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Resumo Nesta tese, estudamos a evolução temporal de estados localizados da rede
de Lieb quando aplicamos um campo magnético perpendicular à rede que
aumenta em intensidade linearmente e lentamente. Começamos por estu-
dar a evolução temporal analiticamente, usando propriedades de simetria do
modelo de tight-binding da rede de Lieb. Esta análise revela a importância
do campo eléctrico gerado pelo campo magnético variável no tempo para
a evolução temporal. De seguida mostramos os resultados numéricos da
evolução temporal de estados inicialmente localizados. Nas simulações en-
contramos um comportamento em forma de escada na componente local-
izada do estado em evolução que só se manifesta quando o campo eléctrico
não é invariante por rotações à volta do centro da rede. Mostramos que
a evolução de estados inicialmente localizados da rede de Lieb pode ser
aproximada de forma muito precisa usando um sistema de três ńıveis que
se torna num sistema de precessão clássico quando as entradas da matriz
de evolução são todas reais.





Abstract We study the time evolution of localized states of the Lieb lattice when a
magnetic flux is applied perpendicularly to the lattice and increased slowly
and linearly in time. The time evolution is first studied analytically, making
use of several symmetry properties of the Lieb tight-binding model, show-
ing the importance of the electric field generated by the time dependent
magnetic field in the evolution. We present numerical simulation results of
the time evolution of initially localized states, which feature a characteristic
step pattern of the localized component when the electric field is not in-
variant under rotations around the center of the lattice. We show how the
evolution of Lieb localized states can be approximated very effectively using
a three level system that, for real matrix entries, is a classical precession
system.
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Chapter 1

Introduction

x
y

εk

Figure 1.1: Energy bands
of the Lieb lattice.

The Lieb (line centred square) lattice is a 2D decorated
lattice that features three energy bands in its tight-binding
model1 (Fig. 1.1), one of them flat (zero dispersion). The
flat band is a high degeneracy energy subspace composed of
localized states. Other 2D lattices also have flat bands, like
the kagomé (trihexagonal),2 Mielke (chequerboard),3 and
Tasaki4 lattices. There are methods of finding a localized
state of a lattice knowing a localized state of a different
lattice,5 and also of constructing lattices with flat bands
starting from chains with flat bands.6 An example of a chain
with flat band is the AB2 chain.7 Both the Lieb lattice and
the AB2 chain have their flat band in-between two itinerant
bands. In all the other lattices mentioned, the flat band is
a degenerate ground subspace. The flat band of the Lieb
lattice and the AB2 chain are retained when a magnetic

field perpendicular to the lattice or chain is applied, meaning localized states still exist
even under a magnetic field, which does not occur in the other mentioned lattices. The
common property of the Lieb lattice and the AB2 chain that distinguishes them from
the rest is that they are bipartite lattices. The bipartite lattice property is necessary for
the robustness of the flat-bands against external magnetic fields to occur, as discussed
in section 2.5.

The search for flat-band ferromagnetism has been the main motivation in the theo-
retical research of flat-band systems for some time,8,4, 9, 10 including the particular case
of the Lieb lattice.11,12 On the experimental side, azurite is a promising material in what
concerns the observation of flat-band physics since it can be approximately described
as an AB2 chain.13 The copper oxide planes of high temperature of cuprate supercon-
ductors such as La2−xSrxCuO4 and YBa2Cu3O7 have a structure resembling the Lieb
lattice.14,15 The use of quantum dot arrays with the desired geometry is one of the
proposed methods for building flat band systems.16 Recent experimental realizations of
flat-band systems include exciton-polariton condensates in a 2D kagomé lattice17 and in
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a 1D Lieb lattice.18 Also, localized states were realized in a photonic Lieb lattice formed
by an array of optical waveguides.19,20 The destructive interference characteristic of lo-
calized states allows for diffractionless localized conduction of light over long distances.
Systems of cold atoms trapped in optical Lieb lattices have been proposed as research
tools to study both flat band ferromagnetism,21,11 and the field of topological phases,22

and recent success has been reported in the realization of such a system.23

Motivation

Contrary to other decorated lattices, the flat band of the Lieb lattice is retained when a
magnetic field perpendicular to the lattice is applied, meaning localized states still exist
even under a magnetic field. To further test the robustness of the Lieb localized states
under magnetic fields, we enquired the following - does an electron in a localized state of
the Lieb lattice continue to be localized if we slowly increase an applied, perpendicular,
magnetic field? An answer can be achieved by numerical simulations of said system,
which were carried out. The simulations revealed a step-like pattern of the localized
component. This pattern incited further investigation and a three level toy model was
conceived that exhibited an identical evolution pattern. After this, a general and rigorous
analytical approach to the time evolution was deemed necessary and was developed. It
revealed the importance for the time evolution of the system symmetries and of the
electric field created by the time dependent magnetic field. The analytical results also
helped to more naturally deduce the three level approximation.

Outline

We start with a review of the tight-binding model of the Lieb lattice in chapter 2, with
an emphasis on the localized states and on the relevant symmetries. The time evolution
on the Lieb lattice through analytical means is addressed in chapter 3, making use of
the properties described in the previous chapter. In chapter 4, we present the simulation
results and analysis, where we calculate the localized and itinerant components of an
initially localized state over time as we slowly increase the magnetic field. In chapter 5
the three level model is introduced and we discuss its classical interpretation and how it
is able to reproduce the step-like pattern found in the simulations.
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Chapter 2

Lieb Lattice

In this chapter we start with a review of the tight-binding model of the Lieb lattice and
the states that form the Lieb flat band, first without and after with an external magnetic
field applied. We then analyse the ±E symmetry (or particle-hole symmetry), which is
a consequence of the Lieb lattice being bipartite, and also the point group invariances of
the eigenstates. We finish with the energy diagram as a function of the magnetic flux.

2.1 Tight-binding model

A B

C

Figure 2.1: 2× 2 Lieb lattice.
In darker grey, a unit cell. In
lighter grey, a plaquette.

The Lieb lattice is a decorated lattice that can be built
by the introduction of an atom (or ion) between nearest
neighbour atoms of a 2D square lattice (Fig. 2.1). This
gives rise to a lattice with two types of atoms: one has
four neighbours, which we will call a type A site, and
the other has two, a type BC. We can distinguish further
between atoms that have two horizontal neighbours, type
B, and two vertical, type C. The unit cell consists of three
atoms, an A, a B, and a C. We can also label the atoms by
their Cartesian coordinates, which will be a more useful
notation for some calculations. The size of the lattice is
given by the number of unit cells in each dimension, Lx
and Ly. More specifically, since we add incomplete unit
cells to complete the lattice, Li will give us the number
of plaquettes (a square with eight atoms and one hole in

the middle). This way the coordinates will range from −Li to Li, with the origin at the
center of the lattice. To have a more symmetrical lattice, we will use Lx = Ly = L.
Each atom is connected to its neighbours. In this picture, the lattice of atoms is an
undirected graph. We now consider the problem of adding an electron to the lattice. We
can associate to each site (atom) a state, |x, y〉. If the state of the electron is |Ψ〉 = |x, y〉
then the electron is located at that site. The electron state can, of course, spread over
several sites. Neighbouring atoms are connected, meaning the electron can jump from
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site to site through these connections. Let us denote the rate of transfer of wave function
amplitude from a site i to j (more simply, the hopping parameter) by hij . We use the
notation of h instead of the usual t to differentiate from time, although this is not very
important since we will soon remove this parameter. We will assume hij is equal for
all connections, hij = h. For example, the evolution over time of the wave function
amplitude Ψx,y at a B site will be,

i
dΨx,y

dt
= −hΨx−1,y − hΨx+1,y. (2.1)

where Ψx±1,y are the amplitudes at the neighbouring sites. We have analogous equations
for all sites. In Eq. 2.1, the hopping parameter can be absorbed into the time by t′ = −ht,
so the hopping parameter only sets a time scale in the evolution of a state. The time
evolution equation is

i
d |Ψ〉
dt

= Ĥ |Ψ〉 , (2.2)

so we can extract the (tight-binding) Hamiltonian from these equations:

Ĥ =

L∑
x=−L,2

L−1∑
y=−L

|x, y + 1〉 〈x, y|+H.c.+
L∑

y=−L,2

L−1∑
x=−L

|x+ 1, y〉 〈x, y|+H.c. . (2.3)

Here we have already removed the hopping parameter. The first sum in each term is
done with a step of two, indicated by (, 2), to skip the lines with holes. The first term
is a sum of upward and downward hopping terms, where the downward terms are the
Hermitic conjugate of the upward terms, while the second is a sum of horizontal hopping
terms. We can see again a relation with graphs, since Ĥ became equal to the adjacency
matrix of the lattice with our choices of parameters. In the presence of a potential energy
V (r, t), we would introduce that potential in the diagonal elements of the Hamiltonian,
known as the on-site potentials, 〈x, y| Ĥ |x, y〉 = V (x, y, t). Even if there is no potential,
the energies are always defined up to a constant of our choice, so we can add a constant
potential ε0 to the Hamiltonian.

Since we considered a state per atom of the lattice, our basis of states has size
(2L + 1)2. We simply assumed it is possible to build such a basis, but, to make sure
this model has physical significance, an important question to ask is, is there a basis of
orthonormal states where each state is heavily localized at an atom? The atomic orbitals
are localized at each atom, but they are not orthogonal to each other. The answer to the
question is, yes, there is, and the basis in question is the Wannier basis. The eigenstates
of the crystalline Hamiltonian will be Bloch states. We can transform the Bloch basis
by a Fourier transformation to obtain the Wannier basis. While the Bloch states span
the whole lattice, the Wannier states are fairly localized at specific atoms, and, in the
limit of h → 0 (isolated atoms), they become atomic orbitals. The Wannier basis is
localized and orthonormal, but there are infinite Wannier states for each atom while in
our model there is only one state per atom. Still, we can consider our electron has a
low enough energy so that only Bloch states composed of the lowest energy unoccupied
Wannier states are in reach. In this case, we can consider there is only one state per
site, with |x, y〉 being the lowest energy unoccupied Wannier state of the atom at (x, y).

4
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(a) One-plaquette localized state.
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(b) Zero energy itinerant state.

Figure 2.2: Zero energy eigenstates (not normalized) of the tight-binding Hamiltonian.

2.2 Zero energy eigenstates

The Lieb Hamiltonian, Eq. 2.7, has a degenerate flat band containing states that spread
over the whole lattice when written in their momentum form, but we can combine these
states to form localized states |L〉 (which are eigenstates of zero energy) that occupy
a small region of the lattice and continue to be eigenstates when we increase the size
of the lattice. The most compact form of a localized state occupies only one plaquette
(Fig.2.2a). This state has finite amplitude at B and C sites, being zero at A sites. The
electron is locked in a localized state by destructive interference with itself. If we write
the time evolution equation at a nearby A site,

i
dΨA

dt
= ΨB + ΨC = 1− 1 = 0. (2.4)

The same is true for any site. The whole state will not evolve over time: it is a zero energy
eigenstate. We can place a one-plaquette localized state in each of the L2 plaquettes.
The number of localized states is equal to the number of plaquettes, but neighbouring
one-plaquette localized states are not orthogonal, so they form a non-orthogonal sub-
basis. They do do not form a basis of the zero energy subspace because there is one zero
energy state that is not localized. This state spans all A sites (Fig. 2.2b) and nearby A
sites interfere destructively. We can not reduce the size of the state, neither would the
state stay contained if we increased the size of the lattice: the state would leak out by
the outer A sites, which is why localized states do not have component in A sites.

Important to note this basis of the zero energy subspace we just considered is just
a choice. Any other linearly independent combination would do. We will even see later
this is not the most convenient basis because of how the magnetic field reduces the
degeneracy of this subspace.
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2.3 Introduction of magnetic field

The Hamiltonian of a particle of mass m = 1 and charge q = 1 (even though we are
thinking of an electron) in the presence of a magnetic field B = ∇ × A with vector
potential A is

Ĥ =
1

2
(i∇+ A)2, (2.5)

assuming h̄ = 1. Whenever the particle travels along a line L, the electron suffers a
phase change given by

exp

(
i

∫
L
A · dr

)
, (2.6)

so the angle is given by the line integral of A along line L. This is called the Peierls
phase. It is taken into account by multiplying the hopping parameters by this term,
where the path of integration will be the straight lines that connect neighbours. This is
called the Peierls substitution.24 Our tight-binding Hamiltonian becomes

Ĥ =
L∑

x=−L,2

L−1∑
y=−L

exp

(
i

∫ x,y+1

x,y
A · dr

)
|x, y + 1〉 〈x, y|+H.c.

+

L∑
y=−L,2

L−1∑
x=−L

exp

(
i

∫ x+1,y

x,y
A · dr

)
|x+ 1, y〉 〈x, y|+H.c. .

(2.7)

We could question our choice of path, since the electron can go from one atom to another
through an infinite number of paths. We could consider, for example, that it is easier
for the electron to go from one atom to another along a curved, arc-like path, since its
trajectories are naturally curved while moving in a magnetic field. The problem with
this is, if the electron were to travel slowly turning to one side when going from atom i
to j, then when it returned from j to i it would do so along a different, reflected path
and the phase in one direction would not be minus the phase of the inverse direction, as
required by the hermitian property of the Hamiltonian, because there will be a magnetic
flux inside the area limited by both curves. Choosing the same curved line for both
directions would not be right because of lack of symmetry, so the straight line is actually
the only possible choice.

To be completely precise, we would have to consider an integration over all possible
paths, and also remember that the electron is never perfectly localized at one point,
but that would diverge too much from the scope of this thesis. Suffice it to say, in this
model, the electron is tightly bound, not only to the atoms, but also in the paths it can
take from atom to atom. Of course, we can always perform a change of the lattice basis
by multiplying each state by a phase in such a way as to modify or even remove several
hopping phases. For example, the following transformation,

|x2, y2〉 → exp

(
−i
∫ x2,y2

x1,y1

A · dr
)
|x2, y2〉 , (2.8)

6



results in

exp

(
i

∫ x2,y2

x1,y1

A · dr
)
|x2, y2〉 〈x1, y1| → |x2, y2〉 〈x1, y1| . (2.9)

This does not mean we can remove all the phases entirely, removing the magnetic field.
We could only do so if there were no loops on our lattice. Since there are loops, then
there is also a magnetic flux inside those loops:∮

∂S
A · dr =

∫∫
S
B · dS. (2.10)

Since the right term is gauge invariant the left term will be too. We can attribute phases
to the hopping terms in many different ways, as long as Eq.2.10 is respected. However,
since we will increase the magnetic field over time, to remove phases we would need a
time dependent gauge transformation, making our basis of states time dependent. Since
it is easier to work with a time independent basis of states, we shall use Ĥ as in Eq. 2.7.

2.4 Localized states with magnetic flux

1

−1

1

−1

−1

1

−1

1

Φ

Φ

Φ

Φ

e2iΦ eiΦ

eiΦ e2iΦ

Figure 2.3: In the atoms: two
plaquette localized state. In
the plaquettes: flux in each
plaquette. In the arrows:
phase gained in a jump on
that direction.

When we add magnetic field, the one-plaquette localized
states are no longer eigenstates. To see this, consider
our gauge has only one or two jumps with phase per
plaquette (Fig. 2.3). Let us try to build a localized
state on the bottom-left plaquette of the figure. Since
we can define a state up to a global phase, we can set
a value of 1 at a given atom, for example, the right C
site. To have destructive interference, the bottom B site
must be −1. Continuing in this direction around the
loop, the left C site will be 1 and the top B −1, but
then, when we return to the initial atom, the flux phase
change in the last step will not allow us to properly close
the loop of destructive interference. The solution is to
continue to the right of the top B site and perform a loop
in the opposite direction around the top-right plaquette
and only then close in the initial atom. This way, the flux
phase of each plaquette will cancel. This diagonal state
is then localized for any value of flux. A one-plaquette

localized state can be interpreted as a standing wave in a ring. A two-plaquette localized
state can be interpreted as a standing wave in a larger ring that was twisted to form two
smaller rings.5

In a basis with only one or two jumps with phase per plaquette, the Hamiltonian
can be written with only jumps of phase Φ or multiples of it, which implies a periodicity
of Φ = 2πn of the Hamiltonian matrix, and consequently a periodicity of the energies.
Using a more general gauge, the energies will still have the same periodicity but the
Hamiltonian eigenbasis may not be periodic.
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2.5 Positive-negative energy symmetry

Without flux there are L2 localized states and one itinerant state in the zero energy
subspace (itinerant state can be defined simply as a non-localized state). When we
add flux, the degenerate subspaces usually break into individual states that differentiate
in energy. This will not happen to the flat band of the Lieb lattice and the bipartite
property of the Lieb lattice can be used to justify this.

Consider the change of lattice basis {|BC〉 → − |BC〉}, meaning a change of sign at
all the BC sites. Since the Hamiltonian consists of only jumps between A and BC sites,
the change of basis will change the sign of all jumps, {Ĥ → −Ĥ}. We may define an
operator for this transformation through its application in the lattice states,

T̂BC |x, y〉 = (−1)x+y |x, y〉 . (2.11)

Consider two states related by the BC to minus BC transformation:

|E+〉 =
1√
2

(|A〉+ |BC〉),

|E−〉 =
1√
2

(|A〉 − |BC〉),
(2.12)

where we separated the component of each state in the A and BC sub-lattices. Consider
|E+〉 is an eigenstate with energy E+:

Ĥ |E+〉 = E+ |E+〉 . (2.13)

Using the BC to minus BC transformation:

T̂BCĤT̂BC T̂BC |E+〉 = E+T̂BC |E+〉 ,
−Ĥ |E−〉 = E+ |E−〉 ,

(2.14)

we conclude |E−〉 is also an eigenstate with energy E− = −E+. For every non-zero
energy state there is a state of opposite energy given by a BC to minus BC (or A to
minus A) transformation of the other. We can derive from here another property:

〈E+|E+〉 = 1, 〈E+|E−〉 = 0,

=⇒ 〈A|A〉 = 〈BC|BC〉 = 1.
(2.15)

This means the itinerant state of the flat band that spans all A sites (Fig. 2.2b) does
not leave the flat band alone, it must mix with a localized state to form two opposite
energy states. Also, since that state is the only one of the flat band with a component
in A sites, only two states may leave the flat band. The combination of the two factors,
localized states not having component in A sites, and non-zero energy states requiring a
component in A sites, do not allow the flat band to break apart with the magnetic field,
apart from a single localized state and the itinerant state that are lost.
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(a) S−. (b) S+.

Figure 2.4: S states of a 3× 3 lattice at Φ = 0. The value of the wave function at each
site is represented as a vector in the complex plane.

We show in section 2.7 that two states leave the flat band when we add magnetic
flux. We shall refer to these two states as S states (|S±〉). The S states at zero flux are
shown in Fig. 2.4. The value of the wave function at a site is represented as a vector in
the complex plane. The S states lie in each vertex of the itinerant bands, at k = (π, π).
They are a combination of the (π, π) itinerant state and the (π, π) localized state. When
we introduce flux a gap appears between itinerant bands. A kx (ky) of π means a phase
change of π from a unit cell to the next in the x (y) direction, or, equivalently, a π/2
phase change from site to site, as seen in the figure. The A sites are all occupied with
the same probability, while BC occupation increases as we move away from the center of
the lattice, so the S states could be considered edge states, or at least their components
in the BC sub-lattice could be. This is no longer true for larger values of flux.

2.5.1 Eigenstates of the squared Hamiltonian

As a side note from the main focus of this thesis, the bipartite property of the lattice has
an interesting consequence on Ĥ2. Consider a state of energy E, |E〉 = (|A〉+|BC〉)/

√
2.

We may write the eigenvalue equation as

(Ĥ |A〉+ Ĥ |BC〉)/
√

2 = (E |A〉+ E |BC〉)/
√

2. (2.16)

Since Ĥ only connects A to BC sites, Ĥ |A〉 (Ĥ |BC〉) is a state in the BC (A) sub-
lattice, so we may separate 2.16 in to two equations:

Ĥ |A〉 = E |BC〉 ,
Ĥ |BC〉 = E |A〉 .

(2.17)

From here we can deduce that, if |Ψ〉 is an eigenstate of zero energy with components in
both sub-lattices, then |A〉 and |BC〉 are also zero energy eigenstates. We conclude that
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Figure 2.5: (a) 2× 2 BC Lieb sub-lattice. (b) BC sub-lattice with straight connections.
It is a Mielke lattice.

we may separate the zero energy subspace into two group of states, each belonging to
only one of the sub-lattices. By multiplying by Ĥ we may decouple the equations into

Ĥ2 |A〉 = E2 |A〉 ,
Ĥ2 |BC〉 = E2 |BC〉 ,

(2.18)

so |A〉 and |BC〉 are eigenstates of Ĥ2, which is still the Hamiltonian of a tight-binding
system. More specifically, Ĥ2 contains the Hamiltonians of two independent tight-
binding systems with hopping constants h2. Since Ĥ has only nearest neighbour hop-
pings, Ĥ2 will have only second to nearest neighbours jumps, but, with only second
jumps, from an A site we jump to an A site, and from a BC we jump to a BC, so both
sub-lattices, A and BC, are decoupled, just like in the equations 2.18. Since with two
consecutive jumps we can also jump to a neighbour and then return to the original site,
an on-site potential also appears, of value nh2, where n is the number of neighbours of
each site, so we have 4h2 in A sites and 2h2 in BC sites.

We may separate (block diagonalize) Ĥ2 in to two new Hamiltonians, each pertaining
to a new lattice. The lattice of A sites is a regular square lattice. The lattice of BC
sites is of the Mielke-type3 (Fig. 2.5a). In the Mielke-type lattice, jumps from B to B
and C to C are performed in a straight line, while B to C jumps go through the A site
that connected them. For a constant flux we may change the shape of the connections
to fit the usual picture of the Mielke lattice (Fig. 2.5b), as long as we do not change
the flux in each plaquette. The flux in plaquettes with the + connections is always zero.
This was needed to keep the flat band flat with the introduction of flux, since the usual
Mielke lattice does not have a flat band with flux.

In short, we can say of a Lieb eigenstate |E〉 that if E = 0 then the state is either
a zero energy eigenstate of the A sub-lattice or of the BC sub-lattice. If E 6= 0, then

10



|E〉 = (|A〉 + |BC〉)/
√

2, where |A〉 (|BC〉) is an eigenstate of the A (BC) sub-lattice
of energy E2. The A sub-lattice is a regular square lattice with ε0 = 4h2 and the BC
sub-lattice is a Mielke lattice with ε0 = 2h2 and no flux in plaquettes with + connections.

This is the perspective of deconstruction of the Lieb lattice. The inverse perspec-
tive, construction of the Lieb lattice from the combination of both lattices, is also true.
Consider a square lattice with ε0 = 4h2, where h2 is the hopping constant, and a Mielke
lattice with ε0 = 2h2 (with flux only in the empty plaquettes), both with the same size.
Both lattices have an itinerant band. The on-site potentials will equalize the energy
dispersion relations of both bands. At zero flux, the energies are

ESM = 4h2 + 2h2[cos(kx) + cos(ky)]

= 4h2[cos(kx/2)2 + cos(ky/2)2].
(2.19)

Each pair of same energy states will combine to create the Lieb eigenstates:

|E±〉 = (|ESM 〉S ± e
iθ |ESM 〉M )/

√
2, (2.20)

of energies E± = ±
√
ESM , for some θ. The zero energy subspace will be the reunion

of the subspaces of both lattices. The Mielke-type lattice has a zero energy band of
localized states that the Lieb lattice inherits directly.

2.6 Rotation and reflection invariance of the eigenstates

Our physical system consists of a square-like lattice in a uniform perpendicular magnetic
field. The point group symmetries of this system apply directly to the probability density
of the eigenstates. The eigenstates themselves will only be invariant under the symmetry
operations if the vector potential also is. The symmetry of the system is represented
by the C4 cyclic group. It is a rotational symmetry around an axis in the middle of
the lattice, |Ψx,y|2 = |Ψ−y,x|2 = |Ψ−x,−y|2 = |Ψy,−x|2, so the wave function at two
sites π/2 one from the other will only differ from a phase, Ψ−y,x = eiθΨx,y. If we
choose a gauge that is also rotationally symmetric, A ∝ (−y, x), then all four π/2 jumps
are equivalent, so the phase gained will be the same for all jumps. Jumping π/2 four
times around the lattice, we must return to the same wave function value, meaning
e4iθ = 1↔ eiθ = u4 = 1,−1, i,−i. The exception to the rule are the localized states due
to the fact that they are part of a degenerate subspace, but there is a basis of states of
the flat band where all the states are invariant up to a phase under a C4 rotation. States
with u4 = ±1 will be equal in opposite sites of the lattice, while states with u4 = ±i will
have opposite signs, so we may call the first ones even and the latter ones odd.

We may express the rotational symmetries analytically using a rotation operator.
Consider the +π/2 rotation operator, R̂π/2 |x, y〉 = |−y, x〉 and the eigenstate |E〉. Then

Ĥ(Φ) |E(Φ)〉 = E |E(Φ)〉 ,
R̂π

2
Ĥ(Φ)R̂−π

2
R̂π

2
|E(Φ)〉 = ER̂π

2
|E(Φ)〉 ,

Ĥ(Φ)R̂π
2
|E(Φ)〉 = ER̂π

2
|E(Φ)〉 ,

(2.21)
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E

Φ

R̂σ|E1〉|E1〉

R̂σ|E2〉|E2〉

Figure 2.6: Energies of, on
top, a σ invariant state at
Φ = 0 and, below, a pair of
states related by reflection.

so R̂π/2 |E〉 is also an eigenstate of energy E. If the

eigenspace of energy E has only one state, then R̂π/2 |E〉
must give us |E〉, apart from a phase. If the eigenspace
has more than one state, then we may obtain one of the
other states of the eigenspace. For example, we can see
in Fig. 2.4 that the S states have u4 = −1 on a 3 × 3
lattice. It is easy to check that if a state has a π/2
phase difference between nearest neighbours then it is
even, with u4 = (−1)L.

At Φ = 0, the symmetry of the system is C4v,
which incorporates the reflections σ on the x, y axes
and on the diagonals. For non-zero flux the reflections
are not proper transformations. In a symmetric gauge,
A ∝ (−y, x), a reflection will change the sign of A, or
equivalently, Φ→ −Φ. Using a reflection operator R̂σ,

R̂σĤ(Φ)R̂σR̂σ |E(Φ)〉 = ER̂σ |E(Φ)〉 ,
= Ĥ(−Φ)R̂σ |E(Φ)〉 = ER̂σ |E(Φ)〉 ,

(2.22)

so R̂σ |E(Φ)〉 is an eigenstate of the lattice with flux −Φ. For Φ = 0 there is a basis where
all states are invariant under C4v operations, but the basis with degeneracy broken by
the flux {|E(Φ)〉},Φ → 0 will not be that basis. Although the states are C4 invariant
for any flux, only some will be σ invariant at zero flux. For a state |E(Φ)〉 where
R̂σ |E(0)〉 = uσ |E(0)〉, the changes of flux +∆Φ and −∆Φ starting from Φ = 0 are
equivalent, which means E(Φ) is even. If the state is not σ invariant, the energies of the
state and its reflection are reflections on Φ = 0 one of the other (Fig. 2.6).

Some eigenstates will be C4v invariant at Φ = 0, meaning E−x,y = uσEx,y (and
others), and E−y,x = u4Ex,y. If we choose a diagonal site, where x = y, from the
comparison of both equations we will conclude that u4 = uσ, so a state that is σ invariant
is even, unless the state is zero at all the diagonal sites, which are A sites, so the localized
states do not have to follow this relation. It has been found numerically that all the even
itinerant states are σ invariant at Φ = 0 and all the odd ones are not, except for the
two S states, which are even but not σ invariant. The S states are in a unique position
in that they combine two symmetries already discussed: the ±E symmetry and the ±Φ
symmetry. Using the reflection relation between both S states and separating it in an
equation for each sub-lattice,

R̂σ |S+(Φ)〉 = u |S−(−Φ)〉 , (2.23)

R̂σ(|A(Φ)〉+ |BC(Φ)〉) = u(|A(−Φ)〉 − |BC(−Φ)〉), (2.24)

R̂σ |A(Φ)〉 = u |A(−Φ)〉 , (2.25)

R̂σ |BC(Φ)〉 = −u |BC(−Φ)〉 . (2.26)

12



1

−1−1
...

R̂π/2

R̂σ

uσ=−u4

Figure 2.7: Invari-
ance relation of lo-
calized states.

we find out each sub-lattice state will be σ invariant at Φ = 0,
with opposite invariance phases ±u. It is possible to determine u.
Considering the A state (Fig. 2.2b) in an L×L lattice, it is easy to
check that the reflection phase of the A state is uσ = u = (−1)L, and
so for the BC state we have uσ = −u = (−1)L+1. As a reminder,
the rotation phase of the S states, and therefore of both sub-lattice
states, is u4 = (−1)L.

At Φ = 0, there is a basis of states of the localized subspace
where all states are C4v invariant. The rotation and reflection con-
stants u4 and uσ of each state will be related. Consider the A site
at a corner of a localized state, who connects a B to a C site (Fig.
2.7). If the state is 1 at the B site, then, being at the corner, it must
be −1 at C. Applying both symmetry operations to the next corner
we find that uσ = −u4. One of the consequences of this is that the
base with both symmetries well defined has no states with u4 = ±i.
The BC state of the S states is also a localized state at Φ = 0 and
follows the same relation uσ = −u4, as we can check above.

2.7 Energy diagram with magnetic flux

In Fig. 2.8a we have the energies of an 8 × 8 (L = 8) Lieb lattice as a function of the
magnetic flux. Up to now we thought of the flat band mainly in terms of its zero flux
characteristics: L2 localized states and one itinerant state. Since from now on we will
always consider the possibility of flux being present, zero flux becomes only a particular
case in a more general situation. It will make more sense to divide the eigenstates in
three groups: the flat band, consisting of the L2−1 localized states; two S states, whose
energies cross the flat band at Φ = 2πn, the crossing points; the itinerant bands, one
upper band, and a lower band symmetrical to the upper band.

In contrast with other decorated lattices, the Lieb lattice is different in that there
is still a flat band when we apply a magnetic field. The energies of each itinerant band
intertwine in a fractal-like pattern called Hofstadter’s butterfly.25 All states remain in
their bands, upper, lower, or flat, except for the two S states, not being possible to assign
them a band. As we increase the flux, the S states cross the flat band, intertwine with
states in one itinerant band, then cross again to intertwine with the other band in a
symmetrical way (Fig. 2.8b).

In square Lieb lattices, the highest and lowest energy parts of the itinerant bands
separate from the bulk of states in sub-bands of four states (Fig. 2.8c), one of each
type of C4 invariance ±1,±i. The larger the lattice, the more four-state sub-bands there
are. The four states seem entwined like threads in rope. The sub-bands of exception
are the closest to the flat band in each itinerant band: each contains three states that
never leave their respective itinerant bands, but both exchange the two S states at each
crossing point.
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Figure 2.8: (a) Energy flux diagram of an 8×8 Lieb lattice. The zero energy subspace is
degenerate. Note the periodic energy crossings at Φ = 2πn. (b) Close-up of the region
where the S levels cross the flat band. (c) Itinerant band four-state sub-band structure.
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2.7.1 Numerical ordering of eigenstates

Fig. 2.8 was obtained by numerically diagonalizing the Hamiltonian for many values
of flux using MATLAB.26 It is noticeable by the color of the lines in the figures that
the energies are ordered. For each flux the numerical method gives us a list of energies
and states, but we do not know how they are related with the energies and states
of neighbouring fluxes. It is expected that the energy functions Ei(Φ) (and the states
|Ei(Φ)〉) are continuous and differentiable in Φ, so we may use this to order the numerical
data. For example, consider two sets of states {|Ei(Φ)〉} and {|Ej(Φ + dΦ)〉}. We may
order the second set using the products |〈Ei(Φ)|Ej(Φ + dΦ)〉|2: for each state i, the
state j that gives the maximum value of the dot product will be the matching state.
In practice, this method sometimes failed at points where energies met, so higher order
methods were used to improve precision. The ordering is needed to calculate numerically
the derivative with respect to the flux of a state or of the energies, for example.

Another thing to note is the phase coherence of the states obtained numerically. The
diagonalization method may give us a list of (assuming ordered) states {|Ei(Φn)〉} with
random phases multiplied to each state and at each flux due to the gauge freedom. To
guarantee phase coherence we may divide each state (i, n) by their phase at a site |x, y〉,
so that all states have the same phase, zero, at the same lattice site.
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Chapter 3

Time evolution in the Lieb lattice

In this chapter, we study the importance of the choice of vector potential in time depen-
dent systems, present a general time evolution formalism and, one by one, we introduce
properties of the Lieb lattice into the equations to obtain several properties of the time
evolution.

3.1 Vector Potential

The choice of vector potential A is never unique: for our case of B = (0, 0, B(t)), the
most general vector potential is

A = B(t)(−ay, (1− a)x) +∇f(r, t). (3.1)

We omit the third dimension since it is not relevant to our 2D lattice. If there is an
electric potential, we may absorb it into A such that the vector potential will give us
the full electric field E = −∂A/∂t. The electric potential will be related with f . For
any a and any function f , the magnetic field is the same, but the electric field is not:

E = −∂B
∂t

(−ay, (1− a)x)−∇∂f
∂t
, (3.2)

which means our choice of a and f will depend on the electric field, which in turn depends
on the geometry of the source of magnetic field. Let us consider our source is an infinite
solenoid, centred at r0 = (x0, y0), with the lattice inside it, at (0, 0). Since there is a
rotational symmetry around r0, A is invariant under rotations around r0:

A =
B(t)

2
(−(y − y0), x− x0) +∇f(r, t), (3.3)

where r is the distance to the axis of the solenoid. Applying Gauss’s law to determine
f we obtain ∇f(r, t) = 0, so we end up with

A =
B(t)

2
[(−y, x) + (y0,−x0)], (3.4)

E =
1

2

∂B

∂t
[(y,−x) + (−y0, x0)]. (3.5)
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Both fields A and E are circular and invariant under rotations around (x0, y0). Both
fields can also be divided into a circular component invariant under rotation around the
center of the lattice (0, 0), together with a uniform field pointing towards ±(−y0, x0),
so the two following physical situations seem related: (a) with the solenoid centred at
(x0, y0), we change B over time, or (b) with the solenoid centred at (0,0), we change
B while also applying a uniform electric field in the (−y0, x0) direction. In practice, we
will simulate the situation (a), but the results are still applicable to cover situation (b).

3.1.1 Length and velocity gauges

The Schrödinger equation of a particle using atomic units in a uniform electric field E(t)
is

i
∂Ψ

∂t
=

(
−∇

2

2
− r ·E(t)

)
Ψ(r, t). (3.6)

This is called the Schrödinger equation in the length gauge.27 Just like in the previous
section, we should be able to absorb the electric potential −r·E(t) into a vector potential
by a gauge transformation. That gauge transformation is

Ψ→ exp

(
ir ·

∫ t

0
Edt′

)
Ψ. (3.7)

Substituting in 3.6 we obtain the Schrödinger equation in the velocity gauge,

i
∂Ψ

∂t
=

1

2

(
i∇−

∫ t

0
Edt′

)2

Ψ(r, t), (3.8)

where we may define A = −
∫ t

0 Edt′ so that E = −∂A/∂t. The time evolution of a
state is equal in both gauges, apart from a gauge transformation. More importantly,
the gauge transformation will not alter inner products, so the projection of the state
in the localized subspace over time will be the same in both gauges and our results
will be general to both the (a) and (b) situations in section 3.1. Note, however, that
the eigenstates of the Hamiltonian in each gauge are different. For example, while the
localized states form a degenerate zero energy subspace of Ĥ for the velocity gauge, the
electric potential of the length gauge will break the degeneracy of the flat band, so to
study the evolution of the localized states it is better to use the gauge where they are
eigenstates, the velocity gauge.

3.1.2 Final fields

To finalize the discussion regarding the fields, we still need to specify the time dependence
of the magnetic field. More specifically, we are interested in the magnetic flux Φ(t) =
B(t) × (Area of plaquette) = 4B(t). We shall consider the most simple case, a linear
dependence with time, Φ(t) = ωt. We choose ω as our constant because in our system
of units the flux is an angle, so ω is an angular frequency. The vector potential becomes

A =
ωt

8
(−(y − y0), x− x0) =

ωt

8
(−y, x)−E0t, (3.9)
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where E0 = ω(−y0, x0)/8 = r0ω(cosα, sinα)/8, r0 =
√
x2

0 + y2
0 is a uniform electric

field. ω controls the intensity of both components of electric field, although the uniform
component has an additional degree of freedom for its intensity, r0.

What appears in the Hamiltonian are path integrals of the fields and not the fields
directly (Eq. 2.7). The Peierls angle on a jump from (x, y) to (x+ ∆x, y + ∆y) is∫ x+∆x,y+∆y

x,y
A · dr =

ωt

8
(−(y − y0)∆x+ (x− x0)∆y) . (3.10)

For nearest neighbour jumps we have (∆x,∆y) = (±1, 0) or (0,±1).

3.2 Evolution in the Hamiltonian eigenspace

The quantity we are interested in is |Ψ0(t)|2 =
∑

i|〈Ψ(t)|Li(t)〉|2, where we sum over all
localized eigenstates of a time dependent Hamiltonian. It will be useful to use as basis
of states at time t the eigenstates of Ĥ(t). Let us consider a quantum system with a
time dependent, discrete, Hamiltonian,

i
d |Ψ〉
dt

= Ĥ(t) |Ψ〉 . (3.11)

We may write this equation in a time independent basis of states, {a},

i
dΨa

dt
= Ha(t)Ψa. (3.12)

where Ψa is the column vector of Ψ in the basis {a}. This basis may be, for example, the
basis of lattice sites |x, y〉. Consider now the basis of eigenstates of Ĥ, {Φ}. We may go
from Φ to a using the basis change matrix UΦ→a(t) ≡ U , Ψa = UΦ→aΨΦ. Differentiating
this equation,

dΨa

dt
=
dU

dt
ΨΦ + U

dΨΦ

dt
, (3.13)

and substituting in 3.12, using also Ha = UHΦU
† and

U †U = I ⇒ dU

dt
= −U dU

†

dt
U, (3.14)

we obtain
dΨΦ

dt
= (−iHΦ(t) +D)ΨΦ, (3.15)

where we defined

Dij ≡
(
dU †

dt
U

)
ij

=

(
d 〈Ei|
dt

)
|Ej〉 , (3.16)

with |Ei(t)〉 being the eigenstate i of Ĥ(t). Since the basis is orthonormal, 〈Ei|Ej〉 = δij ,

d 〈Ei|
dt
|Ej〉 = −〈Ei|

d |Ej〉
dt

= −
(
d 〈Ej |
dt
|Ei〉

)∗
, (3.17)
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so D is an anti-hermitian matrix just like −iHΦ, and it is independent of the basis a.
HΦ is the diagonalized Hamiltonian and accounts for the evolution due to the (time
dependent) energies. If D were zero, the time dependence would be of the usual form
exp(−i

∫ t
0 E(t′)dt′). D accounts for the fact that the eigenspace basis is changing with

time. If we were working on a real and not complex space, the change of the basis over
time could be expressed with a rotation matrix and D would be a real, anti-symmetric
matrix. Let us say that D is a diagonal matrix. Then the solution of 3.15 is

Ψi(t) = exp

[
−i
∫ t

0

(
Ei(t

′) + i 〈E′i|Ei〉 (t′)
)
dt′
]

Ψi(0), (3.18)

where we wrote 〈E′i| ≡ d 〈Ei| /dt. The diagonal elements of D, which are imaginary if the
states norm does not change over time, give rise to the second integral which is known
as the Berry phase.28 The Berry phase depends on our choice of basis. For example, we
may remove the diagonal elements by a basis transformation. If 〈E′i|Ei〉 = ifi(t), with
fi(t) a real function, the transformation

|Ei(t)〉 → exp(i

∫ t

0
fi(t
′)dt′) |Ei(t)〉 (3.19)

will make Dii = 0. What is invariant is the closed loop Berry phase (we could call it
a Berry flux, analogous to the vector potential), meaning the following: let us say we
choose the basis where Dii = 0, effectively absorbing the Berry phase into the states. If,
in our time evolution, at t = t2 we return to a basis of states that we have already been
at, at t = t1, there may be a relative phase between each pair of states, 〈Ei(t1)|Ei(t2)〉 =
eiθij . The phases are independent of our choice of basis, only depending on the path
of Hamiltonian parameters we took from t1 to t2. The path of parameter we chose is
Φ = wt and we might return periodically to the same eigenspace. Still, the closed loop
Berry phase, even if it is not zero, should not be important for this work.

The off-diagonal elements of D can be calculated the following way: since |E〉 are
eigenstates of Ĥ, 〈Ei| Ĥ = Ei 〈Ei|. Differentiating, we get

〈E′i| Ĥ + 〈Ei| Ĥ ′ = E′i 〈Ei|+ Ei 〈E′i| , (3.20)

where Ĥ ′ = dĤ/dt. The projection in |Ej〉 gives us,

〈Ei| Ĥ ′ |Ej〉 = E′iδij + (Ei − Ej) 〈E′i|Ej〉 . (3.21)

If Ei 6= Ej , we may calculate Dij from 〈Ei| Ĥ ′ |Ej〉 /(Ei − Ej). If the energies cross at
a point, we will have a 0/0 indetermination, but there will be continuity and differen-
tiability in all functions, so we may take the limit ∆E → 0. If both states belong to
the same degenerate subspace, like the localized states, we will have to calculate 〈E′i|Ej〉
directly, which was expected since the rotation inside the subspace will depend on our
choice of basis for that subspace.
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3.2.1 Rotational symmetry in the eigenstate transitions

Consider two eigenstates |Ψ〉 and |Γ〉 of energies EΨ 6= EΓ. The element of transition
Dij will be proportional to 〈Ψ| Ĥ ′ |Γ〉, where the time derivative of Ĥ (Eq. 2.7) is

Ĥ ′ =
L∑

x=−L,2

L−1∑
y=−L

(
−i
∫ x,y+1

x,y
E · dr

)
exp

(
i

∫ x,y+1

x,y
A · dr

)
|x, y + 1〉 〈x, y|+H.c.

+

L∑
y=−L,2

L−1∑
x=−L

(
−i
∫ x+1,y

x,y
E · dr

)
exp

(
i

∫ x+1,y

x,y
A · dr

)
|x+ 1, y〉 〈x, y|+H.c. .

(3.22)

We performed the derivative only on the matrix elements since the lattice states are
time independent. Notice that we can change the vector potential through a time de-
pendent gauge transformation of the lattice states, but if we did so before performing the
derivative, we would have to differentiate the lattice states too. Simply put, the electric
field integral term is not altered through a gauge transformation. From Eq.3.22 we can
interpret that the electric field is the sole responsible for transitions between levels of
different energies. The matrix element of Ĥ ′ is given by

i 〈Ψ| Ĥ ′ |Γ〉 =

L∑
x=−L,2

L−1∑
y=−L

∫ x,y+1

x,y
E · dr exp

(
i

∫ x,y+1

x,y
A · dr

)
Ψ∗x,y+1Γx,y + (y ↔ y + 1)

+
L∑

y=−L,2

L−1∑
x=−L

∫ x+1,y

x,y
E · dr exp

(
i

∫ x+1,y

x,y
A · dr

)
Ψ∗x+1,yΓx,y + (x↔ x+ 1).

(3.23)

After performing the derivative, the gauge freedom becomes very useful. It will be
convenient to use the gauge with the most symmetry possible, A ∝ (−y, x). In this
gauge, the states Ψ and Γ will be invariant under the C4 rotations, with invariance phases
u4 (section 2.6). Let us express their invariance as Ψ−y,x = iaΨx,y, Γ−y,x = ibΓx,y, with
a, b = 0, . . . , 3. From this we get Ψ∗x+1,yΓx,y = ia−bΨ∗−y,x+1Γ−y,x. The gauge is also

invariant under rotations, so we have
∫ x+1,y
x,y A · dr =

∫ −y,x+1
−y,x A · dr. Using this in the

second term we get

i 〈Ψ| Ĥ ′ |Γ〉 =
L∑

x=−L,2

L−1∑
y=−L

∫ x,y+1

x,y
E · dr exp

(
i

∫ x,y+1

x,y
A · dr

)
Ψ∗x,y+1Γx,y + (y ↔ y + 1)

+
L∑

y=−L,2

L−1∑
x=−L

ia−b
∫ x+1,y

x,y
E · dr exp

(
i

∫ −y,x+1

−y,x
A · dr

)
Ψ∗−y,x+1Γ−y,x + (x↔ x+ 1).

(3.24)
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Changing the summation indices in the lower sums by x → y, y → −x, both terms will
become equal except on the E integral:

i 〈Ψ| Ĥ ′ |Γ〉 =

L∑
x=−L,2

L−1∑
y=−L

(∫ x,y+1

x,y
E · dr + ia−b

∫ y+1,−x

y,−x
E · dr

)

exp

(
i

∫ x,y+1

x,y
A · dr

)
Ψ∗x,y+1Γx,y + (y ↔ y + 1).

(3.25)

Let us divide the summation in to two intervals of y, and write down the downwards
jump terms Ψ∗x,yΓx,y+1 instead of the upwards in the second term,

i 〈Ψ| Ĥ ′ |Γ〉 =
L∑

x=−L,2

L−1∑
y=0

(∫ x,y+1

x,y
E · dr + ia−b

∫ y+1,−x

y,−x
E · dr

)

exp

(
i

∫ x,y+1

x,y
A · dr

)
Ψ∗x,y+1Γx,y + (y ↔ y + 1)

+
L∑

x=−L,2

−1∑
y=−L

(∫ x,y

x,y+1
E · dr + ia−b

∫ y,−x

y+1,−x
E · dr

)

exp

(
i

∫ x,y

x,y+1
A · dr

)
Ψ∗x,yΓx,y+1 + (y ↔ y + 1).

(3.26)

Using the change of indices y → −(y + 1), x→ −x in the second term,

i 〈Ψ| Ĥ ′ |Γ〉 =

L∑
x=−L,2

L−1∑
y=0

(∫ x,y+1

x,y
E · dr + ia−b

∫ y+1,−x

y,−x
E · dr

)

exp

(
i

∫ x,y+1

x,y
A · dr

)
Ψ∗x,y+1Γx,y + (y ↔ y + 1)

+

L∑
x=−L,2

L−1∑
y=0

(∫ −x,−(y+1)

−x,−y
E · dr + ia−b

∫ −(y+1),x

−y,x
E · dr

)

exp

(
i

∫ −x,−(y+1)

−x,−y
A · dr

)
Ψ∗−x,−(y+1)Γ−x,−y + (y ↔ y + 1).

(3.27)

Again by the rotational invariance we have Ψ∗−x,−(y+1)Γ−x,−y = i2(a−b)Ψ∗x,y+1Γx,y, the

A integrals are equal and the terms will merge, so i 〈Ψ| Ĥ ′ |Γ〉 is

L∑
x=−L,2

L−1∑
y=0

(∫ x,y+1

x,y
E · dr + ia−b

∫ y+1,−x

y,−x
E · dr + i2(a−b)

∫ −x,−(y+1)

−x,−y
E · dr

+i3(a−b)
∫ −(y+1),x

−y,x
E · dr

)
exp

(
i

∫ x,y+1

x,y
A · dr

)
Ψ∗x,y+1Γx,y + (y ↔ y + 1).

(3.28)
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The D matrix element between states Ψ,Γ with C4 rotation constants ia, ib, respectively
can then be written as

〈Ψ′|Γ〉 =
1

i(EΨ − EΓ)

L∑
x=−L,2

L−1∑
y=0

P4(E) exp

(
i

∫ x,y+1

x,y
A · dr

)
Ψ∗x,y+1Γx,y + (y ↔ y + 1),

(3.29)
where we defined

P4(E) =

3∑
n=0

in(a−b)
∫ x,y+1

x,y
(R̂nπ

2
E) · dr, (3.30)

where the rotation operator, since it is being applied to a vector field and not a scalar
field like the wave function, rotates both the electric field vectors and the points of
application. It is easy to see now that the transition terms of an arbitrary lattice with
CN symmetry can be written as a sum over 1/N of the total number of connections,
each term of the sum with a dependence on the electric field of the kind of

PN (E) =
N−1∑
n=0

ei
2π
N
n(a−b)

∫ x,y+1

x,y
(R̂n2π

N

E) · dr, (3.31)

with a, b = 0, . . . , N − 1. For certain lattices the path of integration may have to be
different. Let us see what we obtain for the circular and the uniform electric fields. For
E = E(−y, x), R̂n2π

N

E = E and
∫ x,y+1
x,y E · dr = Ex, so we have

PN (E(−y, x)) = Ex
N−1∑
n=0

ei
2π
N
n(a−b) = ExNδa,b. (3.32)

This means there are no transitions between states of different rotation phases, so any
state that is u4 invariant initially will only gain components over time in states with
the same u4, maintaining its original invariance phase. For E = E(cosα, sinα), we have
R̂n2π

N

E = E(cos(α+ 2π
N n), sin(α+ 2π

N n)) and
∫ x,y+1
x,y E · dr = E sin(α+ 2π

N n), so we get

PN (E(cosα, sinα)) =
E
2i

N−1∑
n=0

ei
2π
N
n(a−b)

(
ei(α+ 2π

N
n) − e−i(α+ 2π

N
n)
)

=
E
2i

N−1∑
n=0

eiαei
2π
N
n(a−b+1) − e−iαei

2π
N
n(a−b−1)

=
EN
2i

(
eiαδa+1,b − e−iαδa,b+1

)
.

(3.33)

Now we have jumps between neighbouring rotation phases, which result in indirect
jumps between all rotation phases, so states may eventually gain components in all the
eigenstates. Our electric field of choice has both a uniform component and a circular
component (Eq.3.9). We have

P4(−∂A
∂t

) =
ω

2
xδa,b +

ωr0

4i

(
eiαδa+1,b − e−iαδa,b+1

)
, (3.34)
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where r0 =
√
x2

0 + y2
0 and tanα = −x0/y0. We know directly that the transitions

elements with P4 = 0 are zero, but some elements might be zero even if the electric field
permits the transition due to other symmetries of the system. This is the case of the
secondary diagonal elements, which are zero due to the ±E symmetry.

3.2.2 Positive-negative energy symmetry

As we saw already in section 2.5, the itinerant states of the Lieb lattice come in pairs.
Let us see how this affects the matrix D. Consider the states from equation 2.12. The
main and secondary diagonal terms are

〈E′+|E+〉 = 〈E′−|E−〉 = 1/2(〈A′|A〉+ 〈BC ′|BC〉),
〈E′+|E−〉 = 〈E′−|E+〉 = 1/2(〈A′|A〉 − 〈BC ′|BC〉),

(3.35)

where we used 〈A′|BC〉 = 〈BC ′|A〉 = 0. Note that all the equalities above are true
only in our particular choice of states |E±〉. We could multiply each state by different
time dependent phases and the equalities would no longer hold true. Now, while a basis
transformation adds or subtracts a term in the main diagonal terms, the off-diagonal
terms will be multiplied by a phase, not changing the absolute value. In this choice of
states 〈E′+|E−〉 is imaginary since 〈A|A〉 = 〈BC|BC〉 = 1. Let us calculate 〈E+| Ĥ ′ |E−〉.
Both states have the same u4, so, from the previous section, we have

〈E+| Ĥ ′ |E−〉 =
ω

2i

L∑
x=−L,2

L−1∑
y=0

x exp

(
i

∫ x,y+1

x,y
A · dr

)
(E+)∗x,y+1(E−)x,y + (y ↔ y + 1).

(3.36)

Both states are related by the BC to minus BC transformation T̂BC = (−1)x+y, so that
(E−)x,y = (−1)x+y(E+)x,y. Using this and writing explicitly the conjugate jump term
(y ↔ y + 1), we have

〈E+| Ĥ ′ |E−〉 =
ω

2i

L∑
x=−L,2

x

L−1∑
y=0

(−1)x+y exp

(
i

∫ x,y+1

x,y
A · dr

)
(E+)∗x,y+1(E+)x,y

−(−1)x+y exp

(
−i
∫ x,y+1

x,y
A · dr

)
(E+)∗x,y(E+)x,y+1,

(3.37)

〈E+| Ĥ ′ |E−〉 = ω
L∑

x=−L,2
x
L−1∑
y=0

(−1)x+y Im

(
exp

(
i

∫ x,y+1

x,y
A · dr

)
(E+)∗x,y+1(E+)x,y

)
,

(3.38)
so we conclude that 〈E′+|E−〉 is real, but, as we saw before, it is also imaginary, so
it must be zero. Note that for other electric fields this result may no longer hold: if
P4(E) depended on y, the direction of the jumps, we could no longer conclude that
〈E′+|E−〉 = 0. We have then

〈E′+|E+〉 = 〈E′−|E−〉 = 〈A′|A〉 = 〈B′|B〉 ,
〈E′+|E−〉 = 〈E′−|E+〉 = 0,

(3.39)
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and, as we have already seen, we may put the diagonal elements to zero. Other elements
we are interested in are the ones involving a localized state |L〉. With our choice of states
|E±〉, we have the relation

〈E′+|L〉 = −〈E′−|L〉 = 〈BC ′|L〉 /
√

2, (3.40)

since localized states only have a BC component.

3.3 Localized basis freedom

There is a basis of the localized subspace where all the states are C4 invariant, so that all
the terms 〈E′+|Li〉 follow the already known behaviour in terms of the electric field. It
is possible, through a basis transformation of the localized subspace, to make it so only
one of the localized states rotates with an itinerant state, 〈E′+|Li〉 = f(t)δij , for some
j. The basis where that is true can be built from a generic basis like this: consider a
sequence of localized states |Li〉 from 1 to Nl and a state |E〉. The basis transformation

|L1〉 ← 〈E′|L1〉∗ |L1〉+ 〈E′|L2〉∗ |L2〉 ,
|L2〉 ← 〈E′|L2〉 |L1〉 − 〈E′|L1〉 |L2〉 ,

(3.41)

results in 〈L1|L2〉 = 〈E′|L2〉 = 0, so that the rotation from both states was absorbed
into |L1〉. Subsequent transformations for all pairs (1, i), i = 2, . . . , Nl, will absorb the
full rotation of the localized subspace with |E〉 into a single localized state, the new |L1〉.
It is easy to see that state will be

|L1〉 ←
∑Nl

i=1 〈E′|Li〉
∗ |Li〉√∑Nl

i=1|〈E′|Li〉|
2
. (3.42)

However, this transformation has altered the diagonal elements so that 〈L′1|L1〉 6= 0.
From Eq.3.19 we know how to remove it, giving us

|L1〉 ← exp

[
iIm

(∫ ∑Nl
i=1(〈E′|Li〉)′ 〈E′|Li〉∗∑Nl

i=1|〈E′|Li〉|
2

dt

)] ∑Nl
i=1 〈E′|Li〉

∗ |Li〉√∑Nl
i=1|〈E′|Li〉|

2
. (3.43)

Just as a side note, we can write this in a more compact form as

|L1〉 ← C exp

[∫ ∑Nl
i=1(〈E′|Li〉)′ 〈E′|Li〉∗∑Nl

i=1|〈E′|Li〉|
2

dt

]
Nl∑
i=1

〈E′|Li〉∗ |Li〉 , (3.44)

where the real part of the integral guarantees constant normalization and the imaginary
part removes the Berry phase, and C is some normalization constant. The full rotation
is, from Eq.3.43,

〈E′|L1〉 ← eiθ1(t)

√∑Nl

i=1
|〈E′|Li〉|2, (3.45)
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where θ1 is the imaginary part of the integral. The same transformation could be used
so that a localized state rotates only with another localized state. For example, after
transforming |L1〉, we can apply the transformation

|L2〉 ← eiθ2(t)

∑Nl
i=2 〈L′1|Li〉

∗ |Li〉√∑Nl
i=2|〈E′|Li〉|

2
. (3.46)

The state |L2〉 will now be the one that rotates alone with |L1〉. Subsequent equivalent
transformations allow us to off-diagonalize D in the subspace {|E〉 , |Li〉}.

3.3.1 Two by two lattice

We can obtain several analytical results for the 2×2 Lieb lattice (Fig. 2.1). It has three
localized states, and the matrix D in the subspace of localized states plus the pair of S
states, {|S+〉 , |Li〉 , |S−〉}, can be written as

D =


0 f 0 0 0
−f∗ 0 a 0 f∗

0 −a∗ 0 b 0
0 0 −b∗ 0 0
0 −f 0 0 0

 , (3.47)

for some basis of the localized subspace, where we used the localized basis freedom and
the ±E symmetry properties. We chose this subspace because the rotation of localized
states with S states is the most important in a slow time evolution. In a 2 × 2 lattice,
at Φ = 0 we have four localized states, which we may combine to make one state for
each possible value of u4, 1,−1, i,−i. The state that is lost to the S states is the one
with symmetry u4 = 1 (remember that in a lattice of size L × L, the S states have
u4 = (−1)L). Given our electric field, the S states will only rotate with the ±i states
through the uniform electric field. There are two two-plaquette localized states that
are known analytically, one in each diagonal of the lattice. For the vector potential in
Eq.3.9, the states amplitudes (here represented in the lattice sites basis and in the shape
of the 2× 2 Lieb lattice) are given by

√
8 |L+〉 =

0 0 0 eiφ(2−2x0+y0) 0

0 −eiφ(4−x0) −eiφ(−2−x0+2y0)

0 −eiφ(−4−y0) 0 eiφ(−4+y0) 0

eiφ(−2+x0−2y0) eiφ(4+x0) 0

0 −eiφ(2+2x0−y0) 0 0 0

 ,

(3.48)
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√
8 |L−〉 =

0 −eiφ(−2−2x0−y0) 0 0 0

eiφ(2−x0−2y0) eiφ(−4−x0) 0

0 −eiφ(4−y0) 0 eiφ(4+y0) 0

0 −eiφ(−4+x0) −eiφ(2+x0+2y0)

0 0 0 eiφ(−2+2x0+y0) 0

 ,

(3.49)
with φ = Φ/8. They are not orthogonal for a general uniform electric field except at
Φ = 0. Close to Φ = 0, the states |L±i〉 = (|L+〉 ± i |L−〉)/

√
2 will be approximately

orthogonal, and |L±i〉 have u4 = ±i with no uniform electric field. The remaining state
of the basis will have u4 = −1 and will not rotate with |S±〉. In the 2 × 2 lattice |S+〉
only has BC component at the edge states and they alternate between ±1 from BC site
to BC site, so we can calculate explicitly 〈L′±|S+〉 at Φ = 0, calculating the derivatives
of the states above. We obtain 〈L′±(0)|S+(0)〉 = −〈S′+(0)|L±(0)〉∗ = C(±y0 − x0), with
C a constant. We can combine both states and condense the rotation into one state,
which we shall call |LS〉:

|LS〉 = −
〈L′+|S+〉 |L+〉+ 〈L′−|S+〉 |L−〉√
|〈L′+|S+〉|2 + |〈L′−|S+〉|2

=
(x0 − y0) |L+〉+ (x0 + y0) |L−〉

r0

√
2

, (3.50)

with r0 =
√
x2

0 + y2
0. Substituting (−y0, x0) = r0(cosα, sinα), where (−y0, x0) is pro-

portional to the uniform electric field, we obtain

|LS〉 = [(cosα+ sinα) |L+〉+ (sinα− cosα) |L−〉] /
√

2

= cos(α− π/4) |L+〉 − cos(α+ π/4) |L−〉 .
(3.51)

This means whenever the electric field is aligned with one of the diagonals, α = ±π/4,
the localized states that rotates alone with |S〉 is the two-plaquette localized state in that
diagonal, at least for Φ ≈ 0, and when we rotate the electric field, so will the state rotate
to keep pointing in the direction of the field. A similar behaviour could be expected for
larger lattices.

There is one more property of the 2× 2 lattice which will be important, and is that
there is a basis of states where the matrix D is anti-symmetric. In the form of Eq. 3.47,
the off-diagonal elements may be complex, but they will be real functions multiplied by a
constant phase, for example, f(t) = r(t)eiθ, with r(t) a real function. The phases of each
off-diagonal term can be absorbed into the states so that D becomes anti-symmetric.
This was found by the numerical calculation of D and does not happen for larger lattices,
and also makes the time evolution in the 2× 2 lattice especially simpler.
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3.4 S to localized state transition

In the 2× 2 lattice the dependence on E of 〈S′+|LS〉 is simple: two localized states with
u4 = ±i couple to |S±〉 through the uniform electric field E0, so from Eq.3.45 we get

〈S′+|LS〉 = eiθ(t)
√
|〈S′+|L−i〉|

2 + |〈S′+|Li〉|
2

= |E0|eiθ(t)
√
|f−i|2 + |fi|2,

(3.52)

for some functions f±i that do not depend on E. For all values of flux the transition term
is proportional to the uniform electric field. For larger lattices we can not conclude the
same, but we can separate the summation in Eq.3.45 in two, one for states with neighbour
C4 invariances of S+, u4 = ±i, and another with equal C4 invariance, u4 = (−1)L,

〈S′+|LS〉 = eiθ(t)
√
|E0|2

∑
n,u4=±i

|fn|2 +
∑

m,u4=(−1)L

|〈S′+|Lm〉|
2. (3.53)

We can, however, conclude something about the behaviour with electric field at Φ = 0
using the reflection symmetries. Consider the product

〈BC(Φ)|Lm(0)〉 = 〈S+(Φ)|Lm(0)〉 =
∞∑
n=1

dn 〈S+(0)|
dΦn

|Lm(0)〉 Φn

n!
. (3.54)

Remember from Section 2.6 that the localized states and the BC state of the S states
have a relation between σ and C4 invariance phases, uσ = −u4. For u4 = (−1)L we have

R̂σ |BC(Φ)〉 = (−1)L+1 |BC(−Φ)〉 , (3.55)

R̂σ |Lm(0)〉 = (−1)L+1 |Lm(0)〉 . (3.56)

Applying the rotation to Eq.3.54,

〈BC(Φ)| R̂σR̂σ |Lm(0)〉 = 〈BC(−Φ)|Lm(0)〉 , (3.57)

we conclude 3.54 is an even function, so odd terms of its expansion are zero, the first term
being 〈S′+(0)|Lv(0)〉 = 0. Substituting in Eq. 3.53 for zero or equivalent flux Φ = 2πn,
we find that the transition term is proportional to the uniform electric field,

〈S′+|LS〉 (Φ = 2πn) ∝ |E0| = ω/8
√
x2

0 + y2
0. (3.58)

We shall see the consequence of this together with the numerical results.
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Chapter 4

Numerical time evolution of
localized states

In this chapter we present the results of numerical time evolutions of two-plaquette local-
ized states for L = 2 and L = 6, for different uniform electric field components, starting
positions and ω. We then discuss the step pattern that appears in some simulations with
finite electric field. Before all that, we show the algorithm used in the simulations.

4.1 Numerical algorithm

Consider a state Ψa(t), in a time independent basis {a}, and the time evolution equation
idΨa/dt = Ha(t)Ψa. The relation between two points distanced by dt is

Ψa(t+ dt) = exp(−iHa(t)dt)Ψa(t). (4.1)

Consider again the matrix of basis change from the eigenspace of Ĥ, UΦ→a(t), so that

Ψa(t+ dt) = U(t) exp(−iHΦ(t)dt)U †(t)Ψa(t). (4.2)

This equation allows us to calculate the evolution of Ψa iteratively for some finite dt. The
time step is related to the flux step: ∆t = ∆Φ/ω. The flux is more useful in identifying
where in the evolution we are, and since we chose a linear evolution in the flux, it is
easy to transform the equations to use the flux instead of time. We are interested in the
decomposition of |Ψ〉 in the eigenspace, so we should calculate U †(Φ)Ψa(Φ) too. The
basis {a} will be the lattice sites basis. Diagonalizing numerically Ha(Φ) (Eq. 2.7) using
the vector potential from Eq. 3.9 we obtain the diagonalized Hamiltonian HΦ(Φ) and
the eigenstates U(Φ). The following algorithm shows the time evolution in pseudo-code.
It calculates ΨΦ over time and was implemented in MATLAB.26

Data: Φ0,∆Φ,Φl, Ψa(Φ0), x0, y0, L, ω
for Φ← Φ0,Φ0 + ∆Φ, . . . ,Φl do

Ha ← Eq.2.7;
{HΦ, U} ← Diagonalize(Ha);

ΨΦ(Φ) = U †Ψa(Φ);
Ψa(Φ + ∆Φ) = U exp(−iHΦ∆Φ/ω)ΨΦ(Φ);

end
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4.2 Time evolution simulations

For the simulations in this section we used ω = 0.01 and ∆Φ = 2π × 104, meaning 104

points per 2π interval, unless it is stated otherwise.

4.2.1 Two by two lattice

In Fig. 4.1a we have the energy diagram of the 2× 2 Lieb lattice. The itinerant states
in the four-state sub-bands closest to the flat band are labelled by their rotation phase
u4. In Figs. 4.1b to 4.2b we can see the |Ψn|2 components in the eigenstates, where n
is the eigenstate index, over time (flux) of a state on an L = 2 lattice that started at
Φ0 = −π as |L+(Φ0)〉 (Eq. 3.48) for five cases of uniform electric field (−y0, x0). The
components are coloured and labelled by u4 to match the energy diagram. (−y0, x0) is
indicated in the caption of each plot.

In Fig. 4.1b, (−y0, x0) = (0, 0), all components were plotted except for the localized
component. The components on itinerant states of opposite energies ±E are equal so
they are plotted one exactly over the other. The components of the state oscillate with
a very high frequency and seem to be periodic. The components on the ±i states are by
far the largest itinerant components. Remember that our initial state is a combination
of the ±i localized states of the 2× 2 lattice, and since there is no uniform electric field
there are only transitions to states with the same rotational invariance. This prohibits
transitions to the S states, to the −1 localized state and to the −1 labelled itinerant
states, so those components are zero. However, it does not prohibit the transition to
the ±i states of the other sub-bands, but those components are of the order of 10−9

at most. There is a correlation between smaller components and a bigger difference in
energy. Notice how the ±i components increase or decrease when their energy gets closer
or further away from zero, the energy of the localized states.

In Fig. 4.1c, (−y0, x0) = (−4.3, 4.3), we added a uniform electric field in the x = −y
diagonal. Just like in the previous figure, we are not showing the localized component,
and components in opposite energy states are equal. An increase in the overall magnitude
of the itinerant components is noticeable. We now have non-zero components in all
states, but the components in the states of the closest sub-bands still dominate over the
rest of itinerant states. The amplitude modulation with the energy difference is also
noticeable, but even though the S states are the ones that go closest to the localized
states in terms of energy, their component is the smallest between the closest sub-band
states. This is explained by the fact that the uniform electric field is perpendicular to
the diagonal of the two-plaquette localized state that was used as initial state, |L+〉.
As we may remember from section 3.3.1, the localized state that rotates alone with
the special states at Φ = 2πn is aligned with the uniform electric field, so when the
component was supposed to be the biggest, at zero energy, the transition element is
also zero, 〈S′+|L+〉 (Φ = 2πn) = 0 for this electric field, resulting in a much smaller
component. It is also noticeable that the frequency of oscillation of the S components
is much smaller than the rest when we are close to Φ = 2πn. This happens because the
oscillation frequency is closely given by the energy difference.
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Figure 4.1: (a) Energy diagram of the 2 × 2 Lieb lattice. (b,c,d) Components in the
eigenstates over time (from simulations) for a localized state that started as |L+(−π)〉
(Eq. 3.48) on the 2× 2 lattice, for three different uniform electric fields.
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In Fig. 4.1d, (−y0, x0) = (4.3, 4.3), the uniform electric field is now aligned with the
initial state. The largest components of single states are of the two S states, which are
exactly equal as in the previous figures. The behaviour is different relative to the previous
plots. We now have a step-like behaviour of the S state components, which dominate
all the others. While previously we seemed to gain or lose components continuously, we
now gain or lose a significant portion of the components in the S states at the point
the energies cross, Φ = 2πn, and we gain or lose it permanently, at least until the next
crossing point. Between crossing points we have an oscillation of high frequency around
the newly gained component. The frequency decreases close to the crossing points.
The amplitude modulation of the oscillations is slightly different for each step. Some
steps have nodes close to the middle of the step while others are closer to one of the
sides, at about a third or two thirds of the step. The evolution is closely periodic and
symmetric under a reflection at Φ = 6π. Although they are very small in the plot, we
also gain components in the ±i states of the itinerant sub-bands when their energies
cross the energies of the S states. It is the S states that lose component when the ±i
states gain it. Still, these components are very minor, so the localized component is
|Ψloc|2 ≈ 1− 2|ΨS+ |

2. The S state components are still very small so the state is mainly
localized.

In Fig. 4.2a, (−y0, x0) = (4.3,−0.84), we are representing the itinerant component
|Ψit|2 = 1−|Ψloc|2 (It) as a substitute for the localized component so that its size is always
comparable to the itinerant components. It is, obviously, the biggest component in this
plot. Here we have a case where the state is able to lose a big portion of its localized
component to the S components, up to 70%. The period of the step-like behaviour is also
bigger than in 4.1d, and the components seem to increase and decrease similarly to a crest
of a sine function. The S components in the latest steps have considerable noise. This is
due to the loss in component to the rest of the itinerant states that, although it is tiny,
accumulates during long simulations, increasing the noise in the latest steps. However,
the localized (itinerant) component seems unaffected by this noise. It is also noticeable
that there is a slight difference between the two components of the S states, which did not
occur in the previous simulations, and there is also a varying phase difference between
both components, which creates an additional amplitude modulation of the localized
component through, similar to beats. When there is a π phase difference, marked with
arrows, the oscillations cancel when summed and the localized component has nodes in
the amplitude of the oscillations. These nodes are different from the ones in 4.1d since
there was no phase difference between S components in that case, and those nodes were
present in the S components already, not only on the localized component.

In Fig. 4.2b, (−y0, x0) = (7.31,−1.42) = 1.7 × (4.3,−0.84), we observe a similar
step-like behaviour to the one in Fig. 4.2a. The main differences are the smaller maxi-
mum itinerant component reached, 10%, and the amplitude modulation. The oscillation
amplitude has a very noticeable evolution from step to step: starting with a uniform
amplitude in the first step, it then starts to thin at the left side until it creates a node
at that side. The node then advances until it reaches the right side of the step. Also,
the itinerant components start to decrease when the node surpasses the middle of the
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Figure 4.2: More simulations on the 2× 2 Lieb lattice, for a localized state that started
as |L+(−π)〉 (Eq. 3.48) and for two different uniform electric fields.
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step. The oscillation amplitude after Φ = 28π is more complicated mainly due to an
increased asymmetry between S components and to the phase difference effect we saw
in the previous figure. Now, the uniform electric field used is 1.7 times the one in the
previous simulation. Remember from section 3.4 that the transition element between
S and localized states, in the 2 × 2 lattice, is proportional to the uniform electric field.
However, by increasing the field we obtained smaller step jumps and a smaller maximum
itinerant component, and also different oscillation amplitudes. These simulations show
that, when considering the step-like behaviour, ignoring all the itinerant states except
for the S states and reducing the system to the flat band together with the S states,
like in Eq. 3.47, is a very good approximation, but this small system can still be very
non-linear. While one very important element of D has a linear behaviour with the elec-
tric field, increasing or decreasing that element linearly does not entail a linear response
from the overall system of differential equations since there are other relevant elements,
the ones pertaining to the internal rotation, who depend only on our choice of localized
basis.

In the first simulations there was perfect symmetry between ±E components, but
in Figs. 4.2a and 4.2b we saw the two S components separate in both amplitude and
oscillation phase, meaning the energy of the state is not zero in the latter case. From all
the symmetries found between states of opposite energy, it could be expected that the
evolution would also be perfectly symmetric. That is not the case when the elements of
D have time dependent phase terms (constant phases can generally be absorbed by the
states and do not have an effect). Still, there is a basis of states where the matrix D of
the 2× 2 lattice is a real matrix, as we saw at the end of section 3.3.1, and the phase −i
that multiplies the Hamiltonian in the evolution equation can be absorbed by the states,
as we shall see later, so time dependent phases are not the cause for the asymmetry.
The cause is that there are already phase differences present in the initial state. The
full evolution matrix in the reduced sub-space of the 2× 2 lattice (Eq. 3.47) is


−iE f 0 0 0
−f 0 a 0 f
0 −a 0 b 0
0 0 −b 0 0
0 −f 0 0 iE

 . (4.3)

In Fig. 4.1c the initial state, in the same basis that the evolution matrix is written, is
Ψ0 = (0, 0, 1, 0, 0), since it is the two-plaquette state that does not rotate with S for
the uniform electric field chosen, so the evolution is perfectly symmetrical. In Fig. 4.1d
the initial state is Ψ0 = (0, 1, 0, 0, 0), the state that does rotate with S, and we have
symmetry again. In Figs. 4.2a and 4.2b the uniform electric field is not in a diagonal,
so the state that rotates with S is a combination of the two two-plaquette states. The
initial state will be Ψ0 = (0, z1, z2, 0, 0), for some combination of complex numbers zi
with a relative phase between them. That relative phase will then cause the asymmetry
in the evolution.
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4.2.2 Six by six lattice

We shall now see simulations on the 6×6 lattice to better understand how the phenomena
found in the 2 × 2 lattice, which is an especially simple case, scale with the size of the
lattice. The color-code of the closest sub-band states and of the itinerant (localized)
component is maintained. For bigger lattices we may put our two-plaquette initial state
|L+〉 in many places.

In Fig. 4.3a, (−y0, x0) = (0, 0), we placed |L+〉 in the middle of the lattice. Like in
Fig. 4.1b, we only have components in ±i states, indicating that the two-plaquette state
in the middle of the lattice is a combination of ±i zero energy states. This is easy to
see analytically since the 2× 2 lattice is a sub-lattice of the 6× 6 lattice, and the 2× 2
localized states will be localized states of the 6× 6 lattice, so the ±i localized states of
the 2 × 2 centred in the lattice will be ±i states of the 6 × 6 lattice, and therefore the
two-plaquette state is still a combination of ±i states. The same could not be said if the
two-plaquette state was not centred in the lattice. The itinerant components increase
when the energy difference diminishes, which happens close to Φ = 2πn (see Fig. 2.8b
for reference. The 8 × 8 and 6 × 6 energy diagrams are very similar). Opposite energy
components are equal, possibly indicating the matrix D is real, at least for |E0| = 0.
The evolution is not as simple and periodic as it was in 4.1b.

In Fig. 4.3b, (−y0, x0) = (0, 0), we placed |L+〉 at a corner of the lattice. We
separated the full itinerant component in another plot for better visibility. The state
now gains components in all itinerant states, so the initial state has a projection in
states of all possible rotation phases. We now have itinerant component for all flux.
There are still peaks of ±i components close to Φ = 2πn like in 4.3a, although they
are smaller, but the ±1 itinerant components have a minimum in that region and reach
their maximum not when the energy is at its closest to zero, the crossing points, but
somewhere inside each 2π interval. This is easier to understand when we remember that
the S to localized transition element is zero at Φ = 2πn for larger than 2 × 2 lattices
and for zero uniform electric field (Eq. 3.58), so the amplitude of the S component is
suppressed at the crossing points.

In Fig. 4.3c, (−y0, x0) = (2.21, 5.72), we placed |L+〉 in the middle of the lattice. The
main thing of note is the return of the steps. At the crossing points, the S components
increase, but that is quickly lost to the other itinerant states whenever the energy of
the S states cross or get close to the other states, which happens very frequently since
the energies in each sub-band are tightly interlaced (Fig. 2.8c). This means whenever
we arrive at another crossing point after we have already gone through one, the state
has lost most of its S component, so the localized component will most likely decrease
again since the maximum it can increase is the sum of the S components. This means
the state is always losing localized component whenever it crosses the S states, which
then subsequently lose to localized states that are further away in energy, and so on, in
a process that resembles diffusion. We can try to reduce the diffusion effect by slowing
down the increase of magnetic field (smaller ω). For non-zero uniform electric field, no
major difference was identified between time evolutions with different starting positions
of the two plaquette state.
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Figure 4.3: Results of simulations on the 6× 6 lattice for a localized state that started
as |L+(−π)〉 (Eq. 3.48) (a,c,d) in the middle of the lattice and (b) at a corner of the
lattice, for (c) ω = 0.01 and (d) ω = 0.001.
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In Fig. 4.3d, (−y0, x0) = (2.21, 5.72), we are using ω = 0.001, ten times smaller than
previously, and again we placed |L+〉 in the middle of the lattice. We still have steps,
of smaller height, and the oscillation frequency has increased. The transitions between
steps are narrower in Φ and the steps are better defined. The itinerant component no
longer disperses into the bulk of itinerant states, remaining mainly in the eight clos-
est sub-band states. The diffusion inside these sub-bands still prevails, which reduces
the S components and therefore interferes with the step pattern, but the reduction is
smaller than previously and now we see some step transitions where localized compo-
nent is gained. One thing to note in these last two simulations is the more accentuated
asymmetry between opposite energy states. This is due to the matrix D having time
dependent phase terms when L > 2. Still, the symmetries are expected to manifest in
that for each localized state there should be another, similar, localized state whose time
evolution is symmetric to the first one by E → −E.

4.3 Step-like behaviour

From the simulations we may conclude that significant transitions between states occur
only when the difference of energy between the states is sufficiently small. The terms to
compare in transitions from and to localized states are ∆E = E − 0 and 〈E′|L〉. When
∆E � 〈E′|L〉, the transition does not occur and each component has an oscillatory
behaviour. The terms 〈E′|L〉 are proportional to electric field integral terms, which in

turn are proportional to ω, 〈E′|l〉 = ω d〈E|dΦ |L〉, so for a very slow evolution only when
∆E ≈ 0 can the transition occur. The only itinerant states that reach that condition
are the S states and only very close to the crossing points. However, as we increase the
size of the lattice so will the density of states increase and the energy difference between
localized states and itinerant states apart from the S states will reduce. For the infinite
lattice, a finite ω will make a fraction of the itinerant band accessible. For the lattice
sizes we are using we do not have to consider this hypothesis. We can see the dependence
on ω better with the time evolution equation written as

dΨΦ

dΦ
= (−iHΦ

ω
(t) +DΦ)ΨΦ, (4.4)

where (DΦ)ij = d〈Ei|
dΦ |Ej〉 = Dij/ω. The matrices HΦ and DΦ are independent of the

rate of flux change. When ∆E � ω, the first matrix dominates the time evolution
which results in oscillation terms related to the energy (of the kind of exp−i

∫
E+(t)dt)

dominating. When ∆E � ω, the matrix D dominates. It is important to note that the
small oscillations do not stem only from the exponential phase terms like exp−i

∫
E(t)dt,

since phase terms do not appear in |ΨΦ|2. The oscillations are a combination of the
energy phase terms and small contributions of the matrix D, which can be seen as a
perturbation matrix in that regime. It is noticeable how the oscillations decrease in
amplitude as ∆E increases: in the limit of very large ∆E, the solution would be the
trivial one and |ΨΦ|2 would be constant.
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In the 2 × 2 lattice, the S to localized transition is proportional to the uniform
electric field for any flux, so it follows directly that the step-like behaviour only occurs
for non-zero uniform field, but for larger lattices the electric field dependence is more
complicated. However, when |E0| = 0 the transition term goes to zero exactly when the
energy also goes to zero, at Φ = 2πn (Eq.3.58), so there may not be an interval where
〈S′|LS〉 > ∆E, and the step-like behaviour will be suppressed, if it exists at all. From
the simulations we can say that the step-like behaviour, which is the main source of loss
of localized component, is dependent on the existence of a uniform electric field.
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Chapter 5

Three level system

In this chapter we study a three level system that features the step pattern found in the
Lieb simulations. When the matrix elements are real, the system can be interpreted as
a classical precession system. When the elements have time dependent phases a beat
interference pattern appears in the localized component. We are able to replicate Lieb
simulation results through an adequate choice of matrix elements.

The most relevant itinerant states in the evolution of localized states are the two
that cross them, the S states. Apart from those two, the localized states also rotate
with each other, like in Eq.4.3, and there is not an energy difference that suppresses the
transition between them since they all have the same energy, like in Eq. 4.3, so there
are always uninhibited transitions between localized states. Still, in our time evolution
we are not interested in the components over time in each localized state, only on the
total localized component, so we propose a system of three states, the two S states and a
localized state that will represent the whole localized subspace. The evolution equation
of a state Ψ in this system is

d

dt

Ψ+

Ψ0

Ψ−

 =

−iE f 0
−f∗ 0 f∗

0 −f iE

Ψ+

Ψ0

Ψ−

 , (5.1)

for some complex function f(t) ∝ ω. We could have eliminated one of the S states as
a further simplification, but the fact that the system has three components allows us
to give it an interesting geometrical interpretation, as we shall see. Now, f can not
be 〈S′+|LS〉 if this system is to effectively represent a system like 4.3. In that case, we
would be considering that the other localized states do not exist. For this system to
account for the S to localized term and for the internal rotation of the localized states,
f has to be a function of all the elements of D that are missing in this system: 〈S′+|LS〉,
the internal rotations, and also the initial state Ψ0, particularly the initial configuration
on the localized subspace. f is then an effective function that condenses in it the full
interaction between the S states and the localized subspace. We will not try to show how
one would build such a function analytically. It is not known if that is even possible. We
will only see how we can guess what function it is by looking at the simulation results.
Let us first analyse further the system so as to better understand it.
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5.1 Classical precession system

The S states can be written as |E±〉 = (|A〉± i |BC〉)/
√

2, where both |A〉 and |BC〉 are
real at Φ = 0. Performing the basis change {x = (Ψ++Ψ−)/

√
2, z = i(Ψ−−Ψ+)/

√
2, y =

Ψ0}, and defining g = −i
√

2f , we have

d

dt

xy
z

 =

 0 0 E
0 0 −g∗
−E g 0

xy
z

 , (5.2)

where (x, y, z) will correspond to components in {|A〉 , |L〉 , |BC〉} respectively. If g were
real, the system would become real. More so, it would be a classical precession system
of the position vector r = (x, y, z) in the unit sphere,

dr

dt
= (g,E, 0)× r = Ω× r. (5.3)

Let us use for now g real. It is still an interesting case since it applies to the 2×2 lattice
well. We shall see later the general case. In general, the precession vector Ω changes
its magnitude and orientation over time. At each time the position vector is rotating
around Ω with instantaneous angular velocity Ω =

√
E2 + g2. The system has exact

solution for constant Ω, which is

x =
1

Ω

(
gc− E

√
1− c2 cos(Ωt+ θ0)

)
,

y =
1

Ω

(
Ec+ g

√
1− c2 cos(Ωt+ θ0)

)
,

z =
√

1− c2 sin(Ωt+ θ0),

(5.4)

with an initial phase θ0 and c = (Ω·r)/Ω, −1 ≤ c ≤ 1, a constant quantity. The localized
component |y|2 will oscillate with frequency Ω and amplitude ∼ g2/Ω2. This oscillation
is due to the precession axis not matching the zero energy axis ŷ. If g were zero, the
position vector would still precess, but this time around ŷ, maintaining the angle with
that axis constant, and consequently the y component would also be constant.

The equations 5.4 may be adapted to fit a situation of varying energy. Consider
that E = E0 sin(ωt/2), closely matching the energies of the S states, and that we are in
the region where E � g, away from the transition regions. The instantaneous angular
velocity is then Ω = dθ

dt =
√
E2 + g2 ≈ E. From these three equalities we obtain θ =

θ0 +
∫ t

0 E(t′)dt′ = θ0−2E0 cos(ωt/2)/ω, so the sinusoidal function that has instantaneous
angular velocity E is cos(−2E0 cos(ωt/2)/ω+θ0). Substituting the cosine and the energy
in the equation of the localized component y in 5.4 we obtain

y = c
E0

Ω
sin

ωt

2
+
√

1− c2
g

Ω
cos

(
−2E0

ω
cos

ωt

2
+ θ0

)
. (5.5)

In Fig. 5.1a we show the S components and their sum over time from a simulation of Eq.
5.2 with g = ω = 0.01, E = sin(Φ/2), Φ0 = −π and Ψ0 = (0, 1, 0), with Φ = ωt. We can
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Figure 5.1: (a,c) Simulations of the three level model of Eq. 5.2 with ω = 0.01, E =
sin(ωt/2), Φ0 = −π, Ψ0 = (0, 1, 0), for two different g functions. (b,d) Fits of steps in
the simulations on the left using as fitting function Eq. 5.5.
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identify the step pattern that we saw in the Lieb simulations. The two S components
are equal. In Fig. 5.1b we show the fit of the third step with Eq.5.5, which, for some c
and θ0, fits the oscillations extremely well in the region where E � g.

In Fig. 5.1c, we have the same simulation as in Fig. 5.1a except with g = ω cos(ωt/2),
ω = 0.01. The Eq. 5.5 is still an approximate solution for a general real function g
(remember that Ω is a function of g too) in the E � g region, meaning we may use a
time dependent g in the equation, like we did in Fig. 5.1d. This way we see that g/Ω
approximately modulates the amplitude of the oscillations, and the nodes we see in 5.1c
coincide with the nodes of g.

We can also see one of the effects that g has on the step transitions with these last two
simulations. A constant g (Fig. 5.1a) created a pattern of steps that alternates between
rising and lowering the steps. A function g that alternates in sign at each crossing point
Φ = 2πn (Fig. 5.1a) makes the steps repeatedly rise or fall.

In the precession model the step-like transitions and the oscillations gain geometrical
interpretations. It becomes a competition between precessions around two different axes.
We may picture the time evolution like this: let us start at the maximum of energy, where
the state precesses around an axis that is almost the ŷ axis so that we only see very small
oscillations around an average value that is the radius of precession. When the energy,
as it slowly decreases, goes through zero, Ω becomes for a short period of time a vector
whose main component is in the x̂ axis, so, during that time, the position vector will
rotate a bit in the y0z plane, effectively increasing or decreasing the precession radius
around the ŷ axis, and therefore altering slightly the component in the localized states.

5.2 Complex transition element

If g(t) is complex only because of a constant phase term, that phase can be absorbed
into the localized state by a redefinition of y = Ψ0, so we would obtain the same results.
A general complex function g(t) = u(t)eiθ will still exhibit the same step-like behaviour,
and |g(t)| = u(t) will still play a role in the modulation of each step, but the phase
term eiθ will cause phase and amplitude differences between the two S states, which
in turn creates an additional modulation of the oscillations of the localized component
through the interference of the S components. In Fig. 5.2a we have a step of the
evolution for g = ω cos(Φ). The cos(Φ) modulation is noticeable, creating nodes at π/2
and 3π/2. The modulation is present and equal in the three components, and the two S
components are equal. In Fig. 5.2b we used g = ω cos(Φ)eiΦ/2. The two S components
have slightly different amplitudes even though the initial state was purely localized. The
modulation of the two is given by cos(Φ) while the localized component has an extra
node at π. This node is due to a π phase difference at Φ = π between the oscillations of
the S components. The phase term causes a varying phase difference between S states,
which in turn causes an additional modulation of the localized component due to the
beat interference patterns. The full amplitude modulation of the localized component is
given by the real part of g, which in this case is Re(g) = ω cos(Φ) cos(Φ/2).
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Figure 5.2: Results of simulations of the three level model of Eq. 5.2 with ω = 0.01,
E = sin(ωt/2), Φ0 = −π, Ψ0 = (0, 1, 0) for different g. In (a,b) only a step is shown.
In (b) we show a close-up of the π phase difference region. The simulations in (c,d)
resemble the Lieb simulation results in Fig. 4.1d.
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Φ

Figure 5.3: The function g(Φ) used in the simulation shown in Fig. 5.2d.

5.3 Reproduction of Lieb results

Let us try to reproduce the results of a Lieb simulation using the three level model,
in particular, the simulation shown in Fig. 4.1d. To do this we must find an effective
rotation function g that is appropriate for this simulation. This simulation has perfect
symmetry between ±E components, so we may use a real g. The elements of D are
most likely all periodic with the same period as the energies, 4π or 2π, but g, the
combination of several elements of D, does not have to be periodic, or it may have a
different period. As we saw previously, the nodes in the S components coincide with
nodes of g(t). The nodes in the simulation are equidistant, which suggests that g may
be a sinusoidal function, g = sin(µΦ/2+θ0), for some constant factor µ and initial phase
θ0. We can determine those constants using two nodes Φ1 and Φ2 of the simulation:

µΦ1/2 + θ0 = n1π, µΦ2/2 + θ0 = n2π. (5.6)

We may choose n1 = 0 by a redefinition of the initial phase. Solving the system we have

µ =
2π(n+ 1)

Φ2 − Φ1
, θ0 = −µΦ1

2
, (5.7)

where n is the number of nodes between nodes Φ1 and Φ2. For example, the S Lieb
component has nodes at 0.92π and 4.74π, with two other nodes between those two,
which gives us µ = 1.57 and θ0 = −2.27. In Fig. 5.2cm we simulated the three level
system with g = sin(1.57Φ/2 − 2.27). The step pattern is similar to the one in 4.1d.
The nodes and amplitude modulation seem correct, but some step transitions are in the
wrong direction. The four steps between Φ = 2π and 10π are inverted. As we saw in
Figs. 5.1a and 5.1c, the sequence of signs of g at the crossing points influences how the
steps rise and fall. We can change the step pattern by using another pattern of crests
and troughs, instead of the crest-trough-crest of the sine function. The function will then
be g = s(Φ)|sin(1.57Φ/2− 2.27)|, for some sequence of s = ±1, crests and troughs. The
sequence that correctly emulates the Lieb results is three crests-three troughs repeatedly,
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as shown in Fig. 5.3. The simulation for this g is in Fig. 5.2d. The step pattern of this
three level model simulation and of the Lieb simulation are almost identical.

In a L > 2 system, not only does the number of localized states increases, but
the transitions between itinerant states of the same sub-band are very important, so
the itinerant states of the three level model must represent not only the S states but
itinerant sub-band. This means g will take into account an increasingly high number
of elements of D. The step oscillations are much more complex because of this, as we
can see in Figs. 4.3c and 4.3d. Finding a function g that correctly replicates results of
an L > 2 simulation by examining the nodes is not possible. Still, for any Lieb time
evolution of any L there should be a function g that replicates the evolution of the
localized component.
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Chapter 6

Conclusions

We have studied the slow time evolution of localized states of the Lieb lattice with in-
creasing magnetic flux. A curious step pattern of the localized component has been found
and we have shown that this behaviour can be interpreted as a precession movement of
the evolving state around a time dependent vector.

The bipartite property of the Lieb lattice implies the ±E symmetry and that non-
zero energy eigenstates have equal occupation in each sub-lattice, which in turn does not
allow the flat band states to gain energy for any flux, except for the two S eigenstates. We
revealed the importance of the electric field in the time evolution, and how its invariance
compared to the invariance of the Lieb eigenstates affects the time evolution. The fact
that the S to localized state transition term is proportional to the uniform electric field
at Φ = 2πn is very important in understanding when the step pattern from chapter 4
occurs or, equivalently, to what extent localized states are robust against time dependent
magnetic fields. The three level model from chapter 5 helped us understand the step
pattern and interpret the Lieb time evolution in terms of a classical precession, which
reduces the complexity of the system considerably. The fact that we can very effectively
replicate Lieb simulations with this system implies an interesting mathematical result:
that there is an n-dimensional system of differential equations with the same solution to
one of its components than a bigger m-dimensional system with all equations coupled.
Sometimes, the construction of the smaller system is easier.

Although the focus of this thesis was in the Lieb lattice, part of the formalisms and
results are very general and could be adapted to fit other systems. For example, the
formalism in section 3.2 is applicable to any discrete states system. The calculations
regarding what transitions are allowed depending on the electric field in subsection 3.2.1
can be adapted and used in a system with other physical invariances and other electric
fields. We can also retrieve some general results. For example, we can say that if a
physical system is invariant under a physical transformation T̂ and we then apply an
electric field that is also invariant under T̂ (meaning the overall invariance of the system
will not have changed), only transitions between states of equal T̂ invariance phase,
which is the eigenvalue of the state on T̂ , are allowed. This is the case when we apply
only the circular electric field to the Lieb lattice. Any other electric field that was C4
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invariant would have the same effect. The basis freedom from section 3.3 is also true for
any subspace that remains degenerate over time.

As seen on the time evolution simulations and explored in section 4.3, the appearance
of steps of the localized component in the Lieb lattice is dependent on the existence of
a uniform electric field component, or, more generally, the existence of an electric field
component not invariant under R̂π/2 rotations. We can expect the steps to appear in slow
time evolutions of other systems if certain conditions are met: if, from time to time, the
energies of two or more eigenstates get sufficiently close or even cross each other so that
the transition term 〈E′i|Ej〉 dominates over the energy term for a small period of time,
then there will be significant and permanent transitions between those states. Of course,
if the energy difference does not go to zero, we can always slow the evolution further by
reducing ω so that the transition term becomes much smaller than the minimum energy
difference and there will not be a permanent exchange in component. The same can not
be done if the energy difference is zero at some point.

We can picture the quasi-adiabatic time evolution of any discrete state system as
follows: as long as the energies of two or more eigenstates do not meet, there is no change
in the |Ψn|2 components of the evolving state. When at least two energies become equal
and at least one of those eigenstates is occupied by Ψ, there is an exchange in occupation
proportional to the transition element at the point the energies meet, 〈E′i|Ej〉 (Ei = Ej).
The Lieb lattice under a magnetic field is a system of variable energy gap between bands.
When the energy gap periodically goes to zero, the electrons are able to change their
occupation on each band. In any system that exhibits a variable gap between bands
under a quasi-adiabatic time evolution, the electrons will be able to change bands when
the gap closes and if there is an applied electric field. Depending on the system, said
field may have to reduce the symmetry of the system for the transition to occur, that
is, for 〈E′i|Ej〉 (Ei = Ej) to be different than zero, as it happens in the Lieb lattice.

The step pattern may be observed in Lieb optical lattices under time dependent
perturbations. In photonic Lieb lattices it is possible to create a photonic state that
is localized.19,20 Application of a magnetic field would have no effect, but there may
be a perturbation of the waveguides that serves as a substitute of the magnetic field,
possibly some spatially dependent perturbation of the refraction index. However, that
perturbation must not break the flat band, just like the magnetic field. A perturbation
of the waveguide that changes over its length is, from the standpoint of the photonic
state that travels the waveguide, a time dependent perturbation, so it may be possible
to replicate a time dependent magnetic field, and by making the perturbation periodic
we will periodically go through a crossing point. By measuring the light intensity at
an A (site) waveguide over its length, we are approximately measuring the itinerant
component over time. If the perturbation correctly replicates the magnetic field, then,
if the perturbation does not reduce the C4v symmetry, the loss of localized component
should be minimal, while if the symmetry is reduced to C4 a step pattern should appear.
However, such a perturbation is only theorized here, and it is not known if it exists.

The ±E symmetry due to the bipartite property of the lattice has as a consequence
a separation of sub-lattices when considering Ĥ2, as seen in subsection 2.5.1. The sep-
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aration reveals a relation between the energies and eigenstates of the Lieb, square and
Mielke lattices. It would be interesting to explore this property further and possibly
apply it to other bipartite lattices in the future.
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