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resumo 
 

 

Atualmente, as nanopartículas de prata (AgNP) são bastante utilizadas em 
vários produtos devido às suas propriedades únicas e excecionais, 
nomeadamente a sua potente atividade antibacteriana. Algumas das suas 
aplicações comuns são em têxteis, produtos cosméticos e tintas. Deste modo, 
é esperada a presença de AgNP nos sistemas aquáticos. Tendo isto em 
consideração, o objetivo deste trabalho é descrever os efeitos tóxicos de AgNP 
de diferentes tamanhos, e comparar estes efeitos com os induzidos pela 
exposição a AgNO3 usando as características comportamentais das planárias 
da espécie Dugesia tigrina.  
Foram efetuados testes de exposição aguda (96 h) e testes de exposição 
crónica (8 dias) onde foram avaliados parâmetros como a sobrevivência, a 
locomoção, alimentação e regeneração cefálica. Foram selecionadas AgNP de 
diferentes tamanhos (AgNP de 10-25 nm e AgNP 3-8 nm) e comparados os 
efeitos com os da exposição a AgNO3, de modo a analisar se a toxicidade tem 
origem na libertação de iões Ag ou se é devida às propriedades das diferentes 
nanopartículas. 
Os resultados mostraram que os valores de LC50 para as 24, 48, 72 e 96 h 
não variaram ao longo do tempo para AgNP (10-25 nm) (76.62 µg L-1) e para 
AgNO3 (109.1 µg L-1). As planárias experienciaram nas primeiras 24 h várias 
alterações morfológicas na zona da cabeça como aurículas suprimidas e 
principalmente dissolução da cabeça. Estes efeitos notaram-se principalmente 
na AgNP (10-25 nm) e AgNO3. Em relação à exposição crónica, as planárias 
apresentaram uma redução significativa na locomoção e na alimentação na 
exposição a todas as nanopartículas estudadas, sendo estes parâmetros os 
mais sensíveis para D. tigrina. Relativamente à capacidade de regeneração 
não houve efeitos significativos à exposição a Ag. A fonte de toxicidade pode 
estar relacionada com as propriedades das AgNP que interferem com o 
sistema nervoso das planárias, causando a sua morte. 
Este estudo demonstrou que as planárias são um organismo adequado para 
estudos ecotoxicológicos comportamentais e devem ser considerados em 
metodologias de avaliação de risco ambiental.  
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abstract 

 
Currently, silver nanoparticles (AgNP) are widely used in several products 
because of their unique and exceptional properties, particularly its potent 
antibacterial activity. Thus, AgNP are very often applied in textiles, cosmetics 
and paints. Under those circumstances, AgNP is expected to be present in 
aquatic systems. Taking this into consideration, the objective of the present 
work is to describe the toxicity of AgNP of different sizes and compare to the 
toxicity from AgNO3 exposure using behavioral endpoints of the planarian 
Dugesia tigrina. 
Acute exposure tests (96 h) and chronic exposure tests (8 days) were 
performed, in which parameters such as survival, locomotion, feeding and 
regeneration were evaluated. Therefore, AgNP of different sizes were selected 
(AgNP of 10-25 nm and AgNP 3-8 nm) and effects from exposure were 
compared to those from AgNO3, in order to analyze whether the source of 
toxicity was originated by release the ionic form of Ag or related to the inherent 
properties of nanoparticles.  
The results showed that LC50 values at 24, 48, 72 and 96 h were equal over 
time for AgNP (10-25 nm) (76.62 μg L-1) and for AgNO3 (109.1 μg L -1). In the 
first 24 h, planarians experienced several morphological alterations at the head 
region such as suppressed auricles and mainly head dissolution. These effects 
were noted mainly in AgNP (10-25 nm) and AgNO3 exposures. Regarding 
chronic exposure, planarians presented a significant reduction in locomotion 
and feeding activity upon both AgNP exposures. These endpoints revealed to 
be the most sensitive to D. tigrina. There were no significant effects on the 
regeneration test. The source of toxicity may be related to the properties of 
AgNP that interfere with nervous system of planarians consequently causing 
their death. 
This study demonstrated that planarians are an adequate organism for 
behavioural ecotoxicological studies and should be considered in 
environmental risk assessment methodologies. 
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1. General Introduction 

 

 

1.1. Nanoparticles: an important segment of Nanotechnology 

 

Nanotechnology is an emergent field in industry and science and it has been 

growing at high pace in the recent years. The global market value for nanotechnology was 

estimated at 14 billion euro in 2010, it is currently estimated at 24 billion euro and higher 

values that can reach 70 billion euro are foreshadowed for 2020. In such a scenario, many 

industries in different areas have opportunities to explore this fast growing market and 

consequently nanotechnology will become part of modern everyday life 

(http://www.prnewswire.com/). 

One of the largest segments of nanotechnology are nanomaterials, particularly 

nanoparticles. Nanoparticles research has become very popular due to their novel 

properties with potential applications in several areas such as medicine, electronics, 

energy and food & agriculture sectors (Li & Chen 2015; Tarascon et al. 2000; Raccichini 

et al. 2015; Nair et al. 2010). More recently, a new era of consumer products based on 

nanoparticulate metals comes out such as clothes, lotions, cosmetics, paints and food 

packaging (Mitrano et al. 2015). Subsequently, there is a potential hazardous effects of 

nanoparticles to human health and ecosystems. It is important to realize that 

nanoparticles already exist on Earth before any anthropogenic production. In fact, their 

presence occurs naturally on the planet for millions of years. As an example, iron particles 

and silicates of 16-27 nm were found in a Cretaceous-Tertiary boundary layer (66 million 

years old) and volcanos have been responsible for releasing nanoparticles into the 

environment (Verma & Upadhyay 2002; Lee & Richards 2004). At the present, tons of 

natural nanoparticles are produced globally, including atmospheric dust, soil colloids, 

inorganic minerals and components of phytoplankton found in waters (Sharma et al. 2015; 

Wigginton et al. 2007; Ernst 2012). 

There is a need to take into account safety and toxicity of nanoparticles by 

performing a risk assessment. There are several articles of EU legislation and technical 

guidance that support the implementation of legislation containing specific references to 

nanomaterials. In 2011, the European Commission aimed to adopt a definition of 

nanomaterial considering several aspects such as origin of nanomaterial, size range, 
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particles thresholds, surface area by volume and internal and surface structures. 

According to this definition nanomaterial means a natural, incidental or manufactured 

material containing 50% or more of the particles being within the number size distribution 

of 1 -100 nm in at least one of the dimensions and with a specific surface area by volume 

greater than 60 m2/cm3 (EC, 2011a). The objective of the definition is to serve as a 

reference to identify nanomaterials and support the legislation and regulatory frameworks 

to help the development of policy, guidance and risk assessment methods applicable to 

nanomaterials (Liden 2011). 

Nanoparticles have size dependant properties as opposed to larger matter which 

have constant physical properties. As a matter of fact, nanoparticles have higher surface 

to volume ratio and particle number per unit mass than larger particles for the same mass 

and chemical composition (Navarro et al. 2008). As an illustration, Figure 1 shows 

different size materials with similar mass: one microparticle with a diameter of 60 µm 

(about the size of human hair), 1 million particles 600 nm diameter and 1 billion 

nanoparticles 60 nm diameter. 

 

 

Figure 1. Scheme illustrating a) three different particles of similar mass and different 
individual size and b) a graph representing the relationship between particle diameter and surface 
area normalized by mass (Adapted from Buzea et al. (2007)). 
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Considering the same mass, particles with lower diameter have higher ratio of 

surface area to volume, therefore the ratio of surface area to volume particles of 60 nm 

volume is 1000 times higher than a particle with a diameter of 60 µm. For this reason, 

nanoparticles usually have an increased reactivity and distinctive physico-chemical 

properties when compared to the larger particles (Buzea et al. 2007). 

 

 

1.2. The rise of silver nanoparticles 

 

- Silver  

Silver’s chemical symbol (Ag) is derived from the Latin “argentum” which means 

“shiny” or “grey”. Silver presence in the environment occurs naturally specially on Earth’s 

crust as a minor constituent and it is found throughout the world. Historically, this metal 

has been extracted through mining activities and has been widely used in several 

applications such as coins, jewellery, utensils and photographic processing or 

development materials. Silver has also been used for water purification in swimming pools 

and home water treatment (Purcell & Peters 1998). 

What makes silver appealing in a variety of applications is its exceptional 

properties. Silver is known to exhibit the highest electrical and thermal conductivity among 

all metals and the highest visual light reflection (about 97%). It is easily worked, possess 

high fatigue and corrosion resistance and is relatively nonreactive and nontoxic in its 

metallic form (Etris 2010). 

 

- Silver nanoparticles 

Silver nanoparticles (AgNPs) when compared to their larger counterpart possess 

unique properties with great industrial applications. According to the Consumer Products 

Inventory, a database that includes 1628 nanoparticles containing products, AgNP are the 

most widely used nanoparticle, present in 435 products (24%) (Vance et al. 2015). AgNP 

main properties are high thermal and electrical conductivity, high catalytic activity and 

chemical stability which make them valuable in several areas such as microelectronics 

and medical devices (Krutyakov et al. 2008). Furthermore, AgNP demonstrate a powerful 
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antimicrobial activity that makes them attractive in many applications, particularly in 

commercial daily used products like textiles, sun lotions, cosmetics, food packaging, 

biocide sprays and adhesives (Abbasi et al. 2014). In addition, there is an increasingly 

application of AgNP for antimicrobial coating in dressing wounds and biomedical devices 

(Rai et al. 2009). 

Usually AgNPs are prepared through chemical route based on chemical reduction 

of silver nitrate, although they can also be synthesized using physical photochemical or 

biological methods (Tran et al. 2013). Each method has its own advantages and 

disadvantages regarding costs, scalability, particle sizes and size distribution and so far it 

is not clear whether different preparation methods affect AgNPs efficacy. During synthesis 

process, the size, shape and surface coating can be selected and controlled (Ali et al. 

2014). 

Due to their wide application in every day products there is a concern about the 

potential negative effects of AgNP. Nowadays, there are several studies and data aiming 

to help consumers, scientific organizations and policy makers by informing on exactly 

which products contain silver or other nanoparticles and addressing risk assessment with 

regards to environment and public health (McShan et al. 2014). 

 

 

 

1.3. Presence of silver nanoparticles in the aquatic environment 

 

Literature suggest that AgNPs enter into aquatic systems and their release is 

related to product life-cycle like production, transport, consume and disposal (Mitrano et 

al. 2015). Actually it is described that AgNPs can leach out from textiles and food 

packaging plastics (Benn & Westerhoff 2008). AgNPs are embedded into fibres or applied 

at material surface such as t-shirts, socks, underwear and many others materials entering 

the water system via washing effluent or through disposal (Blaser et al. 2008). Eventually, 

most of the AgNPs released will enter into sewer systems and thus reach wastewater 

treatment plants (WWTP). Once in WWTP, majority of Ag is retained in sewage sludge 

and a small amount is kept in the effluent stream (Kaegi 2011). When properly processed, 

sewage sludge can be transformed in biosolids which are used as fertilizer to improve 

soils performance and stimulate plant growth. Biosolids containing AgNPs will be applied 
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to agricultural soils and there is a possibility of leaching through soils entering in the 

aquatic systems (Brar et al. 2010). 

Studies regarding the presence, mobility and fate of AgNPs in waters propose that 

several processes occur such as aggregation, precipitation, adsorption, sulfidation and 

dissolution consequently affecting its bioavailability and toxicity (Levard et al. 2012). 

Firstly, AgNPs might remain as individual particles in suspension and transported through 

water (Liu & Jiang 2015). Ag+ oxidation to and Ag+ dissolution from AgNPs are expected 

after contact with oxygen and other oxidants. Frequently, AgNPs flows in WWTP 

transformed in Ag2S NP’s after oxidation (Liu et al. 2011). Also, Ag+ may react with 

chloride to form AgCl species (Levard et al. 2013). Dissolution of Ag+ depends on 

dissolved oxygen, pH, temperature, salinity and AgNP size and concentration. Another 

important process that has been reported is aggregation which is also dependent on 

environmental factors such as pH, electrolyte composition and solution ionic strength. 

Aggregation of AgNP appears to strongly affect others processes like precipitation, 

dissolution and adsorption and thus particularly important in determining the fate of AgNP 

in aquatic systems (Luoma 2008). Generally speaking, the presence and fate of AgNP 

depends on these physico-chemical transformations which are influenced by properties of 

AgNPs and by the surrounding environment. 

Lau et al. (2016) performed an aquatic microcosms experiment using different 

ionic strength waters and different coated AgNP (polyvinylpyrrolidone (PVP) and citrate) to 

study its transport and behaviour. Their results demonstrated that AgNP coated with PVP 

remain unaltered while AgNP coated with citrate were unstable. Also, higher electrolyte 

water favours aggregation which was the dominant process occurring followed by 

sedimentation. There was a decrease on Ag concentration due to its sorption to the wall of 

microcosms. AgNP may interact with chlorine and sulphur species increasing their 

persistence. To sum up, coating surface and water chemistry demonstrated a significant 

impact on AgNP stability. Seitz et al. (2015a) investigated the effect of media pH and 

presence of dissolved organic matter on the toxicity of various AgNP using Daphnia 

magna. It was concluded that higher pH and presence of dissolved organic matter as well 

as size and surface coating reduced toxicity to D. magna. In summary, it was observed 

that environment factors and NP’s characteristics affects the toxicity of ion release from 

AgNP. 

The Predicted environmental concentration (PEC) for total Ag and AgNPs for the 

freshwater environment is estimated at ng L-1 ranges (Mueller & Nowack 2008), however 
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considering a continuous increasing release of Ag, PEC can reach µg L-1 ranges, high 

enough to represent risk to aquatic organisms. Gottschalk et al. (2011) modeled PEC 

values for total Ag in surface waters calculating a PEC value of 0.76 ng L-1. Also, Blaser et 

al. (2008) reported a PEC value of 40 ng L-1 in river water and 2 µg L-1 n sewage 

treatment plants. Due to vast production and diverse applications of AgNP it is expected 

to found nanoparticles differing in size, chemical composition, shape and coating material 

in aquatic environments (Mcgillicuddy et al. 2016). Unfortunately, no validation for these 

values have been carried out due to the incapability of the available techniques to 

overcome problems related to low concentrations or several confounding factors (e.g. 

presence of other particles in suspension) that may be found in real scenarios. 

 

 

1.4. Ecotoxicity of silver nanoparticles 

 

The toxicity of AgNPs has been reported in many ecotoxicological studies 

involving different group of organisms such as plants, fungi, algae, invertebrates and 

vertebrates (Gonçalves et al. 2016; Krishnaraj et al. 2016; Gubbins et al. 2011). Also, 

toxicity of AgNP has been also observed in microorganisms and even in human cells (Lu 

et al. 2010; Matzke et al. 2014). 

Literature regarding the ecotoxicity of AgNP suggests that several sources within a 

NP structure are responsible for their toxicity. Most studies suggest that toxicity is due to 

the release of Ag+ from AgNP to the environment eliciting a physiological response in 

organisms and alter their homeostasis. Others studies imply that Ag+ release is not the 

only explanation, and some authors relate toxicity of AgNP to oxidative stress generated 

by the formation of reactive oxygen species (ROS), possibly formed at the surface of the 

AgNPs. Also the interaction between Ag+ with groups of enzymes and proteins has ben 

reported, affecting cellular respiration and transport of ions across membranes, causing 

cell death (Sondi & Salopek-Sondi 2004; Farkas et al. 2010). In addition, toxicity of AgNP 

can be a combination of these mechanisms, being important to identify which part of 

toxicity is attributed to ionic form or to the nanoparticle form. Moreover, toxic effects of 

AgNPs can be linked to factors such as shape, chemical composition, interaction with 

biological biomolecules, aggregation changes and environmental transformations (Beer et 

al. 2012).  
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Figure 2 illustrates some processes related to fate and toxicity of AgNP occurring 

in environmental media. Once AgNPs reach the environment, several phenomena can 

occur, namely, displacement of the coating agents due to interaction with other molecules 

such as inorganic ions allowing aggregation and agglomeration; dissolution of AgNP into 

Ag+; and interaction of silver atoms interaction with oxygen forming silver oxide (Ag0). 

AgNPs can penetrate cells and become internalized acting as a source of Ag+ inside the 

cells. Once within the intracellular environments one of the main mechanisms of toxicity of 

AgNPs is oxidative stress through the generation of ROS causing damage to cellular 

components including DNA, depletion of antioxidant molecules such as glutathione, 

disabling proteins function and damage to the cell membrane (Misra et al. 2012; Kim & 

Ryu 2013; Ho et al. 2010). 

 

 

Figure 2 - Fate and toxicity of silver nanoparticles in environmental media. From McShan 
et al. (2014). 

 

 

Usually AgNPs toxicity is studied comparing to AgNO3 in order to observe if toxicity 

is related to ion release or properties of nanoparticles. Silver ions induce high toxicity to 

organisms mostly at µg L-1 ranges. AgNO3 and AgNPs presents LC50 values around: 

78.32 µg L-1 and 128.4 µg L-1 for zebrafish Danio rerio, respectively (Ribeiro et al. 2014); > 

15 µg L-1 and 81.6 µg L-1 for snail Physa acuta, respectively (Gonçalves et al. 2016). On 

the other hand, for more sensitive organisms, such as algae Raphidocelis subcapitata, the 

EC50 values has been reported to be lower: 33.79 µg L-1 (AgNO3) and 32.4 µg L-1 (AgNP) 

(Ribeiro et al. 2014); and 1.1 µg L-1 (Angel et al. 2013) and 26 nM (Lee et al. 2005) for 

AgNO3. Also, Daphnia magna presents low EC50 values for AgNO3 and AgNPs: 1.05 µg 

L-1 and 10.2 µg L-1, respectively (Ribeiro et al. 2014); 1.10 µg L-1 and 121 µg L-1, 

respectively (Völker et al. 2013). For the bacteria Pseudomonas putida it was observed 

AgNO3 EC50 values of 0.16 µg L-1 (Matzke et al. 2014) and 10 µg L-1 for Escherichia coli 

(Ivask et al. 2014). 
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Most of ecotoxicological studies that evaluate the potential toxic effects of AgNPs 

in freshwater environment perform specific and standardized protocols for organisms and 

endpoints representing a restrict range of species. Bioavailability and effects of AgNP are 

often related to organism’s life traits. With this in mind, non-standardized organisms, with 

different life traits will contribute additional and important information to AgNPs risk 

assessment. 

 

1.5. The freshwater planarian Dugesia tigrina 

 

- Geographic range and habitat 

D. tigrina are benthic invertebrates originated from North America and 

unequivocally introduced into Europe due to activities of man. These animals are usually 

found in lakes, rivers and streams and, there are reports of dense populations of Dugesia 

tigrina, one of the most common species of flatworms, in Great Britain and Japan. D. 

tigrina is a benthic species showing negative phototaxis, thus tending to move away from 

light and for that reason are usually found under rocks, plant material or other type of 

debris (Ball & Fernando CH 1969).  

 

- Description 

This species presents a flattened dorsoventrally body covered with cilia on 

surface, ranging from 9 to 15 mm and are typically brown with yellow or white spots 

across the body. Figure 3 shows a diagram with the main structures of flatworms: head 

region exhibit photoreceptors, auricles and cephalization. These animals have two 

photoreceptors, the "eyes” of planarian, which sense light direction and intensity and 

respond to it by moving away from light (negative phototaxis). Planarians also have two 

auricles (the triangular extensions) functioning as sensory lobes. In addition, D. tigrina 

exhibits a particular feature: cephalization followed by nervous tissues (brain). When 

planarians receive light stimulation, photoreceptors convert light energy into signals that 

are transmitted through the neural receptors to the brain. Once received signals are 

sufficient, they are sent to the cilia which allows the planarian to move away from light. 

Sensory lobes also are linked to the brain allowing to recognize the presence of other 

organisms, detect food and respond to environmental stimuli like water movement 

(Krugelis MacRae 1964). 
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Figure 3. Diagrammatic representation of basic anatomy of planarian Dugesia tigrina. 
Adapted from The First Brain: The Neuroscience of Planarians. 

 

- Regeneration  

 

Planarians possess a remarkable biological characteristic: regeneration capability. 

They are able to fully regenerate when suffering damage to their tissue as well as restore 

missing parts from any small fragment of their body. Planarians can be cut into hundreds 

of pieces and each will develop into the whole planarian. Figure 4 shows a planarian 

transversely split in three parts and after regeneration process originated three planarians. 

This process is based on the proliferation of abundant populations of stem cells spread 

through planarian body, the neoblasts. After injury signal, neoblasts proliferate and form a 

mass of unpigmented cells called blastema at the site of wound. Over time, these cells will 

grow and differentiate, repairing and remodelling the missing body part. The region above 

the photoreceptors and the pharynx do not regenerate because of the nonexistence of 

neoblasts (Reddien & Alvarado 2004).  
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Figure 4.  Scheme representing regenerative capacity of the freshwater planarian 
Dugesia tigrina after transverse cutting. 

 

- Food habits 

Regarding eating habits, D. tigrina is an opportunistic predator of small 

crustaceans, worms, larvae and insects. Sensory lobs of planarians detect the presence 

of other organisms and they can move, trap and capture their prey using mucus 

secretions, followed by the ingestion through the pharynx (Davies & Reynoldson 1971; 

Cash et al. 1993). 

 

1.6. Planarians in ecotoxicology 

 

Planarians present a set of biological characteristics that make them very relevant 

in ecotoxicology.  

Planarians have a natural wide distribution in unpolluted streams, rivers and lakes. 

In a food web they represent an important level where they predate several organisms 
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(e.g. crustaceans, snails) but they can represent also a food source for fish. In the 

laboratory a large number of individuals can be achieved and maintain due to their 

regeneration capacity. They possess important behavioural characteristics that can be 

used as endpoints to evaluate toxicological effects such morphological changes like body 

depigmentation, head dissolution, twisted body, impairments in locomotion. Regeneration 

is a process of cell growth and it can be also included as an endpoint process, as it can be 

expected that some contaminants may induce apoptotic effects or inhibit neoblast 

proliferation.  

Freshwater planarians are a promising model organism to monitor environmental 

pollutants and assess impact through in vivo experiments. Indeed they have already been 

used to assess toxicological effects of diverse substances such as metals, biocides and 

insecticides, pharmaceutically active compounds, surfactants and other organic and 

inorganic contaminants (Li 2012; Horvat et al. 2005; Zhang et al. 2015). Knakievicz & 

Ferreira (2008) investigated the effects of cooper (Cu2+) on the flatworm Dugesia tigrina 

by evaluating mobility, regeneration performance and reproductive performance. The 

results showed that mobility and time for regeneration was significantly affected by Cu2+. It 

was observed serious impairments in locomotion and a delay on the appearance of 

eyespots and auricles in regenerating was observed when compared to non-exposed 

organisms. Also, chronic exposure effects evidenced a reduction in fecundity and fertility 

rates of D. tigrina. Horvat et al. (2005) detected behavioural and morphological changes 

observed in flatworm Polycelis felina exposed to herbicide norflurazon. Not only it was 

observed locomotion disorders but also depigmentation tissue, body deformations and 

shortening of auricles. Ofoegbu et al. (2016) studied the toxicity of tributyltin (TBT) using 

the freshwater planarian Schmidtea mediterranea and observed a dose dependent 

reduction on food intake and locomotor activity due to failure to sense and capture preys.   

 

 

1.7. Main objectives and relevance of the study 

 

The objective of the present work is to understand the effects of AgNP of different 

size in comparison with ionic form AgNO3 using behavioural endpoints of planarian 

Dugesia tigrina after acute and chronic exposure. This rationale is based on the fact that 

AgNP are currently one of the most widespread used nanomaterials and information 
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about its safety and potential toxicity to aquatic environment is needed. To carry out the 

objective of this work, planarians Dugesia tigrina were exposed to AgNP of 10-25 nm, 

AgNP 3-8nm and AgNO3. The parameters chosen to estimate the toxicity were the 

survival, feeding activity, locomotion activity and head regeneration. 

 

 

1.8. Thesis organization  

 

This thesis is divided in three chapters:  

Chapter 1: a) the general introduction and state of the art regarding silver 

nanoparticles toxicity and presence in the environment and 2) describing and presenting 

planarians and the species Dugesia tigrina as a model species in ecotoxicology;  

Chapter 2: the scientific paper “Toxicity of silver nanoparticles and silver nitrate to 

the freshwater planarian Dugesia tigrina”;  

Chapter 3: a general discussion and conclusions are presented, highlighting the 

main achievements of this thesis. 
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2. Toxicity of silver nanoparticles and silver nitrate to the planarian Dugesia 

tigrina 

 

 

2.1. Introduction 

Over the last years, silver nanoparticles (AgNP) have received remarkable 

attention in several areas of industry and within the scientific community (Abbasi et al. 

2014). First of all, AgNP hold great promise in electronics, energy and medical areas due 

to their unique properties when compared to their counterparts such as high electrical and 

thermal conductivity, chemical stability and catalytic activity (Ahamed et al. 2010; Buzea et 

al. 2007). Also, AgNP are known for their powerful antimicrobial activity making them 

valuable components in a variety of consumer products used in everyday life such as 

clothes, food packages, cosmetics, lotions and paints (Rai et al. 2009). Despite the 

benefits derived from AgNPs application, their production and consumption lead to their 

increasing release into the environment with potential risks to human health and biota 

(Fabrega et al. 2011; Benn & Westerhoff 2008). AgNPs can reach aquatic systems by the 

release of effluents from waste water treatment plants, runoff from agricultural soil, roads, 

or urbanized areas, or by accidental spillage (Markus et al. 2016). Once in the 

environment, AgNP are prone to suffer several physicochemical processes that influence 

their bioavailability, fate and toxicity in aquatic systems (Levard et al. 2012). It is generally 

accepted that intrinsic properties of AgNP such as shape, size, coating surface or 

synthesis method along with environmental factors such as pH, temperature, ionic 

strength or dissolved organic matter have an important role on the behaviour and effects 

of AgNP to aquatic ecosystems (Lu et al. 2010; Liu & Jiang 2015; Tran et al. 2013). Many 

studies have been undertaken to better understand the toxicity of AgNP in the 

environment involving several organisms of different groups, for example, the bacteria 

Pseudomonas putida (Matzke et al. 2014), the aquatic snail Physa acuta (Gonçalves et al. 

2016), the fish Danio rerio, the algae Pseudokirchneriella subcapitata (Ribeiro et al. 2014) 

and terrestrial plant Lolium multiflorum (Yin et al. 2011). Most studies suggest that AgNP 

toxicity is mainly the result of the Ag+ release, however some authors defend that Ag+ is 

not the only explanation for toxicity and AgNP have intrinsic properties that also contribute 

to toxicity (Fabrega et al. 2009; Auffan et al. 2010). 
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Nanoparticle’s bioavailability and effects are also often related to model organism’s 

life traits. Therefore, using different organisms, with different life traits will improve 

accuracy of assessments of AgNPs ecological hazards. Freshwater planarians have been 

gaining interest as a model organism in ecotoxicology to assess effects upon exposure to 

several compounds (Li 2012; Wu et al. 2014; Lowe et al. 2015). In fact, these organisms 

exhibit unique biological and behavioural characteristics which highlight their use in 

research areas such as neurobiology and toxicology (Hagstrom et al. 2015). Besides that, 

planarians are easy to manipulate and maintain in laboratory conditions. Planarians have 

a primitive nervous system with a cerebral ganglion connected to nerve cords along the 

body that coordinates actions and transmits signals to and from different parts of the body. 

Planarian’s auricles are used as chemosensory organs while photoreceptors can detect 

light direction and intensity, while cilia are used for locomotion. Furthermore, planarians 

are known for their predatory behaviour once they have the ability to find, attack and 

capture the prey using mucus which they digest using their pharynx (Vowinckel & 

Marsden 1971; Takano et al. 2007). Another particular biological set is their regeneration 

capability which is due to presence of stem cells, called neoblasts. These neoblasts 

proliferate originating a mass of unpigmented cells, the blastema, that grows and 

differentiate recovering the missing parts (Kostelecky et al. 1989; Mineta et al. 2003).  

Considering the above mentioned, the main goal of the present study was to 

understand the effects of AgNPs to the freshwater planarian Dugesia tigrina, as a 

promising organism in nanoecotoxicology. For that two AgNP of different sizes, along with 

AgNO3 were used for laboratory exposures. Effects on D. tigrina were compared using 

survival, head regeneration and behavioural endpoints such as locomotion and feeding. 

 

 

 

2.2. Material and methods 

 

 

2.2.1. Test organisms 

Dugesia tigrina (sexual strain) were cultured in plastic containers with ASTM hard 

water (ASTM,1980) medium in the dark, at 20 ± 1 °C and fed once a week with bovine 

liver (Oviedo et al. 2008). Culture medium was renewed twice a week. Seven days before 

and during experiments planarians were not fed to avoid interference of food with 
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experimental procedures. Intact planarians used in the experiments were checked for any 

morphological abnormalities and measured 10 ± 1 mm total length. 

 

                                                                                                                                                                   

2.2.2. Chemicals 

Silver nitrate as a crystalline powder (99% purity; CAS 7761-88-8) was purchased 

from Sigma-Aldrich. Silver nanoparticles with an initial average particle size of 3-8 nm 

(further referred as AgNP (3-8 nm)) and 60 nm (further referred as AgNP (10-25 nm)) 

were supplied by AMEPOX (Poland) dispersed in water with initial concentration of 500 

mg L-1. For testing, all test suspensions were prepared in ASTM medium by dilution of 

initial dispersions of AgNP. 

 

 

2.2.3. Characterization of silver nanoparticles 

AgNP (3-8 nm) were produced by AMEPOX as conductive adhesives for the 

microelectronic industry. This particle was characterized in ASTM media and described by 

Ribeiro et al. (2014). The AgNP (10-25 nm) were produced by the same company to be 

incorporated in conductive ink for ink-jet a pplications and their particle size was 

characterized in the present study in ASTM media in a suspension of 5 mg/L. This 

characterization was carried out in a 48h period, with measurements taken at time zero 

(immediately after dispersion), 24h and 48h after dispersion in ASTM media. 

Transmission electron microscopy (TEM) after dispersion in water were available by the 

producers, while dynamic light scattering (DLS) was used to measure the size distribution 

of the AgNP along with the potential aggregation/agglomeration state in the ASTM media 

(Malvern Zetasizer). 

 

 

2.2.4. Acute toxicity tests 

Organisms were exposed for 96 h to different concentrations of AgNO3 (50 to 850 

μg/L), AgNP (10-25 nm) (25 to 400 µg L-1) and AgNP (3-8 nm) (100 to 2400 µg L-1), 

considering preliminary results obtained in range finding tests (data not shown). Five 

replicates were set up per concentration with five planarians per replicate, in a plastic 

container with 40 mL of experimental suspension at 20 ± 1°C in the dark. Immobilisation 
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was recorded every 24 h. Planarians were considered immobile if disintegrated or no 

reaction was observed after poking or exposed to intense light 

 

 

2.2.5. Chronic toxicity tests  

Organisms were exposed for 8 days to different concentrations of AgNO3 (10 to 

100 μg/L), AgNP (10-25 nm) (10 to 50.6 µg L-1) and AgNP (3-8 nm) (100 to 506 µg L-1). 

These concentration ranges were also based on preliminary range finding tests (data not 

shown). Three replicates were performed per concentration and five planarians per 

replicate, in plastic container with 40 mL of experimental solution at 20 ± 1°C in the dark. 

After 8 days, individuals were collected from each replicate and different behavioural 

endpoints were assessed as described below. 

 

 

2.2.6. Locomotion activity assay 

The methodology used to measure planarian’s locomotion activity was adapted 

from Rodrigues et al. (2016) with slight modifications. After the chronic exposure, 

planarians were allocated into 24-multiwell plates (one planarian in each well) with 1 mL 

ASTM hard water. Locomotion activity was recorded using the ZebraBox™ apparatus and 

the ZebraLab® v3 software (Viewpoint, France). Fifteen planarians per concentration 

were video tracked over 13 min period (with a previous 1 min of acclimation to light 

conditions). Locomotion activity was calculated by the distance covered (cm) per min 

during the 13 min observation period. 

 

 

2.2.7. Feeding activity assay 

Feeding activity was measured according to Ofoegbu et al. (2016) with slight 

modifications. After chronic exposure, 10 planarians per concentration were moved to 

crystalizing dishes (one planarian in each crystalizing dish) containing 30 mL of ASTM 

hard water and 30 6-days old Chironomus riparius larvae. After 3 h, the number of 

remaining larvae was recorded. 
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2.2.8. Head regeneration assay 

For regeneration assays planarians were decapitated immediately below the 

auricles insertion and above pharynx. Decapitation was performed with a scalpel 

supported by binocular microscope for better cut precision. This was executed in a Petri 

dish placed on ice to restrain the mobility of the planarians. Each headless animal was 

immediately exposed to the same chronic range concentrations as described above. 

Exposure was carried out in 6-multiwell plates with 5 mL of experimental suspension in 

each well. Animals were exposed during 8 days and head regeneration was followed. Ten 

replicates (1 planarian per well) per concentration were used. Each replicate was 

examined every 24 h under Zeiss stereo microscope (KL 300 LED) to follow the 

regeneration process. Results were reported as days necessary for regeneration of 

photoreceptors which in normal conditions take place within four days after decapitation. 

 

 

2.2.9. Statistical analysis 

The effects of AgNPs and AgNO3 exposure to Dugesia tigrina were assessed by a 

one-way analysis of variance (ANOVA) followed by multiple comparison Dunnett's post 

hoc test, to depict significant differences between treatments and the control treatment 

(p<0.05). These calculations were performed with GraphPad Prism version 6.0 for 

Windows. The LC50 values were calculated by GraphPad using the best nonlinear 

regression curve fit, which was a sigmoidal, four parameter logistic regression. 
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2.3. Results 

 

 

2.3.1. AgNP characterization 
 

 

 

 

 

Figure 5. Particle size distribution and TEM images of AgNP (10-25 nm) dispersed in 
distilled water using TEM images, with the majority of particles ranging size from 10 to 25 
nm. 

 

 

 

The characterization of AgNP (10-25nm) in ASTM media by TEM analysis showed 

that the AgNP claimed by the producers to have a mean size of 60 nm showed in water a 

wider size distribution, ranging from 10 to 35 nm, being the most frequency from 10 to 25 

nm. When this characterization was performed in ASTM media the hydrodynamic 

diameter measured (Z-average (d.nm)) was higher than in distilled water. At time 0h, 

particles presented 39.02 ± 3.97 nm, increasing to 66.9 ± 2.25 nm after 48h. This 

indicates that AgNP (10-25 nm) were agglomerating or aggregating in ASTM. The surface 

zeta potential was −25 mV at time 0h, and did not change significantly with time (-24.3 mV 

at 48h) revealing some stability in ASTM media. 
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The characterization of AgNP (3-8 nm) in a 10 mg/L dispersion was already 

described by Ribeiro et al. (2014) showing that during 3 days the hydrodynamic diameter 

in ASTM media was increasing from 80 nm to approximately 350 nm.  

 

 

2.3.2. AgNO3 and AgNPs acute toxicity 

 

The results obtained in the acute toxicity tests with AgNO3 and AgNP (10-25 nm) 

are shown in Figure 6 and Table 1.  

 

 

Figure 6. Dose–response curves on survival of Dugesia tigrina exposed to (A) AgNO3 and (B) 
AgNP (10-25 nm) for 96 h in ASTM medium. Data are given as median (50%) response values 
(µ/L) after sigmoid four parameter logistic regression. 
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D. tigrina showed same LC50 values for 24-h, 48-h, 72-h and 96 h for AgNO3 of 

109.1 µg L-1 (80.97-147 µg L-1 as 95% CI). LC50 values for AgNO3 were equal over time 

because there was no variation in mortality during test from the first 24 h of exposure till 

the 96 h. Further effects besides mortality could be observed during the first 24 h of 

exposure which included several effects at the head region like head reduction, 

disintegrated auricles and front part or total head dissolution, particularly at 100 µg L-1. 

During the test, after 72 h planarians start to regenerate since it was possible to observe 

formation of the blastema. Regarding AgNPs acute toxicity, similar results were observed 

for the AgNP (10-25 nm) exposure in comparison with results obtained for AgNO3. A 

similar pattern was observed for the LC50 in time, presenting a 24 h, 48 h, 72 h and 96 h 

LC50 of 76.62 µg L-1 (89.60-102.7 µg L-1 as 95% CI). Head dissolution followed by head 

regeneration was also observed at concentrations of 100 µg L-1 and 200 µgL-1. For AgNP 

(3-8 nm), mortality or head dissolution was not observed during test even at the highest 

concentration tested (2400 µg L-1). 

 

 

Table 1. Summary of the toxicity endpoints derived from all tested Ag forms exposure on mortality, 
locomotion and feeding activity of D. tigrina. Results are expressed as mean with 95% CI. Data is 
expressed as µg L-1. NOEC = no-observed-effect concentration; LOEC = lowest-observed 
concentration; n.m.= no mortality observed. 

 Acute toxicity test Locomotion activity Feeding activity 

Substance 48 h-LC50 R2 NOEC LOEC NOEC LOEC 

AgNO3 109.1  

(80.97-147) 

0.97 75 100 40 50 

AgNP (10-25 nm) 72.67  

(89.60-102.7) 

0.97 22.5 33.8 33.8 50.6 

AgNP (3-8 nm) n.m. - 338 506 338 506 

 

 

 

2.3.3. Locomotion test 

 

Figure 7 and Table 1 show the results obtained in the locomotion tests, indicating 

the distance covered (cm/min) for planarians exposed to a gradient of AgNO3, AgNP (10-

25 nm) and AgNP (3-8 nm). All Ag forms significantly decreased the locomotor activity of 

D. tigrina when compared to the control treatment. A dose-response relationship was 

observed with increasing concentrations reflected by shorter distances covered by D. 
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tigrina. The distance covered was significantly decreased by 47.4% after exposure to 100 

µg L-1 AgNO3 (F(5, 63) = 8.9; p<0.05), by 23.14% and 48.41 % after exposure to 33.8 and 

50.6 µg L-1 AgNP (10-25 nm), respectively (F(5, 50) = 8.6; p<0.05) and by 45.4% after 

exposure to 506 µg L-1 AgNP (3-8 nm) (F(5, 110) = 14.73; p<0.05). 

 

 

Figure 7. Distance covered (cm/min) by Dugesia tigrina, using the automated video tracking 
system, after 8 day chronic exposure to (A) AgNO3, (B) AgNP (10-25 nm) and (C) AgNP (3-8 nm). 
Data are expressed as mean values (bars represent standard error). Asterisk denotes a significant 
difference compared to the control treatment (Dunnett’s test, p < 0.05).  
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2.3.4. Feeding activity 

  Feeding activity of planarians D. tigrina for AgNO3, AgNP (10-25 nm) and AgNP 

(3-8 nm) is shown in figure 8 and table 1. 

 

Figure 8. Feeding activity of D. tigrina, as number of chironomids larvae ingested in 3 h, after 
chronic exposure (8 days) to to (A) AgNO3, (B) AgNP (10-25 nm) and (C) AgNP (3-8 nm). Data are 
expressed as mean values (bars represent standard error). Asterisk denotes a significant 
difference compared to the control treatment (Dunnett’s test, p < 0.05). 

 

Similar to locomotor activity, increasing concentrations of AgNO3 and AgNPs tested 

caused a reduction in feeding activity. The number of larvae ingested was significantly 

decreased by 37.62% after exposure to 50 µg L-1 AgNO3 (F(5, 53) = 3,9; p<0,05), by 37.43 
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% after exposure to 50.6 µg L-1 AgNP (10-25 nm) (F(5, 54) = 7.3; p<0.05) and by 32.3% after 

exposure to 506 µg L-1 AgNP (3-8 nm) (F(5, 54) = 4.74; p<0.05). 

 

2.3.5. Head regeneration 

 

Head regeneration measured as days until photoreceptors formation was not 

significantly altered in planarians exposed for 8 days to all forms of Ag tested (p>0.05). It 

was observed a new formation of photoreceptors 4 days after decapitation.  

 

 

2.4. Discussion 

 

The mode of action of AgNPs in different biota and which forms are responsible for 

toxicity are a complex and challenging issue. Many studies have been undertaken to 

investigate whether the toxicity is related to nanoparticles themselves or to the dissolved 

ions (Liu & Jiang 2015). Therefore, the aim of the present work was to understand the 

acute and sub-lethal effects of AgNPs with different size ranges in comparison with 

AgNO3 to the freshwater planarian D. tigrina.  

According to the 24-h LC50 values for D. tigrina, AgNP (10-25 nm) presented 

higher acute toxicity than AgNO3. In contrast, AgNP (3-8 nm) did not cause mortality in 

planarians during experiment representing the least toxic nanoparticle in the present 

study. Ribeiro et al. (2014) reported that the toxicity of the same AgNP (3-8 nm) was lower 

than AgNO3 to Daphnia magna and Danio rerio. It is important to realize that this result 

contradicts the fact that smallest nanoparticles are in general more toxic than largest 

ones. AgNP (3-8 nm) could present aggregates decreasing their volume to surface ratio 

and therefore reducing the rate of Ag ion release in ASTM media and consequently 

present lower toxicity. Kustov et al. (2014) estimated the toxicity of AgNP using D. tigrina 

and observed planarians death at 24-h at concentration of 10 µg L-1 of AgNO3 and a 

colloidal silver solution (9-15 nm) which is less than the concentration reported in the 

present study. This difference in toxicity towards the exposure to AgNO3 and AgNP can be 

explained by the smaller planarians (length) used by Kustov et al. (2014) which are 

expected to be more sensitive than larger planarians. 

 Moreover, in the first 24 h of exposure, planarians experienced morphological 

changes in the head region such as auricles disintegration and head dissolution. Previous 
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studies suggest that some metals accumulate in the head region increasing its 

concentration when compared to tail region, consequently causing physiological 

dysfunction in the nervous system (Wu et al. 2011). Head dissolutions have been 

described before for planarians exposed to cadmium (Calevro et al. 1998). After 72 h of 

exposure it was observed a new formation of the blastema in the head region meaning 

that neoblasts were active and proliferating. Regeneration in planarians involves 

proliferation of stem cells (neoblasts) to form new tissues (blastema) and remodelling old 

tissues to complete the normal size. Interestingly, results showed that head regeneration 

was not a sensitive endpoint in D. tigrina for all Ag forms tested. Apparently, neoblast cells 

responded adequately to wounding signals induced by Ag in D. tigrina. Contrarily, Kustov 

et al. (2014) demonstrated effects of a colloidal silver solution (9-15 nm) in D. tigrina 

regeneration in which regeneration was significantly supressed at 10 µg L-1. 

Chronic exposure of all Ag forms tested presented a significant effect in 

planarian’s locomotion and feeding activity. Overall, AgNP (10-25 nm) and AgNO3 

demonstrated to be the most toxic Ag form in comparison with AgNP (3-8 nm). Generally, 

toxic substances cause a physiological response in organisms which ultimately cause a 

behavioural response. Both feeding and locomotion activity showed to be sensitive 

endpoints. Thus, these behavioural changes may be used to assess toxic effects of 

nanoparticles. Many researchers have reported similar behavioural effects in planarians 

exposed to other metals. Kovačević et al.(2009) tested the effects of aluminium to the 

planarian Polycelis felina and reported locomotive disorders at 200 mg L-1 of Al2(SO4)3 × 

18H2O and total lack of movement at 1100 mg L-1. Wu et al. (2014) exposed the planarian 

Dugesia japonica to cadmium and reported a reduction in their locomotor velocity at 5 µM 

concentrations suggesting that reduced locomotor activity is due to high concentrations of 

toxicant in the nervous system of the organisms. As mentioned before, Ag could be 

interfering with the nervous system which is important to sense, locate and capture preys 

and therefore inhibiting the locomotion and predation behaviour of D. tigrina. Feeding 

activity in the planarian D. japonica was assessed by Zhang et al. (2015)  and observed a 

decrease in feeding rates at 1 mg Pb2+ L-1.  

Comparing the present values of LC50 and LOEC with other freshwater organisms 

(Table 1), D. tigrina demonstrated a comparable sensitivity as values were on the same 

order of magnitude (µg L-1). For algae Pseudokirchneriella subcapitata was reported a 

EC50 of 190 µg L-1 for a AgNP of 20-30 nm (Griffitt et al. 2008) and 32 µg L-1 for AgNP 3-8 

nm exposure (Ribeiro et al. 2014); For invertebrates such as snails Physa acuta were 
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reported a LC50 of 81.6 µg L-1 (Gonçalves et al. 2016); for Daphnia magna was reported 

a EC50 of 187 µg L-1 (Asghari et al. 2012) and 11.02 µg L-1 (Ribeiro et al. 2014) for 

suspended powder AgNPs and AgNP 3-8 nm exposure, respectively; Blinova et al. (2013) 

repoted a EC50 of 20 µg L-1 for AgNP (<100 nm) to aquatic crustacean Thamnocephalus 

platyurus; for zebrafish Danio rerio, was reported effects on hatching at 40 µg L-1 and 100 

µg L-1 for AgNP 3-8 nm and AgNO3, respectively (Ribeiro et al. 2014). However, regarding 

mortality, planarians showed no sensitivity to AgNP (3-8 nm) exposure. Hence it is 

important to have a comparison between different model organisms to better represent 

the possible effects on biota and to find appropriate concentration thresholds. 

Although AgNO3 toxicity has been clearly attributed to the free ion Ag+, the source 

toxicity of AgNP is unclear (Levard et al. 2012). Toxicity of AgNP to D. tigrina can be 

explained by a combination of release of Ag+ from nanoparticles to ASTM media and 

especially to the intrinsic properties of AgNP (Lopes et al. 2016). Both sources have the 

potential, for instance, to generate reactive oxygen species or interact with vital cellular 

enzymes causing morphological changes or death to D. tigrina (Seitz et al. 2015b). When 

in ASTM AgNP (3-8 nm) tend to form aggregations decreasing Ag+ dissolution due to 

lower surface area to volume ratio while AgNP (10-25 nm) demonstrate great stability in 

ASTM. In comparison to AgNO3, AgNP (3-8 nm) showed to be less toxic and AgNP (10-25 

nm) was to some extent more toxic. Choi et al. (2008) also report that ionic silver was 

more toxic than AgNP. Taking this into consideration, the negative behavioural effects of 

D. tigrina after exposure to AgNP could be mainly attributed to the properties of 

nanoparticles themselves and not only to Ag+ ions release. 

The ecological hazard of a substance is determined by its persistence, 

bioaccumulation and toxicity. Ag is known to be persistent in the environment, it is one of 

the most toxic metals to many organisms and has a strong tendency to bioaccumulate in 

organisms (Luoma 2008). In some cases, it has been observed a low excretion potential 

in some organisms (Tourinho et al. 2016).  Behavioural effects in D. tigrina related to 

AgNP exposure observed in this study can thus have potential ecological impacts in 

planarian populations. 
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2.5. Conclusion 

To sum up, the results of the present study demonstrate that AgNO3 and AgNP 

(10-25) presented higher acute toxicity to the planarian Dugesia tigrina, when compared 

to the results from AgNP (3-8 nm) exposure, where planarians were able to survive at 

higher levels.  Locomotion and feeding activity were significantly affected similarly by all 

Ag forms tested. The main highlight of the present study is that AgNP (10-25 nm) 

presented the lowest NOEC and LOEC for feeding activities when compared to the other 

two forms, contradicting most ecotoxicological findings where it is consensual that Ag+ 

usually induces higher toxicity than nanoparticles. 

Planarian species such as D. tigrina are sensitive model organisms suitable for the 

assessment of behavioural alterations induced by chemical stress and can contribute to 

the improvement of hazard assessment to be included in risk assessment procedures. 

They can be used as model organisms for higher trophic levels, and be used as 

predators, replacing in some cases fish models. This can provide an important input for 

the 3R's strategy, and reduce vertebrate testing. 
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3. General discussion and conclusions 

 

 

3.1. General discussion and conclusions 

 

AgNPs are nowadays an important class of nanomaterials widely used in several 

applications. AgNPs have been applied in everyday products such as clothes, lotions and 

paints. Also, the AgNPs of the present study are used in electronics and microelectronics 

industries as conductive materials. Given the background, and the lack of ecotoxicity data 

concerning ecological effects of nanomaterials in the aquatic environment and effects 

towards non-model organisms the present work aimed to understand the effects of 

different AgNPs using the freshwater planarian Dugesia tigrina. Moreover, read-across is 

a process claiming to be used also in nanomaterials, and those decisions have to be 

supported by scientific and regulatory evidences. Acute tests showed that planarians are 

sensitive to Ag. The AgNP (10-25 nm) revealed to be the most toxic particle followed by 

AgNO3 and AgNP (3-8 nm). Also, it some morphological alterations namely head 

dissolution were observed in planarians exposed to. Regarding chronic tests, locomotion 

and feeding activity were assessed after 8 days of exposure. It was observed significant 

reduction in locomotion and feeding activity for all forms of Ag tested. Results also 

showed no responses in terms of head regeneration of planarians exposed to AgNO3 or 

AgNPs.  

More studies regarding AgNP toxicity need to be conducted for a better 

understanding of AgNP effects in planarians. Studies with different metals suggest that 

planarians, when exposed to metallic compounds tend to accumulate them in the head 

region and consequently causing their death by nervous system impairment (Wu et al. 

2011). This point was discussed above and since planarians presented head dissolution 

and given its reduced locomotion and feeding activity, there is a chance that silver 

accumulates in greater quantity in the head region than in the tail (posterior region). 

Therefore, to complement this work, a comparison between Ag concentrations in head 

region and the rest of planarian body could be carried out to understand if Ag toxicity is 

related to failure of nervous system. For instance, the metallothionein assay would allow 

to detect and measure presence of Ag in planarians. Metallothionein is a molecule 

responsible for regulating essential metal ions and detoxifying xenobiotics and non-

essential metals. Its expression is induced by bivalent metals and usually it is used as a 
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biomarker of heavy metals in aquatic organisms. Acetylcholinesterase (AChE) plays an 

important role in functioning of nervous system and it is very often target of neurotoxic 

metals. Performing a AChE assay would permit to check signs of neurotoxicity caused by 

Ag once inhibition of AChE activity can indicate neurotoxicity. Also evaluating a possible 

alteration of oxidative status by Ag could provide interesting insights on Ag mode of 

action. Evaluating glutathione levels would indicate oxidative stress caused by Ag. 

The head regeneration assay test did not show results in D. tigrina as delay in 

photoreceptors appearance was not observed. This demonstrates robustness and power 

of neoblasts cells upon Ag exposure. These results were not observed in studies with 

copper where it was demonstrated delays in regeneration of D. tigrina after Cu2+ exposure 

(Knakievicz & Ferreira 2008). By all means, it cannot be concluded that the delay in 

appearance of the photoreceptors in planarian is an accurate parameter. In fact, Kustov et 

al. (2014) exposed planarians of the same species to a colloidal solution of 9-15 nm 

AgNP, where regeneration performance was assessed by measuring area of blastema 

using computer-assisted in vivo morphometry. It was calculated a regeneration index 

(blastemal area / total body area) as a quantitative measure of cell proliferation. It was 

found out that regeneration was significantly suppressed. Therefore, this method could be 

integrated in the present work for more precise results regarding regeneration process of 

planarian.  
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