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Resumo O objeto principal da presente tese é o estudo de sistemas avança-
dos de segurança, no âmbito da segurança automóvel, baseando-se
na previsão de movimentos e ações dos agentes externos.
Esta tese propõe tratar os agentes como entidades dinâmicas, com
motivações e constrangimentos próprios. Apresenta-se, para tal, no-
vas técnicas de seguimento dos referidos agentes levando em linha de
conta as suas especificidades.
Em decorrência, estuda-se dedicadamente dois tipos de agentes: os
veículos automóveis e os peões.
Quanto aos veículos automóveis, propõe-se melhorar a capacidade de
previsão de movimentos recorrendo a modelos avançados que rep-
resentam corretamente os constrangimentos presentes nos veículos.
Assim, foram desenvolvidos algoritmos avançados de seguimento de
agentes com recurso a modelos de movimento não holonómicos. Estes
algoritmos fazem uso de dados vectoriais de distância fornecidos por
sensores de distância laser.
Para os peões, devido à sua complexidade (designadamente a ausên-
cia de constrangimentos de movimentos) propõe-se que a análise da
sua linguagem corporal permita detetar atempadamente possíveis in-
tenções de movimentos. Assim, foram desenvolvidos algoritmos de
perceção de pose de peões adaptados ao campo da segurança au-
tomóvel com recurso a uso de dados de distâncias 3D obtidos com
uma câmara stereo. De notar que os diversos algoritmos foram testa-
dos em experiências realizadas em ambiente real.





Keywords Advanced Driver Assistance Systems, Target Tracking, Egomotion Es-
timation, Pedestrian Pose Estimation.

Abstract The main topic of this thesis is the study of advanced safety systems, in
the field of automotive safety, based on the prediction of the movement
and actions of external agents.
This thesis proposes to treat the agents as dynamic entities with their
own motivations as constraints. As so, new target tracking techniques
are proposed taking into account the targets’ specificities.
Therefore, two different types of agents are dedicatedly studied: auto-
mobile vehicles and pedestrians.
For the automobile vehicles, a technique to improve motion prediction
by the use of advanced motion models is proposed, these models will
correctly represent the constrains that exist in this kind of vehicle. With
this goal, advanced target tracking algorithms coupled with nonholo-
nomic motion models were developed. These algorithms make use of
vectorial range data supplied by laser range sensors.
Concerning the pedestrians, due to the problem complexity (mainly due
to the lack of any specific motion constraint), it is proposed that the anal-
ysis of the pedestrians body language will allow to detected early the
pedestrian intentions and movements. As so, pedestrian pose estima-
tion algorithms specially adapted to the field of automotive safety were
developed; these algorithms use 3D point cloud data obtained with a
stereo camera.
The various algorithms were tested in experiments conducted in real
conditions.
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Chapter 1

Introduction

Robotic systems are ever more present in our society. Industrial robots have been a mandatory pres-

ence in our industries for decades, while service robots are now beginning to be common place in

our daily lives, in the form of cleaning robots in our homes or even the automated cashier at the local

supermarket. The promise of autonomous vehicles lurks just around the corner, bringing with it a

possible revolution to the way many of us live our lives.

As the interaction of robots with humans increases, so grows the need for robust safety systems.

In order for autonomous robots to perform even more meaningful tasks in our society their capacity

to perceive and understand our environment must improve.

Autonomous systems must be able to correctly perform situation assessment and achieve a com-

plete situation awareness before safe decisions can be made.

Tracking algorithms are a basic tool in any situation awareness system. The need to assess the be-

havior of other participants is paramount to any decision making algorithm. In the literature, countless

approaches have been proposed in the field of situation awareness (Salerno, Hinman, and Boulware,

2004). Models such as the Joint Directors of Laboratories (JDL) (Steinberg, Bowman, and White,

1999), or the one proposed by Endsley, 1995, specify how a complete comprehension of the en-

vironment may be achieved; both stipulate that “The first step in achieving situation awareness is

to perceive the status, attributes and dynamics of relevant elements in the environment.” (Endsley,

1995).

Tracking is the ability to maintain a stable and unique label to a specific object while it travels

across the movement space, be it 2D or 3D. Tracking is intended as a solution to the intermittent nature

of perception sensors, the problem begins when new measurements of objects need to be associated

with a previously identified objects. These new measurements, taken with a certain time interval,

present the objects in new positions either due to the object’s motion or the sensor’s motion.

Multi Target Tracking (MTT) is therefore intended as a solution to the problem of estimating the

state of multiple different targets recursively.

Tracking algorithms are essential for a correct environment perception and therefore appear in a

wide variety of contexts: vision or laser-based people tracking for mobile robotics and surveillance
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2 1.Introduction

systems, sonar-based submarine tracking, multitarget tracking for manipulation, tracking of animals

to study their behavior, etc (Tinne, 2010).

In the Advanced Drivers Assistance Systems (ADAS) context, tracking is primarily used in ad-

vanced path planing algorithms, either to avoid collisions and/or aid in navigation. In these appli-

cations knowledge of the current and future positions of targets is a necessity. Target tracking can

provide the required data, using current targets motion, to extrapolate future positions (MacLachlan

and Mertz, 2006; Mertz et al., 2013).

This thesis focuses on improving tracking algorithms by interpreting targets as dynamic multi-

variate agents. In the ADAS context, targets may appear in several typologies: car like vehicles,

bicycles, pet animals, pedestrians, etc. None of these targets shares the same movement constraints

or motivations. Target tracking can be improved if each target type is interpreted taking into account

its own limitations and constrains.

Pedestrians are an especially vulnerable road agent. Pedestrians may appear unexpectedly from

the least probable locations, children, for instance, may not even be aware that they are causing a

risk situation when running to the road after a ball. Autonomous vehicle must detect and avoid

such dangerous situations. This thesis focus is also to improve pedestrian tracking and ultimately

contribute to improve road safety for all users.

This thesis makes heavy use of vectorial range data, either from Light Detection And Ranging

(LIDAR) or a Stereo Camera. The range data, in opposition to simple monocular image data, provides

much less ambiguity and a higher degree of confidence. In the ADAS context, distances are especially

important, the accurate measurement of the distance to the vehicle in front or the pedestrian in the

crosswalk is extremely important to prevent accidents.

Section 1.1 expands on the motivations and work performed in this thesis. Section 1.2 formulates

the objectives of this thesis. Finally section 1.3 outlines the thesis structure and contributions.

1.1 Motivation

The work performed in this thesis is contextualized in the Atlas project (Santos et al., 2010). The main

project goal is to develop advanced driver assistance technologies to improve road safety. This thesis

shares in the same motivation for safer and more efficient vehicles while expanding the applicability

of tracking algorithms and improving vehicle and pedestrian tracking, specifically.

In this thesis three research topics are addressed:

• How to detect the vehicle self motion (egomotion)

• How to improve car like vehicle tracking

• How to improve pedestrian tracking
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Egomotion estimation is a requirement for target tracking from aboard a vehicle. Taking into ac-

count that all measurements made from the vehicle will be corrupted by the vehicle’s own motion, the

need for the best possible accurate egomotion estimation is easily reached. Without it, it is impossible

to differentiate the target motion from our own, and therefore it is impossible to apply any motion

constrains on the targets.

Egomotion is typically estimated using a combination of Global Positioning System (GPS),

odometer and inertial sensors (Nüchter et al., 2007; Wulf et al., 2004). All these sensors have lim-

itations. GPS systems have known problems such as blackout due to obstruction of line-of-sight to

satellites, multi-path problems and active jamming from other RF sources (Durrant-Whyte, 2001).

Wheel encoders fail in rough terrain due to wheel slip (Maimone, Cheng, and Matthies, 2007), also

their installation on heavy duty industrial vehicles can be challenging, time consuming and expensive

(Nourani-Vatani, Roberts, and Srinivasan, 2009).

LIDAR sensors are now an almost mandatory presence in any autonomous system. These sensors

provide accurate range measurements with extensive fields of view. As such, they provide the perfect

opportunity to improve egomotion estimation. Previous experience with these sensors also proved

valuable in accessing the sensors capabilities (Almeida and Santos, 2010).

MTT is heavily dependent on the dynamics of the targets being tracked. In the ADAS context,

tracking a car like vehicle is very different from tracking a pedestrian. Car like vehicles move within

well known kinematics constrains. A vehicle presents a reliable short term predictability due to its

nonholonomic motion limitation. By comparison, pedestrian tracking is specifically difficult. Pedes-

trians follow very complex social rules and are often unpredictable (Stein, 2013). Even the most

complex human motion model cannot take all governing factors into account. Their motion is not

heavily constrained to any specific motion path, such as a car, and therefore they can create a dan-

gerous situation in hundreds of milliseconds. The tracking algorithm must take all these specificities

into account to be able to provide the best possible tracking results.

The prediction of the pedestrians’ intentions could potentially prevent accidents and possible

injuries; for example, the detection of the pedestrian intent to either cross a road at a crosswalk

or to stop. Systems that are able to perceive pedestrian motion as soon as possible will be able

to improve safety for road users. In (Schmidt and Färber, 2009), the authors studied how humans

detect the intentions of pedestrians to cross the road. The authors presented the participants videos

of pedestrians crossing in natural traffic situations. The authors conclude that parameters of body

language, such as legs or head movements, are indispensable for a consistent behavior prediction.

Pedestrian trajectories alone are not sufficient to a correct and robust prediction. In this context,

estimation of the pedestrian pose is of crucial importance to develop a tracking algorithm capable of

making accurate and useful predictions.

Taking these findings into consideration, the need for a tracking before movement system arises.

The pedestrian pose will provide information to their intentions. This information could be incorpo-
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rated into the tracking model allowing for a extremely fast response system.

Jorge Manuel Soares de Almeida Ph.D. Thesis



1.Introduction 5

1.2 Proposed approach

This thesis proposes to improve tracking algorithms at key components: the egomotion estimation

and agents dynamics.

The egomotion estimation can be improved by the use of onboard LIDAR information. This

thesis proposes to use the displacement between consecutive laser scans to calculate the vehicle own

motion. The different points of view as the ego vehicle moves allows the algorithm to observe the

vehicle’s own motion.

This thesis proposes two different approaches for estimating agents dynamics. In regards to car

like vehicles, this thesis proposes the use of nonholonomic motion models coupled with advanced

target tracking algorithms in the form of the Multiple Hypothesis Tracking (MHT) algorithm.

As opposed to other more simplistic methods, the MHT method permits the delay of ambiguous

association decisions until additional data relives the ambiguity. MHT is widely regarded as an im-

portant data association method in the tracking community due to its probabilistic handling of parallel

hypotheses, whereas most competing techniques are suboptimal in nature (Blackman, 2004).

In regards to tracking pedestrians, it was concluded that typical tracking algorithms will be, for

instance, unable to predict the moment a pedestrian decides to enter the road. Typical algorithms are

limited to the fact that some motion is necessary in order for a correct path estimation. In the case

of a pedestrian trying to enter a road, a single step forward may be dangerous. Therefore, this thesis

proposes a tracking-before-motion paradigm.

The thesis goals may be summarized as follows:

1. develop a scan matching based algorithm for egomotion estimation, this algorithm must pro-

vide accurate egomotion estimation in order to decouple targets motion from the own vehicle

motion;

2. implementation of an advanced MTT algorithm, suitable to tracking in outdoors environments;

3. incorporate advanced nonholonomic motion models in both egomotion estimation and targets

motion models;

4. develop a human pose estimation algorithm suitable for outdoor use from abroad a moving

vehicle;
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1.3 Thesis structure

This thesis is composed of 6 chapters. Chapter 2 provides a state of the art on the topics approached

by this thesis. This chapter is subdivided into the three main sections: egomotion estimation, multi

hypotheses tracking and pose estimation.

Chapter 3 presents the work done in the field of egomotion estimation. In this chapter the scan

matching algorithms are introduced alongside the nonholonomic motion model. This chapter presents

how the conversion between the scan matching algorithms and the nonholonomic motion model mea-

surements are made. It also presents qualitative and quantitative comparative results with several state

of the art scan matching algorithms in real world environments.

The Chapter 4 presents the work performed in adapting the MHT algorithm for car like vehicle

tracking. This chapter makes use of the previous developed and presented nonholonomic motion

model. Real world results are presented on the performance of this algorithm.

In Chapter 5 advances in pedestrian pose estimation for the ADAS field are presented. A stereo

vision pedestrian pose estimation algorithm is proposed. This algorithm uses a 3D body model and a

novel visibility metric to estimate the pedestrian pose.

Finally, Chapter 6 presents the conclusions and future work.

1.4 Publications

The following publications derived directly from the work described in this thesis:

• Almeida, J. and V. M. Santos (2013). “Real time egomotion of a nonholonomic vehicle using

LIDAR measurements”. en. In: Journal of Field Robotics 30.1, 129–141. ISSN : 1556-4967.

• Almeida, J. and V. M. Santos (2014). “Multi Hypotheses Tracking with Nonholonomic Motion

Models Using LIDAR Measurements”. In: ROBOT2013: First Iberian Robotics Conference.

Advances in Intelligent Systems and Computing 252. Springer International Publishing, pp.

273–286. ISBN : 978-3-319-03412-6 978-3-319-03413-3.

• Quintero, R. and Almeida, J. and Llorca, D.F. and Sotelo, M.A. (2014). “Pedestrian path

prediction using body language traits”. In: Intelligent Vehicles Symposium Proceedings, 2014

IEEE, pp. 317–323.

• Almeida, J. and V. M. Santos (2014). “Pedestrian Pose Estimation Using Stereo Perception”.

en. In: ROBOT 2015: Second Iberian Robotics Conference. Ed. by Luís Paulo Reis et al.

Advances in Intelligent Systems and Computing 417. Springer International Publishing, pp.

491–502. ISBN : 978-3-319-27145-3 978-3-319-27146-0.
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Chapter 2

State of the art

This chapter is intended to provide the state of the art on the several topics presented in this thesis. The

different topics are divided into several sections where the state of the art on each one is presented.

The chapter starts with a section dedicated to the state of the art in egomotion estimation in the

field of mobile robotics. This section contextualizes the work here presented in Light Detection And

Ranging (LIDAR) egomotion estimation. Next, the state of the art in Multi Target Tracking (MTT)

is presented. In this section the main MTT algorithms are presented and explained followed by an

Advanced Drivers Assistance Systems (ADAS) focused state of the art on the topic. The following

section addresses the state of the art in human pose estimation. Once again with special focus on

the ADAS field and the applicable algorithms and techniques. The last section presents some final

remarks of this chapter.

2.1 Egomotion estimation in mobile robotics

The correct estimation of road agent’s behavior is a critical feature in advanced safety situation as-

sessment modules (Schubert and Wanielik, 2010). In order to obtain the position and velocity of road

agents, exterior perception sensors must be used coupled with tracking systems; however, when ob-

serving the world by sensors mounted on a moving vehicle, all measurements will be corrupted with

the vehicle’s own motion. In order to obtain the absolute velocity of objects the ego motion of the

vehicle must be extracted (Streller, Furstenberg, and Dietmayer, 2002a).

The typical sensors used for egomotion calculation include Global Positioning System (GPS)

systems, wheel encoders and also inertial sensors (Nüchter et al., 2007; Wulf et al., 2004). GPS

systems have known problems such as blackouts due to obstruction of line-of-sight to satellites, multi-

path problems and active jamming from other RF sources (Durrant-Whyte, 2001). Wheel encoders

fail in rough terrain due to wheel slip (Maimone, Cheng, and Matthies, 2007), also their installation

on heavy duty industrial vehicles can be challenging, time consuming and expensive (Nourani-Vatani,

Roberts, and Srinivasan, 2009).

On-board laser scanners are now common on mobile robots. Their relatively low cost and very
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high accuracy makes them a very powerful tool for analyzing the environment. When considering the

previous problems with other technologies, it becomes clear that the laser sensors can also be used to

improve the motion estimate of the ego-vehicle, increasing the robustness and broadening the range

of possible advanced safety systems.

Early work in estimating the robot motion from range data was presented in (Gonzalez and Gutier-

rez, 1999), where only static environments were analyzed. In a more recent work (Martínez et al.,

2006), the authors combine odometry sensor readings with 2D Iterative Closest Point (ICP) and ge-

netic scan matching algorithms to produce an estimate of the robot motion; the algorithm was tested

using a tracked mobile robot with a top speed of 1 m/s. In (Bosse and Zlot, 2008) the authors present a

Simultaneous Location and Mapping (SLAM) algorithm that implements data association techniques

based on the scan matching of 2D laser scanners using an ICP variant and histogram cross correlation

techniques. The authors demonstrate that their algorithm is able to provide accurate maps of both

structured and unstructured environments over several kilometers long, figure 2.1.

(a) Open-loop map (no map matching). (b) Closed-loop map (without histograms).

(c) Closed.loop map (with histograms map
matching).

(d) Map rotated and overlaid onto aerial
image.

Figure 2.1: A map constructed from a 17.8 km traverse through suburban streets. (a) The map show-
ing no loop closures (map matching turned off). (b) The result of attempting loop closures based on
the current map alignment prior without the use of histogram correlation. (c) The optimized map
including loop closures. (d) The map overlaid onto an aerial image. From (Bosse and Zlot, 2008).

Jorge Manuel Soares de Almeida Ph.D. Thesis



2.State of the art 9

Their placement of the laser sensors, on top of the vehicle, limits the perception of moving agents;

in our application the laser sensors are placed at the car bumper height allowing to detect moving

targets but increasing the difficulty for the scan matching algorithms, due to the higher number of

outliers.

Scan matching algorithms are commonly applied in laser based SLAM applications (Thrun, 2002;

Wan et al., 2010; Zhao et al., 2008). These algorithms are employed to localize the robot within a

global dynamic map; the most common architecture, unlike (Bosse and Zlot, 2008), relies on addi-

tional sensors to provide an approximated first guess of the robot pose instead of relying solely on

the laser data (Diosi and Kleeman, 2007). In (Miyasaka, Ohama, and Ninomiya, 2009) egomotion

estimation using scan matching techniques is also applied using the ICP method in consecutive scans

but refined with a local map, figure 2.2.

Figure 2.2: The egomotion estimation method from (Miyasaka, Ohama, and Ninomiya, 2009).

Another current field of research that tries to solve the same problem is the study of visual odom-

etry (Konolige, Agrawal, and Solà, 2011; Maimone, Cheng, and Matthies, 2007; Nistér, Naroditsky,

and Bergen, 2006; Oskiper et al., 2007; Tardif, Pavlidis, and Daniilidis, 2008). This technology pro-

vides some of the same advantages over traditional systems but presents its own drawbacks; like any

vision-based system, it is susceptible to illumination conditions and the algorithms tend to be compu-
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tationally expensive. In comparison to the 2D laser sensor, vision systems provide a much richer data

to work with. Some studies in visual odometry employ similar nonholonomic constrains to car-like

vehicles as the present in this work (Nourani-Vatani and Borges, 2011; Scaramuzza, 2011).

Recent work demonstrated that visual odometry can now be applied successfully in outdoor rough

terrain navigation over long distances (Konolige, Agrawal, and Solà, 2011). Visual odometry systems

were also employed to compensate for high slip rates in highly sloped and sandy terrains in the Mars

Exploration Rovers (Maimone, Cheng, and Matthies, 2007), figure 2.3; more uncommon applications

include wearable localization systems for indoor use (Oskiper et al., 2007).

Figure 2.3: Views of Opportunity’s 19 m drive from sol 188 through sol 191. The inside path shows
the correct, visual odometry updated location. The outside path shows how its path would have been
estimated from the IMU and wheel encoders alone. Each cell represents one square meter. From
(Konolige, Agrawal, and Solà, 2011).

The proposed approach in this thesis calculates the displacement between consecutive planar laser

scans due to the vehicle’s own motion. The different points of view as the ego vehicle moves allows

the algorithm to observe the vehicle’s own motion; however, this is only valid when at least some part

of the observed environment is static. The developed work is presented in chapter 3.
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2.2 Multi target tracking

The MTT problem is well understood and typically divided into key steps. Typically the first step is

to segment the incoming data into possible targets observations, this step is refereed as data segmen-

tation. Not all algorithms employ a data segmentation step. The following and most important step in

MTT is to perform data association. This association creates tracks of targets between different time

frames. These two steps will be presented in greater detail in the following sections.

2.2.1 Data segmentation

Multiple measurements per target is a crucial problem in robotics and computer vision (Teichman,

Levinson, and Thrun, 2011). The typically used sensors, vision and laser range finders, provide sev-

eral measurements that may originate from the same target. While several measurements from a

single target can provide additional information, for instance shape, they create an additional asso-

ciation problem: measurement-to-target association, the problem of deciding which measurements

belong to each target.

Initial MTT algorithms were developed for surveillance applications employing radar sensors

in the aeronautic industry. Under these conditions, measurement-to-target association is not a very

relevant issue, since targets are comprised of a single measured point, and thereby most of the de-

veloped algorithms did not take this factor in account (Khan, Balch, and Dellaert, 2006). In these

algorithms two basic assumptions are usually made: a target can generate a single measurement, and

each measurement can correspond only to one target. In the radar tracking field, the latter assumption

is commonly referred as unresolved measurements, a single measurement from multiple targets.

In robotics applications, neither of these assumptions hold true, either using visual tracking or a

laser range finder. A simple and common solution for the multiple measurement problem are cluster-

ing algorithms. Basic clustering works by grouping measurements by distance, while many clustering

algorithms exist (Aue et al., 2011; Ogawa et al., 2011; Teichman, Levinson, and Thrun, 2011), several

common problems persist: over/under segmentation and motion induced by shape changing.

The object shape appears to change as different aspects of the object come into view, and this

change can easily be misinterpreted as motion. The fundamental problem is that it is necessary to

choose some fixed reference point on the object in order to detect change in position. If the reference

point is not truly fixed, then there is false apparent motion (MacLachlan and Mertz, 2006), figure 2.4.

A majority of approaches to data segmentation are data driven. Clustering is performed based

solely on geometric properties of the scan, employing simple segmentation. One notable exception

to is the approach of Petrovskaya and Thrun, 2009a who use a particle filter framework where seg-

mentation is only necessary to initialize new tracks, but updating existing tracks does not rely on

a segmentation step. In a recent work (Himmelsbach and Wuensche, 2012), the authors propose a

bottom-up/top-down combined approach to segment objects that are not easily segmented from their
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Corner fit
Scan data points

Figure 2.4: Robust corner matching with outliers and round corner. Vehicle corners are used as fixed
reference points. From (MacLachlan and Mertz, 2006).

surroundings, figure 2.5. The authors propose to use geometry knowledge on existing tracks to aug-

ment the segmentation step. The authors of this paper conclude that powerful object models should

be used to more accurately represent articulated and non-rigid objects like: truck trailers or even

pedestrians.

(a) (b)

Figure 2.5: Data-driven, bottom-up object detection with (a) 3D segmentation of a point cloud, where
each individual segment was assigned a random point color and (b) fit of oriented bounding boxes
(purple) to the point cloud segments after outlier removal (orange). From (Himmelsbach and Wuen-
sche, 2012).

Additional research on this topic is required. Hard to segment objects like pedestrians in close

proximity or non-rigid objects like articulated vehicles, still present a demanding and unsolved prob-

lem.
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2.2.2 Data association

The data association step of the MTT algorithm consists in assigning current observed objects to

previous existing tracks (Miller, Campbell, and Huttenlocher, 2011). Each observed object should be

associated with an existing track or create a new track, since objects are free to enter or exit the scene.

Existing tracks may or may not be associated with an observation.

This step has been widely studied by the research community over the years. A very large number

of algorithms exist to solve this problem; Tinne, 2010 provides a very interesting survey of some of

the more popular methods. Algorithms range from the simple Nearest Neighbor (NN) to the very

complex Multiple Hypothesis Tracking (MHT), with variants using Particle Filter (PF) (Vermaak,

Doucet, and Pérez, 2003), Probability Hypothesis Density (PHD) (Mahler, 2007), Artificial Neural

Networks (ANN) or Fuzzy Logic (FL) approaches.

The algorithms may be separated into hard assignments or soft assignments associations. In the

first, each existing track will be associated with just one measurement. This is the case with NN and

MHT approaches. The second family of algorithms allows for a track to be updated with a set of

measurements by assigning a soft association. Taken to the limit a track may be associated with all

measurements (Blackman, 2004; Blom and Bloem, 2002).

Some of the most common algorithms in the ADAS field will be presented next: Nearest Neighbor

(NN), Probabilistic Data Association (PDA) and Multiple Hypothesis Tracking (MHT). Tinne, 2010

provides additional information on formulation of an extended list of techniques.

Nearest Neighbor

The NN algorithm solves the data association problem by assigning, to a target, the measurement

that is closest to the target’s predicted position in the measurement space. In this context, a statistical

distance is used, typically the Mahalanobis distance.

An important step in this approach is the use of a validation gate (this concept is also used in

other algorithms). The validation gate is the border to a region of space such that: a measurement

falling outside of this region is deemed to be generated from a source other than the target of interest

and therefore discarded by default. The measurement to target assignment can be performed in two

different ways, either local or global (Rong Li and Bar-Shalom, 1996).

Using this algorithm, track initialization, confirmation and deletion are performed using heuristics

rules (Tinne, 2010).

The main advantages of this approach are its conceptually simple implementation and low com-

putational cost.

Despite its simple nature and obvious limitations, this algorithm was used in several radar tracking

applications (Blackman and Popoli, 1999; Konstantinova, Udvarev, and Semerdjiev, 2003; Sinha et

al., 2012) and several improvements have been suggested (Li, 1993; Rogers, 1991).
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Prassler, Scholz, and Elfes, 2000 proposes the use of a NN tracking approach in a people tracking

application aboard a robotic wheelchair. In their application the authors do not apply any motion

prediction algorithm severely limiting their ability to cope with occlusions. In (Vu, Aycard, and

Appenrodt, 2007) Global Nearest Neighbor (GNN) is employed as the tracking algorithm of choice

in a SLAM application. In their application a map is constructed using a planar laser scanner and

an occupancy grid. Moving objects are detected by discrepancies in the local map providing track

initialization for the GNN algorithm.

Probabilistic Data Association

PDA and its well known Joint Probabilistic Data Association (JPDA) multi target variant, are a fam-

ily of tracking algorithms that use all valid measurements associations in a soft association scheme.

Tracks are updated with information from more than one target (Blom and Bloem, 2002; Kirubara-

jan and Bar-Shalom, 2004; Musicki and Evans, 2004; Otto et al., 2012). These algorithms avoid

ambiguous decisions by “averaging” over the different association hypotheses.

In this algorithm, each track is updated by a weighted sum of all, in gate, measurements. The

weights represent the probability that the measurement originates from that specific target (Tinne,

2010). In contrast with NN and MHT, the JPDA algorithm does not naturally handle track ini-

tialization or deletion, as it is formulated for a fixed number of targets. These operations must be

accomplished by an external mechanism.

Over the years, many variations of the original algorithm where proposed, recent proposals in-

clude (Habtemariam et al., 2013; Schubert et al., 2012). The authors in (Schubert et al., 2012) apply a

variant of JPDA entitled Generalized Probabilistic Data Association (GPDA). They apply their track-

ing algorithm to vehicle tracking from a vision system. In (Habtemariam et al., 2013), authors try to

solve the multi measurement per target using the JPDA architecture.

The algorithm proposed by Otto et al., 2012 fuses monocular camera detections with radar in-

formation to perform pedestrian tracking in vehicles blind regions. They propose the use of a Joint

Integrated Probabilistic Data Association (JIPDA) filter to solve the data association problem.

JPDA has no explicit method for track creation, but assumes that the track already exists. Unless

specific logic is provided, when new targets appear, they simply get absorbed into the old tracks, rather

than creating new tracks of their own. Another problem is that all measurements update all targets,

which means that if a track is initiated by noise, it will be updated and kept alive by the measurements

for other tracks around it, a problem exacerbated by the fact that there is no built-in method for han-

dling expired tracks. Both the PDA and JPDA also suffer from exponential computational complexity

(Smith and Singh, 2006).
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Multiple Hypothesis Tracking

As opposed to other more simplistic methods, the MHT method permits the delay of ambiguous

association decisions until additional data relives the ambiguity. MHT is widely regarded as an im-

portant data association method in the tracking community due to its probabilistic handling of parallel

hypotheses, whereas most competing techniques are suboptimal in nature (Blackman, 2004).

The algorithm, introduced in (Reid, 1979), creates a set of possible association hypotheses for

each target at each time frame. It exhaustively enumerates all possible combinations creating an

exponentially growing hypotheses tree. The creation of every possible combination, instead of just

the best combination, allows the algorithm to delay the association in ambiguous cases.

The MHT algorithm can be implemented in several different fashions as presented in (Blackman,

2004): hypotheses oriented, track oriented, multidimensional (or multiframe) assignment method,

and Bayesian MHT.

In the hypotheses oriented method (most common), each hypothesis presents a different inter-

pretation for all past measurements, consisting of a set of non-conflicting disjoint tracks (Tinne,

2010). These hypotheses are created recursively from previous hypotheses as new measurements

are received. These hypotheses can be visualized in a hypotheses tree, where each node represents a

hypothesis.

This algorithm was the algorithm of choice for a contribution in this field. The paper entitled

Multiple Hypothesis Tracking with Nonholonomic Motion Models using LIDAR Measurements was

published in an international conference.

2.2.3 State of the art in the ADAS field

The MHT algorithm, initially proposed for radar applications (Blackman et al., 1999; Danchick and

Newnam, 2006; Koch, 1995), has been previously used in applications in the ADAS context with

various purposes.

Figure 2.6: Example of the multiple hypotheses created from three point segments. From (Streller
and Dietmayer, 2004).
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In (Streller and Dietmayer, 2004; Streller, Dietmayer, and Sparbert, 2001) the authors implement

the MHT in a tracking application for a mobile vehicle. The authors use the multi hypotheses ap-

proach to compute several possible classification results. The different hypotheses allowed to better

interpreter the clusters created with the laser data. In their application the MHT algorithm is not used

to perform data association, figure 2.6.

The algorithm is also commonly applied to pedestrian detection and tracking. In (Arras et al.,

2008) a redefinition of the probabilities hypotheses in proposed. The authors explicitly model track

occlusion to reflect the fact that legs frequently occlude each other, figure 2.7. In (Tsokas and Kyr-

iakopoulos, 2010; Tsokas and Kyriakopoulos, 2012) the authors reformulate the MHT algorithm to

handle information from multiple robots, figure 2.8.

Figure 2.7: Trajectories of the robot and people. Person 1 is constantly tracked, person 2 receives a
new identifier when reentering the sensor’s field of view. From (Arras et al., 2008).
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Figure 2.8: Experiments involved three robots and up to five walking persons. For clarity reasons,
charts only depict part of the corresponding trajectories. From (Tsokas and Kyriakopoulos, 2012).
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2.3 Human pose estimation

Pedestrians are one of the most vulnerable and unpredictable road agents. The pedestrians ability to

suddenly start motion or change direction can create a dangerous situation in hundreds of millisec-

onds.

In the ADAS context, the prediction of the pedestrians’ intentions could potentially prevent acci-

dents and possible injuries. For instance, the detection of the pedestrian intent to either cross a road

at a crosswalk or to stop. Systems that are able to perceive pedestrian motion as soon as possible will

improve safety for road users. In (Schmidt and Färber, 2009), the authors studied how humans detect

the intentions of pedestrians to cross the road. The authors presented the participants videos of pedes-

trians crossing in natural traffic situations. The authors conclude that parameters of body language,

such as legs or head movements, are indispensable for a consistent behavior prediction. Pedestrian

trajectories alone are not sufficient to a correct and robust prediction. In this context, estimation of

the pedestrian pose is of crucial importance to achieve a fast response system.

Previous work on markerless detection and tracking of a human body pose has been primarily

focused in the use of intensity images, as stated above. In (Poppe, 2007), the authors provide a survey

of the different techniques used. The authors mark the distinction between model-based (generative)

and model-free (discriminative) approaches, with the model-based methods using a priori information

of the human body.

In (Andriluka, Roth, and Schiele, 2009), the authors propose a generic model for detection and

articulated pose estimation. The authors train detectors for anatomically defined body parts, which

are then used as the likelihood in a generative model. The authors employ a flexible kinematic tree

prior using pictorial structures on the configuration of body parts. In (Andriluka, Roth, and Schiele,

2010), the authors expand the previous work to include evidences from multiple frames. They model

the temporal prior as a hierarchical Gaussian Process Latent Variable Model (hGPLVM) combined

with Hidden Markov Model (HMM) to extend pedestrian tracklets. Their approach generates bottom-

up evidence from 2D body models and so it constitutes a hybrid generative/discriminative approach,

figure 2.9.

The work proposed by Agarwal and Triggs, 2006 treats pose estimation as a nonlinear regres-

sion problem and proposes to estimate body poses directly from silhouette images. They employ a

discriminative learning approach of body parts and embedded the algorithm in a tracking framework

to facilitate disambiguation between poses. The absence of a previous model makes their technique

easily adapted to different people, appearances or representations of 3D body poses.

Current monocular systems suffer from pose ambiguity problems due to the limitations of data

used. These systems employ tracking architectures to solve pose ambiguity but the tracking implies

the need to use multiple frames increasing the response time of these systems.

Work has also been performed using multiple monocular cameras to help with pose ambiguity. In
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Figure 2.9: Tracking of multiple pedestrians in a challenging scene. From (Andriluka, Roth, and
Schiele, 2010).

(Hofmann and Gavrila, 2012), the authors propose to perform 3D human upper body pose estimation

using multiple camera views. Their system creates multiple 3D pose hypotheses on a single view

using a probabilistic hierarchical shape matching algorithm. These hypotheses are re-projected into

other camera views and are then ranked according to their likelihood. Their system also applies a

tracking mechanism integrating a motion model and observations in a maximum-likelihood approach.

The need of multiple points of view severely limits the applicability of these systems.

Recently, the introduction of real-time depth cameras simplified greatly the pose estimation prob-

lem, when compared to monocular systems. The work presented in (Plagemann et al., 2010) makes

use of a time-of-flight camera to estimate human body pose at video frame rates. The authors take

a bottom-up approach to detect the body pose, starting with an interest point detector with a subse-

quent classification system. In (Shotton et al., 2013), the authors use a Kinect depth sensor to produce

a single frame human body pose estimation. The proposed approach uses a per-pixel classification

system applying Randomized Decision Forests (RDFs) and simple depth comparison features. After

classification, they calculate 3D positions of skeletal joints based on mean-shift clustering algorithm

and a learned surface depth offset for each joint. The algorithm achieves state-of-the-art performance

both in accuracy and runtime. The technology used in theses systems is currently incompatible with

the outdoors scenario, since the sun light saturates the infrared sensor preventing any measurements.

Stereo has been previously applied to estimate human body pose, (Plänkers and Fua, 2001; Ur-
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tasun and Fua, 2004; Yang and Lee, 2007). In (Ziegler, Nickel, and Stiefelhagen, 2006), the authors

treat the pose tracking problem as a registration of two 3D point sets. The authors integrate ICP with

an unscented Kalman filter to yield a registration algorithm capable of tracking articulated bodies.

In (Muhlbauer, Kuhnlenz, and Buss, 2008), the authors propose a system that uses stereo vision and

a skin color filter. The skin color filter is used as a segmentation method to extract the point cloud

belonging to the human body. The approach uses multiple models in different poses and computes an

error metric to identify the correct pose. The work was performed in indoor environments and focused

on upper body poses. The algorithm proposed in (Pellegrini and Iocchi, 2008) also makes use of a

variant of the ICP algorithm to match a simplified human model. The authors apply a Kalman filter

based tracking architecture with a subsequent pose classification based on HMMs. All the proposed

systems are either based on tracking algorithms or are not applicable in the ADAS context.

In the topic of predicting pedestrians’ intentions in the ADAS context, the work by Keller, Her-

mes, and Gavrila, 2011 presents a system that is able to predict if a pedestrian, walking towards the

road curbside, will cross the road or stop. Asides from classification, the system uses dense optical

flow from a stereo camera, with egomotion compensation, to obtain motion clues for the pedestrian

upper torso and legs. A dimensional reduction using Principal Component Analysis (PCA) is applied

to create Histogram of Orientation Motion (HOM) features. The current motion is matched to the

database using Quaternion-based Rotationally Invariant Longest Common Subsequence (QRLCS)

similarity metric.

On the same topic, the work by Kohler et al., 2012 presents a system that allows to detect early

the intention of a pedestrian to cross a road lane. This system uses the body language as an early

indicator of a crossing intent. Their system uses an infrastructure monocular vision system to extract

Motion Contour Histogram of Oriented Gradients (MCHOG) feature descriptor. They apply a linear

Support Vector Machine (SVM) system to identify the point when the pedestrian starts to enter the

lane.

Both of these works would benefit from a more accurate and complete perception of the pedestrian

motion. With additional detail the pedestrians’ intentions could be inferred more accurately, and also

sooner. The use of stereo vision makes possible pose estimation in outdoors environments. The

system is less susceptible to pose ambiguity, a serious problem in monocular systems, and performs

well in outdoors environments with the desirable range. The proposed systems focus attention in

the pertinent poses in ADAS context, especial attention is given to the legs pose. Previous works do

not focus on this problem neither present a solution with the required characteristics; a solution that

works in outdoors environments capable of, quickly and without initialization, estimating the pose of

the human lower limbs during a normal walking cycle.
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2.4 Conclusions

The state of the art relevant for this thesis was presented in this chapter. A representative related work

on each topic was shown. Several key topics of research remain to be solved and require additional

research work.

The rest of the thesis focus on the work performed and the algorithms proposed to solve some of

these issues.
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Chapter 3

Lidar egomotion

This chapter presents the proposed approach in the topic of egomotion estimation. The key idea

behind this proposal is to use the ever more common Light Detection And Ranging (LIDAR) sensor to

perform both target tracking and egomotion estimation. The high precision LIDAR will complement

the less precise but absolute GPS sensor, providing a high frequency egomotion information.

One of the main contributions on this topic is the evaluation of several scan matching algorithms

with real world data in a real world scenario. This comparative evaluation is not only important to

the current work but also to any work on Simultaneous Location and Mapping (SLAM) and path

planning, or related technology.

3.1 Scan matching egomotion

The proposed approach calculates the displacement between consecutive planar laser scans due to the

vehicle’s own motion. The different points of view as the ego vehicle moves allows the algorithm to

observe the vehicle’s own motion; however, this is only valid when at least some part of the observed

environment is static. This limitation also implies that in situations where the range of the sensor

is not enough to capture the environment, no motion can be perceived. Experiments with several

scan matching algorithms present in the literature were conducted: Metric based Iterative Closest

Point (MbICP) (Minguez, Montesano, and Lamiraux, 2006), Fast Polar Scan Matching (PSM) (Diosi

and Kleeman, 2007) and Point to Line Iterative Closest Point (PLICP) (Censi, 2008).

The test vehicle, Atlascar (Figure 3.1), is equipped with two front mounted planar Sick laser range

finders (LMS151); these sensors are placed in the front corners in such a way that they provide an

almost 360 degree field of view with just a small blind spot in the rear of the vehicle. Additional

information about the Atlascar vehicle may be found in (Santos et al., 2010). The multi sensor

approach provides a much larger field of view that would otherwise be difficult with a single sensor,

but also implies another challenge: sensor fusion.

The approach to the sensor fusion problem is to construct a grid in polar coordinates, much like

the technique proposed by Petrovskaya and Thrun (2009b); each cell of the grid corresponds to a
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Figure 3.1: Picture of the Atlascar vehicle. In the proposed configuration the two Sick lasers have
almost a complete coverage of the car’s vicinity, having just a small blind spot in the rear of the
vehicle.

different bearing that in total covers the whole 360 degrees.

For each cell, all range readings that fall within that cell are recorded; given the large overlap in the

laser sensors and attending to the fact that they are mounted at different heights and with marginally

different orientations, for each cell, multiple range readings are obtained (Figure 3.2). This approach

provides continuous scan that integrates measurements from different sensors but can be used as if all

readings come from a single sensor.

This fact is particularly useful when applying the scan matching algorithms which were not de-

veloped with multisensory compatibility in mind. Another great benefit that arises when using this

technique is the fact that other range sensors can be directly included. This may be particularly use-

ful to overcome some of the limitations of the laser sensors, such as when observing low reflectivity

targets, like black cars. In those situations, data from a stereo video camera could be incomporated,

that when clipped at the right height would provide the missing data.

The most relevant parameter of the circular grid is its angular resolution; in this application, higher

resolutions are preferable in order to capture all the possible detail of objects, even at long ranges,

although coarser resolutions could improve computational performance by reducing the number of

points in the scan. The chosen resolution was of 0.5 degrees which coincides with the laser sensor’s

angular resolution, thus providing a very high level of detail. The range values were not sampled.

One of the main reasons for failure of recursive scan matching algorithms is the lack of a good first

hypothesis (Censi, 2008). These algorithms often converge to local minima around the first guess, so

in order to improve performance a model of the ego vehicle motion was incorporated.

The sensors were mounted on a standard car, which is a nonholonomic vehicle. The use of a

nonholonomic motion model greatly improves the egomotion compensation since the match results
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Figure 3.2: Unified laser representation; in this figure the scans from the two lasers are fused in a
single representation. Multiple readings for the same bearing are represented in different colors, a
darker color for the closest to the vehicle and a lighter for the furthest. The range markings are in
meters. Bearings that have no return are not represented.

are easily compared to the vehicle limitations and incorrect matches are removed since they do not

comply with the nonholonomic constrains derived from the attainable accelerations and curvature

radii of the vehicle. Figure 3.3 provides a simple overview of the entire algorithm.

3.1.1 Observation model

The scan matching algorithms were configured in such a way that they provide the transformation

T = (∆x,∆y,∆θ) needed to align a previous scan with the current scan (Figure 3.4); the transfor-

mation is composed by a translation along the X and Y axis and a rotation around the Z axis. This

transformation corresponds to a straight vector from point A to B (Figure 3.5); due to the nonholo-

nomic constrains of the vehicle, this transformation does not match the vehicle’s true path in between

the scans.

A better approximation is to assume a constant linear velocity with a constant steering wheel

position; using these constrains the motion of the vehicle will be considered circular with any given

curvature radius (Figure 3.5); if the steering angle is zero, the vehicle will travel in a straight line with

infinite curvature radius.

The transformation provided by the scan matching algorithm T will allow to calculate the steering
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Figure 3.3: Simple overview of the proposed approach.

angle ϕk and the linear velocity in the middle of the rear axle of the vehicle vlk , at the current iteration

k.

The first step is to calculate the instantaneous rotation center, point C, using points A and B and

the restriction that the rotation center must be on the same line that the rear axle. The rotation center

can be interpreted as the intersection between a line orthogonal to
−−→
AB, that goes by the midpoint M ,

and a line in the rear axle. The instantaneous curvature radius R corresponds to the Y coordinate of

the C point.

The intersection can be defined using the following equation, with ~q such that ~q ·
−−→
AB = 0.

C = M + k~q (3.1)

Taking into consideration that the X coordinate of the C point is zero, the value of k can be

obtained as follows:

k =
−Mx

qx
(3.2)

With the center of the rear axle as the origin of the referential and points A = (ρ, 0) and B =
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Figure 3.4: 2D alignment of two scans. The current scan is represented in red and the previous scan
is in green. The result of the scan matching operation to align the previous scan with the current scan
is presented in blue; as can be observed, the scans are correctly aligned and overlap most of the time
(red and blue).

(ρ+ ∆x,∆y), the value of k is obtained.

k =
ρ+ ∆x/2

∆y
(3.3)

Finally, using the principle described above (3.1), the value of the curvature radius is derived as:

R = Cy =
∆y2 + 2×∆x× ρ+ ∆x2

2×∆y
(3.4)

The steering angle can finally be calculated using equation (3.5). To calculate the linear velocity

of the vehicle, the curvature radius and β angle are used in equation (3.6). This angle is calculated

by the angular difference between vector
−−→
CB and

−→
CA. The special case when ∆y = 0 it treaded

differently, in this case ϕ = 0 and R =∞ leaving vlk = ∆x
/

∆t.

ϕk = arctan

(
l

R

)
= arctan

(
2×∆y × l

∆y2 + 2×∆x× ρ+ ∆x2

)
(3.5)
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vlk =
β ×R

∆t
(3.6)

(a) (b)

Figure 3.5: Conversion of scan matching results to vehicle motion measurements. The scan matching
algorithms provides the ∆x, ∆y, ∆θ for the transformation from A to B. This transformation can be
converted into a steering angle and a velocity measurement. The variable l represents the wheel base
of the car and ρ the distance from the rear axle to the front of the vehicle.

By converting the scan matching transformation to a velocity and steering angle measurements a

comparison with the range of possible values is made simpler. In the proposed implementation the

measured values and their variations are tested with minimum and maximum limits, if one of the tests

fails the algorithm discards the measurement and iterates the filter without new measurements.

To improve the scan matching results, and also the computational need, an initial first guess of the

transformation is required. The quality of the first guess greatly affects the overall precision, stability

and number of required iterations.

The results of the scan matching algorithm are also dependent on the similarity of the scans to be

aligned; very similar scans provide better results, but differences in the scans due to a different point

of view or the presence of moving obstacles are prone to occur. In this application, closely spaced

scans are used, but not necessarily consecutive. Using, for instance, consecutive scans (align scan k

with scan k − 1) would provide the best similarity due to the small change in the point of view thus

leading to an easier and faster alignment, as opposed to using scans that are farther apart.

The main problem when using consecutive scans is that only a small fraction of the resulting

scan matching transformation corresponds to the real motion of the vehicle; the transformation is a

composite of the real motion of the vehicle and noise that arises naturally when dealing with real data;

by reducing the motion to noise ratio we increase the global error. This error is particularly evident
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when using the previously presented technique to compute vehicle steering angle and velocity. The

use of scans that are excessively apart also leads to errors due to the low similarity between scans,

resulting in imprecise or completely wrong alignments; so, in practice, a trade-off must be reached.

In this work the distance traveled between scans to align is kept constant by dynamically calcu-

lating the number of scans to jump (step) from the current scan using equation (3.7). This system

depends on the required traveled distance d, the scan frequency f and the current velocity of the ve-

hicle vlk . From several tests we concluded that a traveled distance of 0.3 m yielded good results. The

calculated step is truncated at maximum 10 for low speed values, and a minimum value of 1. This

value must have a maximum so that the start of the movement can be correctly perceived.

step =

⌈
d× f
|vlk |

⌉
(3.7)

In order to correctly integrate the scan matching results into the proposed Kalman filter approach,

the covariance of the match is required. Existing methods for estimating the covariance of the scan

matching algorithms are typically either inaccurate or are computationally too expensive to be used

online (Bengtsson, 2006; Bengtsson and Baerveldt, 2003; Censi, 2007). Due to this limitation, the

covariances used in the Kalman measurement errors were obtained offline by comparing the measured

values with values obtained from proprioceptive sensors (odometry measurements).

3.1.2 Nonholonomic vehicle motion model

Motion models have been used to improve the accuracy and stability of motion estimates in vehicle

applications like, for example, in vehicle tracking applications (Streller, Furstenberg, and Dietmayer,

2002a) or navigation (Schubert, Mattern, and Wanielik, 2008). The vehicle is assumed to comply

with a certain motion model which describes its dynamic behavior; the choice of model complexity

greatly influences the correct estimation of motion (Li and Jilkov, 2003).

In (Schubert, Richter, and Wanielik, 2008a) several motion models are compared for their per-

formance in vehicle tracking applications, however, all the tested models that correspond to the most

commonly applied variants do not incorporate the nonholonomic constrains that dominate the motion

of a car-like vehicle. In this work, the use of a motion model that more closely represents the vehicle

motion by the application of nonholonomic constrains is proposed.

The nonholonomic model used in (3.10) was based on a simpler model obtained from (Laumond,

1998a); it consists of six state variables (3.8): the global X axis position xp, and Y position yp, linear

velocity vl , global vehicle orientation θ, steering angle ϕ and steering angle velocity vr (Figure 3.6).

The global reference system used is the mission start position.

x = [xp, yp, vl, θ, ϕ, vr]
T (3.8)

The main feature of the kinematic model of a car like vehicle is the presence of two nonholonomic
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constrains (3.9) due to the rolling without slipping condition between the wheels and the ground

applied to the front and rear wheels (Laumond, 1998a).

ẋf × sin(θ + ϕ)− ẏf × cos(θ + ϕ) = 0

ẋp × sin(θ)− ẏp × cos(θ) = 0

xf = xp + l cos(θ)

yf = yp + l sin(θ)

(3.9)

Figure 3.6: Generalized coordinates for a car-like robot.

For a front wheel drive car, the constant velocity motion model is obtained as

ẋp = cos(θ)× cos(ϕ)× vl
ẏp = sin(θ)× cos(ϕ)× vl
v̇l = 0

θ̇ = sin (ϕ)× vl/l

ϕ̇ = vr

v̇r = 0

(3.10)

This non linear continuous time model undergoes discretization (3.11) in order to be used in an

Extended Kalman filter framework, where the estimated variable are calculated as follows:
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x̂p
−
k = cos(θ̂k−1)× cos(ϕ̂k−1)× v̂lk−1 ×∆t+ x̂pk−1

ŷp
−
k = sin(θ̂k−1)× cos(ϕ̂k−1)× v̂lk−1 ×∆t+ ŷpk−1

v̂l
−
k = vlk−1

θ̂−k = sin (ϕ̂k−1)× v̂lk−1 ×∆t/l + θ̂k−1

ϕ̂−k = v̂rk−1 ×∆t+ ϕ̂k−1

v̂r
−
k = v̂rk−1

(3.11)

The variables previously described in (3.5) and (3.6), ϕk and vlk, are used as measurements for

the filter.

The measurement error covariance matrix was statistically obtained via experimental data acqui-

sition, as stated previously, and the process noise covariance was experimentally tuned to provide the

best results.

One of the main features of this model is its ability to work with any steering angle; the model is

able to cope with a zero steering angle that causes the curvature radius to become infinite, which is

problematic in many models. The usefulness of the application of such a model is demonstrated in

section 3.2.1.

3.1.3 Scan matching algorithms

In the literature there are various algorithms which tackle the scan matching problem. In this work we

focused the attention only on algorithms that do not assume the existence of a structured environment

for outdoor use. Their main objective is to compute the relative motion of a vehicle by maximizing

the overlap between range measurements obtained in different poses. In this class, the most common

methods follow the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992).

The standard ICP algorithm is an iterative process with two main phases, correspondence search

and minimization (Minguez, Montesano, and Lamiraux, 2006). It starts from a initial first estimate q0
of the rigid body transformation, rotation and translation, between a reference scan Sref and a new

scan Snew. Then, in the correspondence step, the p′i points of Snew are transformed using the latest

qk, ci = qk(p
′
i), and matched with the reference scan points by searching for the closest point in one

of the segments [pi pi+1]:

min
j
{d(cj , [pi pi+1])} (3.12)

Where the function d() is a distance measure. The result of this operation is a set C of n corre-

spondences (pj , cj). Using this set, the value qmin that minimizes distance between pairs of corre-

spondences is calculated. The minimization criteria applied is:
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Edist(q) =
n∑
j=1

d(pj , q(cj))
2 (3.13)

The algorithm iterates these two steps until there is convergence, using qk+1 = qmin.

Several variations to the initial ICP algorithm have been proposed and demonstrated to improve

its accuracy and convergence rate. One popular method is presented in (Lu and Milios, 1997) called

Iterative Dual Correspondence (IDC), which uses two sets of correspondences to estimate both the

rotation and translation. The algorithm proposed in (Minguez, Montesano, and Lamiraux, 2006),

MbICP, tries to overcome the problem of estimating the rotation separately from translation by defin-

ing a distance metric that takes into account both rotation and translation between two points p1 and

p2 (3.14), where {x y θ} are the values of the rigid body transformation between the two points. This

metric defines a new parameter L homogeneous to a length.

dap(p1, p2) =

√
δx2 + δy2 − (δx p1x − δy p1x)2

p21y + p21x + L2

δx = p2x − p2yθ + x− p1x
δy = p2xθ − p2y + y − p1y

(3.14)

This new distance metric is an approximation (hence the superscript ap) and used in (3.13) instead

of the Euclidean distance used in the basic ICP algorithm. The incorporation of the rotation in the

distance metric reduces the number of iterations and consecutively the computation time of the algo-

rithm.The authors demonstrated that their algorithm is also robust to large initial errors, especially in

rotation and performed better than previous algorithms.

The approach proposed in (Censi, 2008), PLICP, is also a variant of the classical ICP but uses a

point-to-line metric. The authors present a closed-form solution for a distance metric that takes into

account the normal to the reference surface Sref of the projected points. The algorithm converges

quadratically and in a finite number of steps. The authors compare their algorithm against MbICP,

IDC and the classical ICP and obtained good results when using a good initial first guess; they also

noted that their algorithm was less robust than MbICP to large rotations.

In (Diosi and Kleeman, 2007) the authors propose a method that makes use of the laser measure-

ments in their native polar coordinates, PSM. The main advantage of this assumption is the reduced

complexity in both pose and orientation estimation: O(n) for pose estimation and O(kn) for orienta-

tion when compared to the standard ICP of O(n2). Their algorithm compares favorably with ICP in

both convergence time and area, allowing for a greater initial error.
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3.2 Experiments and results

Several tests were carried out in order to ascertain the behavior of the proposed approach. The test in

section 3.2.1 is intended to clarify the need for a good first guess by presenting a run time comparison

of one of the three scan matching algorithms tested with and without a first guess. Subsection 3.2.2

compares the three scan matching algorithms in relation to their computational time and distribution.

The last section presents results from several trials in the real world.

3.2.1 Influence of the motion model in the scan matching performance

A known limitation of scan matching algorithms is their heavy dependence on the first transformation

hypothesis which is known as first guess (FG). In practice, this dependence dictates that without a

good first guess the algorithm requires a higher number of iterations to converge and can sometimes

converge to erroneous solutions. In this section, we evaluate the influence of the use of a first guess in

the execution time of the scan matching algorithm, and the precision of the first guess obtained using

the proposed nonholonomic model.

Table 3.1 summarizes the results of a trial with a total of about 19700 alignments; the mean and

standard deviation of the run time (RT) of each alignment are presented. An immediate conclusion

is that the use of a first guess clearly reduces the run time by an average factor of 3; this reduction in

the average value is also accompanied with a reduction in the standard deviation by a factor of about

5. This test was conduced using the MbICP algorithm, but similar results are also achieved with the

other algorithms, since all of them are based on the ICP algorithm.

Table 3.1: Influence of the FG in the run time of the scan matching algorithm.

RT (ms) σ(ms)

with FG 10.15 5.47

without FG 32.95 24.80

In figure 3.7 the FG is compared to the value obtained in the end of the alignment process. This

comparison helps to understand how the run time of the algorithms is reduced; by providing a first

guess that is close to the actual alignment local minima the number of iterations to convergence

is drastically reduced. The error eFG is defined in (3.15), where Tsm is the transformation vector

obtained using the scan matching algorithm and the TFG is the first guess. Notice that the resulting

error eFG is a vector with three components. The results were obtained for the same data set used

previously (∼19700 scans). The error in the X coordinate is under 3 centimeters, in the Y coordinate

under 2 centimeters, and the error in rotation is below 0.01 rad.
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eFG = |Tsm − TFG| (3.15)
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Figure 3.7: Normalized histogram of the FG error for all three alignment variables. The error in the
X coordinate is under 3 centimeters, in the Y coordinate under 2 centimeters, and the error in rotation
is below 0.01 rad.

3.2.2 Computational time

Figure 3.8 presents a comparison of the run time of each algorithm in two different trials (see Table

3.2 for additional details).

In the first trial both MbICP and PLICP present similar results being able to execute most align-

ments under 20 milliseconds (key number to achieve real time at 50Hz frame rate), the PSM algorithm

present a bimodal distribution. In the second trial all the algorithms present a degraded performance.

The MbICP performance is only slightly worse than before, being able to run most alignments un-

der 30 milliseconds. The PLICP algorithm displays now also a bimodal distribution. The degraded

performance can be explained by the higher velocity of the vehicle in the second trial. The higher

velocity causes higher accelerations in the turns that lowers the suspension of the vehicle allowing the

lasers to hit the ground near the vehicle (ground strikes), resulting in a great number of wrong mea-

surements. These factors create difficulties for the alignment algorithms. The PLICP is particularly

susceptible to the high number of outliers, being most of the higher run times caused by that factor.

The PSM algorithm, even under the simpler trial, fails a significant number of alignments; this causes

the filter first guess to be incorrect yielding a large run time.
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(a) Run time analyses in the trial: Alboi 1
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(b) Run time analyses in the trial: Liceu 2

Figure 3.8: Comparison of the computational performance of the scan matching algorithms by com-
paring the time required for each alignment in two different trials. In the first trial MbICP and PLICP
present very similar results while PSM presents a bimodal distribution. In the second trial MbICP and
PLICP present a degraded performance, slightly worse for the MbICP and significantly worse for the
PLICP, while PSM presents a bad performance similar to the first trial.

3.2.3 Ground truth

In order to ascertain the performance of the proposed algorithm, the estimated values for the steering

angle and linear velocity were compared with on-board sensors. The linear velocity and steering

angle are the only car variables that are needed for this egomotion estimation method, hence only

these variables will be evaluated.

The test vehicle is equipped with several sensors that allow monitoring the driver actions, such

as steering wheel and pedals positions, as well as the vehicle velocity. For the steering angle, a

potentiometer was fitted to the steering wheel and for the linear velocity an encoder was attached
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to one of the rear wheels. In this arrangement, the wheel encoder velocity does not correspond to

the velocity of the car as measured from the center of the rear wheels (the velocity measured by the

proposed algorithm), therefore it must be corrected.

Using the steering wheel position ϕodo (potentiometer reading) the correction factor can easily

be calculated, equation (3.16) allows to calculate the instantaneous curvature radius (R) and using

equation (3.17) we apply the correction (vlw stands for the velocity of the left rear wheel, vodo is

the corrected vehicle velocity and W the wheel separation). Equation (3.16) will output a positive

curvature radius for left turns, and infinite value in straight lines and a negative value in right turns.

The correction factor in equation (3.17) will always be positive in the range of possible curvature

radius (ϕ in the interval [−0.5, 0.5]) and will have a unitary value in a straight line.

Rodo =
l

tan (ϕodo)
(3.16)

vodo = vlwodo
× Rodo
Rodo −W/2

(3.17)

Experimental setup

A total of 5 trials were performed, and all the trials followed different paths in two distinct location

in the city of Aveiro, Portugal.

The trials focused on urban scenario in real conditions, the algorithm was tested in a very cluttered

environment crossing and following behind other vehicles. The following table summarizes the main

characteristics of the trials.

Table 3.2: Experimental trials summary. Velocities were measured using on-board odometry. The Id
correspond to the name of the neighborhood where the trial was conducted.

Id Length (m) Max velocity (m/s) Mean velocity (m/s) Laser scans

Alboi 1 641 6.72 3.54 9095

Alboi 2 505 7.14 3.90 6471

Liceu 1 734 10.56 5.97 6113

Liceu 2 1138 10.13 5.60 10162

Liceu 3 1006 11.13 6.35 7873
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Linear velocity estimation evaluation

Figure 3.9 presents the first 80 seconds of the velocity estimation process for the Liceu 3 trial using

the MbICP algorithm. As can be observed in Figure 3.9, the nonlinear model successfully estimated

the real velocity of the vehicle using only laser range data.
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Figure 3.9: Comparison of the linear velocity measured using wheel encoder and the value obtained
using the EKF model.

Steering angle estimation evaluation

Figure 3.10 presents the estimated and measured values for the steering angle also in the Liceu 3 trial.

Once again, it can be observed that the proposed algorithm correctly estimates the real value of

the steering angle. In the figure it can be observed that in the first 10 seconds the estimated value

is very noisy, this is due to the fact that the vehicle was stopped at this time so it was impossible to

correctly measure the steering angle using the proposed approach, these noisy measurements are of

no consequence since the velocity was correctly estimated, and since the velocity was null, this error

does not change the global orientation of the vehicle.

A summary of the results obtained in the trials using the three scan matching algorithms is present

in table 3.3. These results show that both the MbICP and PLICP algorithms present similar perfor-

mance in most of the trials while the PSM algorithm present worse results in all of the trials. It can
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Figure 3.10: Steering angle comparison between wheel potentiometer and EKF motion model. In the
first 10 seconds of the experiment the car was immobile so it was impossible to measure correctly the
steering angle, as can be observed in the figure.

also be observed that the algorithms performed better in the Alboi trials, these trials are easier due to

their lower speed and less road traffic.

In the Liceu trials the vehicle crosses with a higher number of moving vehicles and the environ-

ment was more open having less features in range of the lasers.

These results present the typical error obtained with the proposed approach, but there are situa-

tions that can cause a larger local error, for instance when the assumption that a certain part of the

environment is static fails. This can occur when following behind a number of cars that block the

front and side’s covering most of the visible area; in these situations, the scan matching algorithm

fails to correctly align the scans producing erroneous measurements.

The percentage of static environment needed to correctly align the scans can vary significantly

and is mainly dependent on the first guess. For instance, if the first guess is very close to the correct

solution the scan matching algorithm can align the scan when as little as about 30% of the scan

corresponds to static features; on the other hand, if for some reason the first guess causes the scan to

align with a moving obstacle and that obstacle represents the same 30% of the scan, the alignment

will possibly converge to a wrong solution.

Other situations that can cause the algorithm to fail are the lack of features in range of the laser

scanners or the presence of a environment without feature in one direction (Figure 3.11); in the first
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Table 3.3: Mean and standard deviation of the velocity and steering wheel errors when comparing
estimated values using the proposed approach and odometry measurements, ve = vodo − vl and
ϕe = ϕodo − ϕ.

Id Method ve (m/s) σve (m/s) ϕe (rad) σϕe (rad)

Alboi 1 MbICP -0.0157 0.1817 0.0019 0.0253
PLICP -0.0233 0.1761 0.0063 0.0215
PSM 0.1140 0.3266 -0.0050 0.0487

Alboi 2 MbICP 0.0014 0.1965 0.0060 0.0346
PLICP -0.0025 0.2022 0.0060 0.0320
PSM 0.2022 0.6869 -0.0027 0.0544

Liceu 1 MbICP -0.0012 0.2340 0.0022 0.0161
PLICP 0.0092 0.2358 0.0045 0.0217
PSM 0.2233 1.1672 0.0076 0.0378

Liceu 2 MbICP -0.0219 0.3511 0.0036 0.0385
PLICP 0.0416 0.5188 -0.0065 0.0368
PSM 0.1212 0.8198 -0.0270 0.0568

Liceu 3 MbICP 0.0082 0.2474 0.0002 0.0131
PLICP 0.0052 0.2621 0.0007 0.0169
PSM 0.1958 0.8241 -0.0073 0.0511

case, the algorithm simply does not have enough readings to perform the alignment, and iterates the

filter without new measurements; in the second case false positive alignments occur due to the nature

of the scans; that particular type of scans only allow for the alignment in one direction. In any of the

previous situations, the error increases or, in extreme cases, the algorithm fails completely.

Path reconstruction

Although not the purpose of this work, nor its major strength, using the proposed model the local x

and y positions of the vehicle can be calculated, and by using these values, the path completed by the

vehicle can be reconstructed. Figure 3.12 presents several reconstructed paths using this method.

The results obtained using the model are superimposed with values obtained using odometry mea-

surements. As can be observed, the results are very interesting and show a high degree of robustness.

The path presented in figure 3.12 (c) shows how a localized error will be propagated when trying

to integrate a path without absolute orientation sensor; without an absolute orientation sensor rotation

errors eventually turn into translation errors (Olson et al., 2003). The particular error in figure 3.12

(c) is related to the unevenness in the terrain at that location; the perception of the road curbs by the
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(a) Laser scan. (b) Image.

Figure 3.11: Scan matching alignment failure due to the lack of features in the x axis.

laser changed geometry very quickly due to the pitch up and down of the vehicle in the curve, the

road curb corresponded to about half of the laser measurements. None of the three algorithms was

able to correctly estimate the steering angle in this curve.
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(a) Alboi 1, MbICP (b) Alboi 2, PLICP

(c) Liceu 1, MbICP (d) Liceu 3, MbICP

Figure 3.12: Several paths reconstructed using the proposed approach. The blue path corresponds to
the path reconstructed using the odometry measurements while the yellow path corresponds to the
proposed approach. The red dot indicated the start position of the trial. The error in the last corner of
figure (c) was due to the local geometry of the road curve.
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3.3 Conclusion

A method to estimate the egomotion of a vehicle using exclusively laser range data was presented.

The major desired application of the technique is to provide an egomotion estimation in order to

extract the dynamics of the obstacles around the moving vehicle. The proposed approach takes into

account the local discrepancies between closely spaced laser scans to calculate the current vehicle

velocity and steering angle. These measurements are incorporated into a non linear motion model

that provides a very good estimation of the vehicle motion.

The use of a nonholonomic motion model proved to increase the accuracy and cycle time of

the scan matching algorithm and increase the immunity to erroneous associations. The results were

compared to vehicle on-board sensors and reconstructed paths. Very good results were obtained for

the velocity and direction estimation. The use of MbICP and PlICP algorithms provided similar errors

but the MbICP typically performs faster. The PSM algorithm clearly has the worse performance.

The approach proved to work well in urban dynamic scenarios even when the vehicle mingled

with road traffic.
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Chapter 4

Multi hypotheses tracking

In this chapter the posed Multi Target Tracking (MTT) algorithm is presented. This algorithm, al-

though previously used in the Advanced Drivers Assistance Systems (ADAS) field was not fully

explored, key points in the algorithm were not explored nor tested in real world conditions. The pro-

posed work presents a fully featured Multiple Hypothesis Tracking (MHT) algorithm coupled with

an advanced motion model in order to track highly dynamic vehicles.

The work also presents how some of the most important steps of the algorithm may be imple-

mented with real world constraints and how does those constraints influence the algorithm perfor-

mance.

4.1 Overview

The proposed algorithm starts by checking the valid possible associations between the current mea-

surements and the existing targets. The measurements are checked against the predicted positions of

existing targets using a Mahalanobis distance gate. Nonholonomic motion models are used to predict

the targets positions. Valid possible associations are used to assign measurements to clusters (section

4.3).

Each cluster is treated as an independent data association problem. The likelihoods of valid asso-

ciations between measurements and targets create ambiguity matrices. The Murty’s linear assignment

algorithm (Murty, 1968) is then used to create the k-best possible assignment hypotheses.

Out of all created hypotheses only a subset is propagated for each cluster limiting in this fashion

the grow of the hypotheses tree.

The output targets correspond to the targets in the most likely hypothesis in each cluster.
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4.2 Hypotheses probabilities

As proposed in (Cox and Hingorani, 1996) and presented in (Arras et al., 2008) the probability of

each individual j hypothesis Ωk
j given the new measurements zk, at iteration k, can be calculated

using the probability of the assignment set Ψj(k) and the parent hypothesis Ωk−1
p(j) , denoted by the

index p(j), as:

p
(

Ωk
j |zk

)
= p

(
Ψj(k),Ωk−1

p(j) |zk
)

(4.1)

Applying the Bayes’ rule yields:

p
(

Ωk
j |zk

)
= η p

(
zk|Ψj(k),Ωk−1

p(j)

)
p
(

Ψj(k)|Ωk−1
p(j)

)
·

p
(

Ωk−1
p(j)

) (4.2)

The first term in the right-hand side, η, is a normalizer that ensures that all the probabilities of

hypotheses in a cluster add up to 1. The next term is the measurement likelihood. Assuming a

Gaussian pdf for a measurement associated with a target (N (zik)
δi , δi = 1 if the association is true,

δi = 0 otherwise), and a uniform association probability for a new track over the observation volume

V , the measurement likelihood is calculated for all Mk measurements as:

p
(
zk|Ψj(k),Ωk−1

p(j)

)
=

Mk∏
i=1

N (zik)
δiV −(1−δi) (4.3)

The center right term of equation (4.2) is the probability of an assignment set, p
(

Ψj(k)|Ωk−1
p(j)

)
.

This probability is dependent on the probability of the number of targets with a certain label, the

probability of a specific distribution of measurement assignments, and the probability of a specific

distribution of target assignments.

The final term of equation (4.2) is the recursive term, the probability of the parent hypothesis.

The combination of all these probabilities wields a simplified version of the probability of a single

hypothesis, equation (4.4), given that many terms cancel out. The final probability is independent of

the observation volume V . The detailed deduction can be consulted in (Arras et al., 2008).

p
(

Ωk
j |zk

)
= η′′

Mk∏
i=1

N (zik)
δi ·

pNdet
det pNocc

occ pNdel
del λNnew

new λ
Nfal

fal ·

p
(

Ωk−1
j |zk−1

) (4.4)
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4.3 Clusters

The MHT implementation here presented revolves around the notion of cluster. Although introduced

by Reid, 1979, the idea of clustering hypotheses is not usually discussed nor implemented.

A cluster arises from the need to deal with conflicting targets, targets that share the possibility of

association with one measurement. This possibility indicates that a valid association between each

target and the measurement can occur. When two targets share a measurement the data association

must contemplate the fact that only one of the targets can actually be associated with that measure-

ment, in practice these two targets must be evaluated together. In this simplistic case two different

valid associations can be made, each resulting association is now treated as a hypothesis.

In a more complex case, with several conflicting targets and measurements, a hypothesis is a

valid association of all targets with all measurements, different valid associations create different

hypotheses within the same cluster (figure 4.1).

Cluster

m1

m2

. . .

Measurements

h1
h2
. . .

Hypotheses

t1,h1
t2,h1
. . .

t1,h2
t2,h2
. . .

. . .

Targets

Figure 4.1: Cluster composition. A cluster is composed of a set of measurements and hypotheses,
each hypothesis has a variable number of targets.

4.4 Hypotheses creation

The first step of the algorithm is to assign current measurements to existing clusters. Once all clus-

ters are updated new hypotheses can be created. The clusters are solved separately and in parallel

given that different clusters do not share conflicting targets. Each cluster is composed of a set of

measurements and a set of hypotheses.

The purpose of this step is to associate the measurements to the targets of the cluster. Each
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hypothesis presents a different set of targets that can be associated with the measurements. The

measurement-to-track association may have several possible solutions, creating this way the ambigu-

ity problem. Instead of enumerating all possible combinations, the proposed implementation uses the

Murty’s algorithm to generate the k-best possible associations, making this way feasible the imple-

mentation of this algorithm. Of the complete set of k-best associations, in each cluster, only a small

group is propagated according to a minimum representativity rule.

In each cluster, for each hypothesis, an ambiguity matrix is created. This matrix expresses the

association likelihood between each target and each measurement (table 4.1). These probabilities are

calculated from the bivariate normal distribution of the target position at the measurement position.

Take notice that the probabilities in this matrix do not necessarily add up to 1 when adding columns

or rows.

Table 4.1: Example ambiguity matrix. The ambiguity matrix expresses the probability of association
between each measurement and each target.

t1 t2 t3
m1 0.8 0.2 0.1
m2 0.3 0.1 0.9

From the ambiguity matrix all the possible associations can be extracted. In order to obtain these

associations in an efficient manner Murty’s algorithm is implemented.

4.5 Murty algorithm

The Murty’s algorithm introduced in (Murty, 1968), determines the k-best assignments in a linear

assignment problem in polynomial time.

The algorithm, as described in (Cox and Miller, 1995), starts by finding the single most probable

association by interpreting the problem as a weighted bipartite matching problem. A bipartite graph

is created with the targets on one side, measurements on the other, and the negative log likelihood

of each association as the arcs connecting them. To solve this classic assignment problem the Hun-

garian method was employed (Kuhn, 1955). From this solution the Murty’s algorithm partitions the

main problem into a list of new problems. These new problems follow two rules: first there are no

duplicated problems, and second the union of the sets of solutions to these new problems contains all

solutions for the main problem except the solution already calculated.

The k-best algorithm obtains the solutions iteratively. The best solutions is found and removed

from the problem by replacing the problem with its partition. The best solution of the partition is

found and the same methodology is applied, then algorithm continues until k solutions are obtained

or there are no more valid solutions.
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The Murty’s algorithm termination criteria may be modified to better suit the MHT problem

(Arras et al., 2008). Given the formulation the Murty’s algorithm, it provides an ordered list of

solutions, from the best to the worst. We can set a lower limit that would stop the search for additional

solutions by analyzing the probability of each solution as they are created. Another hypothesis would

be to examine the representativity of all the solutions found so far, setting a minimum required value

as the threshold.

The output of the assignment step is a list of possible children hypotheses for each cluster. After

assignment, the targets in each hypothesis are labeled as one of the following: detected, occluded,

deleted, or new.

4.6 Hypotheses propagation

Each of the child hypotheses has a probability that is calculated using equation (4.4).

The propagation of all these hypotheses would cause the exponential growth of the tree even with

the application of the Murty’s algorithm. Each hypothesis in a cluster would create k new hypotheses

at each iteration.

To avoid this growth another pruning strategy is applied. For each cluster only a subset j of the

best hypotheses is propagated.

The first step to obtain this subset is to normalize the probabilities of all the new hypotheses, the

sum of the probabilities of all new hypotheses inside a cluster must be 1. After normalization the best

j hypotheses are appended to their respective parent hypothesis in the cluster. Hypotheses from the

previous iteration that have no new children are considered dead.

In this step an additional stopping criterion was applied. If the sum of the probabilities of the

hypotheses added so far account for a minimum representativity of 95%, no more hypotheses are

added.

4.7 Motion models

To predict the future positions of targets and reduce the search space, motion models are used (Streller,

Furstenberg, and Dietmayer, 2002b). In this implementation a nonholonomic model is proposed. This

model, obtained from (Laumond, 1998b) and previously used in (Almeida and Santos, 2013), incor-

porates the constraints that dominate the motion of a car-like vehicle contrary to the most typically

used models (Schubert, Richter, and Wanielik, 2008b).

The model consists of five state variables (4.5): the global xp and yp, linear velocity vl, global

vehicle orientation θ and steering angle ϕ. The global reference system corresponds to the mission

start position.

x = [xp, yp, vl, θ, ϕ]T (4.5)
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The model is obtained as follows:

ẋp = cos(θ)× cos(ϕ)× vl
ẏp = sin(θ)× cos(ϕ)× vl
v̇l = 0

θ̇ = sin (ϕ)× vl/l

ϕ̇ = 0

(4.6)

This model undergoes discretization to be used in a Extended Kalman Filter (EKF) framework.

The variables xp, yp and θ are inputted as the filter measurements from the data. The filter parameter

matrices were experimentally tuned to achieve a good performance.

The use of such a model has some important benefits over more traditional models. This model

allows to obtain not only the linear velocity, but also the steering angle of the vehicles, this is of

extreme importance given that it allows for large occlusions in maneuvering situations.
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4.8 Results

Two main sets of experiments were conduced. A set with simulated data and a second experiment

with real world urban data.

The first set allowed to test the data association step with large amounts of data. The simu-

lated data provided a straightforward ground truth which easily allowed the quantification of the total

number of errors. This quantification enabled the comparison of different parameterizations of the

algorithm in both association performance and computational cost.

The second experiment allowed to test the algorithm with real world data. The data consisted of

a key situation for ground vehicles safety and autonomy, namely roundabouts. This trial is especially

important due to the very high complexity which limits the application of simpler algorithms.

4.8.1 k-j parameterization

The MHT algorithm is heavily dependent on the hypotheses creation parameterization for both track-

ing and computational performance. The increase in the allowed number of hypotheses should, in

theory, increase tracking performance but substantially increase the computational load.

This experiment evaluates the tracking performance dependency on the k and j parameters. Since

the two parameters are heavily interconnected a simultaneous analyses of both was performed.

The experiment consisted of a single set of 10 trials tested with various k-j configurations, ranging

from 1-1 to 10-10. Each trial consisted of a set of 30 targets moving in linear trajectories with similar

speeds (figure 4.2). These targets started in different normally spaced apart positions (x = 0 for

all targets and y with incremental spacing with distribution N (0.66, 0.22)) but crossed each other

while moving. The trajectories orientations were uniformly distributed in the interval ] − π/9, π/9[,

while the velocities were normally distributed N (15.0, 1.02) with a short acceleration ramp at the

beginning. As can be seen in the figure 4.2, in these trials an error rate of zero is impossible due to

their very high complexity.

Figure 4.3 presents the results of the experiment. Each bar plots the mean percentage of error per

target per trial using a total of 10 trials. Take notice that k > j and j > 1 when k = 1, do not appear

because not all combinations of k-j are valid or interesting. For instance, it is useless to extract from

a single hypotheses more new hypotheses (k) than the total we will evaluate (j).

As can be observed the worst performance is obtained with 1-1, 12.1%. A sharp increase in

performance is obtained with a small increase in the number of hypotheses, a 28% increase in perfor-

mance from 1-1 (12.1%) to 2-2 (8.7%).

After the initial dip, the performance stabilizes around 8%, improving to low 7% only with a large

number of hypotheses. The best performance, 7.08%, is obtained with 4-10.

While the performance increase with j is clear, the parameter k does not significantly influence

the results.
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Figure 4.2: Simulated targets raw data trails. The targets are color coded for easy distinction. At the
start of the trial, on the left side of the graph, the targets are ordered by id.

Additionally a computational cost comparison was performed. Figure 4.4 presents the mean

iteration time for the 10 trials (each with 500 iterations) with different k-j parameterizations. Two

different implementations of the algorithm were tested: a single thread implementation and a multi

thread implementation. In the multi thread implementation each cluster was processed in a parallel

thread. Inside each cluster, the evaluation of each hypothesis was also implemented in parallel.

As expected, with parameterization 1-1, both implementations have the same and best perfor-

mance. The performance of each implementation degrades exponentially with the increase of k-j.

The multi thread implementation presents the best performance, with mean iteration time lower by

around 30% (29.8% at 2-2 and 35.8% at 10-10), compared to the single thread implementation.

The tests were conducted in computer equipped with a dual core processor. In a computer with

additional cores, additional performance gains are expected.

4.8.2 Roundabout trial

In this trial, real data was provided to the algorithm. The data was obtained in the city of Aveiro-

Portugal in a three lane large roundabout (figure 4.5). The vehicle entered twice in the roundabout, in

both occasions the vehicle had to stop due to traffic. A total of 34 different vehicles were encountered
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Figure 4.3: k-j parameterization influence. Each bar presents the results for 10 trials with specific k-j
values.

and visible in the laser data.

Egomotion was provided by internal sensors in the vehicle as presented in (Almeida and Santos,

2013).

In order to obtain a set of metrics of the algorithm performance, ground-truth information was

needed. The acquired raw laser data was hand labeled, with all 34 vehicles segmented and tagged.

To take advantage of the nonholonomic motion model proposed, nonholonomic measurements are

needed, measurements must correspond to the position of center rear axis and orientation of the

vehicle.

This work focuses on the data association step of the tracking algorithm, the segmentation is out

of scope of this work.

In this trial the total percentage of association errors over all performed associations was 4.22%.

In order to detect the loss of a target while it was still in scene the total created targets were

compared to the ground-truth total count, figure 4.6. The loss of a target most often occurs due to

occlusion from other targets and fixed objects. This is particularly critical at longer ranges where a
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Figure 4.4: Mean iteration time of different k-j parameterizations. Each parameterization was tested
with 10 trials.

target may only be represented by a single point.

The distribution of the distance from the Kalman filter estimated position to the measurement data

is presented in figure 4.7. This figure presents only the distance for correct associations. The data

indicates that estimation is performed correctly and accurately.
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Figure 4.5: Raw data acquired in the trial, corrected with egomotion. The moving targets points are
not displayed. The red line plots the vehicle path during the trial.
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Figure 4.6: Accumulated number of targets. The difference between the ground-truth and the detected
targets identifies situations were a target was lost and subsequently reinitialized. At the end of the
trial the accumulated detected targets were 11.7% higher that the ground-truth.
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Figure 4.7: Distribution of the distance between the estimated position of targets and the hand labeled
measurements, excluding bad associations.
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4.9 Discussion

The trials using simulated data do not allow for an evaluation of the true performance of the algorithm.

Nonetheless they allow the comparison of different parameterizations and the influence of difference

factors. These comparisons would be very hard to achieve using real data due to the lack of ground

truth.

The higher number of available hypotheses typically leads to a better performance, but also in-

creases dramatically the computational load of the algorithm. For instance, at the beginning of the

trials all targets belong to the same cluster (due to their proximity), in the trial 1-1 with 30 targets, a

single 30 × 30 cost matrix must be evaluated, but in the 10-10 a total of 10 matrices (30 × 30) must

be evaluated 10 times using the k-best algorithm.

The performance increases due to the higher number of hypotheses is obvious when the number of

hypotheses is low, but at higher numbers this performance increase fluctuates and the computational

cost oversteps this gain. This performance curve is very hard to extrapolate to the real scenario. The

size in the number of hypotheses can be correlated to the targets dynamics, lower dynamics indicate

that some hypotheses must be kept during a long time, given that 2 or 3 iterations are not enough to

ascertain which one is correct. The use of the k-j approach completely limits the exponential growth

of hypotheses but has some potential drawbacks. On the short-term, high probability hypotheses may

be oversampled completely obfuscating other lower probability valid hypotheses, that on the long run

would be better alternatives.

The evaluation of each individual hypothesis is independent of all the others, due to this fact their

processing may be performed in parallel. The heavy parallelization of the algorithm is of crucial

importance to improve performance in the most complex trials. This parallelization feature is also of

extreme importance to allow the implementation in dedicated systems.

The trial with real data allowed to ascertain the true behavior of the algorithm. The algorithm

very accurately estimated the total count of targets. This demonstrates the algorithm’s ability to deal

with occlusions. In this trial several other vehicles moved in close proximity to our vehicle creating

large occlusions zones. These zones often caused vehicles to become occluded during large periods of

time. The nonholonomic motion model allowed to correctly estimate the true position of the vehicle

until it exited the occlusion zone, preventing this way the reinitialization of its tracking.
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4.10 Conclusions

This chapter presents a hypotheses oriented implementation of the multiple target MHT algorithm.

The MHT algorithm applies the notion of multiple valid hypotheses to an association problem

thus delaying critical decisions that could be proved wrong, to a time when more information relieves

the ambiguity. At each iteration, a set of hypotheses expresses the different possible, within gating

distance, combination of measurement to track associations as well as the different assumptions on

the number of actual tracks and false alarms. The hypotheses clustering allowed the partition of the

main problem into independent subsets, both simplifying and improving the computational speed by

allowing parallel processing.

The algorithm demonstrated high performance and robustness with both simulated and real data.

Synthetic data was used to evaluate effect of the hypotheses limitation via the k-j method. The

increase in the total number of hypotheses leads to a initial large increase in performance that quickly

stabilized.

The polynomial Murty ranked assignment algorithm was used to replace Reid’s original NP-hard

exhaustive hypotheses creation, evaluation and branching. The hypotheses limitation and pruning,

though the j limit algorithm, completely avoid the exponential growth of the hypotheses tree. This

limitation scheme although necessary imposes some important drawbacks that should be addressed.

The algorithm was tested using real world data. The data was obtained in a key situation for road

autonomous system safety, namely a large roundabout. The association algorithm performed very

well and the use of an advanced motion model allowed to overcome most occlusions, preventing the

creation of surplus targets.

The work presented here was published in an international conference in (Almeida and Santos,

2014).
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Chapter 5

Pedestrian pose estimation

This chapter presents the work performed in the topic of pedestrian pose estimation. As stated before,

pedestrians are one of the most vulnerable and unpredictable road agents. The pedestrians ability to

suddenly start motion or change direction can create a dangerous situation in hundreds of millisec-

onds.

The human body pose revealed to be indispensable for an accurate and responsive pedestrian

tracking. The body pose was found to be critical when assessing the pedestrians intentions and thus

future movement.

This chapter starts by presenting a geometric sample based pose estimation algorithm. The algo-

rithm defines a scoring metric to compare different pose samples. Due to the 3D nature of the human

pose information, there was no readily available ground truth, nor it was easily obtained by hand

labeling. In fact, hand labeling 3D body pose data is extremely impractical if not nearly impossible.

Due to this impossibility an alternating was found. The University of Aveiro made available an

industrial level motion capture laboratory. With the motion capture system, it was possible to obtain

real world pose information, used to evaluate the pose estimation algorithms. The motion capture

system provides millimeter accurate pose data but imposes some very strong constrains on how can

the data be obtained and how closely can the reality be replicated.

With the motion capture data, a new evolved pose estimation algorithm was developed. This new

algorithm takes into account what the sensor is expected to observe and compares that to the actual

measurements. This is the key contribution of this method. This contribution allows for a natural

handling of occlusions.
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5.1 Geometric sampling pose estimation

The proposed approach isolates the pedestrian point cloud and extracts the pedestrian pose using a

geometric sample and scoring scheme reminiscent of the Monte Carlo techniques. The technique per-

forms a hierarchical search of the body pose from the head position to the lower limbs. In the context

of road safety, it is important that the algorithm is able to perceive the pedestrian pose as quickly as

possible to potentially avoid dangerous situations, the pedestrian pose will allow to better predict the

pedestrian intentions. To this end, a single pedestrian model is used to detect all pertinent poses and

the algorithm is able to extract the pedestrian pose based on a single depth point cloud and minimal

orientation information. The algorithm was tested with real data in an outdoors environments. Good

results were obtained, the algorithm is able to correctly estimate the pedestrian pose with acceptable

accuracy. The use of stereo setup allows the algorithm to be used in many varied contexts ranging

from the proposed ADAS context to surveillance or even human-computer interaction.

5.1.1 Overview

Human body poses are obtained from 3D point clouds from a stereo setup, figure 5.1. Pose estimation

is performed by a geometrical search of the pose space. The human parts are primarily represented as

lines with various different degrees of freedom, corresponding to anthropomorphic constrains. The

search is hierarchical and sample based. The algorithm starts with a preprocessing step intended to

segment the points belonging to the pedestrian. After segmentation, the point cloud is divided, and

the search begins. Due to the different shape and kinematic constrains of different body parts, they

are sampled with different shapes and with specific boundaries.

Figure 5.1: Two example pose detections. For each pose, on the left, the segmented point cloud and
on the right the extracted pose. Red spheres mark left body joints and the head while blue spheres
mark the right joints. The arms are not detected.
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This work uses the online dataset from KITTI (Geiger, Lenz, and Urtasun, 2012). The KITTI

dataset provides left and right images from a stereo setup along with the calibration parameters.

With both datasets, a disparity image is calculated using the Semi Global Block Matching (SGBM)

algorithm modified from (Hirschmuller, 2008) and the disparity image is used to compute a 3D point

cloud.

5.1.2 Preprocessing

To extract the pedestrian, first a background mask is created using a background subtraction algo-

rithm, the ground plane is also detected in the point cloud using the RANSAC algorithm. These

two steps allow to remove most of the points that do not belong to the pedestrian. Euclidean point

clustering is applied to the resulting filtered cloud and the largest cluster is assumed to belong to the

pedestrian.

This pedestrian extraction scheme works well in the KITTI dataset used, but in a more com-

plex scenario some other state-of-the-art pedestrian detection algorithm could be used to segment the

pedestrian point cloud.

5.1.3 Initialization

The pose estimation algorithm here proposed assumes that a point cloud comprised only of points

belonging to a single pedestrian was previously obtained. It is also assumed that the pedestrian is in

an upright pose, a common assumption in the pedestrian detection context.

Let P = {p1, ... , pN} represent the pedestrian point cloud with N points. The overall bounding

box of P provides a rough approximation to the pedestrian height. The height approximation together

with the typical human body proportions allows to estimate body parts size. This point cloud is

divided vertically into overlapping segments corresponding to: the head, shoulders, center torso,

lower torso, upper legs and lower legs. These individual point clouds, segments, allow the algorithm

to search for each body part in a small subset of P making the search simpler and faster.

The pose estimation algorithm starts by the definition of the head center position as the geometric

centroid of all the points in the top sliced point cloud. The head position will be the start for the rest

of the body parts. From the head position the neck is extracted and subsequently all other body parts.

5.1.4 Detecting body parts

The human body parts are detected sequentially and hierarchically starting from the neck and ending

at the feet. The neck position is obtained using a sampling and scoring method reminiscent of the

Monte Carlo techniques. A line segment is defined starting at the head position with a predefined

length and orientation, figure 5.2. This initial line defines the preferential orientation of the neck.

With the same starting point a set of new lines is created, samples. These samples correspond to
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different possible neck positions, all samples are created by reorientation of the preferential sample.

The reorientation is performed in two perpendicular directions, the pedestrian main direction and a

direction orthogonal to the main direction and the vertical direction.

The rotation along the perpendicular direction is uniformly distributed in the range [−θmax, θmax],

while the rotation in the pedestrian main direction is also uniformly distributed in [−ϕlim,+ϕlim],

this limit depends on the first rotation using equation (5.1).

The samples are distributed within a boundary that limits the neck movement to account for the

human neck relative position limits. In this specific case the boundary has the shape of an ellipse,

different boundaries are used for different body parts.

Start Point

Preferencial Sample

Samples

Boundary

Main Direction

Figure 5.2: Samples creation example. The preferential sample is presented in the center in black
with all the other samples presented in yellow.

ϕlim = ϕmax

√
1−

(
θ

θmax

)2

(5.1)

After creation, the samples are ranked. Let S = [S1, S2, . . . , SK ] denote all samples, each sample

scoreXk is calculated as the sum of a scoring function f(d(), λ, w) for all pointsD, in the segmented

point cloud, equation (5.2).

Xk =
∑
D

f (d (pd, Sk) , λ, w) (5.2)

Function d(p, S) denotes the euclidean distance function from a 3D point p to a line segment,

the sample S. The scoring function f() provides the individual score for each point based on the

euclidean distance of the point to the sample and two parameters, λ and w. The function is defined as

the pdf of the Weibull distribution:

f(x, λ,w) =
w

λ

(x
λ

)w−1
e−(x/λ)

w

(5.3)
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This function provides a degree of control over the location of the maximum score; for instance:

the maximum score for each point may be obtained at a specific distance from the line segment. This

allows for the best scoring sample to be placed at a specific distance from the point cloud. This method

is used because of the cylindrical nature of body parts; selecting the sample that best fits the points

based just on the distance would not take this nature into consideration and would provide erroneous

results. The problem is especially clear when considering the torso body parts; these parts are not

well represented as lines. The function f(), with the right parametrization, allows us to obtain a line

segment in the inside of the point cloud, by providing the maximum point score at a specific distance

from the line segment. The function parameters depend of the human body size, these parameters

were experimentally fine tuned to obtain the best results for each individual body part. The obtained

λ∗ values are multiplied by the measured body height prior to use.

Table 5.1: Parameters obtained for the point scoring function. The λ∗ parameter is multiplied by the
measured body height before use.

Body part λ∗ w

neck 0.0343 1
Shoulders 0.0229 2

upper torso 0.1429 3
center torso 0.0571 2
lower torso 0.1429 3

hips 0.0229 2
upper legs 0.0286 2
lower legs 0.0286 2

Figure 5.3 presents all the body parts that are detected with this method. The arms are not ex-

tracted because the stereo algorithm does not provide enough points or resolution to reliably detect

them.

The shoulders are detected using a different sampling scheme, figure 5.4. The samples are ellipse

shaped, instead of lines, and only one degree of freedom is considered. The main purpose of detecting

the shoulders is to provide the pedestrian main direction that is required to constrain the search in the

lower body parts. When scoring the ellipse samples, the function d(p, S) in equation (5.2) becomes

the minimum distance between the point p and the sample ellipse. Using this method, the shoulders

are detected with left-right ambiguity, the ambiguity is relieved by using the general orientation prior.

With minimal motion direction information, the correct pose may be selected. This ambiguity is not

specially problematic given that a pedestrian entering the field-of-view already gives us the minimal

motion direction needed, and in other cases the previous position of the pedestrian may be used. The

shoulder sampling technique is also used when detecting the hips position.

In the upper legs, due to the fact that both left and right legs use the same segment of the original
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Figure 5.3: Body parts detected with the pose estimation algorithm.

head

right shoulder

left shoulder

Figure 5.4: Top view of the shoulder detection samples, highlighted in purple. The circular pattern is
created by rotation of a preferential ellipse. The final detection is marked in black.
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point cloud, they may converge in the same position, even with their different starting positions. This

problem is particularly evident when one leg is partially or totally occluded by the other. In order to

avoid this problem, a sequential search in performed. First, both upper legs samples are scored with

the original point cloud. The best overall sample of either the left or right upper legs is selected. All

the points that are within a specific range of the selected sample are removed from the point cloud.

The opposing upper leg is re-scored on the remaining point cloud. This way, we ensure that there is

no convergence on the final solution.

Due to the upper legs unique kinematic constrains a different sampling boundary condition is

used: the ϕ rotation is used to create a crescent moon shaped boundary with the tips in the inside,

figure 5.5. The ϕ is uniformly distributed in the range [ϕmin, ϕmax], as defined in equation (5.4) and

(5.5). Parameters ϕneg and ϕpos are defined by anthropomorphic constrains. This shape allows the

legs to rotate inwards during the walking cycle, instead of only rotating forward and backward. The

samples are scored using the same functions presented in equations (5.2) and (5.3).

ϕmin =

(
cos

(
πθ

2θmax

)
− 1

)
ϕneg (5.4)

ϕmax =

(
cos

(
πθ

2θmax

)
− 1

)
ϕneg + ϕpos (5.5)

Main Direction

Figure 5.5: Upper legs sample creation example. The samples curve inwards to detect the leg during
a step cycle.

In the lower legs, a similar solution is employed, the same sequential selection and removal pro-

cedure is used but samples are created with a different boundary condition. In this case, the boundary

is an ellipse created using equation (5.1) but rotated backwards to account for the fact that the hu-

man lower legs cannot curve forward. To orient the ellipse boundary, the pedestrian main direction,

extracted from the shoulders, is used.
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5.1.5 Results

Qualitative results of the pose estimation were obtained using the KITTI dataset. Figure 5.6 presents

two different poses as extracted by the proposed algorithm.

Figure 5.6: Two different extracted poses. In the left, the segmented pedestrian point cloud. In the
middle, the pose extracted with all the samples used. Finally, on the right, the original cloud colored
based on the corresponding body part.

As can be observed in figure 5.6, both poses are well estimated, especially the legs. The person’s

self occlusion presents some serious challenges, typically only one shoulder is observable and legs

frequently occlude each other. Our method allows to estimate the shoulder position and the person’s

orientation even with high occlusions. The head position along with some visible part of the shoul-

ders is enough for the algorithm to estimate, with some error, the person’s orientation. Given the

hierarchical nature of our method, lower body parts suffer from errors in the upper parts. To account

for this fact, lower body parts’ samples are created in a broader boundary that would otherwise be
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necessary.

Figure 5.7 and figure 5.8 present two different sequences of detections. In these figures it is

possible to directly compare the detected poses with the captured original, superimposed, images. As

can be observed, in most frames the pose is correctly estimated but errors happen. In figure 5.7 around

x = −2.3 and x = 3.1, some serious errors in detecting the lower legs happen. Most of these errors

are related to the occlusion of one of the legs, in this case, the right leg (color blue). In figure 5.8 the

same typical errors happen, visible at position x = −1.1, but in this case with the left leg (color red).

Considering a bad pose the complete miss or wrong detection of at least one leg segment, in the first

trial we obtained 83% good estimated poses and in the second trial 92%. In both these figures, the

clustering of feet detections is clearly visible as the pedestrian takes each step. The wave-like vertical

motion of the head is also visible.

The stereo data used is of good quality but, nevertheless, presents some pronounced noise; the

stereo noise presents the main limitation to the accuracy of the proposed approach. The occlusion of

a limb can be detected by the abnormally low maximum score of the winning sample. The head was

chosen as the start of the hierarchical processes given that it is the least probable part to be occluded

by common low obstacles.

The lack of a strong prior in our algorithm presents some advantages, but also disadvantages.

With a good prior, the search space for each body part could be dramatically reduced, thus improving

estimation accuracy. The current proposal could be expanded to use such a tracker. The presented

algorithm, as is, could be used to initialize the tracker and also to recover from failure.

The pose extraction results presented where were obtained at long ranges, around 15 meters. At

even longer ranges the stereo point cloud presents too much noise and the pose detection is no longer

reliable.

5.1.6 Conclusions

An algorithm capable of detecting human poses using stereo point clouds was presented. The al-

gorithm is able to estimate poses using single point clouds and minimal motion orientation, used to

relieve ambiguity between left and right poses. The proposed approach uses a hierarchical geomet-

rical sample based pose estimation. The algorithm focuses attention on the legs position, the legs

motion will provide cues on the early intention of pedestrians trying to enter or cross a road.

The algorithm was tested with real data of a pedestrian walking parallel to the camera, simulating

a possible pedestrian road crossing. Results presented with data from the KITTI dataset show the

potential of the algorithm to correctly recover poses even with noisy stereo data. The use of stereo

data presents some serious advantages over traditional monocular systems or even structured light

systems. The point cloud data presents much less pose ambiguity than a monocular system and has

the advantage of working in outdoors environments at long ranges.

Partial results with the proposed system have already published in an international symposium
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Figure 5.7: A right to left motion sequence. On top, superimposed images of the pedestrian at key
frames. On the bottom, all the estimated poses. Body parts are color coded, specifically, the left leg
is presented in red and the right leg in blue.

under the title Pedestrian Path Prediction using Gaussian Process Dynamical Models (Quintero et al.,

2014). This work was the result of a cooperation with professor Sotelo Vázquez from the University

of Alcalá (Alcalá de Henares, Madrid).

The proposed algorithm does not require any pose initialization or an elaborate pose tracking al-

gorithm. This presents an obvious advantage by allowing the estimation of the pose of a pedestrian

entering the scene without the need of a long multi-frame tracking system that would delay any con-

clusion. Nevertheless, the posterior application of a tracking algorithm would improve computational

performance as well as performance under occlusion. The proposed algorithm could be used in the

initialization step of the tracker or to recover from failure.
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Figure 5.8: A left to right motion sequence. The clustering of the feet position with alternating colors
is clearly visible. It is also visible the vertical motion of the head position with each step.
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5.2 Motion capture

The previously presented work on pose estimation suffers from the lack of a convincing performance

metric. The difficult lies in the fact that no dataset with both stereo data and 3D human body pose

estimation was readily available. Accurate 3D human body pose is impossible to be manually labeled

from the stereo data. Millimeter accurate human pose data can be obtained with the use of a motion

capture system. These systems are very expensive, and their availability is very restricted. Industry

level motion capture systems are low in number and have a very high demand.

Fortunately, in this work, such a system was used. The University of Aveiro, in its the health

school, provides such a system. Unfortunately the availability is limited and the test conditions are

highly controlled. Nevertheless, some real world datasets were obtained.

The motion capture system used is comprised of eight infrared cameras targeted at a control

volume, figure 5.10. Each camera provides infrared illumination and detects only special infrared

reflective markers, figure 5.9. The system uses the multiple cameras to geometrically obtain the

position of each marker.

(a) VICON T-Series infrared camera. (b) Infrared reflective marker.

Figure 5.9: Motion capture camera and reflective marker.

The control volume is located in the center of the laboratory, figure 5.10. To be correctly mea-
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sured, each reflective marker, must be detected by at least three cameras. As such, the volume where a

fully marked human would be completely detected is restricted to a small part of the whole laboratory.

Figure 5.10: Motion capture laboratory. The laboratory contains a total of eight infrared cameras
(only two are visible in the picture).

5.2.1 Test limitation

The motion capture software imposed some heavy restrictions on the possible tests. The software only

allowed one individual to be measured in each trial. The test subject had to wear non reflective clothes

that were tight to the body, figure 5.11 and 5.12. The laboratory had no natural light, only artificial

light was allowed, as to not interfere with the infrared cameras. As such, the room illumination

was not very good, severely limiting the stereo camera image acquisition. The stereo camera shutter

time needed to be very large in order to reduce the image noise, this made impossible the correct

acquisition of fast movements, for example a pedestrian running.

The motion capture system was configure to acquire data at a rate of 100 hz. This value is not

the maximum value of the possible acquisition rate of the system but it is significantly higher that the

stereo setup acquisition rate and therefore not a limiting factor.
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Figure 5.11: José Rosado test subject. Tight clothes prevented the markers from moving after place-
ment. The markers can be observed in the figure as small gray dots on the subject body, markers on
the left part of the body are highlighted with blue circles.

5.2.2 Data processing

Several data acquisitions were performed in several distinct dates. For the first three acquisitions, only

raw trajectory data was supplied by the laboratory, due to the limited availability of the system and the

associated technician. Unfortunately this data was comprised only of unlabeled markers trajectories.

Each trajectory specified the 3D position of the respective marker in a series of time frames, but the

marker label was not consistent throughout the trial. Each time the marker was occluded, the previous

label would be lost and a new label assigned once the marker became visible again. As such, the data

in these trials was very hard to work with. Several utilities were developed to relabel the trajectories

in order to use the acquired data.

In the last trial, a license to use the proprietary motion capture software was provided by the

laboratory. The supplied test data was processed with the motion capture software VICON Nexus®

and the correct markers, labels and trajectories were obtained.
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Figure 5.12: João Valente test subject.
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5.2.3 Stereo data acquisition

In order to acquire quality stereo 3D data a stereo camera was required. In this work a specialized

stereo camera, figure 5.13, was available. This camera presents the clear advantage of solving many

of the common problems with stereo setups. The camera internally guaranties the synchronization

between the multiple cameras, while also providing a rigid frame holding the cameras in place in

respect to each other. The camera main specifications can be found in table 5.2.

Table 5.2: BBXB3-13S2C-38 stereo camera main specifications.

Parameter Value
Resolution 3 cameras at 1280 x 960 pixels
Frame rate 16 FPS
Chroma Color
Sensor type CCD
Readout method Global shutter
Focal length 3.8 mm
Interface FireWire 1394b

Figure 5.13: Point Grey Bumblebee® BBXB3-13S2C-38 stereo acquisition system.

Even with a special stereo camera, the common stereo acquisition steps were required to obtain

3D data: image undistortion and rectification, stereo correspondence and finally reprojection to 3D

space. These steps are common to all stereo systems and will only be discussed briefly in this thesis.

For undistortion and rectification, both the axes skew and tangential image distortion were esti-

mated with a total of 3 radial distortion coefficients. The detection pattern used was a 8 by 6 black and

white checkerboard with 108 mm squares and a total of 108 calibration patterns where obtained. The

stereo correspondence algorithm used was the SGBM algorithm due to good results obtained with it

when comparing with simpler algorithms. Once the points were reprojected to 3D space the need to

register the motion capture reference system with the stereo camera reference system arises. Since
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we are observing a dynamic scene this registration needs to be both geometrical and temporal. This

step will be discussed in the following section.

5.2.4 Data registration

In this trial, two very different data acquisition systems were used: a stereo camera and a motion

capture system. Both these systems provide 3D point data of a scene, but each system provides a very

different set of points at a very different acquisition rate. The stereo system provides a dense point

cloud of all visible points in the scene at a rate of 16 hz while the motion capture system provides

only the 3D coordinates of the special markers but with a much higher precision and at a much better

100 hz acquisition rate. These two systems need, therefore, to be registered both geometrically and

temporally.

In order to register the two reference systems a set of 3D points common to both systems was

required. Given that the set of 3D points offered by the motion capture system is very restricted

the selection of points must be made from these points. For an accurate registration the points used

should correctly represent the work volume and not be condensed in any particular spot. Therefore a

set of positions from the markers at different time frames was used for registration. This set of points

was manually obtained from the dataset.

In order to possible select corresponding 3D points a temporal synchronization is required.

Temporal registration

The temporal registration was performed manually by observing common events on both the motion

capture data and stereo data. These events mostly corresponded of fast or very specific movements

by the subject such as the moment when the subject lifted his foot or waived his hand. The biggest

complication with the time calibration was due to missing frames on the stereo system. The stereo

system frequently lost one or two frames, on each of this occurrences a new synchronization was

needed. The final synchronization system used was composed of a set of key points at each lost frame

to reestablish synchronization. From the stereo system, the corresponding motion capture frame was

obtained by linear interpolation between two key points, figure 5.14 present the final calibration points

for one of the trials.

Geometric registration

Geometric registration was obtained by using a set of matched pairs of 3D points and points in the

stereo camera. The set was used to estimate the position of the camera in the scene by using the

motion capture points has world reference points and estimating the camera extrinsic parameters.

Figure 5.15
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Figure 5.14: Temporal synchronization curve for the Valente1 trial. Each key point is marked with a
+ sign, while points on the solid blue line are interpolated values. The horizontal cyan and vertical
orange lines denote a sample point of the calibration also depicted in figure 5.16.
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Figure 5.15: 3D points used to register the stereo camera with the motion capture system. A sample
pose of the subject is also presented for a simpler interpretation of the data. The 3D points are color
coded by frame, points with similar colors belong to frames that are near each other.

Figure 5.16 presents the projection of the motion capture points into the stereo camera image

space, this projection allows to easily inspect the quality of the registration process and refine the

process if needed.

5.2.5 Datasets

Table 5.3 presents a summary of all the datasets acquired.

Table 5.3: Data sets identification.

Id Subject Nexus labeling
Rosado1 José Rosado 7

Cesar1 César Sousa 7

Rosado2 José Rosado 7

Valente1 João Valente 3

The trials simulate a possible road crossing in witch the test subject either crosses without stop-

ping or stops at the middle. Each trial is composed of multiple trajectories. The subject walked the

room in different angles to the stereo camera in order to obtain representative data. The test subject

also varied the velocity from normal walk to run, although the laboratory did not allowed for a run at

full speed due to space and illumination restrictions. A sample trajectory is presented in figure 5.17.
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Figure 5.16: Projection of the motion capture points into the stereo camera image. This projection
is performed to attest the accuracy of the rectification process, both the geometric and temporal syn-
chronizations.

Figure 5.17: Top view of a sample trial trajectory. The yellow rectangle represents the stereo camera
mounted on a tripod while the motion capture cameras are represented in light gray color.
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The Rosado1 and Cesar1 datasets were unfortunately discarded. In these two datasets there was a

problem with the stereo camera software leading to a very low image acquisition rate, only 2 Hz. The

test data was therefore unusable. In the Rosado2 dataset this problem was corrected but unfortunately

only raw data was provided and therefore a lot of hand made preprocessing work was performed.

For the final Valente1 dataset a license to use the motion capture software, VICON Nexus® was

supplied allowing for a semi automatic marker labeling of the dataset.

The algorithm presented in section 5.3 was tested with data from the previous datasets.
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5.3 Ray tracing pose estimation

The proposed approach isolates the pedestrian point cloud and extracts the pedestrian pose using a

visibility based pedestrian 3D model. The model accurately predicts possible self occlusions and uses

them as an integrated part of the detection. The algorithm creates multiple pose hypotheses that are

scored and sorted using a scheme reminiscent of the Monte Carlo techniques. The technique performs

a hierarchical search of the body pose from the head position to the lower limbs. In the context of

road safety, it is important that the algorithm is able to perceive the pedestrian pose as quickly as

possible to potentially avoid dangerous situations, the pedestrian pose will allow to better predict the

pedestrian intentions. To this end, a single pedestrian model is used to detect all pertinent poses and

the algorithm is able to extract the pedestrian pose based on a single stereo depth point cloud and

minimal orientation information. The algorithm was tested against data captured with an industry

standard motion capture system. Accurate results were obtained, the algorithm is able to correctly

estimate the pedestrian pose with acceptable accuracy. The use of stereo setup allows the algorithm

to be used in many varied contexts ranging from the proposed ADAS context to surveillance or even

human-computer interaction.

5.3.1 Overview

Human body poses are obtained using 3D point clouds from a stereo camera, figure 5.18. The pose

estimation is performed using a method that compares the visibility of the point cloud from the stereo

camera with the expected visibility from a pose hypothesis.

The visibility at each point is defined as one of three possible values: free space, occupied or

occluded. A free space classification indicates that a point is visible from the camera point of view

but is not occupied. A occupied point is visible from the camera and occupied by a 3D point. Finally

an occluded point is a point that is not visible by the camera because there is an occupied point in

front.

A dense voxel cloud is created overlapping the extracted pedestrian point cloud. A set of 3D rays

interests this dense cloud, the intercepted voxels for each ray are classified according to their visibility

using the pedestrian point cloud as the blocking element. After classification, this dense voxel cloud

will be the base element for calculating the score of different hypotheses.

For each body part hypothesis, a set of 3D rays is used to calculate the visibility. The hypothe-

sis score is calculated by comparing the classification of the points intercepted by the rays and the

corresponding classification of the original dense voxel cloud.

When calculating the visibility of body parts hypotheses, previous detected body parts are used

as blocking elements, for instance: the first detected leg will occlude the hypotheses for the second

leg. This method allows to estimate the position of the occluded leg.

This work uses data from an industry standard motion capture system as ground truth. The motion
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(a) Side view (b) Front view

Figure 5.18: Example of an estimated pose. On the left the segmented pedestrian point cloud, on the
right the estimated pose. The arms are not detected.

capture system provides millimeter accurate position of a set of infrared reflective markers, visible on

figure 5.19. To establish a direct comparison, a set of virtual markers, matching the motion capture

markers, is used by the pose estimation algorithm.

Preprocessing

To extract the pedestrian point cloud three steps are applied: ground plane estimation, background

subtraction and Euclidean clustering. The ground place estimation uses the RANSAC algorithm and

helps to remove points near the feet. The background subtraction algorithm removes most of the

points not belonging to the pedestrian. Finally, the resulting points from the two previous steps are

clustered according to Euclidean distance between them and a specified threshold, the largest cluster

is assumed to be the pedestrian.

This pedestrian extraction scheme works well in the dataset used, but in a more complex scenario

some other state-of-the-art pedestrian detection algorithm could be used to segment the pedestrian

point cloud. The developed algorithm does not require a perfect segmentation of the pedestrian from

the background.

Visibility calculation

The pose estimation algorithm here proposed assumes that a point cloud, comprised mostly of points

belonging to a single pedestrian, was previously obtained. It is also assumed that the pedestrian is in

an upright pose, a common assumption in the pedestrian detection context.

Jorge Manuel Soares de Almeida Ph.D. Thesis



5.Pedestrian pose estimation 83

(a) Front view (b) Back view

Figure 5.19: Position and label of the markers used to compare the results of the pose estimation
algorithm to the motion capture ground truth. As stated before, the arms where not detected.
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As stated before, ray tracing is used to calculate which voxels are either free, occupied or oc-

cluded, figure 5.20. The algorithm defines a set of rays using the original pedestrian cloud and the

sensor position. For each ray, the intercepted voxels are classified. The end result is a dense voxel

cloud in which each voxel contains the above classification, Vpedestrian. This process is repeated for

the pose hypotheses. Each body part pose hypothesis consists of a 3D model of the part, section 5.3.1,

in a hypothesis pose. For each hypothesis the visibility is calculated. A score is obtained comparing

the visibility of the hypothesis with the visibility of the original cloud.

In figure 5.20 two torso samples are presented. Each sample represents the same 3D model but in

a different pose. The left hypothesis has a much larger area visible to the sensor and, as such, a much

larger occluded volume. The left sample is aligned with the pedestrian, therefore the visibility will be

very similar. The right sample will score a much higher value that the left sample.

Let V = {v1, ... , vN} represent all the voxels in the hypothesis, the score of each hypothesis Ψi

is calculated as the sum, equation (5.7), of the score of every voxel, equation (5.6).

∀v ∈ V, s(v) =



P1 ⇐ (v = vpedestrian) ∧ (v = free)

P2 ⇐ (v = vpedestrian) ∧ (v = occluded)

P3 ⇐ (v = vpedestrian) ∧ (v = occupied)

P4 ⇐ (v = occluded) ∧ (vpedestrian = occupied)

P4 ⇐ (v = occupied) ∧ (vpedestrian = occluded)

0 ⇐ otherwise

(5.6)

Ψi =

N∑
n=1

s(vn)

N
(5.7)

The different weights (P1, ..., P4) in equation (5.6) allow the algorithm to compensate for the

different percentage of voxels with each classification.

Several performance optimizations were applied. The ray tracing can be very computationally

expensive, as such, it is only performed once, for the Vpedestrian cloud. The rays and the intercepted

voxels positions are reused for each pose hypotheses. The samples, after transformation, are geomet-

rically aligned to the Vpedestrian cloud to allow the reuse of the rays. The geometric alignment of the

samples also allows for a very fast indexing of the two clouds, avoiding the need for expensive nearest

neighbor searches.

Ray tracing is not performed for each point in the pedestrian cloud. The rays are created starting in

the sensor position and defining a square angular grid with a specific vertical and horizontal resolution,

RV and RH respectively. The grid limits are defined from the point cloud, as to avoid unnecessary

rays. The vertical and horizontal resolutions are key parameters of the algorithm. A more refined

grid will account for greater detail, with the limit of the sensor own angular resolution, while a more
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(a) Original. (b) Visibility.

(c) Torso 1 (d) Torso 2

Figure 5.20: Visibility dense voxel cloud representation. On top, the original point cloud and the
visibility calculated with the cloud. On the bottom, two different samples used to detect the torso
orientation. Occupied voxels are represented as yellow squares, occluded voxels are colored blue.
Empty voxels are not represented but used to score the sample.
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coarse grid will correspond to lower number of rays improving computational performance.

3D model

The proposed algorithm compares the visibility of a pose hypothesis with the visibility of the current

pedestrian point cloud. To this end, a realistic geometric 3D model of a pedestrian is used. The 3D

model defines the shape that will be used to calculate the visibility of each different pose hypothesis.

The method is hierarchical and sequential, the first body part to be detected is the torso, followed

by the head and upper legs, and finally the lower legs. As such, the 3D model was segmented into

different body parts for individual use.

Let P = {p1, ... , pN} represent the pedestrian point cloud with N points. The overall bounding

box ofP provides a rough approximation to the pedestrian height. The height approximation allows to

estimate the size of the different body parts. The original 3D model is scaled to fit this measurement.

Figure 5.21: Geometric 3D model used to create model body parts.

Detecting body parts

The first body part to be detected is the torso. The torso pose is extracted in three steps.

The pivot position is directly defined from the centroid position and a penetration factor. The

penetration factor is used to correct the centroid in the sensor direction, placing the torso pivot inside

the body and not at the surface.
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The second step estimates the torso orientation θtorso in the vertical direction ẑ. To this end, a set

of samples is created with different orientation angles. Each sample is scored and a graphic, such as

figure 5.22, is obtained. From this graphic, it is clearly visible that, there are two main peaks with

180° offset. The two peaks appear due to the fact that the torso shape is similar on the front and back,

leading to pose ambiguity. To solve this ambiguity more information is required. In the proposed

method, the θtorso maximum closest to the previous estimated orientation is used.
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Figure 5.22: Torso orientation samples score. The two peaks are created by the ambiguity between
the front and back of the torso. The algorithm is able to correctly estimate the correct orientation
using the peak closest to the previous orientation.

The third step estimates the torso forward inclination φtorso, the rotation on the axis perpendicular

to the vertical direction and the direction derived from the torso orientation φ̂ = ẑ × θ̂. This rotation

is especially important when the pedestrian is moving quickly or running.

The head pose is estimated after the torso pose. The head pivot is directly derived from the torso

pose and a set of samples is created to detect the head rotation θhead in the vertical axis ẑ.

After estimation of the head pose, the legs positions are estimated. The algorithm starts by iden-

tifying which leg is more exposed to the sensor as a function of its predicted distance. This distance

is based on the hip distance using the torso pose. The pose of the leg more exposed is the first to

be estimated. Each leg is segmented in two parts, the upper leg and the lower leg. The upper leg

comprises the distance from the hip to the knee, and the lower leg the distance from the knee to the

foot.
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The upper leg samples are created using two degrees of freedom, rotation on the φ̂ axis and

rotation on the θ̂ axis. The upper leg pivots on the hip joint, defined by the torso pose. A set of

samples is created by composed rotation of the two degrees of freedom. The samples are scored

using the method described above. The lower leg samples pivots on the knee joint and rotates on the

two same axes. All rotations are limited by anthropomorphic constrains.

The second leg pose is only estimated after the first. The first leg pose will influence the visibility

of the second leg. The first leg will be used as an obstacle when calculating the visibility for the

second leg. This method allows to estimate the position of the leg even when it is occluded. The

created samples will reflect the fact that there is an obstacle in front and samples that are occluded

will be correctly classified.
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5.3.2 Results

The proposed algorithm was compared to a high precision industry standard motion capture system.

The test trial consisted of a simulated pedestrian road crossing, figure 5.23. In the trial, several

pedestrian trajectories were obtained. The test was composed of pedestrian trajectories parallel to the

sensor, perpendicular and at an angle. The test contained trajectories where the pedestrian stopped at

the simulated road entrance, and also trajectories where the pedestrian runs. The trial consisted of a

total of 1588 frames, of witch 1053 were used. Frames where the pedestrian was not fully visible in

the stereo camera were discarded. Also, the motion capture system was not always able to acquire all

markers, in a frame, if a specific maker was not found the pose estimation marker was discarded.

(a) Walking perpendicular. (b) Walking parallel.

(c) Running. (d) Walk and stop.

Figure 5.23: Sample images from the trial. The images present some of the several different trajec-
tories used. The running trajectories were affected by the weak lighting conditions of the laboratory
that led to some blurry images.

Quantitative results were obtained. A direct comparison was made possible by defining virtual

markers analogous to the motion capture markers, on the 3D body parts. Table 5.4 presents the
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parameters values used in the trial.

Table 5.4: Parameters used in the test trial.

Parameter Value
P1 10
P2 50
P3 100
P4 1
RV 1.5°
RH 0.5°

The parameters values were experimentally obtained in a compromise between accuracy and

speed. Parameter P1 rewards the correct identification of free space, being the most common, it

has the lowest value as to not mask the other parameters. The parameter P2 rewards the identification

of occlusions. Occluded voxels are lower in number than the free space voxels and thus present

a higher reward for each correct identification. Parameter P3 rewards the correct identification of

occupied voxels. These voxels are the lest common given that only the surface of the body is actually

visible. These voxels present the highest score. The last score parameter P4 is used to reward a partial

detection, when the algorithm detects an occluded voxel that is actually occupied or vice versa. The

actual values of the scores are not important, the ratios between them are the crucial part. These

values where defined as to equalize the importance of each different classification, according to its

relative number. More frequently occurring classifications have lower scores than lower occurring

ones.

The parameters RV and RH represent the vertical and horizontal ray trace resolutions, respec-

tively. These parameters highly influence the algorithm speed and performance. From experimental

trials, it was concluded that coarser resolutions could be used in the vertical direction without a signif-

icant loss of accuracy. It was concluded that the horizontal resolution is more important and must be

higher that the vertical resolution. The resolution can never be higher than the original data resolution,

therefore the camera imposes the higher limit of this parameter.

Figure 5.24 presents the raw error for all markers. This figure presents the Euclidean distance

between each motion capture marker and its respectively virtual marker. The figure presents some

significant gaps, these gaps happen when the subject exits the scene. This happens at the end of

each walk as the subject turns to make another walk. The markers placement on the 3D body parts

affect the results. Incorrect placement will appear as error on figure 5.25, an attempt to minimize this

error was made. In figure 5.24 it can be observed that most of the points have a very small error, but

comparisons between the different markers are hard to visualize.

Figure 5.25 presents the histogram of the Euclidean distance from the motion capture markers
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Figure 5.24: Raw positioning errors for all the markers. Gaps occur when the test subject leaves the
scene. Each color represents a different marker.

to the pose estimation markers for the whole trial. As can be observed, a large percentage, 72%, of

the results are under 0.1m, and 94% of results are under 0.2m. The person’s self occlusion presents

some serious challenges, typically only one shoulder is visible and legs frequently occlude each other.

The proposed method allows to estimate the person’s orientation even with high occlusions. Given

the hierarchical nature of the method, lower body parts suffer from errors in the upper parts. To

account for this fact, lower body parts’ samples are created with broader limits that would otherwise

be necessary.

In order to compare the results for individual markers the figure 5.26 presents the 5th, 25th, 50th,

75th and 95th error percentile. From the figure it is clearly visible that markers belonging to the

feet (RHEE, LHEE, RTOE, LTOE, etc., figure 5.19) present the largest errors. The markers with the

lowest errors correspond to the torso (RASI, T10, RPSI, etc.). The feet present the largest errors due

to the hierarchical nature of the algorithm. The lower body parts are affected by errors in the upper

body parts. From the figure it is also possible to observe that, although the maximum errors are larger

in the feet, the lower percentiles are very similar throughout all the markers.

The proposed human body model is composed of a reduced number of degrees of freedom. Not

all markers present in the motion capture data are modeled individually. Most markers belong to a

group linked to a rigid body. A high correlation between the positioning error of markers belonging

to the same group is to be expected. Figure 5.27 presents a graphical representation of the correlation
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Figure 5.25: Histogram of the euclidean distance between each marker of the pose estimation and the
motion capture system.

between the errors of all markers, for the present trial. To make the data easier to visualize, the

correlation values are encoded into the color line segments linking each pair of markers. Red denotes

a high positive correlation, blue denotes a high negative correlation. The body pose was sampled

from the trial, and selected for the visibility of all markers. An additional step was made to make

the visualization possible, the correlation value also affects the visibility of the line segments. Low

correlation makes the line segment almost transparent while high positive or negative correlation

makes the line segment visible.

From the figure 5.27 it is clearly visible that markers that belong to the same group present high

error correlation, as expected. No high negative correlation values are present. Most markers do

present some correlation with the remaining markers, when the pedestrian is incorrectly detected it is

to be expected that the positioning error will affect all markers.

Figure 5.28 presents the results for pose orientation estimation. This orientation is calculate using

the shoulders markers projected on the X − Y plane. The figure presents a histogram of the body

orientation error of the algorithm.

The pose orientation is estimated with good accuracy. The largest errors occur when the pedes-

trian runs. The stereo setup used performed poorly on low light conditions, such as the motion capture

laboratory. Fast movements cause the image to become blurred due to the large exposure time. This
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Figure 5.26: The figure presents different percentile values for all the markers. The markers are
ordered by the 95th percentile with the largest errors on the left. It is visible that the markers with the
largest errors correspond to the feet while the markers with the lowest errors correspond to the torso.
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Figure 5.28: Histogram of the body orientation error for the trial.

in turn, decreased the quality of the stereo algorithm.

The stereo data used is of good quality but, nevertheless, presents some pronounced noise; the

stereo noise presents the main limitation to the accuracy of the proposed approach.

The lack of a strong prior in our algorithm presents some advantages, but also disadvantages.

With a good prior, the search space for each body part could be dramatically reduced, thus improving

estimation accuracy. The current proposal could be expanded to use such a tracker. The presented

algorithm, as is, could be used to initialize the tracker and also to recover from failure.
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5.3.3 Conclusions

An algorithm capable of detecting human poses using stereo point clouds was presented. The al-

gorithm is able to estimate poses using single point clouds and minimal motion orientation, used to

relieve ambiguity between left and right poses. The proposed approach uses a hierarchical visibility

based pose estimation algorithm. The algorithm focuses attention on the legs position, since the legs

motion will provide cues on the early intention of pedestrians trying to enter or cross a road.

The algorithm was tested with millimeter accurate industry motion capture data of a pedestrian

simulating a possible pedestrian road crossing. Results presented show the potential of the algorithm

to correctly recover poses even with noisy stereo data. The stereo setup presents some serious ad-

vantages over traditional monocular systems or even structured light systems. The point cloud data

presents much less pose ambiguity than a monocular system and has the advantage of working in

outdoors environments at relative long ranges.

The proposed algorithm does not require any pose initialization or an elaborate pose tracking al-

gorithm. This presents an obvious advantage by allowing the estimation of the pose of a pedestrian

entering the scene without the need of a long multi-frame tracking system that would delay any con-

clusion. Nevertheless, the posterior application of a tracking algorithm would improve computational

performance as well as performance under occlusion. The proposed algorithm could be used in the

initialization step of the tracker or to recover from failure.

Results of the proposed method have been already published in an international conference under

the title Pedestrian Pose Estimation using Stereo Perception (Almeida and Santos, 2016).

Future work will be focused on the implementation of a probabilistic pose tracker and finally on a

system integrating the pose detection with the estimation of the pedestrians intentions in an advanced

pedestrian safety system.
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Chapter 6

Conclusions

Multi Target Tracking (MTT) is a difficult task. In the Advanced Drivers Assistance Systems (ADAS)

context, the problem is made especially difficult due to the varied dynamic agents that need to be taken

into account. This thesis proposed advances in key steps of the tracking problem. The presented

work proposed to use Light Detection And Ranging (LIDAR) information for both target tracking

and egomotion estimation. Egomotion is an especially important part of tracking because it allows to

isolate the other agents motion that without egomotion is impossible to disassociate from self motion.

This separation allows to incorporate advanced dynamic motion models to the targets in order to

provide more accurate motion predictions. Accurate predictions in turn help with target tracking by

reducing uncertainty.

Based on previous work in tracking, it was clear that no simple motion model would provide the

necessary accuracy of flexibility required to track diverse agents ranging from cars to pedestrians.

As such, this work especially focused on how can tracking be improved for these two different types

of agents and how can more accurate motion models improve tracking. The thesis proposed to use

advanced nonholonomic motion models to improve car like vehicle tracking. These models better

approximate the real behavior of car like vehicles by accurately model the principal motion constrain

that governs their motion.

Pedestrian tracking is especially difficult. This is especially serious given the ADAS context, in

this context pedestrians can appear from behind a vehicle and in only hundreds of milliseconds cause

an accident. Previous approaches to target tracking and motion prediction are trajectory based. These

approaches require some motion from the pedestrian before any prediction can be made, unfortunately

any motion from the pedestrian may already be dangerous. This thesis proposes to use body posture

information for predicting the immediate start of motion without any lag. The prediction is to be

based on motion clues extracted from body pose estimation. In this thesis advances in body pose

estimation algorithms suitable for use in the ADAS context are proposed.
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6.1 Lidar egomotion

A method to estimate the egomotion of a vehicle using exclusively laser range data was presented.

The major desired application of the technique is to provide an egomotion estimation in order to

extract the dynamics of the obstacles around the moving vehicle. The proposed approach takes into

account the local discrepancies between closely spaced laser scans to calculate the current vehicle

velocity and steering angle. These measurements are incorporated into a non linear motion model

that provides a very good estimation of the vehicle motion.

The use of a nonholonomic motion model proved to increase the accuracy and reduce processing

time of the scan matching algorithm and increase the immunity to erroneous associations. The results

were compared to vehicle on-board sensors and reconstructed paths. Very good results were obtained

for the velocity and direction estimation.

A method to merge data from two different laser sensors was presented and proved to yield very

good results.

The approach proved to work well in urban dynamic scenarios even when the vehicle mingled

with road traffic with large obstructions to the lasers visibility.

6.2 Multi target tracking

A hypotheses oriented implementation of the multiple target Multiple Hypothesis Tracking (MHT)

algorithm was developed.

The MHT algorithm applies the notion of multiple valid hypotheses to an association problem

thus delaying critical decisions that could be proved wrong, to a time when more information relieves

the ambiguity. At each iteration, a set of hypotheses expresses the different possible, within gating

distance, combination of measurement to track associations as well as the different assumptions on

the number of actual tracks and false alarms. The hypotheses clustering allowed the partition of the

main problem into independent subsets, both simplifying and improving the computational speed by

allowing parallel processing.

The algorithm demonstrated high performance and robustness with both simulated and real data.

Synthetic data was used to evaluate the effect of the hypotheses limitation via the k-j method. The

increase in the total number of hypotheses leads to a initial large increase in performance that quickly

stabilized.

The polynomial Murty ranked assignment algorithm was used to replace Reid’s original NP-hard

exhaustive hypotheses creation, evaluation and branching. The hypotheses limitation and pruning,

though the j limit algorithm, completely avoid the exponential growth of the hypotheses tree. This

limitation scheme, although necessary, imposes some important drawbacks that should be addressed.

Once again, the incorporation of a nonholonomic motion model proved to increase tracking ac-
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curacy and allow the tracking of very dynamic target.

The algorithm was tested using real world data. The data was obtained in a key situation for road

autonomous system safety, namely a large roundabout. The association algorithm performed very

well and the use of an advanced motion model allowed to overcome most occlusions, preventing the

creation of surplus targets.

6.3 Pedestrian pose estimation

Two different pose estimation algorithms where presented. The first algorithm performs a hierarchical

search of the body pose from the head position to the lower limbs. Pose estimation is performed by a

geometrical search of the pose space. The human body parts are primarily represented as lines with

various different degrees of freedom, corresponding to anthropomorphic constrains. The search is

hierarchical and sample based. The algorithm focuses attention on the legs position, since the legs

motion will provide cues on the early intention of pedestrians trying to enter or cross a road.

This algorithm was tested with real world data from the KITTI dataset. The algorithm showed

potential to correctly recover poses even with noisy stereo data. However this algorithm presented

some limiting points, the severe self occlusions of the pedestrian body let to erroneous pose detections.

A second algorithm was developed derived from the first algorithm. The algorithm introduces

the notion of visibility. This introduction was intended to suppress some limitations of the previous

algorithm. The proposed approach uses a hierarchical visibility based pose estimation algorithm. The

algorithm is able to estimate poses using single point clouds and minimal motion orientation, used to

relieve ambiguity between left and right poses.

The second approach is able to correctly estimate the pose of fully occluded human limbs, legs,

with acceptable accuracy by explicit handling of occlusions. The pose of the occluded leg is no longer

confused with the visible points of the visible leg that previously let to a bad pose estimation.

The algorithm was tested with millimeter accurate industry motion capture data of a pedestrian

simulating a possible pedestrian road crossing. Results presented show the potential of the algorithm

to correctly recover poses even with noisy stereo data.

The stereo setup presents some serious advantages over traditional monocular systems or even

structured light systems. The point cloud data presents much less pose ambiguity than a monocular

system and has the advantage of working in outdoors environments at long ranges.

The proposed algorithm does not require any pose initialization or an elaborate pose tracking al-

gorithm. This presents an obvious advantage by allowing the estimation of the pose of a pedestrian

entering the scene without the need of a long multi-frame tracking system that would delay any con-

clusion. Nevertheless, the posterior application of a tracking algorithm would improve computational

performance as well as performance under occlusion. The proposed algorithm could be used in the

initialization step of the tracker or to recover from failure.
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6.4 Future work

Access to an industry standard high quality Motion Capture (MOCAP) system from the University

of Aveiro Health School (ESSUA), allowed for a correct validation of the pose estimation algorithm.

The MOCAP data, although very precise is not abundant or easy to acquire. The system is used in

several different research projects and setup times are long; therefore it is difficult and time consuming

to acquire large amounts of data. Furthermore, the acquired data is limited to a laboratory setting.

Due to all these limitations an alternative use of the MOCAP data is proposed. The data would

be used to validate pose estimation performance metrics. These metrics would be constructed around

easy to obtain hand labeled 2D ground truth data, and would not require MOCAP data. The idea

would be to acquire extensive amounts of stereo data in diverse environments with diverse individuals.

The pose estimation algorithms would be evaluated with this large dataset but using a previously

validated 2D performance metric with the MOCAP data. This proposal is motivated by the fact that

3D pose ground truth is impossible to acquire without a MOCAP system and therefore a 2D ground

truth will be extremely useful.

With a validated metric, it would be possible to evaluate the pose estimation algorithm in diverse

scenes accurately. Further work would be focused on improvement of the pose estimation algorithm

and comparing it to other state-of-the-art methods.

The main purpose for the development of the pose estimation algorithm was to predict pedestrians

intentions. With the pose obtained from the proposed methods such a system could be derived and

implemented. The system should merge trajectory based tracking with pose based tracking. The

union of the two systems should be much more accurate than any individual system. The trajectory

tracker could present mid to long term predictions based on the pedestrian motion, while the pose

tracker would provide short term predictions, such as the start of any movement. The system could

be able to detect when a pedestrian decides to enter a crosswalk, based on the pose, and predict when

will it exit the crosswalk by use of the trajectory. The merged system should also be able to provide

useful information in an unexpected situations, such as the situation of a child entering the road while

playing.
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6.5 Contributions

The current thesis presented several advances in key algorithms. The main contributions are resumed

as follows:

• Implementation and demonstration of the feasibility of a LIDAR based egomotion estimation

algorithm. The algorithm is proposed to be used to complement positioning via GPS data,

providing a short term very accurate and a fast update rate egomotion estimation. Successful

integration of multiple LIDAR sensors in the egomotion estimation algorithm. The comparison

of several state of the art scan matching algorithms in both accuracy and computational per-

formance using real world data and accurate ground-truth information (Almeida and Santos,

2013).

• Implementation of the advanced MHT data association algorithm. Successful adaptation of the

MHT algorithm to fit real world constrains using advanced multi cluster sub problem parti-

tioning. Demonstration of performance and accuracy with real world data in a complex urban

environment (Almeida and Santos, 2014).

• Development of an advanced nonholonomic car like vehicle motion model. This model bet-

ter approximates the real behavior of car like vehicles by accurately modeling the principal

motion constraint that governs their motion. The nonlinear motion model was successfully im-

plemented in both egomotion estimation, as a model for the ego vehicle, and in vehicle tracking

as a model for the other agents motion. Extended Kalman Filter (EKF) as used to implement

the nonlinear model.

• Advances towards a pedestrian tracking-before-motion algorithm and tracking with integrated

pedestrian intention prediction. Implementation of two different novel advanced pedestrian

pose estimation algorithms. Both algorithms were created especially taking into considera-

tion the ADAS context, the sensors limitations and constraints; as such, the algorithms were

developed to make use of stereo vision fit for outdoor use. The algorithms were tested with

an industry standard motion capture system. The system provided millimeter accurate pose

estimation proving an absolute ground truth. Tests were also conducted with real world data

available on-line from the renown KITTI dataset (Quintero et al., 2014).
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