite topology with germanium or niobium 

framework substitution. The incorporation of niobium in the sitinakite structure increased 

significantly the Cs+ selectivity, particularly at high pH [39]. 

Titanosilicates, such as ETS-10 and ETS-4, were also studied as inorganic ion 

exchangers for the remediation of waters containing Cs+ and Sr2+. Pavel et al. [22] studied 

their sorption properties, while Popa et al. [6,40] accomplished a deep analysis of cesium 

and strontium uptake by ETS-10. AM-2 silicates (K2M’Si3O9∙2H2O with M’=Ti, Zr) were 

described as good exchangers for Rb+, Cs+ and K+, whose selectivities are tailored by 

varying the Ti/Zr ratio [41]. 

Although the above-mentioned studies were focused essentially on titanosilicates 

there is much scope for new Cs+ ion exchangers among other transition metal, rare-earth 

and lanthanide (Ln) silicates. In fact, in the early years of this century, the preparation of 

zeolite-type rare-earth or Ln-silicates was an emerging field, though they were mainly 

investigated as phosphors and probes to obtain information about the structure and cations 

environment inside the cages [42,43].  

The Ln-containing materials exhibit interesting optical properties, emitting over the 

entire spectral range. The associated optical transitions take place only between 4f orbitals 

which are well shielded from their chemical environment by 5s2 and 5p6 electrons [44]. 

Therefore, atomic-like emission spectra displaying characteristic sharp lines may be 

observed. Since the emission spectra of a given material depend on the existence of other 

molecules/ions in the vicinity of the emitter lanthanide, the possibility of sensing their 

presence in the matrix may be explored with interest. In fact, the change of the 

photoluminescence spectrum of Ln-containing materials induced by ion exchange opens 

opportunities in this field of research. More information may be found elsewhere [45,44]. 

Recently, much attention was given to AV (acronym of Aveiro) materials because 

they combine in a single and stable solid microporosity and tuneable optical properties [46]. 

This makes them potential materials for applications in devices such as cathode ray tubes, 

projection televisions, fluorescent tubes and X-ray detectors, photonics and optical 

communication, and may also play an important role in the development of sensors for 

future use in wastewater control. A case in point is the microporous Ln-silicate AV-20, 
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whose structure is closely related to that of Tobermorite 11 Å [47]. The Tobermorite family 

of materials has already been applied as cation exchangers [48]. Until now only two papers 

concerning Ln-AV-20 were published, namely focusing the energy transfer and the emission 

decay kinetic of mixed Ln-AV-20 silicates [46,49]. 

The structure of Ln-AV-20 has stoichiometric amounts of the Ln3+ cation embedded 

in the framework and does not suffer any transformation upon calcination up to 800 ºC [47]. 

In brief, the Ln-AV-20 framework consists of a series of sheets built up of alternating chains 

of Na+ and Ln3+ polyhedra (Figure IV.1.1.a). The layers are connected through double 

silicate chains of 8-membered rings forming framework channel, running along the [110] 

direction (Figure IV.1.1.b). The 5.8 Å by 6.8 Å channels contain Na+ ions, six-coordinated 

to three water molecules, and K+ ions seven-coordinated to four framework oxygen atoms 

and three water molecules. Both sites (particularly the Na+ site) may be partially occupied 

by water molecules. The sodium population ratio Na+ ions in the layer/channels is ca. 4 [47]. 

The structure of AV-20 is amenable to the incorporation of a second type of Ln3+ cation [46]. 

In this work we assessed the ion exchange capability of Eu-AV-20 to uptake Cs+ 

from aqueous solutions, in order to evaluate its potential as decontaminating agent, and 

future sensing ability since the presence of different cations and/or molecules inside the 

pores may change its emission spectra. The material was synthesised and characterized in 

detail, and batch experiments were performed to obtain equilibrium and removal curves. 

Modelling was accomplished using Langmuir isotherm and a kinetic model based on 

Maxwell-Stefan equations. 

 

 

Figure IV.1.1 – a) Eu-AV-20 sheets comprising alternating chains of Na+ and Eu3+ 

polyhedral; b) framework channels, running along the [110] direction and housing Na+ and 

K+. Crystal structure drawn using Diamond software. 
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IV.1.2. Materials and Methods 

 

IV.1.2.1. Chemicals and materials  

 

Extra pure sodium silicate solution (HS code 2839 19 00), potassium hydroxide (CAS 

number 1310-58-3) and sodium hydroxide (CAS number 1310-73-2) were supplied from 

Merck. Europium(III) chloride hexahydrate (CAS number 13759-92-7) and cesium nitrate 

(CAS number 7789-18-6) were purchased from Sigma-Aldrich. High-purity water (18.2 

MΩcm) was generated from a Milli-Q Millipore water purification system and the cellulose 

acetate membrane disc filters were bought from Sterlitech Corporation. 

 

IV.1.2.2. Synthesis procedures 

 

The synthesis of Eu-AV-20 was performed as follows [46]: An alkaline solution was 

prepared by mixing 5.75 g of sodium silicate solution, 16.51 g of H2O, 3.25 g of KOH, and 

1.07 g of NaOH. An amount of 1.37 g of O6HEuCl 23   was added to this solution, and the 

mixture was stirred thoroughly. Alternatively Eu2O3 (combined with HNO3) may be utilized 

as Eu3+ source since it is much cheaper, mainly for higher scale applications. The gel, with 

composition 0.79 Na2O : 1.10 K2O : 1.0 SiO2 : 0.07 Eu2O3 : 35 H2O was autoclaved under 

autogenous pressure for 3 days at 230 °C. After the synthesis, the autoclave was removed 

and quenched in cold water. The off-white microcrystalline powder was filtered, washed at 

room temperature with distilled water, and dried at 100 °C. Table IV.1.1 summarizes the 

relevant features of this material. 

 

Table IV.1.1 – Features of the synthesized Eu-AV-20 lanthanide silicate. 

Formula Na1.08K0.5Eu1.14Si3O8.5∙1.78H2O 

Density, 𝜌solid (kg m-3) 3080 

Cation exchange capacity, 𝑞S (eq kg-1) 2.55 

Equivalent particle diameter (10-6 m) 23.1 

Pore diameter (10-10 m) 5.8 x 6.8 

 

IV.1.2.3. Sorption experiments: isotherm and removal curves 

 

Batch experiments were performed contacting under agitation the Cs+ solution with 

powdered Eu-AV-20 in volumetric flasks of 2 L, at room temperature. The initial pH was 
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always 4, and the stirring velocity 300 rpm. In order to evaluate the time necessary for 

attaining the solid-liquid equilibrium, various aliquots were withdrawn along time until the 

solution concentration remained constant. 

The 0.01 mol L-1 Cs+ stock solution was prepared by dissolving 0.098 g CsNO3 in 50 

mL of high-purity water (18.2 MΩcm). The remaining Cs+ solutions were obtained by diluting 

the stock solution to the desired concentration with high-purity water. They were only 

prepared when necessary for immediate use in order to reduce cation adsorption on the 

vessel walls and remaining glassware and lab material.  

The experiments started when fixed masses of the exchanger were added to the 

Cs+ solutions and stirring was initiated. 10 mL aliquots were collected along time, and 

filtered through an acid washed cellulose acetate membrane disc filter of 0.45 µm for 

measuring the cesium concentration in solution by atomic emission. A blank experiment 

(without Eu-AV-20) was always run as a control to check that the removal of Cs+ occurred 

by ion exchange onto the solid and not by adsorption on the lab material. Besides, a 

complete experiment was replicated and analysed by ICP-MS in order to validate 

simultaneously the experimental and analytical procedure.  

For assessing the influence of the Eu-AV-20 mass upon the Cs+ removal, 10 

different masses were studied (5, 12, 16, 31, 103, 104, 105, 149, 350 and 616 mg) and the 

initial concentrations of the cesium solutions ranged from 0.8 to 1 ppm (Table IV.1.2). These 

concentrations were fixed around 0.9 ppm in order to maintain constant the ionic strength 

of the solutions; the masses of the solid were varied, instead. Exps. 1-7 and 9 of Table 

IV.1.2 were carried out to measure equilibrium data (i.e., isotherm points), while the 

remaining three (Exps. 8, 10, 11) were used to determine removal curves (from which one 

equilibrium point per curve was also taken). An additional experiment (Exp. 4) was 

performed using regenerated Eu-AV-20 with the objective to evaluate the ion exchange 

performance in second cycles. The regeneration was accomplished with concentrated 

K+/Na+ fresh solutions.  

The presence of sodium cation as competitor during the cesium uptake was 

evaluated with two additional experiments (Exps. 12 and 13 of Table IV.1.2). Their kinetic 

curves were determined for the same mass of exchanger and initial cesium concentration, 

but Exp.13 includes 0.001 mol L-1 of sodium nitrate since beginning (a value 190 times 

higher than the initial Cs+ concentration). 

The average concentration of sorbed metal at time t  (s or h), Aq  (mol kg-1), was 

computed by material balance: 
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 AA0

solidsolid

liquid

A CC
V

V
q 





 (IV.1.1) 

 

where A0C  and AC  are the initial and instantaneous concentrations of cesium in solution 

(mol m-3), respectively, liqV  is the solution volume (m3), solidsolid mV    is the volume of solid 

exchanger (m3), m  is the mass of solid exchanger (kg), and solid  is the solid’s density (kg 

m-3). 

 

Table IV.1.2 – Experimental conditions of batch ion exchange assays using Eu-AV-20. 

(Fixed: T=295 K ± 1; 𝑉liquid = 2 × 10−3 𝑚3; pH =4). 

Experiment 

No. 

Mass of Eu-AV-20 

(10-6 kg) 

Initial Cs+ conc. 

(eq m-3) 

Type of data 

measured * 

1 5 5.906×10-3 isoth. 

2 12 8.457×10-3 isoth. 

3 16 6.124×10-3 isoth. 

4 18 6.160×10-3 isoth. 

5 31 7.855×10-3 isoth. 

6 103 6.290×10-3 isoth. 

7 104 6.230×10-3 isoth. 

8 105 6.335×10-3 kin. & isoth. 

9 149 6.252×10-3 isoth. 

10 350 8.449×10-3 kin. & isoth. 

11 616 5.718×10-3 kin. & isoth. 

12 302 4.693×10-3 kin. & isoth. & phot. 

13 305 

5.275×10-3 

 (Initial Na+ conc. 

= 1 
-3m eq ) 

kin. & phot 

* isoth = measurement of isotherm point;  kin = determination of removal curve; phot = determination 

of photoluminencent spectrum 

 

IV.1.2.4. Equipment and techniques 

 

Crystal dimensions and morphology were determined by microscopy on a Scanning 

Electron Microscope (SEM) Hitachi SU-70. The sample crystallinity and purity was 
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uncertain by Powder X-Ray Diffraction (PXRD) collected at ambient temperature on a 

PANalytical Empyrean diffractometer (Cu Kα1,2X-radiation, λ1 = 1.540598 Å; λ2 = 1.544426 

Å), equipped with an PIXcel 1D detector and a flat-plate sample holder in a Bragg-Brentano 

para-focusing optics configuration (45 kV, 40 mA). Intensity data were collected by the step-

counting method (step 0.04º), in continuous mode, in the ca. 5 ≤ 2θ ≤ 50º range. The total 

cation exchange capacity (as sum of Na+ and K+) of Eu-AV-20 was determined by ICP-MS 

on a Jobin-Yvon JY70 Plus Spectrometer.  

All cesium solution concentrations were measured with a Perkin Elmer AAnalyst 100 

atomic absorption spectrometer, in the emission mode (with a wavelength of 852.1 nm and 

a slit of 0.2 nm) and using an air-acetylene flame. The ionization was controlled by the 

addition of 0.5% (wt.) of potassium chloride to samples and standards. Each sample was 

analysed in triplicate. Results are average of concordant values obtained for each sample 

(less than 5% variation between measurements of the same sample).  

The photoluminescent spectra in the visible region were recorded at room 

temperature on a Jobin Yvon-Spex spectrometer (HR 460) fitted with a 1200 grooves mm-

1 grating blazed at 500 nm-coupled to a R928 Hamamatsu photomultiplier. A 150 W Xe arc 

lamp coupled to an excitation monochromator Jobin Yvon-Spex (TRIAX 180) fitted with a 

1200 grooves mm-1 grating blazed at 330 nm was used as excitation source. All spectra 

were corrected for the response of the detectors. 

 

IV.1.3. Modelling 

 

Ion exchange may be considered a conventional chemical equilibrium  [50,51] represented 

by: 

 

𝑧A𝐵𝑧B̅̅ ̅̅ ̅ + 𝑧B𝐴𝑧A ⇋ 𝑧B𝐴𝑧A̅̅ ̅̅ ̅ + 𝑍A𝐵𝑧B  (IV.1.2) 

 

where 𝑧A and 𝑧B are their electrochemical valences, and the top bar denotes the exchanger 

phase. In this case, A = Cs+, B = Na+ and K+, and thus 𝑧A = 𝑧B = +1. The co-ions are the 

third component, S, of the system for which the valence is 𝑧S = -1. Eq. (IV.1.2) implies that 

the ion exchanger is initially in B-form. 

A model based on the Maxwell-Stefan (MS) equations to describe the batch ion 

exchange [52–54] was written and coded in Matlab R2012a®. This model embodies the 

following hypothesis: i) film and intraparticle mass transfer resistances; ii) spherical solid 

particles; iii) perfectly stirred tank; iv) isothermal operation; v) solution co-ions are excluded 
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from the exchanger particles due to Donnan exclusion; and vi) ideal solution behaviour. 

Because the model was previously described [52,54] in publications dealing with mercury 

removal from aqueous solutions using microporous titanosilicate ETS-4, only the final set 

of equations is compiled in Table IV.1.3. The nomenclature adopted is the following: 2n  

is the number of counter ions (A and B); the co-ions are the (𝑛 + 1)th = 3rd species, being 

represented by S; 𝑞A, 𝑞B and 𝑞S are individual concentrations (mol kg-1) of counter ions A 

and B, and co-ions S in the solid; 𝑞t = 𝑞A + 𝑞B + 𝑞S is the total concentration (mol kg-1) in 

the solid; 𝑦j = 𝑞j 𝑞t⁄  is the molar fraction of species 𝑗 in the solid; 𝑞A,eq is the equilibrium 

concentration of A (mol kg-1) in the solid; 𝑟 is the radial position in the particle (m); 𝑡 is time 

(s); 𝐶Ais the molar concentration of A in solution (mol m-3); 𝑉liq and 𝑉solid are the solution and 

solid volumes (m3); 𝑅p is the particle radius (m); 𝑞A̅̅ ̅ is the average concentration of A in the 

solid; 𝑘f is the convective mass transfer coefficient (m s-1) of species A. The generalized 

Maxwell-Stefan equations (Eq. ((IV.1.13)) are expressed in matrix notation, where 𝑁i is the 

molar flux of ionic species 𝑖 (mol m-2 s-1), ∇𝜙 is the electrostatic potential gradient (V m-1), F 

= 96485.34 C mol-1 is Faraday constant, ℜ=8.314472 J K-1 mol-1 is the ideal gas constant, 

𝑇 is absolute temperature (K), Ðij is the MS surface diffusivity of the pair 𝑖 − 𝑗 (m2 s-1), Ðis is 

the MS surface diffusivity for the interaction between ion 𝑖 and co-ions s (m2 s-1), 𝛾i,liq and 

𝑥𝑖 are the activity coefficient and the molar fraction of counter ion 𝑖 in solution, respectively. 

The conservation of species A, B and S is established by the material balances 

given by Eqs. (IV.1.3) and (IV.1.5), the electroneutrality restriction (Eq. (IV.1.6)), and cation 

exchange capacity (𝑞S). The molar fluxes of A, S and B are computed by Eqs. ((IV.1.13)-

((IV.1.15), respectively. Concerning the equilibrium, only the Langmuir isotherm (Eq. 

(IV.1.12)), with parameters 𝐾L and 𝑞m, is indicated. Langmuir, Freundlich and Langmuir-

Freundlich were examined in this work, though the second one did not fit reliably the 

equilibrium data and the last one (with one parameter more) provided equivalent results to 

Langmuir.  

The concentration profiles of Cs+ and their evolution along time in solution and in the 

solid phase were numerically calculated using the Method of Lines (MOL) [55] with spatial 

discretization in the particle by Finite-Differences. The resulting ordinary differential 

equations (ODEs) of the initial-value type were solved applying numerical differentiation 

formulas (ode15s function of Matlab R2012a®) using 31 grid points. An odd number of 

points is required when the average loading given by Eq. ((IV.1.7) is numerically evaluated 

by the 1/3 Simpson’s Rule. 
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The MS surface diffusivities are the model parameters to fit to the experimental data. 

Three initial guesses were provided: ÐAs, ÐBs and ÐAB =  ÐBA. The correlation of Armenante 

and Kirwan [56] (Eq. (IV.1.16)) was adopted to estimate the convective mass transfer 

coefficient. The size of our particles is in the range of validity of the correlation: (6 – 420)x10-

6 m. The Nelder-Mead algorithm was used to optimize ÐAs, ÐBs and ÐAB, by minimizing the 

average absolute relative deviation (AARD): 

 

AARD(%) =
100

NDP
∑ |

𝐶A,calc − 𝐶A,exp

𝐶A,exp
|

i

NDP

i=1

 (IV.1.3) 

 

where NDP is the number of data points, and subscripts ‘exp’ and ‘calc’ refer to experimental 

and calculated cesium concentrations in solution, respectively. 
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Table IV.1.3 – Model for batch ion exchange based on the Maxwell-Stefan equations. There 

are 2n   counter ions (A and B), and the co-ions are the (𝑛 + 1)th = 3rd species. 

Material balance to the particle 𝜌solid

𝜕𝑞A

𝜕𝑡
= −

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑁A) (IV.1.4) 

Material balance to the vessel 
𝑑𝐶A

𝑑𝑡
= −

𝑉s × 𝜌solid

𝑉L

𝑑𝑞̅A

𝑑𝑡
 (IV.1.5) 

Electroneutrality ∑ 𝑞i

n+1

i=1

𝑧i = 0 (IV.1.6) 

Average solid concentration 𝑞A̅̅ ̅ =
3

𝑅p
3

∫ 𝑟2𝑞A𝑑𝑟
𝑅p

0

 (IV.1.7) 

Initial and boundary conditions 𝑡 = 0, {
𝑞A = 0

𝐶A = 𝐶A0
 (IV.1.8) 

 𝑟 = 𝑅𝑝, 𝑞A = 𝑞A,Rp
 (IV.1.9) 

 𝑟 = 0,
𝜕𝑞A

𝜕𝑟
= 0 (IV.1.10) 

Equality of internal and external 

fluxes at particles surface 
𝑁𝐴|𝑅p

= 𝑘f (𝐶A − 𝐶A|𝑅p
) (IV.1.11) 

Equilibrium (Langmuir isotherm; 

see parameters in Figure IV.1.4) 
𝑞A,eq = 𝑞m

𝐾L𝐶A,eq

1 + 𝐾L𝐶A,eq
 (IV.1.12) 

Maxwell-Stefan equations 

(𝑁) = −𝑞𝑡𝜌solid[𝐵]−1[Γ](∇𝑦) − [𝐵]−1(∇ζ) 

with 

𝐵ii =
𝑦𝑠

Ðis

+ ∑
𝑦j

Ðij

n

j=1

j≠i

, 𝐵ij = −
𝑦i

Ðij

 

∇ζ = 𝑦i𝑧i
𝐹

𝑅𝑇
∇𝜙 and Γij ≡ 𝑦i

𝜕ln (𝑦i,liq𝑥i)

𝜕𝑦j
 

(IV.1.13) 

Null co-ions flux (bootstrap 

relation) 
𝑁n+1 = 0 (IV.1.14) 

Null electric current ∑ 𝑁i

n+1

i=1

𝑧i = 0 (IV.1.15) 

Armenante and Kirwan 

correlation [56] 
Sh = 2 + 0.52Re0.52Sc1 3⁄  (IV.1.16) 
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IV.1.4. Results and discussion 

 

This section starts with the Eu-AV-20 characterization, encompassing the morphological 

description, powder crystallinity and total cation capacity. Two room temperature emission 

photoluminescent spectra of native and Cs+-exchanged Eu-AV-20 are presented and 

discussed. Next, the measured and modelled isotherms of our sorption system are 

analysed, and the ion exchange kinetics (removal curves) evaluated in terms of the contact 

time between solid and Cs+ solution, and the effect of the mass of Ln-silicate on the removal 

performance examined. The presence of competitors on the removal of cesium is studied 

by introducing both sodium and cesium cations in the initial solution. Modelling results 

achieved with MS based equations (Table IV.1.4) are also discussed in detail. The system 

will be hereafter denoted by Cs+/Na+,K+/Eu-AV-20, where the first symbols identify the 

counter ions in solution and solid, respectively, and the last one is the ion exchanger. 

 

IV.1.4.1. Materials characterization 

 

SEM showed that the habit of Eu-AV-20 consists of microcrystalline pseudohexagonal thin 

plates with a lateral dimension lower than 
61020   m (see Figure IV.1.2), which is 

consistent with a previous report [47]. The experimental PXRD pattern of the prepared 

sample (see Figure IV.1.2) is characteristic of Eu-AV-20 [47] and provides no evidence for 

the presence of additional impurities or significant changes in the unit cell parameters. Note 

that some peaks intensity differences were found between the simulated and the 

experimental diffractograms, which are simply due to the well-known preferential orientation 

of crystals during these assays. Both SEM and PXRD confirmed that the studied sample 

was Eu-AV-20 of good purity and crystallinity. The total cation exchange capacity of 2.55 

eq kg-1 was determined by ICP-MS, corresponding to the sum of 0.52 eq kg-1 of Na+ and 

2.03 eq kg-1 of K+.  
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Figure IV.1.2 – Experimental and powder X-ray diffraction patterns of the synthesized EU-

AV-20 used in the ion exchange assays and the simulated one in accordance with the 

crystal data reported by Ferreira et al. [47]. The inset shows a typical SEM image of the 

sample crystals. 

 

IV.1.4.2. Photoluminescent spectra of native and Cs+–exchanged Eu-AV-20  

 

Photoluminescent emission spectra of native (solid black line) and Cs+-exchanged Eu-AV-

20 (Exp. 12, red dashed line) are represented in Figure IV.1.3, where the five transitions 

ascribable to the Eu3+ septet are identified: 5D0
7F0, 5D0

7F1, 5D0
7F2, 5D0

7F3
 and 

5D0
7F4 (Figure IV.1.3.a). Due to its relevance the transition 5D0

7F0 is detached in Figure 

IV.1.3.b. 

Typical room temperature emission spectrum of native Eu-AV-20 was obtained 

since there are two distinct peaks in the transition 5D0
7F0 and the intensity of the 5D0

7F2 

transition is the highest and characteristic from a low symmetric environment. The principal 

emission state, 5D0, and the fundamental state, 7F0, are non-degenerated and should lead 

to only one transition 5D0
7F0. Thus, the existence of only one place to the emitter, Eu3+, is 

indicated by the presence of one peak referent to that transition. In the Eu-AV-20 case, the 

appearance of two peaks revealed the presence of two distinct environments (Eu2 and Eu1) 

[47]. 

The spectrum obtained with the Cs+-exchanged Eu-AV-20 is overlapped in Figure 

IV.1.3.a, being possible to detect differences in the various transitions, mainly in the first 

three: 5D0
7F0 (see also Figure IV.1.3.b), 5D0

7F1 and 
5D0

7F2. These observations prove 
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that our material emit differently depending on the vicinity of the Eu3+, which discloses the 

potential of this class of materials (AV solids) for Cs+ sensing purposes. These results are 

reported in this work for the first time. As the concentration in the solid phase influences the 

emission spectra, a previous and detailed study of the system Cs+/Na+,K+/Eu-AV-20 must 

be carried out, which is presented in the next sections. 

 

 

Figure IV.1.3 – (a) Photoluminescent emission spectra of native (solid black line) and Cs+-

exchanged Eu-AV-20 (Exp. 12, red dashed line) excited at 393 nm; (b) enlargement of their 

5D0
7F0 transition. 

 

IV.1.4.3. Ion exchange isotherm 

 

The Cs+/Na+,K+/Eu-AV-20 isotherm and the experimental data are shown in Figure IV.1.4. 

One data point (square; Exp. 4) was obtained using regenerated Eu-AV-20, being possible 
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to observe it exhibited an equivalent ion exchange performance. The result of Exp. 4 was 

very similar to that of Exp. 3 where native Eu-AV-20 was used. Though Langmuir, 

Freundlich and Langmuir-Freundlich models have been examined, the experimental 

equilibrium data were best fitted by Langmuir, with an average absolute relative deviation 

(AARD) of 5.3%, yielding the analytical equation superimposed on Figure IV.1.4. The 

Langmuir model assumes that the surface of the pores is homogeneous, finite capacity, 

and negligible interaction between sorbed species. Despite the first assumption, it was able 

to provide good results in this work, though Eu-AV-20 contains two distinct sites. This 

eliminated the need of the bi-Langmuir isotherm which would involve the double of the 

parameters without fitting advantage. 

 

 

Figure IV.1.4 – Measured data and Langmuir isotherm for Cs+/Na+,K+/Eu-AV-20 system at 

298.15 K. 

 

IV.1.4.4. Influence of Eu-AV-20 mass upon Cs+ removal 

 

The effect of the Eu-AV-20 mass upon the Cs+ removal was evaluated by carrying out 

experiments with 10 different masses of exchanger (
66 10660105    kg) and solution 

concentrations between 
310718.5   and 

310457.8   eq m-3 (see Table IV.1.2). Figure 

IV.1.5 plots the mass of material (and associated solution concentration) versus final Cs+ 

removal. As expected, the Cs+ uptake increased with increasing mass of exchanger, 

jumping in our case from 2.9% to 91.4% when the Eu-AV-20 mass increased from 5 to 616 
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mg. In addition, Figure IV.1.5 superimposes the calculated results (see the solid line), which 

are in good agreement with the experimental data, and their trend. These predictions were 

accomplished by combining the material balance to the vessel (Eq. (IV.1.1)) with the 

isotherm of the system (Eq. (IV.1.11)), giving rise to the following second-order polynomial 

in the final (equilibrium) concentration, eqA,C : 

0
1

L

A0
eqA,A0

L

max

liq

solid2

eqA, 















K

C
CC

K
q

V

V
C  (IV.1.17) 

 

The root of interest is the positive one, from which the desired final uptake can be computed 

after substitution into Eq. (IV.1.5). The necessary constants may be found in Tables IV.1.1 

and IV.1.2, and the Langmuir parameters shown in Figure IV.1.4. 













A0

eqA,
  (%) Uptake Final

C

C
1100  (IV.1.18) 

 

 

Figure IV.1.5 – Influence of Eu-AV-20 mass on the final uptake of Cs+. Bars, data 

(experimental conditions in Table IV.1.2); line, calculated results. 

 

IV.1.4.5. Ion exchange kinetics 

 

The kinetics of cesium ion removal was evaluated carrying out assays with well-known 

solution concentrations around 1 ppm and three different masses (105, 350 and 616 mg) of 
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Eu-AV-20 (see conditions in Table IV.1.2), which correspond to ratios of  solidsolidA0 VC  

equal to 60.3, 24.1 and 9.28
-1-3 kgm eq . The experimental data measured are shown in 

Figure IV.1.6, where the evolution of the normalized cesium concentration in solution along 

time ( tCC   vs. A0A ) are plotted. The results point out that the amounts of solid exchanger 

removed 47.6%, 79.6% and 91.4% of Cs+ from solution, and attained solid loadings of 

0.057, 0.036 and 0.017 
-1kg  eq , respectively.  

The kinetics of ion exchange (Figure IV.1.6) is characterized by a sharp slope in the 

first hours, followed by a transition zone and then a plateau. For the three cases, the uptake 

process is complete after approximately 80 hours, and the largest AC  variations occur in 

the first 10 hours. These observations are consistent with the small diffusivities found (see 

next section) in agreement with other publications dealing with microporous materials like 

Analcite, Chabazite, semi-crystalline Zeolite-NaA, titanosilicate ETS-4, and 

beryllophosphate-G [12–14,57–60]. 

 

 

Figure IV.1.6 – Experimental data of normalized Cs+ concentration in the solution. Purple 

Circles, green diamonds and blue squares are Exps. 8, 10 and 11, respectively 

(experimental conditions in Table IV.1.2); lines are modelling results. 

 

It should be noted that Eu-AV-20 has only two possible diffusion directions which 

penalizes intraparticle mass transport. In fact, the direction [001] is forbidden to diffusion 

due to the framework layer of Eu3+/Na+ polyhedra (see Figure IV.1.1.a). Furthermore, the 

diameters of the Cs+ ion and Eu-AV-20 pores, 1.7 Å and 5.8 x 6.8 Å, respectively, impose 
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an additional restriction to cation exchange, because they probably imply a surface ionic 

diffusion mechanism, for which the activation energy is an important process parameter.  

As mentioned in the Introduction, the radioactive wastes contain several competing 

cations in solution that may interfere with the removal of Cs+. In general the selectivity 

depends upon pH and on the relative abundances of alkali and alkaline earth metals cations 

in solution. For instance, Bortun et al. [20] reported that the selectivity of the proton form of 

crystalline silicotitanate decreases significantly for low concentrations of Cs+ in the presence 

of sodium content of nuclear waste solutions, i.e. 5-6 M NaNO3, 1-3 M NaOH. Clearfield et 

al. [61] found that a niobium phase of this material (Nb replaces Ti) performs better in Cs+ 

uptake from a strong base and high Na+ concentrations.  

In this essay, a preliminary study to evaluate the competition between Cs+ and Na+ 

cations in the initial solution was also carried out (Exps. 12 and 13; Table IV.1.2). A sodium 

nitrate concentration of 1 eq m-3 was added to the Cs+ solution (Exp. 13) and its removal 

curve was measured and compared with an experiment performed in the same conditions 

but in the absence of competitor (Exp. 12) – see Figure IV.1.9. The cesium uptake is similar 

in both cases (80% in Exp. 13 versus 85% in Exp. 12), which emphasizes the selectivity of 

Eu-AV-20 towards Cs+ mainly if one takes into account that the initial concentration of Na+ 

was 190 times higher than Cs+ (i.e., two orders of magnitude). It is worth noting that the 

equilibrium selectivity of the solid to Cs+ increased ca. 210 times when passing from a 

solution initially free of Na+ (Exp. 12) to the solution of Exp. 13 (with 1 eq m-3 of Na+ at the 

beginning). 

 In terms of trend, the ion exchange kinetics of Exp. 13 is slower than Exp. 12 due 

to the ion concentration of competing Na+ in solution. In fact, the equilibrium in Exp. 13 is 

attained in approximately 80 hours while in Exp. 12 ca. 30 hours are sufficient. 
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Figure IV.1.7 – Experimental data of normalized Cs+ concentration in the solution. Blue 

triangles and red squares are Exps. 12 and 13, respectively (exp. conditions in Table 

IV.1.2). 

 

IV.1.4.6. Ion exchange modelling based on Maxwell-Stefan equations 

 

The results obtained with the Maxwell-Stefan based model are plotted in Figure IV.1.6 

together with the data measured for the three kinetic experiments (Exp. 8, 10, 11). The 

model fits simultaneously the three curves with AARD = 19.0%, highlighting the typical 

difficulty of representing the kinetic curves in the transition from the steep descent branch 

to the horizontal plateau [13,16,62]. In this work the mass transfer coefficient was not fitted 

to data, but estimated by the correlation of Armenante and Kirwan in order to reduce the 

number of parameters, which also contributed to increase the calculated deviation. The 

optimized diffusivities and estimated fk  are listed in Table IV.1.4. 

 

 

Table IV.1.4 – Optimized parameters and AARD (%) of the Maxwell-Stefan based model. 

ÐAs (m
2 s-1) ÐBs (m

2 s-1) ÐAB (m2 s-1) 𝑘f (m s-1) AARD (%) 

2.706x10-15 5.713x10-15 9.446x10-17 2.327x10-4 19.0 
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Concerning the convective mass transfer coefficient, the Armenante and Kirwan 

correlation estimated 𝑘f = 2.327x10-4 m s-1. The Eu-AV-20 particles possess higher 

equivalent diameters in comparison to materials studied elsewhere, such as ETS-4 [17] and 

ETS-10 [16], respectively. The corresponding sizes are 23.1x10-6, 0.7x10-6 and 5.0x10-6 m, 

justifying mass transfer coefficients of 2.327x10-4, 1.281x10-3 and 1.930x10-4 m s-1, taking 

into account the diffusivities of the counter ions involved in the process (Cs+, 2.06x10-9 m2 

s-1 [63], and Cd2+ in the other two cases, 7.19x10-10 m2 s-1 [64]). 

The adjusted diffusivities ÐAs, ÐBs  and ÐAB were 2.706x10-15, 5.713x10-15 and 

9.446x10-17 m2 s-1 (see Table IV.1.4), respectively, consistent with the small pore diameters 

of Eu-AV-20. Values of similar magnitude were reported for other materials 

[13,16,17,57,58,60]. The diffusivities of the pairs Cs+/co-ions of Eu-AV-20 and Na+,K+/co-

ions of Eu-AV-20 differ by ca. 2.1 times, indicating distinct interactions between each cation 

and the Ln-silicate. The value of ÐAs is the lowest, which is in accordance with the ionic 

radius: 0.170 nm for Cs+, 0.102 nm for Na+ and 0.138 nm for K+. Taking into account these 

radius and that all ions possess the same valence (+1) it is expected that Cs+ diffuses slower 

through the microporous framework of Eu-AV-20 (pores between 5.8 and 6.8 Å). 

The calculated Cs+ concentration in Eu-AV-20 at distinct removal times, plotted in 

Figure IV.1.8, (red and blue identify the highest and lowest concentrations) witnesses the 

propagation of the concentration wave from the surface to the centre of the exchanger 

particle. In the experiment using 105 mg (i.e. the lowest mass), the final solid loading is the 

highest and the uniform distribution inside the exchanger is achieved later, relatively to the 

other essays.  
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Figure IV.1.8 – Calculated Cs+ concentration inside Eu-AV-20 particles at distinct removal 

times. See experimental conditions in Table IV.1.2.  

 

It is interesting to note in Figure IV.1.8 that the surface concentration for 𝑡 = 0.87 h of Exps.. 

10 and 11 are higher than the surface concentrations calculated near equilibrium (𝑡 ≥ 27.67 

h). This apparently abnormal behaviour may be explained by analysing the evolution of the 

particle concentration for 𝑟 = 0, 
1

2
𝑅p, 

3

4
𝑅p  and 𝑅p, which is shown, without loss of generality, 

in Figure IV.1.9 for the case of Exp. 11. The initial jump of 𝑞A,𝑅p
(𝑡) 𝑞A,eq⁄  is very pronounced 

and passes through a maximum (much larger than 1.0) and then decreases gradually until 

equilibrium. In the absence of film resistance, the initial particle concentration at the surface 

would suddenly increase from 0.0 to 𝑞A,eq(𝐶A0), which is the solid concentration in 

equilibrium with the bulk solution. Then, 𝑞A,𝑅p
(𝑡) would decrease monotonously until the 

final equilibrium, i.e.. 𝑞A,𝑅p
(𝑡) → 𝑞A,eq = 𝑞A,𝑅p

(𝑡 = ∞). Nonetheless, the introduction of mass 

transfer limitations in the film smoothens this initial step increase, as Figure IV.1.9 shows. 

In contrast, far from the surface the concentration increases monotonously, as the three 

curves for 𝑟 = 0, 
1

2
𝑅p, and 

3

4
𝑅p point out. These curves vary between the same boundary 

values (beginning at 0.0 and tending to 1.0), but 
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𝑞A,0(𝑡) 𝑞A,eq < 𝑞A,𝑅p 2⁄ (𝑡) 𝑞A,eq < 𝑞
A,

3

4
𝑅p

(𝑡) 𝑞A,eq⁄⁄⁄  because the diffusion path increases in the 

same order, delaying the concentration increase. 

 

 

Figure IV.1.9 – Normalized Cs+ concentration in the Eu-AV-20 particle for 𝑟 = 0, 
1

2
𝑅p, 

3

4
𝑅p  

and 𝑅p. Calculations accomplished with MS based model for Exp. 11. 

 

To assess the performance of the proposed model, the calculated versus 

experimental normalized Cs+ concentration in solution curves were plotted in Figure IV.1.10. 

The points are distributed near the diagonal, though the model overestimates Exp. 8 and 

essentially underestimates Exps. 10 and 11. The results are consistent with the literature 

[16,62,17].  

A variance analysis (ANOVA) proved that the MS based model accounts for the 

variability in the experimental data. The calculated ratio between the mean squares due to 

model and residuals was 86.3, which is clearly higher than the tabulated F for 95% with 2 

and 65 degrees of freedom (3.138); here, 2 is the number of parameters minus 1, and 65 

is the number of data points decreased by the number of fitted parameters. Therefore, the 

model is statistically significant to represent the experimental ion exchange uptake curves. 
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Figure IV.1.10 – Calculated versus experimental normalized Cs+ concentration in solution. 

Experimental conditions (see Table IV.1.2): Same as Figure IV.1.6. 

 

IV.1.5. Conclusions  

 

In this work, the cesium ion exchange capacity of Eu-AV-20 was studied by performing 

equilibrium and kinetic batch experiments. The cation exchange capacity measured by ICP-

MS was 2.55 eq. kg-1, corresponding to the sum of 0.52 eq kg-1 of Na+ and 2.03 eq kg-1 of 

K+.  

The isotherm of the Cs+/Na+,K+/Eu-AV-20 system was determined carrying out 

eleven experiments. The Langmuir equation provided good results, namely an average 

absolute relative deviation (AARD) of only 5.3%. Concerning the kinetic experiments, three 

batch assays were performed to study the influence of Eu-AV-20 mass upon the removal 

efficiency. The uptake curves exhibited the usual trend of a steep descent branch, followed 

by a transition zone and a horizontal region. The sharp variation of the Cs+ concentration in 

solution lied between 0 and 10 h, and the final equilibrium was reached after ca. 80 h. This 

slow process is in accord with reports for other zeolite-type systems, and is ascribed to the 

presence of small pores imposing a surface diffusion mechanism for the mass transport. 

Additionally, two batch assays were carried out to study the effect of competing Na+ in the 

initial Cs+ solution upon ion exchange. The results proved that Eu-AV-20 is highly selective 

to Cs+, since similar removals were achieved for an initial Na+ concentration 190 times 

higher than that of cesium. However, the existence of Na+ slowed the Cs+ sorption along 

time. 
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Furthermore, it was observed for the first time in this work that the cesium uptake 

modified the photoluminescent spectrum of Eu-AV-20 as a consequence of changing the 

vicinity of the Eu3+ emitter, which may be explored in the future for Cs+ sensing purposes. 

This relevant property of Eu-AV-20 emphasizes its potential application independently of its 

absolute ion exchange capacity. 

The kinetic curves were modelled using the Maxwell-Stefan equations, which 

yielded the diffusion coefficients ÐAs = 2.706x10-15, ÐBs= 5.713x10-15 and ÐAB = 9.446x10-

17 m2 s-1. The calculated error was 19.0%, and the orders of magnitude of the adjusted 

diffusivities were consistent with those found for other microporous materials like 

titanosilicates ETS-4 and ETS-10. The small Maxwell-Stefan diffusivities confirm the 

surface mechanism of mass transfer inside the Eu-AV-20 particles. An analysis of variance 

confirmed that the model is able to take the variability of the experimental data into account, 

i.e., the model is statistically significant to represent the experimental data of the ion 

exchange uptake curves. 

 

IV.1.6. Nomenclature 

 

A External particle surface area (m) 

AV-20 Aveiro material number 20 

AARD  Average absolute relative deviation (%) 

 B  Matrix with MS diffusivities 

C  Concentration in bulk solution (mol m-3) 

ÐAB MS surface diffusivity of pair A-B(m2 s-1) 

ÐAs MS surface diffusivity of pair A-fixed ionic charges (m2 s-1) 

ÐBs MS surface diffusivity of pair B-fixed ionic charges (m2 s-1) 

F  Faraday constant (C mol-1) 

ICP-MS Inductively coupled plasma mass spectrometry 

fk  Film mass transfer coefficient (m s-1) 

LK  Langmuir parameter 

Ln-silicate Lanthanide silicate 

MS Maxwell-Stefan 

n  Number of diffusing species 

NDP Number of data points 
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jN  Molar flux of the counter ion j (mol m-2 s-1) 

PLS Photoluminescence Spectroscopy 

PXRD Powder X-ray diffraction 

q  Molar concentration of ionic species in the particle (mol kg-1) 

maxq  Langmuir parameter (mol kg-1) 

Sq  Ion exchanger molar capacity (mol kg-1) 

tq  Total concentration of ionic species in the particle (mol kg-1) 

q  Average concentration of ionic specie in the particle (mol kg-1) 

r  Radial position in the particle (m) 

  Gas constant (J mol-1 K-1) 

pR  Particle radius (m) 

SEM Scanning Electron Microscopy 

t  Time (h or s) 

T  Absolute temperature (K) 

liqV  Volume of fluid phase (m3) 

solidV  Volume of solid phase (m3) 

ix  Molar fraction of i  in bulk solution 

jy  Molar fraction of counter ion j  in the particle 

iz  Charge of component i  

  

Greek letters 

  

liqi,  Activity coefficient of counter ion i  in a solution in equilibrium with particle 

  Electrostatic potential (V) 

   Thermodynamic factors matrix 

  Related with the electrostatic potential gradient 

solid  Density of ion exchanger 

  

Subscripts 
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A Counter ion initially present in the bulk solution (Cs+) 

B Counter ions initially present in the solid particle (Na+ and K+) 

calc Calculated 

eq Equilibrium 

exp Experimental 

s Fixed charged groups of the particle 



IV. Removal of Cs+ from aqueous solutions through batch experiments 
 

177 

 

 

 

 

 

 

 

 

 

 

Work reported in the scientific article 

 

Tb/Eu-AV-9: A lanthanide silicate for the sensing and removal of cesium ions 

from aqueous solutions 

 

published on Chemical Engineering Journal 286 (2016) 679–688 

 

 

Abstract 

 

The ion exchange of Cs+ from aqueous solutions was studied using a novel microporous 

lanthanide silicate with photoluminescence properties, Tb/Eu-AV-9. This mixed lanthanide 

silicate was prepared by hydrothermal synthesis, characterized by scanning electron 

microscopy, powder X-ray diffraction, and photoluminescence spectroscopy.  

Batch ion exchange experiments were performed at room temperature (295 K) to 

measure isotherm and removal curves. The Langmuir-Freundlich equation provided a good 

fit to the equilibrium data. A kinetic model based on the Maxwell-Stefan equations was 

implemented and adjusted to the cesium removal curves, and achieved average deviation 

of 8.37%. The model parameters were the diffusion coefficients, while de convective mass 

transfer coefficient was purely estimated. The Maxwell-Stefan diffusivities for the interaction 

of the counter ions Cs+ and K+ with the solid exchanger were ÐAs = 8.373x10-15 m2 s-1 and 

ÐBs= 2.795x10-14 m2 s-1, respectively, being consistent with other values in the literature. 

With respect to photoluminescence studies, the differences found between the 

emission spectra of native and Cs+-exchanged Tb/Eu-AV-9 disclosed the potential of this 

sorbent for qualitative/quantitative Cs+ sensing purposes. 
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IV.2. Tb/Eu-AV-9: A lanthanide silicate for the sensing and removal of 

cesium ions from aqueous solutions 

 

IV.2.1. Introduction 

 

Cesium-137 is a by-product of the nuclear energy production and a slow-decaying element, 

taking 30 years to lose half of its radioactivity. Recent events have drawn the attention to 

environmental contamination by cesium. In fact, it has been reported that the tsunami 

induced Fukushima Daiichi nuclear disaster released large amounts of cesium into the 

atmosphere and water (Pacific sea) [3]. Furthermore, severe soil and groundwater 

contamination with several radionuclides (including cesium) has been reported at the 

Hanford Site due to the corrosion of underground storage tanks [1,2]. Currently, the main 

concerns with cesium are related to its secure management, and the reduction of its waste 

volume and processing cost is imperative. 

Nevertheless, growing water demand and declining supplies increase the need for 

rapid and efficient water purification processes. Among the various separation alternatives, 

ion exchange appears as the most suitable for high purity water production mostly because 

it is simple to implement and levels of contamination below ppb (parts per billion) are easily 

attained [65,11]. Concerning the ion exchangers, inorganic type materials are well 

established especially due to their high chemical, thermal, mechanical and radiation 

stabilities [11,6–8]. Moreover, these materials possess high capacities and selectivities for 

a wide range of mono- and divalent metal cations, thus being more attractive than the 

conventional ion exchange resins [17,3,65,6,7,14,15,66–68].  

Zeolite-type rare-earth or lanthanide-silicate (Ln-silicates) materials exhibit 

interesting optical properties associated to transitions between 4f orbitals, which are well 

shielded from their chemical environment, and thus atomic-like emission spectra displaying 

characteristic sharp lines are obtained [44,69].  Taking into account that the presence of 

other ions or molecules near an emitter lanthanide may affect its optical behaviour, the 

possibility of sensing their presence in the matrix may be accomplished by 

photoluminescence spectroscopy. Initially, Ln3+ ions in zeotype silicates were mainly 

investigated as probes for the structure and location of extra-framework cations within the 

material’s voids [44,42,43]. The comprehensive study of the photoluminescence spectra of 

ion-exchanged Ln-silicates deserves much more attention [44,45,70].  

The use of Ln-containing materials for the removal of metal cations from aqueous 

solutions is an emerging field. In particular, AV (acronym for Aveiro) materials, which 
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combine microporosity and tuneable optical properties in a single and stable solid [46], were 

tested for the first time by Figueiredo et al. [70]. Auspicious results obtained for Cs+ removal 

from water with Eu-AV-20 in batch-ion exchange tests (equilibrium and removal curves) 

prompted the assessment of other AV materials, such as AV-9. 

 AV-9 belongs to a group of microporous Eu(III) and Tb(III) silicates 

(Na4K2Ln2Si16O38·xH2O, Ln = Eu, Tb) analogues of mineral montregianite [71]. Their 

structure consists of two different types of layers alternating along the [1 0 0] direction 

(Figure IV.2.1) namely: i) a double silicate sheet, where the single silicate sheet is of the 

apophylite type with four- and eight-membered rings (Figure IV.2.1.a), and ii) an open 

octahedral sheet, composed of two non-equivalent {LnO6} octahedra and two distinct 

{NaO4(H2O)2} octahedra (Figure IV.2.1.b). Coordinated potassium cations and water 

molecules are located within the large channels formed by the planar eight-membered 

silicate rings. Like AV-20, the framework of AV-9 is amenable to the incorporation of a 

second type of Ln3+ cation. 

 The present work describes the use of the mixed Ln-silicate Tb/Eu-AV-9 for the 

removal of Cs+ from solution. The main objective is to study its efficiency as a 

decontaminating agent and sensor. The material was synthesized and fully characterized, 

ion exchange batch experiments were performed to measure equilibrium and removal 

curves, and photoluminescence spectroscopy was used to assess its potential as a cesium 

sensor. Modelling was accomplished using the Langmuir-Freundlich isotherm and a kinetic 

model based on the Maxwell-Stefan equations. 
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Figure IV.2.1 – Structure of Ln-AV-9 materials: a) alternating octahedral sheet and double-

silicate layer where the single silicate sheet is of the apophylite type with four- and eight-

membered rings; b) an open octahedral sheet, composed of two non-equivalent {LnO6} 

octahedra and two distinct {NaO4(H2O)2} octahedra in the bc plane. 

 

IV.2.2. Materials and Methods 

 

IV.2.2.1. Chemicals and materials  

 

Sodium silicate solution (HS code 2839 19 00), potassium chloride (CAS number 7447-40-

7) and sodium chloride (CAS number 7647-14-5) were supplied by Merck. Potassium 

hydroxide (CAS number 1310-58-3) was provided by VWR Prolabo. Cesium nitrate (CAS 

number 7789-18-6), europium(III) nitrate (CAS number 63026-01-7) and terbium(III) nitrate 

(CAS number 57584-27-7) were purchased from Sigma-Aldrich. High-purity water (18.2 

MΩcm) was generated using a Milli-Q Millipore water purification system. Cellulose acetate 

membrane disc filters (0.45 µm) were bought from Sterlitech Corporation. 

 

IV.2.2.2. Synthesis procedures 

 

In a typical synthesis, an alkaline solution was prepared by sequentially mixing 11.89 g of 

a sodium silicate solution (27% SiO2 and 8.5% Na2O), 63.42 g of water, 1.48 g of KOH, 1.76 

g of NaCl and 0.49 g of KCl, followed by dropwise addition of 2.54 mL Eu(NO3)3 solution 

(0.4 mol L-1) and 10.16 mL Tb(NO3)3 solution (0.4 mol L-1). The resultant gel, with 

composition 0.57Na2O:0.37K2O:1.0SiO2:0.05Eu2O3:76H2O, was left to react in Teflon lined 

autoclaves (volume 160 mL) at 503 K for 6 days. The autoclave was removed from the 
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oven, and quenched in cold water after an appropriate time. At the end of the synthesis the 

supernatant solution pH was ca. 11.1. The off-white microcrystalline powder was filtered, 

washed at room temperature with distilled water, and dried at 373 K overnight. Table IV.2.1 

summarizes the important features of the prepared material. 

 

Table IV.2.1 – Features of the synthesized Tb/Eu-AV-9 lanthanide silicate 

Formula Na4K2Eu0.4Tb1.6Si16O38·xH2O 

Density (kg m-3) 2542 

Equivalent particle diameter (10-6 m) 12 

Pore sizes (10-10 m) 
3.3 x 4.3 in [0 0 1] direction  

3.4 x 3.8 in [0 1 0] direction 

 

IV.2.2.3. Characterization of the Tb/Eu-AV-9 material  

 

Powder X-Ray Diffraction (PXRD) data were collected at room temperature on a 

PANalytical Empyrean diffractometer (Cu Kα1,2X-radiation, λ1 = 1.540598 Å; λ2 = 1.544426 

Å), equipped with an PIXcel 1D detector and a flat-plate sample holder in a Bragg-Brentano 

para-focusing optics configuration (45 kV, 40 mA). Intensity data were collected by the step-

counting method (step 0.04º), in continuous mode, in the ca. 5 ≤ 2θ ≤ 50º range. 

Crystallographic structure refinement was used to obtain the chemical formula, density and 

pore sizes (see Table IV.2.1).  

Scanning Electron Microscopy (SEM) images were obtained in a Hitachi SU-70 

microscope to assess crystal dimensions (equivalent particle diameter) and morphology.  

The visible photoluminescence spectra were recorded at room temperature on a 

Jobin Yvon-Spex spectrometer (HR 460) fitted with a 1200 grooves mm-1 grating blazed at 

500 nm, coupled to a R928 Hamamatsu photomultiplier. A 150 W Xenon arc lamp coupled 

to an excitation monochromator Jobin Yvon-Spex (TRIAX 180) fitted with a 1200 grooves 

mm-1 grating blazed at 330 nm was used as excitation source. All spectra were corrected 

for the response of the detectors. All samples were oven-dried at 353.15 K, during 48 hours.  

 

IV.2.2.4. Sorption experiments: isotherm and removal curves 

 

A Cs+ stock solution (0.01 mol L-1) was prepared by dissolving 0.098 g CsNO3 in 50 mL of 

high-purity water (18.2 MΩcm). Working solutions were prepared by diluting the stock 

solution to the desired concentration, in high-purity water, immediately before use to avoid 

cation adsorption on the vessel walls and on the remaining glassware lab material. 
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The batch experiments were performed by contacting Cs+ solutions (fixed at ca. 

0.248 mol m-3, i.e. 33 ppm, to maintain the ionic strength constant) with powdered Tb/Eu-

AV-9 (15 to 509 mg), in 2 L volumetric flasks, under constant stirring (300 rpm) at room 

temperature and initial pH equal to 4. Aliquots (10 mL) were withdrawn along time, filtered 

through an acid washed cellulose acetate membrane (0.45 µm), and analysed by atomic 

absorption spectrometry to evaluate the concentration of cesium in solution. Aliquots were 

collected and analysed until the solution concentration remained constant, i.e. until the 

system reached solid-liquid equilibrium. Seven experiments (Exps. 1-4, 6, 8 and 9 of Table 

IV.2.2) were carried out to measure only equilibrium data (i.e., isotherm points) and three 

experiments (Exps. 5, 7 and 10 of Table IV.2.2) were used to determine removal curves 

(from which one equilibrium point per curve was also taken at the end). A blank experiment 

(without Tb/Eu-AV-9) was always run to confirm that the removal of Cs+ occurred by ion 

exchange and not by adsorption onto the lab material.  

The cesium concentration in solution was analysed in a Perkin Elmer AAnalyst 100 

atomic absorption spectrometer, in the emission mode (with a wavelength of 852.1 nm and 

a slit of 0.2 nm) and using an air-acetylene flame. The ionization was controlled by the 

addition of 0.5 wt.% of potassium chloride to the samples and standards. Each sample was 

analysed in triplicate and the concordant values were averaged (less than 5% variation 

between measurements of the same sample). 

The average concentration of cesium adsorbed at time 𝑡 (s or h), 𝑞̅A (mol kg-1), was 

computed by material balance to the vessel: 

 

𝑞̅A =
𝑉L

𝑉s ∙ 𝜌s
(𝐶A,0 − 𝐶A) (IV.2.1) 

 

where 𝐶A,0 and 𝐶A are the initial and instantaneous concentrations of cesium in solution (mol 

m-3), respectively, 𝑉L is the solution volume (m3),  𝜌s is the ion exchanger density (kg m-3), 

𝑉s = 𝑚s 𝜌s⁄  is its volume (m3) and 𝑚s its mass (kg). 
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Table IV.2.2 – Experimental conditions of batch ion exchange tests using Tb/Eu-AV-9. 

(Fixed conditions: T = 295 K ± 1 K; 𝑉L = 2 × 10−3 m3; pH 4). 

Exp. 
Mass of solid 
(𝑚s, 10-6 kg) 

Initial Cs+ 

conc. (𝐶A,0, mol 

m-3) 

𝑚s / 𝐶A,0  

(10-4 kg mol-1m3) 
Type of data 
measured * 

1 15 0.243 0.62 iso. 
2 32 0.244 1.31 iso. 
3 61 0.249 2.45 iso. 
4 125 0.235 5.32 iso. 
5 178 0.237 7.51 kin. & iso. & phot. 
6 243 0.254 9.57 iso. 
7 310 0.259 11.97 kin. & iso. & phot. 
8 361 0.257 14.05 iso. 
9 479 0.260 18.42 iso. 

10 509 0.236 21.58 kin. & iso. & phot. 
*iso. = isotherm data point;  kin. = kinetic curve; phot. = photoluminescence spectrum 

 

IV.2.3. Modelling 

 

Ion exchange is conventionally represented as a chemical reaction, because it is a 

stoichiometric process by which two counter ions, A𝑧A and B𝑧B , are exchanged between an 

electrolyte solution and a solid exchanger: 

 

𝑧A𝐵𝑧B̅̅ ̅̅ ̅ + 𝑧B𝐴𝑧A ⇋ 𝑧B𝐴𝑧A̅̅ ̅̅ ̅ + 𝑧A𝐵𝑧B  (IV.2.2) 

 

In this equation 𝑧A and 𝑧B are the electrochemical valences, the capping bar denotes the 

solid phase, and the exchanger initially in B𝑧B  form is converted into A𝑧A form. In the 

particular case of our study, A𝑧A = Cs+, B𝑧B  = K+, and thus 𝑧A = 𝑧B = +1. The co-ions are the 

third component, S, of the system for which the valence is 𝑧S = -1. For simplicity, the counter 

ions will be henceforth represented by A and B solely. 

A Maxwell-Stefan (MS) based model was written and coded in Matlab R2013a® to 

describe the discontinuous ion exchange and embodies the following hypothesis: (1) film 

and intraparticle mass transfer resistances are both present; (2) the particles of the solid 

exchanger are spherical; (3) the solution is perfectly stirred; (4) operation is isothermal. This 

model was previously used to study the kinetic behaviour of mercury and cadmium removal 

from aqueous solutions using microporous titanosilicate ETS-4 [52,54,62], and more 

recently to model the uptake of cesium by the lanthanide silicate Eu-AV-20 [70]. 

The mass balances to the counter ion A, in the particle and in solution, are given by: 
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𝜌s

𝜕𝑞A

𝜕𝑡
= −

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑁A) (IV.2.3) 

𝜕𝐶A

𝜕𝑡
= −

𝜌s𝑉s

𝑉L

𝜕𝑞̅A

𝜕𝑡
 (IV.2.4) 

 

where 𝑟 represents the radial position in the particle (m), 𝑡 is time (s or h), 𝑞A is the local 

concentration (mol kg-1) of counter ion A in the particle, and 𝑁𝐴 is the intraparticle diffusional 

flux of A (mol m-2 s-1). Note that the integrated form of Eq. (IV.2.4) corresponds to Eq. 

(IV.2.1). The average load of A per unit particle mass is calculated by: 

 

𝑞A̅̅ ̅ =
3

𝑅p
3

∫ 𝑟2𝑞A𝑑𝑟
𝑅p

0

 (IV.2.5) 

 

where 𝑅p represents the particle radius (m). The initial conditions (no A in the solid, no B in 

solution) and the boundary conditions (interface concentration and symmetry condition at 

the centre of the exchanger) necessary to solve Eqs. (IV.2.3) and (IV.2.4) can be written 

as: 

 

𝑡 = 0, {
𝑞A = 0

𝐶A = 𝐶A,0
 (IV.2.6) 

𝑟 = 0,
𝜕𝑞A

𝜕𝑟
= 0 (IV.2.7) 

𝑟 = 𝑅𝑝, 𝑞A = 𝑞A,Rp
 (IV.2.8) 

 

The concentration at the interface, 𝐶A|𝑅p
, is determined by setting the internal diffusion flux 

equal to the film convective flux at the boundary, i.e.: 

 

𝑁𝐴|𝑅p
= 𝑘f (𝐶A − 𝐶A|𝑅p

) (IV.2.9) 

 

where 𝑘𝑓 is the convective mass transfer coefficient (m s-1) of species A. In this work 𝑘f was 

estimated by the Armenante and Kirwan correlation [56] for particles in stirred vessels: 

 

Sh = 2 + 0.52Re0.52Sc1 3⁄  (IV.2.10) 
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where Sh = 𝑘f × 𝑑p 𝐷Aw⁄  is the Sherwood number, Sc = ν DAw⁄  is the Schmidt number, and 

Re= ε1 3⁄ dp
4 3⁄ ν⁄  is the Reynolds number; 𝑑p is the particle diameter (m), 𝐷Aw is the diffusivity 

of counter ion A in solution (m2 s-1), 𝜈 is the kinematic viscosity (m2 s-1) and 𝜀 is the power 

input per unit mass of fluid (m2 s-3). For Cs+ in water at 295 K, 𝐷Cs+,w = 2.06x10-9 m2 s-1 [63]. 

The intraparticle counter ion transport can be described by the generalized Maxwell-

Stefan (MS) equations expressed in matrix notation [51]: 

 

(𝑁) = −𝑞𝑡𝜌s[𝐵]−1[Γ](∇𝑦) − [𝐵]−1(∇ζ) (IV.2.11) 

 

where (𝑁) is the vector of the molar fluxes of ionic species 𝑖 (𝑁i, mol m-2 s-1), 𝑞t is the total 

concentration (mol kg-1) of counter ions A and B and co-ions S in the solid (𝑞t = 𝑞A + 𝑞B +

𝑞S), (∇𝑦) is the vector of gradients of the molar fractions of species i in the solid ( 𝑦i = 𝑞i/𝑞t), 

and (∇ζ) is the vector of gradients defined by: 

 

∇ζ𝑖 = 𝑦i 𝑧i  
𝐹

ℜ 𝑇
 ∇𝜙 (IV.2.12) 

 

where ∇𝜙 is the electric potential gradient (V m-1), 𝐹 is the Faraday constant (96485.34 C 

mol-1), ℜ is the ideal gas constant (8.314472 J mol-1 K-1). The elements of the 

thermodynamic factors matrix [Γ] and of matrix [𝐵] are defined by:  

 

Γij ≡ 𝑦i

𝜕ln (𝛾i,L𝑥i)

𝜕𝑦j

 (IV.2.13) 

𝐵ii =
𝑦𝑠

Ðis

+ ∑
𝑦j

Ðij

n

j=1

j≠i

, 𝐵ij = −
𝑦i

Ðij 
(IV.2.14) 

 

where 𝛾i,L  and 𝑥i are the activity coefficient and the molar fraction of counter ion 𝑖 in solution, 

respectively, Ðij is the MS diffusivity of the pair 𝑖 − 𝑗  (m2 s-1), Ðis is the MS surface diffusivity 

for the interaction between counter ion 𝑖 and co-ions S (m2 s-1), and 𝑛 is the number of 

counter ions (𝑛 = 2 with the co-ion S being the (𝑛 + 1)th species, i.e. the 3rd species). Under 

conditions of electroneutrality and no electric current, the following relations must be 

obeyed: 

 



IV. Removal of Cs+ from aqueous solutions through batch experiments 
 
 

 
186 

∑ 𝑞i

n+1

i=1

𝑧i = 0          and        ∑ 𝑁i

n+1

i=1

𝑧i = 0 (IV.2.15) 

 

while the null co-ions flux is established by the bootstrap relation 𝑁n+1 = 0. 

The equilibrium isotherm, which relates the fluid and solid concentrations at the 

interface, is given in the Langmuir-Freundlich equation 

 

𝑞A,eq =
𝑞A,max𝐾LF𝐶A,eq

1/𝑛LF

1 + 𝐾LF𝐶A,eq
1/𝑛LF

 (IV.2.16) 

 

where 𝑞A,max, 𝐾LF and 𝑛LF are the parameters to fit the experimental data, namely the 

equilibrium concentrations of counter ion A in the solid, 𝑞A,eq (mol kg-1), and in solution, 𝐶A,eq 

(mol m-3); in particular, 𝑞A,max is the ion exchanger capacity (mol kg-1). 

The conservation of species A, B and S is established by the material balance 

equations (Eqs. (IV.2.3) and (IV.2.4)), the electroneutrality restriction (Eq. (IV.2.15)), and 

the cation exchange capacity (𝑞A,max). The molar fluxes of A, S and B are computed by Eqs. 

(IV.2.11)–( IV.2.15). 

The concentration of Cs+ in solution, its concentration profile in the solid phase, and 

evolution along time, were calculated numerically using the Method of Lines (MoL) with 

spatial discretization in the particle (71 grid points) using Finite Differences followed by 

numerical integration of the semi-discrete initial-value type problem defined by the resulting 

set of ordinary differential equations (ODEs). The Nelder-Mead algorithm was used to 

optimize the MS diffusivities ÐAs, ÐBs and ÐAB, by minimizing the average absolute relative 

deviation, AARD: 

 

AARD(%) =
100

NDP
∑ |

𝐶A,calc − 𝐶A,exp

𝐶A,exp
|

i

NDP

i=1

 (IV.2.17)  

 

where NDP is the number of data points, and subscripts ‘exp’ and ‘calc’ refer to experimental 

and calculated concentrations of cesium in solution, respectively. 
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IV.2.4. Results and discussion 

 

This section starts with the discussion of the morphology and crystallinity of the synthesised 

mixed lanthanide silicate Tb/Eu-AV-9. Then the equilibrium isotherm, the ion exchange 

kinetics (removal curves) and the removal efficiency are discussed, followed by the analysis 

of the emission photoluminescence spectra of the native and Cs+-exchanged samples. 

Finally, the results achieved with the Maxwell-Stefan (MS) based model are examined. 

 

IV.2.4.1. Characterization of the Tb/Eu-AV-9 material  

 

Native Tb/Eu-AV-9 consists of microcrystalline plates (Figure IV.2.2). The PXRD patterns 

(Figure IV.2.3) display the main AV-9 reflections [71] and only negligible amounts of 

impurities may be detected. The results indicate that all the samples are isostructural. 

Furthermore, the PXRD patterns of the Cs+-exchanged samples (Exps. 5, 7 and 10; Figure 

IV.2.3) indicate slight changes in the unit cell of the solid ascribed to the introduction of 

cesium in the structure. As expected, the solid containing less cesium (Exp. 5, Table IV.2.2) 

is the one with the closest pattern to that of the native sample, a result also confirmed by 

the photoluminescence studies.  
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Figure IV.2.2 – SEM image of the native Tb/Eu-AV-9. 

 

 

Figure IV.2.3 – Powder X-Ray diffraction patterns of the native Tb/Eu-AV-9 and Cs+-

exchanged Tb/Eu-AV-9 (see experimental conditions of Exps. 5, 7 and 10 in Table IV.2.2).  

 

IV.2.4.2. Ion exchange isotherm 

 

The experimental ion exchange equilibrium data and the best-fit isotherm are presented in 

Figure IV.2.4. The Langmuir-Freundlich model provided better fitting than the Langmuir and 

Freundlich equations, with an average absolute relative deviation (AARD) of 13.06%. 
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Accordingly, the equilibrium isotherm is given by Eq. (IV.2.18) when concentrations are in 

mol m-3 and mol kg-1. 

 

𝑞A,eq =
397.25𝐶A,eq

1/0.498

1 + 114.48 𝐶A,eq
1/0.498

 (IV.2.18) 

 

 

Figure IV.2.4 – Experimental data (black dots: Exps. 1-4, 6, 8 and 9; green squares: Exps. 

5, 7 and 10) and Langmuir-Freundlich isotherm for the system Cs+/K+ / Tb/Eu-AV-9 at 295 

K.  

 

IV.2.4.3. Influence of Tb/Eu-AV-9 mass upon Cs+ removal 

 

The effect of the mass of ion exchanger upon Cs+ removal can be evaluated from the ten 

experiments (Exps.  1–10, Table IV.2.2) carried out using a fixed initial concentration of 

cesium in solution (ca. 0.248 mol m-3) and amounts of solid in the range 15–509 mg. The 

results, expressed as final uptake of Cs+ (calculated by Eq. (IV.2.19)) against the ratio 

𝑚s 𝐶A,0⁄  are presented in Figure IV.2.5. As expected, cesium removal increases with the 

mass of solid, from 7% to 60%, almost linearly up to 125 mg, and then attains a plateau at 

ca. 80% using higher masses of exchanger. 

 

Final Uptake (%) = 100 × (1 −
𝐶A,eq

𝐶A,0
) (IV.2.19) 
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The associated theoretical prediction can be calculated by combining the steady state 

material balance to the vessel (i.e., Eq. (IV.2.1) written for final equilibrium) and the isotherm 

of the system (Eq. (IV.2.18)). The resulting equation is not solvable for 𝐶A,eq due to the 

exponent 1 𝑛LF⁄  of isotherm. For the particular case of Langmuir (𝑛LF → 1), an analytic 

expression exists, but in our case the 𝐶A,eq values have to be numerically determined from: 

 

𝜌s𝑉s𝑞A,max𝐾LF𝐶A,eq
1 𝑛LF⁄

− 𝑉L(𝐶A,0 − 𝐶A,eq) (1 + 𝐾LF𝐶A,eq
1 𝑛LF⁄

) = 0 (IV.2.20) 

 

The final uptake can be calculated after substitution of 𝐶A,eq into Eq. (IV.2.19). A good 

agreement between data and our calculated results is evident from Figure IV.2.5, for which 

the average deviation was only AARD = 4.14%. 

 

 

 

 

 

Figure IV.2.5 – Influence of the ratio between the mass of Tb/Eu-AV-9 and the initial 

concentration of Cs+ upon the final uptake of Cs+. circles: experimental data; line: theoretical 

prediction (AARD = 4.14%). 
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IV.2.4.4. Ion exchange kinetics 

 

The kinetics of Cs+ removal was evaluated by carrying out assays with cesium solutions 

with similar initial concentration (𝐶A,0 around 0.248 mol m-3) and using three different masses 

of Tb/Eu-AV-9 (Table IV.2.2), which correspond to 𝑚s 𝐶A,0 =⁄  7.51x10-4, 11.97x10-4 and 

21.57x10-4 kg mol-1 m3 for Exps.  5, 7 and 10, respectively. The experimental data are 

plotted in Figure IV.2.6 as normalized concentration of cesium in bulk solution (𝐶A 𝐶A,0⁄ ) 

along time.  

The ion exchange kinetics is characterized by a very sharp slope descent followed 

by an almost instantaneous plateau. As discussed above, the results follow expected 

trends, i.e., cesium removal increases with increasing mass of Tb/Eu-AV-9 since the 

extensive ion-exchange capacity is proportional to the mass of solid. The fast metal uptake 

at the beginning is due to the large mass transfer driving forces observed, since the Tb/Eu-

AV-9 particles are initially free of Cs+. 

For the three curves in Figure IV.2.6, the equilibrium uptake process is complete 

after ca. 1 hour, reaching 62.0, 70.3 and 79.2% removal of Cs+ from solution. This outcome 

places the Tb/Eu-AV-9 material in the class of the fastest zeolite-type ion exchangers. 

Similar behaviour was encountered for the system Cd2+/ETS-10 [16] where 5-160 mg of 

ETS-10 were contacted with 2 L of an aqueous solution of initial concentration 0.85 × 10−3 

kg m-3. In that essay, the time required to reach equilibrium was 1-2 hours. In a distinct work, 

Zhao et al. [72] demonstrated that the sorption rate of Pb2+ on ETS-10 was also extremely 

rapid, as less than 1 minute was needed for attaining equilibrium with a 10 mol m-3 solution 

with batch factor of 0.2 mol kg-1. We note that, in comparison with our essay, Zhao et al. 

utilized 4-10 times more mass of ion exchanger.  
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Figure IV.2.6 – Evolution of the normalized concentration of Cs+ in solution along time. 

Symbols, experimental data; curves, MS-based model which achieves AARD = 8.37%. 

 

As a first approximation, these similar trends should be associated to the average 

pore diameters of the silicates under study. In fact Tb/Eu-AV-9 possesses pore sizes of 3.3 

Å x 4.3 Å and 3.4 Å x 3.8 Å (Table IV.2.1) [71] while ETS-10 has pores of 4.9 to 7.6 Å [73], 

which justifies the better mass transport properties of the latter. We note that this 

comparison is not strictly rigorous, as the counter ions under analysis have distinct valences 

and diameters. In order to emphasize even more the interrelation between structure 

features and kinetics, it is interesting to compare the results obtained by Camarinha et al. 

[16] for Cd2+/ETS-10 with those of Barreira et al. [74] for Cd2+/ETS-4, that were investigated 

under similar operating conditions: 𝑚s = 1.5 − 50 mg, 𝑉L = 2 L, 𝐶A0 = 0.85 × 10−3 kg m-3, 

pH 6 and 𝑇 = 295 K. The time for equilibrium was 1-2 hours for ETS-10 and 10 hours for 

ETS-4, which can be easily interpreted on the basis of the respective pore sizes, namely, 

4.9 Å × 7.6 Å for ETS-10 [73] and 3 Å × 4 Å for ETS-4 [75]. 

 

IV.2.4.5. Photoluminescence spectra of native and Cs+–exchanged Tb/Eu-AV-9  

 

The room-temperature photoluminescence emission spectra of the native and Cs+-

exchanged Tb/Eu-AV-9 materials recorded with excitation at 393 nm and 377 nm are shown 

in Figures IV.2.7 and IV.2.8, respectively. Four of the transitions ascribed to the Eu3+ septet 

(5D0
7Fj, j=0–3) are identified in Figure IV.2.7.a and, due to its relevance, the region of the 

transition 5D0
7F0 is enlarged in Figures IV.2.7.b. The main transitions ascribed to Tb3+ 
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(5D4
7Fj, j=3–6) are identified in Figure IV.2.8. It is worth noting the spectra obtained for 

excitation at 377 nm are essentially due to Eu3+ emission caused by Tb3+-to-Eu3+ energy 

transfer. 

 

 

Figure IV.2.7 – (a) Partial room-temperature emission spectra of native and Cs+-exchanged 

Tb/Eu-AV-9 materials (excitation at 393 nm); (b) Enlarged region containing the  5D0
7F0 

transition (central peak). Experimental conditions in Table IV.2.2, and equilibrium solid 

loadings in Table IV.2.3. 

 

For 393 nm the spectrum of native Tb/Eu-AV-9 shown in Figure IV.2.7 is similar to the 

one reported for Eu-AV-9 by Ananias et al. [71]. Figure IV.2.7.a shows that the Eu3+ 

emission intensity decreases with the increasing amount of cesium in the solid, with the 

Exp.  10 spectrum (𝑞A,eq = 0.73 mol kg-1, the lowest cesium loading; Table IV.2.3) being 

closest to the spectrum of the native material. Figure IV.2.7.b shows that the Eu3+ transition 

5D0
7F0 of the native Tb/Eu-AV-9 material (at 580 nm) becomes attenuated in the case of 

the Cs+-exchanged samples, and two new peaks are increasingly detected at 577 nm and 

583 nm, which correspond to the 5D4
7F4 transition of Tb3+ shown in Figure IV.2.8.c. 

Similarly, the concentration of cesium in the solid influences the emission intensity of 

the Tb3+ transitions (Figure IV.2.8). Again, the spectrum of the Cs+-exchanged Exp. 10 

(lowest load of Cs+) is the closest to that of native material. Although two Tb sites were 

expected in advance from crystallography, the 5D4
7F5 decay curves (Figure IV.2.9) of the 

samples are well fitted by tri-exponential functions, which evidences the additional decay 

effect of the Tb3+-to-Eu3+ energy transfer cited above. The photoluminescence decay 

lifetimes are listed in Table IV.2.3, and corroborate the influence of Cs+ on the emission 
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capacity of the solids, namely, higher metal loads lead to lower decay lifetimes. In fact, the 

linear relation < 𝜏 >= −0.61 𝑞A,eq + 5.73 was found. 

Altogether, the emission photoluminescence spectra of the Cs+-exchanged samples 

obtained in this work discloses the potential of Tb/Eu-AV-9 materials for qualitative or even 

quantitative sensing purposes, since emission intensities and peak areas may be related to 

the concentration of cesium in the solid. Work along these lines is still in progress due to 

the novelty of these materials and very recent investigation towards potential applications. 

 

Table IV.2.3 – Average decay lifetimes of the 5D47F5 transition of Tb3+ of the native and 

Cs+-exchanged Tb/Eu-AV-9 materials, and corresponding equilibrium solid loading. The 

experimental conditions in Table IV.2.2                                                                                                                                                                

Tb/Eu-AV-9 materials 
Average decay lifetimes, < 𝜏 > 

(ms) 
𝑞A,eq (mol kg-1) 

Native  5.75 0.00 

Exp. 10 5.22 0.73 

Exp. 7 5.04 1.18  

Exp. 5 4.72 1.65 
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Figure IV.2.8 – Room-temperature emission spectra of native and Cs+-exchanged Tb/Eu-

AV-9 materials (excitation at 377 nm). Experimental conditions in Table IV.2.2, and 

equilibrium solid loadings in Table IV.2.3. 
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Figure IV.2.9 – Tb3+ emission decay curves (transition 5D4
7Fj) of native and Cs+-

exchanged Tb/Eu-AV-9 materials. Spectra were collected at room temperature, with 

excitation at 377 nm and detection at 541 nm. Experimental conditions in Table IV.2.2, and 

equilibrium solid loadings in Table IV.2.3. 

 

IV.2.4.6. Ion exchange modelling based on Maxwell-Stefan equations 

 

The MS-based model was fitted to the experimental data from the three kinetic experiments 

(Exps.  5, 7 and 10) simultaneously with an AARD of 8.37% (see Figure IV.2.6). The 

convective mass transfer coefficient (𝑘f) was estimated by the Armenante and Kirwan 

correlation [56], thus reducing the number of parameters to be optimized. For a particle size 

of 12x10-6 m, the estimated value was 𝑘f = 4.127x10-4 m s-1, which is in agreement with 

published results for similar setups and run conditions, namely 2.327x10-4, 1.281x10-3 and 

1.930x10-4 m s-1 for Cs+/Eu-AV-20 [70], Hg2+/ETS-4 [17] and Cd2+/ETS-10 [13], respectively, 

with corresponding particle average diameters of 23.1x10-6, 0.7x10-6 and 5x10-6 m. 

 The adjusted MS diffusivities ÐAs, ÐBs and ÐAB (see Table IV.2.4) are five to six 

orders of magnitude smaller than the Cs+ diffusion coefficient in aqueous solution (2.06x10-

9 m2 s-1, [63]). These small values are consistent with the small pore diameters of Tb/Eu-

AV-9 (3.3x4.3 and 3.4x3.8 ÅxÅ, Table IV.2.1) and are roughly of the order of those reported 

by Figueiredo et al. [70] for Eu-AV-20 (Table IV.2.4), and the effective diffusivities published 

by Mon et al. [76] for cancrinite (Deff,Cs+ = 2.04x10-14 m2 s-1), sodalite (Deff,Cs+ = 0.47x10-14 

m2 s-1) and allophane (Deff,Cs+ = 0.49x10-16 m2 s-1). ÐAs is lower than ÐBs (8.373x10-15 < 
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2.795x10-14 m2 s-1), which is in accord with the ionic radius of the counter ions: 0.170 nm for 

Cs+ and 0.138 nm for K+ (remember that A = Cs+ and B = K+). 

 

Table IV.2.4 – Estimated convective mass transfer coefficient and optimized MS diffusivities 

for Tb/Eu-AV-9 and Eu-AV-20 materials at 𝑇 = 295 K. 

Material 𝑘f (m s-1) † ÐAs (m
2 s-1) ÐBs (m

2 s-1) ÐAB (m2 s-1) 
AARD 

(%) 
Ref. 

Tb/Eu-AV-9 4.127x10-4 8.373x10-15 2.795x10-14 6.037x10-15 8.37 This work 

Eu-AV-20 2.327x10-4 2.706x10-15 5.713x10-15 9.446x10-16 19.00 [70] 

† Estimated using the Armenante and Kirwan correlation [56], Eq. (IV.2.10). 

 

Even if the Tb/Eu-AV-9 pore sizes are smaller than those of Eu-AV-20 (3.3 x 4.3 & 

3.4 x 3.8 versus 5.8 x 6.8 ÅxÅ, respectively), the MS Cs+ and K+ diffusivities are both higher 

in the former. In addition to the influence of the different structures of the material, another 

factor may explain this apparent contradiction. The Eu-AV-20 framework consists of a series 

of sheets built up of alternating chains of Na+ and Eu3+ polyhedra. The layers are connected 

through double silicate chains of 8-membered rings forming channels [47,70] rendering the 

intraparticle two-dimensional counter ion traffic in Eu-AV-20, while it is 3D in the case of 

Tb/Eu-AV-9. 

Figure IV.2.10 illustrates the normalized concentration of cesium in the Tb/Eu-AV-9 

particles (𝑞A 𝑞A,eq⁄ ) as a function of the time and radial position, calculated with the MS-

based model for the conditions of Exp. 5 (Table IV.2.2). For the other kinetic experiments 

(Exps. 7 and 10) the results were similar and are not presented. The plot confirms the 

expected behaviour, i.e., the concentration of cesium in the solid increases along time until 

it reaches the equilibrium. Nevertheless, the normalized concentration at the surface, 

𝑞A(𝑡, 𝑟 = 𝑅p), evidences a remarkable behaviour. Inside the particle, far from the surface 

(𝑟 𝑅p⁄ → 0), the cesium concentration increases monotonously while at the surface (𝑟 𝑅p⁄ →

1) it rises abruptly going through a maximum and then gradually decreasing until 

equilibrium. Without film resistance, the concentration at the particle surface would jump 

suddenly from 0 to 𝑞A,eq(𝐶A,0), which is the concentration in equilibrium with the bulk solution 

(i.e., for 𝑟 = 𝑅p, 𝑞A,t=0− = 0 and 𝑞A,t=0+ = 𝑞A,eq(𝐶A,0)); afterwards, for 𝑡 > 0, the 

concentration would decrease monotonously until system equilibration. The existence of 

the external film slows the steep increase in concentration, as shown in Figure IV.2.10. The 

simulation results also indicate that 0.5 hour is sufficient to exchange 62% of the cesium 

present in a 𝐶A,0 = 0.237 mol m-3 aqueous solution. 
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Figure IV.2.10 – Normalized cesium concentration in the Tb/Eu-AV-9 particles as a function 

of time and radial position, for Exps. 5 (experimental conditions given in Table IV.2.2). 

 

 

IV.2.5. Conclusions  

 

A mixed lanthanide silicate Tb/Eu-AV-9 material was synthesised and its cesium uptake 

capacity was assessed by performing ion-exchange equilibrium assays and kinetic studies 

(removal curves) in stirred-flasks at room temperature (295 K). Ion-exchange equilibrium 

data were well fitted by the Langmuir-Freundlich isotherm with an average absolute relative 

deviation (AARD) of 13.06%. The cesium uptake curves exhibited the usual trend with a 

steep descend of concentration in the first minutes followed by a slow transition zone 

towards the equilibrium, reached after ca. 2 h. The kinetic curves were modelled using the 

Maxwell-Stefan approach (AARD = 8.37%) and the convective mass transfer coefficient 

estimated by the Armenante and Kirwan correlation (𝑘f = 4.127x10-4 m s-1). The model 

parameters were the MS diffusion coefficients (ÐAs = 8.373x10-15, ÐBs = 2.795x10-14 and 

ÐAB = 6.037x10-15 m2 s-1), whose small values were consistent with other results in the 

literature and confirm the surface mechanism of ion exchange inside the Tb/Eu-AV-9 

particles. 

 The photoluminescence spectra of native and Cs+-exchanged Tb/Eu-AV-9 materials 

revealed that the observed emission intensity and peak areas depend on the concentration 
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of cesium in the solid. Furthermore, the average lifetime calculated from tri-exponential 

emission decay curves is linearly interlinked with solid loading, 𝑞A,eq. Altogether these 

results are very promising and envision the application of Tb/Eu-AV-9 materials as 

qualitative or even quantitative cesium sensors. 

 

IV.2.6. Nomenclature 

 

A or A𝑧A Counter ion initially in solution 

AARD Average absolute relative deviation (%) 

B or B𝑧B  Counter ion initially in the exchanger 

[𝐵] Matrix with MS diffusivities, Eq. (14) 

𝐶A Concentration of A in bulk solution (mol m-3 or eq m-3) 

𝐶A,0 Initial concentration of A in bulk solution (mol m-3 or eq m-3) 

Ðij MS diffusivity of pair i-j (m2 s-1) 

Ðis MS surface diffusivity of pair i-fixed ionic charges (m2 s-1) 

𝐷Aw Diffusivity of counter ion A in solution (m2 s-1) 

𝑑p Particle diameter (m) 

Ϝ Faraday constant (96485.34 C mol-1) 

𝑖 and 𝑗 Generic counter ions 

𝑘f Convective mass transfer coefficient (m s-1) 

𝐾LF Langmuir-Freundlich parameter, Eqs. (16) and (18) 

𝑚s Mass of ion exchanger (kg) 

MoL Method of Lines 

MS Maxwell-Stefan 

𝑛 Number of diffusing species in MS equations 

𝑛LF Langmuir-Freundlich parameter, Eqs. (16) and (18) 

𝑁𝑖  Molar flux of counter ion 𝑖 (mol m-2 s-1) 

NDP Number of data points 

PXRD Powder X-ray diffraction 

𝑞i Local concentration of counter ion i in the particle (mol kg-1) 

𝑞̅i Average concentration of counter ion i in the particle (mol kg-1) 

𝑞A,max Langmuir-Freundlich parameter (mol kg-1); ion exchanger capacity 

𝑞s Ion exchanger (co-ions) molar capacity (mol kg-1) 
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𝑞t Total concentration of ionic species in the particle (mol kg-1) 

𝑟 Radial position in the particle (m) 

ℜ Ideal gas constant (8.314462 J mol-1 K-1) 

𝑅p Particle radius (m) 

Re = 𝜀1 3⁄ 𝑑p
1 3⁄ 𝜈⁄ , Reynold number 

S Co-ions of the ion exchanger 

SEM Scanning Electron Microscopy 

Sc = ν DAw⁄ , Schmidt number 

Sh = 𝑘f × 𝑑p 𝐷Aw⁄ , Sherwood number 

𝑡 Time (h or s) 

𝑇 Absolute temperature (K) 

𝑉L Solution volume (m3) 

𝑉s Ion exchanger volume (m3) 

𝑥𝑖 Molar fraction of counter ion 𝑖 in bulk solution 

𝑦𝑖  Local molar fraction of counter ion 𝑖 in the particle 

𝑧i Electrochemical valence of counter ion i 

  

Greek letters 

 

𝜀 Stirring power input per unit mass of fluid (m2 s-3) 

𝛾i,L Activity coefficient of counter ion 𝑖 in a solution in equilibrium with exchanger 

𝜈 Kinematic viscosity (m2 s-1) 

𝜙 Electric potential (V) 

[Γ] Thermodynamics factors matrix 

𝜁𝑖 Related with the electric potential gradient, Eq. (11) 

𝜌s Density of ion exchanger (kg m-3), 

𝜏𝑗 Decay lifetime  (ms) 

  

Subscripts 

 

0 Initial condition 

A Counter ion initially present in the bulk solution (Cs+) 

B Counter ion initially present in the solid particle (Na+ and K+) 

calc Calculated value 
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eq Equilibrium 

exp Experimental value 

𝑖 and 𝑗 Generic diffusing species 

s Solid 
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V 
Removal of Cs+ from aqueous 

solutions through fixed-bed 
experiments 

 

This chapter is devoted to the removal of Cs+ ion from aqueous solution using two different 

silicates – Eu-AV-20 and ETS-4 – carrying out fixed-bed ion exchange experiments; in the case 

of ETS-4 a set of batch assays were also performed. The parent and exchanged materials were 

characterized by several techniques, such as scanning electron microscopy (SEM), energy-

dispersive X-ray spectroscopy (EDS), powder X-Ray diffraction (PXRD), inductively coupled 

plasma mass spectroscopy (ICP-MS) and photoluminescent spectroscopy (PLS). Several 

breakthrough curves were measured and, in the specific case of ETS-4, a complete loading-

regeneration-loading assay was performed in order to assess its ability to be used in ion 

exchange cycles. The experimental data were modelled using: 1) a Nernst-Planck based model 

taking into account the internal and external limitations to the mass transfer; and 2) simplified 

analytic models from the literature such as Thomas, Bohart-Adams, Clark and Yoon-Nelson 

models. In the particular case of the Eu-AV-20, photoluminescent spectroscopic studies were 

also performed aiming the evaluation of its sensing ability towards cesium.  
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Abstract 

 

Microporous silicate Eu-AV-20 has recently proved to be a promising ion exchange material for 

cesium removal from aqueous solutions, and its potential for Cs+ photoluminescence sensing 

was additionally demonstrated. In this work, Cs+ removal was performed in a fixed-bed column, 

and the influence of linear velocity and mass of ion exchanger on the breakthrough curves was 

analyzed. The experimental data were modelled on the basis of Nernst-Planck (NP) equations 

and with four well-known analytic models. The analytic expressions provided low errors (root 

mean square deviation, RMSD, between 3.20% and 6.47%); the 2-parameter NP-based model 

fitted the data quite well (RMSD = 6.66% for correlation and 6.54% for prediction), yielding 

crucial information on both the transport mechanism within the Eu-AV-20 particles, and the 

intrinsic dynamic behaviour of the fixed-bed ion exchange column. Taking into account that Eu-

AV-20 samples loaded with different amounts of Cs+ exhibited distinct photoluminescence 

spectra, our results reinforce the potential of AV-20 materials for Cs+ sensing, which raises the 

possibility of online monitoring the ion exchange in a fixed-bed column using an optical fiber 

and a spectrometer.  
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V.1. Cs+ removal and optical detection by microporous lanthanide silicate Eu-

AV-20 in a fixed-bed column 

 

V.1.1. Introduction 

 

Nuclear wastes are complex systems containing fission products including two long-lived 

cesium isotopes (135Cs and 137Cs with a half-life of 2.3 million years and 30.17 years, 

respectively). The negative effects of cesium are well known and encompass medullar 

dystrophy, disorders of the reproductive function, and adverse effects on the liver and renal 

functions of mammals [1]. In soil and water environments cesium exists predominantly as a 

free monovalent ion (Cs+) since the formation of organic and inorganic cesium complexes is 

insignificant [2]. Several approaches may be deployed to eliminate cesium from radioactive 

aqueous wastes, such as chemical precipitation, evaporation, reverse osmosis, filtration, 

solvent extraction, ion exchange and adsorption [3]. However, ion exchange is usually 

preferred for water and wastewater remediation, particularly when high-purity water is required 

[3–5], since they allow concentrating metal ions to a level where disposal, destruction, or 

subsequent use are affordable. 

Ion exchange can be implemented as a batch process in a stirred tank or in a continuous 

fixed-bed (column) operation. The last alternative is preferred from an industrial point-of-view 

because: (i) it is the most effective configuration for cyclic sorption-desorption stages; (ii) a 

nearly solute-free effluent may be obtained until the exchanger agent in the bed approaches 

equilibrium; (iii) the removal efficiency is usually better due to higher sorbate concentration 

gradients between solution and solid. Some examples of ion exchange studies in fixed-beds 

include the uptake of zinc by NaY zeolite [6], the removal of mercury and lead by titanosilicates 

ETS-4 and ETS-10, respectively [7,8], and the sorption of cesium by titanosilicate granules [9]. 

Most recently, the elimination of Hg(II) and Pt(IV) from aqueous solutions have been studied 

using fixed-beds composed of chelating resins [10–12]. 

Inorganic ion exchangers are well-known for their chemical, thermal, mechanical and 

radiation stabilities, and typically exhibit high capacity and selectivity towards a wide variety of 

monovalent and divalent metal cations [3,4,10–20]. Concerning the specific use of inorganic 

solids for Cs+ removal, three main families have been studied, zeolites [18,19], 
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hexacyanoferrates [20,21] and titanosilicates [9,22,23]. Nevertheless, their use in fixed-bed 

experiments is limited [9,24,25].  

In the early years of this century, the synthesis of zeolite-type rare-earth or lanthanide-

silicate (Ln-silicates) materials was an emerging field due to their interesting optical properties 

associated to transitions between 4f orbitals, which generate atomic-like emission spectra 

displaying characteristic sharp lines [26,27]. The existence of other species in the vicinity of the 

emitter lanthanide may affect the photoluminescence spectra, which raises the possibility of 

exploring such optical properties for sensing the presence of molecules/ions [27]. 

The microporous Ln-silicate Eu-AV-20 and the mineral tobermorite 11 Å [28] have a 

similar crystal structure, encompassing 5.8 Å x 6.8 Å channels and cavities containing 

exchangeable Na+ and K+ ions coordinated with framework oxygen atoms and water molecules 

[29]. Furthermore, the presence of stoichiometric amounts of europium affords 

photoluminescence properties to Eu-AV-20 [29,30]. Figueiredo et al. [31] assessed the ion-

exchange capacity of Eu-AV-20 for Cs+ removal from aqueous solutions in a stirred batch tank, 

and found that indeed the photoluminescence of Eu-AV-20 does change upon Cs+ uptake.  

Here, we study Cs+ removal in a fixed-bed column and evaluate the photoluminescence 

properties of Cs+-exchanged Eu-AV-20. The experimental breakthrough curves were modelled 

using two distinct approaches: Nernst-Planck (NP) based model, and commonly used analytic 

models, such as the Thomas, Bohart-Adams, Yoon-Nelson and Clark models. 

 

V.1.2. Materials and Methods 

 

V.1.2.1. Chemicals and materials  

 

Extra pure sodium silicate solution (HS code 2839 19 00), potassium hydroxide (CAS number 

1310-58-3) and sodium hydroxide (CAS number 1310-73-2) were supplied by Merck. 

Europium(III) chloride hexahydrate (CAS number 13759-92-7) and cesium nitrate (CAS 

number 7789-18-6) were purchased from Sigma-Aldrich. High-purity water (18.2 MΩcm) was 

produced in a Milli-Q Millipore water purification system and the cellulose acetate membrane 

disc filters were bought from Sterlitech Corporation. 
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V.1.2.2. Synthesis and characterization of Eu-AV-20 

 

The hydrothermal synthesis of Eu-AV-20 was performed as previously described [29]. Briefly, 

an alkaline solution was prepared by mixing a sodium silicate solution (Na2O(SiO2)x·xH2O , 5.75 

g), with H2O (16.51 g), KOH (3.25 g) and NaOH (1.07 g) followed by the addition of 

(1.37 g) and stirring the mixture thoroughly. The resulting gel (with molar ratios 

0.79 Na2O : 1.10 K2O : 1.0 SiO2 : 0.07 Eu2O3 : 35 H2O) was transferred to a Teflon-lined 

autoclave and heated at 230 °C under autogenous pressure, during 3 days. After quenching 

the autoclave in cold water the off-white microcrystalline powder was filtered-off, washed at 

room temperature with distilled water, and dried overnight at 100 °C [29]. The relevant features 

of this material are summarized in Table V.1.1. 

 

Table V.1.1 – Features of the synthesized Eu-AV-20 lanthanide silicate [28]. 

Formula Na1.08K0.5Eu1.14Si3O8.5∙1.78H2O 

Density, 𝜌s (kg m-3)  3080 

Cation exchange capacity, 𝑄 (eq. kg-1)  2.55 

Equivalent particle diameter (10-6 m) 23.1 

Pore diameter (10-10 m) 5.8 x 6.8  

 

V.1.2.3. Characterization and analytic methods 

 

Photoluminescence spectroscopy.  

The photoluminescent spectra of native and Cs+-exchanged Eu-AV-20 samples (oven-dried at 

353.15 K during 48 h) were recorded in the visible region, at room temperature, using a Jobin 

Yvon-Spex spectrometer (HR 460) fitted with a 1200 grooves mm-1 grating blazed at 500 nm, 

coupled to a R928 Hamamatsu photomultiplier. A 150 W Xenon arc lamp coupled to an 

excitation monochromator Jobin Yvon-Spex (TRIAX 180) fitted with a 1200 grooves mm-1 

grating blazed at 330 nm was used as excitation source. All spectra were corrected for the 

response of the detectors. 

 

Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDS). 

Particle dimensions and morphology of native and Cs+-exchanged Eu-AV-20 samples were 

O6HEuCl 23 
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assessed by SEM analysis using a Hitachi S4100 microscope. EDS was used to confirm the 

cesium uptake by Eu-AV-20. 

 

Powder X-Ray Diffraction (PXRD).  

PXRD was carried out on a PANalytical Empyrean diffractometer (Cu Kα1,2X-radiation, 

λ1 = 1.540598 Å; λ2 = 1.544426 Å) equipped with an PIXcel 1D detector and a flat-plate sample 

holder in a Bragg-Brentano para-focusing optics configuration (45 kV, 40 mA). Intensity data 

were collected by the step-counting method (step 0.04º), in continuous mode, in the range ca. 

5 ≤ 2θ ≤ 50º.  

 

Cesium concentration in solution.  

The concentration of Cs+ in solution was measured with a Perkin Elmer AAnalyst 100 atomic 

absorption spectrometer, in the emission mode (with a wavelength of 852.1 nm and a slit of 0.2 

nm) and using an air-acetylene flame. The ionization was controlled by the addition of 0.5% 

(wt.) of potassium chloride to samples and standards. Each sample was 

 

V.1.2.4. Fixed-bed and batch ion experiments 

 

Preparation of the fixed-bed column. The column consisted of a vertical stainless steel tube 

(length 10.0 cm and internal diameter 1.30 cm) containing a precise amount of Eu-AV-20 

(Figure 1). The solid was placed in the tube and confined at both ends by four to six quartz 

wool discs (from Elemental Microanalysis), followed by one stainless steel net, and the 

assembly was closed with Swagelok® fittings. The bottom of the column was connected to the 

influent reservoir and the top of the column was connected to a sampler (Figure V.1.1).  

 

Preparation of solutions. A Cs+ stock solution (10.0 mol m-3) was prepared by dissolving CsNO3 

(0.0980x10-3 kg, 5.03x10-4 mol) in high-purity water (50.0 mL). Working solutions were prepared 

by diluting the stock solution to the desired concentration, using high-purity water, immediately 

before their usage to avoid cation adsorption on the glassware and lab material. 

 

Fixed-bed ion exchange experiments. In a typical experiment a freshly prepared solution 

containing a known concentration of Cs+ was fed to the bottom of the column (up-flow mode) 

at constant flow rate using a peristaltic pump (Knauer Smartline pump 100). The pH and 
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temperature were measured at column inlet using a pH meter (Crison Basic 20). Periodically, 

15 mL samples were collected at the outlet of the column after passing an acid washed 

cellulose acetate membrane disc filter (0.45 µm). The concentration of Cs+ in the samples was 

measured by atomic emission spectroscopy. Operation of the column was stopped for equal 

influent and effluent concentrations of Cs+. A control experiment (i.e. without Eu-AV-20 in the 

column) was run to check that Cs+ removal occurred by ion exchange with the solid rather than 

by adsorption on the lab material. 

A set of five experiments (Table V.1.2) was performed to assess the influence of 

superficial velocity (0.40–1.03×10-3 m s-1) and mass of ion exchanger (0.42–0.85×10-3 kg) on 

the Cs+ removal efficiency. Exps. 1–3 were performed for similar cesium influent concentration 

(ca. 1.4 ppm) and mass of solid (ca. 0.43×10-3 kg) to study the influence of the superficial 

velocity. The effect of exchanger mass can be evaluated from Exps. 2 and 4. The last run (Exp. 

5) was carried out for a shorter period, under the same conditions of Exp. 3, to obtain Eu-AV-

20 with an intermediate amount of Cs+ (ca. 65% of the breakthrough curve, 80% of the 

exchange capacity) in order to assess reproducibility and the dependence of 

photoluminescence on the cesium content in the sorbent. 

 

Batch ion experiments. An additional set of four batch experiments (Table V.1.3) was carried 

out to evaluate the selectivity of Eu-AV-20 towards Cs+ in the presence of Na+. The initial 

concentration of cesium was fixed around 5×10-3 mol m-3 and the initial sodium nitrate 

concentrations were 0, 1.02, 10.00 and 52.42 mol m-3, which means the molar ratios were 0, 

193, 2000 and 9456, respectively. The mass of Eu-AV-20 was always ca. 3×10.4 kg and the 

run time 150 h to ensure system equilibration. Preparation of the solutions and cesium 

quantification were performed as described above. 
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Figure V.1.1 – Experimental setup of the ion exchange unit: 1) influent reservoir tank; 2) 

peristaltic pump; 3) fixed-bed column in up-flow mode; 4) Eu-AV-20 powder bed; 5) membrane 

disc filter; and 6) sample collecting tube. 

 

Table V.1.2 – Eu-AV-20 fixed-bed ion exchange experiments performed at 295 ± 1 K. 

Experiment number 1 2 3 4 5 

Inlet concentration of Cs+ (mol m-3) 0.0107 0.0108 0.0108 0.0111 0.0107 

Inlet concentration of Cs+ (ppm) 1.422 1.435 1.435 1.475 1.422 

Bed height (m) 0.010 0.010 0.010 0.016 0.010 

Mass of Eu-AV-20 (10-3 kg) 0.424 0.424 0.436 0.853 0.438 

Superficial velocity (10-3 m s-1) 1.03 0.618 0.399 0.618 0.402 

Run time  (h) 50 50 50 50 15 

 

Table V.1.3 – Eu-AV-20 competitive ion exchange in batch experiments performed at 295 ± 1 

K. 

Experiment number 1 2 3 4 

Initial concentration of Cs+ (mol m-3) 0.0055 0.0050 0.0053 0.0047 

Initial concentration of Na+ (mol m-3) 52.42 10.00 1.02 0 

Initial Na+/Cs+ molar ratio 9456 2000 193 0 

Mass of Eu-AV-20 (10-3 kg) 0.301 0.308 0.306 0.302 

Run time  (h) 150 
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V.1.3. Modelling isotherms and breakthrough curves 

 

V.1.3.1. Equilibrium Isotherm 

 

Ion exchange is often represented as a conventional chemical reaction, since it is a 

stoichiometric process by which two counter ions, A𝑧A and B𝑧B , are exchanged between an 

electrolyte solution and a solid exchanger [32,33]. Generically, an ion exchange process is 

represented by: 

 

𝑧A𝐵𝑧B̅̅ ̅̅ ̅ + 𝑧B𝐴𝑧A ⇋ 𝑧B𝐴𝑧A̅̅ ̅̅ ̅ + 𝑧A𝐵𝑧B  (V.1.1) 

 

where 𝑧A and 𝑧B are the electrochemical valences of both counter ions, and the capping bar 

denotes the exchanger phase. According to Eq. (V.1.1), the exchanger is in B𝑧B  form and is 

converted into A𝑧A form. For the particular case in analysis, A𝑧A = Cs+, B𝑧B  = Na+,K+, which, for 

simplicity, will be henceforth designated by A and B. 

The isotherm of Cs+/(Na+,K+)/Eu-AV-20 system was determined by Figueiredo et al. 

[31], who represented the equilibrium data with 5.3% of error by the Langmuir equation: 

 

𝑞A,eq =
125048 × 𝐶A,eq

1 + 437.5 × 𝐶A,eq

 (V.1.2) 

 

where 𝐶A, eq is the equilibrium concentration of A in solution (mol m-3) and 𝑞A,eq is the equilibrium 

concentration of A in the solid, here expressed in mol m-3.  

 

V.1.3.2. Nernst-Planck based model for fixed-bed ion exchange 

 

The ion-exchange process was modelled using the Nernst-Planck equations, which state that 

the net intraparticle fluxes (𝑁i, mol m-2 s-1) result from molar concentration (𝑞𝑖 , mol m-3) 

gradients and electric potential gradient. For counter ion A, the flux is given by [16,17,32,33]: 

 

𝑁A = −
𝐷A𝐷B(𝑧A

2𝑞A+𝑧B
2𝑞B)

𝐷A𝑧A
2𝑞A+𝐷B𝑧B

2𝑞B
(

𝜕𝑞A

𝜕𝑟
) = −𝐷AB (

𝜕𝑞A

𝜕𝑟
),      𝐷AB ≡

𝐷A𝐷B(𝑧A
2𝑞A+𝑧B

2𝑞B)

𝐷A𝑧A
2𝑞A+𝐷B𝑧B

2𝑞B
 (V.1.3) 
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where 𝐷A and 𝐷B (m2 s-1) are the self-diffusion coefficients of both counter ions, 𝑟 (m) is the 

radial position in the particle, and 𝐷AB (m2 s-1) is the interdiffusion coefficient. The ion exchanger 

capacity is given by: 𝑄(eq m−3) = 𝑞A𝑧A + 𝑞B𝑧B.  

The fixed-bed model encompasses a material balance to the column, Eq. (V.1.4), with 

an axial dispersion term, a convective term, and two accumulation terms for the fluid and solid 

phases, whose boundary conditions are given by Eqs. (V.1.5) and (V.1.6): 

 

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑡
= 𝐷L

𝜕2𝐶A(𝑙, 𝑡)

𝜕𝑙2
− 𝑢

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑙
−

1 − 𝜀

𝜀

𝜕𝑞̅A(𝑙, 𝑡)

𝜕𝑡
 (V.1.4) 

𝑙 = 0 , 𝐷L

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑙
|

l=0+

= −𝑢(𝐶A,0 − 𝐶A|l=0+) (V.1.5) 

𝑙 = 𝐿 ,
𝜕𝐶A(𝑙, 𝑡)

𝜕𝑙
|

𝑙=𝐿
= 0 (V.1.6) 

 

Here, 𝐶A is the molar concentration of species A in solution (mol m-3),  𝑢 is the superficial 

velocity (m s-1), 𝑙 is the position along the bed length (m), 𝐿 is the total length of the bed (m), 𝑡 

is time (s), 𝐷L is the axial dispersion coefficient (m2 s-1), 𝜀 is the average bed porosity (𝜀 = 0.88), 

𝑞̅A is the average concentration of A in the solid (mol m-3), and 𝐶A,0 is the concentration of A at 

the column inlet. 𝐷L was estimated using the following correlation [34]: 

 

𝐷L = (20 + 0.5 × Sc × Re) ×
𝐷m

𝜀
 (V.1.7) 

 

where 𝐷𝑚 is the diffusivity of Cs+ in water (2.06x10-9 m2 s-1 at 298.15 K [35]) and Sc and Re are 

the Schmidt and Reynolds numbers, respectively.  

The material balance to the ion exchanger is given by Eq. (V.1.8). Eqs. (V.1.9)-(V.1.11) 

represent its initial and boundary conditions, and Eq. (V.1.12) translates the equality of fluxes 

at the interface: 

 

𝜕𝑞A

𝜕𝑡
= −

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑁A) (V.1.8) 
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𝑡 = 0, {
𝑞A = 0

𝐶A = 𝐶A,0
 (V.1.9) 

𝑟 = 0,
𝜕𝑞A

𝜕𝑟
= 0 (V.1.10) 

𝑟 = 𝑅𝑝, 𝑞A = 𝑞A,Rp
 (V.1.11) 

𝑁𝐴|𝑅p
= 𝑘f (𝐶A − 𝐶A|𝑅p

) (V.1.12) 

 

𝑅p is the particle radius (m), 𝐶A|𝑅p
 is the concentration at the interface, and 𝑘f is the convective 

mass transfer coefficient (m s-1) of counter ion A. The value of 𝑘f was estimated by the following 

correlation involving classical Sherwood (Sh), Reynolds (Re) and Schmidt (Sc) numbers [8]: 

 

Sh =
1.13

ε
Re0.21Sc1 3⁄  (V.1.13) 

 

The average loading per unit particle volume needed in Eq. (V.1.4) is calculated by: 

 

𝑞̅𝐴 =
3

𝑅p
3

∫ 𝑟2𝑞A𝑑𝑟
𝑅p

0

 (V.1.14) 

 

The stoichiometric time, 𝑡st (h), of a breakthrough curve can be calculated by Eq. 

(V.1.15) using experimental data or estimated on the basis of the solute movement theory by 

Eq. (V.1.16): 

 

𝑡st = ∫ (1 −
𝐶A(𝑡)

𝐶A,0
)  𝑑𝑡

∞

0

 (V.1.15) 

𝑡st =
𝐿

𝜐
(1 +

1 − 𝜀

𝜀

𝑞A,0

𝐶A,0
) (V.1.16) 

 

where 𝑞A,0 is the solid loading in equilibrium with feed concentration, 𝐶A,0.  
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V.1.3.3. Analytic breakthrough models 

 

The equations of Clark [36], Yoon-Nelson [37], Bohart-Adams [38], and Thomas [39] were 

adopted in this study to model  the breakthrough curves along with the Nernst-Planck based 

model.  

The Thomas model [39] assumes Langmuir kinetics for sorption-desorption, negligible 

axial and radial dispersion, and a second-order reversible kinetics. The most common version 

of this model in environmental sorption and biosorption literature is given by: 

 

𝐶A(𝑡)

𝐶A,0
=

1

1 + 𝑒
[
𝑘Th

𝑣 (𝑄Th𝑚−𝐶A,0𝑣𝑡)]
 (V.1.17) 

 

where 𝑘Th is the Thomas rate constant (m3 mol-1 s-1), 𝑄Th is the maximum concentration of the 

solute in the solid phase (mol kg-1), 𝑚 is the mass of solid (kg), and 𝑣 is the volumetric flow rate 

(m3 s-1).  

The Bohart-Adams model, initially developed to describe the adsorption of chloride on 

charcoal [38], assumes that the sorption rate is proportional to the residual capacity of the 

exchanger and to the concentration of the solute species in solution. Its equation may be 

expressed as: 

 

𝐶A(𝑡)

𝐶A,0
=

1

1 + 𝑒[𝑘BA( 𝑞A,max 𝜏 −  𝐶A,0 𝑡) ]
 (V.1.18) 

 

where 𝑘BA is the Bohart-Adams mass transfer coefficient (m3 mol-1 s-1), 𝑞A,max is the saturation 

concentration (mol m-3), and 𝜏 = 𝐿 𝑢⁄  is the space time (s).  

The major difference between the Thomas and Bohart-Adams models lies in the 

embodied isotherms: the first one uses Langmuir and the latter adopts a rectangular or 

irreversible isotherm. Therefore, for highly favourable isotherms the Thomas model reduces to 

the Bohart-Adams equation and their parameters become interchangeable, i.e. 𝑘Th = 𝑘BA and 

𝑄Th𝑚 𝑣⁄ = 𝑞A,max 𝜏 [40]. 

The Clark model [36] combines mass transfer concepts and the Freundlich isotherm, 

and it assumes plug flow and negligible dispersion phenomena. It is mathematically given by: 
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𝐶A(𝑡)

𝐶A,0
= [

1

1+𝐴𝐶 𝑒−ωt]

1

𝑛−1
     with     𝐴𝐶 =  (

𝐶A,0
𝑛−1

𝐶b
𝑛−1 − 1) 𝑒ω 𝑡b (V.1.19) 

 

where 𝑛 is the Freundlich constant, and 𝐶b is the solute concentration (mol m-3) at breakthrough 

time, 𝑡b (h), and 𝜔 is a rate parameter (h-1). 

The Yoon-Nelson model [37] assumes that the rate of decrease in the probability of 

sorption for each sorbate molecule is proportional to the probability of sorbate sorption and 

sorbate breakthrough on the sorbent. The model does not require detailed data concerning 

solute characteristics, type of sorbent and physical properties of the bed. For a single 

component system it is expressed by: 

 

𝐶A(𝑡)

𝐶A,0
=

𝑒[𝑘YN(𝑡−𝑡50)]

1 + 𝑒[𝑘YN(𝑡−𝑡50)]
 (V.1.20) 

 

where 𝑘YN denotes the Yoon-Nelson rate constant (h-1), and 𝑡50 is the time for 𝐶A 𝐶A,0⁄ = 0.5 . 

 

V.1.3.4. Numerical methods and calculations approach 

 

The Method of Lines was applied for the numerical calculation of the concentration profiles of 

Cs+, and their evolution along time in the solution and in the solid phase, for the case of the 

NP-based model. The required spatial discretization in the particle and bed length was 

accomplished by Finite Differences. The resulting initial-value problem set of ordinary 

differential equations was solved numerically using 51 grid points for the particle radius and 31 

grid points for the bed length. 

Regarding the NP-based model, the self-diffusion coefficients (𝐷A and 𝐷B) were fitted to 

the data of Exp. 1 only, while 𝑘𝑓 values were estimated by Eq. (V.1.13). Therefore, only two 

initial guesses were required to model Exp. 1, and the breakthrough curves of Exps. 2–4 were 

completely predicted.  

In what concerns the so-called Thomas and Bohart-Adams models, Eqs. (V.1.17) and 

(V.1.18), the calculations involved four individual constants (𝑘Th or 𝑘BA), one for each run, plus 

one shared parameter (𝑄Th or 𝑞A,max ). In turn, the Clark and Yoon-Nelson models (Eqs. 
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(V.1.19) and (V.1.20)) were adjusted considering one pair of parameters per curve: (ω, 𝐴𝐶) and 

(𝑘YN, 𝑡50). Moreover, for the Clark model the values of 𝐴𝐶 and ω were determined by nonlinear 

regression of breakthrough data, using the Freundlich constant (𝑛 = 2.368) obtained by fitting 

the adsorption isotherm to published equilibrium points [31]. Although the Freundlich isotherm 

is not the best model to represent the Cs+/(Na+,K+)/Eu-AV-20 system, the fitting was acceptable 

(9.74% error). 

The Nelder-Mead and the Marquardt-Levenberg algorithms were adopted in this work 

for all optimizations using the root mean square deviation (RMSD) as objective functions: 

 

RMSD (%) = 100 × √∑
(𝐶A,calc|

i
− 𝐶A,exp|

i
)

2

NDP

NDP

i=1

 (V.1.21)  

 

where NDP is the number of data points, and the subscripts ‘exp’ and ‘calc’ denote measured 

and calculated concentrations, respectively. All programs were written and coded in Matlab 

R2013a®. 

 

V.1.4. Results and discussion  

 

V.1.4.1. Materials characterization  

 

SEM images of native and Cs+-exchanged Eu-AV-20 crystals are similar (Figure V.1.2) and 

reveal microcrystalline pseudo hexagonal thin plates with a lateral dimension lower than 20×10-

6 m, which is consistent with previous reports [31]. With respect to EDS results, Figure 3 

confirms that the Cs+ was sorbed because cesium is absent in the native material (see Figure 

V.1.3.a) while it appears in the solid after ion exchange (see Figure V.1.3.b). 

The experimental PXRD pattern of native Eu-AV-20 (Figure V.1.4) shows all the 

characteristic reflections [29] and no impurity phases are detected. The PXRD patterns of the 

samples collected after the fixed-bed experiments (Exps. 1–5, Table V.1.2) exhibit some 

changes, such as peak shifts from 14.21º to 14.36º, from 31.25º to 31.38º and from 32.27º to 

32.43º, the increment of intensity of the peak at 28.95º and the presence of a new peak at 

30.09º. Altogether, these results indicate slight changes in the crystalline structure of Cs+-
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exchanged Eu-AV-20, which may result in alterations in the local Eu3+ environment that impact 

on the photoluminescence properties (to discuss in Section V.1.4.4). 

 

 

Figure V.1.2 – SEM image of Eu-AV-20 crystals. 

 

 

Figure V.1.3 – EDS spectra of (a) native and (b) Cs+-exchanged Eu-AV-20 samples. 
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Figure V.1.4 – PXRD of native and Cs+-exchanged Eu-AV-20 samples collected after the fixed-

bed experiments (Exps. 1–5, see Table V.1.2). Inset: PXRD on an expanded scale in the range 

28-31º. 

 

V.1.4.2. Fixed-bed experimental results and selectivity assessment 

 

The breakthrough curves (Exps. 1–4, Table V.1.2) are plotted in Figure 5 grouped according 

to the different variables under study, namely, the superficial velocity (varied via flow rate 

modification) (Exps. 1–3, Figure V.1.5.a), and the mass of ion exchanger (Exps. 2 and 4, Figure 

V.1.5.b). The plots illustrate the evolution of the normalized cesium concentration in solution at 

the column outlet, 𝐶A(𝑡) 𝐶A,0⁄ . 
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Figure V.1.5 – Normalized experimental breakthroughs for Cs+ removal in a fixed-bed of Eu-

AV-20. (a) Effect of superficial velocity (via flow rate variation); (b) Effect of the mass of ion 

exchanger. Symbols: data (experimental conditions in Table V.1.2); lines: NP-based model. 

 

Considering that the isotherm of the Cs+/(Na+,K+)/Eu-AV-20 system is favourable, i.e., 

convex upward (see Eq. (V.1.2)), in the absence of dispersive phenomena (such as axial 

dispersion and/or film and intraparticle resistances to mass transfer) a step-function would 

propagate ideally without changes along the fixed-bed and would exit the column at a precise 

instant, the stoichiometric time (𝑡st) given by Eqs. (V.1.15) or (V.1.16). Hence, the experimental 

ion exchange breakthrough curves shown in Figure 5 clearly disclose that mass transfer effects 

prevail in this system.  
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The influence of axial dispersion is certainly negligible since the calculated axial Peclet 

numbers (𝑃𝑒L = 𝑢𝐿 𝐷ax⁄ ) were 174.5, 115.1, 78.7 and 178.6 for Exps. 1–4, and the well-known 

relation 𝐿 > 50 𝑑𝑝 was largely obeyed (𝑑𝑝 = 2.3 × 10−5 m and 𝐿 was 0.010 m (Exps. 1–3) or 

0.016 m (Exp. 4)). Regarding external resistance to mass transfer, the width of the 

breakthrough curves changed with flow rate variation, i.e., they increased with decreasing 

superficial velocity (Exps. 1–3), which indicates the existence of film diffusion limitations. This 

observation was also confirmed by simulation (to be further discussed below).  

According to the breakthroughs curves (Exps. 1–3, Figure V.1.5.a), lower superficial 

velocities require higher operating times to exhaust the solid phase, and vice-versa. This result 

is in agreement with the solute movement theory, Eq. (V.1.16), since the stoichiometric time 

(𝑡st) is inversely proportional to superficial velocity. The 𝑡st values calculated from experimental 

data were 4.96, 7.53 and 13.80 h (for Exps. 1, 2 and 3, respectively). 

To study the impact of ion exchanger mass on the breakthrough curves, the mass of Eu-

AV-20 was increased 100% (Exp. 4 versus Exp. 2). The two breakthrough curves (Figure 

V.1.5.b) are considerably different especially in what concerns the 5 h delay period observed 

in Exp. 4, before the consistent and visible rise of 𝐶A(𝑡). Once again, the solute movement 

theory provided excellent results, since 𝑡st,4 𝑡st,2⁄ = 15.62 7.53⁄ = 2.07, which is almost equal to 

the ratio of sorbent masses, 𝑚4 𝑚2⁄ = 0.853 0.424⁄ = 2.0 (calculated by Eq. (V.1.16) 

considering also that 𝐿 ∝ 𝑚). 

A preliminary study of ion exchange competition was performed in order to analyse the 

influence of the presence of Na+ upon cesium uptake (see experimental conditions in Table 

V.1.3). The final uptake of Cs+ is plotted in Figure V.1.6 against the initial molar ratio of Na+ and 

Cs+, being possible to conclude that Eu-AV-20 reached Cs+ removals of 76.0, 70.2, 39.5 and 

20.0% for 0, 193, 2000 and 9456 ratios, respectively. These values confirmed the exchanger 

affinity to cesium as 20% uptake was attained even when the initial sodium concentration was 

three orders of magnitude higher.  
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Figure V.1.6 – Final uptake of cesium as function of the initial molar ratio of Na+ and Cs+ 

(experimental conditions in Table V.1.3). 

 

V.1.4.3. Fixed-bed modelling results  

 

A model can be validated through the fitting of experimental results, but its usefulness comes 

mainly from its ability to predict the behaviour of a process under operating conditions different 

from those used to obtain its parameters [33]. In the present section, the calculated results 

obtained with NP-based model and by the analytic equations of Thomas, Bohart-Adams, Clark 

and Yoon-Nelson are presented and discussed, being demonstrated the prediction ability of 

the NP-based model. 

Nernst-Planck based model. The results achieved in this case are plotted in Figure V.1.5 

together with the experimental data (Exps. 1–4). The model parameters (𝐷A and 𝐷B) were 

obtained by fitting the data of Exp. 1 only, with good correlation (RMSD = 6.66%), while for 

Exps. 2–4 pure prediction provided deviations of 6.55%, 5.24% and 7.95%, respectively (Table 

V.1.4) The self-diffusivities (𝐷A = 2.324x10-16 m2 s-1 and 𝐷B= 6.134×10-15 m2 s-1) are of the same 

order of magnitude of those reported for the system Cd2+/Na+/ETS-10 [16], and bigger than 

those published for Cd2+/Na+/ETS-4 [14] and Hg2+/Na+/ETS-4 [41]. Despite the exchanged 

counter ions are different (Cs+ against of Cd2+ or Hg2+), the diffusion coefficients are consistent 

with the pore sizes of ETS-4 (3×4 Å), Eu-AV-20 (5.8×6.8 Å) and ETS-10 (4.9×7.6 Å). With 

respect to the film diffusion coefficients, their values were estimated by Eq. (V.1.13) and gave 

rise to 4.119x10-4 (Exp. 1), 3.700x10-4 (Exp. 2 and 4) and 3.381x10-4 (Exp. 3) m s-1. During the 
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course of the simulations it was observed that 𝑘f influences the results, meaning that the 

external limitation to mass transfer are not negligible. 

An advantage of the Nernst-Planck based model is its breadth to understand the kinetic 

processes governing ion exchange in a fixed-bed column. For instance, the model describes 

the time evolution of the outlet cesium concentration but, above all, it discloses the 

concentration profiles of cesium along the column in the bulk and inside the Eu-AV-20 particles. 

Accordingly, the normalized Cs+ concentration in solution, 𝐶A(𝑡)/𝐶A,0, and the normalised 

average solid loading, 𝑞̅A 𝑞A,max⁄ , were computed and plotted against time and longitudinal bed 

position for the conditions of Exp. 3, in Figure V.1.7.a and Figure V.1.7.b, respectively. The 

independent variables were also normalized, being 𝑍 = 𝑙 𝐿⁄  and 𝜃 = 𝑡 𝜏⁄ , where 𝜏 = 𝐿 𝑢⁄  is the 

space time (s). 

In terms of bulk solution concentration, the surface in Figure V.1.7.a illustrates both the 

decreasing profiles along the column (as 𝑍  goes from 0 to 1) for different exchange times, and 

the attenuation of these curves as time increases. As a particular case of Figure V.1.7.a, the 

breakthrough curve previously represented for Exp. 3 in Figure 5.a becomes visible at the 

column outlet (𝑍 = 1). 

If the focus is placed on the solid, Figure V.1.7.b evidences that Cs+ concentration 

profiles follow the same tendency as in bulk solution, displaying a delay due to the effect of 

mass transfer kinetics. Specifically, Cs+ load decreases along the column (when 𝑍  goes from 

0 to 1) and increases with time, reaching 80% of the capacity established by the Langmuir 

isotherm, Eq. (2), for 𝜃 ca. 7000. This is expected because Eu-AV-20 particles positioned at 

the top of the bed contact with less concentrated solutions throughout the process and, thus, 

require a longer time to reach equilibrium. 
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Figure V.1.7 – Normalized Cs+ concentration in bulk solution (a) and normalized Cs+ loading in 

the solid (b) as function of dimensionless time and longitudinal bed position. Simulations were 

performed for the conditions of Exp. 3 (Table V.1.2). 

 

Analytic models. The data from Exps. 1–4 were fitted to four conventional analytic 

models, Eqs. (17)–(20), with good accuracy: RMSDs in the range 3.20–6.47% and R2 between 

0.962 and 0.985 (Table V.1.3). The fitting quality of the analytic models can also be assessed 

in Figure 8, which presents calculated versus experimental normalized fluid concentrations at 

the column outlet. In general, the four models fit the data fairly well, but consistently 

overestimate at low/high outlet concentrations and underestimate for intermediate 

concentrations, i.e., in the steep rise branches of the breakthrough curves. 
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The smaller deviations were found for the Clark and Yoon-Nelson models (RMSD 

3.64% and 3.20%, respectively) not surprisingly since both models rely on eight regressed 

parameters. The usefulness of such models is therefore questionable.  

The other two models comprise five parameters each, with the Thomas model, which is 

frequently used in the literature, behaving slightly better than the Bohart-Adams model (RMSD 

5.15% and 6.47%, respectively). As discussed in section V.1.3.3, a correlation between the 

parameters was expected in advance due to the mathematical equivalence of the models, 

namely 𝑘BA = 𝑘Th and 𝑄Th𝑚 𝑣⁄ = 𝑞A,max𝐿 𝑢⁄ . From Table V.1.3  it is possible to conclude that 

𝑘BA and 𝑘Th are quite similar with an average absolute relative deviation of only 12.4%. 

Additionally, the average value of the ratio 𝑄Th𝑚𝑢 (𝑣 𝑞A,max 𝐿)⁄  was 0.99, very close to the 

theoretical value of 1.  

In comparison, the 2-parameter Nernst-Planck based model presents higher deviations 

with a RMSD of 6.53% (Table V.1.3) which is quite similar to the deviations reported in the 

literature for zeolite-type materials [14,16,17,41]. Despite being less expedite to implement than 

the four analytic models, the NP-based model presented in this work provides crucial 

information about the transport mechanisms inside and outside the Eu-AV-20 particles, and 

predicts the dynamic behaviour of the fixed-bed ion exchange column. Such potential relies on 

its theoretically sound assumptions. 
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Figure V.1.8 – Comparison of the four conventional analytic models for fixed-bed ion exchange: 

calculated versus experimental normalized fluid concentrations at column outlet. (Experimental 

conditions in Table V.1.2). 
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V.1.4.4. Photoluminescence results  

 

Three samples were studied, native Eu-AV-20 and two Cs+-exchanged materials collected 

after fixed-bed experiments under similar conditions, except for the time of operation (Exps. 

3 and 5, Table V.1.2). Exp. 3 was performed until exhaustion of the solid’s exchange 

capacity (ca. 50 h) while Exp. 5 was run for a shorter period (ca. 15 h) to accomplish only 

80% of  𝑞A,max (see Figure 9.a). Therefore, in view of the different contact times the three 

Eu-AV-20 samples have different Cs+ contents. Figure V.1.9.b reveals differences in the 

normalized emission spectra for the non-degenerated 5D0
7F0 transitions. The native 

washed Eu-AV-20 possesses two distinct europium sites (Eu1 and Eu2), which give peaks 

at 577.9 nm and 578.9 nm. However, the replacement of sodium and potassium cations by 

Cs+ introduces small modifications in the crystalline structure, as discussed previously 

(section V.1.4.1 and Figure V.1.4), leading to changes in the vicinity of Eu3+ cations and in 

the photoluminescence spectra: higher Cs+ loads decrease the intensity of the Eu1 

emission and shift the Eu2 peak to lower wavelengths (Figure V.1.9.b). Even these are 

preliminary results they suggest that photoluminescence may be an expedite method to 

assess ion exchange phenomena in Cs+/Eu-AV-20 systems, and in addition disclose the 

potential of microporous Ln-silicate Eu-AV-20 solids for cesium sensing purposes.  

The fact that the Eu-AV-20 photoluminescence varies upon Cs ion exchange raises 

the intriguing possibility of following up this process on-line by coupling to the fixed-bed 

column an optical fiber and a spectrometer. In this way the solid loading can be assessed 

online, complementing the usual sampling of the bulk liquid along the column. This 

combined information is important if one takes into account that mass transfer limitations 

always exist which means both phases are not in equilibrium. Work along these lines is in 

progress. 
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Figure V.1.9 – a) Measured breakthrough curves for two different run times (Exps. 3 and 5; 

experimental conditions in Table V.1.2); b) Normalized 5D0
7F0 transition of the 

photoluminescence emission room temperature spectra of the native and Cs+ exchanged 

Eu-AV-20 with excitation at 393 nm. 

 

V.1.5. Conclusions 

 

The use of Eu-AV-20 for Cs+ removal from aqueous solutions was studied in a fixed-bed 

column. The dynamic behaviour of the ion exchange column was in accord with theory, 

namely, higher solid masses and lower superficial velocities (via inferior flow rates) delayed 

the breakthrough curves. Moreover, the experimental stoichiometric times followed the 

solute movement theory.  

The proposed Nernst-Planck based model (2 parameters) achieved RMSD = 6.66% 

for the correlation of one breakthrough curve, and only 6.54% for the prediction of the 

others. The optimized self-diffusivities were consistent with data from the literature, and 

followed essentially the pore size diameter of the solids. The RMSDs of Thomas, Bohart-
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Adams, Clark and Yoon-Nelson models ranged between 3.20% (Yoon-Nelson, 10 

parameters) and 6.47% (Bohart-Adams, 5 parameters). These reliable results are ascribed 

to the number of fitting parameters.  

Regarding the photoluminescence of native and ion-exchanged Eu-AV-20, the 

uptake of Cs+ modifies the local environment of the Eu3+ emitter resulting in changes in the 

5D0
7F0 transition intensities and line positions, indicating the potential of Eu-AV-20 for 

sensing purposes. 

 

V.1.6. Nomenclature 

 

A or A𝑧A Counter ion initially in solution 

𝐴𝐶  Clark model parameter 

B or B𝑧B  Counter ion initially in the exchanger 

𝐶b Solute concentration at breakthrough time in Clark model (mol m-3) 

𝐶A Concentration of counter ion A in solution (mol m-3) 

𝐶A,0 Initial concentration of counter ion A in solution (mol m-3) 

𝐷i Self-diffusion coefficient of counter ion 𝑖 (m2 s-1) 

𝐷L Axial dispersion coefficient (m2 s-1) 

𝐷AB Interdiffusion coefficient of NP model (m2 s-1) 

𝐷m Diffusion coefficient of Cs+ in water (m2 s-1) 

Exp. j Experiment number j 

𝑖 and 𝑗 Generic counter ions 

𝑘BA Bohart-Adams mass transfer coefficient (m3 mol-1 s-1) 

𝑘f Convective mass transfer coefficient (m s-1) 

𝑘Th Thomas rate constant (m3 mol-1 s-1) 

𝑘YN Yoon-Nelson rate constant (h-1) 

𝑙 Column longitudinal coordinate (m) 

L Length of the fixed-bed (m) 

Ln-silicate Lanthanide silicate 

𝑚 Mass of ion exchanger (Eu-AV-20) (g) 

𝑛 Freundlich isotherm constant  

NDP Number of data points 

NP Nernst-Planck 

PXRD Powder X-ray diffraction 
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 𝑞A,max Maximum solute concentration in the particle in Bohart-Adams model 

(mol m-3) 

𝑞A,0 Solid loading in equilibrium with feed concentration, 𝐶A,0 

𝑞i Molar concentration of counter ion i in the particle (mol m-3) 

𝑞̅i Average concentration of counter ion i in the particle (mol m-3) 

𝑄Th Thomas model parameter: maximum solute concentration in the solid 

(mol kg-1) 

𝑟 Radial position in the particle (m) 

R2 Coefficient of determination 

𝑅p Particle radius (m) 

RMSD Root Mean Square Deviation (%) 

SEM Scanning Electron Microscopy 

𝑡50 Yoon-Nelson parameter: time for 𝐶A 𝐶A,0⁄ = 0.5, (h) 

𝑡 time (h or s) 

𝑡st Stoichiometric time (h) 

𝑡b Breakthrough time (h) 

𝑇 Absolute temperature (K) 

𝑢 Superficial velocity (m s-1) 

𝑣 Flow rate (m3 s-1) 

𝑍 Dimensionless longitudinal coordinate in the column 

𝑧i Electrochemical valence of counter ion 𝑖 

 

Greek letters 

 

𝜀 Bed void fraction 

𝜌s Density of ion exchanger  

𝜃 Dimensionless time 

 Space time (s) 

𝜔 Clark model rate parameter (h-1) 

 

Subscripts 

 

0 Initial conditions  

A Counter ion initially present in the bulk solution (Cs+) 
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B Counter ions initially present in the ion exchange (K+ and Na+) 

BA Bohart-Adams model 

calc Calculated value 

eq Equilibrium value 

exp Experimental value 

Th Thomas 

s solid 

YN Yoon-Nelson model 
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Work reported in the scientific article 

 

Batch and fixed-bed removal of Cs+ from aqueous solutions using ETS-4: 

Measurement and modeling of loading-regeneration cycles and equilibrium 

 

published on Chemical Engineering Journal 301 (2016) 276–284 

 

 

 

 

Abstract 

 

ETS-4 was prepared by hydrothermal synthesis and characterized by powder X-ray 

diffraction in order to assess its ion exchange capacity towards the removal of Cs+ from 

aqueous solutions in both batch and fixed-bed operation modes. Several assays were 

carried out to measure isotherm (8 experiments) and breakthrough curves (5 experiments); 

a set of loading-regeneration-loading experiments was also performed highlighting the 

ability of ETS-4 to be used in cyclic ion exchange. Powder X-ray diffraction showed that 

parent and Cs+-exchanged ETS-4 are isostructural. The Langmuir equation achieved good 

correlation results (average deviation of 6.58%), while the Nernst-Planck based model 

proposed for the fixed-bed assays fitted one breakthrough curve with 18.66% error, and 

was able to predict the remaining four experiments with 9.55% error. The Nernst-Planck 

parameters are the self-diffusion coefficients of Cs+ and Na+ in ETS-4, whose values 

(𝐷C𝑠+ = 3.193x10-16 m2 s-1 and 𝐷Na+ = 6.088x10-15 m2 s-1) are consistent with the 

microporosity of ETS-4 framework and with the size of the counter ions. 
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V.2. Batch and fixed-bed removal of Cs+ from aqueous solutions using ETS-

4: Measurement and modeling of loading-regeneration cycles and equilibrium 

 

V.2.1. Introduction 

 

The removal of long-lived radionuclides generated by nuclear power plants represents an 

important environmental aspect in nuclear waste management. For instance, the medium-

lived radioisotopes strontium (90Sr) and cesium (137Cs), whose decay half-lives are, 

respectively, 28.9 and 30.1 years are responsible for most of the accumulated radiation on 

the produced effluents. Therefore, their removal is imperative and can be seen as an 

effective strategy to minimize such nuclear waste volumes [42,43]. To achieve the desired 

separation, various physicochemical processes may be applied, namely, co-precipitation, 

solvent extraction, coagulation, electrochemical, membrane processes, and adsorption/ion 

exchange [3,44].  

In this context, inorganic ion exchangers are widely employed for the removal and 

safe storage of radionuclides from nuclear wastes due to their high mechanical, thermal 

and radiation stabilities and potential selectivity. On the other hand, due to the unique pore 

structure and cation exchange properties of natural and synthetic zeolites, this class of 

materials has attracted significant attention [33]. For instance, clinoptilolite has been used 

for cesium and strontium uptake before effluents discharge in the Irish Sea [45]. Mordenite 

and chabazite also found application in treating hazardous solutions from nuclear power 

plants [46,47]. Very recently, two microporous lanthanide silicates have been tested for the 

first time as Cs+ exchangers, Eu-AV-20 [31,48] (mineral tobermorite analogue) and Tb/Eu-

AV-9 [49] (mineral montregianite analogue), where AV-n stands for Aveiro material number 

n.  

Microporous titanosilicates are also a successful class of zeolite-like materials for 

the uptake of long- and medium-lived radionuclides from nuclear waste effluents. In this 

class, sitinakite [50,51] and pharmacosiderite [52,53] stand out, with the former having a 

synthetic counterpart commercially available from UOP [9,54,55]. Many other such 

materials deserve mention, such as the ETS (Engelhard Titanosilicates) [56–60] and AM 

(acronym of Aveiro-Manchester) [2,61–63] families. Titanosilicate ETS-4, in particular, 

comprises SiO4 tetrahedra and TiO5 and TiO6 polyhedra, exhibiting high ion exchange 

capacity and, in the parent form, exchangeable Na+ and K+ cations [64]. ETS-4 has the ideal 

composition M8Ti5Si12O38∙nH2O (M=K,Na), essentially, the structure of zorite, comprising 

8-membered rings and an effective pore size of 0.37 nm that may be fine-tuned by 
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progressive dehydration [64]. The Na-form of ETS-4 collapses at ca. 473 K, a limitation that 

may be overcome by ion exchange, for example with strontium [64].  

Most of articles dealing with ion exchange focuses on batch assays for equilibrium 

and kinetic studies [15–17,41,45,60,65]. Nonetheless, fixed-bed experiments comprising 

both loading and regeneration steps are crucial for commercial/industrial applications, as 

their accurate design requires not only isotherms but also the knowledge of the dynamic 

behaviour of the system. For instance, the well-known breakthrough experiments are 

indispensable to measure the length of unused bed for the accurate scale-up of industrial 

sorption units. To accomplish this, the development of theoretically sound models for the 

representation of ion exchange data and subsequent simulations is also necessary for 

reliable optimization and scale-up. Some examples of fixed-bed assays include studies 

performed with titanosilicates ETS-10 [7,8] and CST [9], NaY zeolite [6], and lanthanide 

silicate Eu-AV-20 [31]. 

Here, the removal of Cs+ from aqueous solutions by ETS-4 is investigated using 

batch and fixed-bed experiments. Complete loading-regeneration cycles are performed and 

they are simulated using Nernst-Planck equations and Langmuir isotherm. 

 

V.2.2. Modelling 

 

Ion exchange is often represented as a chemical reaction because of the stoichiometric 

nature of the process by which two counter ions, 𝐴𝑧A and 𝐵𝑧B, are exchanged between an 

electrolyte solution and a solid sorbent according to: 

 

zABzB̅̅ ̅̅̅ + zBAzA ⇋ zBAzA̅̅ ̅̅̅ + zABzB (V.2.1) 

 

where 𝑧A and 𝑧B are the electrochemical valences of counter ions, and the capping bar 

denotes the exchanger phase. In this study, AzA is Cs+, BzB is Na+, 𝑧A = 𝑧B = +1, and the 

exchanger (ETS-4) is converted from the BzB̅̅ ̅̅̅ to the AzA̅̅ ̅̅̅ form. For simplicity, AzA and BzB will 

be henceforth designated as A and B. To describe the fixed-bed ion exchange of the 

Cs+/Na+/ETS-4 system, a Nernst-Planck (NP) based model was written and coded in Matlab 

R2013a®. 

The following equations were used successfully to represent the intraparticle mass 

transport of Hg2+/Na+ and Cd2+/Na+ pairs through ETS-4 [16,17]. Briefly, the NP equations 

state that the fluxes (𝑁i, mol m-2 s-1) of counter ions result from both concentration (𝑞𝑖, mol 
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m-3) and electric potential gradients. For a binary A/B system, the internal flux of A is given 

by [16,17,32,33]: 

 

𝑁A = −
𝐷A𝐷B(𝑧A

2𝑞A + 𝑧B
2𝑞B)

𝐷A𝑧A
2𝑞A + 𝐷B𝑧B

2𝑞B

(
𝜕𝑞A

𝜕𝑟
) = −𝐷AB (

𝜕𝑞A

𝜕𝑟
) (V.2.2) 

𝐷AB ≡
𝐷A𝐷B(𝑧A

2𝑞A + 𝑧B
2𝑞B)

𝐷A𝑧A
2𝑞A + 𝐷B𝑧B

2𝑞B

 (V.2.3) 

 

where 𝐷A and 𝐷B (m2 s-1) are the self-diffusion coefficients of A and B, 𝑟 (m) is the radial 

coordinate in the particle, and 𝐷AB (m2 s-1) is taken as an interdiffusion coefficient. The 

exchange capacity of the sorbent is calculated by 𝑄(eq m−3) = 𝑞A𝑧A + 𝑞B𝑧B.  

The fixed-bed model encompasses the material balance to the column (Eq. (V.2.4)), 

which contains the accumulation contributions in the fluid and solid phases, an axial 

dispersion term and a convective term. The appropriate initial and boundary conditions are 

given by Eqs. (V.2.5) and (V.2.6). 

 

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑡
+

1 − 𝜀

𝜀

𝜕〈𝑞A〉(𝑙, 𝑡)

𝜕𝑡
= 𝐷L

𝜕2𝐶A(𝑙, 𝑡)

𝜕𝑙2
− 𝑢

𝜕𝐶A(𝑙, 𝑡)

𝜕𝑙
 

 

(V.2.4) 

𝑡 = 0, 𝐶A = 𝐶A,in = 0 (V.2.5) 

𝑙 = 0, 𝐷L

𝜕𝐶A

𝜕𝑙
= −𝑢(𝐶A,0 − 𝐶A) 

𝑙 = 𝐿,
𝜕𝐶A

𝜕𝑙
= 0 

(V.2.6) 

 

In Eqs. (V.2.4)-(V.2.6), 𝐶A (mol m-3) is the molar concentration of species A in solution, 𝑢 (m 

s-1) the superficial velocity, 𝑙 (m) the position along the bed, 𝐿 (m) the bed length, 𝑡 (s) time, 

𝜀 the bed porosity (𝜀 = 0.88), 〈𝑞A〉 (mol m-3) the average concentration of A in the solid, 𝐶A,in 

the initial concentration of A in the fluid inside the bed, and 𝐶A,0 the concentration of A in the 

feed. The axial dispersion coefficient 𝐷L (m2 s-1) was estimated here using the following 

correlation [34]: 

 

𝐷L = (20 + 0.5 × Sc × Re) ×
𝐷m

𝜀
 (V.2.7) 
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where 𝐷m is the diffusivity of Cs+ in water (2.06x10-9 m2 s-1 at 298.15 K [35]), and Sc and Re 

are the well known Schmidt and Reynolds numbers, respectively.  

The material balance to the exchanger particle is given by Eq. (V.2.8), and the initial 

and boundary conditions for the ion exchange experiment are represented by Eqs. (V.2.9)-

(V.2.11).  

 

𝜕𝑞A

𝜕𝑡
= −

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝑁A) (V.2.8) 

𝑡 = 0, 𝑞A = 𝑞A,in = 0 (V.2.9) 

𝑟 = 0,
𝜕𝑞A

𝜕𝑟
= 0 (V.2.10) 

𝑟 = 𝑅𝑝, 𝑞A = 𝑞A,Rp
 (V.2.11) 

 

where 𝑅p (m) is the particle radius, 𝑞A,in (mol m-3) the initial concentration of A in the solid 

along the bed, and 𝑞A,Rp
 (mol m-3) the concentration of A in the solid at the interface, which 

is in equilibrium with fluid concentration 𝐶A,Rp
 (i.e., they are related by the isotherm).  

In consecutive loading-regeneration operations, the initial conditions of step 𝑛, 

(𝐶A,in|
n
 and 𝑞A,in|

n
) must equal the final concentration profiles of step 𝑛 − 1, (𝐶A,final|n−1

 and 

𝑞A,final|n−1
). Accordingly, Eqs. (V.2.5) and (V.2.9) should be substituted by the following 

conditions: 

 

𝑡 = 𝑡in|𝑛, {
𝐶A,in|

𝑛
= 𝐶A,final|𝑛−1

𝑞A,in|
𝑛

= 𝑞A,final|𝑛−1

, 2 ≤ 𝑛 <∞ , (V.2.12) 

 

The equality of fluxes at the surface of the particle is expressed by Eq. (V.2.13), 

which involves the convective mass transfer coefficient of counter ion A, 𝑘f (m s-1), estimated 

here by Eq. (V.2.14) in terms of Sherwood (Sh), Reynolds and Schmidt numbers, and 𝑑p =

2𝑅p is the equivalent particle diameter (m) [8]. 

 

𝑁𝐴,𝑅p
= 𝑘f (𝐶A − 𝐶A,Rp

) (V.2.13) 
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Sh =
𝑘f𝑑p

𝐷m
=

1.13

ε
Re0.21Sc1 3⁄  (V.2.14) 

 

The average loading per unit particle volume, included in the material balance to the 

column, Eq. (V.2.4), is calculated by: 

 

〈𝑞A〉 =
3

𝑅p
3

∫ 𝑟2𝑞A𝑑𝑟
𝑅p

0

 (V.2.15) 

 

The equilibrium isotherm of the system Cs+/Na+/ETS-4 is given by the Langmuir 

equation: 

 

𝑞A,eq = 𝑞A,max

𝐾L𝐶A,eq

1 + 𝐾L𝐶A,eq
 (V.2.16) 

 

where 𝑞A,max (mol m-3) and 𝐾L (mol-1 m3) are parameters to fit the experimental data. 

The Method of Lines was selected to solve the concentration profiles of Cs+ and 

their evolution along time, in solution and in the solid phase, and the spatial discretization 

was accomplished by finite differences of second order. The resulting ordinary differential 

equations of the initial-value type were solved applying numerical differentiation formulas 

using 31 grid points for particle radius and bed length.  

Concerning the methodology, the self-diffusion coefficients (𝐷A and 𝐷B) of the NP-

based model were adjusted to the experimental data (section V.2.4.4), the Nelder-Mead 

and the Marquardt-Levenberg algorithms were adopted for the optimizations, and the root 

mean square deviation (RMSD) was the objective function: 

 

RMSD (%) = 100 × √∑
(𝐶A,calc|

i
− 𝐶A,exp|

i
)

2

NDP

NDP

i

 
(V.2.17) 

 

Here NDP is the number of data points, and subscripts ‘exp’ and ‘calc’ denote measured 

and calculated cesium concentrations, respectively. 
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V.2.3. Materials and Methods 

 

V.2.3.1. Chemicals and materials  

 

Sodium hydroxide (CAS number 1310-73-2), potassium chloride (CAS number 7447-40-7) 

and titanium(III) chloride (15 wt% TiCl3 and 10 wt% HCl) were supplied by Merck. Sodium 

metasilicate (CAS Number 13517-24-3) was purchased from BDH Chemicals. Cesium 

nitrate (CAS number 7789-18-6) and sodium nitrate (CAS Number 7631-99-4) were 

acquired from Sigma-Aldrich. Cellulose acetate membrane disc filters were bought from 

Sterlitech Corporation, and quartz wool discs were purchased from Elemental 

Microanalysis. The high-purity water (18.2 MΩ cm) was generated in a Milli-Q Millipore 

water purification system. 

 

V.2.3.2. Synthesis and characterization 

 

ETS-4 synthesis was performed as follows [13,15]. An alkaline solution was prepared by 

dissolving sodium metasilicate, NaOH and KCl in high-purity water (18.2 MΩcm). Then, 

TiCl3 was added to this solution and stirred thoroughly. The resulting gel, with molar 

composition 5.9 Na2O : 0.7 K2O : 5.0 SiO2 : 1.0 TiO2 : 114 H2O, was transferred to a Teflon-

lined autoclave and heated at 230 °C for 17 h under autogenous pressure without agitation. 

The product was filtered off, washed at room temperature with distilled water, and dried at 

70 °C overnight. The sample crystallinity and purity were ascertained by powder X-Ray 

Diffraction (PXRD) collected on a PANalytical Empyrean diffractometer (CuKα1,2 X-radiation, 

λ1 = 1.540598 Å; λ2 = 1.544426 Å), equipped with an PIXcel 1D detector and a transmission-

spinner sample holder in a Bragg-Brentano para-focusing optics configuration (45 kV, 40 

mA). Intensity data were collected by the step-counting method (step 0.04º), in continuous 

mode, in the range ca. 5 ≤ 2θ ≤ 50º. Table V.2.1 summarizes the important features of this 

material. 

 

Table V.2.1 – Features of the synthesized titanosilicate ETS-4 [66]. 

Formula M8Ti5Si12O38∙nH2O (M=K,Na) 

Density (kg m-3) 2200 

Theoretical cation exchange capacity (eq kg-1) 6.39 

Measured equivalent particle diameter (10-6 m) 12 

Pore diameter (10-10 m) 3.7 
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V.2.3.3. Fixed-bed and batch ion exchange experiments 

 

Preparation of solutions. Measurement of Cs+ concentration. 

A 0.01 mol L-1 Cs+ stock solution was prepared by dissolving 0.098 g of CsNO3 in 50 mL of 

high-purity water (18.2 MΩ cm). The Cs+ operational solutions were obtained by diluting the 

stock solution to the desired concentration with high-purity water, prepared immediately 

before use in order to reduce cation adsorption on the vessel walls and remaining glassware 

and lab material.  

The cesium concentration of the solutions was measured by atomic emission 

spectroscopy (AES) with a Perkin Elmer AAnalyst 100 atomic absorption spectrometer, in 

the emission mode (with a wavelength of 852.1 nm and a slit of 0.2 nm) and using an air-

acetylene flame. The ionization was controlled by the addition of a potassium chloride 

solution to all samples and standards until they all contained 0.5 wt.% of such alkali. Each 

sample was analysed in triplicate and the results are the average of concordant values (less 

than 5% variation between measurements of the same sample). 

 

Batch ion exchange experiments 

Batch experiments were performed contacting cesium solutions with known masses of 

powdered ETS-4 in volumetric flasks (2 dm3) under agitation (ca., 300 rpm) at room 

temperature (295 K) and initial pH 4. The initial cesium concentrations were fixed at ca. 40 

ppm in order to maintain constant the ionic strength of the solutions, while the masses of 

ETS-4 were varied as shown in Table V.2.2. The assays started when the exchanger was 

added to the solution and the stirring initiated. Aliquots (10 mL) were collected, (before 

adding the solid and at the end of the experiment), filtered through an acid washed cellulose 

acetate membrane disc filter of 0.45 µm, and the cesium concentration was measured by 

AES. A blank experiment (without ETS-4) was always run as a control to check that the 

removal of Cs+ occurred by ion exchange with the solid and not by adsorption on the lab 

material.  

 

Fixed-bed ion exchange experiments 

A stainless steel fixed-bed column was mounted on a support and filled with a precise 

amount of ETS-4 confined by four to six quartz wool discs plus two stainless steel nets, one 

at the bottom and other on top. Swagelock fittings were used to close the assembly and to 

connect the bottom and the top of the column to an influent reservoir and to a sample 

collector, respectively (Figure V.2.1).  
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Figure V.2.1 – Experimental setup for the fixed-bed ion exchange experiments. 

 

Three fixed-bed experiments (Exps. 9, 10 and 11 of Table V.2.3 were performed 

isothermally at 295 ± 1 K to study the influence of the flow rate on cesium exchange over 

ETS-4. The influent solution containing ca. 40 ppm Cs+ was continuously fed to the column 

in the up-flow mode. The pH was measured at the column inlet using a pH meter Crison 

Basic 20. The volumetric flow rate was regulated with a variable peristaltic pump (Knauer 

Smartline pump 100). Aliquots of 10 mL were collected periodically at column outlet, filtered 

through acid washed cellulose acetate membrane (0.45 µm) disc filters, and then analysed 

for Cs+ concentration by AES. The experiments were stopped when the effluent and the 

influent Cs+ concentrations were equal.  

To assess the regeneration capacity of ETS-4, an additional experiment was 

performed after Exp. 11 (Table V.2.3) using a solution of Na+ (1.72 mol·m-3) continuously 

fed to the column for 75 hours (Exp. 12 in Table V.2.3). Then, a second cycle began using 

a cesium solution and operating conditions equivalent to those of Exp. 11 (Exp. 13 in Table 

V.2.3). The ion exchange process was always controlled through Cs+ measurement by AES 

as described above. 

 

Table V.2.2 – Experimental conditions for batch ion exchange assays with ETS-4 to obtain 

isotherm data. (Fixed conditions: T = 295 ± 1 K, Vliquid = 2x10-3 m3, pH = 4). 

Experiment No. 1 2 3 4 5 6 7 8 

Mass of ETS-4 (10-6 kg) 8 60 157 206 314 418 524 804 

Initial Cs+ conc. (mol m-3) 0.288 0.295 0.308 0.285 0.295 0.291 0.294 0.303 
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Table V.2.3 - Experimental conditions for fixed-bed ion exchange assays using ETS-4. 

(Fixed conditions: T = 295 ± 1 K, pH 4, 𝜀 = 0.88, L = 0.01 m). 

Experiment No. 9 10 11 12 13 

Type of experiment / cycle Loading Loading 
Loading 

1st cycle 

Regeneration 

1st cycle 

Loading 

2nd cycle 

Mass of ETS-4 (10-6 kg) 501 509 503 503 503 

Initial Cs+ conc. (mol m-3) 0.311 0.305 0.301 - 0.293 

Initial Na+ conc. (mol m-3) - - - 1.720 - 

Superficial velocity (m s-

1) 
6.366x10-4 3.893x10-4 2.567x10-4 2.567x10-4 2.567x10-4 

𝐷L (m2 s-1) by Eq. (7) 5.895x10-8 5.556x10-8 5.350x10-8 5.350x10-8 5.350x10-8 

 

V.2.4. Results and discussion 

 

This section starts with the characterization of the synthesised ETS-4 by PXRD, before and 

after ion exchange. Then, the measured and modelled isotherms of the Cs+/Na+/ETS-4 

system are analysed, followed by the breakthrough curves obtained under fixed-bed 

operation. The regeneration and the second cycle of ion exchange are also examined. 

Finally, the results achieved with the Nernst-Planck based model (developed in Section 

V.2.2) are presented and discussed in detail.  

 

V.2.4.1. Materials characterization 

 

The PXRD pattern of the parent sample is characteristic of ETS-4 providing no evidence for 

the presence of any additional impurities (Figure V.2.2). Cs+-exchanged ETS-4 reveals 

some modifications in the peaks intensities and positions, which may be ascribed not only 

to crystal orientation effects but also to the introduction of cesium in its framework. The 

major differences are found at 23.21º, where a new peak appears, and at 30.37º and 31.17º, 

where two peaks substituted the native 30.79º peak. Despite these differences, parent ETS-

4 and the Cs+-exchanged solid are isostructural. 
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Figure V.2.2 – Normalized PXRD patterns of native and Cs+-exchanged ETS-4 (after Exp. 

9; see experimental conditions in Table V.2.3). 

 

V.2.4.2. Ion exchange isotherm 

 

The equilibrium data were obtained from batch Exps. 1-8 (Table V.2.2) and fitted with the 

Langmuir isotherm, Eq. (V.2.16), with an average absolute relative deviation (AARD) of 

6.58%. The analytical equation is depicted in Figure V.2.3 and exhibits the Langmuir 

parameters 𝑞A,max = 1.86 mol kg-1 and 𝐾L = 43.46 m3 mol-1, similar to previously published 

data [57]. Freundlich and Langmuir-Freundlich isotherms were also considered, but the 

former fails to represent the experimental points, while the latter adds an additional 

parameter but no substantial gain. 
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Figure V.2.3 – Measured (solid circles) and calculated (line) Langmuir isotherms of 

Cs+/Na+/ETS-4 system at 295 K. 

 

V.2.4.3. Fixed-bed experimental results 

 

The breakthrough curves obtained from Exps. 9-11 were evaluated at different superficial 

velocities in the range (2.5–6.4)x10-4 m s-1 for 75 hours (Table V.2.3). The experimental 

data plotted in Figure V.2.4 represent the time evolution of the normalized cesium 

concentration in solution at column outlet, i.e., 𝐶A(𝑡, 𝐿) 𝐶A,0⁄ . Because the three 

breakthrough curves deviate significantly from (displaced) Heaviside functions, these 

results reveal mass transfer limitations in the system.  

When equilibrium is favourable (which is the case for the Langmuir isotherm) and 

dispersive phenomena (e.g., axial dispersion, film and intraparticle resistances to mass 

transfer) are negligible, an ideal wave front propagates unchanged along the bed and exits 

the column at the stoichiometric time, 𝑡st. On the other hand, the occurrence of transport-

rate resistances broadens the traveling wave front, which reaches a constant pattern flow 

due to the simultaneous effect of the self-sharpening favourable isotherm [67,68]. The 

stoichiometric time can be calculated from the experimental breakthrough curve using Eq. 

(V.2.18) or estimated from Eq. (V.2.19) on the basis of the solute movement theory: 

 

𝑡st = ∫ (1 −
𝐶A(𝑡)

𝐶A,0
)

∞

0

𝑑𝑡 (V.2.1) 
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𝑡st =
𝐿

𝑢
(1 +

1 − 𝜀

𝜀

𝑞A,0

𝐶A,0
) (V.2.2) 

 

where 𝑞A,0 is the solid loading in equilibrium with feed concentration, 𝐶A,0. For the 

regeneration step, the concept of stoichiometric time was extended with the objective of 

computing the process efficiency using: 

 

𝑡st = ∫
𝐶A(𝑡)

𝐶A,0

∞

0

𝑑𝑡 (V.2.3) 

 

 

 

Figure V.2.4 – Effect of the feed flow rate on the normalized breakthrough curves for Cs+ 

removal in a fixed-bed of ETS-4. Symbols: data (experimental conditions in Table V.2.3); 

lines: NP-based model (parameters in Table V.2.4).  

 

According to the breakthrough curves (Exps. 9, 10 and 11 in Figure 4), lower 

superficial velocities require higher operating times to deplete the solid phase, and vice-

versa, in agreement with the solute movement theory, Eq. (V.2.19), since 𝑡st is inversely 

proportional to the superficial velocity, 𝑢. The experimental values obtained were 𝑡st = 13.9, 

21.9 and 30.8 h, for 𝑢 = 6.366x10-4 (Exp. 9), 3.893x10-4 (Exp. 10) and 2.567x10-4 m s-1 (Exp. 

11), respectively.  
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Concerning axial dispersion, its influence was negligible because the 𝐿 𝑑𝑝⁄  ratio was 

833, clearly obeying the well-known relation 𝐿 > 50 𝑑𝑝, and the axial Peclet numbers (𝑃𝑒 =

𝑢𝐿 𝐷L⁄ ) attained were 108.0, 70.1 and 48.0, for Exps. 9, 10 and 11, respectively. 

Nonetheless, external mass transfer limitations were confirmed, experimentally and 

theoretically (further discussion in Section V.2.4.4) because the spreading of the 

breakthrough curves increased with decreasing superficial velocities. For example, the 

widths of the mass transfer zone (MTZ) based on 0.01 and 0.99 limits (i.e., 0.01 ≤

𝐶A(𝑡, 𝐿) 𝐶A,0 ≤ 0.99⁄ ) were 42.4, 46.3 and 48.1 h for Exps. 9, 10 and 11, respectively; for the 

more flexible limits 0.05 and 0.95, the corresponding MTZ widths were 27.2, 30.1 and 31.5 

h.  

The regeneration experiment (Exp. 12) was subsequently performed using a Na+ 

solution (ca. 40 ppm) to convert the ETS-4 bed at the end of Exp. 11 into its original Na-

form, in order to evaluate the Cs+ uptake capacity after regeneration (Exp. 13). The results 

for the normalized cesium concentration at column outlet are shown in Figure V.2.5, where 

time was measured continuously, without interruption, with the successive regeneration and 

loading experiments (Exps. 12 and 13, respectively) having the same time extension of Exp. 

11. As expected, the regeneration curve is highly dispersed (75 < 𝑡(h) < 150) because a 

favourable isotherm broadens the wave front during a desorbing step and the mass transfer 

limitations reinforces even more this thermodynamic behaviour along the bed.  

Since all experimental conditions were preserved during Exps. 11, 12 and 13, except 

the Cs+ concentration of the feed, the efficiency of the regeneration and second loading 

steps may be unveiled by the ratio between their stoichiometric times and that of Exp. 11. 

With respect to this, Figure V.2.5 encompasses three different areas (A1, AR and A2) whose 

values correspond to the experimental stoichiometric times, 𝑡st = 31.0, 23.8 and 23.0 h, 

respectively. Thus, the ratio AR/A1 indicates that the regeneration process (Exp. 12) 

attained ca. 76.8% of efficiency, a value confirmed by the experimental A2/A1 ratio that 

attained 74.2%. It is worth mentioning that after ca. 150 h (i.e., at the end of ca. 75 h of 

regeneration) the Cs+ concentration of the effluent was ca. 20% of its initial concentration, 

i.e., the regeneration was incomplete. To convert all ETS-4 in its Na-form, long ion exchange 

runs would be necessary under the same experimental conditions. Alternatively, to 

accelerate the regeneration process, the inlet counter ion (Na+) concentration and flow rate 

could be increased. In both cases, the mass transfer driving force would be increased, while 

the second possibility would also to reduce the external film thickness with advantage. In 

industrial applications the residual loading after regeneration is usually finite and frequently 

non-uniform, constituting the well-known delta loading of steady state cyclic processes. 
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Figure V.2.5 – Normalized cesium concentration at column outlet for Exps. 11, 12 and 13 

in a loading-regeneration operation. Symbols: data (experimental conditions in Table V.2.3); 

lines: NP-based model (parameters in Table V.2.4); A1 = area above the breakthrough of 

the 1st ion exchange cycle; AR = area below the regeneration curve of the 1st cycle; A2 = 

area above breakthrough of the 2nd cycle. 

 

The ability of spent ETS-4 to enter a second ion exchange cycle after intermediate 

regeneration is a valuable outcome of this essay. ETS materials have been much studied 

for the removal of several hazardous metals [4] but their regeneration and utilization in 

subsequent ion exchange cycles is scarcely assessed. Lopes et al., [7] studied the uptake 

of Hg2+ from aqueous solutions on a packed-bed of ETS-4, and the regeneration was carried 

out with a chelating agent, namely a concentration gradient EDTA-Na2 solution (0.05–0.25 

mol dm-3), attaining an elution efficiency of 98% only after 50 hours. If, alternatively, a simple 

aqueous solution of a counter ion had been used the fixed-bed cleaning would be 

impractical. This is in accord with the large selectivity of titanosilicates towards divalent 

cations such as Hg2+ and Cd2+ [13–15,41,65,69] . In our case the counter ions Cs+ and Na+ 

possess the same valence (+1) and, as mentioned above, the PXRD patterns of parent and 

Cs+-exchanged ETS-4 show that the solids are isostructural. Hence, both loading and 

regeneration steps were expected in advance to be essentially and effectively reversible 

despite the differences imparted by the distinct ionic radius of Cs+ and Na+ (170 versus 102 

pm [70], respectively). 
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V.2.4.4. Fixed-bed modelling results – Nernst-Planck based model 

 

Modelling results for the fixed-bed operation are plotted together with data for Exps. 9-11 in 

Figure V.2.4, and Exps. 11 (loading, 1st cycle), 12 (regeneration, 1st cycle) and 13 (loading, 

2nd cycle) in Figure V.2.5. The axial dispersion (𝐷L) and convective mass transfer 

coefficients (𝑘f) were estimated by Eqs. (7) and (14), respectively, and the model 

parameters (𝐷A and 𝐷B) were fitted to the data of Exp. 11 only, with RMSD = 18.66 %. The 

remaining four curves were predicted, providing deviations of 15.20% (Exp. 9), 13.27% 

(Exp. 10), 4.17% (Exp. 12) and 5.88% (Exp.13), and global RMSD of 9.55% (see Table 

V.2.4). Globally, these are reliable results for an ion exchange process embodying several 

runs with different operating conditions and distinct cycle steps. 

Considering that the system’s counter ions are monoatomic and monovalent, the 

adjusted self-diffusivities for Cs+ (𝐷A = 3.193x10-16 m2 s-1) and Na+ (𝐷B = 6.088x10-15 m2 s-

1) must reflect their ionic radius, i.e., 𝐷A < 𝐷B because 𝑟ion(Cs+) =  170 pm > 𝑟ion(Na+) =

 102 pm [70]. Furthermore, 𝐷A and 𝐷B are of the same order of magnitude of those published 

recently for the system Cs+/Na+/Eu-AV-20 [48] and three times larger than the values for 

Cd2+/Na+/ETS-4 [14] and Hg2+/Na+/ETS-4 [41] systems. In all cases, the small magnitudes 

of the diffusion coefficients are consistent with the presence of small micropores [14,71–

73], since the cations never escape from the force field of the matrix co-ions, mainly due to 

the strong and long-range nature of the electrostatic interactions, which imply the 

intraparticle transport mechanism is surface diffusion. 

As mentioned above, the self-diffusivity found for Cs+ is approximately three times 

higher than those reported for Cd2+ and Hg2+ in ETS-4 [14,41]. Despite the ionic radius of 

cadmium(II) and mercury(II), respectively, 95 and 102 pm [70], their double charge 

originates stronger interactions with the solid surface, increasing their activation energy for 

diffusing through the channels (remember that the ionic radius of Cs+ is 170 pm). An 

additional feature that penalizes Cd2+ and Hg2+ in comparison to Cs+ is the magnitude of 

their molar Gibbs free energy of dehydration: ∆dehyd𝐺 =1755, 1760 and 250 kJ mol-1 [70], 

respectively, which means the energy required by the divalent cations for accessing the 

microporosity of ETS-4 is ca., seven times higher than that of monovalent cesium ion, just 

for the dehydration step. 

The convective mass transfer coefficients estimated by Eq. (V.2.14) are 3.775x10-4 m s-1 

(Exp. 9), 3.416x10-4 m s-1 (Exp. 10) and 3.122x10-4 m s-1 (Exps. 11-13), following the 

decreasing superficial velocity of the fluid (i.e., 6.366x10-4, 3.893x10-4 and 2.567x10-4 m s-

1, respectively). These values are consistent with the increasing widths of the mass transfer 
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zones (cited in Section V.2.4.3) for Exps. 9-11, because the film contribution to the second 

moment (i.e., dispersion) of a pulse response of a chromatographic model is proportional 

to 𝑅p 𝑘f⁄  [67,68]. It is interesting to confront the following ratios for qualitative but 

theoretically sound purposes: 𝑘f (Exp. 10) 𝑘f (Exp. 9)⁄ =0.905 and 

𝑘f (Exp. 11) 𝑘f (Exp. 10)⁄ =0.914, versus MTZ(Exp. 9) MTZ(Exp. 10)⁄ =0.904 and 

MTZ(Exp. 10) MTZ(Exp. 11)⁄ =0.956. 

 To access the performance of the NP-based model, the calculated versus 

experimental normalized cesium concentrations at column outlet are plotted in Figure V.2.6. 

As expected from the RMSD values listed in Table V.2.4, the rough linearity observed 

between both sets of data highlights the model’s ability to correlate and predict the ion 

exchange behaviour of the Cs+/Na+/ETS-4 system under the various experimental 

conditions, in particular, different superficial velocities and loading-regeneration steps. 

Despite the reliable results achieved, the model overestimates Exp. 9, while the points of 

the remaining experiments are well distributed near the diagonal. Figure V.2.6 also reveals 

that the proposed model is less reliable at the beginning of the breakthrough curves, where 

errors are more likely to occur due to the detection limits of the analytical method (AES). 

The fact that the proposed NP-based model can be used to study the different stages of a 

cyclic ion exchange operation is of major importance, since it is a fundamental tool for the 

accurate scale-up and optimization of a fixed-bed unit. 

 

Table V.2.4 – Optimized parameters and calculated deviations for the Nernst-Planck based 

model applied to the fixed-bed assays. (Experimental conditions in Table V.2.3). 

Exp. NDP Type of calculation 𝐷A (m2 s-1) 𝐷B (m2 s-1) RMSD (%) Global RMSD (%) 

9 35 Prediction - - 15.20 9.55 (prediction)* 

10 34 Prediction - - 13.27  

11 31 Correlation 3.193x10-16 6.088x10-15 18.66 18.66 (correlation) 

12 35 Prediction - - 4.17  

13 35 Prediction - - 5.88  

* 9.55% is the calculated RMSD for the set of Exps. 9,10,12 and 13. 
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Figure V.2.6 – Calculated versus experimental normalized Cs+ concentration in solution 

(experimental conditions in Table V.2.3). 

 

V.2.5. Conclusions  

 

The cesium exchange capacity of ETS-4 was assessed in batch and fixed-bed experiments 

aiming at: measuring the isotherm of the system Cs+/Na+/ETS-4, assessing the influence of 

the superficial velocity on the fixed-bed operation (via breakthrough curves), and evaluating 

the regeneration ability of ETS-4 for future cyclic operation. The Langmuir isotherm fitted 

the equilibrium data reliably (AARD = 6.58%), while the experimental breakthrough curves 

exhibited the expected trend characterized by a sigmoidal shape. The proposed Nernst-

Planck based model achieved global deviations of 18.66% and 9.55%, respectively, for 

correlation (1 curve) and prediction (4 curves) of cesium concentration in the fluid at column 

outlet. The correlated parameters were the NP self-diffusivities of Cs+ and Na+ in ETS-4, 

and the determined values (𝐷C𝑠+ = 3.193x10-16 m2 s-1 and 𝐷Na+ = 6.088x10-15 m2 s-1) were 

consistent with the microporosity of ETS-4 and the size of the exchanged cations. The 

embodied axial dispersion and convective mass transfer coefficients (estimated by 

dimensionless correlations) confirmed external limitations and ruled out axial dispersion 

phenomena. The good results obtained in consecutive loading-regeneration steps evidence 

the ability of ETS-4 to be used in cyclic ion exchange operations, while the NP-based model 

proved to be reliable for process design and optimization. 
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V.2.6. Nomenclature 

 

A𝑧𝐴  Counter ion initially in solution (Cs+) 

A1, A2 Areas above breakthrough curves in Figure V.2.5 (h) 

AARD = 100

NDP
∑ |𝐶A,i,calc − 𝐶A,i,exp| 𝐶A,i,exp⁄NDP

𝑖=1 ,  Average absolute relative deviation (%) 

AES Atomic emission spectroscopy 

AR Area below regeneration curve in Figure V.2.5 (h) 

B𝑧𝐵 Counter ion initially in the exchanger (Na+) 

𝐶A Concentration of counter ion A in solution (mol m-3) 

𝐶A,0 Concentration of counter ion A in the feed (mol m-3) 

𝐶A,in  Initial concentration of counter ion A in solution (mol m-3) 

𝐶A,eq Concentration of counter ion A in solution in equilibrium with solid loading 

concentration, 𝑞A,eq (mol m-3) 

𝐶A,𝑅p
 Concentration of counter ion A in solution at the interface (mol m-3) 

𝑑p Equivalent particle diameter (m) 

𝐷i Nernst-Planck self-diffusion coefficient of counter ion 𝑖 in theexchanger (m2 

s-1) 

𝐷L Axial dispersion coefficient (m2 s-1) 

𝐷AB Interdiffusion coefficient of Nernst-Planck model (m2 s-1) 

𝐷m Diffusion coefficient of Cs+ in water (m2 s-1) 

ETS-4 Engelhard titanosilicate number 4  

Exp. 𝑛 Experiment number 𝑛 

𝑖 and 𝑗 Generic counter ions 

𝑘f Convective mass transfer coefficient (m s-1) 

𝐾L Langmuir parameter (m3 mol-1) 

𝑙 Column longitudinal coordinate (m) 

𝐿 Length of the fixed-bed (m) 

MTZ Mass transfer zone 

𝑁𝐴,𝑅p
 Net intraparticle flux of counter ion A at the interface (mol m-2 s-1) 

NDP Number of data points 

𝑁i Intraparticle flux of counter ion 𝑖 (mol m-2 s-1) 

NP Nernst-Planck 

Pe Peclet number 
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PXRD Powder X-ray diffraction 

𝑞max Langmuir parameter (mol kg-1) 

𝑞A,0 Solid loading in equilibrium with feed concentration, 𝐶A,0 

𝑞A,eq Solid loading in equilibrium with concentration of counter ion A in solution, 

𝐶A,eq (mol kg-1) 

𝑞i Molar concentration of counter ion 𝑖 in the particle (mol m-3) 

〈𝑞〉i Average concentration of counter ion 𝑖 in the particle (mol m-3) 

𝑄 Total amount of sorbed species per unit mass of exchanger (eq m-3) 

𝑟 Radial coordinate in the particle (m) 

Re Reynolds number 

RMSD Root mean square deviation (%) 

𝑅p Particle radius (m) 

Sc Schmidt number 

Sh Sherwood number 

𝑡 Time (h or s) 

𝑡st Stoichiometric time (h) 

𝑇 Absolute temperature (K) 

𝑢 Superficial velocity (m s-1) 

𝑉s Volume of exchanger (m3) 

𝑧i Electrochemical valence of counter ion 𝑖 

  

Greek letters 

  

∆dehyd𝐺 Molar Gibbs free energy of dehydration (kcal mol-1) 

𝜀 Bed void fraction 

  

Subscripts 

  

0 Feed condition 

A Counter ion initially present in the bulk solution (Cs+) 

B Counter ion initially present in the exchanger particle (Na+) 

calc Calculated 

eq Equilibrium 

exp Experimental 
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in Initial condition 

𝑛 Step 𝑛 in a loading-regeneration setup 
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VI.1. General conclusions 

 

1) Cs+ removal from aqueous solutions was carried out by ion exchange carrying out 

batch and fixed-bed experiments.  

 

Batch ion exchange 

The ion exchange of Cs+ from aqueous solutions was studied in batch room-temperature 

experiments, for equilibrium and kinetic measurements, using the luminescent 

microporous lanthanide silicates Eu-AV-20 [1] and Tb/Eu-AV-9 [2]. The main conclusions 

of these studies are: 

 

 The Langmuir and Langmuir-Freundlich equations provide a good representation 

of the equilibrium data, attaining average absolute relative deviations of 5.3% and 

13.1% for Cs+/(Na+,K+)/Eu-AV-20 and Cs+/K+/(Tb,Eu)-AV-9, respectively; 

 

 Tb/Eu-AV-9 is more advantageous than Eu-AV-20 for Cs+ removal, considering the 

time needed for reaching equilibrium. Although the experiments carried out with 

AV-9 solids have higher mass of exchange per cesium concentration than the Eu-

AV-20 experiments, the time to the uptake of cesium is significantly lower (2 hours 

vs. 80 hours). Regardless of the uptake time, the results indicated that Eu-AV-20 

and Tb/Eu-AV-9 used only 3.7% (0.093 eq·kg-1 in 2.550 eq·kg-1) and all the 

theoretical cation exchange capacity, respectively; 

 

 A kinetic model based on the Maxwell-Stefan equations was developed and 

adjusted to the cesium removal curves of both materials. For Eu-AV-20, the model 

achieved an average error of 19.0%, while the Tb/Eu-AV-9 kinetic curves were 

well-fitted, with an error of 8.4%; 

 

  The optimized Maxwell-Stefan diffusivities obtained for both solids are five to six 

orders of magnitude smaller than the Cs+ diffusion coefficient in aqueous solutions, 

consistent with their small micropores and similar microporosity; 

 

 Photoluminescence spectroscopy revealed that both materials may play an 

important role as qualitative or even quantitative Cs+ sensors. Our work using Eu-
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AV-20 as exchanger [1] has proved that the emission spectrum is modified upon 

cesium uptake as a consequence of changes in the local Eu3+ environment. In the 

case of Tb/Eu-AV-9, the average lifetimes corroborated the influence of Cs+ on the 

solids emission, namely, higher metal loads led to lower lifetimes. Much more 

important was the linear relationship found between the average lifetimes and Cs+ 

concentration in the solid. 

 

Fixed-bed ion exchange 

Fixed-bed cesium(I) ion exchange experiments were carried out using Eu-AV-20 [3] and 

the microporous titanosilicate ETS-4. The influence of the superficial velocity on the 

breakthrough curves behaviour was assessed. The influence of the mass of exchanger on 

the continuous Cs+ uptake by Eu-AV-20 was also discussed in detail, while for 

Cs+/Na+/ETS-4 loading-regeneration-loading assays were performed. The main 

conclusions are: 

 

 ETS-4 equilibrium data is well-fitted by the Langmuir isotherm with an average 

absolute relative deviation of 6.6%; 

 

 In both solids, the broadening of the breakthrough curves observed after 

decreasing the superficial velocity of the solution (in the absence of axial 

dispersion, confirmed from calculated axial Peclet number) disclosed film diffusion 

limitations.  

 

 All curves were modelled using a Nernst-Planck based model and takes into 

account the internal and external mass transfer limitations, which provided 

accurate results: average deviations of 6.5% (three curves; prediction) and 6.7% 

(one curve; correlation) for Eu-AV-20, and 9.6% (four curves; prediction) and 

18.7% (one curve; correlation) for ETS-4, respectively; 

 

 The measured Eu-AV-20 breakthrough curves were also modelled by simplified 

analytic models taken from the literature, such as Thomas, Bohart-Adams, Clark 

and Yoon-Nelson providing errors between 3.2 and 6.5%; 

 

 The optimized Nernst-Planck diffusivities of both solids are consistent with the 

relative sizes of the counter ions and the small micropores of the sorbents. The 
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same was observed in the modelling of the batch ion exchange using the Maxwell-

Stefan equations; 

 

 The good results obtained for ETS-4 in consecutive loading-regeneration-loading 

steps evidenced the ability of this material to be used in cyclic ion exchange 

operations; 

 

 Since the Eu-AV-20 photoluminescence varies upon Cs+ exchange, two different 

experiments were carried out in similar conditions, except for the time of operation 

(15 vs. 50 hours), in order to obtain Eu-AV-20 samples with different cesium 

loadings. The results (differences in the normalised emission spectra for the non-

degenerated 5D0
7F0 transitions) suggested that luminescence may be an easy 

and fast method to assess ion exchange phenomena in Cs+/(Na+,K+)/Eu-AV-20 

systems. 

 

2) The uptake of Cs+ and Na+ results in changes in the emission spectrum of Eu-AV-20, 

due to slight variations in the local environment of the Eu3+ emitter. In fact, when the solid 

was used in ion exchange experiments using only sodium or cesium in increasing 

concentrations, the Eu1/Eu2 intensity ratio of the non-degenerated 5D0
7F0 transition of 

the Eu septet increased. However when an equimolar solution of both cations was used, 

the Eu1/Eu2 ratio remained essentially the same. Thus, these results suggest that Eu-AV-

20 materials have potential for being used as luminescence sensors for Cs+ (and Na+) 

cations in aqueous solutions, even if further work is required. 

 

VI.2. Future work 

 

Although the realm of inorganic exchangers is well established, there is much room for 

growing. The quest for novel materials must endure, in order to enhance the selectivity 

and efficiency of the uptake of radioactive wastes, particularly Cs+, one of the main 

species of concern. Most existing solids have application limitations, mainly due to their 

low efficiency in certain conditions. In general, the common exchangers perform better at 

neutral pH and in the absence of competing cations. New materials should deal with the 

fact that radionuclides are present in a complex phase, where the solution pH and the salt 

content (typically from the sea water cooling system) have to be considered. In addition, 

the majority of the radioactive wastewaters present extreme conditions of pH (acidic or 
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alkaline) and contain large amounts of other elements, such as alkali, alkaline-earth 

metals, transition metals, lanthanides, and actinides, in variable concentrations that may 

participate in the exchange. The ion exchangers used must be resistant to chemical, 

thermal and, mainly, radiation attack. The latter deserves special attention since elevated 

doses of radiation may reduce the selectivity and/or capacity of the exchangers as 

consequence of total or partial collapse of the solid. In this context, and when this thesis 

comes to an end, there is much scope for the following studies. 

 

 Synthesis of new exchangers. Synthesising materials with transition metals or 

lanthanides other than those used so far may bring to light new molecular 

architectures with interesting properties, such as enhanced selectivity or capacity, 

by achieving the best compromise between the sorbed ion and the size of the 

micropores. 

 

 Influence of pellet and particle size. The preparation of pellets and nanoparticles 

with well-defined sizes and their use in batch and fixed-bed experiments should be 

addressed. Regardless of the anisotropy observed in the material’s microporosity, 

the size of the particles fundamentally affects the kinetics of the ion exchange 

process, since it determines the length of the internal diffusion path. In the case of 

nanoparticles, the increment of specific surface are is the dominant factor. 

 

 Effect of the pH, salt content and competing ions. The cesium exchange with Eu-

AV-20, Tb/Eu-AV-9 and ETS-4 should be accomplished in the presence of salts, 

acids and bases, in order to assess their selectivity towards cesium, and chemical 

resistance in extreme environments. In the case of acids, the ion exchange with H+ 

must be taken into account, while the material’s structural integrity may also be 

affected. The existence of divalent cations (e.g., Ca2+, Mg2+, Ba2+, Pb2+, Hg2+ and 

Cd2+) in solution is of particular concern, due to the well-recognized materials 

preference towards them. 

 

 Effect of temperature. Assays at several temperatures should be performed as this 

was not covered in this dissertation. 
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 Capability of undergoing ion exchange cycles. It is important to understand the 

ability of the prepared materials of undergoing sorption-desorption cycles without 

losing selectivity and capacity towards a specific cation. This study is fundamental 

from an industrial point-of-view where, typically, trim beds or parallel beds 

arrangements are implemented. 

 In this thesis ETS-4 revealed a considerable ability for being used in loading-

regeneration tests. Eu-AV-20 and, particularly, Tb/Eu-AV-9 due to its fast kinetics 

and cation exchange capacity, should be tested for the same purpose. 

 

 Equilibrium modelling. An accurate modelling of the equilibrium encompassing the 

determination of the activity coefficients of ions in the liquid and in the exchanger 

phases should be undertaken, as the deviations from ideality are important in 

electrolyte solutions. Accordingly, equilibrium may be rigorously described using 

mass action law expressed with activities, and the thermodynamic methods of 

Gains and Thomas [5] or Ioannidis et al., [6] should be adopted for fitting the 

equilibrium constants independently of the parameters of the activity coefficients 

model selected for the solid phase. The exchanger heterogeneity can also be 

taken into account by considering distinct active sites (co-ions) in the solid, which 

may be particularly important in the case of Eu-AV-20.  

 

 Online monitoring of the photoluminescence spectra. During this thesis, all the 

photoluminescence spectra were measured using the same amount of (parent or 

exchanged) sample in the form of pellets compressed at ca. 2 ton cm-2. In terms of 

batch experiments and since Tb/Eu-AV-9 possesses a fast cesium exchange 

kinetics [2], an experimental apparatus comprising a small reservoir under 

agitation, coupled to the Jobin Yvon-Spex spectrometer in order to record several 

photoluminescence spectra online, can be proposed. In turn, the fixed-bed 

experiments carried out with Eu-AV-20 [3] raised the possibility of online 

monitoring the ion exchange in a fixed-bed column using an optical fibre and a 

spectrometer. 
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