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resumo 
 

Nas últimas décadas foram desenvolvidos vários estudos sobre a circulação 
atmosférica da matéria carbonácea. Contudo, apesar dos esforços da 
comunidade científica, não se conseguiu ainda compreender detalhadamente 
a composição e a formação do aerossol carbonáceo no ar ambiente, o que 
reflete a grande variedade de fontes emissoras e a complexidade dos 
processos de transformação que ocorrem na atmosfera. Acresce ainda que se 
sabe muito pouco sobre um caso particular do aerossol de carbono: as 
partículas carbonáceas em suspensão no ar interior. Outra componente do 
ciclo do carbono que tem merecido pouca atenção da comunidade científica é 
a remoção das partículas carbonáceas da atmosfera. 
Este trabalho tem como objetivo principal contribuir para um melhor 
conhecimento sobre as fontes, processos de transformação e remoção da 
matéria carbonácea presente na atmosfera. As concentrações de matéria 
particulada, carbono orgânico (CO) e carbono elementar (CE) foram medidas 
simultaneamente no ar interior e exterior de residências localizadas em áreas 
urbanas e sub-urbanas da região nordeste de Portugal Continental. Os valores 
médios da razão entre as concentrações no ar interior e exterior (I/E) para o 
CO foram superiores a 1 para as residências com ocupantes, mostrando que 
as fontes interiores, como a confeção de alimentos, a queima de biomassa e o 
movimento de pessoas, influenciaram fortemente os teores de CO. Pelo 
contrário, obtiveram-se valores médios próximos de 1 para a razão I/E do CE, 
excluindo uma residência de fumadores, sugerindo que as concentrações 
deste componente eram controladas por fontes externas, muito provavelmente 
o tráfego automóvel e a queima de biomassa. A composição do aerossol foi 
também avaliada durante um ano num local confinante com uma estrada de 
tráfego intenso na cidade do Porto. Verificou-se que as principais fontes 
emissoras de partículas eram o tráfego automóvel, as poeiras do solo e a 
queima de biomassa. Muitos dos constituintes do aerossol mostraram 
variações temporais bem marcadas, as quais foram relacionadas com a 
variabilidade sazonal das fontes emissoras, dos processos atmosféricos e das 
condições climáticas. Procedeu-se ainda à recolha de amostras de 
precipitação e posterior caracterização química num local de fundo do 
arquipélago dos Açores e num local urbano da cidade do Porto. A principal 
fonte do CE nos Açores é o transporte a longas distâncias a partir das áreas 
continentais que envolvem o Atlântico Norte. Os teores de carbono orgânico 
insolúvel tiveram origem tanto em emissões locais como no transporte a 
longas distâncias. As concentrações de matéria carbonácea no Porto 
mostraram-se substancialmente superiores às que tinham sido medidas em 
áreas remotas de Portugal, indicando uma contaminação significativa por 
atividades antropogénicas. 
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Abstract 

 
During the last decades a significant number of studies was performed about 
the cycling of carbonaceous matter in the atmosphere. Despite the efforts of 
the scientific community, a full understanding about the composition and 
formation of carbonaceous aerosol in ambient air was not yet achieved, 
reflecting the great variety of emitting sources and the complexity of 
transformation processes in the atmosphere. In addition, very little is known 
about a specific type of carbonaceous aerosol: the indoor carbonaceous 
aerosol. Removal of particulate carbonaceous matter from the atmosphere is 
another component of the carbon cycle that has received poor attention from 
researchers.  
The main aim of this work was to contribute to a better understanding of the 
sources, transformation processes and removal of atmospheric carbonaceous 
matter. Particulate matter, organic carbon (OC) and elemental carbon (EC) 
concentrations were measured simultaneously in the indoor and outdoor air of 
residences located in urban and sub-urban areas of northwestern Mainland 
Portugal. Average indoor to outdoor ratios (I/O) for OC were higher than 1 in 
occupied residences, showing that indoor sources, such as cooking, smoking, 
biomass burning and movement of people, strongly influenced indoor OC 
concentrations. In contrast, I/O ratios for EC were close to 1, except for a 
smokers’ residence, suggesting that indoor concentrations were mainly 
controlled by outdoor sources, most likely from vehicular emissions and 
biomass burning. Aerosol composition was also evaluated during one year in a 
kerbside site located in a busy road of Oporto. Road traffic, local dust and 
biomass burning were found to be the most important sources of aerosol 
particles. Most of the aerosol constituents exhibited well-defined temporal 
variations, which were related with the seasonal variability of source strengths, 
atmospheric processes and climatic conditions. In addition, precipitation 
samples were collected and characterized for chemical constituents at a 
background site in the Azores Islands and an urban site in the city of Oporto. 
Transport from continental areas bordering the North Atlantic Ocean were the 
main source of EC in the Azores. Both local emissions and long-range 
transport explained the levels of water soluble organic carbon found in the 
same samples. Concentrations of carbonaceous matter in Oporto were 
considerably higher than those measured before in other background areas in 
Portugal, indicating a significant atmospheric contamination by anthropogenic 
activities. 
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General Introduction  

1. 1. Properties and sources of carbonaceous aerosol 

Carbonaceous matter comprise a large and highly variable fraction of the atmospheric aerosol 

and consists of organic carbon (OC), elemental carbon (EC) or black carbon (BC) and inorganic 

carbonate carbon (CC). EC and BC are often used interchangeably to denote roughly the same 

refractory and light-absorbing fraction of carbonaceous matter; when this fraction is 

quantified with a thermal method it is normally named EC and when it is measured with an 

optical method is named BC. 

EC presents a chemical structure similar to graphite and is a primary species produced by the 

incomplete combustion of biomass and fossil fuels. EC is a strong light-absorbing material, 

and therefore can have significant direct and indirect climatic effects, including absorption of 

incoming and outgoing solar radiation, hence contributing to warming of the atmosphere, 

decreasing the albedo of snow and ice due to deposition of EC particles, therefore increasing 

absorption and accelerating melting, and changing the properties and distribution of clouds, 

with effects on cloud reflectivity and precipitation patterns (Hansen and Nazarenko, 2004; 

Jacobson, 2001). 

OC is a complex mixture of hundreds of organic compounds, which is not completely 

resolved, including, aliphatic and aromatic hydrocarbons, aldehydes, ketones, alcohols and 

carboxylic acids (Calvo et al., 2013). OC has both a primary and a secondary origin. Primary OC 

particles of natural origin include plant spores and pollen, vegetation debris, microrganisms, 

soil organic matter and marine aerosols (Calvo et al., 2013; Després et al., 2012). Biomass and 

fossil fuel burning are the two most important sources of anthropogenic primary OC aerosols.  

The share of OC and EC emitted during combustion processes depends on various conditions, 

including temperature, fuel composition and moisture, and relative humidity (Bond et al., 

2004). In general, EC prevails in emissions from high temperature fires, such as diesel engines, 

and OC is more abundant in emissions from smoldering flames, such as wildfires.  

Secondary OC particles are produced from gas to particle conversion of volatile organic 

compounds, either by the condensation of low vapor pressure compounds or from physical or 

chemical adsorption of gaseous species on aerosol particles. The formation of secondary 

organic aerosol depends on several chemical and meteorological factors, such as the 

concentrations of gaseous precursors, the presence of atmospheric oxidants, the 

characteristics of pre-existing aerosols, air temperature and relative humidity. Secondary 

organic aerosol can be formed from both natural and anthropogenic gaseous volatile organic 
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compounds. The most relevant sources of gaseous precursors are vegetation, animals, 

wildfires, combustion of fossil fuels, vehicle exhaust, oil extraction and refining, natural gas 

extraction and refining and chemical industries.  

In contrast to EC, the OC fraction of aerosol particles is not light absorbing. But OC particles 

are very efficient at scattering light, and therefore reduce the amount solar radiation that is 

absorbed by the Earth’s surface (Lin et al., 2014). 

Water soluble organic carbon (WSOC) represents a significant fraction (20 to 80%) of OC 

particulate matter (Jaffrezo et al., 2005; Park and Cho, 2011). WSOC has been mostly 

associated with the production of secondary organic aerosol (Sullivan et al., 2004; Yang et al., 

2005). However, primary contributions to WSOC ambient concentrations, particularly 

biomass burning emissions, have also been documented (Viana et al., 2008; Wonaschütz et 

al., 2011). Given the water affinity of this organic carbon fraction, WSOC is expected to 

influence the formation of cloud condensation nuclei and hence on cloudiness and surface 

temperature. 

CC is another form of primary carbonaceous matter that is emitted to the atmosphere, mainly 

as a result of soil dust suspension and construction/demolition works. It is usually not 

considered in atmospheric chemistry studies, particularly those focusing on fine particles, due 

to a low contribution to the aerosol mass load and also due the absence of a robust method 

to determine CC concentrations in atmospheric particles (Karanasiou et al., 2011). 

1.2. Aging and distribution of carbonaceous aerosols in the atmosphere 

After emission into the atmosphere, carbonaceous particles experience a set of physical and 

chemical transformations, including changes in their size, structure and chemical composition 

(aerosol aging). Common processes involved in the modification of primary organic carbon 

aerosols are adsorption of volatile organic compounds (Kroll et al., 2005), reaction of 

atmospheric oxidants at the particle’s surface (de Gouw and Lovejoy, 1998), and 

photochemical degradation (Mang et al., 2008). Freshly emitted EC aerosols also experience 

aging by condensation of gaseous species (Moteki et al., 2007), coagulation with preexisting 

aerosols (Johnson et al., 2005) and reaction with gaseous oxidants (Zuberi et al., 2005). In 

general, primary carbonaceous aerosols have low water affinity. However, aging processes 

can convert the hydrophobic carbonaceous particles in hydrophilic ones (Liu et al., 2011; 

Tritscher et al., 2011). This transformation has important implications in the way aerosols 

interact with water and on the subsequent removal from the atmosphere by the action of 
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hydrometeors. Therefore, aging processes are expected to significantly affect the distribution 

and burden of carbonaceous particles in the atmosphere. 

EC aerosol particles and a significant fraction of OC aerosol particles are sufficiently small to 

be removed from the atmosphere immediately after production. Indeed, the lifetime of fine 

carbonaceous aerosols is generally of the order of a few days, which explains the uneven 

distribution of both carbon fractions at the Earth’s surface.  Global model simulations, along 

with field data, show that carbonaceous aerosols originating from fossil fuel combustion and 

biomass combustion are common throughout the year over Europe, North America and Asia. 

Carbonaceous aerosols emitted from biomass burning also spread over vast areas of central 

and southern Africa, South America and Southeast Asia, particularly during the dry season. In 

contrast with the accumulation over continental areas, OC and EC particles are scarcer over 

marine regions or the Earth’s poles (Cooke et al., 2002; Takemura et al., 2000).  

1.3. Removal of carbonaceous aerosols from the atmosphere. 

Carbonaceous aerosols are removed from the atmosphere by wet deposition (the 

incorporation of particles in clouds and precipitation and the subsequent transport to the 

surface) and dry deposition (the transport of particles from the atmosphere to the surface 

without interaction with clouds and precipitation). The relative importance of these 

deposition processes depends of various factors, including the physical and chemical 

properties of particles, the amount of precipitation in the region and the type of terrain and 

surface cover. In areas with abundant precipitation removal of carbonaceous aerosol from 

the atmosphere is clearly dominated by wet deposition (Cerqueira et al., 2010). Wet 

scavenging of carbonaceous aerosols include in-cloud processes, when aerosol particles act as 

cloud condensation nuclei or ice nuclei, and below-cloud processes, when aerosol particles 

are intercepted by falling rain droplets or snowflakes. Scavenging of carbon species from the 

atmosphere by wet deposition is strongly dependent on the affinity of chemicals with water. 

Although EC can acquire hydrophilic properties by chemical aging (Liu et al., 2011; Tritscher et 

al., 2011), fresh EC is known to be hydrophobic, thus its scavenging ratio tends to be lower 

than those commonly found for more soluble atmospheric constituents, such as OC, that 

comprises a significant fraction of water-soluble compounds and consequently facilitates the 

transfer of organic particles into hydrometeors. Not surprisingly, estimates of scavenging 

ratios show that EC is removed from the atmosphere less efficiently than OC (Cerqueira et al., 

2010). 
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1.4. Motivation and objectives 

The present thesis aims to increase the current knowledge about the cycling of carbonaceous 

matter in the atmosphere. During the last two decades a significant number of studies was 

performed covering this subject, with a particular focus on aerosol composition in outdoor air 

and the origin of atmospheric particulate matter. Despite the efforts of the scientific 

community, a full understanding about the composition and formation of carbonaceous 

aerosol particles in ambient air was not yet achieved, reflecting the great variety of emitting 

sources and the complexity of transformation processes in the atmosphere.  In addition, few 

attention has been paid to carbonaceous aerosol in indoor air. Humans spend most of their 

time in confined spaces, hence it is critically important to explore the origin and chemical 

composition of indoor inhalable particles. Removal of particulate carbonaceous matter from 

the atmosphere is another step of the carbon cycle that has received very little attention 

from researchers. Wet deposition is known to play an important role at cleaning the 

atmosphere but current information on carbonaceous matter in precipitations is still poorly 

documented. This scarcity of data about wet deposition fluxes of particulate carbon is an 

important limitation to validate regional and global models that simulate transport and 

concentration of this aerosol constituent.   

Specific objectives of this thesis include: 

- to investigate the relationships between indoor and outdoor concentrations of PM10, 

OC and EC concentrations and describe relevant sources of particulate matter in the 

indoor air of residences in Portugal; 

- to provide comprehensive information about the seasonal variation of fine aerosol 

chemical composition (with a focus on carbonaceous matter and water soluble ions) 

at the roadside level in a typical medium sized southern European city (Oporto, 

Portugal); 

- to characterize aerosol sources and estimate their relative contribution to the mass of 

suspended particles in the atmosphere of Oporto; 

- to characterize the seasonal variation of WIOC and EC concentrations and investigate 

the sources of these carbon fractions in rain samples collected in a remote marine 

area (Azores Islands); 

- to characterize major chemical constituents (organic and inorganic) in rain samples, 

investigate their sources and explore the interactions between rain and suspended 

particles in a typical urban site (Oporto); 
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- to estimate wet deposition fluxes of major carbon fractions in two sites with 

contrasting levels of atmospheric contamination. 

1.5. Outline of the thesis 

The thesis is organized in seven chapters. Chapter 1 presents a brief introduction about the 

sources, composition, distribution and removal of carbonaceous aerosols, along with the 

motivation, objectives and outline of the thesis. The following five chapters have the format 

of scientific articles, four of which were already published or submitted to international 

journals with peer review.  

Chapter 2 presents the first description of particulate matter (PM10) and associated 

carbonaceous fractions in the indoor air of residential homes in Portugal. The characteristics 

and the relationships between indoor and outdoor concentrations of particulate matter, 

organic carbon and elemental carbon were investigated 

Chapter 3 describes the seasonal variation of major aerosol constituents (carbon fractions 

and water soluble organic and inorganic ions) in Oporto, Portugal. The study was based on 

more than one hundred PM2.5 samples collected at a kerbside site and explores the time 

variation of factors contributing to aerosol formation in an urban area. 

Chapter 4 is also focused on the Oporto aerosol composition. An in depth characterization of 

the chemical properties of PM2.5 and PM10 aerosol samples collected simultaneously in 

Oporto was performed and a receptor model was applied to investigate the contribution of 

different sources to the aerosol load in a large urban area. Both studies about the Oporto 

aerosol were performed within the framework of AIRUSE LIFE Project, the main objective of 

which was to test and develop specific measures to improve air quality in southern Europe. 

Chapter 5 presents the first long term study about wet deposition of particulate carbon to a 

remote marine area (Azores Islands). Water insoluble carbon was measured in rain samples 

and the results were used to investigate sources of carbon and to estimate wet deposition 

fluxes into the Central North Atlantic Ocean. 

Chapter 6 is also focused on the chemistry of precipitation. Rain samples were continuously 

collected during one year at a kerbside site in Oporto and analyzed for major chemical 

constituents. In this study sources of chemical species in rain were described, the 

incorporation of aerosol particles by rain was explored and wet deposition fluxes quantified. 

Finally, Chapter 7 provides a compilation of the main conclusions of this thesis. 
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1.6. Contribution of the candidate to jointly authored articles presented in this thesis 

As stated above, five out of seven chapters of the present thesis have the format of scientific 

articles. The contribution of the candidate to each one of the articles is given below: 

Chapter 2: contribution to study design; sample collection in two out of four investigated 

homes; contribution to PM10, EC and OC measurement in samples from two homes; and 

participation in data analysis and article writing. 

Chapter 3: significant contribution to study design and sampling site preparation; collection 

of aerosol samples during one year (together with another team member); analysis of carbon 

fractions and water soluble ions in the whole set of aerosol samples; significant contribution 

to data analysis and interpretation; and participation in article writing. 

Chapter 4: significant contribution to study design and sampling site preparation; collection 

of aerosol samples during one year (together with another team member); analysis of carbon 

fractions, water soluble ions and elements in the whole set of aerosol samples (he stayed a 

few weeks at the University of Florence to perform ion chromatography and PIXE analysis); 

statistical and source apportionment analysis of data. 

Chapter 5: in charge of continuous rain sampling during the study period at the Azores; 

analysis of carbon fractions at the University of Aveiro; data analysis and interpretation; and 

contribution to article writing. 

Chapter 6: significant contribution to study design and sampling site preparation; collection 

of rain samples during one year (together with another team member); analysis of carbon 

fractions and water soluble ions in the whole set of rain samples; data analysis and 

interpretation; and article writing. 
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Indoor and outdoor suspended particulate matter and associated carbonaceous species at 

residential homes in northwestern Portugal 

 
 
This chapter was published as: 

Danilo Custódio, Isabel Pinho, Mário Cerqueira, Teresa Nunes, Casimiro Pio (2014) Indoor and 
outdoor suspended particulate matter and associated carbonaceous species at residential 
homes in northwestern Portugal. Science of the Total Environment 473–474, 72–76. 
 

Abstract 

Particulate matter with an aerodynamic diameter equal to or less than 10 m (PM10), organic 

carbon (OC) and elemental carbon (EC) concentrations were measured simultaneously in the 

indoor and outdoor air of 4 residences located in urban and sub-urban areas from 

northwestern Portugal. The residences were studied with occupants. One of them was also 

studied without any indoor activity, taking advantage of the fact that occupants moved into a 

new home. 48-h aerosol samples were collected on quartz fibre filters with low-volume 

samplers equipped with size selective inlets. The filters were weighed and thereafter analysed 

for OC and EC using a thermal-optical transmittance method. The average indoor and outdoor 

PM10 concentrations in the occupied residences were 71.9±38.3 g/m3 and 54.0±13.3 g/m3, 

respectively. Despite the higher abundance of PM10 indoors, outdoor sources were found to 

be significant contributors to indoor concentrations. An estimation based on data from the 

residence studied under different occupancy conditions indicated that outdoor sources can 

supply 68% of the indoor PM10 mass concentration. Average indoor to outdoor (I/O) ratios for 

OC ranged from 1.7 to 5.6 in occupied residences, showing that indoor sources, like cooking, 

smoking and cleaning, strongly influenced indoor OC concentrations. In contrast, I/O ratios 

for EC were close to 1, except for a smokers’ residence, suggesting that indoor concentrations 

were mainly controlled by outdoor sources, most likely from vehicular emissions and 

residential biomass burning. 

2.1. Introduction 

Exposure to particulate matter in ambient air has been linked to diverse health effects, 

particularly within the respiratory and cardiovascular systems (Brunekreef and Holgate, 2002; 

Pope III et al., 2002). Since people in industrialized countries spend 80 to 90% of their time 

indoors and most of that time is spent at home, personal exposure to particulate matter 

mainly occurs in the indoor residential environment. Particles in the indoor air of residences 
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originate from a variety of sources. Common indoor sources include cooking, smoking, 

cleaning, biomass burning in fireplaces and stoves, handling of fibre containing materials and 

movement of people (Abt et al., 2000a; Cerqueira et al., 2010; Nasir and Colbeck, 2013; 

Polidori et al., 2007; Ward and Noonan, 2008). Another important source of indoor 

particulate matter is air transport from the outdoor by infiltration and ventilation processes 

(Abt et al., 2000b; Riley et al., 2002).  

During the last years many studies were conducted in Europe to assess human exposure to 

residential aerosol particles and to describe its sources, physical properties and chemical 

composition (e.g. Fischer et al., 2000; Jones et al., 2000; Monn et al., 1997; Stranger et al., 

2007). However, these studies were focused on residences from central and northern Europe, 

which means that little or no information is available for residences located in the southern 

part of this continent. This lack of information is of particular concern in the light of the 

current knowledge about the aerosol spatial distribution over Europe. Exceedances of the EU 

daily limit value for PM10 are common in southern European countries (Mitsakou et al., 2008; 

Moreno et al., 2005; Pederzoli et al., 2010; Querol et al., 2008), due to local dust resuspension 

and mineral dust intrusions from African desert regions, thus suggesting a significant 

contribution of outdoor sources to residential indoor PM10 levels. 

This paper reports the first quantitative description of particulate matter (PM10) 

concentrations and associated carbonaceous fractions (OC and EC) in the indoor air of 

residences in Portugal. The aims of this study were to: (1) assess exposure to particulate 

matter in urban and sub-urban residences in Portugal; (2) investigate the relationships 

between indoor and outdoor concentrations of PM10, OC and EC concentrations; (3) describe 

relevant sources of particulate matter in the indoor air of investigated residences. 

2.2. Experimental 

2.2.1 Sampling sites 

The study was conducted in four homes located in the cities of Aveiro (population 45 000) 

and São João da Madeira (population 21 000), both located in northwestern Portugal. The 

homes were selected to reflect different indoor sources (cooking, smoking, presence of pets, 

fireplace utilization, etc.) and outdoor environments (urban density, traffic intensity, etc). 

Three homes were located in blocks of flats and one was a terraced house. They were all 

studied with occupants. One of them was also studied without any indoor activity, taking 

advantage of the fact that occupants moved into a new home. Doors and windows provided 
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natural ventilation in all the cases. They were normally closed and were opened only for short 

time periods (a few hours per days) according to occupants’ requirements. The exception was 

home 2, with a door linking the kitchen to a roof terrace that was frequently opened. A 

summary with the main characteristics of sampling sites used in this study is presented in 

Table2.1. 

Kitchen was selected for sampling indoors because these rooms are known to have diverse 

sources of air particles and because occupants spend much of their time inside it. In many 

Portuguese homes the kitchen is a communal area which is not only used for cooking but also 

for eating, relaxing and socializing. Outdoor sampling was conducted at the same height 

above ground as indoor sampling using a balcony (a terrace was used in home 2) at the front 

of the building. 

2.2.2 Sampling method 

Indoor and outdoor PM10 measurements were performed simultaneously with two MiniVolTM 

TAS samplers from AirMetrics (Eugene, Oregon, USA). The MiniVol is a low-volume portable 

sampler equipped with an air pump, a rotameter, a flow rate controller and a programmable 

timer. In operation, air is drawn through a size selective inlet and then through a filter pack 

fitted to the top of the sampler in order to selectively collect aerosol particles in the PM10 size 

range.  The size-selective inlets were located at about 160 cm above the floor in order to get 

samples within the breathing air zone of the occupants. Aerosol samples were taken at a flow 

rate of 5 L min-1 for 48 hours. The filters used for the concentration of particles were made of 

quartz fibre (Whatman QMA, 47 mm diameter). These were previously combusted at 550 °C 

for 4 h to remove organic contaminants. A total of 7 pairs of filter samples were gathered per 

residence. 
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Table 2. 1 - Summary details of sampling sites used in this study 

 
Site Study period Location Site condition  home type floor occupants smokers pets cooker type fireplace 

use 
ventilation 

Home 1A Feb. - Mar. 
2011 

Aveiro / city 
centre 

near road 
with medium 
traffic flow 

apartment 4 5 No no gas no natural 

Home 1B Jan. - Feb. 
2012 

Aveiro / city 
centre 

near road 
with medium 
traffic flow 

apartment 4 0 No no not used no natural 

Home 2 Apr. 2011 Aveiro / 
suburb 

near road 
with medium 
traffic flow 

apartment 6 3 - 5 No dog gas no natural 

Home 3 May 2011 Aveiro / city 
centre 

near road 
with high 
traffic flow 

apartment 4 4 3 cat gas no natural 

Home 4 Mar. 2011 São João da 
Madeira / 
suburb 

far from busy 
roads 

terraced 
house 

- 3 - 4 No dog & cat gas wood 
burning 

natural 
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2.2.3 Analysis 

The mass concentration of particulate matter was determined by gravimetry. Before 

sampling, the filters were conditioned for at least 24 h in a room with constant humidity 

(50%) then weighed on an electronic microbalance with a sensitivity of 0.01 µg. After 

collection, the filters were re-conditioned, re-weighed and stored at -20 °C until they could be 

chemically analysed. 

The EC and OC particulate fractions accumulated in filters were measured by the thermal 

optical method previously described by Castro et al. (1999). The system comprises a quartz 

tube with two heating zones, a laser and a non dispersive infrared (NDIR) CO2 analyzer. A 

punch of the filter sample is placed vertically inside the quartz tube within the first heating 

zone, which is then heated to 600 °C in a nitrogen atmosphere to vaporize the organic 

fraction of particles. EC is determined by sequential heating at 850 °C in a nitrogen/air 

atmosphere. The second heating zone is filled with cupric oxide and maintained at 850 °C 

during the entire analysis process to guarantee the total oxidation of the volatilized carbon to 

CO2, which is quantified continuously by the NDIR analyzer. Correction for the pyrolysis 

contribution to EC from OC is achieved by monitoring the transmission of light through the 

filter with the laser beam. The OC/EC split is set when the transmittance reaches the same 

value as the one at the beginning of the analysis. Pyrolytic carbon (PC) is calculated from the 

mass of CO2 emitted during the second heating phase, under the gas flow containing O2, until 

the recovery of filter light transmittance. 

2.3. Results and Discussion 

2.3.1 Mass concentrations 

A summary of PM10 measurements is shown in Table 2.2. Exposure to particulate matter in 

occupied residences was higher indoors than outdoors (an average of about 30%). The 

highest indoor concentrations (average of 116±57 g/m3) were found in home 3. The 

presence of 3 smokers and poor ventilation conditions seems to explain these results. 

Significant differences in PM10 concentrations between non-smokers and smokers residences 

were also described previously. Breysse et al. (2005) reported an average increase of 88% in 

PM10 concentrations after investigating indoor air at 91 residences in Baltimore, USA, and 

Chao and Wong (2002) an increase of 19% in urban residences of Hong Kong, China. Studies 
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performed in European countries have also consistently reported increased PM10 

concentrations (average of 5% to 93%) in residences with smokers (Phillips et al., 1997, 1998, 

1999; Stranger et al., 2007). 

Table 2. 2 - Average, standard deviation, indoor to outdoor ratios and Pearson correlation coefficients 
for PM10 mass concentrations measured in the five homes. Bold values indicate statistically significant 

correlation coefficients (p < 0.05). 

 PM10 (g/m3) I/O R 

  Indoor Outdoor   

Home 1A 52.6 ± 7.0 46.9 ± 8.7 1.1 ± 0.1 0.90 

Home 1B 35.7 ± 12.0 45.5 ± 13.5 0.8 ± 0.1 0.98 

Home 2 59.9 ± 6.5 63.6 ± 14.6 1.0 ± 0.2 0.31 

Home 3 116.4 ± 57.2 49.9 ± 13.1 2.5 ± 1.6 -0.06 

Home 4 58.6 ± 10.3 55.8 ± 12.2 1.1 ± 0.1 0.95 

Overall average* 71.9 ± 38.3 54.0 ± 13.3 1.4 ± 1.0 - 

   * for occupied homes only 

 

The lowest concentrations, on the other hand, were found in home 1B (average of 36 g/m3), 

a result of the absence of indoor activities. Data from this residence show an average PM10 

decrease of 32% from the occupied to the unoccupied condition. This is comparable to the 

50% decrease reported by Nasir and Colbeck (2013) in an unoccupied living room from an UK 

suburban location. Average concentrations from home 1 measured during periods without 

indoor activity (condition B) can be used as indicative of the contribution of outdoor sources 

to indoor PM10 concentrations measured in periods of indoor activity (condition A). This is an 

acceptable approximation because outdoor concentrations in home 1 were quite similar 

during both conditions A and B. Therefore, 68% of the mass resulted from outdoor sources 

and only 32% was generated indoors. Indoor sources in this residence include, among other 

housework activities, movement of people, cooking and cleaning. 

I/O ratios have been previously employed to describe the differences between the indoor and 

outdoor environments (Jones et al., 2000; Monn et al., 1997; Stranger et al., 2007). Average 

I/O ratios in this study ranged from 0.8 to 2.5. The lowest value was found in home 1B in line 

with the absence of indoor sources, and the highest in home 3, indicating that smokers were 

the main source of particles indoors. Homes 1A, 2 and 4 had ratios close to 1, suggesting a 

significant influence of outdoor sources on indoor PM10 concentration. Since windows (or 

door, in home 2) were opened at least a few hours per day, it is not difficult for particles 
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originating outdoors to get into these residences. Correlation analysis between indoor and 

outdoor measurements was used to further support this finding. The correlation coefficient 

was very high in home 1 (for both conditions A and B) and in home 4, confirming that outdoor 

particulate matter is a significant contributor to residential indoor concentrations. In addition, 

the magnitude of r values provides evidence that outdoor air was basically the only one 

source of particles inside the unoccupied residence. Poor correlations were found in homes 2 

and 3, due to a higher influence of indoor sources. 

Comparative data for indoor and outdoor PM10 concentrations in industrialized countries are 

presented in Table 2.3. Indoor concentrations in Portugal were higher than those measured 

before in countries from central and northern Europe (Jones et al., 2000; Monn et al., 1997). 

The same tendency was observed for outdoor concentrations, suggesting that outdoor 

sources might be important contributors to indoor air pollution levels. As mentioned before 

in this paper, exceedances to PM10 concentration limits fixed in the European Directive 

2008/50/CE are quite frequent in southern European countries due to a high mineral dust 

load in ambient air (Mitsakou et al., 2008; Moreno et al., 2005; Pederzoli et al., 2010; Querol 

et al., 2008). This dust excess seems to be the source of a significant background level of 

particulate matter in the indoor air of residences located in Portugal. 

Indoor concentrations from this study were lower than those reported previously for East 

Asian countries. This difference is related to cultural practices and living styles.  Chinese style 

of cooking with high emissions of oily fumes and incense burning are common home activities 

in that part of the world and are known to strongly influence indoor PM10 levels (Lung et al., 

2007). In addition, uncontrolled industrial and traffic emissions are responsible for high levels 

of outdoor particles in Asian cities, which then can get into residences (Chao and Wong, 

2002). 

2.3.2 OC and EC concentrations 

A summary of OC and EC measurements is shown in Table 2.4. The highest average indoor OC 

concentrations were found in home 3 (27±18 g/m3), the smokers’ residence, and the lowest 

in home 2 (10±1 g/m3), a residence with a very high ventilation rate. OC concentrations for 

occupied residences were about 2.5 times higher indoors than outdoors. This can be 

attributed to a variety of sources, which are known to release considerable amounts of 

organic particles into residential indoor air, including smoking (Na and Cocker III, 2005), 

cooking (Polidori et al., 2007, Abt et al., 2000a), biomass burning (Ward and Noonan, 2008) 

and handling of textiles (Cerqueira et al., 2010). Similar indoor and outdoor concentrations 
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(average I/O ratio of 1.0) were found in the unoccupied residence, suggesting that all the 

indoor OC resulted from outdoor infiltration of particles. The very high correlation factor for 

this residence (r=0.96) confirms the absence of OC indoor sources. 

Table 2. 3 - Indoor and outdoor PM10 mass concentrations reported before in industrialized countries. 

Location Number of homes and area 

type 

PM10 (g/m3) Reference 

  Indoor outdoor I/O  

Birmingham, United 

Kingdom 

4; urban area (flats near 

roadside) 

29.2 19.5 1.6 Jones et al. (2000) 

 2; urban area (flats in multy-

storey block) 

40 19.3 2.1  

 1; rural area 35.3 16.0 2.5  

Zürich, Switzerland residential area with low indoor 

activity a 

10.8 15.2 0.71 Monn et al. (1997) 

 residential area with normal 

indoor activity a 

32.8 23.4 1.40  

 residential area with indoor 

smokers a 

26.9 14.6 1.84  

Amsterdam, The 

Netherlands 

18; urban area (high-traffic 

street)  

37 43 0.86 b Fischer et al. 

(2000) 

 18; urban area (low-traffic 

street) 

22 36 0.61 b  

Antwerp, Belgium 15; urban and suburban areas 39 41 0.95 Stranger et al. 

(2007) 

Athens, Greece 3;  urban area: - warm period 

                        - cold period 

35 

32 

52 

54 

0.7 b 

0.6 b 

Diapouli et al. 

(2011) 

Hong Kong, China 34; urban area (mixed indoor 

and outdoor activities) 

63.3 69.5 0.91 b Chao and Wong 

(2002) 

Taipei, Taiwan 45; urban (residential, 

commercial, mixed) and 

industrial areas 

79.8 95.5 c 0.84 Lung et al. (2007) 

a number of homes not specified by authors 
b ratio calculated from average indoor and outdoor values 
c average of 41 outdoor measurements 
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EC was clearly less abundant than OC in indoor and outdoor air. The highest average EC 

concentration was found again in the smokers’ residence. High values were also measured in 

the unoccupied residence but this was clearly related with the infiltration of EC from outdoor 

sources, as demonstrated by the average I/O ratio, which was equal to 1.0, and the high 

correlation factor between the two sets of data (r=0.78). I/O ratios closer to 1, together with 

high correlation factors (r>0.70) were found in homes 2 and 4, showing that EC was 

generated outdoors, most likely from vehicular emissions and biomass burning. A dominant 

outdoor origin for EC was reported before in studies about the characteristics of 

carbonaceous indoor aerosols (Cao et al., 2005; 2012; Ho et al., 2004; Na and Cocker III, 

2005). 

Table 2. 4 - Average, standard deviation, indoor to outdoor ratios and Pearson correlation coefficients 

for OC and EC concentrations measured in the five homes. 

  OC (g/m3) EC (g/m3) I/O r 

  Indoor Outdoor Indoor Outdoor OC EC OC EC 

Home 1A 12.2 ± 1.5 6.2 ± 1.0 2.3 ± 0.5 2.3 ± 0.7 2.0 ± 0.3 1.1 ± 0.3 0.4 -0.21 

Home 1B 15.9 ± 3.1 16.2 ± 5.2 3.7 ± 1.2 3.7 ± 1.3 1.0 ± 0.1 1.0 ± 0.2 0.96 0.78 

Home 2 10.4 ± 1.3 6.5 ± 2.0 1.8 ± 1.0 1.8 ± 1.0 1.7 ± 0.5 1.1 ± 0.3 0.24 0.7 

Home 3 27.3 ± 18.2 5.0 ± 2.5 3.9 ± 1.5 1.9 ± 1.4 5.6 ± 2.0 2.9 ± 1.6 0.79 0.93 

Home 4 10.9 ± 2.7 6.1 ± 3.5 2.2 ± 1.2 2.7 ± 1.3 2.3 ± 1.2 0.8 ± 0.2 0.94 0.93 

Overall 

average* 
15.2 ± 11.3 5.9 ± 2.4 2.5 ± 1.3 2.2 ± 1.1 2.9 ± 1.9 1.5 ± 1.2 - - 

* for occupied homes only. 

The contribution of OC and EC to PM10 concentrations, together with the OC/EC ratios are 

presented in Table 2.5. The percentages of OC in PM10 for occupied residences ranged from 

18 to 25% in indoor air and from 10 to 13% in outdoor air. This is indicative of a significant 

contribution of OC sources to indoor PM10 mass concentration. However, the highest 

percentage of OC in PM10 was observed in the unoccupied residence indoor air. At least in 

part, this might be explained by the chemical composition of outdoor air, which was the main 

source of indoor particles and was richer in OC during the sampling period without occupants 
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than in the period with occupants. In addition, the percentage of OC increases from outdoor 

to indoor air, suggesting that particles going indoors were mainly generated from OC sources. 

This is likely to occur since OC is known to be prevalent in the fine fraction of outdoor aerosol 

(Duarte et al., 2008) and fine particles infiltrate more efficiently indoors than coarse particles 

(Abt et al., 2000b). 

Average EC concentrations accounted for only 4 to 11 % of the PM10 mass concentration 

indoors and 3 to 8 % outdoors, in line with a lower abundance of EC than OC in ambient air. 

Table 2. 5 - Average and standard deviation of percentage of OC and EC in PM10 together with OC/EC 

ratios in the five homes. 

 OC/PM10 (%) EC/PM10 (%) OC/EC 

 Indoor Outdoor Indoor Outdoor Indoor Outdoor 

Home 1A 23.5 ± 3.7 13.3 ± 1.4 4.3 ± 0.8 5.0 ± 2.2 5.6 ± 1.4 2.9 ± 0.8 

Home 1B 46.4 ± 7.2 35.4 ± 3.1 10.6 ± 1.5 8.4 ± 2.4 4.5 ± 0.9 4.5 ± 1.2 

Home 2 17.5 ± 2.2 10.6 ± 3.7 3.0 ± 1.5 2.9 ± 1.6 7.9 ± 5.7 5.5 ± 6.3 

Home 3 25.1 ± 12.1 9.8 ± 3.8 3.8 ± 1.2 3.7 ± 2.2 6.7 ± 2.6 3.8 ± 3.4 

Home 4 18.5 ± 2.9 10.6 ± 5.3 3.6 ± 1.6 4.9 ± 2.0 6.0 ± 2.8 2.2 ± 0.8 

Overall 

average* 

21.1 ± 7.0 11.1 ± 3.8 3.7 ± 1.3 4.1 ± 2.1 6.5 ± 3.4 3.6 ± 3.7 

* for occupied homes only. 

The ratio of OC/EC has been widely used to study the origin and transformation processes of 

carbonaceous aerosol in a variety of outdoor atmospheres. Minimum OC/EC ratios in the 

range of 1.1 to 1.4 for PM10 aerosol samples are common in urban background air and ratios 

exceeding these values are indicative of the presence of secondary organic carbon (Pio et al., 

2011). Outdoor OC/EC ratios found in this study were higher than 1.4 and compare well with 

the average ratios reported before for the background atmospheres of Portuguese cities 

(Lisbon, Oporto and Coimbra), that were in the range of 2.4 to 5.1 (Pio et al., 2011), thus 

pointing to the occurrence of secondary organic aerosols. Higher average OC/EC ratios were 

found in the indoor air of occupied residences, which mighy be attributed to the strength of 

OC sources such as smoking, cooking and movement of people. Finally, it is worth to mention 

the convergence of results between indoor and outdoor OC/EC ratios in the unoccupied 

residence. This is not surprising, following the above reported findings that I/O ratios for OC 
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and EC were equal to 1.0, but it also emphasizes the common origin of carbon particles 

collected indoors and outdoors. 

2.4. Conclusions 

Although the number of investigated cases was not large, this paper reports the first 

comprehensive research about PM10 and associated carbon fractions in the indoor air of 

residences in Portugal. The main conclusions from the present study are summarised as 

follows: 

- exposure to PM10 in occupied residences was higher indoors than outdoors and 

maximum exposure was found within a smokers’ residence; 

- a significant influence of outdoor sources on indoor PM10 concentration was found in 

occupied residences without smokers, reflecting the efficiency of natural ventilation 

conditions. 

- PM10 mass concentrations in the indoor air of residences in Portugal were higher than 

those reported before in central and northern Europe, which might be the result of a higher 

input of mineral dust from outdoor sources;  

- the average contribution of OC to PM10 in the indoor air of occupied residences ranged 

was 21%. A higher contribution (46%) was found in the unoccupied residence, showing that 

fine particles, with a high content in OC, infiltrate more easily indoors than coarse particles, 

with a high mineral content; 

- OC concentrations were higher indoors than outdoors in the occupied residences, 

showing the influence of indoor sources like smoking, cooking and cleaning; 

- EC concentrations accounted for an average of only 3.7% of the PM10 mass concentration 

in the indoor air of occupied residences; 

- main sources of EC in non-smokers residences were located outdoors. 

This study has also shown that more research is needed to better understand human 

exposure to indoor particulate matter in southern European countries. Future studies should 

focus on the origin of particles and the contribution of mineral dust to indoor particulate 

matter levels. 
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Abstract 

PM2.5 aerosol samples were collected from January 2013 to January 2014 on the kerbside of a 

major arterial route in the city of Oporto, Portugal, and later analyzed for carbonaceous 

fractions and water soluble ions. The average concentrations of organic carbon (OC), elemental 

carbon (EC) and water soluble organic carbon (WSOC) in the aerosol were 6.2 g/m3, 5.0 

g/m3 and 3.8 g/m3, respectively, and fit within the range of values that have been observed 

close to major roads in Europe, Asia and North America. On average, carbonaceous matter 

accounted for 56% of the gravimetrically measured PM2.5 mass. The three carbon fractions 

exhibited a similar seasonal variation, with high concentrations in late autumn and in winter, 

and low concentrations in spring. SO4
2- was the dominant water soluble ion, followed by NO3

-, 

NH4
+, Cl-, Na+, K+, oxalate, Ca2+, Mg2+, formate, methanesulfonate and acetate. Some of these 

ions exhibited a clear seasonal trend during the study period. The average OC/EC ratio for the 

entire set of samples was 1.28±0.61, which was consistent with a significant influence of 

vehicle exhaust emissions on aerosol composition. On the other hand, the average WSOC/OC 

ratio was 0.67±0.23, reflecting the influence of other emitting sources. WSOC was highly 

correlated with nssK+, a tracer of biomass combustion, and was not correlated with nssSO4
2-, a 

species associated with secondary processes, suggesting that the main source of WSOC was 

biomass burning. Most of the SO4
2- was anthropogenic in origin and was closely associated 

with NH4
+, pointing to the formation of secondary aerosols. Na+, Cl- and methanesulfonate 

were clearly associated with marine sources while NO3
- was related with combustion of both 

fossil and non-fossil fuels. Mixed sources explained the occurrence of the other water soluble 

ions. 
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3.1. Introduction 

Exposure to atmospheric aerosols in urban areas has been linked to adverse health effects 

related primarily to the respiratory and cardiovascular systems (Dominici et al., 2006; 

Martinelli et al., 2013). The urban aerosol is made up of primary particles (emitted directly into 

the atmosphere from anthropogenic and natural sources) and secondary particles (formed in 

the atmosphere from gas to particle conversion, condensation of gases on preexisting 

particles, and heterogeneous reactions). In the urban atmosphere primary anthropogenic 

sources include traffic, domestic fuel combustion, industrial activities and construction works, 

while primary natural sources comprise sea salt, soil dust and biological debris. Owing to the 

variety of sources, urban aerosol consists of a complex mixture of chemical constituents such 

as carbonaceous matter, soluble inorganic salts and acids, insoluble mineral dust, trace metals 

and water. However, the chemical properties of urban aerosols differ significantly between 

background and roadside atmospheres. A number of studies conducted during the last years 

indeed indicate that the chemical composition of aerosol samples collected at the roadside 

level is strongly influenced by fresh tailpipe emissions, re-suspended road dust, and brake and 

tyre wear (Amato et al., 2011; Aurela et al., 2015; Furusjö et al., 2007; Bukowiecki et al., 2010; 

Mirante et al., 2014; Pant and Harrison, 2013; Weinbruch et al., 2014). The proximity to road 

traffic emissions has been linked to increased morbidity and mortality in some epidemiological 

studies (Hoek et al., 2001; Hoffman et al., 2009). In addition, traffic also represents an 

important source of gaseous precursors of secondary aerosols, which may account for a 

significant fraction of the total particulate mass, as suggested by many source apportionment 

studies carried out in urban areas (Cusack et al., 2013; Guo et al., 2014; Liu et al., 2014; Voutsa 

et al., 2014). The rate at which aerosol formation takes place is strongly dependent on 

atmospheric and meteorological conditions, which implies dissimilarities among geographical 

regions (Jimenez et al., 2009). This is particularly important in urban areas from Southern 

European countries that are characterized by a complex meteorology (e.g. intense solar 

radiation, low rainfall) which favors gas-to-particle conversion processes (Reche et al., 2011). 

Despite advances on this topic, we do not yet have a full understanding about the composition 

and origin of particles collected in the proximity of busy roads. Specifically, to our knowledge, 

there is no information available regarding the seasonal variation of source contributions to 

aerosol mass collected at these sites. This shortage of information is hindering the 

development of effective measures to reduce human exposure to aerosol particles in heavily 

trafficked roads. 
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The work presented in this paper is intended to provide comprehensive information about the 

seasonal variation of fine aerosol chemical composition (with a focus on carbonaceous matter 

and water soluble ions) at the roadside level in a typical medium sized southern European city 

(Oporto, Portugal) and complements the recent study of Amato et al. (2015) who described 

source apportionment results for aerosol samples collected in Southern European cities during 

the AIRUSE LIFE+ project. Finally, the present work will be of crucial interest to further 

understand the origin of aerosol particles and therefore for the adoption of measures and new 

strategies to ensure better air quality in urban areas. 

3.2. Sampling and analytical methods 

3.2.1 Study site and aerosol sampling 

Oporto is located in northern Portugal, near the mouth of the Douro River (Figure 3.1). The 

city has a population of about 240000 (2011 census), and the urban area, which extends 

beyond its administrative limits, has a population of about 1.3 million in a land area of 389 

km2, making it the country’s second largest city after the capital. Oporto is the center of an 

important industrial, commercial and touristic region, as well as a major communication and 

transportation hub in the northwestern Iberian Peninsula. 

Figure 3 1 Map showing the location of sampling site in Oporto, Portugal. 

 

Aerosol sampling was conducted from the 5th of January 2013 to the 24th of January 2014 in 

the rooftop of an air quality monitoring station (41˚ 09’ 46’’N; 8˚ 35’ 27’’ W) located on the 

kerbside of a major arterial route (Fernão de Magalhães Avenue) connecting the Inner Circular 

Highway to the city centre. The avenue runs in a northeast-southwest direction and the station 

is located on the northwest kerbside. Two aerosol samplers fitted with PM2.5 size selective 

inlets were used in parallel: a low-volume sampler, operated at a flow rate of 2.3 m3/h and 

equipped with a Pall PTFE filter; and a high volume sampler, operated at a flow rate of 1.13 
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m3/min and equipped with a pre-fired (550 °C, 5h) Whatman QM/A quartz fiber filter. The PTFE 

filter was used for the determination of aerosol mass concentration and for the chemical 

analysis of water soluble ions whilst the quartz fiber filter was used for the analysis of organic 

carbon, elemental carbon and water soluble organic carbon. The sampling period was 24 h and 

the frequency was set to one sample every three days. 

3.2.2 Analytical methods 

The mass concentration of particulate matter was determined by gravimetry. Before sampling, 

the filters were conditioned for at least 24 h in a room with constant humidity (50 ˚C) and 

temperature (20 ˚C) and then weighed with an electronic microbalance with a sensitivity of 

0.01 mg, in accordance with the European Standard EN14907:2005 (CEN, 2005). After 

collection, the filters were re-conditioned, re-weighed and stored at -20° C until the chemical 

analysis. The EC and OC particulate fractions accumulated in the filters were measured by the 

thermal optical method previously described by Pio et al. (2011). 

For the analysis of water soluble organic carbon, two 9 mm punches taken from a sample filter 

were subjected to extraction with 20 mL of UV-oxidized high-purity water under 

ultrasonication for 20 min at room temperature. The liquid extract was filtered, with a 0.45 µm 

PTFE syringe filter, to remove insoluble particles and filter debris. The filtrate was then 

acidified with a 2M HCl solution (2%, vacid/vsample), purged with ultra-pure nitrogen, to remove 

dissolved volatile inorganic carbon and volatile organic species, and analyzed for WSOC using a 

total organic carbon analyzer (Shimadzu TOC-5050A). Water insoluble organic carbon (WIOC) 

was calculated as the difference between OC and WSOC. 

For the analysis of water-soluble ions, a quarter of Teflon filter was subjected to extraction 

with 13 mL of Milli-Q ultrapure water under ultra-sonication for 15 min at room temperature. 

The liquid extracts were then filtered, with a 0.45 µm pore PTFE syringe filter, to remove 

insoluble particles, and analyzed using three Dionex ion chromatography systems equipped 

with electrochemical suppression. The cations ammonium (NH4
+), sodium (Na+), potassium 

(K+), calcium (Ca2+) and magnesium (Mg2+) were determined using an IonPac CG12A guard 

column and a CS12A analytical column with 10 mM H2SO4 as the eluent.  The anions chloride 

(Cl-), nitrate (NO3
-), sulfate (SO4

2-) and oxalate (C2O4
2-) were measured with an IonPac AG4A 

guard column and an AS4A analytical column with a Na2CO3/NaHCO3 (1.8 and 1.7 mM, 

respectively) buffer solution as the eluent. The anions fluoride (F-), formate (HCOO-), acetate 

(CH3COO-), methanesulfonate (CH3SO3
-) and glycolate (HOCH2COO-) were determined with an 

IonPac AG11 and an IonPac AS11 column by gradient elution with Na2B4O7 solution from 0.075 
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mM to 2.5 mM as eluent.  

The non-sea-salt ion concentrations were calculated by the following equation, assuming that 

the chemical composition of sea-salt particles is the same as that of seawater and that soluble 

Na+ in aerosol particles comes solely from seawater, 

 

nssX = X – (X/Na)sw × Na+ 

 

where nssX is the mass concentration of non-sea salt ion X in the aerosol particles, (X/Na)sw is 

the mass ratio of component X to Na in seawater (Millero, 2013) and Na+ is the mass 

concentration of sodium  in the aerosol particles. 

3.2.3 Meteorology 

The climate of Oporto is strongly influenced by the seasonal movement of the Azores 

anticyclone. During autumn and winter, the anticyclone is usually located south of the Azores 

Islands and low pressure systems track across the North Atlantic causing cold and wet weather 

in Oporto. During late spring and summer, the northward movement of the anticyclone 

prevents the transport of cold air and the formation of precipitation. The temperature range in 

Oporto is characteristic of a maritime climate but summer rainfall is so scarce that the city can 

also be included in the Mediterranean climate region from this point of view. 

Table 3.1 presents a summary of meteorological data recorded at the monitoring site with a 

wireless weather station (Vantage Pro2 Plus, Davis Instruments). Weather conditions were 

typical of Oporto city based on climatological averages (IPMA, 2015). The daily average 

temperature ranged from 10.2 ˚C in winter to 21.9 ˚C in summer. In contrast, the daily average 

relative humidity varied from 66% in summer to 84% in winter. Precipitation was mostly 

accumulated in winter and the total precipitation amount during the sampling period was 1319 

mm, comparing well with the annual average rainfall of 1237 mm recorded in Oporto during 

the period 1981-2010 (IPMA, 2015). Strong winds from the Atlantic (north-west sector) were 

common during winter and early spring and alternating sea/land breezes formed in summer. 

These wind conditions show that most of the time the airflow influencing the sampling site, 

which was located on the northwest side of the road, was not arriving directly from the traffic 

sources. Therefore, the sampling site should be regarded as a kerbside with a significant urban 

background influence. 
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Table 3. 1 - Average, standard deviation and range (min-max) of meteorological parameters recorded at 

the Oporto kerbside site during the study period. 

 
 Temperature 

(˚C) 
Relative 
humidity 

(%) 

Precipitation 
(mm/day) 

Wind speed 
(m/s) 

Prevailing 
wind direction 

Winter 10.2±2.0 
(6.1-14.3) 

84±10 
(53-98) 

7.4±10.2 
(0.0-46.0 ) 

5.3±2.9 
(1.0-16.4) 

NW, NE 

Spring 14.1±2.6 
(8.7-21.8) 

76±13 
(41-97) 

3.9±8.8 
(0.0-45.4) 

5.3±2.1 
(1.1-11.5) 

NE, NW 

Summer 21.9±3.8 
(16.2-31.8) 

66±18 
(32-90) 

0.2±1.3 
(0.0-12.7) 

3.7±1.1 
(1.1-6.6) 

NE, NW 

Autumn 15.2±4.7 
(6.1-26.2) 

80±14 
(46-97) 

4.6±9.5 
(0.0-45.5) 

3.4±1.7 
(0.2-8.7) 

SW, SE 

 

2.4 Data analysis 

The aerosol composition was examined by means of summary statistics and correlation 

analysis. The application of the Shapiro-Wilk test indicated that chemical parameters did not 

follow a normal distribution. This led to the use of the nonparametric Spearman’s rank 

correlation coefficient to assess the relationships between aerosol constituents. 

3.3. Results and discussion 

A total of 125 low volume and the same number of high volume PM2.5 samples were collected 

and analyzed during this study. Table 3.2 presents a statistical summary of PM2.5, carbon 

fractions and water soluble ions concentrations, while Figures 3.2 and 3.3 show the seasonal 

variation of these parameters. The variation of PM2.5 and major aerosol chemical constituents 

as a function of wind direction and speed is illustrated in Figure 3.4. Table 3.3 presents a 

Spearman’s correlation coefficient matrix between aerosol constituents. 

3.3.1 PM2.5 mass concentration 

The PM2.5 mass concentration varied from 6.2 to 87.7 g/m3 with an average of 26.7±16.1 

g/m3 (Table 3.2). These concentrations fall within the range of values reported before for 

other kerbside sites in Oporto (Oliveira et al., 2010; Slezakova et al., 2007) and in other 

European cities (Putaud et al., 2010). PM2.5 mass concentrations obtained in this study were 30 

to 40% higher than those recorded a few years ago in the Oporto background atmosphere 

(Oliveira et al., 2010), which suggests a significant contribution of traffic sources to the aerosol 

load. The monthly variation of aerosol mass concentrations shows maxima in winter and 

summer (Fig. 3.2). Winter values might be attributed to unfavorable meteorological conditions 
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for the dispersion of air pollutants (stagnant atmosphere), while the summer values were 

probably related to wildfire emissions in the surrounding area of Oporto. According to the 

national authority in the field of forest protection (ICNF - Instituto da Conservação da Natureza 

e das Florestas), Northern Portugal was highly affected by wildfires during the summer of 2013 

(Figure S1 of supplementary data). 27 large fires (burnt area >100 ha) were recorded in the 

Oporto district between the 11st of August and the 21st of September, burning 8752 ha of 

woodlands and shrublands (ICNF, 2014). 

The polar plot distribution (Fig. 3.4) shows that the major sources of PM2.5 were located inland, 

in an area that extends to the southwest of the sampling site. This distribution appears to be 

associated with traffic emissions from the nearby road but may also be related with other 

sources, including biomass burning and local dust. The role of these sources as contributors to 

aerosol production in Oporto was emphasized in the source apportionment study of Amato et 

al. (2015). Indeed, they found that traffic, biomass burning and local dust were the most 

important sources of fine particles, accounting for 39%, 18% and 15%, respectively, of the 

PM2.5 aerosol mass. 

Fig. 3.5 shows the monthly variation of PM2.5 mass concentration along with the contribution 

of noncarbonated total carbonaceous mass (EC+OM) and inorganic mass (WSII) to total aerosol 

mass concentration. EC concentrations were obtained directly from the analytical instrument 

data determination. The contribution of total organic matter (OM) was estimated by 

multiplying the measured OC concentrations by a factor of 1.4. This factor is higher than the 

OM/OC ratio of 1.2 reported for fresh vehicle emissions (Aiken et al., 2008), which were 

expected to be the major source of aerosols at the study site. However, as further described in 

this work, there was evidence of a high fraction of oxygenated organic species in the aerosol 

samples collected in Oporto and consequently this might explain the OM/OC ratio within the 

range of values described for urban areas strongly impacted by vehicle emissions (Bae et al., 

2006; Brown et al., 2013). Finally, the contribution of total water soluble inorganic ions (WSII) 

was calculated by summing the measured inorganic ions concentrations. On average, 

carbonaceous matter (EC+OM) accounted for 52% of the gravimetically measured PM2.5 mass 

(minimum of 41% in spring and maximum of 62% in winter) in good agreement with what has 

been observed in other European kerbside sites (Putaud et al., 2010). The total concentration 

of WSII plus the concentration of carbonaceous matter accounted for 74% of the PM2.5 

concentration. The remaining chemically unaccounted mass fraction can be attributed to 

minerals and trace elements as well as particle-bound water. 
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Table 3. 2 - Annual and seasonal concentrations of PM2.5, carbon fractions and water soluble ions (in units of µg/m3) in aerosols from Oporto. 

   Winter  Spring  summer  autumn  
 avg±stdev Range avg±stdev Range avg±stdev Range avg±stdev Range avg±stdev range 

PM2.5 26.7±16.1 6.2-87.7 26.7±16.5 8.2-75.6 18.8±8.2 6.9-35.9 33.2±17.5 8.7-87.7 27.3±16.7 6.2-75.6 
OC 6.2±4.8 0.8-26.5 7.7±6.0 1.6-26.5 3.4±1.8 0.9-8.7 7.1±4.8 1.5-22.9 5.9±4.1 0.8-19.2 
EC 5.0±3.1 0.6-16.5 5.6±3.1 0.6-15.2 3.0±1.5 0.9-6.0 4.7±3.1 1.1-12.9 6.6±3.1 1.2-16.5 
WSOC 3.8±2.7 0.8-13.8 4.4±2.9 0.8-11.5 2.1±1.1 0.8-5.7 4.4±2.9 0.9-13.8 4.0±2.5 0.8-10.9 
WIOC 2.4±2.5 BDL-15.7 3.5±3.3 BDL-15.7 1.3±1.0 BDL-3.0 2.7±2.1 0.6-9.5 2.0±1.9 BDL-8.3 

Cations           
Na+ 0.54±0.43 0.08-2.61 0.72±0.61 0.08-2.61 0.59±0.34 0.09-1.61 0.43±0.27 0.08-1.19 0.38±0.23 0.10-1.09 
K+ 0.21±0.17 0.02-1.12 0.25±0.16 0.06-0.65 0.10±0.06 0.02-0.23 0.23±0.21 0.03-1.12 0.26±0.16 0.07-0.69 
Ca2+ 0.14±0.14 BDL-0.79 0.08±0.08 BDL-0.41 0.11±0.08 0.01-0.30 0.24±0.20 0.02-0.79 0.13±0.10 0.03-0.42 
Mg2+ 0.06±0.04 BDL-0.25 0.06±0.05 BDL-0.25 0.07±0.04 0.01-0.15 0.08±0.06 0.00-0.25 0.04±0.02 0.01-0.11 
NH4

+ 0.62±0.70 BDL-3.74 0.56±0.65 BDL-3.57 0.53±0.59 BDL-2.51 0.89±0.97 0.10-3.74 0.48±0.39 0.10-1.43 
Anions           
F- 0.005±0.010 BDL-0.078 0.010±0.016 BDL-0.078 0.007±0.004 BDL-0.020 0.002±0.003 BDL-0.012 0.001±0.001 BDL-0.005 
Cl- 0.61±0.70 BDL-4.38 1.11±0.95 0.01-4.38 0.51±0.53 BDL-2.17 0.23±0.24 BDL-1.13 0.47±0.36 0.08-1.65 
NO3

- 1.14±1.12 0.09-7.48 1.55±1.40 0.11-7.48 0.84±0.84 0.09-4.38 0.86±0.74 0.16-3.61 1.24±1.13 0.17-4.97 
SO4

2- 1.95±1.80 0.14-12.10 1.09±0.60 0.41-2.80 1.85±1.26 0.14-6.26 3.33±2.70 0.90-12.10 1.69±1.14 0.78-6.07 
oxalate 0.17±0.14 0.01-0.68 0.15±0.12 0.02-0.58 0.10±0.07 0.01-0.30 0.25±0.14 0.04-0.60 0.21±0.17 0.03-0.68 
formate 0.040±0.037 BDL-0.211 0.040±0.038 BDL-0.154 0.015±0.010 BDL-0.040 0.056±0.045 BDL-0.211 0.050±0.026 0.014-0.100 
acetate 0.012±0.012 BDL-0.088 0.012±0.016 BDL-0.088 0.005±0.006 BDL-0.026 0.008±0.010 BDL-0.031 0.019±0.010 0.004-0.039 
MS- 0.031±0.034 BDL-0.267 0.012±0.019 BDL-0.099 0.038±0.030 BDL-0.113 0.057±0.045 0.019-0.267 0.021±0.016 0.002-0.076 
glycolate 0.008±0.013 BDL-0.060 0.004±0.010 BDL-0.053 BDL±BDL BDL-BDL 0.014±0.017 BDL-0.060 0.015±0.012 BDL-0.045 
nssSO4

2- 1.82±1.82 BDL-12.08 0.91±0.63 0.15-2.78 1.71±1.27 BDL-6.07 3.22±2.71 0.75-12.08 1.59±1.14 0.65-5.91 
nssK+ 0.19±0.17 BDL-1.11 0.22±0.17 0.04-0.62 0.08±0.06 BDL-0.20 0.21±0.21 0.01-1.11 0.24±0.17 0.06-0.69 
nssCa2+ 0.12±0.14 BDL-0.78 0.05±0.08 BDL-0.40 0.09±0.08 BDL-0.27 0.22±0.20 0.07-0.78 0.12±0.10 0.01-0.40 

BDL - below detection limit 
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Table 3. 3 - Spearman’s correlation coefficients (r) of major aerosol constituents in aerosols from Oporto during winter (grey cells) and summer (white cells). Bold values 
indicate statistically significant correlation coefficients (p<0.05). 

 PM2.5 OC EC WSOC WIOC Na+ Mg2+ NH4
+ Cl- NO3

- SO4
2- oxalate formate acetate MS- nssSO4

2- nssK+ nssCa2+ 

PM2.5  0.89 0.76 0.87 0.58 -0.14 0.65 0.03 0.08 0.33 0.18 0.73 0.74 0.80 -0.28 0.18 0.86 0.82 

OC 0.88  0.78 0.91 0.78 -0.12 0.60 0.07 0.05 0.40 0.12 0.76 0.83 0.77 -0.21 0.12 0.83 0.82 

EC 0.77 0.82  0.78 0.58 0.04 0.82 -0.42 0.30 0.33 -0.28 0.39 0.62 0.60 -0.49 -0.27 0.73 0.85 

WSOC 0.86 0.93 0.80  0.57 -0.04 0.71 0.04 0.19 0.43 0.16 0.81 0.85 0.80 -0.21 0.16 0.91 0.86 

WIOC 0.74 0.90 0.71 0.70  -0.12 0.35 0.26 -0.10 0.37 0.25 0.57 0.47 0.42 0.02 0.26 0.48 0.54 

Na+ -0.19 -0.34 -0.40 -0.38 -0.22  0.33 -0.30 0.82 0.44 -0.27 -0.21 0.03 -0.17 0.15 -0.27 0.08 -0.15 

Mg2+ -0.05 -0.29 -0.33 -0.27 -0.24 0.72  -0.32 0.54 0.44 -0.13 0.38 0.60 0.61 -0.36 -0.13 0.76 0.78 

NH4
+ 0.74 0.70 0.62 0.68 0.55 -0.43 -0.24  -0.56 0.22 0.92 0.52 0.11 0.15 0.65 0.92 -0.02 -0.10 

Cl- -0.01 -0.18 -0.28 -0.24 -0.02 0.91 0.69 -0.28  0.28 -0.50 -0.16 0.08 -0.02 -0.17 -0.50 0.31 0.08 

NO3
- 0.85 0.80 0.73 0.74 0.70 -0.24 -0.08 0.91 -0.09  0.30 0.49 0.46 0.44 0.23 0.30 0.53 0.32 

SO4
2- 0.50 0.34 0.29 0.33 0.18 -0.26 0.02 0.79 -0.19 0.62  0.62 0.19 0.31 0.52 1.00 0.12 0.04 

oxalate 0.70 0.66 0.64 0.68 0.46 -0.47 -0.21 0.92 -0.37 0.83 0.76  0.74 0.81 0.16 0.62 0.72 0.62 

formate 0.49 0.46 0.37 0.50 0.30 -0.20 0.06 0.57 -0.07 0.53 0.43 0.72  0.79 -0.18 0.19 0.76 0.71 

acetate 0.06 0.18 0.20 0.30 -0.08 -0.29 0.01 0.23 -0.29 0.19 0.05 0.37 0.53  -0.23 0.31 0.78 0.75 

MS- 0.33 0.28 0.32 0.33 0.08 -0.17 -0.08 0.61 -0.16 0.48 0.68 0.65 0.37 0.18  0.52 -0.26 -0.37 

nssSO4
2- 0.47 0.40 0.40 0.43 0.17 -0.52 -0.21 0.81 -0.49 0.60 0.93 0.82 0.46 0.18 0.68  0.12 0.04 

nssK+ 0.72 0.72 0.68 0.75 0.50 -0.45 -0.18 0.86 -0.32 0.84 0.61 0.91 0.69 0.44 0.47 0.69  0.83 

nssCa2+ 0.66 0.58 0.52 0.63 0.38 -0.48 -0.15 0.64 -0.36 0.63 0.49 0.71 0.53 0.36 0.25 0.52 0.72  
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Figure 3 2 - Monthly average variations of mass (PM2.5), organic carbon (OC), elemental carbon (EC), 
water soluble organic carbon (WSOC) and water insoluble organic carbon concentrations in aerosols 
from Oporto. 
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Figure 3.3 - Monthly average variations of major water soluble ions concentrations in aerosols from 

Oporto. 

 

 
 

Na
+

0.0

0.5

1.0

1.5

2.0

NH
4

+

0.0

0.5

1.0

1.5

2.0

2.5

3.0

K
+

0.0

0.2

0.4

0.6

0.8

Mg
2+

0.00

0.05

0.10

0.15

0.20

Ca
2+

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cl
-

Ja
n 

13

Feb
 1

3

M
ar

 1
3

A
pr

 1
3

M
ay

 1
3

Ju
n 

13

Ju
l 1

3

A
ug

 1
3

S
ep

 1
3

O
ct

 1
3

N
ov

 1
3

D
ec

 1
3

Ja
n 

14

C
o
n

c
e
n

tr
a
ti
o
n

 (
g
/m

3
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SO
4

2-

0

2

4

6

8

10

oxalate

0.0

0.1

0.2

0.3

0.4

0.5

acetate

0.00

0.01

0.02

0.03

0.04

0.05

NO
3

-

0

1

2

3

4

5

formate

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

MSA
-

Ja
n 

13

Feb
 1

3

M
ar

 1
3

A
pr

 1
3

M
ay

 1
3

Ju
n 

13

Ju
l 1

3

A
ug

 1
3

S
ep

 1
3

O
ct

 1
3

N
ov

 1
3

D
ec

 1
3

Ja
n 

14

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16



A one-year record of carbonaceous components and major ions in aerosol from an urban kerbside 
location in Oporto, Portugal 

 

 39 

3.3.2 Organic carbon and elemental carbon 

The average concentrations of OC and EC observed in Oporto were 6.2 ± 4.8 g/m3 and 5.0 ± 

3.1 g/m3 respectively (Table 3.2), and are in the lower end of the range of values that has 

been observed close to major roads in Europe, Asia and North America (Kim et al., 2003; Lee 

et al., 2006; Pio et al., 2011; Ruellan and Cachier, 2001; Yu, 2002). Both carbon fractions 

exhibited high concentrations in late autumn and in winter (Fig. 3.2)  –  probably reflecting an 

input of emissions from residential biomass burning for heating purposes, combined with 

unfavorable dispersion conditions  –  and low concentrations in spring. OC concentrations 

were also high during summer and were probably related with an increase in secondary 

organic aerosol formation and with emissions from wildfires in the Oporto region. OC and EC 

concentrations were well correlated throughout the year (r=0.82 in winter and r=0.78 in 

summer). This is not surprising given their similar seasonal patterns and polar plots, which 

reveal common sources (most likely vehicle exhaust and biomass burning emissions), and the 

same removal processes for the two species. 

The OC/EC ratio has been used as a first indication of carbonaceous aerosol sources, mainly 

to distinguish between primary sources and atmospheric transformation processes. Ratios 

ranging from 2 to 5 are commonly observed in urban background atmospheres and are 

assumed to indicate a significant contribution of secondary aerosol sources (Pio et al., 2011; 

Querol et al., 2013). Ratios lower than 1 are consistently observed in roadway tunnels and are 

assumed to describe the composition of fresh traffic emissions (Pio et al., 2011). The average 

OC/EC ratio for the entire sampling period in Oporto was 1.28±0.61. The comparison with 

previous observations (Pio et al., 2011) shows that this value is consistent with a significant 

influence of recent traffic emissions on aerosol composition. Fig. 3.6 presents the monthly 

variation of OC/EC ratios. The highest values were found during summer, suggesting an 

increase in the secondary formation of OC from the photochemical oxidation of volatile 

organic compounds or the input of smoke plumes from wildfires, which are known to exhibit 

high OC/EC ratios (Pio et al., 2008; Vicente et al., 2012). On the other hand, the lowest values 

were recorded in autumn followed by spring, which is indicative of a lower production of OC 

from secondary processes and from residential biomass combustion. 
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Figure 3. 4 - Polar plots of PM2.5 and major chemical constituents as a function of wind direction and 
speed in Oporto. Concentrations are in units of μg/m3. 

 

 
The EC-tracer method (Pio et al., 2011) has been used to estimate the contribution of 

secondary organic aerosol to organic carbon concentrations. However, one of the conditions 

necessary to get correct estimates of secondary OC is that the contribution of primary 

sources of OC and EC other than fossil fuel combustion is negligible. This is clearly not the 
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case with the Oporto aerosol samples which were found to be strongly contaminated with 

biomass burning emissions. 

 
Figure 3.5 - Contribution of carbonaceous mass (EC+OM) and inorganic mass (WSII) to PM2.5 mass 

concentration. 

 
 

 

Figure 3. 6 - Monthly average variation of OC/EC and WSOC/OC concentration ratios in Oporto. 
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3.3.3 Water soluble and water insoluble organic carbon 

During the study period WSOC concentrations varied from 0.8 to 13.8 g/m3 with a global 

average of 3.8±2.7 g/m3. These values compare well with those described in the literature 

for roadside and urban atmospheres (Park and Cho, 2011 and references therein). The 

seasonal variation was similar to that described above for OC, with high concentrations in late 

autumn and in winter and low concentrations in spring (Fig. 3.2).  

The WSOC/OC ratio has been used to investigate the origin of carbonaceous matter in 

aerosols and particularly to evaluate the extent of formation of secondary organic carbon 

(e.g. Park and Cho, 2011). In general, the WSOC fraction increases from less than 0.20 in 

roadside or urban sites, in the vicinity of fossil fuel sources, to more than 0.75 in rural and 

remote sites (Jaffrezo et al., 2005; Pio et al., 2007; Park and Cho, 2011). In this study, the 

global WSOC/OC ratio was 0.67±0.23, thus contrasting with the above general trend. This 

might result from differences among previously investigated roadside sites, located in Paris 

and Hong Kong (Ruellan and Cachier, 2001; Yu, 2002) and that of Oporto, particularly in what 

concerns traffic volumes and corresponding emissions of primary pollutants. This explanation 

is sustained by the magnitude of average OC concentrations, which was 2.0 to 5.5 times 

higher than those observed in the present study. In other words, rather than being totally 

dominated by fresh primary emissions from vehicles, OC aerosol in the Oporto roadside 

reflects the influence of various emitting sources. WSOC was highly correlated with nssK+ 

(r=0.75 in winter and r=0.91 in summer), a tracer of biomass combustion, and was not 

correlated with nssSO4
2- (Table 3.3), a species associated with secondary processes, indicating 

that the main sources of WSOC were domestic wood combustion and wildfires. This is in line 

with the above mentioned observations of Amato et al. (2015), who found that biomass 

burning was a major source of fine particles in Oporto. The role of biomass burning as a 

contributor to the WSOC content of aerosol particles was also previously emphasized in the 

studies of Viana et al. (2008) and Wonaschütz et al. (2011). 

A seasonal variation for the WSOC/OC ratio with high values in summer and low values in 

winter, and therefore strongly related with the seasonal change of photochemical activity, 

has been described in urban background sites (Park and Cho, 2011; Du et al, 2014). No clear 

seasonal trend was observed for the WSOC contribution to OC during the present study (Fig. 

3.6), probably because the seasonal pattern of secondary WSOC was masked by the higher 

inputs of primary WSOC. 

WIOC was well correlated with both WSOC and EC and, to a lesser extent, with nssK+, 

indicating that the three carbon fractions share a common combustion source and confirming 
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that most of the particulate carbon originates from biomass burning activities. The WIOC/EC 

ratio was in the range of 0.24, in autumn, and 0.64, in winter and summer. These results 

reflect the lower relative contribution of WIOC to OC, when compared to WSOC, and contrast 

with other observations in urban areas where the influence of vehicular emissions on aerosol 

composition is stronger (Favez et al., 2008; Miyazaki et al., 2006; Yu, 2002). 

3.3.4 Water soluble ionic components 

SO4
2- was the dominant water soluble anion (global average of 1.95 g/m3), followed by NO3

- 

(1.14g/m3), Cl- (0.61 g/m3), oxalate (0.17 g/m3), formate (0.040 g/m3), 

methanesulfonate (0.031 g/m3) and acetate (0.012 g/m3). The dominant water soluble 

cation was NH4
+ (0.62 g/m3), followed by Na+ (0.54 g/m3), K+ (0.21 g/m3), Ca2+ (0.14 

g/m3) and Mg2+ (0.064 g/m3) (Table 3.2). 

Na+ and Cl- are tracers of sea salt and both exhibited a seasonal variation with the highest 

concentrations in winter and the lowest in summer (Fig. 3.3). This is in agreement with the 

winter prevalence of marine air flow which transports sea salt aerosols to the sampling site. 

In addition, wind speed over the North Atlantic is known to be consistently higher during 

winter, thus causing an increase in the sea salt content of coastal aerosol (Yoon et al., 2007). 

The polar plot distributions also provide evidence for the marine source of Na+ and Cl-, since 

both graphs clearly show transport from the Atlantic Ocean, with maxima under strong west 

and northwesterly winds. It is also worth noting that the Cl- seasonal trend is better defined 

than that of Na+. This is due to the well known summer Cl- depletion in sea salt aerosol. The 

typical summer weather conditions favor the formation of HNO3 from the oxidation of NO2 by 

OH radical, and from the vaporization of NH4NO3 aerosol particles, which then reacts with 

NaCl and results in the volatilization of Cl-, as HCl (Bardouki et al., 2003; Pio et al., 1996). 

The biogenic fraction of sulfate measured in Oporto was estimated with the linear 

relationship between air temperature and the methanesulfonate (MS-) to non-sea-salt sulfate 

ratio described by Bates et al. (1992) for the remote South Pacific Ocean atmosphere (MS-

/nssSO4
2- (in %) = -1.5T (in ˚C) + 42.2). Recently, this relationship was also suggested to be 

applicable to the atmosphere over the Atlantic Ocean (Lin et al., 2012). Using the average 

winter and summer surface air temperatures in Oporto (10 and 19 ˚C respectively) MS-

/nssSO4
2- ratios of 0.27 and 0.14, respectively, are expected for the biogenic sulfate fraction. 

Combining these ratios with MS- concentrations, contributions of 3 and 15% of biogenic 

sulfate to total sulfate are obtained for the winter and summer seasons, respectively. Given 

that ssSO4
2- accounts for 22% of total sulfate in winter and 5 % in summer, we demonstrate 



Chapter 3   

 

44 
 

that 75 to 80% of total sulfate measured in Oporto during this study is anthropogenic in 

origin. 

The time variation of SO4
2- showed a maximum in summer and a minimum in winter (Fig. 3.3). 

In this case, the seasonal variation of biogenic sulfur emissions from the ocean cannot be the 

unique explanation for this time variation since biogenic sulfate is also a minor contributor to 

total sulfate and the difference between summer and winter average concentrations is higher 

than 2 g/m3. Although not statistically significant, the difference suggests that the the 

summer increase is likely related with the secondary formation of sulfate, which tends to be 

higher in the summer months, when solar radiation and photochemical activity are more 

intense (Seinfeld and Pandis, 1998). SO4
2- was mostly associated with winds from the 

northeast and southeast sectors (Fig. 3.4), probably due to emissions from the large number 

of medium sized industries that spread in the region that surrounds Oporto  –  including 

metallurgical, metal processing and chemical  –  or long range transported emissions from 

continental areas in Europe. The source apportionment analysis of Amato et al. (2015) has 

also identified the Oporto oil refinery, located about 10 km NW of the sampling site, as a 

possible source of sulfur in aerosols but that conclusion cannot be confirmed by the polar plot 

distribution of SO4
2-. 

The seasonal variation of NH4
+ also shows a peak in summer, but this time trend is expected 

to reflect the impact of NH3 emissions from biological sources in urban areas, which include 

humans, sewage systems and garbage containers (Reche et al., 2012). The NH4
+ polar plot 

shows a maximum associated with low wind speed, thus suggesting an urban source of NH3 

and the subsequent local or regional formation of secondary aerosols. 

In contrast to NH4
+, the highest NO3

- concentrations were observed during winter (Fig. 3.3). 

This observation might be at least partially explained by an increase in NOx emissions from 

biomass burning for heating purposes combined with the typical winter conditions of a 

temperate climate region. The polar plot distribution of NO3
- (Fig. 3.4) shows that 

concentrations increase under the influence of southeasterly winds and closely resembles 

that of other pollutants strongly affected by vehicular exhaust (PM2.5, OC and EC). Therefore, 

oxidation of NOx emitted during the combustion of fossil fuels by motor vehicles might be a 

significant source of NO3
- throughout the year. 

Sea salt from the ocean surface was a small but significant contributor to the atmospheric 

concentrations of total K+ (18%). This contribution was in the range of 9% in summer to 30% 

in spring. Both K+ and nssK+ concentrations were higher in late autumn/winter, in line with an 

increase in biomass combustion for heating purposes, and in summer, due to wildfires. 
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Ca2+ concentrations peaked in summer (Fig. 3.6) suggesting that dry weather conditions 

favored the resuspension of soil and road dust. Sea salt Ca2+ comprised on average 32% of 

total Ca2+ concentrations. Seasonally, this contribution was higher in winter (51%) than in 

summer (15%), in accordance with the above mentioned time variation of marine airflow 

over the sampling site. The polar plot distribution (Fig. 3.4) shows that Ca2+ originated mostly 

west of the sampling site and the highest concentrations were recorded under the maximum 

wind speeds. This distribution shows that Ca2+ in fine aerosols can be emitted by nearby 

sources, like road dust resuspension, or more distant sources, which may include construction 

and demolition works or agricultural soils. 

No clear seasonal trend was observed for Mg2+, but the highest monthly average values were 

recorded in summer (Fig. 3.3), most likely as a consequence of an increase in soil dust inputs 

to the atmosphere. This is sustained by the fact that the aerosol Mg2+/Na+ mass ratio ranges 

from a minimum of 0.12±0.09 in winter, which is in agreement with that of sea salt (0.12), to 

a maximum of 0.21±0.19 in summer. The polar plot distribution (Fig. 3.4) confirms that Mg2+ 

has both continental and marine sources.  

Methanesulfonate in marine and coastal atmospheres is mainly the result of gas-phase 

oxidation of dimethylsulfide (DMS) which is a breakdown product of cellular solutes produced 

by some species of marine phytoplankton (Andreae et al., 2003). MS- in Oporto exhibited a 

well-marked seasonal cycle with the highest concentrations in summer and the lowest in 

winter (Fig. 3.3). This time trend was reported before in North Atlantic coastal sites (Pio et al., 

1996; Yoon et al., 2007) and reflect the seasonal cycles of primary productivity in the oceanic 

waters. 

Oxalate was the most abundant water soluble carboxylate identified in fine aerosol particles, 

followed by formate, acetate and glycolate. On average, the oxalate mass concentration 

accounted for 74% of the total carboxylates mass concentration. Together, the average 

contribution of the four carboxylate species to WSOC (on a carbon mass basis) was only 1.8%. 

Both results compare fairly well with previous studies about the distribution of carboxylates 

in fine aerosols from urban areas (Wang et al., 2007; Yang et al., 2005).  

Oxalate has been reported to originate from primary emissions of biomass burning (Yamasoe 

et al., 2000) and from the atmospheric conversion of precursor gases, of both natural and 

anthropogenic origin, into secondary aerosols (Legrand et al., 2007). Additionally, there is 

strong evidence that vehicle exhaust is not a primary source of oxalic acid (Huang and You, 

2007). In this study oxalate was found to be well correlated with nssK+, particularly in winter 

(r=0.91), suggesting that biomass burning was a source of oxalate at the sampling site. 
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Moderate to high correlations were detected between oxalate and the inorganic species 

nssSO4
2-, NO3

- and NH4
+. This is in agreement with other studies about the aerosol 

composition over the UK and East Asian countries (Laongsri and Harrison, 2013; Yu et al., 

2005) and indicates that secondary processes are also important sources of oxalate. On the 

other hand, oxalate was modestly correlated with EC (r=0.64 in winter and r=0.39 in 

summer). Poor correlations between these two aerosol constituents were also reported in 

the above mentioned studies of Laongsri and Harrison (2013) and Yu et al. (2005) and were 

indicative of a lower contribution of road vehicle emissions to atmospheric oxalate levels. The 

polar plot distribution of oxalate differs from those of PM2.5, OC, EC and NO3
-, which were 

intensely related with vehicle exhaust emissions. In this case, the association between high 

concentrations and low wind speed points to the occurrence of local sources, including 

biomass burning for heating purposes or secondary aerosol processes. 

Formate and acetate concentrations in aerosols have been scarcely reported in the literature. 

This is due to the fact that formic and acetic acids have a high vapor pressure at common 

ambient air temperatures and consequently both species strongly accumulate in the gas-

phase (Bardouki et al., 2003; Souza et al., 1999; Talbot et al., 1988). In the present study, the 

time variation of formate concentration exhibited low values in spring and high values in 

summer and late autumn/winter, which points to a significant contribution of biomass 

burning sources of formic acid. This is supported by the good correlation between formate 

and the biomass burning tracer nssK+ (r=0.76 in summer and r=0.69 in winter). 

The seasonal variation of acetate was not completely coincident with that of formate (Fig. 

3.3). However, acetate was found to be well correlated with formate in summer (r=0.79), 

suggesting that these two aerosol components may share common sources. Biomass burning 

is supposed to contribute to the atmospheric levels of acetate, but the correlation analysis 

between acetate and nssK+ concentrations suggests that this contribution is only important 

during the warm season (r=0.78 in summer and r=0.44 in winter). 

The relative abundance of formic and acetic acids in the atmosphere is known to be 

dependent on the emitting source. Although not consistently observed, it has been 

documented that emissions from fossil fuel combustion, biomass burning and vegetation 

have a higher proportion of acetic acid while atmospheric processes are associated to a 

higher proportion of formic acid (e.g. Talbot et al., 1988; Servant et al., 1991; Souza et al., 

1999). Therefore, the formate to acetate ratio (F/A) in aerosols has been used to investigate 

the contribution of primary sources (F/A values lower than 1) and secondary sources (F/A 

values higher than 1) to the atmospheric levels of carboxylate species (Wang et al., 2007; Tsai 
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et al., 2013). F/A values of 3 during winter and 9 during summer were found during this study, 

indicating a prevalence of atmospheric reactions over direct emissions. However, these 

results contrast with the aforementioned high correlation between both monocarboxylate 

species and nssK+, and therefore call into question the adequacy of the formate to acetate 

ratio to distinguish primary and secondary sources of atmospheric carboxylic acids. 

3.3.5 Mass balance for water soluble inorganic species 

A compound mass balance was computed using the method described by Mirante et al. 

(2014) in order to identify the dominant water soluble inorganic species in the Oporto 

aerosol. To perform this balance the following rules were applied: 

1) Na+ was considered to originate only from sea salt and was firstly balanced with sulphate 

to form sodium and magnesium sea salt sulfates, with ratios dependent from sea salt 

composition; 

2) excess (free) sodium r2 and magnesium are associated with chloride in proportions 

equivalent to sea water, until any of the ions (generally chloride) is totally spent; 

3) NH4
+ is preferentially associated with free (non sea salt) SO4

2 −, as (NH4)2SO4 (Seinfeld and 

Pandis, 1998); in the case of an excess of NH4
+ with respect to SO4

2 −, the free NH4
+ is 

balanced firstly with NO3
− and secondly with Cl−, to form ammonium nitrate and chloride; 

4) any free NO3
−, after balancing with NH4

+, is associated sequentially with sea salt cations 

(free Na+ and Mg2 +, after step (2)), in proportions equivalent to sea water, and with soil 

cations (Ca2 +, K+, and Mg2 +); 

5) any free SO4
2 − is also sequentially associated with free sea salt and soil cations (Na+, 

Mg2 +, Ca2 +, and K+); if any SO4
2 − remains free after this step it is considered as non-

reacted sulphuric acid; 

6) any free Cl−, after steps (2) and (3), is sequentially associated with Ca2 + and K+, being 

supposed to result from soil or from reaction of gaseous HCl with soil particles; 

7) after previous balances any free Ca2 +, Mg2 + and K+ are considered as non-reacted soil 

particles. 

Results from this balance are shown in Table 3.4. NaCl was the dominant water soluble 

inorganic species in winter and was clearly more abundant in this season than in summer. The 

observed difference is related with the above mentioned intensification of sea salt transport 

from the ocean during the cold season and with the summer interaction between NaCl and 

HNO3 to form HCl. The relevance of this interaction is evident from the abundance of NaNO3, 
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which is the second largest contributor to the mass of water soluble inorganic species in 

summer. 

The contribution of (NH4)2SO4 to the mass of inorganic compounds was 51% in summer and 

decreased to 21% in winter. These results are in line with those of the correlation analysis 

given in Table 3.4. Indeed, the association between NH4
+ and nssSO4

2- was found to be higher 

in summer (r=0.92) than in winter (r=0.81), indicating an increase in the formation of 

secondary aerosols during the sunny season, promoted by a higher input of anthropogenic 

precursors from continental areas and an increase in photochemical activity. During winter 

the abundance of aerosol precursors is lower and sulfuric and nitric acids compete for 

ammonia to form ammonium salts. 

Table 3. 4 - Average concentrations of water soluble inorganic compounds (in units of μg/m3) during 

winter and summer in Oporto. 

Compound Winter Summer 

(Na2)ssSO4 0.21 0.12 

(Mg)ssSO4 0.10 0.033 

(Na)ssCl 1.4 0.31 

(Mg)ssCl2 0.14 0.053 

(NH4)2SO4 1.1 3.24 

NH4NO3 1.0 0.039 

NH4Cl 0.022 0.000 

NaNO3 0.32 0.72 

Mg(NO3)2 0.046 0.15 

Ca(NO3)2 0.26 0.15 

KNO3 0.35 0.028 

CaSO4 0.010 0.58 

K2SO4 0.044 0.25 

Na2SO4 0.000 0.11 

MgSO4 0.000 0.029 

H2SO4 0.011 0.22 

CaCl2 0.019 0.000 

KCl 0.10 0.001 

 

The mass balance also revealed that NH4NO3 was a major aerosol constituent in winter, 

accounting for 19% of the mass of inorganic compounds and, in contrast, that summer 
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aerosol was practically devoid of NH4NO3. HNO3 produced from the atmospheric oxidation of 

NOx is known to be stabilized by reaction with NH3. Ammonium nitrate (NH4NO3) formed from 

this reaction accumulates in the fine aerosol mode and is also known to be thermally stable 

under the low ambient temperature and high relative humidity conditions that are common 

in the winter months. The seasonal change of weather conditions promotes the summer 

volatilization of NH4NO3 into gaseous ammonia and nitric acid. The occurrence of these 

processes is sustained by the results of the correlation analysis. Indeed, NO3
- and NH4

+ 

concentrations were highly correlated in winter (r=0.91) and not correlated in summer 

(r=0.22). 

Also evident in Table 3.4 is the higher abundance of CaSO4, K2SO4, Na2SO4and H2SO4 in 

summer than in winter. The observed difference shows that ammonia and sea salt 

concentrations are insufficient to completely neutralize H2SO4 produced in summer. 

Suspended soil particles containing Ca2+ and K+ carbonates are more abundant under the 

typical dry summer conditions in Oporto and play an important role as H2SO4 neutralizers. 

However, the atmospheric concentration of alkaline species is apparently scarce to ensure 

the full consumption of H2SO4.   

3.4. Conclusions 

PM2.5 aerosol samples were collected at a kerbside site of Oporto, Portugal, during a period of 

approximately one year, and then analyzed for carbonaceous components and major water 

soluble ions. The general conclusion of this work is that although the sampling site was 

located near a major arterial road, the aerosol composition reflects the influence of a variety 

of sources besides vehicle emissions, including biomass burning, atmospheric processes, 

oceanic emissions, dust resuspension and industrial activities. The role of biomass burning as 

a source of kerbside aerosol was not evident in previous studies performed in Oporto 

(Oliveira et al., 2010; Slezakova et al., 2007). However, the present work demonstrates that 

this source should be taken into account for the future definition of emission abatement 

measures.  

More specific conclusions include the following: 

- PM2.5 and carbon fractions concentrations were in good agreement with values 

reported in the literature for the kerbside of heavily trafficked roads; 

- PM2.5, OC and WSOC exhibited pronounced seasonal variations with peak levels in 

winter and summer most likely related with biomass burning for heating purposes and 

wildfires, respectively; 
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- on average, the carbonaceous matter accounted for 52% of the PM2.5 mass 

concentration and the concentration of carbonaceous matter plus the total 

concentration of inorganic matter accounted for 74% of the PM2.5 mass concentration; 

- the average OC/EC and WSOC/OC ratios and the results of the correlation analysis 

indicated that PM2.5 composition was strongly influenced by vehicle exhaust and 

biomass burning activities, respectively; 

- the origin and the seasonal variation Na+ and Cl-, with peak concentrations in winter, 

was clearly associated with the occurrence of airflow transport from the North 

Atlantic; 

- SO4
2- was mainly derived from anthropogenic sources and peak values were found in 

summer suggesting an increase in the formation of secondary aerosol; the non-sea-

salt fraction of SO4
2- was also found to be associated with NH4

+, particularly in summer, 

further sustaining the possibility of secondary aerosol production; 

- the formation and lift-up of dust particles under dry weather conditions was likely to 

be an important source of Ca2+ and Mg2+; a marine source was also identified for Mg2+; 

- methanesulfonate presented a well-defined seasonal variation, consistent with the 

seasonal cycle of primary productivity in the North Atlantic waters; 

- oxalate was the most abundant water soluble carboxylate identified in fine aerosol 

particles; the origin of oxalate was probably associated with biomass burning as well 

as secondary process in the atmosphere; 

- biomass burning was identified as an important source of formate and, to a lesser 

extent, of acetate; 

- among the aerosol water soluble inorganic constituents, (NH4)2SO4 was dominant in 

summer and NaCl was prevalent in winter.  
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Source apportionment of particulate matter in Oporto 
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Abstract 

This chapter reports the results of the source apportionment of PM10 and PM2.5 conducted at 

an urban traffic site (Oporto, Portugal). After collecting 125 PM10 and PM2.5 24h samples from 

January 2013 to February 2014 simultaneously, these were analysed for the contents of OC, 

EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor 

model was applied to these dataset. Road traffic (as sum of vehicle exhaust, vehicle non-

exhaust and traffic-related secondary nitrate) is unequivocally the most important source of 

PM10 and PM2.5. The total annual mean contribution from road traffic to PM10 is high (22%), 

corresponding to an absolute value of 12.7 µg/m3.For PM2.5 the contribution of traffic 

emissions increases to 31% (10.3 µg/m3 as annual mean). Local dust (19%) and biomass 

burning (14%) are the second and third most important sources of PM10. In PM2.5 the 

contribution of biomass burning increases to 18% and that of local dust decreases to 15%. 

Other significant anthropogenic sources are: secondary sulphate (10% in PM10 and 13% in 

PM2.5); industries, mainly metallurgy contributing 4% of PM10 (5% in PM2.5); and secondary 

nitrate, emitted from multiple sources such as industries. Natural contributions consist of sea 

salt (16% of PM10 and 5% in PM2.5). During high pollution days, road traffic is the largest 

source of PM10 and PM2.5: 36% to PM10 and 35% to PM2.5. Biomass burning is the second most 

important source during high pollution episodes (25% of PM10 and 33% of PM2.5). During 

those days, local dust is also quite important (27-22%). 

4.1 Introduction 

Atmospheric Particulate Matter (PM) concentrations can vary widely due to different climatic 

conditions and local features such as anthropogenic source types, emission rates, long range 
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transport and dispersion patterns. (Pey et al., 2013; Hoyle et al., 2011; Manders et al., 2010; 

Hodzic et al., 2007). 

Urban PM10 concentrations show significant variability across Europe as reported by routine 

monitoring networks (EEA, 2013). For PM2.5 the spatial variability across Southern Europe is 

less known because in most air quality zones it is not as widely measured as PM10. As a 

consequence, there is limited information on the geographical variability of the coarse 

fraction (PM10-2.5), which is often linked to local sources and whose evidence of health 

concern is increasing (Brunekreef and Forsberg, 2005). 

However, bulk PM concentrations only, without the necessary chemical characterization of 

collected samples and source apportionment analysis, does not allow for an in depth 

investigation of sources limiting the scope for air quality management purposes. In face of 

this challenge, this study, created the first comprehensive dataset of Oporto city for PM10 and 

PM2.5 levels and composition aiming to characterize the PM sources and contributions in one 

of the largest urban area of the Iberia Peninsula. This work was developed within the 

framework of AIRUSE LIFE Project, the main objective of which is to test and develop specific 

measures to improve air quality in southern Europe, targeled to meet air quality standards 

and to approach as closely as possible the WHO guidelines. 

4.2 Methods 

4.2.1 PM sampling and measurements 

Aerosol samples were collected in a typical urban traffic site, located in Praça Francisco Sá 

Carneiro (41˚09´46.10´´ N; 8˚35´26.95´´ W), in a station of the National Air Quality Network, 

QualAr. It is located in the eastern side of Porto city, next to the Fernão de Magalhães Avenue 

and at 600 meters from the Inner Circular Motorway (Figure 4.1).  

Two low volume samplers (TECORA) operating at 2.3 m3/h collected PM10 and PM2.5 onto 47 

mm diameter Teflon filters. A parallel PM2.5 and PM2.5-10 sampling was carried out by a high-

volume sampler operating at 66.8 m3/h with an Andersen PM10 sampling head and Sierra 

impaction plates, enabling the sequential collection of PM2.5-10 and PM2.5 samples onto quartz 

micro-fiber filters (Whatman was used from the beginning until 7 July 2013. After this date, 

filters from Pall were used).  
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Figure  4. 1 - Location of the Oporto monitoring site 

 

Hourly samplings of PM2.5 and PM2.5-10 were carried out by means of the STREAKER sampler 

during 4 weeks from the end of January to the beginning of March 2013 and during 3 weeks 

in June-July 2013. The Streaker sampler (Figure 4.2), allows the collection of coarse and fine 

aerosol (i.e. PM2.5-10 and PM2.5, respectively) with 1-hour time resolution (D’Alessandro et al., 

2003). With this sampler, the aerosol coarse and fine fractions are collected, respectively, on 

a Kapton foil and a Nuclepore filter, which are paired on a cartridge that rotates at constant 

speed for a week so that a circular continuous deposit of particular matter (“streak”) is 

produced on both stages. 

 

 

Figure 4. 2 - The streaker sampler with collection foils (left) and their PIXE analysis (right). 
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4.2.3 Sample treatment and analysis 

Before sampling, quartz microfiber filters were previously combusted at 550 °C for 5 h to 

remove organic contaminants and conditioned for 48 h at 20 ˚C and 40% of relative humidity. 

Weights of blank filters were measured three times every 24 h by means of a microbalance (1 

µg sensitivity). After sampling, filters were brought back to the laboratory to be weighed two 

more times every 24 hours of conditioning at the same temperature and relative humidity as 

the first weighing and kept in aluminum foils.  

Once the weights of samples were determined, filters were destined for several analytical 

determinations. These procedures are briefly listed below, according to the different species 

analyzed: 

- Major elements and trace elements were determined: 

o In Teflon filters by different techniques: PIXE (Particle Induced X-Ray 

Emission), without any pretreatment (Lucarelli et al., 2014); after acid 

digestion (5 ml HF, 2.5 ml HNO3, 2.5 ml HClO4) of 1/2 of each filter, 

consecutively by ICP-MS (Inductively Coupled Plasma Mass Spectrometry) 

and ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy) 

(Querol et al., 2001) to assure comparability between the two techniques; by 

ICP-AES after digestion with HNO3-H2O2 in a microwave oven according to the 

EU method EN14902:2005 (Traversi et al., 2014); 

o In quartz filters by ICP-MS  and ICP-AES  after acid digestion (5 ml HF, 2.5 ml 

HNO3, 2.5 ml HClO4) of 1/4 of each filter (Querol et al., 2001); 

- Water soluble ions by IC (Ion Chromatography), after extraction in 20 ml of MilliQ 

water (with ultrasonic bath for 30 min) of ¼ of filter; 

- On quartz filters organic carbon (OC) and elemental carbon (EC) by thermal/optical 

analysis in a thermo-optical transmission system described in detail elsewhere (Pio et 

al., 2011, 1998). 

- On the PM2.5 quartz filters levoglucosan, by means of Ion Chromatography after 

extraction in 10 ml of MilliQ water (with ultrasonic bath for 30 min) on 1.5 cm² punch 

from quartz filter. 

As concerns the samples with hourly resolution, collected with the streaker sampler, they 

were analyzed by PIXE at the LABEC laboratory of Florence (Italy) (Figure 4.2), using a beam 

spot (2 mm2) corresponding to one hour of aerosol sampling on the streaker. These 

measurements allow for the determination of the elemental concentrations (atomic number 

Z >10) with hourly time resolution. 
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Some elements were detected by different techniques; this guaranteed a quality assurance 

check of the obtained data. 

4.2.4. Source apportionment  

Source apportionment studies of atmospheric particulate matter are often performed by 

means of receptor models that are based on the mass conservation principle: 





p

k

jkikij fgx
1

     i=1,2,…,m   j=1, 2…. n          (4.1) 

where xij is the concentration of the species j in the the ith sample, gik is the contribution of the 

source kin the ith sample and fjk is the concentration of the species j in source k. Equation (4.1) 

can be also expressed in matrix form as X=GFT. If fjk are known for all the sources then the 

Chemical Mass Balance (CMB) can be applied (Watson et al., 1984), as for this model the 

experimental profiles of all major sources are needed. When both gik and fjk are unknown, 

factor analysis (FA) techniques such as Principal Components Analysis (PCA) (Thurston and 

Spengler, 1967; Henry and Hidy, 1979) and Positive Matrix Factorization (PMF) (Paatero and 

Tapper, 1994) are used for solving equation (4.1). PMF can be solved with the Multilinear 

Engine (ME-2) developed by Paatero (1999) and implemented in the version v5 of the US EPA 

PMF (http://www.epa.gov/heasd/research/pmf.html). 

In this study, the US EPA PMF v5 was applied. Since the method is a weighted least-squares 

method, individual estimates of the uncertainty in each data value are needed. The 

uncertainty estimates were based on the approaches by Polissar et al., (2008) and Amato et 

al., (2009). Species which retain a significant signal were separated from the ones dominated 

by noise, following the signal-to-noise (S/N) criterion defined by Paatero and Hopke (2003). 

Species with S/N<0.2 are generally defined as bad variables and removed from the analysis 

and species with 0.2< S/N < 2 are generally defined as weak variables and down weighted by 

a factor of 3. Nevertheless, since S/N is very sensitive to sporadic values much higher than the 

level of noise, the percentage of data above detection limit was used as complementary 

criterion.  

Once the source contributions were obtained, these were plotted in polar coordinates as a 

function of wind direction and speed by means of the PolarPlot function available in the 

OpenAir software (Carslaw, 2012; Carslaw and Ropkins, 2012). 

 
 

http://www.epa.gov/heasd/research/pmf.html
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4.3 Results 

4.3.1 Source apportionment 

Therefore this subchapter is only focused on the source apportionment results. The best PMF 

solution was found pooling PM10 and PM2.5 samples in a single input matrix for PMF, 

comprising 226 samples, 27 strong species (EC, OC, levoglucosan, Na, Mg, Al, Si, P, S, Cl, K, Ca, 

Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, NO3
-, Li, As, Rb, Sb and Ba), 6 weak species (V, NH4

+, Cd, Sn, La 

and Pb) and setting PM as total variable with 400% uncertainty (US EPA, 2014). The 

distribution of residuals, G-space plots, Fpeak values and Q values were explored for solutions 

with number of factors varying between 6 and 9. The most reliable solution was found with 8 

factors/sources, adding an extra 7% uncertainty and a minimum (base run) Q robust value of 

7040.4, found over 30 runs (seed number 30), which exceeded the theoretical Q value (5800) 

by 21%. Species concentrations were reconstructed within 79-104%. 

Constraints were added to the base run solution. Such constraints were of both physical and 

chemical nature and aimed at reducing the rotational ambiguity of the PMF problem, driving 

the solution towards a priori information based on mass conservation principle or partial 

knowledge of emission sources (Amato et al., 2009; Paatero and Hopke, 2008). More 

specifically, in the case of Oporto, the following constraint was introduced: Pulling the 

difference of source contributions between PM10 and PM2.5 to zero, only for those days and 

sources where PM2.5 contribution was higher than PM10 contribution in the base run solution. 

The % of dQ was set at 5% for each constraint and the converged results used totally 2.9% 

dQ. 

The 8 sources identified in Oporto (Figure 4.3) were: Biomass burning (BB), Secondary nitrate 

(SNI), Heavy oil and secondary sulphate (HOS), Mineral (MIN), Sea salt (SEA), Industrial (IND), 

Vehicle non-exhaust (NEX), and Vehicle exhaust (VEX). 
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Figure 4. 3 - PMF factors profiles obtained in Oporto (concentration in blue and explained variation in 

red). 

 

Biomass burning (BB) comprises levoglucosan, the traditional tracer of this source (84% of 

explained variation), as well as OC (29% of OC explained variation) and EC (11%) (Figure 4.3). 

A high OC/EC ratio (2.9) is also characteristic of biomass burning emissions (Gonçalves et al., 

2010). The presence of K (17% of explained variation), another BB tracer, helps corroborating 

the assignment to this source. Lower proportions of ammonium, nitrate and chloride were 

also associated with this source. Although, on average, the contribution of BB explains 17% of 
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the PM2.5 mass throughout the sampling campaign (Figure 4.4), the impact is especially high 

in the winter months, due to the generalized use of wood for residential heating (Figure 4.5). 

It should be noted that results from a survey questionnaire carried out in the early fall of 2010 

to assess residential wood combustion (RWC) practices in the 18 districts of mainland 

Portugal revealed that emissions of PM2.5 from RWC in the country represented 30% of the 

primary PM2.5 emissions reported in official inventories. In the Oporto district, which, in 

addition to the municipality with the same name, encompasses another 17 municipalities, it 

was estimated that about 250 kton of wood are annually burnt by householders for heating 

purposes, which contributes to the emission of 1.3 kton/year of PM2.5 (Gonçalves et al., 

2012). The contribution of BB to PM is also higher in September (Figure 4.5). Several wildfires 

were registered in the Oporto district in this particularly hot and dry month. According to the 

Institute for Nature Conservation and Forests (ICNF, 2014), this district recorded the highest 

number of occurrences and one of the largest burnt areas. 

The Secondary nitrate (SNI) factor explained about 16% of NH4
+ and most of the variance of 

NO3
- (58%) (Figure 4.3). NOx emissions from road traffic and industrial plants represent the 

primary source (Oliveira et al., 2010), although, in winter, biomass burning could also 

contribute to the detection of NH4
+ and NO3

- in the particulate phase (Calvo et al., 2015). On 

an annual basis, the SNI contributions to PM10 and PM2.5 were, on average, 3.2 and 1.4 µg/m3, 

respectively (ratio PM2.5/PM10 of 0.44), including a proportion of semi volatile organic 

aerosols, which easily condense on the high surface area of ammonium nitrate particles 

(Figures 4.4 and 4.5). Although in winter ammonium nitrate formation is favored by low 

temperature and higher humidity and in summer it is volatilized more quickly due to higher 

temperature, a marked seasonality is not observed (Figure 4.5). This is likely related to the 

fact that in summertime wildfires represent an additional source of nitrate precursors.  

The factor Heavy oil and secondary (HOS) was traced by V and Ni (Figure 4.4), but also had a 

high contribution from SO4
2- and NH4

+. When the sampling site, in particular, and the city 

center, in general, is under the influence of NW winds, one of the major sources of these 

constituents could be the refinery, which began operating in 1970. It is a crude oil industrial 

processing plant that has an annual installed capacity of 4.5 million tons and produces a wide 

range of products including fuels, lubricants, aromatics (BTX) for the petrochemical industry, 

industrial solvents and petroleum waxes. Emissions from ships in the harbor, located at short 

distance from the refinery, may represent another source. Source contributions for this factor 

were generally higher in summer than in winter (Figure 4.5) due to the higher photochemical 

activity during warmer months. Annual average contributions to PM10 and PM2.5 were 3.5 
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(10%) and 3.3 (13%) µg/m3, respectively. These constituents are concentrated in fine particles 

(ratio PM2.5/PM10 of 0.97) (Figures 4.4 and 4.5). 

The Mineral (MIN) factor was identified by the typical crustal species, such as Al, Si, Ca, Li, Ti, 

Rb, Ce, La (all with explained variation above 50%), Cr, Mn, Fe, Ba and K (above 20%) (Figure 

4.3). The MIN source represents a mixture of diverse contributions, mainly from fugitive and 

diffuse emissions (e.g. soil resuspension and constructions works). The overall composition of 

the Mineral factor reveals a significant enrichment in Ca, Fe and K when compared to the 

average crust composition (Rahn, 1976; Mason, 1966), indicating an anthropogenic 

component. Ca-rich particles may originate from concrete or limestone. Additionally 

potassium, beside from biomass burning, may result, together with Fe, from particle traffic 

emissions (Lawrence et al., 2013), as it may be deposited on the roads and resuspended 

afterwards. The overall MIN contribution was 6.3 µg/m3 (18%) to PM10 and 3.8 µg/m3 (15%) to 

PM2.5 levels. The mean PM2.5/PM10 ratio of 0.63 indicates a considerable fraction on fine 

particles.  

The Sea salt (SEA) factor, traced by Na+, Cl- and Mg2+ (Figure 4.4), is associated with sea spray 

aerosol. It contributes, on average, 5.5 (16%) and 1.1 (4%) µg/m3, respectively, to PM10 and 

PM2.5. The PM2.5/PM10 ratio (0.21) reveals the dominance of these sea spray components in 

coarse particles. Sea salt particles are more abundant in winter, when Atlantic winds pick up 

(Figures 4.4 and 4.5).  

The Industrial (IND) factor, traced by Zn (70% of explained variation), also encompasses 

substantial percentages of Cd, Pb and Mn (Figures 4.3 and 4.6). Mean contributions to PM10 

and PM2.5 concentrations were, for both size fractions, 1.2-1.3 µg/m3, corresponding to 4% 

and 5% respectively (Figure 4.4). No discernible seasonality is observed (Figure 4.5). Previous 

works carried out in Oporto, in which principal component analysis has been applied to the 

aerosol chemical composition databases, also pointed out industrial sources, probably related 

to refuse incineration or metallurgy, as a separate factor that had a strong contribution from 

Zn, Pb and Mn (Oliveira et al., 2010; Pio et al., 1998).  

The Vehicle non-exhaust (NEX) factor is traced by the aforementioned brake wear 

metals/metalloids (Cu, Ba, Cr, Fe, Sn and Sb), which individually explained 45-63% of the 

variation (Figure 4.3). NEX emissions accounted for 2.9 µg/m3 (8%) of PM10 and only 1.3 µg/m3 

(5%) of PM2.5 levels (Figure 4.4). A PM2.5/PM10 ratio of 0.45 denotes the predominance of 

brake and tire wear components in coarse particles. Differently to the MIN source, NEX 

contributions were rather constant over the year with slightly higher values in winter (Figure 
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4.5). A similar observation was reported by Amato et al. (2009) for an urban site in Barcelona, 

suggesting low seasonal variation of NEX emissions (Figures 4.4 and 4.5).  

Vehicle exhaust (VEX) comprises organic particles (38% of OC explained variation) from 

tailpipes, as well as EC (60%) (Figure 4.3). The ratio OC/EC of 0.64 reveals a predominance of 

primary organic aerosol (Alves et al., 2015) from fuel incomplete combustion in vehicle 

engines. The presence of K (24% of variation), S (13%) and Br (24%) is also noted. Potassium is 

found in all unleaded fuels (Spencer et al., 2006). It is also used as an antifreeze inhibitor and 

as an additive in some oil types. Sulphur is a naturally occurring component of crude oil and is 

found in both gasoline and diesel. However, recent pollution reduction strategies have forced 

to lessen the sulphur content of fuels to near-to-zero levels. Sulphur is also used in engine oil 

anti-wear additives (Fitch, 2004). Before leaded fuels were phased out, bromine was used to 

prepare 1,2-di-bromoethane, which was an anti-knock agent. However, this use has declined 

as lead has gradually been removed from fuel. Bromine compounds are now being tested in 

batteries for electric cars, designed to produce zero emissions. Average source contributions 

from Vehicle exhaust were around 8.0 µg/m3 for both size fractions, corresponding to 23% of 

PM10 and 32% of PM2.5 levels. The average PM2.5/PM10 ratio of 0.99 reveals an overwhelming 

contribution of exhaust particulate constituents to the lowest size fraction, which is related to 

the very fine mode of motor exhaust particles (Figures 4.4 and 4.5). Furthermore, besides 

representing the most significant source to particulate matter levels, the contribution of 

Vehicular Exhaust emissions did not show significant variations between seasons, 

emphasizing a constancy in traffic patterns, which overlaps the seasonal weather and 

atmospheric dynamics. Traffic has been also pointed out as the main contributor to 

atmospheric particulate levels in previous sampling campaigns (Oliveira et al., 2010). 

 

Figure 4. 4 - Pie chart of the identified source contributions (µg/m3 and %)  to PM10 and PM2.5 in Oporto 
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Figure 4. 5 - Time variability of source contributions to PM10 (top) and PM2.5 (bottom) in Oporto. 

 

The total contribution from traffic can be estimated as the sum (VEX)+(NEX)+0.6*(SNI), which 

results in 12.8 and 10.3 µg/m3 in PM10 (37%) and PM2.5 (41%), respectively. This indicates a 

clear preponderance of urban traffic emissions in Porto, at least in the vicinity of the sampling 

site. Oliveira et al. (2010) estimated that direct vehicle emissions and road dust resuspension 

contributed with 44–66% to the fine aerosol and with 12 to 55% to the coarse particle mass 

at two contrasting sites in the center of the city of Porto (roadside and urban background), 

showing typically highest loads at roadside. The assumption that 60% of SNI originates from 

road traffic is based on NOx emission estimates from the inventory of The North Regional 

Coordination and Development Commission for different sectors, sources, and activities 

(DAO-UA/CCDR-N, 2009).  

0

10

20

30

40

50

60

70

80

90

100

05-01-13 05-02-13 05-03-13 05-04-13 05-05-13 05-06-13 05-07-13 05-08-13 05-09-13 05-10-13 05-11-13 05-12-13

µ
g 

m
-3

Vehicle exhaust Sea salt Heavy oil and secondary

Vehicle non-exhaust Industrial Secondary nitrate

Biomass burning Mineral

0

10

20

30

40

50

60

70

80

90

05-01-13 05-02-13 05-03-13 05-04-13 05-05-13 05-06-13 05-07-13 05-08-13 05-09-13 05-10-13 05-11-13 05-12-13

µ
g 

m
-3

Vehicle exhaust Sea salt Heavy oil and secondary

Vehicle non-exhaust Industrial Secondary nitrate

Biomass burning Mineral



Source apportionment of particulate matter in Oporto 

 71 

 

Figure 4. 6 - Source fingerprints in Oporto. Average of PM10 and PM2.5 samples. 

 

Finally, average source contributions to PM10 and PM2.5 during the days in which PM10 

concentration is above 50 µg/m3 are reported in Table 4.1. Traffic (as sum of VEX, NEX and 

60% of secondary nitrates), Biomass burning (as sum of BB and 16% of secondary nitrates) 

and Mineral dust are the sources which give the most relevant contribution. 

 

Table 4. 1 - Source contribution (%) to PM10 and PM2.5 in Oporto during the days in which PM10 

concentration is above 50 µg/m3. 

  
PM10 PM2.5 

% % 

Sea salt 3 <1 

Saharan dust <1 <1 

Local dust 27 22 

Heavy oil & secondary 5 2 

Veh. non-exhaust 6 3 

Veh. Exhaust 25 30 

Veh. Nitrate 5 2 

Industrial 2 1 

Non-traffic nitrate 2 1 

Biomass burning 25 33 

Unaccounted - 5 
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The error associated with source contribution estimates were calculated based on the 

standard error of the coefficients of a multiple regression between the daily PM 

concentration (independent variable) and the eight source contributions for that day 

(dependent variables). As a result we obtained the symmetric error for each source 

contribution (Table 4.2). 

Table 4. 2 - Annual average source contributions and standard error (µg/m3) in Oporto. 

  PM10 PM2.5 

  Annual mean contribution ± standard dispersion 

Vehicle exhaust (VEX) 7.9±0.7 8.1±0.7 

Vehicle non-exhaust (NEX) 2.9±0.5 1.3±0.2 

Secondary nitrate (SNI) 3.2±0.4 1.4±0.2 

Heavy oil & secondarysulphate (HOS) 3.4±0.2 3.3±0.2 

Industrial (IND) 1.2±0.2 1.3±0.2 

Biomass burning (BB) 4.2±0.2 4.4±0.2 

Mineral (MIN) 6.3±0.3 3.8±0.2 

Sea salt (SEA) 5.5±0.4 1.1±0.4 

 

Figure 4.7 shows the variation of source contributions as a function of wind speed and 

direction with quickly gaining a graphical impression of potential source influences. The 

vector daily averages of wind data are used in order to match the 24-h resolution of source 

contributions. Eight plots are shown, each one including PM10 and PM2.5 source contributions 

in order to improve the statistical significance. 

The Secondary nitrate (SNI), Heavy oil and secondary (HOS), Vehicle exhaust (VEX) and non-

exhaust (NEX) plots show maxima with low wind speed, suggesting nearby sources with 

higher impact under stagnant atmospheric conditions. In addition to nearby sources, the 

Biomass Burning (BB) plot also reveals higher contribution when the winds blow from the 

southeast to southwest sectors, likely transporting plumes from large residential areas on the 

outskirts or from neighbor municipalities (e.g. Vila Nova de Gaia) with energy use patterns 

more similar to those of rural counties. The intense daily traffic from suburban dormitories, 

such as Gaia, to the Oporto city center, is the likely cause of the high concentrations from SNI, 

NEX and VEX associated with southerly and southeast winds. The Sea salt (SEA) source shows 

a clear transport from the Atlantic Ocean, under westerly winds. Low to moderate 

contributions from Industrial and Mineral (MIN) sources are associated with transport from 

the northeast to the southeast sectors (Figure 4.7). An unknown number of small 

metallurgical industries, smelters, woodworking industries (including furniture 
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manufacturing) and other familiar industries are spread by inland neighboring municipalities 

in this northeast to southeast sector (e.g. Gondomar, Valongo, Paredes). 

 

Figure 4. 7 - Plots of daily source contributions as a function of wind speed and direction particulate 

matter in Oporto: (BB) Biomass burning, (SNI) Secondary nitrate, (HOS) Heavy oil & secondary, (MIN) 

Mineral, (SEA) Sea salt, (IND) Industrial, (NEX) Vehicle non-exhaust and (VEX) Vehicle exhaust. 

4.3.2 Source apportionment during high pollution days 

In order to evaluate the origin of particles during high pollution days, similar sources were 

combined in fewer categories and pie charts were created for the annual mean and for days 

exceeding the limit of 50 µg/m3 (Figure 4.8). On an annual basis, road traffic is, as expected, 

the most important source of PM10 (38%) and PM2.5 (39%). Another 19% and 13% of PM10 

mass are related to mineral and sea salt particles, respectively, mostly contributing to the 

coarse aerosol fraction. Biomass burning, that is mainly associated with residential wood 

combustion, accounts for 14% of the PM10 levels, representing 18% of PM2.5. Heavy oil and 

secondary sulphate constituents, which encompass emissions from shipping and a petro-

refinery complex, contribute to 10% and 13% in PM10 and PM2.5, respectively (Figure 4.8).  

When the mean source contributions that have been estimated with the annual dataset are 

compared with the assignments for days exceeding the limit of 50 µg/m3, some features 
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stand out (Figure 4.8). The contribution from biomass burning to PM2.5 and PM10 doubles on 

exceedance days, whilst the input from traffic and sea salt decrease in relation to the overall 

average. It is worth noting that approximately half of the exceedances were recorded in late 

August and early September, when intense wildfires struck the region. The other half was 

registered in winter months, indicating the input from residential wood combustion to the 

atmospheric particulate loads. The contribution from mineral dust also increases during 

exceedance days. The highest contributions from this source to the particulate matter levels 

were observed during the intense wildfire period, suggesting soil dust entrainment into the 

smoke aerosols. Post-fire soil erosion may also have contributed to enhanced PM10 and PM2.5 

concentrations. 

 

Figure 4. 8 - Simplified pie chart of source contributions (µg/m3 and %) to PM10 and PM2.5 in Oporto. 

Annual mean (top). Days with PM10 >50 µg/m3 (bottom) 

 

4.3.3 Validation of PMF results from daily data with hourly data 

Using hourly data from the streaker-PIXE, six and five factors were identified in the fine and in 

the coarse fraction, respectively: traffic, aged sea salt, mineral dust and industry in both 

fractions; secondary sulphate (including a contribution from heavy oil) and biomass burning in 

the fine fraction; fresh sea salt in the coarse fraction. 
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Figure 4. 9 - Time variability of source contributions in Oporto for the winter streaker campaign 

(arbitrary units, a.u.). 

 
The traffic source is mainly traced by Fe, Cu and, to a lesser extent Mn, in both the fine and 

coarse fractions; nevertheless, the coarse fraction profile of this source is heavily 

characterized also by Cr, Ni, Rb, Zr and Ba. The interpretation of these profiles as a traffic 

source is also reinforced by the daily time trends, showing peaks in both the fractions during 



Chapter 4   

 

76 
 

the traffic rush hours (Figures 4.9 and 4.10); further, the source polar plots suggest a local 

emission for this source, that is near to the sampling site, which is actually characterized as a 

traffic site (Figure 4.11). The traffic source identified by the use of the streaker corresponds to 

the Vehicle non-exhaust source (NEX) resolved on the daily data; the difference between the 

fine and coarse source profiles shows that the road dust that is re-suspended by traffic and 

the contribution from direct brake and tire wear is higher in the coarse fraction. The Vehicle 

exhaust source (VEX) cannot be identified, as its main tracers, EC and OC, cannot be detected 

by PIXE. 

 

Figure 4. 10 - Daily time trends of the traffic source (a.u.), in the fine (F) and coarse (C) fractions in 

Oporto. 

 
As for the daily samples, the PMF on the streaker hourly data identified, in both fractions, the 

contribution of the Industry (IND) emissions: Zn and, to a lesser extent, Pb mainly 

characterize this source. The time trend for this source shows sharp peaks always occurring 

around 11pm, probably linked to a specific phase of an industrial process (Figure 4.12). The 

polar plots for this source point to a location of the emission of this source close to the 

sampling site. Within the city and nearby there are several industries, most of them of small 

scale and not properly inventoried, whose welding, metalworking, foundry and metallurgical 

activities may contribute to the emission of non-ferrous metals. 
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Figure 4. 11 - Polar plots of hourly source contributions (a.u.) in Oporto, for the fine (F) and coarse (C) 
fractions. 
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Figure 4. 12 - Daily time trends of the Industry source (a.u.), in the fine (F) and coarse (C) fractions in 

Oporto. 

 
The Biomass burning (BB) source is mainly characterized by K, and, to a lesser extent, by Cl, 

Pb and Ni. The time trend of this source (Figure 4.9) supports the interpretation of this factor 

as BB for domestic heating: the average daily time trend (Figure 4.13) clearly shows a sharp 

increase of the contribution of this source in the late afternoon, when most of the fireplaces 

are lit, and a slow decrease after some hours, as fires extinguish during the night. The polar 

plot shows a local origin for this source, with a prevailing influence from the south-western 

sector, where most of the Oporto city is located. In addition, winds from this direction 

transport the plumes from the biggest suburban dormitory of the metropolitan area (Vila 

Nova de Gaia). This municipality, with more than 300,000 inhabitants, spreads over an area of 

about 168 km2, encompassing many parishes with deeply rooted rural habits.  

As for the daily samples, the PMF on the streaker hourly data identified, in the fine fraction, a 

Heavy oil and secondary sulphate (HOS), characterized by S and, to a lesser extent, by Ni and 

V.  This factor has a daily trend with maxima during the night and minima during the day, 

mainly driven by the meteorological conditions, indicating a regional rather than a local 

source; this is also confirmed by the polar plot (Figure 4.11). These characteristics (time trend 

and polar plot) are typical of aerosol with secondary origin. The polar plot does not show any 

clear prevailing emission direction; nevertheless during the streaker sampling weeks 

somehow relevant sources appear to be located NE and SW with respect to the sampling site. 

The northeast direction appears to be also linked to the Industrial source (see above); in the 

SW direction there is the Douro River, with some ship traffic along and anchorages on its 

mouth: however, the cargo vessel dock is located at the international harbor of Leixões, NW 
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from the sampling site. Another major source to the Northwest is the refinery, a crude oil 

industrial processing plant. The observed direction, and the daily time trend, could be the 

result of the recirculation of air masses over the coast, due to the diurnal variation of the 

land/sea breezes combined with a channeling effect by the river. 

Concerning the secondary aerosol, it is worth noting that the secondary nitrates source, 

identified with the daily samples, cannot be found in the streaker hourly data as its main 

tracer, nitrate, cannot be detected by PIXE, which is almost the only analytical technique 

applicable on the streaker samples. 

The Mineral dust profile is characterized by crustal markers as Si, Al, Ca, Ti, K, Mn and Na; the 

enrichment factors (EF), calculated with respect to Al using the average continental crust 

composition reported by (Mason, 1966; Rahn 1976), are close to 1, thus reinforcing the 

interpretation of this source as mineral dust.  This source does not show any clear daily/time 

trend; nevertheless, the slight tendency to higher contributions during the day rather during 

the night (Figure 4.13) points to the possible emission of dust also during anthropogenic 

activities such as construction, demolition works and releases from buildings and other 

surfaces through weathering and other erosive processes. No Saharan dust intrusions were 

present during the weeks when the streaker sampler was used. The polar plots show a 

minimum contribution for this source from West, consistent with the geography of Oporto, as 

in that direction the city faces the Atlantic Ocean. 

In the streaker hourly data, the PMF identified two sea salt sources: the Aged sea salt (SEA) is 

present in both the fine and coarse fractions, whereas the Fresh sea salt (FSS) is identified 

only in the coarse fraction. Both these sources are characterized by typical sea salt elements 

like Na, Mg, S, Ca and Br, but differ for their Cl content, as the aged sea salt is depleted in Cl 

with respect to data reported in literature for seawater (Bowen, 1979). The polar plot for the 

FSS shows high contributions in correspondence with air masses coming straight from the 

Atlantic Ocean (west), while the SEA source appear linked to air masses originating from the 

Ocean but transiting over the north-western and northern sectors, that is reaching sampling 

site after passing over the land, sometimes over long distances (e.g. from North Portugal). 
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Figure 4. 13 - Daily time trends of the Biomass burning (BB), Heavy oil & secondary 

sulphate and Mineral dust sources (a.u.) at Oporto. 

4.4 Conclusions 

The USEPA PMF5 receptor model was applied to a set of aerosol data recorded during one 

year at a traffic site in Oporto. Road traffic is the most important contributor to PM10 and 

PM2.5. Local dust (19%) and biomass burning (14%) are the second and third most important 

sources of PM10. In PM2.5 the contribution of biomass burning increases to 18% and that of 

local dust decreases to 15%. Other significant anthropogenic sources are: secondary sulphate 

industries, mainly metallurgy, and secondary nitrate, emitted from multiple sources such as 

industries. During high pollution days, road traffic and biomass burning are the largest 

sources of PM10 and PM2.5. Biomass burning is the second most important source during high 

pollution episodes (days exceeding the limit of 50 µg/m3).As for the daily samples, the 

application of PMF to the streaker hourly data permitted the identification, in both aerosol 

fractions, of biomass burning practices in Oporto, with a sharp increase in the contribution of 
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this source in the late afternoon. Daily time trends also show a clear contribution of traffic 

sources with two daily peaks associated with rush hours.  Other anthropogenic contributors 

to aerosol mass were addressed to local or regional sources. 
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Wet deposition of particulate carbon to the Central North Atlantic Ocean 

 
 
This chapter was published as: 

Danilo Custódio, Mário Cerqueira, Paulo Fialho, Teresa Nunes, Casimiro Pio, Diamantino 
Henriques (2014) Wet deposition of particulate carbon to the Central North Atlantic Ocean. 
Science of the Total Environment, 496, 92–99 

Abstract 

Elemental carbon (EC) and water-insoluble organic carbon (WIOC) concentrations were 

measured in wet-only precipitation samples collected on Terceira Island (Azores, Portugal) 

between December 2009 and October 2010, to investigate temporal variations, source 

regions and wet deposition fluxes. The global volume-weighted average (vwa) concentrations 

were 134±19 gC L-1 for WIOC and 15.0±1.6 gC L-1 for EC, which fall within the range of 

values that have been found in the European background atmosphere. The WIOC 

concentration exhibited a temporal variation over the study period with a minimum in winter 

(vwa 88±16 gC L-1) and a maximum in summer (vwa 477±86 gC L-1). This trend was due to 

the higher dilution effect of winter rains and possibly to an increase of biogenic particulate 

carbon incorporation during the growing season. A different temporal variation was observed 

for the EC concentration with a minimum in summer (vwa 4.2±3.3 gC L-1) and a maximum in 

spring (vwa 17.5±2.2 gC L-1). The observed trend was mainly related to changes in 

atmospheric circulation patterns over the Azores. A backward trajectory analysis was applied 

to identify possible source regions of particulate carbon. The highest WIOC and EC 

concentrations were associated with air masses that persisted for more than four days over 

the Central North Atlantic Ocean and with air masses arriving from Europe, respectively. 

Lower concentrations were observed in samples collected under the influence of back-

trajectories from North America. Despite the lower abundance of particulate carbon, the wet 

deposition fluxes were higher for this group of samples, which reflects the higher amount of 

precipitation that is normally associated with air masses arriving in the Azores from the west 

and northwest sectors. 

5.1. Introduction 

Atmospheric aerosols contain a significant amount of carbonaceous matter, which is 

commonly classified into two major fractions: elemental carbon (EC) and organic carbon (OC). 

EC is a primary species that is derived from the incomplete combustion of fossil fuels and 
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biomass. OC originates from primary and secondary sources. Primary OC is produced from 

combustion processes, similarly to EC emissions, or mechanical processes that release organic 

materials, such as pollen, spores, plant debris, microorganisms, soil and sea spray, into the 

atmosphere. Secondary OC, in turn, is produced from gas-to-particle conversion of the 

oxidation products of volatile organic compounds (Seinfeld and Pankow, 2003). 

Wet deposition is known to play a dominant role in removing particulate carbon from the 

atmosphere (Ducret and Cachier, 1992; Cerqueira et al., 2010). However, current information 

on the spatial and temporal variabilities of particulate carbon in precipitation is still scarce, 

which is an important limitation to: assessing anthropogenic impacts on land and ocean 

carbon biogeochemistry (Jurado et al., 2008); and validating global models that simulate the 

transport and concentration of carbonaceous aerosols, thus affecting predictions of the 

anthropogenic forcing of aerosols on climate (Cooke et al., 2002; Croft et al., 2005). 

Previous measurements have shown that wet deposition of particulate carbon is more 

significant in the vicinity of emission sources (Ducret and Cachier, 1992; Cerqueira et al., 

2010), which are known to be concentrated in inland areas. However, recent model estimates 

by Jurado et al. (2008) also suggest that the global oceans are important receptors of EC and 

OC incorporated into precipitation (more than 50 Tg C y-1), therefore, new research on 

particulate carbon wet deposition fluxes should be extended to oceanic areas. 

This study reports the first long-term measurements of water-insoluble organic carbon 

(WIOC) and elemental carbon wet deposition fluxes at a remote marine site. The aims of this 

study were to: (1) characterize the seasonal variation of WIOC and EC concentrations in rain 

collected on Terceira Island (Azores, Portugal); (2) explore the processes that determine the 

seasonal pattern of WIOC and EC concentrations in rain; (3) conduct source apportionment 

analysis of WIOC and EC in rain; and (4) quantify the wet deposition fluxes of particulate 

carbon to the Central North Atlantic Ocean. 

5.2. Material and Methods 

5.2.1 Site description 

The Azores archipelago is a set of nine volcanic islands located in the Mid-Atlantic Ridge, 

approximately 1500 km from mainland Portugal and 1900 km from North America (Fig. 5.1). 

The climate of the islands is strongly influenced by the seasonal movement of the Azores 

anticyclone. In late spring and summer, the high-pressure cell is located southwest of the 

islands, which causes a general subsidence flow that inhibits upward vertical motions and 
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therefore the occurrence of precipitation. During autumn and winter, the anticyclone moves 

south of the Azores and low pressure systems track across the region and cause wet and 

stormy weather. 

Sampling was performed at the José Agostinho Observatory (JAO), which is located north of 

the town of Angra do Heroísmo and at the south coast of Terceira Island (38°39’32’’ N; 

27°13’23’’ W; 74 m above sea level). The observatory is part of the World Meteorological 

Organization (WMO) synoptic network (WMO ID 08511) and the Global Atmosphere Watch 

program (GAW ID: ANG) of the WMO. The monthly average temperature at JAO for the time 

period of 1981 - 2010 ranged from 13.8 ˚C (February) to 22.2 ˚C (August). During the same 

period, the average monthly precipitation amount ranged from 29 mm (July) to 155 mm 

(December), and the average annual precipitation was 1099 mm. Approximately 65% of the 

annual precipitation is concentrated during the months of October to March, which are 

considered the rainy months (IPMA, 2014). 

 

 

 

 

 

 

 

 

 

 

 

5.2.2 Sampling and analysis 

Daily rain water samples were collected between 20 December 2009 and 28 October 2010 

with an Eigenbrodt model UNS130/E automatic wet-only collector. The sampler consists of a 

glass funnel with an open area of 500 cm2, which is connected to a 5 L glass storage bottle, a 

movable lid and a precipitation sensor to control the start and stop of each collection period. 

Figure 5. 1 - Map of the Azores archipelago, North Atlantic, with the sampling site marked (*) 
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Prior to use, all the collector components that may come in contact with the samples were 

cleaned with water, followed by rinses with distilled and deionized water. 

For the analysis of EC, WIOC and WITC (water insoluble total carbon), a liquid aliquot was 

filtered through a quartz fiber filter (Whatman QMA), which was previously ignited at 550 ˚C 

for 5 hours. The sample filtration was achieved by using a stainless steel filter unit equipped 

with a mask to concentrate the particles onto a circular spot that was 10 mm in diameter. The 

filter was then dried at an ambient temperature inside a desiccator for approximately 24 

hours and stored frozen until the analysis was conducted at the University of Aveiro. Possible 

sources of error associated with the sampling and filtration processes and precautions to 

minimize the errors are addressed by Cerqueira et al. (2010). The EC and OC particulate 

fractions accumulated in the filters were measured by the thermal-optical method described 

in detail by Castro et al. (1999) and Pio et al. (2011). This method was previously used to 

quantify carbonaceous matter extracted from rain and snow samples (Cerqueira et al., 2010). 

5.2.3 Air mass trajectories 

Four-day back-trajectories arriving at the JAO location at altitudes of 500 m, 1000 m and 1500 

m above sea level (a.s.l.) were calculated for every rain event using the HYSPLIT model 

(Draxler and Rolph, 2012). Model runs were performed with meteorological data from the 

Global Data Assimilation System (GDAS) archives. The mid-point of the rain sampling period 

was selected as the arrival time at JAO.  

To investigate the source regions of particulate carbon in rain, each set of daily trajectories 

was subjectively classified according to the prevailing air mass origin and transport pathway 

into the following 5 groups: 

- North America: air masses originating over Southern Canada, the United States of America 

or Mexico 

- Arctic: air masses originating over Northern Canada, Arctic Ocean, Greenland or the area 

north of the British Islands  

- Europe: air masses originating over continental Europe 

- Azores: air masses originating over the North Atlantic in the area located to the north and 

west of the Azores that travel strictly over the ocean and arriving at the JAO location after a 

clockwise turn 

- North Atlantic: the remaining air masses originating over the North Atlantic that travel 

strictly over the ocean before arriving at JAO location. 
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5.3. Results and Discussion 

5.3.1 Precipitation data  

In total, 103 daily precipitation samples were collected throughout the study period, most of 

which (69) were collected during the winter and spring (Fig. 5.2). The average volume of the 

precipitation events ranged from 3 mm day-1 in summer to 12 mm day-1 in winter and spring. 

The total accumulated precipitation was 972 mm, which is somewhat lower than the average 

annual precipitation at JAO (1099 mm). The seasonal distribution of the accumulated 

precipitation was as follows: 508 mm in winter, 310 mm in spring, 53 mm in summer and 100 

mm in autumn. Fig. 5.3 presents a four-day back-trajectory analysis of air masses that arrived 

at 1000 m a.s.l. during all precipitation events sampled at JAO in different seasons. The 

seasonal variation of precipitation events and precipitation amount were linked to the 

dynamics of the Azores anticyclone. From winter to early spring, the anticyclone was usually 

located southwest of the islands. Under these conditions, precipitation in the Azores was the 

result of the convergence of cold and dry air from the North American continent and the 

Polar region with warm and moist air from the tropics. During summer, the anticyclone 

moved northwards, which blocked the transport of cold air and consequently the formation 

of convective precipitation. Occasional showers, which are common during this time of the 

year, were triggered by the orographic uplift of moist air over the islands. 

 

 

 

 

 

 

 

 

Figure 5.2. Time series of the daily precipitation at JAO during the study period. 

5.3.2 Carbon concentrations in precipitation 

WIOC, EC and WITC concentrations in precipitation collected at JAO are listed in Table 1. The 

global volume-weighted average concentrations found during this study were 134±19 gC L-1 

for WIOC and 15.0±1.6 gC L-1 for EC. These values were 1.2 and 4.8 times higher, 

Figure 5. 2 - Time series of the daily precipitation at JAO during the study period. 
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respectively, than those measured in 2003 and 2004 in the Azores during the CARBOSOL 

project (Cerqueira et al., 2010). The observed differences, which are only significant for the 

EC, are not surprising given that particulate carbon concentrations previously reported were 

based on a limited number of samples (a set of 7) which may have biased the results. Even so, 

the data from the present study fit within the range of values that have been found in the 

European background atmosphere (average values are from 2.8 to 31 gC L-1 for EC and from 

98 to 358 gC L-1 for WIOC; Ducret and Cachier, 1992; Cerqueira et al., 2010). 

 

 

 

Comparison data from other marine areas than the Azores are not yet available. However, 

dissolved organic carbon (DOC) was previously measured in rain samples from various island 

sites (Kieber et al., 2002, and references therein). The average WIOC concentration in the 

Azores corresponds to approximately 20-50% of the average DOC concentration at those 

sites. This result is comparable to the range of WIOC/DOC values reported in the modelling 

work of Jurado et al. (2008) for island and costal locations (12-68%) and indicates that WIOC 
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Figure 5. 3 - Four-day back-trajectories arriving at 1000 m a.s.l. during the precipitation events sampled 

at JAO. 
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wet deposition fluxes should not be ignored when studying the cycle of organic carbon 

through the marine atmosphere. 

Table 5. 1 - Seasonal volume-weighted average (vwa), volume-weighted standard deviation (vw), 

simple average and range (within brackets) of WIOC, EC and WITC concentrations in precipitation at 

JAO. 

Season N WIOC 

(gC L-1) 

 EC 

(gC L-1) 

 WITC 

(gC L-1) 

 

  vwa ± vw average vwa ± vw Average vwa ± vw average 

Winter 43 88±16 

(23-503) 

108 15.2±1.8 

(3.1-57) 

19 103±17 

(31-543) 

126 

Spring 26 89±13 

(26-636) 

215 17.5±2.2 

(5.4-236) 

48 107±14 

(31-871) 

263 

Summer 20 477±86 

(120-10426) 

1309 4.2±3.3 

(0.0-46) 

5.1 482±87 

(120-10473) 

1315 

Autumn* 14 324±151 

(66-1475) 

618 11.9±6.8 

(0.0-85) 

12 336±156 

(81-1481) 

631 

Overall 103 134±19 

(23-10426) 

438 15.0±1.6 

(0.0-236) 

23 149±20 

(31-10473) 

460 

*  the monitoring period was shorter than the season length 

 

The average contribution of EC to the WITC in rain was 13%. This share is approximately 2 to 

4 times lower than that of continental background aerosols (Pio et al., 2007) and suggests 

that wet deposition processes are more efficient at removing WIOC than removing EC from 

the atmosphere. Evidence of significant differences in the wet scavenging efficiency of these 

two species was described by Cerqueira et al. (2010). However, the relative contribution of 

both carbon fractions to WITC is the result of a complex balance between emission, 

transformation and removal processes. EC in the Central North Atlantic atmosphere is 

essentially the result of the long-range transport of air masses originating in continental 

areas, because EC emissions from the ocean or from human activities at the surface of the 

ocean are thought to be negligible. Although EC particles freshly emitted by combustion 

processes are mostly hydrophobic, atmospheric ageing processes, such as mixing with 

secondary species or chemical reactions, may convert these particles to hydrophilic aerosols 

(Tritscher et al., 2011; Zhang et al., 2008; Zuberi et al., 2005). Thus, EC emitted in continental 

areas and transported to the Central North Atlantic Ocean is expected to be significantly 

removed from the atmosphere by wet deposition processes (along with dry deposition 

processes) before being transported to the Azores. However, a large fraction of OC aerosols 
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from continental areas is water soluble (Pio et al., 2007), which also facilitates removal from 

the atmosphere by wet deposition during transport over the Atlantic Ocean. Given that most 

of the EC and WIOC particles emitted in continental areas were most likely lost during the air 

mass transit to the Azores and that the share of EC was lower than that of WIOC in rain 

sampled at JAO, the ocean appears to act as a source of organic carbon to the local 

atmosphere. This possibility is further discussed in the next section. 

5.3.3 Temporal variation of concentrations 

The results from this study exhibit a temporal variation in the concentrations of particulate 

carbon fractions (Table 5.1 and Fig. 5.4). The volume-weighted average WIOC concentrations 

varied between a minimum of 88±16 gC L-1 in winter and a maximum of 477±86 gC L-1 in 

summer. Interestingly, the sampling events with high precipitation volumes (typical of the 

winter and spring seasons) exhibited lower WIOC concentrations than those with lower 

precipitation volumes (typical of the summer season). This effect is evident from the 

regression analysis between the logarithm of the WIOC concentration and the logarithm of 

precipitation amount (Fig. 5.5(a)). The model obtained from the analysis, which had a 

standard error of 0.33 gC L-1 and a correlation coefficient (r) of -0.80, was 

       ionprecipitatWIOC 1010 log06.077.005.077.2log  . 

The model shows that dilution is an important factor that controls the WIOC content of 

precipitation. Additionally, these results indicate that organic particles are efficiently 

scavenged from the atmosphere at the onset of rain events and are then diluted by 

subsequent rainfall. Similar observations were previously reported for other water- soluble 

organic and inorganic species (e.g., André et al., 2007; Falkowska et al., 2008; Yan and Kim, 

2012). 

Another possible factor that may play an important role in determining seasonal WIOC 

differences is the input of biogenic organic carbon from the oceans. The organic carbon 

contribution to submicrometer aerosol over the North Atlantic Ocean is known to vary 

seasonally and is higher during the spring to autumn period when the biological activity in the 

oceanic surface waters is more intense (O’Dowd et al., 2004). Most of the organic carbon in 

the submicrometer marine aerosol is water-insoluble and has a significant contribution from 

phytoplankton exudates (Facchini et al., 2008). Breaking waves were suggested to exert an 

overwhelming influence on the organic carbon content of sea spray aerosol (Quinn et al., 

2014). However, this influence was not evident in the Azores samples, otherwise, the WIOC 

concentrations in rain should also exhibit high values during the winter season, when wind 
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conditions are more favorable for sea spray formation. Biogenic emissions from Terceira 

Island soils and plants were reported to peak during the growing season (Alves et al., 2007) 

and are also possible contributors to the WIOC content of precipitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A different trend was observed for EC, which had a minimum volume-weighted average 

concentration of 4.2±3.3 gC L-1 in summer and a maximum of 17.5±2.2 gC L-1 in spring 

(Table 5.1 and Fig. 5.4(b)). The reported differences do not reflect any seasonal pattern of 

sources, given that EC emissions above the North Atlantic waters (from islands or ship traffic) 

Figure 5. 4 - Time series of WIOC concentrations (a) and EC concentrations (b) in precipitation at JAO 

during the study period. 

Figure 5. 5 - Log–log plots of the relationship between the WIOC concentration and the daily 

precipitation amount (a) and between the EC concentration and the daily precipitation amount (b) 
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should have only a minor significance compared to emissions from continental areas 

surrounding it. On the other hand, EC concentrations are not significantly affected by the 

time variation of the daily precipitation amount. This is evident from the plot shown in Fig. 

5.5(b), in which the logarithm of the EC concentration does not display any correlation with 

the logarithm of daily precipitation amount. These results suggest that EC particles are not as 

efficiently scavenged from the atmosphere as WIOC particles, even though EC particles can 

acquire hydrophilic properties by chemical ageing (Tritscher et al., 2011; Zhang et al., 2008; 

Zuberi et al., 2005). As explained in more detail in the following section, the seasonal patterns 

in air mass transport are the main factor that controls the EC concentrations in precipitation 

in the Azores area. 

5.3.4 Effects of air mass origin on concentrations 

Fig. 5.6(a) presents the volume-weighted average WIOC concentrations for samples 

associated with the different classes of back-trajectories. The highest WIOC concentrations 

(596±118 gC L-1) were obtained in rain samples collected exclusively under the influence of 

air mass transport around the Azores, which mostly occurred during summer. These values 

are linked to the above mentioned decrease of precipitation volumes and increase of marine 

biogenic carbon incorporation during the growing season. Relatively lower values were found 

in samples associated with back-trajectories from North America (94±20 gC L-1) and were 

comparable to values observed in rain samples that were collected during background 

maritime air masses originating over the ocean, which mostly occurred during the non-

growing season (North Atlantic class; 91±12 gC L-1). These results suggest that most of the 

WIOC emitted to the North American atmosphere and exported to the North Atlantic with 

the prevailing winds was already lost when the air masses arrived at the Azores longitude. 

However, the remaining WIOC is an important contributor to global wet deposition fluxes as 

discussed in the following section. 

Fig. 5.6(b) shows a different variation pattern for the volume-weighted average EC 

concentrations. The concentration values associated with the Azores group of back-

trajectories were very low (1.5±0.6 gC L-1) and among the lowest measured in rain samples 

(Ducret and Cachier, 1992; Cerqueira et al., 2010). These results confirm that the Azores area 

is not a source of EC to the atmosphere and that air masses persisting over the Central North 

Atlantic Ocean become nearly devoid of EC. Such a small summer value should be regarded as 

a background concentration for the Azores atmosphere. In contrast, air masses arriving in the 

Azores from the European continent display the highest EC concentrations (41±13 gC L-1). 
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The transport of EC was particularly intense with air masses originating in populated and 

industrialized regions of northern and Central Europe. A careful analysis of these back-

trajectories indicates that air masses take less than 2 days to travel from coastal Europe to 

the Azores. Rain events associated with trajectories arriving from North America, which is 

known to be an important source region of EC to the global atmosphere, displayed a volume-

weighted average EC concentration that was approximately 3 times lower than that of the 

European class of rain samples. The location of Terceira Island, which is farther from the east 

coast of North America (≈2300 km) than from the west coast of Europe (≈1500 km), may 

explain the observed difference. A longer distance means that more time is required for the 

air masses to reach the Azores (usually more than 3 days), and the probability of EC particles 

being removed from the atmosphere is greater. However, the volume-weighted average EC 

concentration in the North American group of samples (16±2 gC L-1) was significantly higher 

than that of the Azores samples, thus, the transport time of 3 to 4 days was insufficient to 

ensure the complete removal of EC from the atmosphere. The results from this section clearly 

demonstrate that air mass origin is a dominant factor of the temporal variation of EC 

concentrations on Terceira Island. 

5.3.5 Wet deposition fluxes 

Wet deposition fluxes were calculated on a daily basis by multiplying individual event 

concentrations by the event precipitation amount. The time variation of WIOC and EC wet 

deposition fluxes is shown in Fig. 5.7, and the seasonal average values (calculated as the 

Figure 5. 6 - Volume-weighted average (gC L-1) concentrations and volume-weighted average standard 

deviations for WIOC (a) and EC (b) as a function of air mass back-trajectory class. The n values above the 

bars indicate the number of sampled events associated with each class. 
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simple average of the daily fluxes) are shown in Table 5.2. WIOC wet deposition was higher in 

winter and early spring, decreased in summer and increased again during autumn. Note that 

the autumn value is biased by an outlier; if the outlier is removed, the average decreases to 

458±835 gC m-2 day-1, which is comparable to the winter value. The observed trend 

contrasts with the temporal variation of WIOC concentrations (i.e. the maximum occurs in 

summer) and demonstrates that the magnitude of wet deposition fluxes in the Azores is 

mostly controlled by the amount of precipitation. The results of the back-trajectory analysis 

presented in Fig. 5.3 indicate that winter air masses arriving at JAO generally originated from 

the west and northwest sectors. For that reason, during the study period, North America was 

the main source region of WIOC deposited by rain to the Azores. The time variation of the EC 

daily fluxes corresponds well with that of WIOC: higher atmospheric inputs to the surface 

occur during the rainy months. However, the spring to summer decrease was more 

pronounced because EC particles were nearly absent from the rain during summer (the EC 

concentration levels were close to the limit of detection of the analytical method used in this 

study). According to the above-mentioned temporal distribution of backward trajectories, 

North America was also the largest EC exporter region to the Azores. Although the highest EC 

concentrations were found in samples collected under the influence of air mass transport 

from Europe, this continent was only a small contributor to the global EC wet deposition flux, 

due to the lower amount and frequency of precipitation events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 7 - Time series of WIOC daily wet deposition fluxes (a) and EC daily wet deposition fluxes (b) at 

JAO during the study period. 
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Table 5. 2 - Seasonal average and standard deviation of WIOC, EC and WITC wet deposition fluxes at 

JAO. 

Season WIOC 

(gC m-2 day-1) 

EC 

(gC m-2 day-1) 

WITC 

(gC m-2 day-1) 

Winter 496±989 85±130 576±1097 

Spring 301±626 59±116 360±733 

Summer 276±697 2±18 278±701 

Autumn* 877±2643 32±116 909±2734 

Overall 419±1188 47±108 465±1259 

* the monitoring period was shorter than the season length 

 

As far as the authors know, to date, there are no measurements of WIOC and EC wet 

deposition fluxes into oceanic waters to compare with the results of the present study. The 

modelling study of Jurado et al. (2008) is the only study that provides estimates for these 

fluxes based on satellite measurements of climatological data and aerosol concentrations and 

literature scavenging ratios. Average values of 0.53 mgC m-2 day-1 for organic carbon (soluble 

and insoluble) and 0.10 mgC m-2 day-1 for black carbon were estimated for a latitude band 

extending from 30˚ N to 60˚ N. The magnitude of these values is comparable to that of the 

measurements performed in the Azores, despite the uncertainty associated with model 

predictions of wet deposition fluxes. Predictions are uncertain due to the scarce information 

on the distribution of particulate carbon concentrations over the oceans and the use of the 

same value for the scavenging ratios of organic and black carbon aerosols. 

5.4. Conclusions 

This study reports the first long-term measurements of WIOC and EC concentrations in 

precipitation collected at a remote marine site and contributes to a better understanding of 

particulate carbon removal from the atmosphere. WIOC and EC concentrations in 

precipitation in the Azores were within the range of values previously reported for the 

European background atmosphere. A temporal variation was observed for both particulate 

carbon fractions: the WIOC concentrations were lower in winter than in summer, which was 

related to the dilution effect of winter rains and possibly to a higher input of biogenic organic 

carbon during the growing season; the EC concentrations were higher in winter and spring 

than in summer, which reflects the seasonality of the long-range transport of air pollutants to 

the Azores. The summer maximum WIOC concentrations were observed under the influence 

of air masses with a long residence time over the Central North Atlantic Ocean, which further 

supports the possibility of organic carbon incorporation from marine and island sources. The 
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same samples exhibited the lowest EC concentrations, which reflects the absence of major 

combustion sources over the North Atlantic waters. The maximum EC concentrations were 

associated with air masses arriving from populated and industrialized areas in Europe and 

taking less than 2 days to travel to the Azores. The wet deposition fluxes were higher during 

the rainy months compared with the dry months, and North America was found to be the 

main source region of particulate carbon deposited by rain into the Azores region. 
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Rain water chemistry at an urban kerbside site in Oporto 

 

 

Abstract 

Rain water samples were collected continuously during one year at a traffic site in Oporto, 

Portugal, and analysed for water soluble organic and inorganic ions, dissolved organic carbon 

(DOC), water soluble inorganic carbon (WIOC) and elemental carbon (EC). Cl- and Na+ were 

the prevailing ions in rain, accounting, on average, for 46.6% and 25.7% of the total mass of 

measured water soluble ions. DOC was the dominant carbon fraction, while EC and WIOC 

accounted for only about 5 and 30%, respectively, of the total mass of carbon in rain. The EC 

levels observed in Oporto were 3 to 8 times higher than those reported before for 

background coastal and marine sites in Portugal, pointing to a significant contamination of 

the Oporto atmosphere by anthropogenic sources of carbonaceous matter. Principal 

Component Analysis (PCA) was applied to precipitation data to differentiate sources affecting 

the chemical composition of rainwater in Oporto. Three main sources were identified: sea-

salt; secondary atmospheric processes; and vehicle exhaust. Rain chemistry data were 

combined with aerosol chemistry data, also measured at the same site, in order to calculate 

scavenging ratios for atmospheric constituents. The highest scavenging ratio values were 

found for Na+, Cl- and Mg2+ and the lowest for oxalate, WIOC and EC, which was mainly a 

consequence of differences in the affinity of chemical species for water. 

6.1. Introduction 

Wet deposition is an important scavenging process for the removal of air pollutants from the 

atmosphere and the subsequent accumulation in Earth’s surface. Various factors influence 

the chemical composition of precipitation, including local and regional emissions of air 

pollutants, long range transport of air pollutants, geographical location, meteorological 

conditions, and atmospheric processes. 

During the last decades a huge number of studies was performed to investigate the chemical 

composition of rain and to evaluate wet deposition fluxes of atmospheric pollutants. 

However, most of these studies were focused on water soluble inorganic chemical 

constituents, which usually require easily accessible analytical methods. By contrast, scarce 

studies were dedicated to investigate water soluble organic chemicals and even scarcer is the 

research about water insoluble chemical constituents. 
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Na+, Cl- and Mg2+ are abundant species in rain water, particularly in coastal areas, due to sea 

spray emissions (Moreda-Piñeiro et al., 2014; Vásquez et al., 2003; Pio et al., 1991). NO3
- and 

the non-sea salt part of SO4
2- in rain have been associated with the atmospheric conversion of 

precursor gases, such as NOx and SO2 emitted from anthropogenic sources (Seinfeld and 

Pandis, 2007). Ca2+ has been related to soil emissions while K+ has been associated to both 

soil and biomass burning emissions (Huang et al., 2010; Arsene et al., 2007). NH4
+ inputs to 

rain are mainly a consequence of emissions from livestock production and fertilizer 

application (Mouli et al., 2005). Water soluble and insoluble organic species in rain originate 

from a variety of sources, including fossil and non-fossil fuel combustion, biogenic processes 

and industrial processes (Avery et al., 2006; 2001; Bauer et al., 2003). Finally, elemental 

carbon in precipitation has been linked to natural and anthropogenic fuel combustion 

(Custódio et al., 2014). 

In these study, one year precipitation sampling was performed in Oporto, Portugal, with the 

purpose of: (1) obtaining a comprehensive characterization of rain water chemical 

composition, including the measurement of DOC, WIOC, EC, soluble organic and inorganic 

ions; (2) identifying sources of chemical constituents in precipitation; (3) studying the 

interaction between aerosol particles and rainwater; and (4) estimating wet deposition fluxes 

of selected chemical constituents.  

6.2. Material and methods 

6.2.1. Site description 

Oporto is located in northern Portugal, near the mouth of the Douro river. The city has a 

population of about 240000 (2011 census), and the urban area, which extends beyond its 

administrative limits, has a population of about 1.3 million in a land area of 389 km2, making 

it the country’s second largest city after the capital. Oporto is the center of an important 

industrial, commercial and touristic region, as well as a major communication and 

transportation hub in the northwestern Iberian Peninsula. 

Rain sampling was conducted from 5 January 2013 to 24 January 2014 in the rooftop of an air 

quality monitoring station (41˚ 09’ 46’’N; 8˚ 35’ 27’’ W; Figure 1) located on the kerbside of a 

major arterial route (Fernão de Magalhães Avenue) connecting the Inner Circular Highway to 

the city centre, Figure S. 2 (Supplementary Data). 
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6.2.2. Sampling and analysis 

An Eigenbrodt model UNS130/E automatic wet-only collector was used for daily collection of 

rain samples. The sampler consists of a glass funnel with an open area of 500 cm2, which is 

connected to a 3 L glass storage bottle, a movable lid and a precipitation sensor to control the 

start and stop of each collection period. Prior to use, all the collector components that may 

come in contact with the samples were cleaned with water, followed by rinses with distilled 

and deionized water. 

For the analysis of EC and WIOC the precipitate was filtered through a quartz fiber filter 

(Whatman QMA), which was previously ignited at 550 °C for 5 h. The sample filtration was 

achieved by using a stainless steel filter unit equipped with a mask to concentrate the 

particles onto a circular spot that was 10 mm in diameter. The filter was then dried at an 

ambient temperature inside a desiccator for approximately 24 h and stored frozen until the 

analysis. Possible sources of error associated with the sampling and filtration processes and 

precautions to minimize the errors are addressed by Cerqueira et al. (2010). The EC and WIOC 

particulate fractions accumulated in the filters were measured by the thermal–optical 

method described in detail by Pio et al. (2011) and Castro et al. (1999). This method was 

previously used to quantify carbonaceous matter extracted from rain and snow samples 

(Cerqueira et al., 2010). 

For the analysis of DOC, an aliquot of the filtered water sample was acidified with a 2M HCl 

solution (2%, vacid/vsample), purged with ultra-pure nitrogen, to remove dissolved volatile 

inorganic carbon and volatile organic species, and injected in a total organic carbon analyzer 

(Shimadzu TOC-5050A) 

Water-soluble ions were analyzed using three Dionex ion chromatography systems equipped 

with electrochemical suppression after sample filtration with a 0.45 µm pore PTFE syringe 

filter, to remove insoluble particles. The cations ammonium (NH4
+), sodium (Na+), potassium 

(K+), calcium (Ca2+) and magnesium (Mg2+) were determined using an IonPac CG12A guard 

column and a CS12A analytical column with 10 mM H2SO4 as the eluent.  The anions chloride 

(Cl-), nitrate (NO3
-), sulfate (SO4

2-) and oxalate (C2O4
2-) were measured with an IonPac AG4A 

guard column and an AS4A analytical column with a Na2CO3/NaHCO3 (1.8 and 1.7 mM, 

respectively) buffer solution as the eluent. The anions fluoride (F-), formate (HCOO-), acetate 

(CH3COO-), methanesulfonate (CH3SO3
-) and propionate (CH3CH2COO-) were determined with 

an IonPac AG11 and an IonPac AS11 column by gradient elution with Na2B4O7 solution from 

0.075 mM to 2.5 mM as eluent. 

The non-sea-salt ion concentrations were calculated by the following equation, 
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assuming that the chemical composition of sea-salt incorporated in rain is the same as 

that of seawater and that soluble Na+ in rain comes solely from seawater, 

 

nssX = X – (X/Na)sw × Na+ 

 

where nssX is the mass concentration of non-sea salt ion X in rain, (X/Na)sw is the mass ratio 

of component X to Na in seawater and Na+ is the mass concentration of sodium  in rain. 

6.2.3. Quality control 

The ion balance method was applied to check the quality of data from chemical analyses. The 

average ratio between the sum of cations and the sum of anions of individual samples was 

found to be 0.99±0.12. In addition a significant correlation (r=0.998; p<0.0001) was observed 

between the sum of cations and the sum of anions (Figure 6.1). Both results are indicative of 

the completeness of chemical analyses. 

 

Figure 6.1 – Linear regression between the sum of cations and the sum of anions. 
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6.3. Results and discussion 

6.3.1. Chemical composition 

A summary of meteorological data recorded at the monitoring site was given in chapter 3. 

Precipitation was mostly accumulated in winter and the total precipitation amount during the 

sampling period was 1319 mm. 124 precipitation samples were collected in Oporto: 58 in 

winter, 33 in spring, 5 in summer and 28 in autumn.  

Table 6.1 presents a statistical summary of annual and seasonal concentrations of DOC, 

WIOC, EC and water soluble ions in precipitation samples. Figure 6.2 shows the relative 

distribution of water soluble ionic species in rain. 

Volume-weighted average concentrations of carbon fractions found in this study were 507 

gC.L-1 for DOC, 224 gC.L-1 for WIOC and 38 gC.L-1 for EC. DOC was clearly the dominant 

carbon fraction. EC and WIOC accounted for only about 5 and 30%, respectively, of the total 

mass of carbon. The dominance of DOC over the other forms of carbon is typical of 

precipitation samples (Cerqueira et al., 2010). 

The EC levels observed in Oporto were 3 to 8 times higher than those reported before for 

background coastal and marine sites in Portugal (Custódio et al., 2014; Cerqueira et al., 2010), 

pointing to a significant contamination of the Oporto atmosphere by anthropogenic sources 

of carbonaceous matter. For WIOC and DOC the ratio of concentrations between Oporto and 

these background sites was not so high, probably reflecting the diversity of organic carbon 

sources, particularly a significant incorporation of biogenic carbon in background rain. 

WIOC and EC were found to be moderately correlated (r=0.84), suggesting common sources 

for these two carbon fractions. An average WIOC/EC ratio of 12 was obtained in the Oporto 

rain samples, which is much higher than the average ratio observed in aerosol samples (less 

than 1; see chapter 3). These results clearly point to a low scavenging efficiency of EC by rain. 

Cl- and Na+ were the dominant ions in rain samples from Oporto. Together, these two species 

accounted for more than 72 % of the average ionic mass in rain. The abundance of these 

species is indicative of a strong contribution of sea-salt to the mass composition of rain and 

has been observed in other costal sampling sites (e.g. Moreda-Piñeiro et al., 2014; Vásquez et 

al., 2003). SO4
2- was the third most abundant ion in rain, accounting for 12 % of the total ionic 

mass. About half of this sulfate mass originated from sea-salt. The other half is expected to be 

the result of anthropogenic sources and, to a minor extent, from biogenic sources, like the 

oxidation of oceanic dimethyl sulfide. 
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Table 6.1 Annual and seasonal concentrations of carbon fractions and water soluble ions in rain from Oporto (g/L). 

 Overall   Winter   Spring   summer   autumn   

 avg±stdev range vwa avg±stdev range Vwa avg±stdev Range vwa avg±stdev range vwa avg±stdev Range vwa 

WIOC 368±738 11-5852 224 372±784 36-5852 230 376±842 39-4472 176 183±114 11-289 171 384±558 13-2560 280 

EC 54±94 BDL-799 38 59±109 2.4-799 37 37±50 BDL-278 21 20±16 BDL-46 25 71±106 BDL-508 65 

DOC 790±761 152-4367 507 630±555 152-3029 412 785±730 164-3138 511 1205±741 446-2484 1213 1034±1015 180-4367 606 

cations                

Na+ 3662±5208 158-36303 3526 5236±65451 58-36303 5391 1397±1135 202-4785 1618 1409±544 584-1968 1105 3032±3617 158-16775 1654 

K+ 221±352 19-2806 202 303±472 31-2806 298 105±82 28-418 109 154±67 89-266 161 180±158 19-579 104 

Ca2+ 250±285 27-1638 209 285±317 34-1638 294 147±139 27-573 108 175±68 62-234 91 295±317 58-1596 158 

Mg2+ 410±550 22-3855 386 568±690 22-3855 609 174±129 23-497 176 172±62 65-215 98 357±397 41-1902 183 

NH4
+ 374±573 2.8-5055 245 376±726 2.8-5055 260 384±410 25-1623 224 168±38 129-230 141 391±348 68-1365 256 

anions                

F- 3.2±6.4 BDL-42 2.6 4.3±8.5 BDL-42 4.0 1.6±1.6 BDL-6.3 1.0 2.6±2.2 0.3-6.2 0.9 2.5±3.5 BDL-14 1.5 

Cl- 6603±9343 247-64206 6301 9460±11672 247-64206 10092 2385±2040 354-8600 2741 2439±965 1087-3761 1590 5579±6626 264-28828 2773 

NO3
- 763±1155 99-9958 503 758±1406 99-9958 585 739±887 186-3814 410 452±71 334-520 316 847±852 114-2866 463 

SO4
2- 1721±1926 232-11398 1474 2134±2434 306-11398 2094 1168±1144 347-6301 941 817±276 405-1132 523 1561±1120 232-5085 869 

oxalate 13±18 BDL-127 8.0 11±19 BDL-127 7.4 14±13 2.9-61 8.8 18±15 BDL-42 16 15±21 2.2-69 6.9 

formate 84±108 BDL-825 64 86±91 BDL-570 70 76±41 8.6-190 71 130±147 19-380 42 83±164 7.6-825 46 

acetate 100±182 13-1396 75 127±205 13-1396 100 54±33 16-130 46 72±49 30-155 32 93±217 16-1172 59 

MS- 5.9±6.3 BDL-36 4.8 5.0±6.4 BDL-36 4.5 8.3±5.5 1.9-28 6.7 9.6±11.9 1.5-30 2.6 4.8±4.8 BDL-20 3.5 

propion. 6.8±10.3 BDL-78 5.1 8.4±11.9 BDL-78 6.4 5.9±6.0 2.6-34 4.5 BDL BDL BDL 4.9±10.5 BDL-57 3.4 

nssSO4
2- 808±1178 BDL-7908 607 831±1437 BDL-7908 720 819±1091 165-5941 542 465±141 258-640 309 802±591 192-2370 479 
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Acetate and formate were the dominant water soluble organic ions, followed by oxalate, 

propionate and MS-. Acetate and formate accounted for 44.7 % and 40.7 % of the total mass 

of organic ions analyzed, respectively. Together, the average contribution of the five organic 

species to dissolved organic carbon (on a carbon mass basis) was less than 2 %. The 

prevalence of acetate and formate over the other organic ions has been observed in other 

studies about the chemistry of precipitation (Song and Gao, 2009; Avery et al., 2006) and 

contrasts with the relative distribution of organic ions in the aerosol phase, which is usually 

characterized by a higher prevalence of oxalate (see chapter 5). The volume weighted 

average concentrations of acetate, formate and oxalate found in this study compare well with 

values reported before for background atmospheres (Vet et al., 2014 and references therein) 

and were a factor of 2 to 5 times lower than values reported for polluted urban atmospheres 

(Vet et al., 2014 and references therein), suggesting that clean Atlantic air masses strongly 

influence the chemistry of rain in Oporto.  

 

Figure 6.2 Relative distribution of water soluble ions mass concentration in rainwater. 

6.3.2. Enrichment factor analysis 

In order to further investigate the sources of Cl-, SO4
2-, K+, Ca2+ and Mg2+ in rain, enrichment 

factors (EF) relative to Na+ were calculated using the following equation: 
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𝐸𝐹 =
(𝑋 𝑁𝑎+⁄ )𝑟𝑎𝑖𝑛

(𝑋 𝑁𝑎+⁄ )𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟
 

 

where X is the ions of interest. The results are presented in Table 6.2. 

 

Table 6.2 Mass ratios of selected ions vs. Na+ in rain compared with seawater ratios (Millero, 2013). 

 Cl-/Na+ SO4
2-/Na+ K+/Na+ Ca2+/Na+ Mg2+/Na+ 

Rain 1.74 0.82 0.10 0.12 0.13 

Seawater 1.80 0.25 0.04 0.04 0.12 

EF 0.97 3.28 2.50 3.00 1.08 

 

The EF values show that sea-salt was the only source of Cl- and Mg2+.  On the other hand, rain 

water was enriched in Ca2+, SO4
2- and K+ relative to Na+ as compared to seawater. The Ca2+ 

enrichment might be related with crustal sources and that of SO4
2- and K+ with anthropogenic 

activities (fossil and non-fossil fuel combustion processes, respectively). A seasonal variation 

was observed for the EF of Ca2+, with the highest values in summer, suggesting a higher input 

of dust from soil suspension during the dry season. 

 6.3.3. Principal component analysis 

Principal Component Analysis (PCA) was applied to total precipitation data to differentiate 

sources affecting the chemical composition of rainwater in Oporto. The selected principal 

components were those that showed eigenvalues above 0.8. From the PCA analysis six 

principal components were extracted (Table 6.3). 

The first principal component (PC1), which explains 46% of the total variance, is characterized 

by high contributions of sodium, chloride and magnesium ions, indicating an important sea-

salt influence on rain composition. The second principal component (PC2) accounted for 23% 

of the total variance and has high loadings of species usually associated to secondary 

atmospheric processes, such as ammonium, nitrate, nss-sulfate, methylsulfonate and oxalate. 

The third principal component (PC3) explained 14% of the total variance and is characterized 

by a high contribution of insoluble carbon fractions and, to a minor extent, dissolved organic 

carbon. 
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Table 6.3 Factor loadings and total variance obtained by principal component analysis. Values lower 

than 1 are not shown. 

 PC1 PC2 PC3 PC4 PC5 PC6 

WIOC  15.00 83.36 1.64   

EC   98.91 1.09   

DOC  50.97 24.15 2.70 4.76 17.42 

Na+ 96.28 1.50   2.21  

Ca2+ 49.50 36.96  5.47  3.13 

Mg2+ 95.57 3.22   1.21  

NH4
+ 7.78 84.48 1.72   6.02 

nssK+ 4.52 1.23   94.26  

F- 11.70 15.77  3.64 12.79 47.76 

Cl- 96.96 1.36   1.68  

NO3
- 6.59 85.23    3.28 

Oxalate  73.43  8.81   

Formate  16.91  78.64  2.69 

Acetate 8.15 50.45  9.44  31.96 

MS- 2.47 79.39  18.13   

propion. 9.23 45.59 3.79 17.39  24.01 

nssSO4
2- 5.44 74.54   20.02  

Variance (%) 46 23 14 5 4 4 

  

The high loading of EC suggests a dominant contribution from combustion processes, most 

likely with a strong contribution from vehicle exhaust. The fourth principal component (PC4) 

accounted for 5% of the total variance and is distinguished by a high load of formate. The 

origin of this chemical species has been linked to a variety of sources, including direct 

anthropogenic emissions, biogenic emissions and secondary atmospheric processes (Avery et 

al., 2006; 2001). In this case the origin of formate is unclear. Principal component 5 (PC5), 

explaining 4% of the variance, was identified as biomass burning combustion, based upon the 

high load of nssK+. Principal component 6 (PC6) is characterized by a high loading of fluoride 

and acetate, pointing to a significant contribution from an industrial source. 

6.3.4. Air mass effects 

The concentration of soluble and insoluble species in precipitation is a complex function of 

the diversity of pollutant sources and atmospheric processes. One of the most important 

processes affecting rain composition is known to be the origin of air masses at a sampling site 

(e.g. Custódio et al., 2014; Yan and Kim, 2012; Avery Jr. et al. 2006). The variation of major 
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rain chemical constituents as a function of local wind direction and speed are shown in 

Figures 6.3 and 6.4. These polar plot distributions were used to identify the source region of 

chemicals measured in rain samples collected in Oporto. Na+, Cl- and Mg+ present a similar 

spatial distribution with the highest concentrations associated to winds from the northwest 

sector, which is clearly an indication that these ions are related with sea-salt emissions from 

the Atlantic Ocean. 

DOC, EC, WIOC, NH4
+, NO3

-, nssSO4
2- and oxalate concentrations in rain increased under low 

wind speed conditions, which suggests a local origin for these chemical species. This local 

source of insoluble carbon is not surprising since that Principal Component Analysis pointed 

to a common traffic source and sampling was performed at a short distance from a busy road. 

DOC, NH4
+, NO3

-, nssSO4
2- and oxalate also exhibited a common distribution with maxima 

associated with low wind speed, but these species were probably related with secondary 

aerosol formation, as described in chapter 6.3.3. 

 

Figure 6. 3 - Polar plots of precipitation, carbon fractions and cations as a function of wind direction 

and speed in Oporto. Precipitation is in units of mm and concentrations are in units of ng/L. 
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The sources of formate, acetate, propionate and Fluoride were located inland. The polar plot 

distribution suggests a common origin, but this contradicts the results of the Principal 

Component Analysis, that separated the formate source from the sources of the other 

chemical constituents. 

The origin of Ca2+ and K+ was also located inland but their polar plot distribution suggest 

independent sources. 

MS- seems to have at least two sources: a marine, as indicated by westerly winds; and a 

continental, which was more relevant during stagnant conditions.  

 

 

Figure 6.4 - Polar plots of anions as a function of wind direction and speed in Oporto. Concentrations 

are in units of ng/L. 
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6.3.5. Scavenging ratios 

The concept of scavenging ratio has been used to quantify the tendency of a species to be 

removed from the atmosphere by precipitation. The volume based scavenging ratio (ωv) can 

be calculated by the equation (Kasper-Giebl et al., 1999)  

ωv =Cp × ρw/Ca 

where Cp is the concentration of the species in precipitation (µg kg-1 ), Ca is the concentration 

of the species in air (µg m-3) and ρw is the density of water (1000 kg m-3). The calculation of ωv 

is based on the assumption that the concentration of a species in precipitation is directly 

related to the concentration of the same species in air. 

In this study scavenging ratios were calculated using individual pairs of concentration in 

precipitation and in air. Concentrations in air were estimated from PM2.5 aerosol samples 

collected at the same site and over the same time period. A detailed description of aerosol 

sampling and analytical methods was given in chapter 3. The average scavenging ratios for 

major chemical species in Oporto are shown in Table 6.4. 

Table 6.4 Average scavenging ratios for rain chemical constituents in Oporto. 

 ω x 10-6 

EC 0.018 ± 0.023 

WIOC 0.396 ± 0.705 

WSOC 0.367 ± 0.372 

Na+ 6.89 ± 9.96 

K+ 1.86 ± 2.27 

Ca2+ 6.09 ± 6.50 

Mg2+ 8.11 ± 8.82 

NH4
+ 1.63 ± 1.53 

F- 2.73 ± 6.16 

Cl- 8.62 ± 11.55 

NO3
- 1.48 ± 1.73 

SO4
2- 1.91 ± 1.88 

Oxalate 0.251 ± 0.221 

Formate 3.33 ± 4.01 

Acetate 9.89 ± 10.30 

MS- 0.582 ± 0.790 

 

ωv values ranged between 1.8x104, for EC, and 9.9x107 for acetate.  The observed range of 

values, spanning several orders of magnitude, was expected since many factors can influence 

the magnitude and variability of ωv, such as particle-size distributions and solubilities, 
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precipitation rates and amounts, droplet accretion processes, air mass trajectories and gas-

phase scavenging (Galloway et al., 1993 and references therein). Because of many influencing 

factors, ωv can range over several orders of magnitude even for a single species at a single 

location. 

High scavenging ratios in Oporto were found for the ionic species Na+, Cl- and Mg2+. This can 

be explained by the dominant sea-salt origin of these species in aerosol particles from Oporto 

(chapter 3) and by the high solubility of sea-salt in water. These results might also be 

reflecting the size distribution of sea-salt, which is known to peak in the coarse mode, and the 

fact that scavenging ratios were calculated with PM2.5 data. High scavenging ratios were also 

found for formate and acetate. These values are related with the high vapor pressure of 

formic and acetic acids, which explains their low prevalence in the form of aerosol particles, 

and the high solubility of both acids in water. In contrast with the above results, oxalate, 

WIOC and particularly EC exhibited the lowest scavenging ratios of the group of chemical 

species investigated in Oporto. This is not surprising, given that oxalic acid is less soluble in 

water than monocarboxylic acids and that WIOC and EC have low affinity for water. 

The ωEC found in this study (urban traffic site) is about ten times lower than the value 

reported by Cerqueira et al. (2010) for a coastal background site, in Aveiro, also in Portugal, 

under a strong influence of Atlantic air masses. According to Galloway et al. (1993) a 

significant spatial and temporal variance in scavenging ratios can be observed due to several 

factors, including the physical and chemical state of aerosol. Regarding the Oporto site, it is 

worth to emphasize that carbonaceous aerosol mass has a significant contribution from local 

sources, like vehicle and biomass burning emissions (chapter 4), which means that more fresh 

and hydrophobic particles are expected to be found in the urban atmosphere, and therefore 

lower scavenging ratios should be found in Oporto than in Aveiro. In the case of ωWIOC, the 

Oporto value was about five times higher than reported before for Aveiro, showing that other 

factors are explaining a stronger incorporation of WIOC in rain in the urban site. 

6.3.6 - Wet deposition fluxes of carbon species 

The atmospheric deposition of carbonaceous matter has become a core issue in studies about 

the cycling of carbon through the atmosphere (e.g. Jurado et al., 2008). However, current 

information on the deposition fluxes of carbon to Earth’s surface is still scarce. Estimates of 

carbon deposition by wet deposition were performed in Oporto taking into account individual 

values of precipitation amount and DOC, WIOC and EC concentrations in rain (Table 6.5). 
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The annual flux deposition of total carbon in Oporto was 1045.2 mg C m-2 yr-1, corresponding 

to 691.4 mg C m-2 yr-1 as DOC, 302.3 mg C m-2 yr-1 as WIOC and 51.5 mg C m-2 yr-1 as EC. The 

seasonal variation of wet deposition fluxes shows that most of the carbon (about 42 %) is 

transported to the surface during winter, in contrast with the summer fluxes, which 

accounted for only 7% of the total carbon wet deposition. 

There are not many published results to compare with data from this study. EC and WIOC wet 

deposition fluxes in the urban site of Oporto were higher than most of the average values 

reported by Cerqueira et al. (2010) for European remote sites (EC fluxes in the range of 5 to 

38 mg C m-2 yr-1) and WIOC fluxes in the range of 61 to 378 mg C m-2 yr-1). In what concerns 

DOC, the Oporto fluxes were 2.8 times lower than the average values described by Yan and 

Kim (2012) for Seoul, Korea (1.9 g C m-2 yr-1). 

 

Table 6. 5. Wet deposition fluxes of carbon species in Oporto (mg C m-2). 

 

 total carbon DOC WIOC EC 

Winter  438.5 280.0 136.1 22.4 

Spring  251.4 182.9 61.3 7.2 

Summer  74.8 64.5 9.0 1.3 

Autumn  251.4 159.9 74.3 17.3 

Annual  1045.2 691.4 302.3 51.5 

 

6.4. Conclusions 

This study reports the chemical composition of rain at a kerbside location in Oporto, Portugal. 

124 rain samples were collected, most of them during the winter season. Information from 

the chemical analysis of these samples lead to the following conclusions:  

- Na+ and Cl- were the prevailing ions, accounting for more than 70% of the total mass 

of measured water soluble ions; 

- most of the carbon investigated in precipitation was in the dissolved form; 

- formate and acetate ions were the dominant organic species identified in rain, but 

carboxylic acids species accounted just for 32% of the total mass of dissolved organic 

carbon; 
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- EC was a minor constituent of precipitation, however average concentrations of these 

carbon fraction indicate a significant contamination of the Oporto atmosphere by 

combustion processes; 

- three main sources controlled the chemical composition of rain: sea-salt; secondary 

atmospheric processes; and vehicle exhaust; 

- scavenging ratios ranged over three orders of magnitude; the highest value was 

found for Cl- and the lowest for EC, reflecting significant differences in the 

hydrophobic properties of atmospheric chemical constituents. 
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CONCLUSIONS  

Atmospheric carbonaceous aerosols, from both natural and anthropogenic sources, have 

significant effects on air quality, visibility, atmospheric chemistry and Earth’s radiation 

budget. However, the cycling of these carbonaceous aerosols through the atmosphere and 

the corresponding environmental effects are very difficult to analyze and describe due to the 

variety of emitting sources, transformation processes, transport mechanisms and removal 

routes. This study focused on suspended carbon particles and was intended to contribute to 

the ongoing efforts of the scientific community to better elucidate the complex role of these 

particles during their transport through the atmospheric reservoir. The main conclusions from 

this study are summarized below. 

 

Regarding the indoor aerosol composition: 

- Exposure to PM10 in occupied residences was higher indoors than outdoors and 

maximum exposure was found within a smokers’ residence; the PM10 mass 

concentrations in the indoor air of residences in Portugal were higher than those 

reported before in central and northern Europe, which might be the result of a higher 

input of mineral dust from outdoor sources; 

- The average contribution of OC to PM10 in the indoor air of occupied residences 

ranged was 21%. A higher contribution (46%) was found in the unoccupied residence, 

showing that fine particles, with a high content in OC, infiltrate more easily indoors 

than coarse particles, with a high mineral content; 

- OC concentrations were higher indoors than outdoors in the occupied residences, 

showing the influence of indoor sources like smoking, cooking and cleaning; 

- EC concentrations accounted for an average of only 3.7% of the PM10 mass 

concentration in the indoor air of occupied residences; the main sources of EC in non-

smokers residences were located outdoors. 

 

About the aerosol composition in Oporto: 

- Road traffic was the most important contributor to PM10 and PM2.5 sampled in the 

Oporto kerbside; local dust (19%) and biomass burning (14%) were the second and 

third most important sources of PM10; in PM2.5 the contribution of biomass burning 

increased to 18% and that of local dust decreased to 15%; other significant 

anthropogenic sources were: secondary sulphate industries, mainly metallurgy, and 

secondary nitrate, emitted from multiple sources such as industries; 
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- PM2.5, OC and WSOC exhibited pronounced seasonal variations with peak levels in 

winter and summer, most likely related with biomass burning for heating purposes 

and wildfires, respectively; 

- oxalate was the most abundant water soluble carboxylate identified in fine aerosol 

particles; the origin of oxalate was probably associated with biomass burning as well 

as secondary process in the atmosphere; biomass burning was identified as an 

important source of formate and, to a lesser extent, of acetate; 

- among the aerosol water soluble inorganic constituents, (NH4)2SO4 was dominant in 

summer, reflecting an increase in secondary aerosol formation,  and NaCl was 

prevalent in winter, associated with the occurrence of airflow transport from the 

North Atlantic; 

 

In what concerns the chemical composition of rain: 

- A temporal variation was observed for both EC and WIOC concentrations in rain 

samples from the Azores. The EC time trend reflected the seasonal variation of long-

range air mass transport and the WIOC time trend was related with local or regional 

inputs of biogenic carbon and the seasonal variation of weather patterns over the 

North Atlantic.  

- The wet deposition fluxes of particulate carbon were higher during the rainy months 

compared with the dry months, and North America was found to be the main source 

region of particulate carbon deposited by rain into the Azores region; 

- Carbonaceous matter in rain from Oporto was dominated by dissolved organic 

carbon; EC was a minor chemical constituent of rain but average concentrations of 

these carbon fraction indicate a significant contamination of the Oporto atmosphere 

by combustion processes; 

- Scavenging ratios ranged over three orders of magnitude; the highest value was 

found for Cl- and Na+ and the lowest for EC, reflecting significant differences in the 

hydrophobic properties of atmospheric chemical constituents. 
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SUPPLEMENTARY DATA 

 

 

Supplementary Data S1 

Wildfire emissions in the surrounding area of Oporto during the summer of 2013, Chapter 3. 

 

 

Figure S. 1 - MODIS fire counts (https://firms.modaps.eosdis.nasa.gov/firemap/) in 

northwestern Iberia between 11/08/2013 and 21/09/2013. 
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Supplementary Data S2  

Chapter 6. 

 

 

Figure S. 2 – Sampling equipment on the rooftop of the air quality monitoring station (41˚ 09’ 

46’’N; 8˚ 35’ 27’’ W) located at the kerbside of Fernão de Magalhães Avenue. 

 


