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Abstract Worldwide air traffic tends to increase and for many airports it’s no
longer an option to expand terminals and runways, so airports are try-
ing to maximize their operational efficiency. Many airports already
operate near their maximum capacity. Peak hours imply operational
bottlenecks and cause chained delays across flights impacting passen-
ger, airlines and airports. Therefore there is a need for the optimization
of the ground movements at the airports.

There are three major problems concerning airport operations: the de-
partures and arrivals sequencing on the runways; the staff management
operations preceding the green light for aircraft to leave the gate; and
the ground movement between the gate and the runway (and reverse).

The scope of this work is the ground movement problem that interacts
with the other two scheduling problems mentioned and provides deci-
sions in real-time.

The ground movement problem consists of routing the planes from the
gate to the runway for takeoff or on reverse path, and to schedule their
movements.

Our approach proposes a fast optimization system that considers a set
of planes moving to and from a set of runways along a given road net-
work conditioned by the airport ground layout. It considers constraints
such as the route constraints, separation between aircrafts due to jet
blast, aircraft movement speeds, timing constraints for arrivals and de-
partures in a constantly changing environment.

The objective is to minimize fuel consumptions on the ground (from the
airline perspective) and to minimize the time spent on the time window
slot for occupying the airport ground (from the airports perspective)
while granting all safety regulations at all times. Also passengers and
the environment benefit from an optimized ground movement.

The optimization approach proposed provides a fast heuristic solution
for each real-time event generated respecting all the rules established
by Advanced Surface Movement, Guidance and Control Systems (A-
SMGCS) of the International Civil Aviation Organization (ICAO).





Palavras Chave: operações nos aeroportos; movimentos em terra; sequenciamento.

Resumo O tráfego aéreo no mundo está em crescimento e para a maioria dos
aeroportos não é uma opção expandir os terminais ou as pistas, fazendo
com que estes tentem maximizar a eficiência operacional. Muitos aero-
portos estão a operar perto da sua capacidade máxima. Horas de ponta
implicam engarrafamentos e causam simultâneos atrasos ao longo de
toda a cadeia de operações com consequências para passageiros, com-
panhias aéreas e aeroportos. Por estes motives há uma necessidade de
otimização dos movimentos no solo que ocorrem nos aeroportos.

Existem três grandes problemas no que diz respeito às operações dos
aeroportos: o sequenciamento das partidas e chegadas; a gestão das
operações que precedem a ”luz verde” para que o avião possa sair do
stand ; e os movimentos no solo entre o stand e a pista (e o oposto).

O âmbito deste trabalho enquadra-se nos movimentos no solo que in-
teragem com os dois outros problemas de sequenciamento mencionados
e fornece decisões em tempo real.

O problema dos movimentos terrestres consiste em estabelecer o rotea-
mento dos aviões desde o stand até à pista para levantarem voo, ou
no caminho inverso, e sequenciar os seus movimentos.

A nossa abordagem consiste numa otimização rápida que considera
um conjunto de aviões a moverem-se de, e para, a pista, e uma rede
condicionada pela planta do aeroporto. Considera, ainda, restrições
tais como: de rota; separações entre aviões devido ao jet blast; veloci-
dade de cada avião; de tempo para chegadas e partidas, num ambiente
em constante mudança.

O objetivo é minimizar o consumo de combust́ıvel enquanto os aviões
estão no solo (da perspetiva das companhias aéreas) e minimizar o
tempo despendido em cada slot de janela temporal na ocupação do
espaço terrestre do aeroporto, garantindo todas as regras de segurança.
Também os passageiros e o ambiente beneficiam de um conjunto de
movimentações em terra otimizadas.

A otimização proposta fornece uma solução heuristica rápida para cada
evento em tempo real respeitando todas as regras estabelecidas no Ad-
vanced Surface Movement, Guidance and Control Systems (A-SMGCS)
da Organização Internacional de Aviação Civil (ICAO).





– Miriam Lobato da Rosa
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Chapter 1

Introduction

This Internship report was conducted under the Master’s degree in Mathematics with a
minor in Statistics and Operations Research at Aveiro University. The main purpose was
to apply all knowledges acquired over the time passed in Master Degree, pursue new tech-
niques and learn about professional applications as well. The Internship was carried out
at Wide Scope in Lisbon.

Wide Scope’s was founded in 2003 from the belief in ”determination to win”. One im-
portant detail about Wide Scope is that the company is 100% Portuguese. Wide Scope
operates not only in Portugal, but is also present in multiple countries from different con-
tinents through partners.

Wide Scope is a consultant in information technology specialized in combinatorial opti-
mization solutions, applied mathematics and artificial intelligence.

The company is operates in the three market segments (Optimization, Consulting and
Mobile) which it operates in.

Regarding optimization, Wide Scope designs and implements solutions of combinatorial
optimization. Concerning Consulting segment the company implements solutions based
on JAVA enterprise technology and it is the first official partner of Liferay. Respecting
Mobile segment, Wide Scope has a unit to develop mobile applications for iPhone, An-
droid, Blackberry and Windows Mobile, which represent, already, relevant references in
financial sector, entertainment and publishing.

Companies like EMSA, TAP, SIBS, Jeronimo Martins and Fiat are some of Wide Scope’s
clients.

Simultaneously, Wide Scope also invests in research and development, from which the best
optimization technologies rise. All their researches, innovation and best optimization tech-
niques were developed by Wide Scope’s research team.

During the Internship I was able to be part of a case study concerning airport ground
movement.

The main objective of the project was to improve and optimize the ground movement of
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airports, treating the problem from a scheduling point of view.

With air traffic growing fast, airports have to respond to a fast growth of demand and as
consequence airlines have to increase their fleet, destinations and number of connections.
To meet these needs, airports have to operate in their maximum capacities and in order to
do that it is necessary to optimize all operations. For example, ground movement is one
of the operations taking place at airports, optimizing it will help by making less delays,
provoked by moving from a place to another at the airport and prevent conflicts as well.

The objective is to minimize: time spent taxiing, for the airport’s point of view; fuel con-
sumption, for airlines point of view, which could have a good environmental impact; and
time spent at airplane for passengers.

The ground movement problem begins each time an airplane is ready to go from its origin
to its destination. If it is a departing airplane then the origin is at the gate, and destination
is the runway. If it is an arriving airplane, the origin is the runway, and the destination
is the gate. Every time an airplane is ready, it is necessary to schedule the path along
taxiways and besides respecting the airport’s layout, it is also necessary to respect some
restrictions.

The results found with this study were promising and allowed airplanes to save about 5%
of taxiing time. This way delays and conflicts at the ground are reduced as well.

This report was divided in 7 chapters and an appendix. After the introduction, the prob-
lem description is made at Chapter 2. Here, all basic concepts are introduced and some
assumptions are explained. In the next chapter, Chapter 3, is described a mathematical
model to solve the problem giving an exact solution, furthermore it is explained all input
data an decision variables. Since exact methods aren’t always capable of finding the solu-
tion in a reasonable time, heuristic methods were implemented and applied to the problem.
Chapter 4 explains the Local Search Heuristics and meta-heuristic, Tabu Search, used to
improve the initial solution. Next, at Chapter 5 all results are presented and compared.
The last chapter, Chapter 6, conclusions are discussed and some future work in this study
is suggested.
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Chapter 2

Problem Description

With the world’s development and globalization, people need to travel around the globe
as quickly and safest as they can. Everyone is our neighbor and the fastest, cheapest, and
sometimes, the only way to reach destination, is by airplane. Most frontiers are nowadays
open, so catching a flight and enter some country is very easy. One of the consequences is
the increasing air traffic.

EUROCONTROL Seven-Year Forecast states “At European level, the traffic forecasts re-
main mostly unchanged: a moderate growth of 1.2% (±1.2%) for 2014 and more steady
growth of 2.7% (±1%) for 2015. From 2015 onwards, growth is expected to be back at
around 2.7% per year, on average. The 2008 peak of traffic of 10.1 million flights is fore-
casted to be reached again in 2016; (...). In the first part of the horizon (2015-2018), growth
rates will average at around 2.5%, falling off to 2.2% in 2018 when capacity constraints will
increasingly affect the demand in Europe. In the last two years 2019-2020 will see traffic
growth rates averaging at around 3% as additional capacity brought in Turkey will lift the
pressure on the whole network. For the whole 2014-2020 period, flight growth averages
2.5% per year in the base scenario.”[5].
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Figure 2.1: Average annual flight growth 2013-2020 per State (source:EUROCONTROL)

Figure 2.2: Number Of Additional Movements per Day of Each State
(source:EUROCONTROL)
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In what concerns to the world, the growth was equally high.

Figure 2.3: Air transport, passengers carried (source: World Bank)

Due to the fast growth of air traffic, airports have to maximize their capacities. For many
of them, it’s no longer an option to expand terminals and runways. In order to satisfy
the demand, airports must optimize their operations maintaining high security levels while
minimizing conflicts. Facing this new reality International Civil Aviation Organization
(ICAO) proposed an Advanced Surface Movement, Guidance and Control Systems (A-
SMGCS).

Currently the Surface Movement, Guidance and Control Systems (SMGCS) procedures
are based on the principle of “see and be seen”. According to the manual, the number of
accidents during surface movements is increasing, because of air traffic growth, the increas-
ing number of operations that take place in low visibility conditions and the complexity
of airports layout. Facing these problems ICAO proposed an upgrade to the system. The
new manual specifies some system objectives and functions. An A-SMGCS should support
some primary functions, for example, surveillance, routing, guidance and control. The
same A-SMGCS should be capable of assisting authorized aircraft and vehicles to maneu-
ver safely and efficiently on the movement area [8].

Ground movement is critical since it links all airport operations. Airport operations are:
the passenger and baggage management; the gate assignment; runway aircraft assignment
(when there is more then one); departing sequences; arrival sequences and taxiway plan-
ning.

Before proceeding, it is important to understand some concepts about airports layout. As
an example is Lisbon airport layout (fig. 2.4).
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Figure 2.4: Lisbon Airport Diagram
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A runway is “the paved surface design for aircraft take-off and landing. Runways have
different designated orientations (...) and generally some distance from the terminal build-
ings. The runways may be parallel, offset or intersecting”[4]. Furthermore is important
to know some particularities. Near the runway entrance and exit exists Holding points .
Holding points are “a place indicated by painted ground markings illuminated signage and
(often) stop bars where aircraft stop until they are authorized to enter the runway”.

A taxiway is “paved way for aircraft to move to and from the terminals and different parts
of the airport”[4]. At taxiways exists Stop bars and Holding bars . At Holding bars
aircrafts must wait until receive instructions to proceed, while a stop bar is “a series of
lights indicating whether access to a runway is authorized or not”[4] . The aircraft can
proceed when it changes to green.

Figure 2.5: (From left to right) Holding Point near the Runway, Holding Point at
Taxiway and Stop Bar at Taxiway

Conflicts can be divided in three categories, with the following priority, according A-
SMGSC manual [8]:

1. Runway conflicts;

2. Taxiway conflicts; and

3. Apron/stand/gate conflicts.

More details and examples of conflicts are given in appendix.

In line with previous research [1] some assumptions were made:

a) In this problem the routes for each plane are not pre-determined, so every time an
aircraft enters the system (receives green-light or reaches a holding point area at the
runway after landing) routes are redefined for every plane;

b) It is possible to ensure that two airplanes don’t conflict with each other by applying
constraints while they are taxiing, maintaining a certain distance between them. All
parameters are in agreement with what is set in A-SMGCS manual;
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c) Movement speeds are set by A-SMGCS manual and depend, not only, on type and
size of each aircraft but also on which taxiway the airplane is maneuvering;

d) The gate is already assigned when the aircraft arrives;

e) The sequence of runway users is, also, known;

f) For the departing aircrafts is also important to have into account the order they reach
the runway, because it must respect the departing sequence. So the first to take-off
must be the first to attend to the runway.

The ground movement problem is, in other words, a routing and scheduling problem. These
problems can be easily solved for low-activity airports or for low-activity periods. But that
is not what happens for most international airports. There are several aircrafts moving
from and to the runways. The complexity of the problem relies on safety, meaning that
aircrafts cannot conflict with one another.

The problem starts either when an aircraft is authorized to move from its parking position,
to a position where it can start taxiing or when it lands at the runway.

From the departing aircraft’s point of view, start engine represents the beginning of taxi
time. In real time cases there are two kinds of actions for departing aircrafts. These air-
planes have a start engine, when they turn on the engine and the green light when they
can start taxiing. So the main objective is to optimize the time between the moment the
airplane receives green light and the moment it starts taxiing. When the instruction is
given, the goal is to reach the runway as soon as possible, without any conflicts. Obviously
the problem becomes more complicated and more complex the higher the number of air-
planes maneuvering at taxiway are.

For the arriving aircrafts the problem only begins when they reach the holding point that
gives access to the taxiway. The goal is to reach the gate as soon as possible.

2.1 Related Literature

In 2001 at the Genetic and Evolutionary Computation Conference a Genetic Algorithm [11]
was applied to the airport ground movement problem. In this article, a taxi optimization
tool was introduced and tested on Roissy Charles De Gaulle Airport. The authors reflect
on the fact that an optimal path doesn’t mean that is the shortest one. The definition of
optimal path depends on the goal of the project. They also reinforce the idea that is very
difficult to predict an airplane’s future positions because of all the delays and exact landing
time. In order to have a better accuracy it is necessary to update the situation from time to
time. So every δ minutes there is an update. Also, the time window considerate is Tw > δ.
In this case only aircrafts landing or taking-off in the time window will be considered. The
Genetic Algorithm is used every δ minutes.

The Fitness function was used to ensure that solutions without any conflicts were the best.
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A local fitness value, Fi is defined for each aircraft i of a population element. In what
concerns the crossover operator, first two population elements are randomly chosen. For
each parent A and B their fitness function is compared (Ai;Bi) and the children will take
aircraft i of the best parent.

In order to prevent the algorithm from a premature convergence a sharing process is im-
plemented.

The experimental results are done with three hypotheses: random hypothesis; exact hy-
pothesis and middle hypothesis. All of these have to due with the allocation of aircraft to
the runway.

The authors were able to conclude that the Genetic Algorithm is very efficient.

Later in 2004, a mixed-integer programming (MIP) formulation was introduced to rep-
resent the movement of an aircraft on the surface of the airport [13]. Real data from
Amsterdam Airport Schipol was used to demonstrate that the algorithms lead to signifi-
cant improvements of efficiency, with reasonable computational effort. The route is given
and an arrival or departure time for each aircraft is given as well. The decision relays on
the time that each airplane is going to leave a particular point at the airport such that no
conflicts occur, and all airplanes meet the time requirements. A mathematical formulation
as MIP was presented.

For this problem three different variants of rolling horizon algorithms were implemented.
For the first variant, the planning period is split in a series of disjunct time intervals of
equal length. Aircrafts are assigned to an interval, based on the earliest possible time they
can start taxiing. In each iteration the aircrafts belonging to an interval are scheduled
using CPLEX optimizer based on a MIP formulation. The second variant considers that,
if an aircraft that was scheduled in a previous interval but will reach some nodes of its
route in the current interval, the part of the route of this aircraft that lies within this
time interval is now allowed to be rescheduled. The third approach has a sliding window
that tries to spread the undesirable effects among all aircrafts. The number of airplanes
considered depends on the length of the sliding window. So the problem also relies on the
optimal window.

Using all three methods the authors came into the conclusion that the optimal time win-
dow was fifteen minutes. It was possible to reduce the average delay from 20% to 2%.

In 2008 Keith and Richards presented an “Optimization of Taxiway Routing and Runway
Scheduling” using Mixed Integer Linear Programming (MILP)[9]. The scope of the pa-
per is a method for globally optimizing runway and taxiway operations together. Their
objective function is a weighted combination of the final time at the runway, the total of
taxi time, a terminal penalty based on a distance left to travel and the total taxi time.
In order to prevent some conflicts they introduced some constrains, for example, Routing
Constraints to ensure that valid routes are considered. Taxi Timing constrains granting
that separation between two airplanes is maintained, and runway timing that are used to
enforce take-off separation, because of the vortex wake.
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Thought, their approach was not applied to real data. They only replicate London
Heathrow Airport’s north runway east holding point structure. To compare results, the
time of the last movement of the aircraft was used as a metric and they were able to
quantify all possible benefits that the optimizer could bring. They could save an average
of 20%.

Another study done in 2008 by Roling and Visser [12] had on basis the work developed
by Smelting et al. [13] and also used a MILP formulation. The major difference between
these two works is that the method implemented by Smelting allowed range speeds and did
not permit holding or rerouting. Another different aspect is that Smelting et al. did not
used discretized time, so it was not possible to update planning. The authors considered
an horizon planning of T and they assume that at the beginning of each planning update,
a complete set of schedule taxi movements is available for the planning interval [t0; t0 +T ].
They used a discrete time-space network to represent taxi-planning system.

Rolling and Visser present their Taxi Planning Model as a MILP model on which the
objective function equals a weighted combination of the total taxi time and total holding
time. They considered as constraints the node occupancy, the link occupancy, route and
delay choice, and waiting times.

To test their model and theory they used an hypothetical airport layout. They were able
to conclude that, in order to avoid conflicts, some airplanes should be rerouted from their
shortest path.

In 2010 a survey was conducted comparing some researches made about this problem [1].
The survey states that the first approach was to develop a Mixed Integer Linear Program-
ming (MILP). Models were formulated, but the MILP solver wasn’t capable of finding a
solution in a reasonable time, so heuristics methods were applied. So far the only ones
used were Genetic Algorithm (GA), as according to the survey.

This survey reviewed MILP - related research and then the Genetic Algorithms.

Some of the MILP approaches considered a predefined set of routes for each aircraft and
others, besides the scheduling problem had a routing problem too. Also, some of the re-
searches considered only one objective, minimize taxi time. As for others considered a
multi-objective function, minimize taxi time, reducing delays of departures, reducing de-
lays of arrivals, attempt to maximize the number of arrivals and take-offs and minimize
taxi distance.

In what concerns GA, this survey also reviewed related research. For example, in some
researches it was allowed only one delay for each airplane, and some other one generated a
space-time network and the aircraft was routed in order of priority level. After the aircraft
had been routed, the network was adjusted by removing the allocated route along with
potentially conflicting edges, preventing the next aircraft to conflict with the first one.
Some other research considered a two stage approach where the aircrafts with conflicts
were solved in the first stage before the different clusters were unified and solved in combi-
nation in the second stage. Also, there was a two-phase approach, considering the runway
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sequence in the first stage and the ground movement in the second stage.

When comparing different approaches the authors were able to notice some major differ-
ences, such as objectives and constraints, optimality vs. execution time, here they defend
that the solution approach adopted should depend upon the airport, since exact solutions
approaches becomes less practical as loads increase. Because of these differences it is diffi-
cult to determine the gap between the exact approach and heuristic approaches, states the
survey.
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Chapter 3

Mathematical Formulation

To formulate the problem, besides taking into account the assumptions, some modeling
decisions are necessary. The first one is to decide whether to work with continuous time or
discrete time. Similarly to the approach done in [12], a discrete time network representation
is proposed. Time is treated as discrete by dividing the considered planning interval into
periods of equal length, k= 1, 2, ..., K, where K is the total number of periods. The
approach followed is to minimize taxiing time plus a penalty for delays for takeoffs.

The initial aircraft positions, holding points at intersections, holding positions of taxiway,
and the runway are considered as nodes.

In each time period an aircraft can be taxiing or waiting. An aircraft can wait at the
origin, or at each node, preventing conflicts from happening (for example having two
aircrafts reaching the same node or having two aircrafts disrespecting the safety margin).
An aircraft is not obligated to wait at any node if there is no conflict ahead.

It is also important to see that some taxiways intersect with each other. To respect
constraints and to solve the problem, artificial nodes were introduced. At this nodes
airplanes cannot wait. The other nodes represent holding points, holding bars or stop
bars.
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Figure 3.1: Example a taxiway intersection

Figure 3.2 shows how the situation was solved.

Figure 3.2: Artificial Node

The ground movements of an airport can be modeled as flows on an expanded directed
graph, G = (V,A), where V is the set of nodes which represent a copy of the original set
of nodes (the initial aircraft positions, holding points at intersections, holding positions of
taxiway, artificial nodes, and the runway) for each time period. Set A is the set of arcs,
representing the existing connections between the nodes.

An example of a movement of an aircraft is illustrated in figure 3.3. The aircraft starts at
its origin node “O” taxiing to node 1. Here the aircraft waits one period until proceeds to
node 2. This happens because the aircraft is going to conflict with an other aircraft. At
node 2 it hasn’t to wait, proceeding immediately to the next node, 3. The aircraft reaches
its destination, after 15 periods.
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Figure 3.3: Example of the movement of an aircraft in a time expanded network.

3.1 Notation

The input data is the following:

• G = (V,A) is the input direct graph. Indexes i, j are used to identify nodes belonging
to V .

• P = {1, ..., |P |} is the set representing the airplanes in the system. The set of planes
is composed by two subsets, PD representing departing aircrafts and PA representing
arriving airplanes. PD ∪ PA = P . The indexes used to identify aircrafts in P are p
and q;

• PTp is the scheduled time for airplane p ∈ P to use the runway, it also defines the
runway sequence implicitly;

• T = {1, ..., |T |} is the set representing the number of periods considered;

• C = {1, ..., c̄} are the different categories of airplanes;

• PCp represents the airplane type/category;

• β is penalty per time unit of delay at runway;

• ap is the predecessor plane p ∈ P.;

• spp is the separation time based on the category of airplane p ∈ PC;
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• op ∈ V is the initial position (origin) of aircraft p ∈ P ;

• dp ∈ V is the final position (destination) of aircraft p ∈ P ;

• Set K = {0, ..., k} of periods. To identify periods t, l index are used;

• ki,j,p is the taxi time from i to j for aircraft p;

• STp is the time at which airplane p ∈ P is available at origin.

Furthermore, some decision variables were defined:

• Binary variable xijpt, p ∈ P, (i, j) ∈ A, t ∈ T is 1 if aircraft p passes through arc
(i, j) ∈ A at period t and zero otherwise;

• Binary variable yipt, p ∈ P, i ∈ V, t ∈ T is 1 if aircraft p holds in position i ∈ V at
period t and zero otherwise.

• Binary variable zitc, i ∈ V, t ∈ T, c ∈ C is 1 if an aircraft of type c is in position i at
period t and zero otherwise.

Only variables related to important nodes and arcs are defined.

3.2 Model

The problem can, now, be formulated. The objective function is given as follows.

min
z

∑
p∈PD

βp

∑
i∈V

∑
t∈T |t>ki,dp,p

txi,dp,p,t−ki,dp,p

− PTp


︸ ︷︷ ︸
penalty for late arrival at the runway

(3.1)

+
∑
i∈V

∑
j∈V

∑
p∈P

∑
t∈T

xijptkijp︸ ︷︷ ︸
time spend taxiing

+
∑
j∈V

∑
p∈P

∑
t∈T

yjpt︸ ︷︷ ︸
time spend holding

In the objective function, if in the first term xi,dp,p,t−ki,dp,p = 1, the penalty for late arrival
is β(t− PTp), where t− PTp is the difference between the time t the airplane reaches the
runway and the period it should had arrived, PTp. The second term takes into account taxi
time for each airplane. When xijpt = 1 it sums the cost of going from i to j for airplane p,
kijp. The waiting times of aircrafts are given by the third term when yjpt = 1.
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Subject to, ∑
i∈V

xop,ip,STp + yop,p,STp = 1 ∀p ∈ P (3.2)∑
i∈V

∑
i∈T

xi,dp,p,t = 1 ∀p ∈ P (3.3)∑
i∈V

(t−kijp)>STp

xijp,t−kijp + yjp,t−1 =
∑
i∈V

xjipt + yjpt
∀j∈V,p∈P,t∈T,
t>STp,j 6=dp (3.4)

∑
i∈V

∑
t∈T

t>ki,dp,p

txi,dp,p,t−ki,dp,p >
∑
i∈V

∑
t∈T

t>ki,dap ,ap

txi,dap ,ap,t−ki,dap ,ap

∀p∈PD,
ap>0,ap∈PD (3.5)

∑
i∈V

∑
t∈T

t>ki,dp,p

txdp,i,p,t−ki,dp,p >
∑
i∈V

∑
t∈T

txoap ,i,ap,t
∀p∈PD,

ap>0,ap∈PA (3.6)

∑
p∈P

∑
i∈V

∑
t1∈{t,...,t+spc−2}

t16nt
t1>kijp

xijp,t1−kijp 6 zjtc +M(1− zjtc) ∀c∈C,t∈T,j∈V,
t>1 (3.7)

∑
c∈C

zitc 6 1 ∀i ∈ V, t ∈ T (3.8)∑
p∈PCc

∑
i∈V |t>kijp

xijp,t−kijp +
∑

p∈PCc

yjp,t−1 = zjtc ∀j ∈ V, t ∈ T, c ∈ C (3.9)

xijpt ∈ {0, 1} ∀i∈V,j∈V,
∀p∈P,t∈T (3.10)

yjpt ∈ {0, 1} ∀j∈V,p∈P,
∀t∈T (3.11)

zjtc ∈ {0, 1} ∀j∈V,t∈T,
∀c∈C (3.12)

Constraints are divided in flow conservation constraints (3.2 - 3.4), runway sequence
restrictions (3.5 - 3.6), separation time between airplanes (3.7), conflict restric-
tions (3.8 - 3.9) and binary constraints (3.10 - 3.12).

Equations (3.2) determine that each aircraft waits at origin or starts taxiing. Equations
(3.3) assure that the airplane p always reaches its destination. Constraints (3.4) guarantees
flow conservation at each expanded node. To respect this constraint either the airplane
is at j in period t − 1 and waits at that position one period, or it is at node i at period
t− ki,j,p (ki,j,p is the time that aircraft p spend taxiing from i to j) and reaches node j at
time t, respecting the equation.

Referring to the runway sequence, inequalities (3.5) assure that any two departing aircrafts
using the runway respect the given sequence. If there are two departing aircrafts using the
runway p ∈ PD, ap ∈ PD and xi,dap ,ap,t−ki,dap ,ap

= 1 the restriction guarantees that air-

plane p only reaches the runway at time t later than the preceding airplane. Similarly
(3.6) ensures that if there is an departing aircraft (xop,i,p,t = 1, p ∈ PD) leaving before an
arriving one (xi,dap ,ap,t−ki,dap ,ap

= 1, ap ∈ PA) the departing time of the first is lower then
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the arriving time of the later one.

The separation constraints (3.7) guarantee that two aircrafts maintain a safety margin
which depends on the type airplane that goes ahead. Inequality (3.7) assures that if
xi,j,p,t1−ki,j,p = 1 then the aircraft p will reach j in one of the following time periods, t, t+1,
..., or t+ sp− 2, where sp is the separation time between two airplanes. It is important to
refer that the sequence of arriving airplanes ir guaranteed, known and it doesn’t change.

Inequalities (3.8) guaranty that either the node i is occupied or not. Equations (3.9) to-
gether with 3.8 assure that only one airplane at a time is in node j at period t.

Restrictions (3.10), (3.11) and (3.12) guarantee that variables are binary.
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Chapter 4

Heuristic Methods

The airport ground movement problem is a NP-Hard problem [7]. The particularities of
the problem make it very difficult to find an optimal solution through exact methods within
an acceptable runtime.

Hence, heuristics methods were implemented, in JAVA language, to obtain good solutions
in a short runtime. For example, an instance with 36 airplanes found a solution within
0.82 seconds.

In order to evaluate the quality of the solutions provided by the heuristic algorithms, they
are compared against the optimal solutions obtained by the exact approach (Branch and
Cut).

Turning the ground movement problem in a scheduling problem is simple. Taxiways repre-
sent resources that are used to fulfill a task. Each airplane needs a set of taxiways to reach
its destination. So the set of taxiways that each airplane uses are seen as tasks. Airplanes
can use different resources to reach destination, so what combination of resources and times
is the best to minimize costs?

Summarizing, scheduling consists in mapping the tasks of airplanes to resources and pro-
cess times, given some restrictions.

It is possible to divide the problem into two parts: first, for each plane, it is necessary to
calculate all possible routes between an origin and a destination. This first part is exact.
The second part begins after having all possible routes for every plane in the system, and
the problem is to choose a route for each plane and schedule the airplanes through the
taxiways.

In order to obtain an initial solution there is a preprocessing of data that can be seen as the
first part of the problem. In preprocessing the k-shortest path between every two nodes are
collected. This solution is exact and obtained through the implementation of Depth-First
Search Algorithm (DFS). Still in the preprocessing of data the sequence of runway user is
determined, having into account the time each plane has to use the runway.

After this preprocessing of data there were two constructive algorithms implemented. The
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difference between these two constructive algorithms has do to with the way to choose
the path each airplane will use. One of the algorithms chooses the shortest path for each
airplane whereas the other chooses randomly between the k-shortest paths.

In order to improve the initial solutions obtained with the constructive algorithms, local
search, iterated Local Search (ILS) and Tabu Search (TS) were implemented.

In what concerns ILS two different processes of local search were implemented, Steepest
Ascent and First Ascent, which will be explain ahead.

In what respects TS, three different types of search were implemented that can be used
individually or at the same time, as it will be explained further ahead.

In the end the goal is to compare the results obtained with constructive heuristics, the
results obtained with improvements and meta-heuristics.

4.1 Preprocessing Data

The first part, preprocessing data, not only takes care of determining all possible routes
between two different nodes, but also includes the determination of the runway sequence.
By receiving the time that each airplane is supposed to use the runway, it is possible to
sort airplanes from the earliest to the latest and make a sequence. Each airplane has an
origin node, a destination node, a plane number and a time at runway. Also, information
about the airport network is given. After receiving this information, data is pre-processed.

Figure 4.1: Pre-process Data

20



4.1.1 Depth-First Search Algorithm

The Depth-First Search (DFS) is an algorithm to cross or search through a graph. The
algorithm is based on given an initial vertex (research center) v and, from that vertex on,
search a new research center w, which is adjacent to v and was not yet used as a research
center. In case there is no such vertex, the process returns to the previous vertex (in case
there is one), repeating the process recursively. This procedure ends when there are no
more vertices’s to be used as research centers [2].

Here DFS algorithm is going to be used to search all possible routes between two vertices
and using a directed graph.

It is important to notice that for each airplane the destination is a fixed node, but the
origin is dynamic, because if an airplane enters the system when an aircraft is already
taxiing, the origin of this airplane is going to be the node where it was standing. That is
why it is relevant to know all routes between two different nodes.

1 Input : A graph G and two ver tex (v ( o ) , v (d) ) , o r i g i n and de s t i n a t i on o f G
2 procedure DFS(G, v ( o ) , v (d) )
3 label v ( o ) as v i s i t e d
4 for a l l edges from v( o ) to w in G. adjacentEdges (v ( o ) ) do
5 i f ver tex w i s not l ab e l ed as v i s i t e d then
6 r e c u r s i v e l y c a l l DFS(G, v ( o ) , w)
7 i f w equa l s v (d) add w to L i s t o f path
8 Output : Al l paths from o r i g i n to d e s t i n a t i on .

Figure 4.2: DFS - Pseudo-Code

All possible routes, between two vertices’s, are storage data.

After generating all possible routes between two nodes, the paths are sorted from the
shortest to the longest.

At this point a decision is made, only some of the routes are considered. First the 10-
shortest routes are considered. Additionally, given the estimated taxi time for the shortest
route, only those routes which taxi time is less than 50% of the shortest time are considered.
This should be a parameter, chosen by the user that depends on the number of airplanes
and the airport layout.

4.2 Constructive Heuristics

This method starts from an empty solution and repeatedly extends the current solution
until a complete one is constructed. The solution is only completed if all aircrafts tasks
are labeled. The constructive heuristic uses the hour that each plane uses the runway
(runway user sequence) to decide which one uses taxiways first. When there is more then
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one runway, all hours are compared and an unique list is built, from the earliest plane on
the runway to the latest one.

Figure 4.3 illustrates how to reach the initial solution. And for each origin-destination pair
k-shortest routes are assigned to the airplane.

Figure 4.3: Constructive Scheme

As it was referred before the initial solution is obtained through a constructive algorithm.
Two constructive heuristics were implemented, one uses the shortest path between an
origin and a destination. By shortest path is meant the one with less taxi time. The other
constructive heuristic chooses the path randomly between the k-shortest paths.

These will be the constructive heuristic in use.

4.2.1 Constructive Heuristic Using Shortest path

The path chosen for each airplane is the shortest path, has the name implies. The initial
solution is built from there.
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1 Input : Al l a i r c r a f t s and runway sequence
2 L i s t o f a i r c r a f t s so r t ed by the hour at r e s p e c t i v e runway , from the

e a r l i e s t to l a t e s t
3 from i <−− 1 to l a s t user
4 choose the s h o r t e s t path o f plane i
5 schedu le a l l t a sk s o f the route o f plane i
6 Output : Schedule for a l l a i r c r a f t s in taxiways

Figure 4.4: Constructive shortest-path Pseudo-Code

4.2.2 Constructive Heuristic Using Random path

By random search is meant that instead of choosing the shortest path for the route of
every plane, that choice is random, based on the number of available routes. A random
generator is implemented, in order to choose the route for aircrafts, and then the same
constructive heuristic is applied.

1 Input : Al l a i r c r a f t s and runway sequence
2 L i s t o f a i r c r a f t s so r t ed by the hour at r e s p e c t i v e runway , from the

e a r l i e s t to l a t e s t
3 from i <−− 1 to l a s t user
4 choose randomly a path o f plane i
5 schedu le a l l t a sk s o f the route o f plane i
6 Output : Schedule for a l l a i r c r a f t s in taxiways

Figure 4.5: Constructive shortest-path Pseudo-Code

4.2.3 Validation - Scheduling

Some considerations are necessary in what concerns scheduling airplanes in taxiways. For
example, looking at the problem as a scheduling one, tasks are the taxiways that airplanes
have to travel from the origin to its destination. In this sense, each airplane has a list
of tasks to fulfill. To accomplish a task a resource will be needed, so taxiways are also,
resources. Therefore, two airplanes cannot use the same resource at the same time and
besides that, they cannot alter the order that each airplane fulfills its list of tasks. So
when an airplane begins its path not only has to respect the order of tasks but also has to
respect the establish order of resource utilization.

This way the goal is to delay or anticipate the start engine of a departing airplane, so the
time spend taxiing is minimum and to prevent congestion in taxiways or waiting for take-
off on runway before the scheduled time. For airplanes that arrive at airport the objective
is to take them to the gate as soon as possible. The longer they stay at taxiways waiting
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is more likely to provoke bottlenecks.

The initial solution is not necessarily the optimal one. Despite all aircrafts are using the
shortest path between origin and destination, if there is a common taxiway to several
routes of airplanes is possible to create a bottleneck near that area. Situations like this one
can make taxi time much bigger than the estimated, and using other route may cause a
reduction in taxi time. Finding all neighbors of the initial solution, and their own neighbors
makes possible to choose the best plan.

4.3 Local Search Heuristics

4.3.1 Iterated Local Search

The iterated Local Search method uses the constructive heuristic with random paths, and
then uses a local search to find better solutions. In other words, the random search is
performed and then a local search is made based on the solution found.

Two different approaches of the ILS method were used, First Ascent and Deepest Ascent.
The main difference between both methods is that in First Ascent method when a better
solution is found the search stops while in Deepest Ascent, despite finding a better solution
the search goes on until covers this neighborhood.

1 Input : A i r c r a f t s , Runways Sequence
2 for a l l a i r c r a f t s
3 choose a random route
4 con t ruc t i v e
5 va l i d a t i o n − schedu le
6 l o c a l s earch
7 Output : Plan

Figure 4.6: Iterated Local Search Pseudo-Code
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Figure 4.7: Iterated Local Search Scheme

4.3.1.1 Local Search - First Ascent Method

First Ascent method is a local search based on the first best neighbor found. The Random
Search heuristic gives a solution and then First Ascent method searches for the first better
neighbor. This search is made by changing the route, chosen randomly by the Random
Search, for one plane at a time. For example, given 3 planes the random search determined
that plane one has route 2, plane two has route 3, and plane 3 has route 1. First Ascent,
searches, in plane one, all routes, one by one. When a route that improves the current
solution is found the search stops. And so on for the other planes.
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1 Input : Plan
2 for i<−−1 to l a s t a i r c r a f t
3 for j<−−1 to l a s t route o f a i r c r a f t i
4 change to route j
5 i f new plan be t t e r
6 plan = new plan
7 STOP
8 Output : Plan

Figure 4.8: First Ascent Pseudo-Code

4.3.1.2 Local Search - Steepest Ascent Method

Steepest Ascent method is a local search based on search through every neighbor, given
some criteria, and chooses the best one. Using Random Search to find the initial solution,
the steepest ascent looks for the best neighbor. This search is made by changing the route
chosen for one plane at a time. For example, given 3 planes the Random Search determined
that plane one has route 2, plane two has route 3, and plane 3 has route 1. Steepest Ascent,
searches, in plane one, all routes, one by one, choosing the route that improves solution. If
there is no route that improves solution, the solution found by random search maintains.
And so on for the other planes. The major difference between Steepest Ascent and First
Ascent is that the First Ascent stops in the first better neighbor, while Steepest Ascent
keeps searching despite having found a better solution already.

1 Input : Plan
2 for i<−−1 to l a s t a i r c r a f t
3 for j<−−1 to l a s t route o f a i r c r a f t i
4 change to route j
5 i f new plan be t t e r
6 plan = new plan
7
8 Output : Plan

Figure 4.9: First Ascent Pseudo-Code

4.4 Tabu Search

When standing at a local minimum, it is not always possible to reach other solutions by
conducting a simple local search. For that reason a meta-heuristic may be used. Although
meta-heuristics do not guarantee that the globally optimal solution can be found, it allows
to search over a substantial set of feasible solutions with a computational effort much lower
than exact algorithms, in general.
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Tabu Search is a meta-heuristic that guides a local heuristic search procedure to explore
the solution space beyond local optimality [6]. The local procedure is a search that uses
an operation, known as “move” to define the neighborhood of any solution. Tabu Search
imposes or introduces some restrictions in order to point some direction in the search
process to reach difficult regions of the problem. These directions work in different ways,
such as to exclude alternative paths and as consequence alternatives solutions, or to impose
a different path based on evaluation and probability of selections. Another particular aspect
of Tabu Search is its adaptive memory, providing a flexible search. Many restrictions are
enforced by making reference to memory, which means the same solution cannot be taken
into account twice.

Collecting information during the search process allows Tabu Search to be more effective.

Figure 4.10 illustrates how Tabu Search is working. Receiving a plan a “move” is made to
choose a neighbor. When a neighbor is chosen it is important to verify if the new plan is
still valid. As explained earlier changes can cause invalid plans. If it has no invalid moves,
the new plan is compared with the input plan. If it is better a new solution is found. If
not, it is necessary to skip this local minimum using a local search. Mildest Descent was
the chosen one and it will be explained further in the report.

Figure 4.10: Tabu Search Scheme

27



It is important that the search is intelligent to be more effective than random search or
Iterative Local Search, so intelligent inhibitions or restrictions are necessary.

In this problem there are three types of moves : changing routes, changing the sequence
aircrafts use taxiways and when there is more then one runway and a unique sequence is
made based on the time of use of runway, change the sequence but only for aircrafts that
use different runways at same time.
Combining all three “move” it is possible to go from a solution to another.

Figure 4.11: Tabu Search Moves Scheme

4.4.1 Changing Routes

When the solution is analyzed it’s important to understand if the estimated taxi time
for each aircraft is significantly lower then the effective taxi time. So for each aircraft is
compared the time spend taxiing with the estimated taxi time of other routes. The route
is only changed if it improves the solution.
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1 Input : Plan
2 for a l l a i r p l a n e s
3 for a l l a i r p l an e route s
4 i f t ax i time > t ax i time est imated next route
5 route = next route
6 Contruct ive c on s i d e r i ng these route s
7 eva luate s o l u t i o n
8 i f i s b e t t e r
9 plan = new plan
10 Ouput : Plan

Figure 4.12: TS - Changing Routes Pseudo-Code

4.4.2 Changing Sequence in Taxiways

The initial plan uses the runways users sequence to establish the sequence to be used at
taxiways. Without knowing which sequence is the optimal one it is possible to try every
sequences, granting that the hour at runway is respected and the sequence of aircrafts at
the runway is also respected. These are the types of moves that can cause cycles.

1 Input : Plan
2 for a l l taxiways
3 L i s t taxiwayUser
4 for i <−− 1 to l a s t a i r c r a f t us ing taxiway
5 temp = taxiwayUser ( i +1)
6 taxiwayUser ( i +1) = taxiwayUser ( i )
7 taxiwayUser ( i ) = temp
8 va l i d a t e new plan
9 i f new plan i s va l i d
10 i f new plan i s b e t t e r
11 plan = new plan
12 Output : Plan

Figure 4.13: TS - Changing Sequence in Taxiways Pseudo-Code

Figure 4.14 shows an example of changing sequence at taxiways. At each “move” two tasks
at same taxiway are changed, until all taxiways are covered.
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Figure 4.14: Tabu Search - Changing Sequence at Taxiways
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4.4.3 Change Taxiway Sequence - Aircrafts using different run-
ways at same hour.

Many airports operate with more then one runway. The only rule they have to respect is
that when there is more then one runway operating at same time, the runways must be
parallel. The runways that are operating are beyond the scope of the project, since that is
input data. Since Constructive Heuristic uses the runway users sequence to establish the
sequence of taxiways users, when there is more then one runway and only one sequence
is made, is possible to change the sequence, by changing airplanes with the same our at
runway.

1 Input : Plan and Sequence at each Runway
2 Form an unique sequence so r t ed by hour at runways
3 for a l l a i r c r a f t s in sequence
4 i f hour ( a i r c r a f t ( i ) ) == hour ( a i r c r a f t ( i +1) )
5 change sequence
6 Contruct new plan
7 i f new plan i s b e t t e r
8 plan = new plan
9 Output : Plan

Figure 4.15: TS - Change Taxiway Sequence: Aircrafts using different runways at same
hour Pseudo-Code
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Figure 4.16: Tabu Search - Changing Sequence

Figure 4.16 shows how these “moves” are made. First aircraft 1 changes with aircraft 2 in
every taxiway, then the next “move” is to change between the other two aircrafts with the
same hour at runway.

4.4.4 Mildest Descent

Every once in a while it is possible that the solution has reached a local minimum, and
searching in similar neighbor will not help to improve the solution. To get out of this local
minimum instead of continuing searching with first ascent end steepest ascend (methods
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explained above), it is necessary to apply Mildest Descent. This method consists in, given
all possible neighbors choose the less worse, in other words chose the second best plan. To
the solution found it is applied the TS algorithm which will generate different neighbors,
as the input plan is going to be different.
It is important to say that the solution will not improve by applying this method alone.

This method only allows, when standing at a local minimum, to unlock new possible
neighbors.

1 Input : Plan
2 for i<−−1 to l a s t a i r c r a f t
3 for j<−−1 to l a s t route o f a i r c r a f t i
4 change to route j
5 i f new plan be t t e r
6 plan = new plan
7 add plan to l i s t
8 s o r t l i s t
9 Choose second on l i s t
10 Output : Plan

Figure 4.17: Mildest Descent Pseudo-Code

4.4.5 Validation - Syntax

Validation doesn’t make sense for the initial solution, but once local changes are made,
they can create cycles, turning impossible for airplanes complete all tasks.

An example of plan with no cycles is represented in figure 4.18:

Figure 4.18: Constructive with no cycle

In figure 4.19 when Aircraft 2 - Task 3 is completed is not possible to complete any other:
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Figure 4.19: Constructive with cycle

In order to avoid situations like 4.19 is important to validate the plan for possible cycle
existence.

1 Input : Plan
2 L i s t o f a l l t a sk s from plan
3 do while l i s t i s not empty
4 from i <−− 1 to l a s t task o f l i s t
5 i f i has no pr edec e s s o r
6 remove from l i s t
7 Output : Val id or Not va l i d

Figure 4.20: Validation Syntax Pseudo-Code

So every time a movement is made it is necessary to search for cycles in the solution.
Because of this, the syntax validation is applied along with the improvement heuristics
and meta-heuristics.
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Chapter 5

Results

All results were achieved using a PC with an Intel(R) core (TM) 2 duo CPU T8300 @ 2.4
GHZ.

During this research the results were obtained by using constructive heuristics, iterated
Local Search, Tabu Search and an exact method, Branch and Cut.

The first results that were compared were between the two constructive heuristics. Then
the results obtained with ILS, TS and Branch and Cut were analyzed.

The best heuristic procedure will be compared with the exact method, Branch and Cut.

The comparison between all methods was done with real data from Lisbon Airport.

5.1 Constructive Heuristics

First of all it is important to understand the differences between the two constructive
methods. As stated before one uses the shortest path for each airplane and the other one
uses a random path chosen between the k-shortest paths of each airplane.

From the observation of results it was possible to conclude that using the shortest paths
was always better, despite the difference is not that big.
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Results
Hour Difference

8:00AM 75s
9:00AM 70s
10:00AM 95s
11:00AM 105s
12:00PM 60s
13:00PM 115s
15:00PM 80s
16:00PM 75s
17:00PM 80s
18:00PM 95s
19:00PM 60s

Table 5.1: Comparative Table - Constructive Heuristic

5.2 Comparing iterated Local Search with Tabu Search

The first thing done, when analyzing both results with the same running time is to under-
stand which method presents the best solution. The running time chosen was one second.
It was possible to verify that ILS always had worst solutions, so the next step was to verify
how long would take ILS to reach the same solution as TS.

To find the same solution ILS needed an average of 6 hundredths of a second more.

Results
Hour ILS TS

8:00AM 1.20s 0.82s
9:00AM 1.06s 0.34s
10:00AM 1.02s 0.17s
11:00AM 1.03s 0.29s
12:00PM 1.02s 0.28s
13:00PM 1.03s 0.31s
15:00PM 1.04s 0.38s
16:00PM 1.09s 0.33s
17:00PM 1.05s 0.16s
18:00PM 1.03s 0.27s
19:00PM 1.03s 0.27s

Table 5.2: Comparative Table - ILS versus Tabu Search
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5.3 Comparing Tabu Search with Branch and Cut

After concluding that TS was the best method, this meta-heuristic will be compared with
Branch and Cut (BC), the exact method, using XPRESS. Not only results will be compared
but also the running time of each method.

The first limitation in what concerns runtime and memory, was that XPRESS optimizer
could only process short time intervals. So the problem was divided in time windows, with
a restricted number of airplanes and time periods, therefore the planning horizon was only
fifteen minutes. Analyzing all different time windows the one that had more planes had 11
planes.

So, the solutions found by both methods need to be compared in order to understand if
the meta-heuristic result is close, or not, to the optimal solution. Accordingly, the time
windows were, also, applied to the TS algorithm.

It was possible to notice that TS always found the same solution as BC except in one case.

With such short time windows the number of planes considered in each iteration is very
low. In fact the simulation with the largest number of airplanes had only 11 planes. With
such low number of airplanes using taxiways there aren’t any conflicts to manage, therefore
it is not possible to make reliable conclusions.

The pick hours where chosen. The pick hour hour in the morning from 8am to 9am and
in the afternoon the pick hour is from 19pm to 20pm.

The next table shows some comparisons:

Results
Hour BC TS

8:00AM - 8:14AM 481s 0.13s
8:15AM - 8:29AM 248s 0.09s
8:30AM - 8:44AM 770s 0.09s
8:45AM - 8:59AM 662s 0.11s
19:00PM - 19:14PM 445s 0.09s
19:15PM - 19:29PM 53s 0.03s
19:30PM - 19:44PM 169s 0.07s
19:45PM - 19:59PM 262s 0.07s

Table 5.3: Comparative Table - Branch and Cut versus Tabu Search

As table 5.3 shows the heuristic methods, in particular Tabu search, were much faster then
the exact one. One second was the time used by Tabu Search to find the best solution
between all the admissible ones and it found the optimal solution.

At the time window 8:30AM to 8:44AM the solution found in both methods is the optimal
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solution, but one airplane uses an alternative path. This happens, because a few paths
have the same taxi time and this was one of those cases. For the remaining time windows
the results were exactly the same.

5.4 Comparing the Solution from TS Heuristic with

the Real

With so short time windows it was not possible to have real conclusions about the time
saved for each airplane. So to accomplish some reasonable conclusion Tabu Search was
applied to an entire day, with 1h time windows. With these time windows it was possible
to simulate conflicts and understand how to solve them. At appendix C it’s an example of
how long an airplane took with TS versus Real.

In one day at Lisbon Airport (LPPT), airplanes spend taxiing 3251 minutes. A departing
aircraft spends a minimum of 4 minutes taxiing and a maximum of 27 minutes, while ar-
riving aircrafts spend a minimum of 2 minutes and a maximum of 10 minutes taxiing as it
is shown in table (5.4).

Comparing with the Tabu Search solution, a total of 3072 minutes spend taxiing, a depart-
ing aircraft used taxiways with a minimum of 1 minute and a maximum of 10 minutes. In
what respects to arriving aircrafts, they spend a minimum of 3 minutes and a maximum
of 24 minutes taxiing.

Results
Movement Min

LPPT
Min TS Max

LPPT
Max TS Average

LPPT
Average
TS

Arriving 2 3 10 24 5 12
Departing 4 1 27 10 11 4

Table 5.4: Comparative Table

Tabu Search allowed to save 5.5% in taxi time.

The next table, table (5.5) presents a summary of results.

Airplanes 410
Taxi Time Spend LPPT 3251 minutes
Taxi Time Estimated TS
heuristic

3072 minutes

Savings 5.5%

Table 5.5: Aggregate Table

Analyzing Lisbon Airport data allowed to understand that departing aircrafts were taking
longer paths to reach destination (runway) than arriving aircrafts (gate/apron). This

38



happens because from taxi planning point of view is easier to make departing aircrafts
form a queue (minimizing the number of conflicts) than make arriving aircrafts stop in
strategic points so they don’t create bottlenecks near the runway exits or on their ways to
aprons.

Tabu search not only granted a saving of 5.5% of taxi time, but also moved waiting times
to arriving airplanes from departing ones.

A consequence of these decisions is that airplanes spend less fuel. A departing aircraft
besides the weight of passengers and luggage has also the weight of fuel, and an arriving
aircraft has the same weight in what concerns passengers and luggage but less in fuel. So
departing airplanes are heavier than the arriving ones. These decision allows airplanes to
spend less fuel. Noticing that an heavier airplane spends more fuel, if it also spends more
time taxiing then they will spend even more fuel. Transferring the waiting times to lighter
airplanes allows to save in fuel consumption as well.
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Chapter 6

Conclusion

With the increasing of the air traffic and the problems that come with it, it became im-
portant and crucial to optimize the airport ground movement. So the scope of this project
was the ground movement problem at the airports.

After explaining the problem, its particularities and some concepts, a mathematical for-
mulation is presented in order to solve the problem with an exact method. However, this
is a NP-hard problem, so exact methods do not find the optimal solution in an acceptable
time. Therefore, after analyzing what was the best method to find a better solution in
short runtime, it was used a constructive heuristic, using the shortest path, and a meta-
heuristic to reach the best solution possible.

The exact method was used to understand how good were the solutions found by heuristics
and meta-heuristics, given a short running time.

After applying real data to the exact method and a meta-heuristic method it was possible
to reach some conclusions.

The exact methods used in XPRESS optimizer had some limitations. Those limitations
lead to the division of the problem in several time windows and each time window had only
a few airplanes. So comparing the results with real data didn’t make sense, because there
were no conflicts and airplanes reach their destination without any problems, making taxi
time much lower.

Instead, the exact model was compared with a meta-heuristic, Tabu Search. It was possi-
ble to conclude that the meta-heuristic implemented to solve the problem had satisfying
results. For so short time windows, Tabu Search always found the optimal solution.

Hence, it was good enough to experiment with real data from Lisbon Airport and compare
results with the real time aircrafts spent taxiing and the estimated taxi time by Tabu
Search.

Tabu Search allowed to save about 5.5% of time spending taxiing. This save was possible
because of the type of the decision made by Tabu Search. Tabu search moved waiting times
to arriving airplanes from departing ones. These decision, besides being for the airport,
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are good news to airline companies because heavier airplanes spends more fuel, implying
that departing airplanes spend more fuel, so this are the ones that should have less taxi
time. Moving waiting times to lighter airplanes saved in fuel consumption.

As for future work the implementation should be ready to receive online information about
airplanes and their movements in the airport along with where they are every second. This
way, the origin must be a dynamic input and Tabu Search must be improved to take less
then one second to reach a solution.

It is important to minimize other objectives. Considering the same problem but instead
minimizing the taxiing time per airplane, minimize the number of conflicts at taxiways or
the fuel consumption, for example.
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Appendix A

According to the A-SMGCS there are several conflicts at airports that must be considered
in order to avoid accidents. Most of them were taken into account in the project so it
would as real as possible.

Runway conflicts can be defined as [8]:

• aircraft arriving to, or departing aircraft on, a closed runway;

• arriving or departing aircraft with traffic on the runway;

• arriving or departing aircraft with moving traffic to or on converging or intersecting
runway;

• arriving or departing aircraft with opposite direction arrival to the runway;

• arriving or departing aircraft with traffic crossing the runway;

• arriving or departing with taxiing traffic approaching the runway;

• arriving aircraft exiting runway at speed with converging taxiway traffic;

• arriving aircraft with traffic in the sensitive area;

• aircraft exiting runway at unintended or non-approved locations; and

• unidentified traffic approaching the runway.

In what concerns taxiway conflicts, they can be defined as follows [8]:

• aircraft on a closed taxiway;

• aircraft approaching stationary traffic;

• aircraft overtaking same direction traffic;

• aircraft with opposite direction traffic;

• aircraft approaching taxiway intersections with converging traffic;

• aircraft taxiing with excessive speed;
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• aircraft exiting the taxiway at unintended or non-approved locations;

• unauthorized traffic on the taxiways;

• unidentified traffic on the taxiways; and

• crossing of a lit stop bar.

Some examples of a conflicts at taxiways are illustrated in next figures:

Figure 1: Taxiway Conflict

Figure 2: (From left to right) Aircraft approaching taxiway intersections with converging
traffic; Aircraft overtaking same direction traffic and Aircraft with opposite direction traffic

The last one, apron/stand/gate conflicts are defined as [8]:
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• aircraft movement with conflicting traffic;

• aircraft movement with conflicting stationary objects;

• aircraft exiting the apron/stand/gate area at unintended or non-approved locations;
and

• unidentified traffic in the apron/stand/gate area.

In what concerns safety the A-SMGCS it is important to take in consideration the “Runway
Incursion Detection Scenario” as shown in figure 3 or the “Longitudinal Spacing Parame-
ters” in figure 4.

Figure 3: Runway Incursion Detection Scenario (source: A-SMGCS)
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Figure 4: Longitudinal Spacing Parameters (source: A-SMGCS)
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Appendix B

Here it will be presented the JAVA code implemented.

Constructive:

1 public class GreedyConstruct ive {
2 public Plan cons t ruc t ( S imulat ion s imulat ion , int p , int r ) {
3
4 Plan plan = new Plan ( s imu la t i on ) ;
5
6 Map<Track , ArrayList<Task>> gantGreedy = new HashMap<>() ;
7
8 for ( Job job : plan . getJobs ( ) ) {
9 Plane plane = job . getPlane ( ) ;
10 i f ( plane . equa l s ( plan . getJobs ( ) . get (p) . getPlane ( ) ) ) {
11 job . setScheduledRoute ( job . getAl lScheduledRoute ( ) . get ( r ) ) ;
12 for (Task task : job . getScheduledRoute ( ) ) {
13 Track track = task . getResource ( ) ;
14 task . se tP lane ( plane ) ;
15 i f ( gantGreedy . get ( t rack ) == null ) {
16 gantGreedy . put ( track , new ArrayList<Task>() ) ;
17 }
18
19 gantGreedy . get ( t rack ) . add ( task ) ;
20 }
21
22 } else {
23 for (Task task : job . getScheduledRoute ( ) ) {
24 Track track = task . getResource ( ) ;
25 task . se tP lane ( plane ) ;
26 i f ( gantGreedy . get ( t rack ) == null ) {
27 gantGreedy . put ( track , new ArrayList<Task>() ) ;
28 }
29
30 gantGreedy . get ( t rack ) . add ( task ) ;
31 }
32
33 }
34 }
35
36 plan . se tSequences ( gantGreedy ) ;
37
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38 plan . v a l i d a t e ( ) ;
39
40 return plan ;
41 }
42 }

Validation:

1
2 public class Val idator {
3
4 public Val idator ( ) {
5 }
6
7 public void va l i d a t e ( Plan plan ) {
8
9 i f ( this . va l idateSyntax ( plan ) ) {
10 this . evaluateTimes ( plan ) ;
11 this . c o s t ( plan ) ;
12 estimatedTaxiTime ( plan ) ;
13 } else {
14 log . e r r o r ( ”Va l idat i on f a i l e d ” ) ;
15 }
16 }
17
18 protected boolean va l idateSyntax ( Plan plan ) {
19 // v a l i d a t e precedences
20 HashSet<Task> taskToLabel = new HashSet<>() ;
21 HashSet<Task> l a b e l l e d = new HashSet<>() ;
22 HashSet<Task> cand idate s = new HashSet<>() ;
23
24 // a l l t a s k s to l a b e l
25 for ( Job job : plan . getJobs ( ) ) {
26 taskToLabel . addAll ( job . getScheduledRoute ( ) ) ;
27 }
28
29 // i n i t i a t e the cand ida te s f o r the f i r s t time
30 for (Task step : taskToLabel ) {
31 Task predece s so r InP lane = getPredece s so r InPlane ( step , plan ) ;
32 Task predeces sor InTrack = getPredecessor InTrack ( step , plan ) ;
33
34 i f ( p redece s so r InP lane == null && predeces sor InTrack == null ) {
35 cand idate s . add ( s tep ) ;
36 }
37 }
38
39 while ( ! cand idate s . isEmpty ( ) ) {
40 HashSet<Task> candidatesCopy = new HashSet<>(cand idate s ) ;
41 for (Task step : candidatesCopy ) {
42 Task predece s so r InP lane = getPredece s so r InPlane ( step , plan ) ;
43 Task predeces sor InTrack = getPredecessor InTrack ( step , plan ) ;
44 boolean f r e eP lane = ( predece s so r InP lane == null | | l a b e l l e d
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45 . conta in s ( predece s so r InP lane ) ) ;
46 boolean f r eeTrack = ( predeces sor InTrack == null | | l a b e l l e d
47 . conta in s ( predeces sor InTrack ) ) ;
48
49 i f ( f r e eP lane && freeTrack ) {
50 cand idate s . remove ( s tep ) ;
51 l a b e l l e d . add ( s tep ) ;
52 i f ( ge tSuces sor InPlane ( step , plan ) != null ) {
53 i f ( l a b e l l e d . conta in s ( getPredecessor InTrack (
54 getSuces sor InPlane ( step , plan ) , plan ) )
55 | | getPredecessor InTrack (
56 getSuces sor InPlane ( step , plan ) , plan ) == null ) {
57 cand idate s . add ( getSuces sor InPlane ( step , plan ) ) ;
58 }
59 }
60 i f ( getSucessor InTrack ( step , plan ) != null ) {
61 cand idate s . add ( getSucessor InTrack ( step , plan ) ) ;
62 }
63 }
64 }
65 i f ( candidatesCopy . equa l s ( cand idates ) ) {
66 return fa l se ;
67 }
68 }
69
70 return l a b e l l e d . s i z e ( ) == taskToLabel . s i z e ( ) ;
71
72 }
73
74 protected Task getPredeces so r InPlane (Task task , Plan plan ) {
75
76 Task r e s u l t = null ;
77
78 for ( Job job : plan . getJobs ( ) ) {
79
80 List<Task> route = job . getScheduledRoute ( ) ;
81
82 for (Task step : route ) {
83
84 i f ( s tep . equa l s ( task ) ) {
85
86 int i = route . indexOf ( s tep ) ;
87
88 i f ( i == 0) {
89
90 r e s u l t = null ;
91 return r e s u l t ;
92
93 } else {
94
95 r e s u l t = route . get ( i − 1) ;
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96 return r e s u l t ;
97 }
98 }
99 }
100 }
101
102 return r e s u l t ;
103 }
104
105 protected Task getPredecessor InTrack (Task task , Plan plan ) {
106
107 Task r e s u l t = null ;
108
109 Track track = task . getResource ( ) ;
110
111 Map<Track , ArrayList<Task>> sequences = plan . getSequences ( ) ;
112
113 for (Task trackTask : sequences . get ( t rack ) ) {
114 i f ( task . equa l s ( trackTask ) ) {
115
116 int taskIndex = sequences . get ( t rack ) . indexOf ( task ) ;
117
118 i f ( taskIndex < 1) {
119
120 r e s u l t = null ;
121 return r e s u l t ;
122 } else {
123 r e s u l t = sequences . get ( t rack ) . get ( taskIndex − 1) ;
124 return r e s u l t ;
125 }
126 }
127 }
128
129 return r e s u l t ;
130 }
131
132 protected Task getSuces sor InPlane (Task task , Plan plan ) {
133
134 Task r e s u l t = null ;
135
136 List<Job> j obs = plan . getJobs ( ) ;
137
138 for ( Job job : j obs ) {
139
140 List<Task> route = job . getScheduledRoute ( ) ;
141
142 for (Task step : route ) {
143
144 i f ( s tep . equa l s ( task ) ) {
145
146 int i = route . indexOf ( s tep ) ;
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147
148 int numberOfRoutes = route . s i z e ( ) ;
149
150 i f ( i > numberOfRoutes − 2) {
151
152 r e s u l t = null ;
153 return r e s u l t ;
154
155 } else {
156
157 r e s u l t = job . getScheduledRoute ( ) . get ( i + 1) ;
158 return r e s u l t ;
159 }
160 }
161 }
162 }
163
164 return r e s u l t ;
165 }
166
167 protected Task getSucessor InTrack (Task task , Plan plan ) {
168
169 Task r e s u l t = null ;
170
171 Track track = task . getResource ( ) ;
172
173 Map<Track , ArrayList<Task>> sequences = plan . getSequences ( ) ;
174
175 for (Task trackTask : sequences . get ( t rack ) ) {
176
177 i f ( task . equa l s ( trackTask ) ) {
178
179 int taskIndex = sequences . get ( t rack ) . indexOf ( task ) ;
180
181 i f ( taskIndex > sequences . get ( t rack ) . s i z e ( ) − 2) {
182
183 r e s u l t = null ;
184 return null ;
185
186 } else {
187
188 r e s u l t = sequences . get ( t rack ) . get ( taskIndex + 1) ;
189 return r e s u l t ;
190 }
191 }
192 }
193
194 return r e s u l t ;
195 }
196
197 /∗
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198 ∗ e va l ua t e syntax− f e a s i b l e p lan and c a l c u l a t e s t a r t and end t imes f o r
each

199 ∗ t a s k
200 ∗/
201
202 protected void evaluateTimes ( Plan plan ) {
203
204 forwardPath ( plan ) ;
205 backwardPath ( plan ) ;
206
207 }
208
209 protected void forwardPath ( Plan plan ) {
210
211 HashSet<Task> taskToLabel = new HashSet<>() ;
212 HashSet<Task> timedTask = new HashSet<>() ;
213
214 // a l l t a s k s to l a b e l
215 for ( Job job : plan . getJobs ( ) ) {
216 taskToLabel . addAll ( job . getScheduledRoute ( ) ) ;
217 }
218
219 for (Task step : taskToLabel ) {
220
221 Task predece s so r InP lane = getPredece s so r InPlane ( step , plan ) ;
222 Task predeces sor InTrack = getPredecessor InTrack ( step , plan ) ;
223
224 i f ( p redece s so r InP lane == null && predeces sor InTrack == null ) {
225
226 boolean equalResource = fa l se ;
227 for ( Track runwayTrack : plan . getRunways ( ) ) {
228
229 i f ( s tep . getResource ( ) . equa l s ( runwayTrack ) ) {
230
231 equalResource = true ;
232 break ;
233 }
234 }
235 i f ( equalResource ) {
236 step . setStartTime ( s tep . getPlane ( ) . getTimeAtRunway ( ) ) ;
237 s tep . setEndTime ( s tep . getStartTime ( )
238 + step . getResource ( ) . getTimeNeed ( ) ) ;
239 timedTask . add ( s tep ) ;
240 } else {
241 step . setStartTime (0L) ;
242 step . setEndTime ( s tep . getResource ( ) . getTimeNeed ( ) ) ;
243 timedTask . add ( s tep ) ;
244 }
245 }
246 }
247
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248 for (Task next : timedTask ) {
249
250 taskToLabel . remove ( next ) ;
251 }
252
253 while ( ! taskToLabel . isEmpty ( ) ) {
254
255 HashSet<Task> taskToLabelCopy = new HashSet<Task>(taskToLabel ) ;
256
257 for (Task task : taskToLabelCopy ) {
258
259 Long startTime = ( long ) 0 ;
260
261 Task predece s so r InP lane = getPredece s so r InPlane ( task , plan ) ;
262 Task predeces sor InTrack = getPredecessor InTrack ( task , plan ) ;
263
264 boolean f r e eP lane = predece s so r InP lane == null
265 | | timedTask . conta in s ( predece s so r InP lane ) ;
266 boolean f r eeTrack = predeces sor InTrack == null
267 | | timedTask . conta in s ( predeces sor InTrack ) ;
268
269 i f ( f r e eP lane && freeTrack ) {
270 timedTask . add ( task ) ;
271
272 boolean equalResource = fa l se ;
273
274 for ( Track runwayTrack : plan . getRunways ( ) ) {
275
276 i f ( task . getResource ( ) . equa l s ( runwayTrack ) ) {
277
278 equalResource = true ;
279 break ;
280 }
281 }
282 i f ( equalResource ) {
283 task . setStartTime ( task . getPlane ( ) . getTimeAtRunway ( ) ) ;
284 task . setEndTime ( task . getStartTime ( )
285 + task . getResource ( ) . getTimeNeed ( ) ) ;
286 taskToLabel . remove ( task ) ;
287
288 } else {
289
290 i f ( predeces sor InTrack == null ) {
291 startTime = predece s so r InP lane . getEndTime ( ) ;
292 }
293 i f ( p redece s so r InP lane == null ) {
294 startTime = predeces sor InTrack . getEndTime ( ) ;
295 }
296
297 i f ( predeces sor InTrack != null
298 && predece s so r InP lane != null ) {
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299 startTime = Math .max(
300 predece s so r InP lane . getEndTime ( ) ,
301 predeces sor InTrack . getEndTime ( ) ) ;
302 }
303 i f ( predeces sor InTrack != null ) {
304
305 Map<Plane , Map<Plane , Integer>> s epa ra t i on = plan
306 . getSeparationTime ( ) ;
307
308 Plane predece s so rP lane = predeces sor InTrack
309 . getPlane ( ) ;
310 Plane plane = task . getPlane ( ) ;
311
312 i f ( startTime + task . getResource ( ) . getTimeNeed ( ) < startTime
313 + separa t i on . get ( predece s so rP lane ) . get (
314 plane ) ) {
315 task . setStartTime ( startTime
316 + separa t i on . get (
317 predeces sor InTrack . getPlane ( ) )
318 . get ( task . getPlane ( ) ) ) ;
319 } else {
320 task . setStartTime ( startTime ) ;
321 }
322 } else {
323 task . setStartTime ( startTime ) ;
324 }
325 task . setEndTime ( task . getStartTime ( )
326 + task . getResource ( ) . getTimeNeed ( ) ) ;
327 taskToLabel . remove ( task ) ;
328 }
329 }
330 }
331
332 }
333
334 }
335
336 protected void backwardPath ( Plan plan ) {
337
338 List<Task> f inalTimedTask = new ArrayList<>() ;
339 List<Task> f ina lTaskToLabel = new ArrayList<>() ;
340
341 for ( Job job : plan . getJobs ( ) ) {
342 f ina lTaskToLabel . addAll ( job . getScheduledRoute ( ) ) ;
343 }
344
345 for (Task step : f ina lTaskToLabel ) {
346 Task suce s so r InP lane = getSuces sor InPlane ( step , plan ) ;
347 Task sucessor InTrack = getSucessor InTrack ( step , plan ) ;
348 i f ( suce s so r InP lane == null && sucessor InTrack == null ) {
349 finalTimedTask . add ( s tep ) ;
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350 }
351 }
352
353 for (Task next : f inalTimedTask ) {
354 f ina lTaskToLabel . remove ( next ) ;
355 }
356
357 while ( ! f ina lTaskToLabel . isEmpty ( ) ) {
358
359 HashSet<Task> f inalTaskToLabelCopy = new HashSet<Task>(
360 f ina lTaskToLabel ) ;
361
362 for (Task task : f inalTaskToLabelCopy ) {
363
364 Task suce s so r InP lane = getSuces sor InPlane ( task , plan ) ;
365 Task suces sor InTrack = getSucessor InTrack ( task , plan ) ;
366
367 boolean f r e eP lane = suce s so r InP lane == null
368 | | f inalTimedTask . conta in s ( suce s so r InP lane ) ;
369 boolean f r eeTrack = suces sor InTrack == null
370 | | f inalTimedTask . conta in s ( suces sor InTrack ) ;
371
372 i f ( f r e eP lane && freeTrack ) {
373
374 finalTimedTask . add ( task ) ;
375 Long f ina lS ta r tT ime = task . getStartTime ( ) ;
376 Long finalEndTime = task . getEndTime ( ) ;
377 boolean equalResource = fa l se ;
378
379 for ( Track runwayTrack : plan . getRunways ( ) ) {
380
381 i f ( task . getResource ( ) . equa l s ( runwayTrack ) ) {
382 equalResource = true ;
383 break ;
384 }
385 }
386 i f ( ! equalResource ) {
387
388 i f ( suce s so r InP lane != null ) {
389
390 Long f o l g a = suce s so r InP lane . getStartTime ( )
391 − task . getEndTime ( ) ;
392 task . setStartTime ( f ina lS ta r tT ime + f o l g a ) ;
393 // ta s k . setEndTime ( finalEndTime + f o l g a ) ;
394 task . setEndTime ( task . getStartTime ( )+task . getResource ( ) .

getTimeNeed ( ) ) ;
395
396 }
397
398 }
399 f ina lTaskToLabel . remove ( task ) ;
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400 }
401 }
402 }
403
404 }
405
406 protected void co s t ( Plan plan ) {
407
408 Long r e s u l t = 0L ;
409
410 List<Job> j obs = plan . getJobs ( ) ;
411
412 for ( Job job : j obs ) {
413
414 List<Task> route = job . getScheduledRoute ( ) ;
415
416 int index = route . s i z e ( ) ;
417
418 job . getPlane ( )
419 . setTimeSpendTaxiing (
420 ( ( job . getScheduledRoute ( ) . get ( index − 1)
421 . getEndTime ( ) − job . getScheduledRoute ( )
422 . get (0 ) . getStartTime ( ) ) ) ) ;
423
424 r e s u l t = r e s u l t
425 + job . getScheduledRoute ( ) . get ( index − 1) . getEndTime ( )
426 − job . getScheduledRoute ( ) . get (0 ) . getStartTime ( ) ;
427 }
428
429 plan . s e tQuant i t a t i v eSo lu t i on ( r e s u l t ) ;
430
431 }
432
433 protected void estimatedTaxiTime ( Plan plan ) {
434
435 List<Job> j obs = plan . getJobs ( ) ;
436
437 for ( Job job : j obs ) {
438
439 Long r e s u l t = 0L ;
440
441 List<Task> planeRoute = job . getScheduledRoute ( ) ;
442
443 for (Task task : planeRoute ) {
444 Long taskTime = task . getResource ( ) . getTimeNeed ( ) ;
445 r e s u l t = r e s u l t + taskTime ;
446 }
447
448 job . getPlane ( ) . setEstimatedTaxiTime ( ( r e s u l t ) ) ;
449 }
450
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451
452 }
453
454 }

Iterated Local Search code:

1 public Plan randPlan ( Plan plan , S imulat ion s imu la t i on ) {
2
3 Random rand = new Random( ) ;
4
5 int p = 0 ;
6
7 int numberOfJobs = plan . getJobs ( ) . s i z e ( ) ;
8
9 while (p < numberOfJobs ) {
10
11 int r = rand . next Int ( plan . getJobs ( ) . get (p) . getAl lScheduledRoute ( ) . s i z e

( ) ) ;
12 GreedyConstruct ive gredy = new GreedyConstruct ive ( ) ;
13 plan = gredy . cons t ruc t ( s imulat ion , p , r ) ;
14 ++p ;
15 }
16
17 return plan ;
18 }

First Ascent code:

1 public void improve ( Plan plan , S imulat ion s imu la t i on ) {
2
3 int p = 0 ;
4
5 Plan a l t e rna t i v eP l an = new Plan ( s imu la t i on ) ;
6
7 while ( p < plan . getPlanes ( ) . s i z e ( ) ) {
8
9 int r = 0 ;
10
11 int numberOfRoutes = plan . getJobs ( ) . get (p) . getAl lScheduledRoute ( ) . s i z e

( ) ;
12
13 while ( r < numberOfRoutes ) {
14
15 ArrayList<Task> or ig ina lSchedu ledRoute = plan . getJobs ( ) . get (p) .

getScheduledRoute ( ) ;
16 GreedyConstruct ive gredy = new GreedyConstruct ive ( ) ;
17 a l t e rna t i v eP l an = gredy . cons t ruc t ( s imulat ion , p , r ) ;
18
19 i f ( plan . g e tQuant i t a t i v eSo lu t i on ( ) <= a l t e rna t i v eP l an .

g e tQuant i t a t i v eSo lu t i on ( ) ) {
20 plan . getJobs ( ) . get (p) . setScheduledRoute ( or ig ina lSchedu ledRoute ) ;
21 ++r ;
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22 } else {
23 plan = a l t e rna t i v eP l an ;
24 break ;
25 }
26
27 }
28 ++p ;
29 }
30
31
32 }

Steepest Ascent code:

1 public class SteepestAscent {
2
3 /∗
4 ∗ Searches every route in every plane , one at a time , f o r a b e t t e r route .
5 ∗/
6
7 public void improve ( Plan plan , S imulat ion s imulat ion , Timer t ) {
8
9 int p = 0 ;
10
11 Plan a l t e rna t i v eP l an = new Plan ( s imu la t i on ) ;
12 Plan o r i g i n a lP l an = plan ;
13
14 int numberOfPlanes = plan . getPlanes ( ) . s i z e ( ) ;
15
16 while (p < numberOfPlanes ) {
17 int r = 0 ;
18
19 int numberOfRoutes = plan . getJobs ( ) . get (p) . getAl lScheduledRoute ( )
20 . s i z e ( ) ;
21
22 while ( r < numberOfRoutes ) {
23
24 GreedyConstruct ive gredy = new GreedyConstruct ive ( ) ;
25 a l t e rna t i v eP l an = gredy . cons t ruc t ( s imulat ion , p , r ) ;
26 i f ( o r i g i n a lP l an . g e tQuant i t a t i v eSo lu t i on ( ) <= a l t e rna t i v eP l an
27 . g e tQuant i t a t i v eSo lu t i on ( ) ) {
28
29 ++r ;
30
31 } else {
32 o r i g i n a lP l an = a l t e rna t i v eP l an ;
33 ++r ;
34 }
35 }
36 ++p ;
37 }
38
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39
40 }
41
42 }

Tabu Search code:

1 public class TabuSearch {
2
3 public void improveOne ( Plan plan , S imulat ion s imulat ion , Timer t ) {
4
5 Plan a l t e rna t i v eP l an = new Plan ( s imu la t i on ) ;
6 HashSet<Plan> tenure = new HashSet<Plan>() ;
7
8 while ( ! t . i sExp i r ed ( ) ) {
9 boolean newPlan = true ;
10
11
12 Plan i n i t i a l P l a n = plan ;
13
14 List<Job> j obs = plan . getJobs ( ) ;
15
16 for ( Job job : j obs ) {
17
18 Long taxiTimeNeed = 0L ;
19
20 List<Task> scheduledRoute = job . getScheduledRoute ( ) ;
21
22 int index = scheduledRoute . s i z e ( ) ;
23
24 Long taxiTimeUsed = scheduledRoute . get ( index − 1)
25 . getEndTime ( )
26 − scheduledRoute . get (0 ) . getStartTime ( ) ;
27
28 for (Task task : scheduledRoute ) {
29 taxiTimeNeed = taxiTimeNeed
30 + task . getResource ( ) . getTimeNeed ( ) ;
31 }
32
33 i f ( taxiTimeUsed > taxiTimeNeed ) {
34
35 for ( ArrayList<Task> ta sk s : job . getAl lScheduledRoute ( ) ) {
36
37 Long otherRouteTimeNeed = 0L ;
38
39 i f ( ! t a sk s . equa l s ( scheduledRoute ) ) {
40
41 for (Task next : t a sk s ) {
42 otherRouteTimeNeed = otherRouteTimeNeed
43 + next . getResource ( ) . getTimeNeed ( ) ;
44 }
45
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46 i f ( taxiTimeUsed > otherRouteTimeNeed ) {
47
48 GreedyConstruct ive gredy = new GreedyConstruct ive ( ) ;
49 int p = jobs . indexOf ( job ) ;
50 int r = job . getAl lScheduledRoute ( ) . indexOf (
51 ta sk s ) ;
52 a l t e rna t i v eP l an = gredy . cons t ruc t (
53 s imulat ion , p , r ) ;
54
55 i f ( plan . g e tQuant i t a t i v eSo lu t i on ( ) <= a l t e rna t i v eP l an
56 . g e tQuant i t a t i v eSo lu t i on ( ) ) {
57 tenure . add ( a l t e rna t i v eP l an ) ;
58 } else {
59 plan = a l t e rna t i v eP l an ;
60 break ;
61 }
62 }
63
64 }
65
66 }
67 }
68 }
69
70 newPlan = plan . equa l s ( i n i t i a l P l a n ) ;
71
72 i f ( newPlan ) {
73 MildestDescent l o ca lSea r chMi lde s tDescent = new MildestDescent ( ) ;
74
75 loca lSea rchMi lde s tDescent . improve ( plan , s imulat ion , t ) ;
76 }
77 }
78
79 long stop = 1 ∗ 5 ∗ 1000 ; //5 seg
80 Timer s = new Timer ( stop ) ;
81
82 improveTwo ( plan , s ) ;
83
84
85 log . debug ( plan ) ;
86
87 }
88
89 public void improveTwo ( Plan plan , Timer t ) {
90
91 Plan bestPlan = plan ;
92
93 HashSet<Plan> tenure = new HashSet<Plan>() ;
94
95 while ( ! t . i sExp i r ed ( ) ) {
96
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97 Map<Track , ArrayList<Task>> sequences = plan . getSequences ( ) ;
98
99 List<Track> runways = plan . getRunways ( ) ;
100
101 for ( Track track : sequences . keySet ( ) ) {
102
103 for ( Track runwayTrack : runways ) {
104 i f ( ! runwayTrack . equa l s ( t rack ) ) {
105
106 List<Task> trackSeq = sequences . get ( t rack ) ;
107
108 for ( int i = 1 ; i < trackSeq . s i z e ( ) − 2 ; ++i ) {
109
110 i f ( trackSeq . get ( i ) . getPlane ( ) . getPlaneTask ( ) == ”A”
111 && trackSeq . get ( i + 1) . getPlane ( )
112 . getPlaneTask ( ) == ”D” ) {
113 Task temp = trackSeq . get ( i ) ;
114 trackSeq . s e t ( i , t rackSeq . get ( i + 1) ) ;
115 trackSeq . s e t ( i + 1 , temp) ;
116 i f ( plan . g e tQuant i t a t i v eSo lu t i on ( ) > bestPlan
117 . g e tQuant i t a t i v eSo lu t i on ( ) ) {
118 tenure . add ( plan ) ;
119 } else {
120 tenure . add ( bestPlan ) ;
121 bestPlan = plan ;
122 }
123
124 }
125 }
126 }
127 }
128 }
129
130 plan . v a l i d a t e ( ) ;
131
132
133 }
134
135 }
136
137 public void improveThree ( Plan plan , Timer t , S imulat ion s imu la t i on ) {
138
139 List<Plan> tenure = new ArrayList<Plan>() ;
140
141 int j = 0 ;
142
143 while ( ! t . i sExp i r ed ( ) ) {
144
145
146 Plan a l t e rna t i v eP l an = plan ;
147 List<Plane> a l t e rna t i v eSequence = a l t e rna t i v eP l an
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148 . getRunwayUserSequence ( ) ;
149 int s equenceS i ze = a l t e rna t i v eSequence . s i z e ( ) ;
150
151 boolean equalTimeAtRunway = fa l se ;
152
153 for ( int i = j ; i < s equenceS i ze − 1 ; ++i ) {
154
155 Plane f i r s t = a l t e rna t i v eSequence . get ( i ) ;
156 Plane second = a l t e rna t i v eSequence . get ( i + 1) ;
157
158 equalTimeAtRunway = f i r s t . getTimeAtRunway ( ) . equa l s (
159 second . getTimeAtRunway ( ) ) ;
160
161 i f ( equalTimeAtRunway ) {
162
163 a l t e rna t i v eP l an . getRunwayUserSequence ( ) . s e t ( i , second ) ;
164 a l t e rna t i v eP l an . getRunwayUserSequence ( ) . s e t ( i + 1 , f i r s t ) ;
165 break ;
166 }
167 }
168
169 GreedyConstruct ive greedy = new GreedyConstruct ive ( ) ;
170 a l t e rna t i v eP l an = greedy . cons t ruc t ( s imulat ion , 0 , 0) ;
171
172 i f ( plan . g e tQuant i t a t i v eSo lu t i on ( ) <= a l t e rna t i v eP l an
173 . g e tQuant i t a t i v eSo lu t i on ( ) ) {
174 tenure . add ( a l t e rna t i v eP l an ) ;
175 } else {
176 tenure . add ( plan ) ;
177 plan = a l t e rna t i v eP l an ;
178 }
179 ++j ;
180
181 }
182
183
184 }
185
186 }

Mildest Descent code:

1 public class MildestDescent {
2
3 public void improve ( Plan plan , S imulat ion s imulat ion , Timer t ) {
4
5 L i s t <Plan> mildes tP lans = new ArrayList<Plan>() ;
6
7 Plan o r i g i n a lP l an = plan ;
8
9 int p = 0 ;
10
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11 Plan a l t e rna t i v eP l an = new Plan ( s imu la t i on ) ;
12 Plan mi ldestPlan = a l t e rna t i v eP l an ;
13
14 mi ldes tP lans . add ( o r i g i n a lP l an ) ;
15
16 int numberOfPlanes = plan . getPlanes ( ) . s i z e ( ) ;
17
18 while ( p < numberOfPlanes ) {
19
20 int r = 0 ;
21
22 int numberOfRoutes = plan . getJobs ( ) . get (p) . getAl lScheduledRoute ( ) . s i z e

( ) ;
23
24 while ( r < numberOfRoutes ) {
25
26 ArrayList<Task> or ig ina lSchedu ledRoute = plan . getJobs ( ) . get (p) .

getScheduledRoute ( ) ;
27 GreedyConstruct ive gredy = new GreedyConstruct ive ( ) ;
28 a l t e rna t i v eP l an = gredy . cons t ruc t ( s imulat ion , p , r ) ;
29 mi ldes tP lans . add ( a l t e rna t i v eP l an ) ;
30 i f ( plan . g e tQuant i t a t i v eSo lu t i on ( ) <= a l t e rna t i v eP l an .

g e tQuant i t a t i v eSo lu t i on ( ) ) {
31
32 plan . getJobs ( ) . get (p) . setScheduledRoute ( or ig ina lSchedu ledRoute ) ;
33
34 i f ( r == 0 && p ==0){
35 mi ldestPlan = a l t e rna t i v eP l an ;
36 }
37
38 i f ( mi ldestPlan . g e tQuant i t a t i v eSo lu t i on ( ) > a l t e rna t i v eP l an .

g e tQuant i t a t i v eSo lu t i on ( ) ) {
39 mi ldestPlan = a l t e rna t i v eP l an ;
40 }
41
42 ++r ;
43
44 } else {
45 mi ldestPlan = plan ;
46 plan = a l t e rna t i v eP l an ;
47 ++r ;
48 }
49 }
50 ++p ;
51 }
52
53 Co l l e c t i o n s . s o r t ( mi ldestPlans , new PlanComparator ( ) ) ;
54
55 plan = mi ldes tP lans . get (1 ) ;
56
57
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58 }
59
60
61 }
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Appendix C

The next table presents the difference of taxi time between the real data and what is
predicted by TS. This comparison is made for the time window of 8 AM.
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Results
Airplane Real Data TS

Airplane 1 4min 8min
Airplane 2 9min 7min
Airplane 3 4min 8min
Airplane 4 4min 7min
Airplane 5 8min 6min
Airplane 6 6min 7min
Airplane 7 7min 7min
Airplane 8 5min 8min
Airplane 9 12min 5min
Airplane 10 3min 6min
Airplane 11 9min 6min
Airplane 12 5min 7min
Airplane 13 16min 7min
Airplane 14 5min 8min
Airplane 15 13min 7min
Airplane 16 5min 7min
Airplane 17 10min 7min
Airplane 18 4min 7min
Airplane 19 5min 6min
Airplane 20 3min 6min
Airplane 21 10min 7min
Airplane 22 6min 7min
Airplane 23 5min 10min
Airplane 24 10min 6min
Airplane 25 11min 7min
Airplane 26 3min 6min
Airplane 27 10min 7min
Airplane 28 7min 6min
Airplane 29 7min 7min
Airplane 30 3min 8min
Airplane 31 10min 8min
Airplane 32 4min 7min
Airplane 33 8min 5min
Airplane 34 15min 7min
Airplane 35 10min 8min
Airplane 36 15min 8min

Table 1: Comparative Table - TS versus Real Data

68


	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Description
	Related Literature

	Mathematical Formulation
	Notation
	Model

	Heuristic Methods
	Preprocessing Data
	Depth-First Search Algorithm

	Constructive Heuristics
	Constructive Heuristic Using Shortest path
	Constructive Heuristic Using Random path
	Validation - Scheduling

	Local Search Heuristics
	Iterated Local Search
	Local Search - First Ascent Method
	Local Search - Steepest Ascent Method


	Tabu Search
	Changing Routes
	Changing Sequence in Taxiways
	Change Taxiway Sequence - Aircrafts using different runways at same hour.
	Mildest Descent
	Validation - Syntax


	Results
	Constructive Heuristics
	Comparing iterated Local Search with Tabu Search
	Comparing Tabu Search with Branch and Cut
	Comparing the Solution from TS Heuristic with the Real

	Conclusion
	Bibliography
	Appendix A
	Appendix B
	Appendix C



