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resumo 
 

 

O objetivo deste trabalho foi realizar uma avaliação de perdas de 
nutrientes após incêndio por escorrência superficial, à escala de micro-
parcela e à escala de encosta (embora de forma limitada) numa área 
recentemente queimada da região Mediterrânica, fornecendo estimativas 
das exportações de catiões, azoto e fósforo, num enquadramento 
paisagístico como este propenso ao fogo. Representa um importante 
complemento para o até agora modesto número de estudos sobre as 
perdas de nutrientes pós-fogo  por escorrência superficial, realizado na 
região Mediterrânica, para antecipar os impactos dos incêndios 
recorrentes na produtividade do solo. Este trabalho é parte do projeto 
FIRECNUTS (PTDC/AGR-CFL/104559/2008) - efeitos de um incêndio 
nas reservas de nutrientes, dinâmica e exportações – e lida com estas 
lacunas de pesquisa, estudando a exportação de nutrientes 
selecionados (catiões, azoto e fósforo) numa área florestal recentemente 
queimada, no centro-norte de Portugal (Sever do Vouga). Os objetivos 
específicos foram comparar as exportações de  catiões, assim como de 
azoto e fósforo nas formas totais e solúveis, principalmente à escala de 
micro-parcela: (i) para duas das espécies de árvores mais propensas ao 
fogo, i.e. eucalipto e pinheiro; (ii) para duas das geologias mais comuns 
na área, i.e. granito e xisto; (iii) para diferentes orientações do declive, 
i.e. face a norte e face a sul; (iv) com tempo-desde-incêndio durante os 
meses iniciais após incêndio e durante um período de monitorização 
mais extenso. As exportações de nutrientes foram particularmente 
acentuadas nos três meses após o fogo. No entanto, após este período 
inicial, foram observados também picos nas concentrações de 
nutrientes, em associação a eventos de precipitação intensa, com 
diferenças na variação de cada nutriente, e com o declínio das 
exportações de fósforo a seguir um padrão mais linear com o tempo 
desde o incêndio. Os resultados deste estudo enfatizaram a importância 
de uma camada protetora do solo (ou seja, com as agulhas das árvores 
queimadas de pinheiro) para minimizar a exportação de nutrientes pós-
fogo. A geologia também foi identificada como uma variável importante 
na avaliação de riscos de erosão pós-incêndio e na definição de 
medidas de conservação do solo. A orientação do declive não foi uma 
variável decisiva neste estudo. Estes resultados mostram também que 
as escalas de tempo mais amplas são úteis para obter mais 
conhecimento sobre o ciclo hidrológico dos nutrientes e os complexos 
processos que ocorrem nas áreas de floresta queimada. 
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abstract 

 
The aim of this work was to perform an evaluation of post-fire nutrient 
losses by overland flow at micro-plot scale, and at slope scale (although 
on a limited basis) in a recently burnt Mediterranean area, providing 
estimates of the range of base cations, nitrogen and phosphorus exports 
in a fire-prone landscape. It represents an important add-on to the up to 
now modest number of studies on post-fire nutrient losses by overland 
flow conducted in the Mediterranean region, for anticipating the impacts 
of recurrent fires on soil productivity. This work is part of the FIRECNUTS 
project (PTDC/AGR-CFL/104559/2008) - WildFIRE effects on topsoil 
Carbon and NUTrient Stocks, dynamics and exports – and addresses 
these research gaps by studying the export of selected nutrients (base 
cations, nitrogen and phosphorus) in a recently burnt forest area in north-
central Portugal (Sever do Vouga).The specific objectives were to 
compare base cations exports together with nitrogen and phosphorus 
exports in the total and soluble forms by overland flow mainly at the 
micro-plot scale: (i) for the two predominant and fire-prone forest types in 
north-central Portugal, i.e. eucalypt and pine plantations; (ii) for the two 
prevailing parent materials in the region, i.e. granite and schist; (iii) for 
two different slope aspects, i.e. a slope facing north and a slope facing 
south; (iv) with time-since-fire during the initial months of the window-of-
disturbance and for an extended monitoring period. In parallel, nitrogen 
and phosphorus stocks in the topsoil were also compared. Nutrient 
exports were particularly pronounced in the three months after fire. 
However, after this initial period, peaks in nutrients concentrations were 
also observed in association to intense rainfall events, with differences in 
the variation of each nutrient, with phosphorus exports decline following 
a more straightforward pattern with time since fire. The results of this 
study emphasized the importance of a protective soil layer (i.e. of 
scorched pine needle) for minimizing post-fire nutrient export. Parent 
material was also found to be an important variable when assessing 
post-fire erosion risks and defining soil conservation measures. Slope 
aspect was not a decisive variable in his study. These results also show 
that broader time scales are useful to gain insight into the hydrological 
and nutrient cycle complex processes in burnt forest areas. 
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Chapter 1 - Introduction 

1.1 Framework 

The role of wildfire as a selective force in the evolution of Mediterranean ecosystems 

and landscapes has long been overlooked (Naveh, 1990). Fire is now recognised worldwide 

as a natural phenomenon in Mediterranean regions but present-day fire regimes strongly 

reflect human activities such as the widespread planting of highly flammable pine and 

eucalypt forests (Lloret, 2004). 

Throughout the past decades, wildfires have burned and affected increasingly large 

areas of land in Mediterranean ecosystems (Pausas et al., 2008). That trend is expected to 

continue, especially with projections of future climate changes with temperature rising and 

associated risk of intensified drought or more intense precipitation events, among other 

factors (Blake et al., 2010; Caon et al., 2014). The Intergovernmental Panel on Climate Change 

(IPCC) report concluded that global climate change will increase the risk of extreme fire 

events (IPCC, 2007). This tendency emphasizes the general reservations about the limits to 

the fire resilience of these ecosystems that have been continually devastated by fire over the 

past decades (Pausas et al., 1999; Pausas et al., 2008; Pereira et al., 2006b; Shakesby, 2011). 

In Portugal, over the past decades, wildfires have devastated on average around 

100 000 ha of land each year (Pereira et al., 2006a), with dramatically higher figures for dry 

years like 2003 and 2005. Due to the nature of the country’s forestry activities as well as to a 

likely increase in fire-propitious meteorological conditions, fire frequency in Portugal is not 

expected to decrease in the foreseeable future (Pereira et al., 2006b). Such unprecedented 

frequencies and spatial extensions of wildfires have contributed to the increase of interest in 

studying wildfire effects.  

1.2 Brief summary of fire effects on soil and water resources 

Fire can considerably alter soils and their major ecological functions as the basis of many 

ecosystems resources. A global rise of fire occurrence, area burned or expansion of fire 

seasons has been acknowledged and many of the responses of soils to fire are as unique as 
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the complex interactions among driver factors such as weather conditions during and 

following fire, type and growth of vegetation, soil characteristics or land management (Blake 

et al., 2010). 

While wildfire is a natural disturbance, the more frequent occurrence of wildfires, often 

with high-intensity, can offset the ecological balance and have a significant negative impact 

on soil degradation, biological diversity and water cycle (Caon et al., 2014; Crouch et al., 

2006). Wildfires have been considered as a significant, if not the main, cause of hydrological 

and geomorphological change in fire-prone landscapes (Shakesby and Doerr, 2006).  

Vegetation and litter cover removal as well as soil physical and chemical alterations are 

usually designated as direct hydrological and geomorphological effects from wildfires. These 

changes are followed by indirect effects, such as reduced infiltration and increased sediment 

availability for transport. Finally, these effects will lead to an increase of overland flow 

generation and soil erosion (Figure 1.1; Shakesby and Doerr, 2006). This marked increase in 

overland flow and erosion not only cause on-site land degradation but can also cause 

increased sediment and nutrient inputs into adjacent streams or rivers, that can negatively 

affect the water quality in downstream aquatic systems, with potential contamination of 

drinking water supplies (Bowman and Boggs, 2006; Emelko et al., 2011; Shakesby, 2011; 

Smith et al., 2011). 

Base cations, nitrogen and phosphorus are important limiting nutrients in forest soils 

ecosystems that can be significantly impacted by fire events. The combustion of litter and the 

surface horizons of soils frequently produces nutrient-rich erodible ash, organic matter and 

mineral material, that can be an increase in soil fertility, facilitating crop production, or it can 

destroy the protective vegetation canopy and forest floor, leading to a reduced infiltration 

capacity and potential transport of nutrient-enriched sediments from burnt slopes, by wind 

and water erosion (Shakesby and Doerr, 2006; Shakesby, 2011).  

Neary et al. (2005), Shakesby and Doerr (2006), Ferreira et al. (2008), Shakesby (2011) 

and Caon et al. (2014) have recently gathered aspects of the principles and processes 

governing the complex relationships between fire and soil. Previous studies in the 

Mediterranean region (e.g. Cerdà and Lasanta, 2005; Cerdà and Robichaud, 2009; Ferreira et 

al., 2005a; Prats et al., 2012; Shakesby et al., 1996), have revealed strong and occasionally 

extreme responses in runoff generation and associated soil and nutrient losses following 

wildfire, in particular during the earlier stages of the so-called ‘‘window-of-disturbance’’ 

(Figure 1.1; Shakesby and Doerr, 2006). 

This model represents a simplification of the sediment yield response to post-fire 

hydrological and geomorphological changes. Conversely, the role of each fire induced change 

to the post-fire hydrological and erosive response is still not entirely understood. 

 



Chapter 1 

3 

 

 

 
Figure 1.1 - The ‘‘window-of-disturbance’’ after wildfire, with the hypothetical decline in sediment 

yield and the role of three erosion-limiting factors: vegetation cover, litter cover, and stone lag 

development (Shakesby and Doerr, 2006). 

 

In most cases, the first 4–6 months period after a fire present frequently bigger 

susceptibility to erosion because the lack of a protective litter and vegetation cover (Andreu 

et al., 2001; Bodí et al., 2014; Ferreira et al., 2005a; Thomas et al., 1999) promotes overland 

flow and erosion, but also because of the exhaustion of the nutrient-enriched ash layer (Caon 

et al., 2014; Cerdà and Doerr, 2008; Khanna et al., 1994; Knoepp et al., 2005; Pausas et al., 

2008; Pereira et al., 2011; Shakesby, 2011; Thomas et al., 1999) and due to the maximum fire 

potential in summer (July–August), as a result of higher temperatures and rainfall deficit 

during this season, and the possibility of intense post-wildfire rainfall the following autumn–

winter (November–January) (Andreu et al., 2001; Ferreira et al., 2005a). 

A number of factors raise some concerns about the occurrence of wildfires in the 

Mediterranean basin, mainly because of the above mentioned direct and indirect effects. 

Wildfire frequency, severity and the size of burned areas, as well as the strong influence of 

human activities impact through land management practices, land-use changes such as land 

abandonment and widespread introduction of fire-prone species are viewed as drivers of the 

increase of the wildfire activity (Moreira et al., 2009; Shakesby 2011). 
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In Portugal, the number and severity of wildfires is not expected to decline in the future, 

as a result of the economic importance of the country’s forestry activities using highly 

flammable species and the foreseeable raise in the occurrence of meteorological conditions 

favorable to fire (Carvalho et al., 2010; Moreira et al., 2009; Pereira et al., 2006b). Strong and 

sometimes extreme increases in runoff generation and the associated losses of sediments 

have also been observed for eucalypt and pine plantations, the two principal fire-prone forest 

types in north-central Portugal (Ferreira et al., 2005a; Prats et al., 2012; Shakesby et al., 

1996). 

Post-fire land management operations with heavy machinery (e.g. plowing; logging), 

leads to forest soil disturbances and have been acknowledged as an important cause for 

elevated soil erosion rates in some post-fire studies in the Mediterranean region (Shakesby et 

al., 1994; Fernández et al., 2004; Shakesby, 2011; Martins et al., 2013). An increase of the 

number of wildfires and recurrence at the same area, alongside the impacts of these generally 

used practices can be one of the major pressures to Mediterranean soils (Shakesby, 2011). 

According to Shakesby (2011), post-fire soil losses in the Mediterranean are very 

important, although sediment losses are considered low when compared to other regions, 

because of the frequent presence in this region of shallow soils with a history of intense 

disturbances, in a nutrient-poor environment. More important than the quantity, or in any 

case on the same level of importance, the quality of the material that is being lost during post-

wildfire erosion should be faced as a key focus of interest in this line of research (Shakesby, 

2011). Minor post-fire soil losses could be significant for soil longevity in some areas, on 

account of soil organic matter and nutrient losses in solution or adsorbed onto eroded 

sediment particles (e.g. Kutiel and Naveh, 1987). The combination of high fire frequency and 

shallow soils in a nutrient-poor environment, characteristic of many fire-prone 

Mediterranean areas, increases the risk of soil fertility depletion (Pausas and Vallejo, 1999).  

1.3 Research on post-fire nutrient mobilization in the Mediterranean region: soil 

and overland flow  

Since the 1990s, when research activity into post-wildfire soil erosion in the 

Mediterranean region expanded (Shakesby, 2011), following the beginning of the dramatic 

increase in fire activity (Moreno et al., 1998; Pausas, 2004), several studies in this region have 

addressed the present-day hydrological response and erosion rates for areas affected by 

forest fires (e.g. Cammeraat and Imeson, 1999; Doerr et al., 2000; Ferreira et al., 2005b; 

Imeson et al., 1992; Shakesby et al., 1993, 1996, 2002), and soil nutrients dynamics after fire 

(e.g. Andreu et al., 1996; Gimeno-García et al., 2000; Pardini et al., 2003; Rodríguez et al., 

2009). 
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Comparability among studies can be challenging due to several factors as fire behaviour 

and recurrence, precipitation regimes during the post-fire period, fire-induced changes 

according to different fire severity, and ecosystems specific features mixtures. Only a few 

studies in the Mediterranean have deal with fire-induced alterations on nutrient transport 

carried on by hydrological and erosion processes changes (e.g. Cancelo-González et al., 2013; 

DeBano et al., 1998; Díaz-Fierros et al., 1990; Lasanta and Cerdà, 2005; Machado et al., 2015). 

In Portugal, a small number of studies using experimental plots were performed focusing on 

these changes occurring in nutrient output by overland flow, and most of these only 

evaluated solute form losses (Coelho et al., 2004; Ferreira et al., 1997, 2005a; Thomas et al., 

1999, 2000a, 2000b; Walsh et al., 1992). 

Therefore, in spite of concerning the same land-cover types and having similarities in 

climate and type of soil, most of these studies presented results of different parameters, 

predominantly in the dissolved form, obtained by different methodologies. It is known that 

nutrients within ash on the soil surface (resultant of burning of litter and vegetation) are 

susceptible to both solution and physical erosion processes, increasing the potential for 

export of nutrients in both dissolved and particulate form (Lane et al. 2008), with particulate 

being the dominant form of loss (Sharpley et al. 1992). 

Regardless of being generally recognized, there is less information currently available on 

the potential downstream environmental consequences of enhanced nutrient losses 

following wildfire in relation to impacts on water quality, which are intrinsically linked to 

post-fire hydrological and soil erosion processes (Blake et al., 2010). Hence, a better 

understanding of post-fire nutrient behaviour, in both dissolved and particulate forms, allows 

a more accurately interpretation of the evolution of nutrient losses and its effects on 

vegetation recovery, soil productivity and downstream water quality. This knowledge gap is 

being addressed by the present work.  

The present work is part of the FIRECNUTS project (PTDC/AGR-CFL/104559/2008) - 

WildFIRE effects on topsoil Carbon and NUTrient Stocks, dynamics and exports –  that 

addresses these research gaps by studying the export of organic carbon and selected key 

nutrients (base cations, nitrogen and phosphorus) in a recently burnt forest area in north-

central Portugal (Sever do Vouga). 

1.4 Aims of the present work 

The general objective of this thesis is to contribute to deepen and broden the knowledge 

on the hydrological and erosion response focusing on the nutrient cycle complex processes in 

recently burnt forest areas and understand the ecological consequences of these processes.  
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Therefore, this thesis work pretends to gain insight into the magnitude of post-fire soil 

fertility losses in the Mediterranean region, which is crucial information for defining post-fire 

land management measures to reduce soil degradation. 

For that matter, key nutrient exports (base cations, as well as nitrogen and phosphorus 

exports in the total and soluble forms: total nitrogen and nitrate; total phosphorus and 

ortophosphate) by overland flow were evaluated in a recently burnt forest area. This 

evaluation was done mainly at the micro-plot scale and on a limited basis at the slope scale 

(presented here only in one of the chapters). 

 

The specific objectives were:  

(i) to assess post-fire stocks of key nutrients in the topsoil and ash layer. 

(ii) to describe the temporal variation in topsoil nutrient stocks and distribution 

following wildfire and post-fire management. 

(iii) to quantify the post-fire nutrient losses by overland flow (under the influence of 

different features): 

• for the two predominant and fire-prone forest types in north-central Portugal, 

i.e. eucalypt and pine plantations;  

• for the two prevailing parent materials in the region, i.e. granite and schist);  

• for two different slope aspects, i.e. a facing-north slope and a facing-south slope;  

• with time-since-fire during the initial months of the window-of-disturbance and 

for an somewhat extended monitoring period.  

(iv) to describe the temporal variation in key nutrient losses following wildfire and post-

fire management. 

(v) to establish the relationships between post-fire key nutrient losses and hydrological 

and erosion processes. 

 

Site differences in soil nutrient dynamics are expected given the different features in 

terms of types of forest plantations, parent materials and slope aspects, as well as the shallow 

soil on this study area that brings the parent material close to the plant root zone (Yavitt, 

2000). 

1.5 Outline of this thesis work 

This document starts with this Chapter 1, presenting the motivation and importance of 

this work, the outline of this thesis and a brief introduction to wildfire effects on soil nutrient 

stocks and exports by overland flow. 
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The organization of this thesis follows four main chapters, Chapters 2 to 5, in which 

these objectives were set. These chapters correspond to papers published or submitted for 

publication and stands by itself. These papers have been organized to cope with the 

objectives of this work, thus providing the framework for the rest of this thesis. 

Chapter 2 present a short-term study on base cations losses in contrasting slopes in 

terms of vegetation (eucalypt vs. pine) and parent material (granite vs. schist), during a 

limited selection of major rainfall events over the six-months monitoring period. It presents 

also a comparison between micro-plot scale and slope scale, with comparison to an unburnt 

slope only at the slope scale. 

Chapters 3 and 4 are based on the same study sites of Chapter 2, at the same contrasting 

slopes in terms of vegetation (eucalypt vs. pine) and parent material (granite vs. schist), 

presenting short-term nutrient losses for all the rainfall events over the six-months 

monitoring period, at the micro-plot scale. Chapter 3 presents results for nitrogen losses, 

while Chapter 4 deals with  phosphorus losses. 

To cope with the limitations of short-term studies, Chapter 5 presents a variation of 

nitrogen and phosphorus losses for all the rainfall events over an extended monitoring 

period, in contrasting slopes in terms of slope aspect. This was done in recently burnt 

eucalypt plantations, at the micro-plot scale, over a twenty-months monitoring period. 

Chapter 6 provides the conclusions of the present work. 
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Chapter 2 - Cation export by overland flow in a recently burnt 

forest area in north-central Portugal 

Machado A. I.a, Serpa D.a, Ferreira R.V.a, Rodríguez-Blanco M. L.b, Pinto R.a, Nunes M. I.a, Cerqueira M. 
A.a, Keizer J. J.a 

aUniversity of Aveiro and CESAM; bUniversity of A Coruña, Faculty of Sciences 

Science of The Total Environment. 2015, 524-525, 201-212. 

Abstract 

The current fire regime in the Mediterranean Basin constitutes a serious threat to 

natural ecosystems because it drastically enhances surface runoff and soil erosion in the 

affected areas. Besides soil particles themselves, soil cations can be lost by fire-enhanced 

overland flow, increasing the risk of fertility loss of the typically shallow and nutrient poor 

Mediterranean soils. Although the importance of cations for land-use sustainability is widely 

recognised, cation losses by post-fire runoff have received little research attention. The 

present study aimed to address this research gap by assessing total exports of Na+, K+, Ca2+ 

and Mg2+ in a recently burnt forest area in north-central Portugal. These exports were 

compared for two types of planted forest (eucalypt vs. maritime pine plantations), two types 

of parent materials (schist vs. granite) and for two spatial scales (micro-plot vs. hill slope). 

The study sites were a eucalypt plantation on granite (BEG), a eucalypt plantation on schist 

(BES) and a maritime pine plantation on schist (BPS). Overland flow samples were collected 

during the first six months after the wildfire. Cation losses differed strikingly between the 

two forest types on schist, being higher at the eucalypt than pine site. This difference was 

evident at both spatial scales, and probably due to the extensive cover of a needle cast from 

the scorched pine crowns. The role of parent material in cation export was less 

straightforward as it varied with spatial scale. Cation losses were higher for the eucalypt 

plantation on schist than for that on granite at the micro-plot scale, whereas the reverse was 

observed at the hill slope scale. Finally, cation yields were higher at the micro-plot than slope 

scale, in agreement with the general notion of scaling-effect in runoff generation. 

Keywords 

Wildfires, Base Cations, Overland Flow, Water Erosion, Mediterranean Basin 
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2.1 Introduction 

In Portugal, like in other Mediterranean countries, wildfires are now widely accepted to 

be a natural phenomenon. However, fire frequency and intensity are considered to have 

increased dramatically since the 1960s (Pereira et al., 2006; Shakesby, 2011). As principal 

causes of this intensified fire regime have been appointed a combination of socio-economic 

factors, in particular the large-scale planting of fire-prone tree species such as eucalypt and 

pine, and the extensive abandonment of traditional land-use practices (Moreira et al., 2009; 

Shakesby et al., 2011).  

The increase in fire occurrence is a matter of concern for the (semi-)natural ecosystems 

in the Mediterranean Basin because it exerts both immediate and lasting environmental and 

ecological impacts (Certini, 2005; Shakesby, 2011). Most of these impacts are directly or 

indirectly related to changes in the physical, chemical and biological properties of soils, which 

affect biogeochemical cycles, and may therefore increase the risk of soil degradation (Certini, 

2005; Knoepp et al., 2005; Shakesby, 2011; Soto et al., 1997; Thomas et al., 2000a, 2000b).  

During fires, macro-nutrients (N and P) and base cations (Na+, K+, Ca2+ and Mg2+) 

contained in plant biomass and in the litter and soil organic layers may be lost through 

volatilization, convection (of ash and smoke), or particulate transport (Knoepp et al., 2005; 

Neary et al., 1999; Soto et al., 1997; Wanthongchai et al., 2008). After a fire, the elements 

deposited as ash or mineralized from burnt organic matter on the soil surface are often 

leached into the soil or lost by wind and water erosion (Caon et al., 2014; Knoepp et al., 2005; 

Neary et al., 1999; Soto et al., 1997; Wanthongchai et al., 2008). 

Cation losses by hydrological processes are strongly affected by fire-induced changes in 

soil cover due to the (partial) combustion of vegetation and litter layer (Certini, 2005; 

Ferreira et al., 2005; Granged et al., 2011; Kutiel and Shaviv, 1992; Shakesby, 2011; Zavala et 

al., 2010). The increase in bare soil, which is known to enhance the erosive potential of rain 

drops (Certini, 2005; Fernandez-Raga et al., 2010), and the removal of vegetation and litter, 

promotes overland flow and the associated sediment losses (Ferreira et al., 2005, 2008; 

Granged et al., 2011; Prats et al., 2014; Shakesby and Doerr, 2006). Fire-induced changes in 

topsoil properties such as, infiltration capacity (Badía et al., 2014; Moody et al., 2013; 

Shakesby, 2011; Shakesby and Doerr, 2006), porosity (Granged et al., 2011), soil water 

repellency (Doerr et al., 2006; Keizer et al., 2008; Malvar et al., 2011), organic matter (Badía 

et al., 2014; Knoepp et al., 2005) and aggregate stability (Varela et al., 2010), can further 

enhance overland flow and losses in soil and soil fertility. The first rainfall events after a 

wildfire are often of major importance in terms of cation depletion (Badía et al., 2014; 

Knoepp et al., 2005; Shakesby, 2011). 
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The magnitude of post-fire cation losses is extremely variable, depending on a complex 

interplay of factors such as type and growth stage of the vegetation, fire behaviour and 

severity, local fire history, antecedent weather conditions, and site characteristics (Brais et 

al., 2000; Caon et al., 2014; Certini, 2005; Knoepp et al., 2005; Neary et al., 1999; Shakesby 

and Doerr, 2006). The temperature reached in soils during burning is particularly important 

for the direct fire effects on soil fertility (Caon et al., 2014; Certini, 2005). Low-intensity 

wildfires are usually associated with an increase, albeit ephemeral, in soil cation availability 

(Brais et al., 2000; Scharenbroch et al., 2012) whereas moderate- and high-intensity fires 

generally produce base cation losses (Certini, 2005; Shakesby, 2011). 

The effects of fire on soil nutrient dynamics in forest areas have been addressed by 

various studies (Caon et al., 2014; Fernández et al., 2011; Johnson et al., 2007; Kutiel and 

Shaviv, 1992; Trabaud, 1994; Wanthongchai et al., 2008; Yildiz et al., 2010). However, post-

fire export of base cations by overland flow has received little research attention; in spite the 

few-existing studies clearly suggested its relevance for soil productivity (Cancelo-González et 

al., 2013; Ferreira et al., 2005; Thomas et al., 1999, 2000b). Especially in the fire-prone 

regions of the Mediterranean Basin with their typically shallow and nutrient poor soils, fire-

enhanced cation exports are particularly relevant for land-use sustainability (Ferreira et al., 

2005, 2008; Shakesby, 2011). 

In Portugal, post-fire cation export by runoff was studied by Thomas et al. (1999, 2000b) 

and Ferreira et al. (2005). These three studies assessed the losses for the two principal forest 

types in the study region - plantations of eucalypt (Eucalyptus globulus Labill.) and maritime 

pine (Pinus pinaster Ait.) - at different spatial scales ranging from micro-plot to catchment. 

However, Thomas et al. (1999, 2000b) and Ferreira et al. (2005) measured the losses of 

dissolved or exchangeable cations rather than the total losses, and, thus, most likely 

underestimated the full impacts of wildfires on soil fertility.  

To address this research gap, the present study aimed at providing further insights into 

total cation exports by post-fire overland flow in recently burnt Mediterranean forests. To 

this end, total losses of Na+, K+, Ca2+ and Mg2+ in post-fire runoff were quantified: i) for two 

contrasting spatial scales, i.e. that of micro-plot and hill slope; ii) for two contrasting forest 

types, i.e. the eucalypt and maritime pine plantations that are now dominating the north-

central Portuguese mountains; and iii) for two contrasting bedrock types, i.e. schist and 

granite that are both widespread in north-central Portugal. These base cation losses by 

overland flow were furthermore compared with the stocks in the ash and uppermost soil 

layers, both immediately after the wildfire and at the end of this study as well as with the 

losses under long-unburnt conditions, albeit only at the slope scale and just for a eucalypt 

plantation. As post-fire hydrological and geomorphological activity in the study region is 

particularly intense during the early stages of the so-called “window of disturbance” (Ferreira 



Wildfire effects on soil nutrients stocks and exports by overland flow 

16 

et al., 2005, 2008; Malvar et al., 2011; Martins et al., 2013; Prats et al., 2014; Shakesby, 2011;  

Shakesby and Doerr, 2006), base cation losses were monitored  during the first six months 

after a wildfire. Plans to continue the monitoring scheme had to be abandoned as the recently 

burnt study sites were terraced in preparation for a new eucalypt plantation. 

2.2 Material and Methods 

2.2.1 Study area and study sites 

The study area was located within the Vouga River Basin, near the Ermida village in the 

Sever do Vouga municipality, Aveiro District, north-central Portugal (Figure 2.1). At the end 

of July 2010, a wildfire ravaged the area for two days and consumed almost 295 ha of forest 

lands (DUDF, 2011). The “Ermida” burnt area was predominantly covered by eucalypt 

plantations but also included a few, small maritime pine stands. The fire severity was, on 

overall, moderate, since the litter layer and undergrowth vegetation of herbs and shrubs 

were mostly completely consumed, whereas the tree crowns were typically only partially 

combusted (Shakesby and Doerr, 2006). Within the burnt area, three hill slopes were selected 

for this study for their moderate fire severity and, at the same time, contrasting forest types 

as well as parent materials (Table 2.1). The BEG study site concerned an eucalypt plantation 

on granite, the BES site an eucalypt plantation on schist and the BPS site a maritime pine 

slope on schist (Figure 2.1.). In addition, a long-unburnt (more than 20 years) eucalypt 

plantation on schist (UES) was selected just outside the burnt area, whilst a long-unburnt 

Maritme Pine site could not be located within reasonable distance (Figure 2.1.). 

The climate of the study area can be classified as humid meso-thermal, with moderate 

but prolonged warm dry summers (Köppen: Csb; DRA-Centro, 2002). Mean annual 

temperature at the nearest climate station (Castelo Burgães: 40º 51’ 10’’N, 8º 22’ 44’’W at 

306 m a.s.l.) was 14.9 oC (SNIRH, 2011: 1991-2011). Annual rainfall at the nearest rainfall 

station (Ribeiradio: 40º 73’ 65’’N, 8º 30’ 08’’W at 228 m a.s.l.) was, on average, 1609 mm but 

varied markedly between 960 and 2530 mm (SNIRH, 2011: 1991-2011). The study area is 

part of the Hespheric Massif, one of the region´s major physiographic units. This unit mainly 

consists of pre-Ordovician schists and greywackes but includes Hercynian granites at several 

locations (Ferreira, 1978). According to the existing soil map (1: 1 000 000; Cardoso et al., 

1973), the soils in the study area are predominantly Humic Cambisols. However, the soils of 

the four study sites were also described in the field, and ranged from Humic Leptosols to 

Humic Cambisols at the BEG and BES sites; Lithic Leptosols to Humic Leptosols at the BPS 

site; and Umbric Leptosols at the UES site (IUSS, 2006). During the description of soil profiles, 
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Figure 2.1 - Location of the Ermida study area within the Vouga River basin, north-central Portugal (a); 

location of the study sites (b): BEG – burnt eucalypt-granite site, BES – burnt eucalypt-schist site, BPS – 

burnt pine-schist site, UES – unburnt eucalypt-schist site; and schematic representation of the 

experimental set-up (c), dividing a study slope in the following strips: z1 – transect for soil sampling; 

z2 – micro-plot scale runoff plot; z3 – slope scale runoff plot.. 
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topsoil (0-2 cm depth) samples were collected at five equally-spaced points along a transect 

immediately after the wildfire, and later analysed in the laboratory to determine bulk density 

[using the core method as described by Porta et al. (2003)], granulometric composition 

[following the international method of mechanical analysis as defined by Guítian and 

Carballas (1976)] and organic matter content [determined by loss on ignition at 550º C for 4 

hours as described by Botelho da Costa (2004)]. The uppermost 2 cm of the soils at the study 

sites were rather coarse, with a loam to sandy-clay loam texture, and very rich in organic 

matter, ranging from 16 to 29 % (Table 2.1). 

 

Table 2.1 - General slope description. BEG – burnt eucalypt-granite site; BES – burnt eucalypt-schist 

site; BPS – burnt pine-schist site and UES – unburnt eucalypt-schist site. 

 

 

 

Slope BEG BES BPS UES 

General characteristics 

Forest type Eucalyptus 

globulus 

Eucalyptus 

globulus 

Pinus pinaster Eucalyptus 

globulus Bedrock  Granite Schist Schist Schist 

Geographical coordinates 40º43’56’’N 40º43’58’’N 40º43’54’’N 40º44’16’’N 

 8º21’3’’W 8º20’58’’W 8º20’47’’W 8º20’45’’W 

Elevation (m.a.s.l.) 220 220 150 260 

Slope angle (o) 25.6 ± 4.4  24.0 ± 6.0 24.0 ± 2.4 25.0 ± 3.5 

Slope length (m) 77 48 36 25 

Fire severity indicators 

Consumption of tree crowns Partial Partial Partial - 

Consumption of shrub layer Total Total Total - 

Consumption of herbs/litter  Total Total Total - 

Ash colour Black Black Black - 

Topsoil properties  

0-2 cm depth     

Texture  sandy loam loam sandy-clay 
loam 

sandy-clay 
loam Sand fraction (%) 61 45 54 69 

Silt fraction (%) 24 34 25 9 

Clay fraction (%) 14 21 21 22 

Organic matter (%) 29 ± 1 22 ± 1 19 ± 2 16 ± 1 

0-5 cm depth     

Bulk density (g cm-3) 0.71 ± 0.11 0.78 ± 0.19 0.73 ± 0.13 0.88 ± 0.19 
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2.2.2 Experimental design, field data and sample collection 

Each of the three recently burnt study sites was divided in 3 strips running from the 

base to the top of the slope section (Figure 2.1.). One of the strips was used for repeated 

collection of soil samples, another for measuring runoff at the micro-plot scale, and the 

remaining for measuring runoff at the slope scale. The strips for the runoff measurements 

were some 5 m wide, leaving the remaining part of the slope for destructive soil sampling. 

The long-unburnt site was less wide, so that it was decided not to install the micro-plots. 

For this study, only samples of the topsoil (0-2 cm depth) were collected because 

moderate fires have been reported to mainly affect the upper 2 cm of soil (Badía-Villas et al., 

2014a; 2014b). Soil samples were first collected on August 10 2010, before the occurrence of 

any rainfall after the wildfire, and then again on February 16 2011, before the terracing 

operations. At the first occasion, also samples of the ash layer were collected. Sampling was 

done at five equally-spaced points along a transect that was laid out from the base to the top 

of the slope section, and shifted 1-2 m across the slope between subsequent sampling 

occasions. At each transect point the ashes were collected over an area of 0.5 m2 (0.5 m x 0.10 

m) and the topsoil (0-2 cm depth) over an area of 0.25 m2 (0.5 m x 0.5 m). 

The study sites were instrumented with runoff plots by August 25 2010, before the 

occurrence of any significant post-fire rainfall, as registered by various rainfall gauges that 

had been installed across the burnt area (see underneath). This involved the installation, at 

the base of the slope section of three bounded micro-plots of approximately 0.28 m2, at 

distances of 1-2 m from each other. 

As prior studies in the region have found contradictory results on the role of slope 

position on post-fire runoff and erosion at the micro-plot scale (Malvar et al., 2015; Prats et 

al., 2014), the micro-plots were located at the base of the slope section where the forest stand 

was planted (i.e. at the bottom of the property). This allowed easy access and, thus, facilitated 

speedy data and sample collection, on the one hand, and, on the other, minimized the 

disturbance to the slopes, which was a concern as the slopes were located within an 

experimental catchment (Keizer et al., 2015). Four plot outlets of 0.5 m wide were also 

installed at the base of each slope section, together making up an unbounded slope-scale plot 

with a width of approximately 2 m and contributing areas of 62 m2 (UES), 75 m2 (BPS), 97 m2 

(BES) and 154 m2 (BEG). The outlets of the runoff plots were connected, using garden hose, to 

one or more high-density polyethylene tanks of 30 or 70 L to collect the overland flow. 
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From August 25 2010 until February 23 2011, the runoff collected in the various tanks 

was measured at 1- to 2-weekly intervals, mainly depending on the occurrence of rainfall. 

Whenever the runoff in a tank exceeded 250 mL, a sample was collected in a 500 mL 

polyethylene bottle that had been previously rinsed with HCl (pH < 2.0) and distilled and 

deionised water. The samples were then transported to the laboratory in cool boxes and 

stored at 4 ºC for no longer than 24h. The 1- to 2-weekly field trips also involved 

measurement of the rainfall accumulated in four storage gauges (in-house design) that had 

been installed across the study area by the middle of August 2010. Their main purpose, 

however, was to validate the automatic recordings of two tipping-bucket rainfall gauges 

(Pronamic Professional Rain Gauge with 0.2 mm resolution) that had been installed at close 

proximity to two of the storage gauges. 

 

2.2.3 Laboratory work 

Upon arrival at the laboratory, the ash and soil samples were air dried. The base cation 

content of the first 2 cm of the topsoil was determined for each soil sample individually (n=5; 

Figure 1), whereas the base cations content of the ash layer was determined for one 

composite sample per site and sampling occasion (as the amounts of ash were limited). The 

soil and composite ash samples were digested with HNO3 and H2SO4 in teflon vessels placed 

in a sand bath at 250ºC (APHA, 1998). After digestion, samples were filtered through paper 

filters and then analysed for their Na, K, Ca and Mg concentrations using a Perkin Elmer 

Analyst 200 Atomic Absorption Spectrophotometer. Because of logistic constraints, only 

about half of the runoff samples that were collected during the 6-month study period could 

be analysed for this study. The runoff samples analysed here were those collected following 

the two monitoring periods (i.e. read-outs) of each month with the highest rainfall amounts, 

so that the runoff samples from in total 12 read-out periods were included in this study. The 

analysis of total base cations (i.e. dissolved plus particulate forms) in the selected samples 

either started shortly upon arrival at the laboratory or, whenever that was not possible, was 

delayed up to a maximum period of 6 months, after first acidifying the sample with HNO3 to a 

pH below 2 and then storing it at 4ºC. The Na, K, Ca and Mg concentrations in runoff samples 

were determined using the same procedure as described above for ash and soil samples. 

Total suspended sediment concentration of the selected runoff samples was also determined, 

using the standard gravimetric method (APHA, 1998). 
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2.2.4 Data analysis 

Differences in base cation contents of the ash and soil samples as well as differences in 

base cation exports by runoff and the respective concentrations were evaluated for the pairs 

of study sites with contrasting forest types (BES vs. BPS), parent materials (BES vs. BEG) and 

fire regimes (BES vs. UES). This was done with the Student’s t-test if the assumptions of 

normality and homogeneity of variance were not rejected. If one or both of them were indeed 

rejected, square root and logarithmic transformations of the data were tried first and, if 

unsuccessful, the non-parametric Mann-Whitney Rank Sum test was applied (Zar, 1999). 

Relationships between the base cation exports at the different study sites for each read-out 

were explored by means of the Spearman rank correlation coefficient (Zar, 1999). The 

Spearman rank correlation coefficient was also computed to assess how well selected 

environmental variables (rainfall amount and intensity, total overland flow, sediment losses) 

could explain the export of Na, K, Ca and Mg, both at the micro-plot and slope scale (Zar, 

1999). All statistical analyses were performed using SigmaPlot 11.0 package software, 

employing a significance level of 0.05. 

2.3 Results and discussion 

2.3.1 Base cation contents in ash and topsoil 

In the ashes collected at the different eucalypt and pine sites immediately after the 

wildfire, the common order of abundance of base cations was Ca2+ > K+ > Mg2+ > Na+ (Table 

2.2.). These results are consistent to those found by Gabet and Bookter (2011) which also 

analysed ash cations by acid digestion, however if exchangeable forms were quantified, the 

order of cation abundance would be expected to differ: Ca2+ > Mg2+ > K+ > Na+ (Ferreira et al., 

2005; Khanna et al., 1994).   

The comparison between ash cation contents at the eucalypt site (BES) and the maritime 

pine site on schist (BPS) did not reveal significant differences (Student’s t-test, p>0.05) 

between the two types of tree plantations (Table 2.2.). Nonetheless, base cation contents 

were, on average, consistently higher in the ashes collected at the BPS than BES site (Table 

2.2.). Between-site differences in ash cation contents could reflect differences in either 

vegetation or litter layer, or both (Bodí et al., 2014; Ferreira et al., 2005; Khanna et al., 1994; 

Pereira et al., 2011; Soto and Diaz-Fierros, 1993).  
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Table 2.2 - Average (± standard deviation) base cation concentrations/stocks in the ash and topsoil 

layers of burnt slopes, immediately (August 2010) and sixth months (February 2011) after fire. BEG – 

burnt eucalypt-granite site; BES – burnt eucalypt-schist site; BPS – burnt pine-schist site and UES – 

unburnt eucalypt-schist site. For each cation, different symbols, letters and numbers correspond to 

significant differences (p<0.05) among slopes with respectively, different parent material (BEG vs 

BES), vegetation (BES vs BPS) and fire regime (BES vs UES). 

 
 Cation Sampling 

period 

Layer Site 

 BEG BES BPS UES 

Contents 

(mg g-1) 

 

Na+ 
Aug-10 

Ash 1.96 ± 0.42 1.21 ± 0.18a 1.94 ± 0.11b - 

Soil 0.67 ± 0.33* 0.63 ± 0.19*,a,1 0.76 ± 0.14a 0.67 ± 0.151 

Feb-11 Soil 0.65 ± 0.38* 0.50 ± 0.14*,a,1 0.65 ± 0.09a 0.62 ± 0.151 

K+ 
Aug-10 

Ash 7.77 ± 1.46 8.41 ± 0.98a 9.40 ± 1.28a - 

Soil 10.83 ± 1.24* 10.30 ± 1.21*,a,1 12.75 ± 1.02a 11.86 ± 1.371 

Feb-11 Soil 11.30 ± 1.47* 9.78 ± 1.98*,a,1 11.70 ± 1.09a 10.12 ± 2.261 

Ca2+ 
Aug-10 

Ash 14.91 ± 0.87 12.51 ± 1.59a 22.78 ± 0.16a - 

Soil 1.37 ± 0.16* 1.14 ± 0.38*,a,1 1.25 ± 0.09a 0.27 ± 0.152 

Feb-11 Soil 2.02 ± 0.44* 2.18 ± 0.84*,a,1 2.23 ± 0.28a 0.23 ± 0.112 

Mg2+ 
Aug-10 

Ash 3.83 ± 0.70 2.79 ± 0.38a 4.04 ± 0.25a - 

Soil 1.16 ± 0.73* 0.72 ± 0.44*,a,1 0.87 ± 0.53a 0.67 ± 0.441 

Feb-11 Soil 1.02 ± 0.23* 0.64 ± 0.31*,a,1 0.90 ± 0.14a 0.54 ± 0.071 

        

Stocks 

(g m-2) 

 

Na+ 
Aug-10 Soil 9.5 ± 4.7 9.8 ± 3.0  11.2 ± 2.0 11.8 ± 2.6 

Feb-11 Soil 9.2 ± 5.4 7.7 ± 2.2 9.4 ± 1.3 11.0 ± 2.6 

K+ 
Aug-10 Soil 153.8 ± 17.6 160.7 ± 18.9 186.2 ± 14.9 208.7 ± 24.1 

Feb-11 Soil 160.5 ± 20.9 152.6 ± 30.9 170.8 ± 15.9 178.0 ± 39.8 

Ca2+ 
Aug-10 Soil 19.5 ± 2.3 17.8 ± 5.9 18.3 ± 1.3 4.7 ± 2.6 

Feb-11 Soil 26.7 ± 6.3 34.0 ± 13.1 21.6 ± 4.1 4.0 ± 1.9 

Mg2+ 
Aug-10 Soil 16.5 ± 10.4 11.3 ± 6.9 12.7 ± 7.7 11.8 ± 7.7 

Feb-11 Soil 14.4 ± 3.3 9.9 ± 4.8 4.0 ± 2.0 9.5 ± 1.2 
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In the present work, the separate role of understory vegetation and litter layer is 

impossible to untangle, since the wildfire fully consumed these two compartments at all 

study sites (see Table 2.1), as is usually the case in the study region (Ferreira et al., 2005, 

2008; Maia et al., 2012; Malvar et al., 2013). However, as base cation concentrations were 

consistently higher at the BPS than BES site, one might hypothesize that litter layers 

influenced ash cation contents since long-unburnt maritime pine stands in the study region 

typically have more developed litter layers than long-unburnt eucalypt stands. As a result of 

their well-developed litter layers, pre-fire carbon stocks and cation contents in the organic 

soil horizon of maritime pine stands (Nunes et al., 2010) are usually higher than in eucalypt 

stands (Ribeiro et al., 2002), so one might presume that soil organic matter combustion 

contributed to the higher cation contents in BPS ashes. On the other hand, tree combustion 

could have also played a role in the cation availability in ashes because trees were partially 

consumed by fire (Table 2.1). The pronounced difference in Ca2+ contents, in particular, 

possibly reflected the difference in tree composition, since the Ca2+ content at the BEG site 

was also markedly lower than at the BPS site. Such a pine vs. eucalypt contrast in ash Ca2+ 

content could well involve differences in combustion characteristics, since eucalyptus leaves 

(Ribeiro et al., 2002) have higher cation contents than pine needles (Nunes et al., 2010).  

Na+, Ca2+ and Mg2+ ash contents immediately after the wildfire were, on average, higher 

than topsoil contents, whereas the opposite was true for K+ (Table 2.2.). The natural 

availability of this cation in soils (cf. UES data; Table 2.2) together with its high temperature 

threshold (i.e. temperature at which a given cation is volatilized) in soils [760-774ºC; cf. Bodí 

et al. (2014) and Knoepp et al. (2005)], might account for the different pattern of K+ ash/soil 

concentrations. Since the present, moderate-severity fire (with NIR-based estimates of 

Maximum Temperature Reached at 0-2 cm depth ranged from 325 to 405 ºC; Pedrosa, 2012) 

was unlikely to have produced important K+ losses from the topsoil through volatilization and 

since K+ is not the most abundant cation in vegetation and litter (Nunes et al., 2010; Ribeiro et 

al., 2002), K+ contents were expected to be higher in the soil than in the ashes. On the other 

hand, differences between ash and soil concentrations were particularly pronounced in the 

case of Ca2+, with lower (90–95 %) concentrations in soil than ash samples, as would be 

expectable from previous studies (Ferreira et al., 2005; Johnson et al., 2007; Pereira et al., 

2012). The reason behind these findings is two-fold. On one hand it can relate to the natural 

composition of litter layers and vegetation, which is typically Ca2+ enriched (Nunes et al., 

2010; Ribeiro et al., 2002), and on the other, to the temperature threshold (1240-1484 ºC) for 

Ca2+ in soils, which is higher than for the other cations (Bodí et al., 2014; Knoepp et al., 2005). 

As a consequence, Ca2+ and K+ swapped places in the order of predominance of base cations 

in the topsoil compared to the ash layer. 
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The comparison of the topsoil base cation contents, in August 2010, at the recently burnt 

and long-unburnt eucalypt plantations on schist (BES vs. UES) suggested that the wildfire did 

have a significant (Mann-Whitney Rank Sum test, p<0.01) direct effect but just in the case of 

Ca2+ (Table 2.2). The combustion of belowground biomass and topsoil organic matter during 

fire is likely to have promoted a Ca2+ increase in soils since this material is typically Ca2+ 

enriched (Knoepp et al., 2005; Nunes et al., 2010; Ribeiro et al., 2002). Likewise, the 

incorporation of Ca2+ enriched ground ash (Table 2.2) into the soils could have influenced 

Ca2+ availability since substantial increases in soil Ca2+ contents have been reported after ash 

deposition (Badía et al., 2014; Bodí et al., 2014; Caon et al., 2014; Kutiel and Shaviv, 1992). 

The relative proportion of cations in soils also seems to have been affected by fire, as 

reported by other authors (Caon et al., 2014; Knoepp et al., 2005), since the order of 

abundance of cations at the BES site (K+ > Ca2+ > Mg2+ > Na+) was clearly different than at the 

UES site (K+ > Mg2+ > Na+ > Ca2+). Like in the case of the ash layer, base cation contents in the 

topsoil did not reveal significant differences (Student’s t-test, p>0.1) between the two types of 

tree plantations on schist (Table 2.2). Also in agreement with the ash results, the average 

topsoil contents of all four cations, immediately after fire, were consistently higher at the 

maritime pine (BPS) than eucalypt site (BES). This could be due to a somewhat higher soil 

burnt severity at the eucalypt site, as its higher organic matter content (Table 2.1) would 

presume higher base cation contents (Granged et al., 2011; Knoepp et al., 2005; Soto and 

Diaz-Fierros, 1993; Terefe et al., 2008). Topsoil base cation contents did not differ 

significantly between the two types of parent material either (Student’s t-test and Mann-

Whitney Rank Sum test, p>0.3). All four base cations did, however, consistently revealed 

higher concentrations at the eucalypt site on granite (BEG) than schist (BES), most likely due 

to the higher organic matter content of BEG soils (Table 2.2) which increases cation exchange 

capacity and their retention in soils (Granged et al., 2011; Knoepp et al., 2005; Terefe et al., 

2008). 

From August 2010 to February 2011, a decrease in soil cation contents was observed at 

the long-unburnt site (UES), possibly as result of erosion, cation leaching into deeper soil 

layers, and/or plant uptake (Bodí et al., 2014; Cerdà and Doerr, 2008; Khanna et al., 1994; 

Knoepp et al., 2005). For the burnt slopes, a similar justification can be given for the lower 

Na+, K+ and Mg2+ soil contents observed six months after the fire, but the same is not true for 

Ca2+ since its contents almost doubled between the two sampling periods (Table 2.2). In the 

case of this element, the results most likely reflected leaching of Ca2+-enriched-ash into the 

soil (Ferreira et al., 2008; Knoepp et al., 2005; Kutiel and Shaviv, 1992; Soto and Diaz-Fierros, 

1993; Wangthongchai et al., 2008), since substantially higher Ca2+ concentrations were 

observed in ashes than in soils (Table 2.2). Despite the temporal variations, the relative 
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proportion of cations in soils was maintained at the long-unburnt (K+ > Mg2+ > Na+ > Ca2+) and 

burnt eucalypt site on schist (K+ > Ca2+ > Mg2+ > Na+), suggesting that the influence of fire 

was still present after a six month period (Caon et al., 2014). Differences among sites with 

distinct types of vegetation (BPS vs. BES) and parent material (BEG vs. BES) were also 

maintained between the two sampling periods, which reinforces the hypothesis of processes 

occurring within the “window of disturbance” (Ferreira et al., 2005, 2008; Shakesby and 

Doerr, 2006). 

2.3.2 Base cation export by overland flow 

2.3.2.1 Micro-plot scale 

The 12 read-outs selected for this study, which represent the two monitoring periods of 

each month with the highest rainfall amounts, corresponded to 962 of the 1205 mm of 

rainfall that fell over the entire study period, and amounted, on average, to 74 % of the 

overland flow produced by the micro-plots over this 6-months period. The associated total 

base cation losses at the three recently burnt sites differed markedly for the four elements 

(Table 2.3). At all three sites, total Mg2+ exports were lowest and total K+ exports highest, with 

relative differences between the two cations ranging from a factor of 3 to 5. The relative 

order of total Ca2+ and Na+ losses, on the other hand, was possibly related to parent material, 

since Ca2+ export was, on average, higher at the two sites on schist (BES and BPS) but lower at 

the site on granite (BEG). Assuming the ash layer to be the principal source of the exported 

cations, either in its dissolved or particulate form, K+ and Na+ were over-represented in the 

observed exports. K+ was the most exported cation but ranked second in the ashes, while Na+ 

was the least abundant in the ashes but ranked second/third in terms of exports (Table 2.2 

and Table 2.3). Ca2+ and Mg2+, on the other hand, were under-represented because their rank 

in post-fire overland flow was lower than in the ashes (Table 2.2 and Table 2.3). Such a 

preferential transport of monovalent over divalent cations would agree well with their higher 

solubility in water (Brais et al., 2000; Cancelo-González et al., 2013; Certini, 2005; Knoepp et 

al., 2005; Soto and Diaz-Fierros, 1993).  The lower affinity of monovalent cations to bind to 

soil organic matter might also account for these results as they are less likely to be retained in 

soils (Cancelo-González et al., 2013; Knoepp et al., 2005; Soto and Diaz-Fierros, 1993). In fact, 

the exports of monovalent cations tended to represent a larger fraction of the topsoil cation 

stocks (Table 2.2 and Table 2.3) than the exports of divalent cations (11- 93% vs. 4-27%). 

This could indicate that the topsoil acted as a source of K+ and Na+ losses at the micro-plot 

scale once the ash layer was exhausted as a source, whereas it acted as a sink of divalent 

cations and, in particular, Ca2+. 
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Table 2.3 - Total (dissolved plus particulate) average (± standard deviation) cation losses, overland 

flow, runoff coefficients (%) and sediment losses at the micro-plot scale for the 12 selected read-outs 

during the first six months following a wildfire. BEG – burnt eucalypt-granite site; BES – burnt 

eucalypt-schist site and BPS – burnt pine-schist site. For each line, different symbols and letters 

correspond to significant differences (p<0.05) among slopes with respectively, different parent 

material (BEG vs BES) and vegetation (BES vs BPS). 

 

Variable BEG BES BPS 

Cation losses (g m-2)    
 Na+ 1.19 ± 0.69* 

 

1.89 ± 0.15*, a 0.88 ± 0.21a 

 K+ 1.52 ± 0.71* 5.54 ± 0.73+, a 1.63 ± 0.16b 

 Ca2+ 0.74 ± 0.31* 2.17 ± 0.44+, a 1.02 ± 0.41b 

 Mg2+ 0.55 ± 0.29* 1.60 ± 0.33+, a 0.35 ± 0.11b 

Overland flow (mm)º 236 ± 203* 319 ± 26*, a 230 ± 74a 

Runoff coefficient (%) 25 ± 20* 33 ± 1*, a 24 ± 7a 

Sediment losses (g m-2) 50 ± 44* 200 ± 69+, a 85 ± 69b 

 o Total rainfall associated = 962 mm 

 

 

Despite the higher ash and soil cation contents at the BPS site (cf. Section 2.3.1) cation 

losses by overland flow were 2 to 5 times higher under eucalypt (BES) than pine (Table 2.3 

and Figure 2.2).  

 

 

Figure 2.2 - Correlations between cation losses in sites with different vegetation (BES vs. BPS) and 

parent material (BES vs. BEG), at micro-plot scale. Data points correspond to the average cation losses 

in each of the 12 read-outs analysed for the present study. 
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From the Spearman Rank correlation analysis presented in Table 2.4, the environmental 

variables governing cation export at burnt slopes seem to vary depending on pre-fire 

vegetation. At the BES site, losses of dominant ash and soil cations like K+ and Ca2+ were 

highly correlated to variables related to hydrological processes (Table 2.4), in particular to 

rainfall intensity (r=0.65 for K+; r=0.87 for Ca2+) and overland flow (r=0.52 for K+; r=0.81 for 

Ca2+). Malvar et al. (2015) and Prats et al. (2014) also found that rainfall intensity was a key 

factor in the post-fire response of micro-plots in recently burnt eucalypt stands in the study 

region, especially in terms of sediment losses. The higher soil hydrophobicity combined with 

a slower recovery of litter and ground vegetation under burnt eucalypt stands were likely to 

have promoted overland flow and the associated cation losses (Table 2.3) at the BES site 

(Doerr et al., 1998; Knoepp et al., 2005; Malvar et al., 2011, 2013; Thomas et al., 1999, 

2000b), particularly under intense rainfall.  

 

Table 2.4 - Spearman Rank correlations between environmental variables (rainfall amount and 

maximum intensity during 30 minutes - I30, overland flow and suspended sediments) and cation 

losses (averages per read out), at micro-plot scale. Values significantly different from zero at α≤0.05 

are presented in bold. 

 

Slope Variable Na+ K+ Ca2+ Mg2+ 

BEG 

Rainfall (mm) 0.29 0.21 0.06 -

0.07 I30 (mm h-1) 0.66 0.65 0.63 0.34 

Overland flow (mm) 0.54 0.61 0.35 0.22 

Sediments (g m-2) 0.10 0.00 0.20 -

BES 

Rainfall (mm) 0.13 0.21 0.64 0.07 

I30 (mm h-1) 0.34 0.65 0.87 0.39 

Overland flow (mm) 0.40 0.52 0.81 0.36 

Sediments (g m-2) -0.07 0.08 0.47 0.09 

BPS 

Rainfall (mm) 0.21 0.01 0.00 -

0.12 I30 (mm h-1) 0.49 0.50 0.53 0.35 

Overland flow (mm) 0.38 0.37 0.31 0.12 

Sediments (g m-2) 0.67 0.78 0.80 0.66 
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At the pine site (BPS), on the other hand, cation export was strongly correlated with 

sediment losses (Table 2.4), which suggests that cation losses occurred especially in 

particulate form. This stronger dependence on erosion processes confirms the idea of other 

authors (Knoepp et al., 2005; Kutiel and Shaviv, 1992; Martins et al., 2013; Thomas et al., 

2000a, 2000b) that the existence of a needle cover, resulting from needle cast from the 

partially combusted crowns of resinous trees, may act as a protection for soils, thereby 

limiting overland flow and the associated sediment and cation losses at burnt pine sites. 

Parent material also played an important role in cation export (Table 2.3 and Figure 2.2) 

since losses were 1.5 to 4 times higher on schist (BES) than on granite (BEG). As cations are 

adsorbed on the surface of negatively charged materials such as organic colloids, higher 

exports would be expected from the organically-poor schist soils than granite soils (Table 

2.1) due to the existence of fewer cation exchange sites (Granged et al., 2011; Knoepp et al., 

2005; Terefe et al., 2008; Shakesby 2011). On the other hand, the sandy texture of granite 

soils might have provided greater water infiltration capacity at micro-plot scale (Boix-Fayos 

et al., 2006; Shakesby, 2011), thereby generating lower amounts of overland flow and 

consequently lower cation exports at the BEG site (Table 2.3). Differences between the 

relative order of total Na+ and Ca2+ losses on granite and schist seem to be linked to soil 

properties and hydrological processes. The high correlation coefficients between Na+ losses 

and overland flow at the BEG site (Table 2.4) suggest that the export of the highly-soluble Na+ 

ions was promoted by the lack of Na+-adsorption sites in granite soils (possibly due to the 

higher availability of divalent cations), especially since lower amounts of overland flow were 

required for Na+ mobilization at the BEG site than at the BES site (Table 2.3). As a 

consequence, Na+ exports were also higher at the BEG site than at the BES site. In the case of 

the divalent cations which are less easily mobilized as monovalent ions (Cancelo-González et 

al., 2013; Soto and Diaz-Fierros, 1993; Úbeda et al., 2009), however, the amount of overland 

flow generated was a limiting factor in promoting promote Ca2+ export at the BEG site 

(r=0.35) but not at the BES site (r=0.81). 

2.3.2.2 Slope scale 

At slope scale, the 12 read-outs selected for this study amounted, on average, to 92 % of 

the total overland flow produced by the open-plots. As regards to the associated total cation 

losses, values were, on average, 2-fold lower (Table 2.5) at the long-unburnt (UES) than at the 

recently burnt eucalypt plantations on schist (BES). Fire disruption of soil structure and 

hydraulic properties might account for these findings (Ferreira et al., 2005; 2008; Shakesby, 

2011; Thomas et al., 1999, 2000b), since sediment losses were higher at the burnt site, but 

not the overland flow (Table 2.5).  
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Table 2.5 - Total (dissolved plus particulate) average cation losses, overland flow, runoff coefficients 

(%) and sediment losses at slope scale, for the 12 selected read-outs during the first six months 

following a wildfire. BEG – burnt eucalypt-granite site; BES – burnt eucalypt-schist site; BPS – burnt 

pine-schist site and UES – unburnt eucalypt-schist site. For each line, different symbols, letters and 

numbers correspond to significant differences (p<0.05) among slopes with respectively, different 

parent material (BEG vs BES), vegetation (BES vs BPS) and fire regime (BES vs UES). 

 

Variable BEG BES BPS UES 

Cation losses (g m-2)     
 Na+ 0.16* 

 

0.04+, a,1 0.05a 0.051 

 K+ 1.04* 0.10+,a,1 0.09a 0.042 

 Ca2+ 0.35* 0.05+,a,1 0.05a 0.021 

 Mg2+ 0.18* 0.02+,a,1 0.02a 0.011 

Overland flow (mm)° 24.0* 10.5+,a,1 10.8a 14.31 

Runoff coefficient (%) 2.4* 0.9+,a,1 0.8a 1.51 

Sediment losses (g m-2) 140.2* 6.1+,a,1 3.5a 1.22 
 o Total rainfall associated = 962 mm 

 

 

For this site (BES), the addition of ash to the soils might have increased soil water 

retention, leading to lower runoff generation (Ebel et al., 2012). However, the ash layer was 

not able to prevent the detachment of soil particles by rainsplash erosion. An analysis of the 

amount of overland flow associated to each read-out seems to support this idea since runoff, 

unlike sediment losses, was higher at the BES than UES site in the second trimester after fire.  

On the other hand, at the unburnt site, the high hydrophobicity of soils under eucalypt 

stands particularly after a dry season might have also been responsible for the higher runoff 

amounts observed in the first trimester after the fire, since high soil moisture levels are 

required to break soil water repellency (Keizer et al., 2005; Santos et al., 2013). As regards to 

sediments, the existence of a soil protective layer (litter and vegetation) at unburnt sites, 

most likely prevented sediment losses during the period of intense overland flow. The 

Spearman Rank correlation analyses presented in Table 2.6 clearly suggest that differences in 

cation exports between unburnt and burnt sites must be related to differences in hydrological 

and erosion processes, since little effect of environmental variables were found at the UES 

site, unlike at the BES site (Figure 2.3 and Table 2.6). The relative order of cation exports also 

differed between UES and BES (Table 2.6).  
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Table 2.6 - Spearman Rank correlations between environmental variables (rainfall amount and 

maximum intensity during 30 minutes - I30, overland flow and suspended sediments) and cation 

losses, at slope scale. Values significantly different from zero at α≤0.05 are presented in bold. 

Slope Variable Na+ K+ Ca2+ Mg2+ 

BEG 

Rainfall (mm) 0.69 0.69 0.42 0.49 

I30 (mm h-1) 0.04 0.36 0.79 0.54 

Overland flow (mm) 0.62 0.71 0.50 0.61 

Sediments (g m-2) 0.59 0.74 0.62 0.65 

BES 

Rainfall (mm) 0.67 0.81 0.46 0.50 

I30 (mm h-1) 0.21 0.69 0.74 0.48 

Overland flow (mm) 0.73 0.81 0.39 0.50 

Sediments (g m-2) 0.68 0.76 0.61 0.74 

BPS 

Rainfall (mm) 0.36 0.25 0.28 0.12 

I30 (mm h-1) 0.36 0.40 0.52 0.31 

Overland flow (mm) 0.24 0.01 -0.04 -0.10 

Sediments (g m-2) 0.64 0.73 0.74 0.71 

UES 

Rainfall (mm) 0.59 0.47 0.52 0.36 

I30 (mm h-1) 0.36 0.22 0.49 0.24 

Overland flow (mm) 0.08 -0.11 0.07 -0.17 

Sediments (g m-2) 0.48 0.39 0.58 0.34 

 

 

At the UES site, highly-reactive easily-mobilized monovalent cations (Na+ > K+) 

presented the highest export rates and divalent cations (Ca2+ > Mg2+) the lowest (2 to 7 

times), as would be expected in undisrupted systems (Ferreira et al., 2005; Thomas et al., 

1999, 2000a, 2000b). In the BES site, on the other hand, K+ and Ca2+ were respectively the 

first and second most exported cations, possibly as a result of the depletion of the cation-

enriched ash layer as hypothesized at the micro-plot scale (cf. Section 2.3.2.1). For the other 

burnt sites (BEG and BPS), K+ was also the element with the highest export rates, but the 

relative order of export of the other cations differed from the BES site. 
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Figure 2.3 - Correlations between cation losses in sites with different fire regime (BES vs. UES), 
vegetation (BES vs. BPS) and parent material (BES vs. BEG), at slope scale. Data points correspond to 
the average cation losses in each of the 12 read-outs analyzed for the present study. 

 

 

At the BPS site, the exports of highly reactive-highly soluble cations (K+>Na+) were 

higher than that of less reactive-less soluble divalent cations (Ca2+>Mg2+). At the BEG site, 

cation exports followed the order of soil cation contents (cf. Section 3.1), thereby suggesting 

that cation losses were more dependent on soil erosion than on metal reactivity (i.e. solubility 

in water and affinity to bind to organic matter).  

For the burnt slopes, differences in cation exports were also identified between micro-

plot and slope scale. In comparison to the micro-plot scale, a substantial decrease (one order 

of magnitude) in cation exports was observed at slope scale (Table 2.3 and Table 2.5).  

Although a higher number of micro-plots would have been desirable to capture the 

heterogeneity within each slope, in the present study, the cation exports measured at the 

three micro-plots did not encompassed slope-scale exports. Therefore, one can presume that 

the lower cation exports were largely the result of lower overland flow and erosion rates at 

the slope scale (Table 2.5) since cation exports were strongly dependent on hydrological and 
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erosion processes (Table 2.6). This seems to agree with the current opinion that runoff and 

erosion decrease with increasing spatial scale (Boix-Fayos et al., 2006; Coelho et al., 2004; 

Ferreira et al., 2005, 2008; Shakesby, 2011), especially due to re-infiltration opportunities 

resulting from a high spatial variability of soil water repellency, macroporosity and 

vegetation patterns following fire (Boix-Fayos et al., 2006; Ferreira et al., 2008; Shakesby, 

2011).  

When comparing sites with different pre-fire vegetation features (Table 2.5 and Figure 

2.3), similar cation exports were observed at eucalypt (BES) and pine plantations (BPS) on 

schist, in opposition to what was observed at micro-plot scale (cf. Section 2.3.2.1). The 

improvement of hydrological connectivity at larger scales might have reduced the water 

erosion at the BES site (Table 2.5), since cations losses were highly correlated to sediment 

losses (Table 2.6), unlike at micro-plot scale (Figure 2.3). Despite these results, cation exports 

were, on average, lower at the BPS than BES site, which confirms the importance of a soil 

protective layer for the reduction of cation losses in burnt areas (cf. Section 2.3.2.1).  

Parent material, on the other hand, had a significant effect (Mann-Whitney Rank Sum 

test, p<0.01) on base cation exports in burnt areas, since higher cation losses (one order of 

magnitude) were found at the granite (BEG) than at the schist (BES) site (Table 2.5), as 

opposite to the micro-plot scale (Table 2.3). These findings seem to support the idea that 

processes occurring at larger scales are more likely to resemble the natural hydrological and 

erosive response of burnt slopes, since higher overland flow and associated sediment and 

cation losses as found in the present study (Table 2.5), have been reported for sandy soils 

(Knoepp et al., 2005; Shakesby, 2011). 

2.3.3 Cation concentrations in overland flow 

2.3.3.1 Micro-plot scale 

Immediately after the first post-fire rainfall event, all burnt sites exhibited a peak in total 

base cation concentrations (Figure 2.4) as a response to the leaching of the cation rich-easily 

erodible ash layer (Ferreira et al., 2005; Thomas et al., 1999). As the ash reservoir diminished 

and eroded sediments progressively coarsened (which causes a reduction of the cations 

sorption capacity to eroded soil particles), a sharp decrease in cation levels was observed, 

particularly in the first two months following fire (Figure 2.4). From this point one, cation 

concentrations were maintained at low levels and slight peaks occurred only as a response to 

extreme rainfall events, as referred by other authors (Ferreira et al., 2005; Soto et al., 1997). 
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Figure 2.4 - Cation concentrations in overland flow (mg L-1) at micro-plot scale. BEG – burnt eucalypt-
granite site; BES – burnt eucalypt-schist site and BPS – burnt pine-schist site. 

 

2.3.3.2 Slope scale 

The comparison between cation concentrations at the long-unburnt (UES) and burnt 

eucalypt plantations on schist (BES), confirms the impact of wildfires as higher cation 

concentrations were found at BES than UES site (Figure 2.5). The increase of bare soil areas 

as a result of the (partial) combustion of vegetation and litter layer (Ferreira et al., 2005; Soto 

et al., 1997; Soto and Diaz-Fierros, 1993; Thomas et al., 1999, 2000b), possibly promoted 

overland flow and the associated sediment and cation losses at the BES site (Table 2.5). In 

comparison to the micro-plot scale, at a larger scale, cation concentrations exhibited clear 

differences between burnt sites as well as a more complex variation pattern (Figure 2.5). At 

the granite site (BEG), several cation peaks were observed within the first 6 months after fire, 

whereas at schist sites (BES and BPS) high cation levels were only found during a short 

period of time (1 to 2 months) after burning (Figure 2.5). A potential explanation for these 

patterns involves the existence of a continuous source of cations on granite – the topsoil, and 

a finite source on schist – the cation-rich ash layer (Ferreira et al. 2005). As a consequence, 

higher cation exports were found on granite than on schist (Table 2.5 and Figure 2.3). 
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Figure 2.5 - Cation concentrations in overland flow (mg L-1) at slope scale. BEG – burnt eucalypt-

granite site; BES – burnt eucalypt-schist site; BPS – burnt pine-schist site and UES – unburnt eucalypt-

schist site. 

 

2.4 Conclusions 

The present study clearly demonstrated the effects of wildfires on cation mobilization by 

overland flow. Cation exports were particularly intense in the two months after fire but after 

this initial period, peaks in cation concentrations were also observed in association to intense 

rainfall events. 

These results suggest that wider time scales (i.e. wider than 6 months) are needed to 

evaluate the full extension of wildfires on forest lands. Nevertheless, it seems reasonable to 

recommend that post-fire management efforts should focus on the first 3 months after fire, to 

minimize the loss of soil fertility and degradation of burnt forest areas. 

The present work also showed that scale size is an important factor when studying the 

effects of wildfires on soil degradation, since different responses were observed at micro-plot 

and slope scale. At smaller scales, cation losses were higher than at larger scales, possibly 

because runoff and erosion decreases at larger scales as a result of changes in the soil 

infiltration patterns. 
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These findings confirm the idea that although micro-plots may be suitable to quickly 

characterize the hydrological and erosion response in burnt forest areas, studies carried out 

at a larger scale are probably closer to reality due to a better representation of the natural 

connectivity within forest systems. 

Studies at broader spatial scales, as well as wider time scales, are therefore 

recommended to assess the effective risk of post-fire soil fertility loss, which has important 

implications for the recovery process of burned Mediterranean forests as well as for post-fire 

land management. 
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Abstract 

Over the past decades, wildfires have affected extensive areas of the Mediterranean 

region with negative impacts on the environment. Most of the studies on fire-affected areas 

have focused on sediment losses by overland flow, whereas few have addressed post-fire 

nutrient export. The present study aimed to address this research gap by assessing nitrogen 

(nitrate and total nitrogen) losses by overland flow in a recently burnt area in north-central 

Portugal. To this end, three burnt slopes were selected for their contrasting forest types 

(eucalypt vs. pine) and parent materials (granite vs. schist). The selected study sites were a 

eucalypt site on granite (BEG), a eucalypt site on schist (BES) and a maritime pine site on 

schist (BPS). Overland flow samples were collected during the first six months after the 

wildfire on a 1- to 2-weekly basis, after which this study had to be cancelled due to bench 

terracing of some of the sites. A peak in total nitrogen concentrations was observed in burnt 

areas immediately after the first post-fire rainfall event as a response to the erosion of the N-

enriched ash layer. After this initial peak, smaller peaks were observed throughout the study 

period, mainly as a response to overland flow and/or erosion events. Nitrogen export differed 

strikingly between the two types of forests on schist, being higher at the eucalypt than at the 

pine site, due to the lack of a protective soil layer. Parent material did not play an important 

role on nitrogen export by overland flow since no significant differences were found between 

the eucalypt sites on granite and schist. The present study provides some insight into the 

differences in post-fire soil fertility losses between forest types and parent materials in the 

Mediterranean region, which is crucial information for defining post-fire land management 

measures to reduce soil degradation. 
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3.1 Introduction 

The increasing frequency of wildfires over the past decades has raised the concern over 

the resilience capacity of Mediterranean ecosystems to fire (Pausas et al., 2008; Pereira et al., 

2006; Shakesby, 2011). By altering vegetation and soil properties, a fire typically disrupts the 

hydrological and geomorphological processes in forest areas (Shakesby, 2011; Shakesby and 

Doerr, 2006), so recurrent wildfires are likely to affect the functioning of natural systems. In 

the Mediterranean region, in particular, fires have been reported to increase overland flow 

generation and the associated soil and nutrient losses (Caon et al., 2014; Certini, 2005; 

Ferreira et al., 2005; Machado et al., 2015; Pausas et al., 2008; Shakesby, 2011; Thomas et al., 

1999, 2000a, 2000b), increasing the risk of degradation of the already shallow and poor 

Mediterranean soils (Ferreira et al., 2005; Shakesby, 2011; Shakesby and Doerr, 2006).  

Post-fire nutrient losses by water occur mainly during the earlier stages of the so-called 

‘‘window-of-disturbance’’ (Shakesby and Doerr, 2006). This has typically been attributed to 

the (partial) consumption of the protective litter and vegetation cover, which promotes 

overland flow generation and soil erosion (Andreu et al., 2001; Bodí et al., 2014; Ferreira et 

al., 2005; Prats et al., 2013; Thomas et al., 1999). However, also the exhaustion of the 

nutrient-enriched ash layer deposited after the fire has been suggested as an important factor 

(Caon et al., 2014; Khanna et al., 1994; Knoepp et al., 2005; Pausas et al., 2008; Pereira et al., 

2005; Shakesby, 2011; Thomas et al., 1999). Nonetheless, the magnitude of post-fire nutrient 

losses appears to be extremely variable, depending on an interplay of factors such as fire 

severity and recurrence (Bodí et al., 2014; Brais et al., 2000; Caon et al., 2014; Knoepp et al., 

2005; Neary et al., 1999; Shakesby and Doerr, 2006), post-fire rainfall patterns (Bodí et al., 

2014; Shakesby and Doerr, 2006), vegetation type and recovery (Caon et al., 2014; Cerdà and 

Doerr, 2008; Certini, 2005; Knoepp et al., 2005; Neary et al., 1999), terrain steepness (Bodí et 

al., 2014; Certini, 2005; Neary et al., 1999; Shakesby and Doerr, 2006) and soil characteristics 

(Certini, 2005; Neary et al., 1999; Shakesby and Doerr, 2006).  

In spite of the relevance of soil nutrient status for the productivity of Mediterranean 

forest ecosystems (Andreu et al., 1996; Durán et al., 2010; Ferreira et al., 2005; Gimeno-

García et al., 2000; Pardini et al., 2003; Rodríguez et al., 2009), post-fire nutrient losses by 

overland flow have been poorly studied in the Mediterranean Basin (e.g. Cancelo-González et 
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al., 2013; DeBano et al., 1998; Díaz-Fierros et al., 1990; Lasanta and Cerdà, 2005; Machado et 

al., 2015). In the case of Portugal, few studies have measured post-fire nitrogen export by 

overland flow (Coelho et al., 2004; Ferreira et al., 1997, 2005; Thomas et al., 2000a, b; Walsh 

et al., 1992). Like the present study, most of the prior studies investigated nitrogen losses for 

the two principal forest types in north-central Portugal, i.e. plantations of eucalypt 

(Eucalyptus globulus Labill.) and maritime pine (Pinus pinaster Ait.), but they only evaluated 

solute losses and not total nitrogen losses (i.e. solute + particulate fraction). Furthermore, 

prior studies involved larger spatial scales than this study, i.e. 16 m2 plots (Ferreira et al., 

1997, 2005; Thomas et al., 2000a, b; Walsh et al., 1992) and small catchments (Ferreira et al., 

1997, 2005), which typically have more complex hydrological and erosion responses.  

A better understanding of post-fire nutrient export behaviour, in both its dissolved and 

particulate forms, is therefore crucial for a more reliable assessment of soil fertility losses 

following wildfires as well as of their potential eutrophication effects on downstream aquatic 

systems.  

The present study aims to address this knowledge gap, by evaluating total nitrogen 

exports by post-fire overland flow in a recently burnt area of the western Mediterranean 

Basin. Since it proved impossible to find a long-unburnt pine plantation in the immediate 

surroundings of the burnt area and since it was preferred to instrument a nearby long-

unburnt eucalypt plantation with slope-scale plots rather than of micro-plots (see for more 

details in Machado et al., 2015), this study does not allow to assess the effects of fire on 

nitrogen losses by overland flow. Instead, the main purpose of the current work was to 

compare post-fire nitrogen losses for different combinations of land cover and parent 

material. The specific objectives were to quantify total nitrogen as well as nitrate losses by 

overland flow at the micro-plot scale for: (i) two contrasting forest types - i.e. eucalypt and 

maritime pine plantations, which dominate the north-central Portuguese mountains; (ii) for 

two contrasting bedrock types - i.e. schist and granite, which are the prevailing parent 

materials in north-central Portugal. These losses were furthermore related to the nitrogen 

stocks of the ash layer and the topsoil, for a better understanding of the N cycle following fire.  

As two of the three study sites were terraced 6 months after the fire in preparation for a 

new eucalypt plantation, the present study had to be restricted to the immediate post-fire 

period because this technique completely altered the topography of the slopes (Martins et al., 

2013). Although this constitutes a drawback compared to the initial plans to monitor runoff 

and erosion during the first 2-3 years after fire, prior studies in the study region have 

suggested that the post-fire hydrological and erosion response is strongest during the first 4 

to 6 months after the wildfire (e.g. Ferreira et al., 2005, 2008; Malvar et al., 2011; Martins et 

al., 2013; Prats et al., 2014; Shakesby, 2011; Shakesby and Doerr, 2006). 
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3.2 Materials and Methods 

3.2.1 Study area and sites 

The study area was located within the Vouga River Basin, near the Ermida village in the 

Sever do Vouga municipality, north-central Portugal (Figure 3.1). 
 

 
Figure 3.1 - Location of the Ermida study area within the Vouga River basin, north-central Portugal. 

Location of the study sites: BEG — burnt eucalypt-granite site, BES — burnt eucalypt schist site and 

BPS — burnt pine-schist site. Bold line represents the Ermida catchment. 

 

The area was burnt between July 26 and July 28 2010 by a wildfire that consumed, in 

total, 295 ha of forest (DUDF, 2011). Before the fire, the “Ermida” study area was 

predominantly covered by commercial eucalypt (Eucalyptus globulus Labil.) plantations but 

also included some maritime pine (Pinus pinaster Ait.) stands. Fire severity was, on overall, 

moderate, since ashes were black, the litter layer and understory vegetation (herbs and 

shrubs) was almost completely consumed by fire, and tree crowns were only partially 

combusted (Shakesby and Doerr, 2006). According to Near Infrared (NIR) spectroscopy 
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measurements, the maximum temperatures reached by topsoil (0-2 cm layer) during fire 

varied from 325 to 405ºC in the study area (Pedrosa, 2012). Within the burnt area, three hill 

slopes were selected for this study for their contrasting forest types and parent materials 

(Figure 3.1). The BEG study site concerned an eucalypt plantation on granite, the BES site 

concerned an eucalypt plantation on schist and the BPS site a maritime pine site on schist.  

The climate of the study area can be classified as humid meso-thermal with moderate 

but prolonged warm dry summers (Köppen; Csb, DRA-Centro, 2002). The mean annual 

temperature at the nearest climate station (Castelo-Burgães: 40°51′10″N, 8° 22′44″W at 306 

m a.s.l.) was 14.9 °C (1991–2011; SNIRH, 2011), with average monthly temperatures ranging 

from 8.9 °C in January to 21 °C in July. Annual rainfall at the nearest rainfall station 

(Ribeiradio: 40°73′65″N, 8°30′08″W at 228 m a.s.l.) was, on average, 1655 mm, but varied 

markedly between dry (960 mm) and wet (2530 mm) years (1991–2011; SNIRH, 2011). 

The study area is part of the Hesperic Massif, one of the region’s major physiographic 

units. This unit is dominated by pre-Ordovician schists and greywackes but also includes 

Hercynian granites (Pereira and FitzPatrick, 1995). The granites exhibit evidences of granular 

disintegration, otherwise designated by arenisation, with accumulation of sand particles and 

gravel. The soils are mapped as Humic Cambisols (1:1000000; Cardoso et al., 1973), but 

according to a field survey carried out in the area, soils range from Humic Leptosols to Humic 

Cambisols at the BEG and BES sites; and from Lithic Leptosols to Humic Leptosols at the BPS 

site (IUSS, 2006). The topsoil (0–2 cm) at the study sites was rather coarse, with a loam to 

sandy-clay loam texture, and high (19–29%) organic matter content (Table 3.1). 

3.2.2 Experimental set-up, field data and sample collection 

Each of the study sites was divided into 2 strips running from the base to the top of the 

slope section. One of the strips was used for repeated collection of soil samples and the other 

for measuring overland flow at the micro-plot scale. Samples and plots at each site were 

treated as independent observations, although this can be questioned given the reduced 

distances between the samples/plots. This possible form of pseudo-replication is, however, 

typically difficult to avoid in wildfire studies (Hurlbert, 1984; Mantgem et al., 2001); in the 

case of the study area, due to the impossibility to find three or more slopes that were 

sufficiently similar in land cover, parent material, terrain characteristics (exposition, slope 

angle) and fire severity to be considered replicate sites. Worth stressing is that the 

samples/plots from each of the present study sites typically exhibited considerable 

variability, suggesting that they can indeed be considered independent observations.  
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Table 3.1 - General slope description. BEG – burnt eucalypt-granite site; BES – burnt eucalypt-schist 

site; and BPS – burnt pine-schist site. 

 
Slope BEG BES BPS 

General characteristics 

   
Forest type Eucalyptus globulus Eucalyptus globulus Pinus pinaster 

Parent material Granite Schist Schist 

Geographical coordinates 40º43'56'' N  40º43'58'' N  40º43'54'' N  

 
8º21'3'' W 8º20'58'' W 8º20'47'' W 

Elevation (m.a.s.l.) 220 220 150 

Slope angle (º) 25.6 ± 4.4  24.0 ± 6.0 24.0 ± 2.4 

Slope length (m) 77 48 36 

Fire severity moderate moderate moderate 

Topsoil properties 

   
[0-2] cm depth 

   
     Texture Sandy loam Loam Sandy-clay loam 

     Sand fraction (%) 61.3 44.7 53.6 

     Silt fraction (%) 24.3 33.8 25.1 

     Clay fraction (%) 14.4 21.5 21.3 

     Organic matter (%) 29 22 19 

[0-5] cm depth 

   
     Bulk density (g.cm-3) 0.71 ± 0.11 0.78 ± 0.19 0.73 ± 0.13 

 

 

For this study, only samples of the topsoil (0-2 cm depth) were collected because 

moderate fires are widely known for affecting mainly the upper 2 cm of soil (Badía et al., 

2014; Mataix-Solera et al., 2011; Zavala, 2014). Soil sampling was done on 2 occasions: first, 

on August 10 2010, roughly two weeks after the wildfire and before the occurrence of any 

rainfall; and then again, on February 16 2011, before terrace construction. At the first 
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occasion, ash samples were collected along with soil samples. At both occasions ash and/or 

soil sampling was done at five equally-distant points along a transect that was laid out from 

the base to the top of the slope section. At each point of the transect ashes were collected over 

an area of 0.25 m2 (0.5 m × 0.5 m) and topsoil (0-2 cm depth) over an area of 0.06 m2 (0.25 m 

× 0.25 m). At the second sampling occasion, the transect was shifted approximately 1-2 m 

across the slope. 

The study sites were instrumented with overland flow plots on August 25 2010, before 

the occurrence of post-fire rainfall. This involved the installation, at the base of the slope 

section, of three replicate bounded micro-plots of approximately 0.28 m2, at distances of 

1-2 m from each other. The main criteria for the location of the micro-plots were: i) the easy 

access, as it facilitates speedy data and sample collection, and ii) the minimization of slope 

disturbance, which was a concern because the slopes were located within an experimental 

catchment (Keizer et al., 2015). The outlets of the micro-plots were connected, using garden 

hose, to one or more high density polyethylene 30 to 70 L barrels to collect overland flow. 

From August 2010 to February 2011, overland flow was measured at 1- to 2-weekly 

intervals, depending on the occurrence of rainfall. Whenever the overland flow in a barrel 

exceeded 250 mL, a sample was collected in a 500 mL polyethylene bottle that had been 

previously rinsed with HCl (pH < 2.0) and distilled and dionized water. The samples were 

then transported to the laboratory in cool boxes and stored at 4ºC for no longer than 24 h. 

The 1- to 2-weekly field trips also involved measurement of rainfall accumulated in 4 storage 

gauges (in-house design) that had been installed across the study area by the middle of 

August 2010. Their main purpose, however, was to validate the automatic recordings of two 

tipping-bucket rainfall gauges (Pronamic Professional Rain Gauge with 0.2 mm resolution) 

that had been installed in close proximity to two of the storage gauges. 

3.2.3 Laboratory analyses 

Upon arrival to the laboratory, the ash and soil samples were air dried and sieved 

manually with a 2 mm sieve. Total nitrogen content (TKN) in ashes and soils was determined 

using the Kjeldahl method (Bremner, 1979). Aside from nitrogen, soil samples were also 

analysed for: i) bulk density, using the core method as described by Porta et al. (2003); ii) soil 

particle size, following the international method of mechanical analysis as defined by Guitián 

and Carballas (1976); and iii) organic matter, determined by loss on ignition at 550ºC for 4 h, 

as described by Botelho da Costa (2004).  

Overland flow samples were analysed for total nitrogen (i.e. dissolved plus particulate N 

forms) and nitrate (NO3-N) using a flow injection FIAstarTM 5000 analyser (FOSS-Tecator). 

Prior to analysis, overland flow subsamples (50 mL) for determining NO3-N concentrations 
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were filtered with 0.45 μm Millipore© membrane filters. Subsamples (50 mL) for analysing 

TN were subjected to an oxidative digestion, using peroxodisulphate/alkali (Oxisolv®, 

Merck) and then filtered. Total suspended solids (TSS) in overland flow samples were 

quantified gravimetrically through filtration of 50 to 150 mL of water by a glass fibre filter, 

followed by drying to a constant weight at 105 ºC (APHA, 1998). 

 

3.2.4 Data analyses 

Differences in total Kjedahl nitrogen (TKN) ash and topsoil contents between sites with 

different forest type (BES vs. BPS) and parent material (BEG vs. BES) were evaluated by a a 

one-way ANOVA followed by a multi-comparison Tukey’s test, if the assumptions of 

normality (checked by the Shapiro-Wilk test) and homogeneity of variance (checked by the 

Levene’s test) were not rejected. If one or both of them were rejected, logarithmic 

transformations of the data were performed to comply with the assumptions of the ANOVA 

(Zar, 1999).  

Regarding NO3-N and TN exports in overland flow and their respective concentrations, a 

one-way ANOVA followed by a Tukey’s test was performed to test differences between sites 

with contrasting vegetation (BES vs. BPS) and parent material (BEG vs. BES), after checking 

for data normality and homogeneity of variance. Whenever one or both of the ANOVA 

assumptions were not met, logarithmically transformed data was used in the analysis (Zar, 

1999). Between-site differences in overland flow and sediment losses were also evaluated by 

a one-way ANOVA followed by a Tukey’s test.  

The influence of environmental variables (rainfall amount and intensity, overland flow 

and sediment losses) on nitrogen losses by overland flow was assessed by the Pearson’s 

correlation coefficient. In the case of the variables that had not met the normality assumption 

by the above-mentioned Shapiro-Wilk test, the coefficients were computed for the 

transformed data.  

All statistical analyses were performed with SigmaPlot 11.0 package software, using a 

significance level of 0.05. 

3.3 Results 

3.3.1 Ash and topsoil nitrogen contents 

The average total Kjeldahl nitrogen (TKN) content in ash and topsoil layers at the three 

study sites are shown in Table 3.2. No significant differences were observed between the 

ashes collected at sites with contrasting forest type or parent material (ANOVA: F = 0.847, 
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p = 0.455). At all the study sites, TKN contents immediately after the wildfire (August 2010) 

were on average roughly twice as high in the ashes than in the topsoil (Table 3.2). 

The comparison of topsoil nitrogen contents in August 2010 did not reveal significant 

differences (ANOVA: F = 0.325, p = 0.729) between the two types of tree plantations (BES vs. 

BPS) on schist (Table 3.2). Topsoil TKN contents did not differ significantly between the two 

types of parent material (BEG vs. BES) either (ANOVA: F = 0.325, p = 0.729). From August 

2010 to February 2011, a significant decrease (58 to 75%) in soil TKN contents was observed 

at all three study sites (Table 3.2). However, six months after the fire (Table 2), there were 

also no significant differences between sites with distinct types of vegetation and parent 

material (ANOVA: F = 0.801, p = 0.476). 

 

 

Table 3.2 - Average (± standard deviation; n = 5) total Kjeldahl nitrogen (TKN) concentrations/stocks 

in the ash and topsoil layers of the three study sites, immediately (August 2010) and sixth months after 

fire (February 2011). BEG — burnt eucalypt-granite site; BES — burnt eucalypt-schist site; and BPS — 

burnt pine-schist site. 

 
  Sampling date Layer BEG BES BPS 

TKN concentrations Aug 2010 Ash 1.92 ± 0.29 1.72 ± 0.63 1.58 ± 0.32 

(mg g-1) Soil 0.91 ± 0.15 0.81 ± 0.36 0.78 ± 0.26 

 

Feb 2011 Soil 0.23 ± 0.15 0.26 ± 0.19  0.32 ± 0.04 

TKN stocks  Aug 2010 Soil 12.9 ± 2.2 12.7 ± 5.6 11.4 ± 3.8 

(g m-2) Feb 2011 Soil 3.2 ± 2.1 4.1 ± 3.0 5.0 ± 1.0 

 

 

3.3.2 Nitrogen exports by overland flow 

The average exports of nitrate (NO3-N) and total nitrogen (TN) in the first 6 months after 

fire are presented in Figure 3.2. At all the study sites, peaks of NO3-N and TN exports were 

generally associated to major runoff events. Nitrate exports, however, represented only a 

small fraction (1 to 6%) of TN exports. The comparison of NO3-N (ANOVA: F = 6.732, p = 

0.003; Tukey’s test: p = 0.004) and TN exports (ANOVA: F = 4.346, p = 0.019; Tukey’s test: p = 

0.016) between sites with contrasting types of vegetation revealed significant differences 

between the eucalypt and the pine site on schist (Figure 3.2). 
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Global TN losses over the entire study period (Table 3.3) were almost four times as high 

at the BES site (1.32 g m-2) than at the BPS site (0.35 g m-2). For NO3-N, differences between 

the two sites were even more pronounced, being about 10 times higher at the BES site (0.04 g 

m-2) than at the BPS site (0.004 g m-2). Parent material, on the other hand, did not play an 

important role in post-fire nitrogen exports (Figure 3.2 since no significant differences were 

found for either NO3-N losses (ANOVA: F = 6.732, p = 0.003; Tukey’s test: p = 0.834) or TN 

losses (ANOVA: F = 4.346, p = 0.019; Tukey’s test: p = 0.130) at the BEG and BES sites. In 

terms of global exports, however, TN losses were more than two times higher at the BES site 

(1.32 g m-2) than at the BEG site (0.62 mg m-2), whereas NO3-N exports were very similar at 

the two sites (BEG = 0.03 g m-2; BES = 0.04 g m-2). 

 

 

 
Figure 3.2 - Average overland flow amounts, and nitrate (NO3-N) and total nitrogen (TN) losses by 

overland flow within the first 6 months after fire. BEG – eucalypt-granite site; BES – eucalypt-schist site 

and BPS – pine-schist site. 
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Table 3.3 - Average (± standard deviation) of total nitrogen losses (NO3-N and TN), overland flow, 

runoff coefficients and sediment losses at the three study sites for the first 6 months following fire (no. 

of plots per site = 3; no. of read-outs per plot = 21). Different letters within rows correspond to 

significant differences (p < 0.05) among slopes with different types of parent material (BEG vs. BES). 

Different symbols within rows correspond to significant differences (p < 0.05) among slopes with 

different types of vegetation (BES vs. BPS). BEG – eucalypt-granite site; BES – eucalypt-schist site and 

BPS – pine-schist site. 

 

Variables BEG BES BPS 

Nitrogen export (g m-2) 

   
     NO3-N 0.03 ± 0.02a 0.04 ± 0.01a,* 0.004 ± 0.002+ 

     TN 0.62 ± 0.37a 1.32 ± 0.30a,* 0.35 ± 0.09+ 

Environmental variables 

   
     Overland flow (mm)º 320 ± 245a 419 ± 14a,* 298 ± 105* 

     Runoff coefficient (%)  26 ± 20a 34 ± 1a,* 25 ± 9* 

     Sediment losses (g m-2) 54 ± 45a 249 ± 113b,* 26 ± 13+ 

      º Total rainfall associated = 1218 mm 

 
 
 

3.3.3 Environmental variables and post-fire nitrogen export 

From the Pearson correlation coefficients presented in Table 4, TN export at the three 

study sites was strongly associated to the amount (r ≥ 0.66) and intensity of rainfall (r ≥ 0.76) 

as well as to overland flow amount (r ≥ 0.72) and sediment losses (r ≥ 0.82). As regards to 

nitrate, the environmental variables governing the export of this inorganic nitrogen form 

differed with pre-fire vegetation (Table 3.4). 

At the BES site, NO3-N losses were highly correlated with hydrological variables (rainfall 

amount, rainfall intensity, and overland flow), whereas at the BPS site no significant 

correlations were found between NO3-N exports and the environmental variables 

investigated in the present study. Comparing the two sites with contrasting parent materials, 

differences were also observed between environmental variables controlling NO3-N exports 

at the granite and schist sites. At the BEG site NO3-N exports were highly correlated with both 

hydrological variables and sediment losses, whereas at the BES site they were mostly 

dependent on hydrological variables (Table 3.4). 
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Table 3.4 - Pearson’s correlations between environmental variables (i.e. rainfall amount, maximum 

rainfall intensity during 30 min – I30, overland flow and suspended sediments) and nitrogen losses by 

overland flow (averages per read out). Significant values (p ≤ 0.05) are presented in bold. 

 
Slope N form Rainfall  I30  Overland flow Sediments 

   (mm) (mm h−1) (mm) (g m−2) 

BEG   TN 0.73 0.83 0.94 0.95 

   NO3-N 0.47 0.73 0.75 0.67 

BES   TN 0.93 0.87 0.91 0.93 

   NO3-N 0.67 0.80 0.87 0.43 

BPS   TN 0.66 0.76 0.73 0.82 

   NO3-N 0.38 0.49 0.42 0.32 

 

 

3.3.4 Nitrogen concentrations in overland flow 

The variation patterns of nitrate (NO3-N) and total nitrogen (TN) concentrations in 

overland flow within the first 6 months after fire are presented in Figure 3.3. 

At the eucalypt sites (BEG and BES) a major peak in NO3-N concentrations was observed 

for the first post-fire rainfall event (Figure 3.2 and Figure 3.3), whereas a clear peak in NO3-N 

concentrations was lacking at the pine site (BPS). For the subsequent study period, all slopes 

revealed complex patterns in NO3-N concentrations, which appeared to be largely 

independent from rainfall amounts as well as from overland flow and sediment losses at each 

site (Figure 3.2 and Figure 3.3).  

As regards to TN, a major peak was also observed for the first post-fire rainfall event but 

this peak has occurred at all three study sites, unlike was the case for NO3-N (Figure 3.2 and 

Figure 3.3). After this initial peak, smaller peaks in TN levels were observed throughout the 

study period, mainly in association with peaks in overland flow or sediment losses (Figure 

3.2 and Figure 3.3). 
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Figure 3.3 - Average sediment losses, and nitrate (NO3-N) and total nitrogen (TN) concentrations in 

overland flow within the first 6 months after fire. BEG – eucalypt-granite site; BES – eucalypt-schist site 

and BPS – pine-schist site. 
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3.4 Discussion 

3.4.1 Nitrogen contents in ash and topsoil 

In the present study, the ashes collected at sites with contrasting types of vegetation 

(BES vs. BPS) did not present significantly different TKN contents (Table 3.2). As fire severity 

was similar at the two study sites, these results most likely reflected the pre-fire N contents in 

aboveground vegetation and litter layer, which were found to have  similar N levels in 

unburnt eucalypt (Ribeiro et al., 2002) and maritime pine stands (Nunes et al., 2010) in the 

study region. Sites with contrasting parent materials also presented similar TKN ash 

contents, which agree with the fact that forest stands in the study region commonly have 

similar topsoil nitrogen contents on unburnt granite and schist soils, independently from the 

type of tree plantation (Magalhães et al., 2011). For all the burnt sites, TKN ash contents 

immediately after the wildfire were, on average, higher than topsoil contents. The reason 

behind these findings is probably related to the natural composition of plant biomass and 

litter layers, as they are typically richer in N than soils (Nunes et al., 2010; Ribeiro et al., 

2002). 

The comparison of topsoil TKN contents, immediately after the wildfire, revealed no 

significant differences between the two types of tree plantations on schist, in agreement with 

the results for the ash layer (Table 3.2). These results could be related to similar N contents in 

belowground biomass and topsoil organic matter in unburnt eucalypt (Ribeiro et al., 2002) 

and pine sites (Nunes et al., 2010). This hypothesis is also supported by the similar organic 

matter contents in BES (22%) and BPS (19%) soils, immediately after fire (Table 3.1). Topsoil 

TKN contents did not differ between the two types of parent material either, in accordance to 

what was found by other authors for unburnt forest areas in central Portugal (Magalhães et 

al., 2011). An explanation for these findings would also be the existence of comparable 

organic matter contents in granite (29%) and schist (22%) soils (Table 3.1). 

From August 2010 to February 2011, a decrease in soil TKN contents was observed at all 

three burnt sites. This could have involved two mechanisms, i.e. N leaching into deeper soil 

layers as well as N losses by runoff and soil erosion (Bodí et al., 2014; Caon et al., 2014; Cerdà 

and Doerr, 2008; Certini, 2005; Khanna et al., 1994; Knoepp et al., 2005; Pausas et al., 2008; 

Shakesby, 2011; Thomas et al., 1999). Six months after the fire, no significant differences in 

TKN contents were found among sites with distinct forest (BES vs. BPS) or with different 

parent materials (BEG vs. BES), in line with what was found immediately after the fire. 
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3.4.2 Nitrogen exports by overland flow 

Despite the similar ash and topsoil N contents in eucalypt and pine sites, NO3-N and TN 

losses were consistently higher at the eucalypt site on schist than at the pine site on schist 

(Table 3.2 and Table 3.3). The stronger soil water repellency in eucalypt than in pine stands, 

as has been observed in the study region both before and after wildfires (Doerr et al., 1998; 

Keizer et al., 2005a, b; Santos et al., 2013), combined with a somewhat slower recovery of 

litter and ground vegetation under burnt eucalypt stands (Doerr et al., 1998) were likely to 

have promoted overland flow and the associated sediment and N losses at the BES site. On 

the other hand, the existence of a needle cover at the pine site, resulting from needle cast 

from the partially combusted pine crowns, might have reduced overland flow and the 

associated sediment and nutrient transport (Knoepp et al., 2005; Kutiel and Shaviv, 1992) by 

increasing surface storage and resistance against flow and, at the same time, decreasing 

splash erosion (Martins et al., 2013; Prats et al., 2012, 2013; Shakesby et al., 1996; Thomas et 

al., 2000a, b). Other studies in the study region have also found needle cast following low and 

moderate severity fires to be highly effective in reducing runoff and especially erosion 

(Martins et al., 2013; Prats et al., 2012, 2013; Shakesby et al., 1996; Thomas et al., 2000a, b). 

In the case of soluble N forms, like NO3-N, the existence of a needle cover was particularly 

relevant in preventing losses by overland flow, since NO3-N exports were not significantly 

related to any of the hydrological variables at the BPS site as opposed to the BES site (Table 

3.4). 

TN exports, on the other hand, were apparently less affected by the needle cover, since a 

strong relationship was found between TN losses and hydrological/erosion variables at both 

the BPS and BES site. As post-fire TN transport results mainly from an increase in the export 

of particulate N forms (Soto et al., 1997), one might conclude that the existence of a needle 

cover was particularly important for the protection of the easily-erodible solute-enriched ash 

layer, as reported by other authors for the nearby Caramulo Mountains (Ferreira et al., 2005; 

Shakesby, 2011; Thomas et al., 1999). The fact that a peak in NO3-N concentrations was 

observed in both eucalypt sites immediately after the first significant post-fire rainfall event 

but not at the pine site seems to corroborate this idea (Figure 3.2 and Figure 3.3). Overall, the 

needle cover was effective in reducing soil fertility losses since TN exports represented only 

6% of topsoil N stocks at the BPS site as opposed to 15 % at the BES site.  

Parent material did not have a significant effect on N losses by overland flow. Even so, 

global TN exports were higher at the BES site than at the BEG site (Table 3.3). From the 

Pearson’s correlations presented in Table 3.4, the hydrological/erosion variables governing 
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TN export were the same at the BES and BEG slopes. Therefore, one might hypothesize that 

the differences between these two sites were most likely related with the coarser texture of 

the granite soils (Table 3.1), which was also reported by Wahren et al. (2016) for the study 

region. A coarser texture can be expected to increase water infiltration and reduce runoff, 

particularly at the micro-plot scale (Boix-Fayos et al., 2006; Shakesby, 2011). This seems to 

be supported by the work of Wahren et al. (2016) since lower annual runoff coefficients were 

reported for Hydrological Response Units (HRU’s) with shallow soils derived from granite 

than from schist. As a result, lower amounts of overland flow and lesser sediment losses were 

generated at the BEG site, ultimately leading to lower TN exports. The fact that the TN losses 

represented twice as much of the topsoil N stock at the BES site (15 %) than at the BEG site 

(7%) also seems to support the idea that erosion by water was the main factor explaining the 

differences between granite and schist soils (Table 3.2 and Table 3.3). 

In the case of NO3-N, on the other hand, differences in global exports were minimal 

between granite and schist soils (Table 3.3). As larger amounts of overland flow were 

generated at the BES than BEG site, and as overland flow had a strong influence on NO3-N 

export at both sites (Table 3.4), one might hypothesize that the lower topsoil organic matter 

content at the BES site (Table 3.1) influenced the availability of inorganic N forms in soils, by 

limiting mineralization processes (Caon et al., 2014; Thomas et al., 2000b). 

3.4.3 Nitrogen concentrations in overland flow 

Nitrogen concentrations in overland flow exhibited a very distinct variation pattern than 

N losses (Figure 3.2 and Figure 3.3). Unlike N exports, peaks in N concentrations were not 

clearly associated with the major runoff events (Figs. 2 and 3). In fact, almost all plots 

exhibited a marked peak in NO3-N and TN concentrations during the first significant post-fire 

rainfall event. These peaks probably reflected the detachment and transport of the N 

enriched, easily erodible ash layer and of the partially combusted organic material on the 

ground surface, as also suggested by previous studies in the region (Ferreira et al., 2005, 

2008; Thomas et al., 1999). No such peak, however, was found for NO3-N concentrations at 

the BPS site but this could be explained by the post-fire needle cast providing a protective 

cover to the solute-enriched ash layer (Ferreira et al., 2005; Shakesby, 2011; Thomas et al., 

1999). 

As the ash layer became exhausted and erosion started to affect the topsoil, peaks in TN 

concentrations were mainly associated with major rainfall events, as a result of peaks in 

overland flow and associated sediment losses (Figure 3.2 and Figure 3.3). In contrast, peaks 

in NO3-N concentrations were often unrelated to rainfall events, possibly because nitrification 
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processes are largely dependent on microbial activity (Badía, 2000; Caon et al., 2014; Murphy 

et al., 2006). 

3.5 Conclusions 

The present study focused on post-fire nitrogen mobilization by overland flow at the 

micro-plot scale. The fact that this work was carried out in the Mediterranean region is 

important for anticipating the impacts of recurrent fires on soil productivity because fire 

frequency is expected to increase in the future as a result of climate changes.  

 

 

The main findings of the present work were that:  

 

i) the existence of a protective litter layer (i.e. of scorched pine needles) at the burnt pine 

site considerably reduced post-fire N export compared to the burnt eucalypt site, mainly by 

decreasing overland flow generation and the associated sediment losses. This information 

can be considered relevant for post-fire land management since it emphasizes that 

spontaneous mulching can be highly effective to reduce soil (fertility) losses and, thereby, will 

make further soil conservation measures superfluous.   

 

 ii) overland flow and soil (fertility) losses were markedly lower at the eucalypt site on 

granite than at that at the eucalypt site on schist, probably due to the coarser texture and, 

thus, higher infiltration capacity of the granite soils. This parent material-related difference in 

post-fire erosion risk is important for defining priorities in post-fire land management and, in 

particular, for the application of soil conservation measures such as mulching.  

 

The results of this study must nonetheless be interpreted with some caution because 

micro-plots may not fully represent post-fire hydrological and erosive processes at the field 

scale, which is the key management unit in north-central Portugal due to the reduced size of 

land properties. 

Furthermore, the lack of data from pre-fire or unburnt sites prevents the assessment of 

fire effects on N losses by overland flow, so this work only provides estimates of the range of 

N exports in a fire-prone landscape. 

Even so, the present findings are viewed as an important contribution to the current 

knowledge of post-fire nutrient mobilization and redistribution and of the resulting soil 

degradation in the Mediterranean Basin, especially since such information continues to be 

scarce for this region and since Mediterranean soils are typically nutrient poor. 
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Future studies are, however, recommended to address broader spatial scales as well as 

wider time scales to fully understand post-fire nutrient dynamics. 
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Abstract 

Over the past decades, wildfires have affected vast areas of Mediterranean ecosystems 

leading to a variety of negative on- and off-site environmental impacts. Research on fire-

affected areas has given more attention to sediment losses by fire-enhanced overland flow 

than to nutrient exports, especially in the Mediterranean region. To address this knowledge 

gap for post-fire losses of phosphorus (P) by overland flow, a recently burnt forest area in 

north-central Portugal was selected and instrumented immediately after a wildfire. Three 

slopes were selected for their contrasting forest types (eucalypt vs. pine) and parent 

materials (granite vs. schist). The selected study sites were a eucalypt site on granite (BEG), a 

eucalypt site on schist (BES) and a maritime pine site on schist (BPS). Micro-plots were 

monitored over a period of six months, i.e. till the construction of terraces for reforestation 

obliged to the removal of the plots. During this 6-month period, overland flow samples were 

collected at 1- to 2-weekly intervals, depending on rainfall. Total P and PO4-P losses differed 

markedly between the two types of forests on schist, being lower at the pine site than at the 

eucalypt site, probably due to the presence of a protective layer of pine needle cast. Parent 

material did not play an important role in PO4-P losses by overland flow but it did in TP 

losses, with significantly lower values at the eucalypt site on granite than that on schist. 

These differences in TP losses can be attributed to the coarser texture of granite soils, 

typically promoting infiltration and decreasing runoff. The present findings provided further 

insights into the spatial and temporal patterns of post-fire soil fertility losses in fire-prone 

forest types during the initial stages of the window-of-disturbance, which can be useful for 

defining post-fire emergency measures to reduce the risk of soil fertility losses. 
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4.1 Introduction 

Wildfires are a widespread phenomenon, acting as a major driver of ecosystem change 

all over the world (Caon et al., 2014; Coombs and Melack, 2013; Doerr and Cerdà, 2005; 

Kugbe et al., 2014; Lane et al., 2008; Pereira et al., 2014a; Tsibart et al., 2014; Wang et al., 

2015).  

In the Mediterranean region, wildfires have affected increasingly large areas of land 

throughout the past decades (Pausas et al., 2008). This trend is expected to continue, 

especially since projections of future climate change foresee rising temperatures and 

increasing risks of drought spells in this fire-prone region (Anaya-Romero et al., 2015; Blake 

et al., 2010; Caon et al., 2014). While wildfires are a natural disturbance in many ecosystems, 

more frequent fires and more severe fires can offset the ecological balance of the ecosystems 

and have a significant negative impact on soil fertility, soil biological diversity as well as on 

the water cycle (Caon et al., 2014; Crouch et al., 2006; Malvar et al., 2015a).  

Soil fertility is particularly affected by recurrent wildfires because the heating-induced 

changes in soil physical, chemical and biological properties deeply affect the biogeochemical 

cycles of carbon, nitrogen and phosphorus (Caon et al., 2014; Certini, 2005; Knoepp et al., 

2005; Shakesby, 2011). 

In the case of phosphorus, the combustion of vegetation as well as of litter by fire 

frequently produces a layer of P-enriched ash and charcoal that can be easily lost by leaching 

into the soil and/or lost by wind or water erosion (Bodí et al., 2011, 2014; Johnson et al., 

2007; Pereira et al., 2014a, 2014b). Also the P pool of the topsoil itself can be markedly 

affected by fire since heating promotes the mineralization of topsoil organic matter and, 

thereby, the release of inorganic P (Badía et al., 2014; Certini, 2005; Kutiel and Shaviv, 1992). 

The fate of inorganic P following fire depends strongly on pre- and post-fire soil properties 

(Certini, 2005; Murphy et al., 2006). In acidic soils, inorganic P tends to adsorb to newly 

formed Al, Fe and Mn oxides and hydroxides (Certini, 2005; Murphy et al., 2006; Otero et al., 

2015), whereas in neutral or alkaline soils it especially binds to Ca-minerals or precipitates as 

Ca phosphate (Badía et al., 2014; Certini, 2005; Murphy et al., 2006). Nonetheless, P 

sorption/desorption processes are highly dynamic (Otero et al., 2015), so even small changes 

in soil pH as often observed after fire can easily cause desorption of inorganic P from metal 

oxides or calcium compounds formed immediately after fire (Kutiel and Shaviv, 1992; 
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Murphy et al., 2006). As the topsoil P reservoir is depleted by fire-enhanced overland flow 

and erosion (Caon et al., 2014; Certini, 2005; Ferreira et al., 2005; Pausas et al., 2008; 

Shakesby, 2011; Thomas et al., 1999, 2000a, 2000b), and P is exported in both its dissolved 

and particulate forms, there can be a loss of soil fertility (Caon et al., 2014; Johnson et al., 

2007; Knoepp et al., 2005; Neary et al., 1999; Soto et al., 1997).  

In the Mediterranean Basin, the effects of fire on soil P availability have been addressed 

by various studies (Badía et al., 2014; Caon et al., 2014; Johnson et al., 2007; Kutiel and 

Shaviv, 1992; Otero et al., 2015). Post-fire losses of P by overland flow, however, have been 

poorly investigated (Cancelo-González et al., 2013; DeBano et al., 1998; Díaz-Fierros et al., 

1990; Lasanta and Cerdà, 2005). In Portugal, particularly few studies have measured post-fire 

P export by overland flow (Coelho et al., 2004; Ferreira et al., 1997, 2005; Thomas et al., 1999, 

2000a, 2000b; Walsh et al., 1992), especially considering the more than 100.000 ha that are 

burnt each year. These prior studies investigated P losses for the two principal forest types in 

north-central Portugal, i.e. plantations of eucalypt (Eucalyptus globulus Labill.) and maritime 

pine (Pinus pinaster Ait.) but at larger spatial scales than in the present work, i.e. 16 m2 plots 

(Ferreira et al., 1997, 2005; Thomas et al., 2000a, 2000b; Walsh et al., 1992), small (Ferreira 

et al., 1997, 2005) and large catchments (Santos et al., 2015a, 2015b). Perhaps more 

importantly, these prior studies only addressed soluble P losses and not total P losses (i.e. 

solute + particulate fraction). Hence, a better understanding of overall losses of nutrients 

after fire, in both dissolved and particulate forms, is required for a more accurate assessment 

of the risks of post-fire soil fertility losses and its possible impacts on forest recovery.  

The present study aims to address this knowledge gap by determining the exports of 

total phosphorus (TP) and dissolved inorganic phosphorus (PO4-P) by post-fire overland flow 

in a recently burnt forest area in the Mediterranean. The current work, however, does not 

quantify the effects of fire on P losses since comparable but long unburnt could not be found 

in the vicinity of the study sites. Instead it intends to compare these losses for different 

combinations of forest type and parent material. To this end, TP and PO4-P losses by 

overland flow were quantified at the micro-plot scale for: i) two contrasting forest types, i.e. 

eucalypt and maritime pine plantations, which dominate the north-central Portuguese 

mountains and are both fire-prone; and ii) two contrasting bedrock types, i.e. schist and 

granite, which are the prevailing parent materials in north-central Portugal. Phosphorus 

losses by overland flow were further compared with their stock in the ash and upper soil 

layer, for a better appreciation of the relevance of these losses for the P cycle following fire.  

As all three study sites were (partially) terraced with a bulldozer 6 months after the fire, 

completely changing the topography of the terrain (Martins et al., 2013), the present work 

was forcedly limited to the immediate post-fire period. 
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4.2 Materials and Methods 

4.2.1 Study area and sites 

The study area was located within the Vouga River Basin, near the Ermida village in the 

Sever do Vouga municipality, north-central Portugal (Figure 4.1). Between July 26 and July 28 

2010 a wildfire consumed a total of 295 ha of forest in this area (DUDF, 2011). Before the fire, 

the Ermida study area was covered predominantly by commercial eucalypt plantations 

(Eucalyptus globulus Labil.) but also included some maritime pine stands (Pinus pinaster Ait.). 

Fire severity was classified as moderate, because ashes were predominantly black, the litter 

layer and understory vegetation were almost completely consumed by the fire and tree 

crowns were only partially combusted (Table 4.1; Shakesby and Doerr, 2006). 

 

 
Figure 4.1 - Location of the Ermida study area within the Vouga River basin, north-central Portugal. 

Location of the study sites: BEG — burnt eucalypt-granite site, BES — burnt eucalypt schist site, and 

BPS — burnt pine-schist site. The bold line represents the Ermida catchment. 
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Table 4.1 - General slope description. BEG – burnt eucalypt-granite site; BES – burnt eucalypt-schist 

site; and BPS – burnt pine-schist site. 

 
Slope BEG BES BPS 

General characteristics    

Forest type Eucalyptus globulus Eucalyptus globulus Pinus pinaster 

Parent material Granite Schist Schist 

Geographical coordinates 40º43'56'' N  40º43'58'' N  40º43'54'' N  

 8º21'3'' W 8º20'58'' W 8º20'47'' W 

Elevation (m a.s.l.) 220 220 150 

Slope angle (º) 25.6 ± 4.4  24.0 ± 6.0 24.0 ± 2.4 

Slope length (m) 77 48 36 

Fire severity moderate moderate moderate 

Topsoil properties    

[0-2] cm depth    

     Texture Sandy loam Loam Sandy-clay loam 

     Sand fraction (%) 61.3 44.7 53.6 

     Silt fraction (%) 24.3 33.8 25.1 

     Clay fraction (%) 14.4 21.5 21.3 

     Organic matter (%) 29 22 19 

[0-5] cm depth    

     Bulk density (g.cm-3) 0.71 ± 0.11 0.78 ± 0.19 0.73 ± 0.13 

 

 

In addition, Maximum Temperatures Reached based on Near Infrared (NIR) 

spectroscopy measurements (see Guerrero et al., 2007; Maia et al., 2012) varied from 325 to 

405ºC for the uppermost 2 cm (Pedrosa, 2012). 

The climate of the study area can be classified as humid meso-thermal with moderate 

but prolonged warm dry summers (Köppen; Csb, DRA-Centro, 2002). The mean annual 

temperature at the nearest climate station (Castelo-Burgães: 40°51′10″N, 8° 22′44″W at 306 
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m a.s.l.; 15 km north of the study area) was 14.9 °C (1991–2011; SNIRH, 2011), with average 

monthly temperatures ranging from 8.9 °C in January to 21 °C in July. Annual rainfall at the 

nearest rainfall station (Ribeiradio: 40°44′12″N, 8°18′03″W at 228 m a.s.l.; 5 km east of the 

study area) was, on average, 1655 mm, but varied markedly between dry (960 mm) and wet 

(2530 mm) years (1991–2011; SNIRH, 2011). 

The study area is part of the Hesperic Massif, a physiographic unit that is dominated by 

pre-Ordovician schists and greywackes but locally includes Hercynian granites (Pereira and 

FitzPatrick, 1995). The soils are mapped as Humic Cambisols (1:1000000; Cardoso et al., 

1973), but according to a field survey carried out on January 2011, soils ranged from Humic 

Leptosols to Humic Cambisols at the eucalypt sites, and from Lithic Leptosols to Humic 

Leptosols at the pine site (IUSS, 2006). The topsoil (0-2 cm) at the study sites was rather 

coarse, with a loam to sandy-clay loam texture, and high (19–29%) organic matter content 

(Table 4.1). 

4.2.2 Experimental set-up, field data and sample collection 

Within the burnt area, three hill slopes were selected for their contrasting forest types 

and parent materials, i.e. Burnt Eucalypt on Granite (BEG) vs. Burnt Eucalypt Schist (BES) vs. 

Burnt Pine on Schist (BPS) (Table 4.1). 

At each site, a baseline experimental design was implemented which comprised dividing 

it into two strips running from the base to the top of the slope section. One of these strips was 

used for repeated collection of soil samples and another for monitoring overland flow at the 

micro-plot scale. A necessary limitation of this work was that samples and plots within each 

slope were treated as replicates. Although this can be considered as a form of pseudo-

replication, this is typically difficult to avoid in wildfire studies (Hurlbert, 1984; van Mantgem 

et al., 2001), due to the impossibility to find three or more slopes that are similar enough (in 

terms of land cover, parent material, terrain characteristics and fire severity) to be 

considered replicate sites. 

Soil sampling was limited to the topsoil (0-2 cm depth) since moderate fires are widely 

known for affecting mainly the upper 2 cm of soil (Badía et al., 2014; Zavala et al., 2014). 

Sampling was performed on 2 occasions: on August 10 2010, approximately two weeks after 

the wildfire and before any post-fire rainfall occurrence; and on February 16 2011, 

immediately before the start of the bench terracing. At the first occasion, ash samples were 

collected along with soil samples. At both occasions ash and/or soil sampling was done at five 

equally-distant points along a transect that was laid out from the base to the top of the slope 

section. At each point of the transect ashes were collected over an area of 0.25 m2 (0.5 m × 0.5 

m) and topsoil (0-2 cm depth) over an area of 0.06 m2 (0.25 m × 0.25 m). 
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The study sites were instrumented with overland flow plots on August 25 2010, before 

the occurrence of any post-fire rainfall. This involved the installation, at the base of the slope 

section, of three bounded micro-plots of approximately 0.28 m2, at distances of 1-2 m from 

each other. The outlets of the micro-plots were connected to high density polyethylene 

barrels to collect overland flow. The placement of the micro-plots at the bottom of the slope 

section was done to facilitate access and, thus, field measurements and runoff sample 

collection as well as to minimize disturbance which was a concern since the sites were 

located within an experimental catchment (Keizer et al., 2015). From August 2010 to 

February 2011, overland flow was measured at 1- to 2-weekly intervals, depending on the 

occurrence of rainfall. Whenever the overland flow in a barrel exceeded 250 mL, a sample 

was collected in a 500 mL polyethylene bottle that had been previously rinsed with 

hydrochloric acid (pH < 2.0), and distilled and deionized water. The samples were then 

transported to the laboratory in cool boxes and stored at 4ºC for no longer than 24 h before 

laboratory analysis. 

4.2.3 Laboratory analyses 

Upon arrival to the laboratory, the ash and soil samples were air dried and then sieved 

manually with a 2 mm sieve. Available phosphorus (Pav) content in ash and soils was 

determined by the Bray method (Bray and Kurtz, 1945), using a mixture of ammonium 

fluoride (0.03 M) and hydrochloric acid (0.025 M) as extractant. The extracted P was 

analyzed spectrophotometrically as orthophosphate by the molybdenum blue method (APHA, 

1998). Soil samples were also analysed for: i) soil particle size, following the international 

method of mechanical analysis as defined by Guitián and Carballas (1976); and ii) organic 

matter content, which was determined by loss on ignition at 550ºC for 4 h, as described by 

Botelho da Costa (2004). In addition, bulk density of the upper 5 cm of soil was determined 

using the core method, as described by Porta et al. (2003). 

Overland flow samples were analysed for total phosphorus (i.e. dissolved plus 

particulate P forms) and dissolved inorganic phosphorus, i.e. orthophosphate (PO4-P). This 

was done using a flow injection FIAstarTM 5000 analyser (FOSS – Tecator). Prior to analysis, 

50 mL subsamples for determining PO4-P concentrations were filtered with 0.45 μm 

Millipore© membrane filters. Subsamples (50 mL) for analysing TP, on the other hand, were 

first subjected to an oxidative digestion, using peroxodisulphate/alkali (Oxisolv®, Merck), 

and then filtered. The concentration of total suspended solids (TSS) of the overland flow 

samples was quantified gravimetrically through filtration of 50-150 mL of runoff by a glass 

fibre filter, followed by drying to a constant weight at 105 ºC (APHA, 1998). 
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4.2.4 Data analysis 

Available phosphorus (Pav) contents of ash and topsoil samples were compared for the 

sites with contrasting forest types (BES vs. BPS) and for the sites with contrasting parent 

materials (BEG vs. BES) by means of a one-way ANOVA followed by a multi-comparison 

Tukey’s test. The underlying assumptions of normality (Shapiro-Wilk test) and homogeneity 

of variance (Levene’s test) were explicitly tested and, if one or both were rejected, data were 

logarithmically transformed prior to the analysis (Zar, 1999). 

Phosphorus exports by overland flow were also analysed by a one-way ANOVA followed 

by a Tukey’s test, and the same was true for overland flow amounts as well as for sediment 

losses. The influence of environmental variables (rainfall amount and intensity, overland flow 

and sediment losses) on P losses by overland flow was assessed by the Pearson’s correlation 

coefficient (Zar, 1999). In the case of the variables that had not met the normality 

assumption, these coefficients were computed for logarithmically transformed data.  

All statistical analyses were performed with SigmaPlot 11.0 package software, while 

testing was done at a significance level of 0.05. 

4.3 Results 

4.3.1 Phosphorus contents in ash and topsoil 

The average contents of Pav in the ash and topsoil layers of the three study sites are 

shown in Table 4.2. No significant differences (ANOVA: F = 0.531, p = 0.594) were observed 

between the ashes collected at sites with contrasting forest types (BES vs. BPS) or with 

contrasting parent materials (BEG vs. BES). The Pav contents of ash at the two eucalypt sites 

(BEG: 0.5 mg g-1, BES: 0.4 mg g-1; Table 2), however, were on average 3 to 6 times lower than 

those of the topsoil (BEG: 1.7 mg g-1, BES: 2.6 mg g-1; Table 4.2). In contrast at the pine site 

(BPS), Pav contents were similar for ash (0.3 mg g-1) and soils (0.2 mg g-1). 

Unlike for the ash layer, the topsoil of the two types of tree plantations on schist (BES 

and BPS) differed significantly in Pav contents (Table 2). This was true immediately after the 

fire, in August 2010 (ANOVA: F = 4.980, p = 0.027; Tukey’s test: p = 0.022) as well as six 

months later, in February 2011 (ANOVA: F = 20.181, p < 0.001; Tukey’s test: p < 0.001). In 

contrast, topsoil Pav contents, did not differ significantly between the two types of parent 

material at both sampling occasions (August 2010 – ANOVA: F = 4.980, p = 0.027; Tukey’s 

test, p = 0.485; February 2011 – ANOVA: F = 20.181, p < 0.001; Tukey’s test, p = 0.922). 
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With time since fire, a strong decline (ca. 95%) in soil Pav contents was observed at the 

two eucalypt sites (Table 4.2), while at the pine site Pav contents were more than two times 

higher in February 2011 (0.5 mg g-1) than in August 2010 (0.2 mg g-1). 

 

 

Table 4.2 - Average (± standard deviation; n = 5) available phosphorus (Pav) concentrations in the ash 

and topsoil layers of the study sites, immediately (August 2010) and sixth months after fire (February 

2011). Different letters within rows (a, b) correspond to significant differences (p < 0.05) among 

slopes with different types of parent material (BEG vs. BES). Different symbols (*, +) within rows 

correspond to significant differences (p < 0.05) among slopes with different types of vegetation (BES 

vs. BPS). BEG — burnt eucalypt-granite site; BES — burnt eucalypt-schist site; and BPS — burnt pine-

schist site. 

 
 Sampling date Layer BEG BES BPS 

P Concentrations Aug 2010 Ash 0.5 ± 0.1ª 0.4 ± 0.2ª,* 0.3 ± 0.3* 

(mg g-1)  Soil 1.7 ± 1.5ª 2.6 ± 1.5ª,+ 0.2 ± 0.1* 

 Feb 2011 Soil 0.1 ± 0.1ª 0.1 ± 0.1ª,+ 0.5 ± 0.2* 

P Stocks  Aug 2010 Soil 23.9 ± 21.4 40.8 ± 23.7 2.5 ± 1.0 

(g m-2) Feb 2011 Soil 1.0 ± 0.6 1.6 ± 1.7 7.1 ± 2.3 

 

 

4.3.2 Phosphorus exports by overland flow 

The average exports of PO4-P and TP during the first 6 months after fire are presented in 

Figure 4.2. At all three study sites, peaks in PO4-P and TP exports were generally associated 

with the major rainfall/overland flow events (Figure 4.2). On average, PO4-P exports 

represented a considerable fraction of TP exports, amounting to 21 % in the case of the two 

eucalypt plantations and 35 % in the case of the pine site.  

Global TP (ANOVA: F = 4.965, p = 0.011; Tukey’s test, p = 0.017) and PO4-P exports 

(ANOVA: F = 3.057, p = 0.057; Tukey’s test, p = 0.046) in the first 6 months after fire differed 

significantly between the two sites with contrasting forest types (Table 4.3). Global TP losses 

were almost 6 times higher than at the eucalypt than at the pine site on schist (BES: 0.85 vs. 

BPS: 0.15 g m-2; Table 4.3). Likewise, global PO4-P losses were more than 5 times higher at the 

BES (0.17 g m-2) than at the BPS site (0.03 g m-2). 
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Figure 4.2 - Average orthophosphate (PO4-P) and total phosphorus (TP) losses, overland flow amounts 

and sediment losses within the first 6 months after fire. BEG – eucalypt-granite site; BES – eucalypt-

schist site and BPS – pine-schist site. 
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Table 4.3 - Average (± standard deviation) overall phosphorus losses (PO4-P and TP), overland flow 

amounts, runoff coefficients and sediment losses at the three study sites for the first 6 months 

following fire (no. of plots per site = 3; no. of read-outs per plot = 21). Different letters within rows 

correspond to significant differences (p < 0.05) among slopes with different types of parent material 

(BEG vs. BES). Different symbols within rows correspond to significant differences (p < 0.05) among 

slopes with different types of vegetation (BES vs. BPS). BEG – eucalypt-granite site; BES – eucalypt-

schist site and BPS – pine-schist site. 

 
Variables BEG BES BPS 

Phosphorus export (g m-2) 

     PO4-P 0.09 ± 0.06a 0.17 ± 0.05a,* 0.03 ± 0.01+ 

     TP 0.25 ± 0.15a 0.85 ± 0.31b,* 0.15 ± 0.06+ 

Environmental variables 

     Overland flow (mm)º 320 ± 245a 419 ± 14a,* 298 ± 105* 

     Runoff coefficient (%) 26 ± 20a 34 ± 1a,* 25 ± 9* 

     Sediment losses (g m-2) 54 ± 45a 249 ± 113b,* 26 ± 13c,+ 

          º Total rainfall associated = 1218 mm 

 

 

 

Parent material also played a significant role in P exports but only in the case of TP and 

not in that of PO4-P exports (Figure 4.2). Global TP exports were significantly different 

(ANOVA: F = 4.965, p = 0.011; Tukey’s test, p = 0.049) between the BEG and BES sites, being 

more than 3 times higher at the schist (0.85 g m-2) than at the granite site (0.25 g m-2). As 

regards to PO4-P, global losses were also clearly higher at the BES (0.17 g m-2) than at the BEG 

site (0.09 g m-2) but, as referred before, this difference was not statistically significant 

(ANOVA: F = 4.965, p = 0.011; Tukey’s test, p = 0.507). 

 

4.3.3 Environmental variables and post-fire phosphorus exports 

In general, the average TP and PO4-P exports of the individual read-outs were strongly 

correlated with both rainfall amounts and intensities as well as with overland flow volumes 

and sediment losses (Table 4.4). 
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Table 4.4 - Pearson correlations between environmental variables (i.e. rainfall amount, maximum 

rainfall intensity during 30 min – I30, overland flow and suspended sediments) and phosphorus losses 

(PO4-P and TP) by overland flow (averages per read out). Significant values (p ≤ 0.05) are presented in 

bold. 

 
Slope P form Rainfall I30 Overland flow Sediments 

 (mm) (mm h−1) (mm) (g m−2) 

BEG PO4-P 0.63 0.82 0.87 0.80 

TP 0.91 0.66 0.81 0.91 

BES PO4-P 0.69 0.82 0.86 0.42 

TP 0.85 0.89 0.95 0.79 

BPS PO4-P 0.58 0.80 0.77 0.78 

TP 0.32 0.67 0.77 0.84 

 

 

 

Nevertheless, these relations were not identical for the three study sites. Forest type 

appeared to play a differential role in TP exports, as they were strongly correlated with 

rainfall amount at the eucalypt site (BES: r = 0.85) but not at the pine site (BPS: r = 0.32). The 

importance of forest type was also suggested in the case of PO4-P exports but in the opposite 

sense. PO4-P exports were strongly correlated to sediment losses at the pine site (BPS: r = 

0.78) but not at the eucalypt site (BES: r = 0.42). The relation of PO4-P exports with sediment 

losses also differed for the two eucalypt sites with contrasting parent materials. At the 

eucalypt site on granite, PO4-P exports were strongly correlated to sediment losses (BEG: r = 

0.80), unlike at the schist site (BES: r = 0.42). 

4.3.4 Environmental variables and post-fire phosphorus exports 

The temporal patterns of orthophosphate (PO4-P) and total phosphorus (TP) 

concentrations in overland flow during the first 6 months after the wildfire are presented in 

Figure 4.3. A clear peak in TP concentrations was found for the first significant post-fire 

rainfall event at all three study sites. In the subsequent period, TP concentrations varied 

considerably and these variations agreed better with the temporal patterns in sediment 

concentrations than in rainfall amounts or runoff volumes (Figure 4.2 and Figure 4.3.). 

Differences in average TP concentrations between the three study sites were rather 

consistent throughout the study period. TP concentrations tended to be highest at the 

eucalypt site on schist (BES), lowest at the pine site on schist (BPS) and intermediate at the 
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eucalypt site on granite (BEG), in agreement with the differences in global TP exports (Table 

4.3). 

 

 

 

 

Figure 4.3 - Average orthophosphate (PO4-P), total phosphorus (TP) and sediment concentrations in 

overland flow, within the first 6 months after fire. BEG – eucalypt-granite site; BES – eucalypt-schist 

site and BPS – pine-schist site. 
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The average PO4-P concentrations showed quite different temporal patterns than the 

average TP concentrations. Instead of revealing a single peak, PO4-P concentrations at all 

three sites were highest for the first three significant rainfall events and after early November 

2010 tended to decrease with time-since-fire (Figure 4.3). Therefore, PO4-P concentrations 

seemed basically unrelated to the temporal patterns in rainfall amounts, runoff volumes or 

sediment concentrations (Figure 4.2 and Figure 4.3.). The PO4-P concentrations at the pine 

site (BPS) tended to be clearly lower than those of the two eucalypt sites throughout the 

study period (Figure 4.3). The differences in PO4-P concentrations between the two eucalypt 

sites were less straightforward, with a tendency for higher values at the site on schist (BES) 

than on granite (BES). 

4.4 Discussion 

4.4.1 Phosphorus contents in ash and topsoil 

The ashes collected at sites with contrasting types of vegetation (BES vs. BPS) did not 

present significantly different Pav contents. As fire severity was classified as moderate at both 

sites (Table 4.1), the comparable ash contents could be explained by similar pre-fire P 

contents in vegetation and litter layers at both sites. This hypothesis is supported by the fact 

that similar P levels have indeed been found in northern Portugal, not just for eucalypt leaves 

and pine needles but also for litter and even for the organic matter-rich soil horizons of 

unburnt eucalypt and maritime pine stands (Magalhães et al., 2011; Nunes et al., 2010; 

Ribeiro et al., 2002). 

Ash Pav contents also did not differ significantly between the two study sites with 

contrasting parent material (BEG vs. BES). This agreed with the similar P levels that 

Magalhães et al. (2011) reported for the organic horizons of unburnt soils on granite and 

schist in the study region.  

The Pav contents of the ashes at the two eucalypt sites were, on average, lower than the 

contents of the topsoil (Table 4.2). This was to be expected as the soil tends to be the 

predominant P pool (94 – 98%) and not the litter or vegetation (Neary et al., 1999). At the 

pine site, however, the Pav content was slightly higher in the ashes than in the topsoil. This 

could be due to the dissolution of Ca2+ ions from the Ca2+ enriched pine ash (Machado et al., 

2015), which most likely promoted the precipitation of Pav in the soil as calcium phosphate 

(Badía et al., 2014; Thomas et al., 2000b). 



Chapter 4 

81 

The Pav contents of the topsoil differed significantly between the two forest types 

immediately after the fire (Table 4.2). This difference presumably reflected a difference in the 

P topsoil content that existed before the wildfire, since fire severity was classified as 

moderate at both sites. An explanation for higher topsoil Pav content at the eucalypt site (BES) 

than at the pine site (BPS) would be a higher soil organic matter (SOM) content at the 

eucalypt site (22 vs. 19 %; Table 4.1). Fire-induced heating might have promoted SOM 

mineralization (Badía et al., 2014), thereby increasing Pav contents in the topsoil. On the other 

hand, SOM might have also influenced P adsorption and desorption processes (Kang et al., 

2011; Otero et al., 2015). SOM can both enhance the amount of P sorbed by metal-chelate 

binding and inhibit P sorption, through competition of organic anions for P adsorption sites 

and also by increasing the negative charge of the topsoil (Kang et al., 2011). 

The topsoil Pav contents immediately after the wildfire did not differ significantly with 

parent material (Table 4.2). This lack of a significant difference between the BEG and BES 

sites agreed with the similar P contents that were found for unburnt soils derived from 

granite and from schist in the study region (Magalhães et al., 2011). The Pav contents at the 

two eucalypt sites decreased dramatically (more than 90%) between August 2010 and 

February 2011 (Table 4.2), possibly as a result of P losses by runoff and soil erosion (Caon et 

al., 2014; Cerdà and Doerr, 2008; Certini, 2005; Khanna et al., 1994; Knoepp et al., 2005; 

Pausas et al., 2008; Shakesby, 2011; Thomas et al., 1999). In agreement with this explanation, 

TP exports were inversely related with decreases in topsoil P contents for the two eucalypt 

sites, with the site on schist exhibiting larger exports as well as decreases in topsoil content 

(TP exports: 0.85 g m-2; Soil Pav losses: 2.5 mg g-1) than the site on granite (TP exports: 0.25 g 

m-2; Soil Pav losses: 1.6 mg g-1). As P cycling is mainly ensured through the organic P pools, the 

removal of vegetation and litter by fire combined with soil erosion could have led to the 

exhaustion of above and belowground P pools at a pace higher than mineral weathering could 

replace it (DeBano and Klopatek, 1988; Neary et al., 1999). 

In contrast to the two eucalypt sites, the pine site (BPS) revealed an increase in topsoil 

Pav content with time-since-fire (Table 4.2). This could be related to changes in soil pH that 

promoted the re-dissolution of calcium phosphate precipitates formed immediately after fire 

(Kutiel and Shaviv, 1992) as well as to the decomposition of the pine needle cast from the 

partially scorched tree crowns, since the breakdown of organic matter constitutes a major 

source of Pav (Ribeiro et al., 2007). Worth stressing in this respect were the lower TP exports 

and sediment losses at the pine site than at the two eucalypt sites. 

At the end of this study, and in agreement to what was found immediately after the fire 

(Table 4.2), significant differences in topsoil P contents were found among sites with distinct 

types of vegetation (BES vs. BPS) but not among sites with distinct types of parent material 

(BEG vs. BES), which might suggest that soil processes were still under the influence of the 
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“window of disturbance” (Ferreira et al., 2005, 2008; Shakesby and Doerr, 2006). Longer 

studies are therefore needed for a better knowledge of post-fire P cycling for the full duration 

of the “window of disturbance” (Ferreira et al., 2005, 2008; Shakesby and Doerr, 2006). 

 

4.4.2 Phosphorus exports by overland flow 

At all three forest sites, clear peaks in P exports – both PO4-P and TP – occurred mainly 

associated to the major rainfall events, as would be expected since these events generated the 

largest amounts of runoff and sediment losses (Figure 4.2; Table 4.4). These findings are in 

line with what has been reported by various authors for other recently burnt areas in the 

Mediterranean region (Badía et al., 2014; Soto et al., 1997; Thomas et al., 1999, 2000b).  

When comparing the two sites with different types of vegetation, global PO4-P and TP 

exports were found to be significantly higher at the eucalypt than at the pine site on schist 

(Table 4.3). This could be explained by the typically stronger soil water repellency in eucalypt 

stands than in pine stands in the study region (Doerr et al., 1998; Keizer et al., 2005a, b; 

Santos et al., 2013), which was likely to have promoted overland flow and the associated 

sediment and P losses at the BES site. The possible existence of a water repellent ash layer 

overlying a strongly to extremely repellent topsoil at the BES site could have enhanced the 

differences in runoff and erosion between the eucalypt and pine sites (Bodí et al., 2011, 2014; 

Dlapa et al., 2013; Malvar et al., 2015b). An alternative explanation would be the needle cast 

cover, due to spontaneous mulching from the partially scorched pine crowns, reducing 

overland flow and erosion at the BPS site (Table 4.3) as also reported by prior post-fire 

erosion studies (Cerdà and Doerr, 2008; Knoepp et al., 2005; Kutiel and Shaviv, 1992). This 

pine needle cast was also held responsible for limiting the export of other nutrients such as 

nitrogen (Ferreira et al., 2015) and base cations (Machado et al., 2015) at the same study site, 

attesting to the importance of an effective mulch cover against soil fertility losses. The 

effectiveness of needle cast has mainly been attributed to the increases in interception 

storage and resistance to flow and the reduction in splash erosion (Martins et al., 2013; Prats 

et al., 2012, 2013; Shakesby et al., 1996; Thomas et al., 2000a, b). The resulting decreases in 

exports of particulate P forms as well as soil particles in general might explain the weak 

correlation that was observed between TP losses and rainfall amounts at the pine site (r = 

0.32) as opposed to at the eucalypt site (r = 0.85).  

When comparing the two eucalypt plantations with contrasting types of parent material, 

significant lower TP losses were found at the site on granite than on schist (Table 4.3). As the 

composition of the ash layer was similar at the two sites (Table 4.1 ; Ferreira et al., 2015; 

Machado et al., 2015) on one hand, and on the other, as its thickness was twice as great at the 



Chapter 4 

83 

BES (1 cm) than at the BEG site (0.5 cm), which would expectedly reduce overland flow and 

sediment yields (Bodí et al., 2011; Bodí et al., 2014; León et al., 2013), it is unlikely that the 

ash layer was responsible for the differences in P exports between the two eucalypt 

plantations. An alternative explanation, would be the coarser texture of the granite soils 

(Table 4.1), since a coarse texture has been reported to increase infiltration and, thus, reduce 

runoff (Wahren et al., 2016), particularly at the micro-plot scale (Boix-Fayos et al., 2006; 

Shakesby, 2011). In fact, the plots at the eucalypt site on granite did generate lower amounts 

of overland flow and associated sediment losses than those at the eucalypt site of schist 

(Table 4.3). These lower runoff and erosion rates were not only associated with lower 

exports of TP but also with significantly lower exports of total N (Ferreira et al., 2015) and 

base cations, namely Ca2+, Mg2+, Na+ and K+ (Machado et al., 2015). PO4-P exports were also 

lower at the eucalypt site on granite than on schist but not in a significant manner (Table 4.3). 

This contrast between TP and PO4-P results might reflect a prevailing role of sediment losses 

in TP exports as opposed to a predominant role of runoff volumes in PO4-P exports, since 

significant differences in sediment losses but not in overland flow were found between the 

BEG and BES site (Table 4.3). Such findings are also in line with the fact that inorganic P 

forms are mostly lost in solution rather than adsorbed to sediment particles (Thomas et al., 

1999, 2000b).  

The comparison of the present results with those of Ferreira et al. (2015) on nitrogen 

losses by overland flow at the same study sites showed that P solutes were preferentially lost 

over N solutes at all three sites, which suggests that P is more likely to become a limiting 

factor for vegetation recovery following fire than N. Moreover, global TP losses were higher 

than TN losses at one of the study sites (BES) but not at the other two sites (BEG and BPS), so 

the risk of decline in overall soil fertility would seem highest at the BES site. Besides the 

erosion risk per se, the risk of soil fertility decline at this site would seem relevant for 

defining post-fire erosion mitigation measures. However, further studies over longer time 

scales are required to confirm these results, especially since major changes to soil hydrology 

and erodibility can occur over the medium to long-term (Cerdà and Doerr, 2005; Cerdà and 

Lasanta, 2005), in turn influencing post-fire nutrient losses. 

4.4.3 Phosphorus concentrations in overland flow 

Phosphorus concentrations and exports by overland flow showed a distinctive variation 

pattern in time (Figure 4.2 and Figure 4.3). Unlike exports, peaks in PO4-P and TP 

concentrations were not associated in a clear manner with the major rainfall or overland flow 

events. The first 3 significant post-fire rainfall events produced marked peaks in PO4-P 

concentrations at the two eucalypt sites but clearly lower peaks at the pine site, suggesting 
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that the pine needle cover provided effective protection against the transport of the solute-

enriched ash layer which is typically easily erodible (Ferreira et al., 2005; Shakesby, 2011; 

Thomas et al., 1999). After the preferential erosion of the ash layer at the eucalypt sites 

(around November 2010), PO4-P concentrations seemed unrelated to rainfall or overland 

flow events, possibly due to the complex biogeochemical processes involving this form of P 

(Certini, 2005; Kutiel and Shaviv, 1992; Murphy et al., 2006).  

Peaks in TP concentrations also differed from the peaks in TP exports (Figure 4.2 and 

Figure 4.3). At all the study sites, TP concentrations were clearly highest during the first 

significant post-fire rainfall event, most likely as a consequence of the detachment and 

transport of the easily erodible ash layer and of the partially combusted organic material on 

the ground surface, as was also suggested by other authors for the study region (Ferreira et 

al., 2005, 2008; Thomas et al., 1999). After this first rainfall event, less pronounced peaks in 

TP concentrations seemed mainly associated to the largest erosion events (Figure 4.3), as 

would be expected since TP consists mostly of particulate P forms (Sharpey et al., 1992). 

 

4.5 Conclusions 

The present work evaluated post-fire P losses by overland flow at micro-plot scale in a 

recently burnt Mediterranean area, addressing a topic that has until now been investigated 

by a rather limited number of studies. The results of this study emphasized the importance of 

a protective soil layer (in this case, a spontaneous mulch layer of pine needle cast) for 

minimizing post-fire P exports. Parent material was also found to play an important role in 

post-fire TP losses and, ultimately, for implementing measures against soil fertility losses.  

Nonetheless, the results of the current work must be regarded with some caution, 

especially as a basis for post-fire land management, since micro-plots may not be 

representative for post-fire hydrological and erosive processes at the field scale. Despite 

these limitations, the present findings are considered an important contribution to a better 

understanding of the effects of forest type and parent material on post-fire phosphorus 

export in the Mediterranean region. Studies at larger spatial scales (including catchment 

scale) as well as over longer periods are highly recommended for a more comprehensive 

knowledge of P cycling in recently burnt areas as well as in downstream aquatic systems. 
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ABSTRACT 

Wildfires have affected vast areas in Mediterranean forests, triggering changes in 

geomorphological and hydrological processes that can lead to a variety of negative impacts 

on the ecosystems. Important research gaps, however, remain with respect to wildfire 

impacts on runoff, and especially on soil erosion and nutrient mobilization. To address this 

research gap on post-fire nutrient losses by overland flow, a recently burnt forest area in 

north-central Portugal was selected and instrumented immediately after a wildfire, to 

evaluate the export of dissolved (NO3-N and PO4-P) and total (TN and TP)  nitrogen and 

phosphorus forms. Two recently burnt eucalypt plantations were selected for their 

contrasting slope aspect (north vs. south orientation). The selection of only eucalypt slopes 

was mainly influenced by the fact that eucalypt is one of the most important and, at the same 

time, most fire-prone forest type in north-central Portugal. Plots were monitored over a 

period of twenty months, in which overland flow samples were collected on a 1- to 2-weekly 

basis, depending on rainfall. The north west-facing slope (BE-NW) showed more nutrient 

losses than the one facing south east (BE-SE), probably reflecting the influence of a logging 

intervention taken place at the BE-NW slope, shortly before the fire. Nitrogen and 

phosphorus exports were particularly pronounced in the three months after fire. However, 

after this initial period, peaks in N and P exports were also observed in association to intense 

rainfall events. The present work provided estimates of the range of N and P exports by 

overland flow in a recently burnt area at micro-plot scale in a fire-prone landscape of the 

Mediterranean Basin. It represents an important addition to the studies on post-fire nutrient 

losses by overland flow conducted in this region, with a further insight into the 

comprehension of the processes involved, and particularly useful for anticipating the impacts 

of recurrent fires on soil productivity. 
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5.1 Introduction 

Forests in the Mediterranean basin are frequently subject to severe wildfires. As it is 

commonly known, wildfires can change geo-morphological and hydrological processes 

through their direct effects on vegetation, litter layer and topsoil, as comprehensively 

reviewed by Cerdà and Bodí (2007), Moody et al. (2013) and Shakesby (2011). Important 

research gaps remain, however, with respect to wildfire impacts on runoff, soil erosion, and 

especially on post-fire nutrient mobilization (Shakesby, 2011). 

Given the complexity of soil dynamics under the influence of fire, a better understanding 

of spatial and temporal mechanisms occurring in the immediate post-fire period is important 

for defining priorities in post-fire land management to mitigate soil erosion hazards in burnt 

sites (Shakesby, 2011). 

Slope aspect has been reported to be a determinant factor for the hydrological and 

erosive response of forest ecosystems, mainly because it influences the amount of radiation 

received by the slope, which in turn affects the soil and vegetation properties (Cerdà, 1998; 

Kutiel and Lavee, 1999; Sternberg and Shoshany, 2001; Gabarrón-Galeote et al., 2013). 

Forestry practices can also strongly influence overland flow and erosion in recently 

burnt areas. Various studies on post-fire management operations showed that logging and 

salvage harvesting (Thomas et al., 2000b; Fernández et al., 2007; Smith et al., 2011b) can 

increase the risk of soil erosion. 

The importance of nutrient dynamics in overland flow in burnt forest environments is 

often disregarded, in spite of their significance for fertility losses at the ecosystem level. In 

burnt areas, nutrient loss in solution and adsorbed to eroded sediments were found to be 

considerably higher than in mature forest stands, as a result of increased overland flow and 

erosion amounts, and of the increased nutrient concentrations at the topsoil, as a result of 

organic matter combustion during fire (Ferreira et al., 2005; Thomas et al., 1999, 2000a, 

2000b). High nutrient availability in overland flow has direct consequences on the 

ecosystems, either due to the decrease in soil fertility (Caon et al., 2014; Certini, 2005; Pausas 

et al., 2008; Shakesby, 2011) as well as the eutrophication of downstream aquatic systems 

(Bowman and Boggs, 2006; Correll, 1998; Smith et al., 2011a). 
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In wet Mediterranean regions, such as the study area, those nutrient losses strongly 

affect soil productivity and the environmental sustainability, since they coincide with 

mountain areas where the soils are often weakly developed and nutrient-poor, regardless of 

vegetation abundance. The latter is also true in Portugal, where the schist mountain is 

generally characterized by poorly developed Humic Cambisols where the only nutrient pool 

is located at the organic layers, which are burned down by forest fires (Ferreira et al., 2005). 

Post-fire nutrient losses by overland flow have been poorly investigated in the 

Mediterranean (Cancelo-González et al., 2013; DeBano et al., 1998; Díaz-Fierros et al., 1990; 

Lasanta and Cerdà, 2005; Machado et al., 2015). In Portugal, in particular, only a small 

number of studies have measured post-fire nitrogen and phosphorus exports by overland 

flow (Coelho et al., 2004; Ferreira et al., 1997, 2005; Thomas et al., 1999, 2000a, 2000b; 

Walsh et al., 1992). Prior studies have also only evaluated solute losses and not total nitrogen 

losses (i.e. solute + particulate fraction) by overland flow. The present study aims to address 

this knowledge gap, by evaluating total nitrogen and total phosphorus exports by post-fire 

overland flow in a recently burnt area of the western Mediterranean Region. 

The current work does not assess the effects of fire on nitrogen and phosphorus losses 

by overland flow since it does not present comparable data from unburnt plantations in the 

surroundings of the burnt area. In turn, the main aim of this study was to provide estimates of 

nitrogen and phosphorus exports by overland flow from recently burnt eucalypt plantations, 

one of the main and, at the same time, most fire-prone forest type in north-central Portugal. 

More specifically, this study wanted to quantify nitrogen and phosphorus exports by overland 

flow at the micro-plot scale: (i) for eucalypt plantations with contrasting slope aspects (north 

vs. south orientation); (ii) to determine the contributions of dissolved versus particulate 

fractions in nutrient exports; and (iii) to understand the spatial and temporal variation 

patterns in post-fire N and P losses. These losses were furthermore related to the N and P 

contents of the ash layer and the topsoil, for a better understanding of the N and P cycle 

following fire. 

5.2 Materials and Methods 

5.2.1 Study area and study sites 

The study area was located within the Vouga River Basin, near the Ermida village in the 

Sever do Vouga municipality, north-central Portugal (Figure 5.1). The area was affected by a 

wildfire that took place between July 26 and July 28 2010 and that consumed, in total, some 

300 ha of forest (DUDF, 2011). When the fire occurred, the area was predominantly covered 

by plantations of eucalypt (Eucalyptus globulus Labil.) but did also include some plantations 
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of maritime pine (Pinus pinaster Ait.). Two contrasting burnt eucalypt (E. globulus) 

plantations in steep hill slopes with similar slope angle were selected for the present study by 

their contrasting aspects, i.e. South-East (BE-SE) and North-West (BE-NW) (Figure 5.1; Table 

5.1) 

The climate of the study area can be classified as humid meso-thermal (Csb, according to 

the Köppen classification), with moderate but prolonged dry summers (DRA-Centro, 2002). 

The mean annual temperature at the nearest climate station (Castelo-Burgães: 40°51′10″N, 

8° 22′44″W at 306 m a.s.l.) was 14.9 °C (1991–2011; SNIRH, 2011), with average monthly 

temperatures ranging from 8.9 °C in January to 21 °C in July. Annual rainfall at the nearest 

rainfall station (Ribeiradio: 40°73′65″N, 8°30′08″W at 228 m a.s.l.) was, on average, 1655 

mm, but varied markedly between dry (960 mm) and wet (2530 mm) years (1991–2011; 

SNIRH, 2011). 

 

 

 
 

Figure 5.1 - Location of the Ermida study area within the Vouga River basin, north-central Portugal. 

Location of the study sites: BE-NW — burnt eucalypt site facing North-West; and BE-SE — burnt 

eucalypt site facing South-East. The bold line represents the burnt area. 
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Table 5.1 - General slope description. BE-NW — burnt eucalypt site facing North-West; and BE-SE — 

burnt eucalypt site facing South-East. 

 
Slope BE-SE BE-NW 

General characteristics   

Forest type Eucalyptus globulus Eucalyptus globulus 

Parent material Schist Schist 

Exposure South-East North-West 

Geographical coordinates 40º43'23'' N 40º44'04'' N 

 8º20'57'' W 8º21'16'' W 

Elevation (m.a.s.l.) 180 200 

Slope angle (º) 20.0 ± 2.0  19.0 ± 3.0 

Slope length (m) 60 90 

Fire severity moderate moderate 

Topsoil properties   

[0-2] cm depth   

     Texture Sandy clay loam Sandy loam 

     Sand fraction (%) 67 71 

     Silt fraction (%) 9 10 

     Clay fraction (%) 24 18 

     Organic matter (%) 25 ± 5 24 ± 4 

[0-5] cm depth   

     Bulk density (g.cm-3) 1.15 ± 0.19 0.88 ± 0.13  

 

 

 

The area belongs to the Hesperic Massif, one of the major physiographic units in the 

region (Ferreira, 1978). The parent material in the study area mainly consisted of pre-

Ordovician schists but included Hercynian granites at some locations, as is typical for the 

Hesperic Massif (Pereira and FitzPatrick, 1995). The soils were mapped, at a scale of 1:1 000 

000, as predominantly Humic Cambisols (Cardoso et al., 1973), but field descriptions of soil 

profiles at the study sites revealed that soils are mainly Umbric Leptosols (IUSS, 2006). 

The topsoil (0–2 cm) at the study sites was rather coarse, with a sandy-loam to sandy-

clay loam texture and high organic matter content (24–25%) (Table 5.1). The bulk density in 

the topsoil (0-5cm depth) tend to be higher at the south-facing slope (BE-SE: 1.15 ± 0.19 

g.cm-3) than at the north-facing slope (BE-NW: 0.88 ± 0.13 g.cm-3) but not in a substantial 

manner. 
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At both sites, fire severity was classified as moderate (Shakesby and Doerr, 2006). Ash 

colour (predominantly black), as well as the degree of tree crown scorching (only partially 

combusted) and litter layer consumption (completely consumed by fire) were used as 

indicators. 

Ground cover descriptions right after the fire revealed that the BE-NW site had 87% of 

ashes covering the ground whereas the BE-SE showed some 61%. Also stones and litter cover 

showed some discrepancy between the two sites: 1 and 2%, respectively at the BE-NW site 

and 22 and 17%, respectively at the BE-SE site. Before the fire, the BE-NW site had a 

commercial logging operation, with clear-cutting of the eucalypt plantation on this slope, with 

the purpose of harvesting wood and maintaining the roots for eucalypt re-sprouting. Possibly, 

the harvesting remains left on the ground (see Prats et al., 2014) were burnt by the fire which 

can explain the differences in ash cover between sites. 

5.2.2 Experimental design, field data and sample collection 

Both study sites within the burnt area were divided into two adjacent strips running 

from the base to the top of the slope section. In one of these strips, two pairs of bounded 

micro-plots (0.25–0.30 m2) were installed before the occurrence of post-fire rainfall, one pair 

at the base and the other pair halfway up the slope, for monitoring overland flow. The other 

strip was used for repeated collection of soil samples. Samples and plots at each study site 

were treated as independent observations, despite the reduced distances between them, 

since the samples/plots from each of the present study sites exhibit considerable variability. 

Only samples of the topsoil (0-2 cm depth) were collected because moderate fires are 

widely known for affecting mainly the upper 2 cm of soil (Badía et al., 2014; Cerdà, 2000; 

Mataix-Solera et al., 2011; Zavala, 2014). Soil sampling was done first on August 2010, 

roughly two weeks after the wildfire and before the occurrence of any rainfall; and then 

sampled with a regular interval of six months from that date onward, until after the end of the 

monitoring period (August 2012). At the first sampling event, ash samples were collected 

along with soil samples. Sampling was done at five equally-distant points along a transect 

that was laid out from the base to the top of the slope section, and shifted approximately 1-2 

m across the slope in the subsequent sampling occasion. At each point of the transect ashes 

were collected over an area of 0.25 m2 (0.5 m × 0.5 m) and topsoil (0-2 cm depth) over an 

area of 0.06 m2 (0.25 m × 0.25 m). 

The overland flow from the micro-plots was collected in barrels of 30 to 70 L. In each 

field trip, overland flow volumes were measured and, whenever the volume in each barrel 

exceeded 250 mL, samples were collected, following intensive stirring of the water in the 

barrels. Sampling was done during 20 months after the wildfire, at 1–2-weekly intervals, 
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depending on rainfall. During this period, overland flow samples were collected in 500 mL 

polyethylene bottles that had been previously rinsed with hydrochloric acid (pH < 2.0) and 

distilled and dionized water. Overland flow samples were then transported to the laboratory 

in cool boxes and stored at 4ºC for no longer than 24 h. 

The 1- to 2-weekly field trips also involved measurement of rainfall accumulated in 4 

storage gauges (in-house design) that had been installed across the study area by the middle 

of August 2010. Their main purpose, however, was to validate the automatic recordings of 

two tipping-bucket rainfall gauges (Pronamic Professional Rain Gauge with 0.2 mm 

resolution) that had been installed in close proximity to two of the storage gauges. 

5.2.3 Laboratory work 

Upon arrival to the laboratory, the ash and soil samples were air dried and sieved 

manually with a 2 mm sieve. Total nitrogen content (TKN) in ashes and soils was determined 

using the Kjeldahl method (Bremner, 1979). Available phosphorus (Pav) content in ashes and 

soils was determined by the Bray method (Bray and Kurtz, 1945), using a mixture of 

ammonium fluoride (0.03 M) and hydrochloric acid (0.025 M) as extractant. The extracted P 

was analyzed spectrophotometrically as ortophosphate by the molybdenum blue method 

(APHA, 1998). 

Aside from nitrogen and phosphorus, soil samples were also analysed for: i) bulk 

density, using the core method as described by Porta et al. (2003); ii) soil particle size, 

following the international method of mechanical analysis as defined by Guitián and Carballas 

(1976); and iii) organic matter, determined by loss on ignition at 550ºC for 4 h, as described 

by Botelho da Costa (2004). 

Overland flow samples were analysed for total (i.e. dissolved plus particulate forms) 

nitrogen and phosphorus (i.e. dissolved plus particulate P forms), nitrate (NO3-N) and 

orthophosphate (PO4-P), using a flow injection FIAstarTM 5000 analyser (FOSS-Tecator). 

Prior to analysis, overland flow subsamples (50 mL) for determining NO3-N and PO4-P 

concentrations were filtered with 0.45 μm Millipore© membrane filters. Subsamples (50 mL) 

for analysing TN and TP were subjected to an oxidative digestion, using 

peroxodisulphate/alkali (Oxisolv®, Merck) and then filtered. 

Sediments in overland flow samples were analyzed in the form of total suspended solids 

(TSS) and were quantified gravimetrically through filtration of 50 to 150 mL of water by a 

glass fibre filter, followed by drying to a constant weight at 105 ºC (APHA, 1998). 
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5.2.4 Data analysis 

Differences in total Kjedahl nitrogen (TKN) and available phosphorus (Pav) contents in 

ash and topsoil, between study sites, were evaluated by a one-way ANOVA, if the assumptions 

of normality (checked by the Shapiro-Wilk test) and homogeneity of variance (checked by the 

Levene’s test) were not rejected. If one or both of them were rejected, logarithmic 

transformations of the data were performed to comply with the assumptions of the ANOVA 

(Zar, 1999). For each study site, differences in ash and soil TKN and Pav contents between 

sampling dates were evaluated by a one-way ANOVA followed by a multi comparison Tukey’s 

test, after checking for the ANOVA assumptions. 

Regarding NO3-N, TN, PO4-P and TP exports in overland flow and their respective 

concentrations, a one-way ANOVA was performed to test differences between sites, after 

checking for data normality and homogeneity of variance. If one or both of them were 

rejected, logarithmic transformations of the data were tried first and, if unsuccessful, the non-

parametric Kruskal-Wallis one-way ANOVA test was applied (Zar, 1999). Between-sites 

differences in overland flow and sediment losses were also evaluated by a one-way ANOVA. 

The influence of environmental variables (rainfall amount and intensity, overland flow and 

sediment losses), on nitrogen and phosphorus losses by overland flow, were assessed by the 

Pearson’s correlation coefficient. In the case of the variables that had not met the normality 

assumption by the above-mentioned Shapiro-Wilk test, the coefficients were computed for 

the transformed data.  

The significance level was set at 0.05, and all statistical analyses were performed using 

SigmaPlot 11.0 package software. 

5.3 Results and discussion 

5.3.1 Nitrogen and phosphorus contents in ash and topsoil 

The average total Kjeldahl nitrogen (TKN) and available phosphorus (Pav) contents in the 

ash and topsoil layers of the two study sites are shown in Table 5.2. No significant differences 

were observed between the ashes collected at both study sites in terms of TKN (ANOVA: F = 

3.200, p = 0.111) or Pav (ANOVA: F = 0.226, p = 0.648) contents. As fire severity was similar at 

the two study sites (Table 5.1), these results most likely reflected the pre-fire N and P 

contents in topsoil organic matter and vegetation. 
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Table 5.2 – Average (±standard deviation) nitrogen (TKN) and available phosphorus (Pav) 

concentrations/stocks in the ash and topsoil layers of the two study sites, throughout the study period 

BE-NW — burnt eucalypt site facing North-West; and BE-SE — burnt eucalypt site facing South-East. 

For each variable, different letters and symbols within columns correspond to significant differences 

(p<0.05) among sampling dates at the BE-SE and at the BE-NW sites, respectively. 

 

  Nutrient Sampling date Layer Site 

        BE-SE BE-NW 

Concentrations TKN Aug 2010 Ash 1.50 ± 0.42 1.96 ± 0.40 
(mg g-1)  

 
Soil 0.70 ± 0.23ª 0.79 ± 0.23x 

  
Feb 2011 Soil 0.27 ± 0.13b 0.46 ± 0.19* 

  
Aug 2011 Soil 0.38 ± 0.15 b 0.37 ± 0.12* 

  
Feb 2012 Soil 0.39 ± 0.13 b 0.30 ± 0.11* 

  
Aug 2012 Soil 0.23 ± 0.06 b 0.24 ± 0.08* 

Pav Aug 2010 Ash 0.30 ± 0.15 0.25 ± 0.19 
  

 
Soil 0.13 ± 0.10ª 0.13 ± 0.05x 

  
Feb 2011 Soil 0.05 ± 0.02b 0.03 ± 0.02* 

  
Aug 2011 Soil 0.05 ± 0.04b 0.03 ± 0.03* 

  
Feb 2012 Soil 0.05 ± 0.04b 0.007 ± 0.004* 

  
Aug 2012 Soil 0.02 ± 0.02b 0.01 ± 0.006* 

Stocks  TKN Aug 2010 Soil 16.2 ± 5.2 14.0 ± 4.0 
(g m-2)  Feb 2011 Soil 6.3 ± 3.1 7.9 ± 3.3 
  Aug 2011 Soil 8.8 ± 3.5 6.5 ± 2.2 

  Feb 2012 Soil 9.0 ± 3.0 5.2 ± 1.9 

  Aug 2012 Soil 5.3 ± 1.4 4.2 ± 1.5 

Pav Aug 2010 Soil 3.0 ± 2.2 2.2 ± 0.9 

  Feb 2011 Soil 1.2 ± 0.4 0.5 ± 0.3 

  Aug 2011 Soil 1.2 ± 0.8 0.4 ± 0.6 

  Feb 2012 Soil 1.1 ± 0.9 0.1 ± 0.07 

    Aug 2012 Soil 0.5 ± 0.5 0.2 ± 0.1 

 

For both study sites, TKN ash contents immediately after the wildfire were on average 

two-fold higher than in the topsoil (Table 5.2). An explanation behind these findings is 

probably related to the natural composition of plant biomass and litter layers, as they are 

typically richer in N than soils (Busse and Debano, 2005; Nunes et al., 2010; Ribeiro et al., 

2002). Pav ash contents were on average 3 to 4 times higher than those of the topsoil at both 

study sites (Table 5.2). 
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Topsoil TKN contents did not differ significantly between the two study sites (ANOVA: 

F = 0.389, p = 0.536), in agreement with the results of the ash layer. In contrast, topsoil Pav 

contents differed significantly (ANOVA: F = 4.812, p = 0.033) between the two study sites 

(Table 5.2), ), probably due to pre-fire differences in topsoil organic matter content, which 

were maintained after the fire (Table 5.1). On one hand, the slightly higher soil organic matter 

contents at the BE-SE site were likely to have been responsible for the somewhat higher Pav 

contents in the topsoil, since fire-induced heating promotes the mineralization of soil organic 

matter (Badía et al., 2014). On the other hand, soil organic matter might have also influenced 

P adsorption and desorption processes (Kang et al., 2011; Otero et al., 2015). Soil organic 

matter can both enhance P sorption by metals and inhibit P sorption, through competition of 

organic anions for P adsorption sites and also by increasing the negative charge of the topsoil 

(Kang et al., 2011). 

The comparison of topsoil TKN contents between sampling dates (Table 5.2) revealed a 

significant decrease in soil nitrogen availability within the first 6 months after fire at both the 

BE-NW (ANOVA: F = 9.502, p < 0.001) and BE-SE site (ANOVA: F = 7.593, p < 0.001). After this 

initially sharp decrease, a consistent but slight reduction in TKN contents was observed at the 

BE-NW site till the end of the monitoring period (Table 5.2). At the BE-SE site, on the other 

hand, an overall decline was observed after the first 6 months after fire but this was not 

consistent over time since an increase in TKN contents was observed from February 2011 to 

August 2011, possibly as a result of litter decomposition (McIntosh et al., 2005), which was 

substantially higher at this site than at the BE-NW site (cf. section 5.2.1). 

According to the later author, as litter decomposes, nutrients can return to the soil surface, 

where they will be susceptible to leaching and erosion processes by runoff (McIntosh et al., 

2005) after intense rainfall events. Inconsistencies between sampling sites over time could 

also be related to the multitude of factors influencing nitrogen pools, such as leaching 

processes, soil erosion, plant uptake and microbial immobilization as well as to the spatial 

heterogeneity of nutrient losses after fire (Hamman et al., 2008). 

Either way, the marked decrease (42% to 70%) in average topsoil contents observed at 

both study sites from the beginning to the end of the monitoring period (Table 5.2), most 

likely resulted from N leaching into deeper soil layers as well as N losses (Table 5.3) by runoff 

and soil erosion (Bodí et al., 2014; Caon et al., 2014; Cerdà and Doerr, 2008; Certini et al., 

2005; Khanna et al., 1994; Knoepp et al., 2005; Pausas et al., 2008; Shakesby, 2011; Thomas et 

al., 1999). 
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Table 5.3 – Total average (±standard deviation) nitrogen (NO3-N and TN) and phosphorus losses (PO4-

P and TP), overland flow amounts, runoff coefficients and sediment losses for the 20 months following 

fire. BE-NW — burnt eucalypt site facing North-West; and BE-SE — burnt eucalypt plantation site 

South-East. For each variable, different letters within lines correspond to significant differences 

(p<0.05) among sites. 

 
Variables BE-SE BE-NW 

Nutrients export (g m-2)   

     NO3-N 0.04 ± 0.03 a 0.08 ± 0.06 b 

     TN 0.8 ± 0.4 a 1.4 ± 0.7 b 

     PO4-P 0.00002 ± 0.00001 a 0.0002 ± 0.0002 b 

     TP 0.2 ± 0.1 a 0.7 ± 0.6 b 

Environmental variables   

     Overland flow (mm)° 577 ± 257a 577 ± 292 a 

     Runoff coefficient (%) 27 ± 12a 27 ± 13a 

     Sediment losses (g m-2) 86 ± 54a 266 ± 178b 

           o Total rainfall associated = 2101 mm  

 

 

As regards to topsoil Pav contents (Table 5.2), a sharp decrease in the first 6 months after 

fire (ANOVA: F = 11.950, p < 0.001) followed by a slow decrease in the remaining study 

period was observed at the BE-NW site). At the BE-SE site, on the other hand, topsoil Pav 

contents did not differ significantly during the study period (ANOVA: F = 2.349, p = 0.089), 

despite the overall decline trend. This more pronounced decline in average topsoil Pav 

contents at the BE-NW site (80% to 94%) than at the BE-SE site (60% to 83%), was most 

likely a result of the higher P losses by runoff and soil erosion observed at this slope (Table 

5.3). 

5.3.2 Spatial variation patterns of nitrogen and phosphorus exports by overland flow 

The first two years after fire were considered regular hydrological years since rainfall 

amounts (year 1 - 1416; year 2 – 1175) were within the range of the long-term average 

annual rainfall at the nearby rainfall station (Ribeiradio). In the entire study period (August 

2010 to April 2012) roughly 2101 mm of rainfall have fell in the study area. Overall, runoff 

generated during the study period produced, on average, significantly higher nitrogen 

(ANOVA: F = 5.149, p = 0.027) and phosphorus losses by overland flow at the BE-NW site 

than at the BE-SE site (Table 5.3; Figure 5.2 andFigure 5.3).  
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Figure 5.2 - Nitrate (NO3-N), total nitrogen (TN), orthophosphate (PO4-P) and total phosphorus (TP) 

losses by overland flow within the first 20 months after fire, at the burnt eucalypt site facing South-

East (BE-SE). BE-SEup – data from plots located on an upper part of the slope; BE-SEdown – data from 

plots located at the base of the slope. 
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Figure 5.3 - Nitrate (NO3-N), total nitrogen (TN), orthophosphate (PO4-P) and total phosphorus (TP) 

losses by overland flow within the first 20 months after fire, at the burnt eucalypt site facing North-

West (BE-NW).BE-NWup – data from plots located on an upper part of the slope; BE-NWdown – data 

from plots located at the base of the slope. 
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Global TN losses over the entire study period (Table 5.3) were almost two times higher 

at the BE-NW site (1.4 g m-2) than at the BE-SE site (0.8 g m-2). Also for dissolved N forms, i.e. 

NO3-N (Table 5.3), losses were about 2 times higher at the BE-NW site (0.08 g m-2) than at the 

BE-SE site (0.04 g m-2). However, NO3-N exports accounted only for less than 5% of the 

overall N exports at both sites, as N is mainly lost in its particulate forms (Soto et al., 1997) 

(Table 5.3). 

The predominance of particulate forms in overland flow was even more pronounced for 

P, as the contribution of PO4-P losses represented only 0.02 to 0.03% of the overall P losses 

(Table 5.3). As regards to this nutrient, and similarly to what was found for N, significant 

losses (TP – ANOVA: F = 11.116, p = 0.001; PO4-P – ANOVA: F = 15.554, p < 0.001) were found 

between the two sites. At the BE-NW site, global TP losses were almost 4 times higher than at 

the BE-SE site (0.7 vs. 0.2 g m-2; Table 3). The differences in global PO4-P losses between these 

two sites were even more pronounced, being about 10 times higher at the BE-NW (0.0002 g 

m-2) than at the BE-SE site (0.00002 g m-2).Between-site differences in N and P exports were 

most likely related to the higher sediment losses (ANOVA: F = 6.149, p = 0.016) at the BE-NW 

than at the BE-SE site (Table 5.3; Figure 5.4 and Figure 5.5), since similar (ANOVA: F = 

0.000721, p = 0.979) overland flow amounts were generated at each site. 
 

 

Figure 5.4 - Overland flow amount and sediment losses by overland flow within the first 20 months 

after fire, at the burnt eucalypt site facing South-East (BE-SE).  BE-SEup – data from plots located on an 

upper part of the slope; BE-SEdown – data from plots located at the base of the slope. 



Chapter 5 

107 

 

 

Figure 5.5 - Overland flow amount and sediment losses by overland flow within the first 20 months 

after fire, at the burnt eucalypt site facing North-West (BE-NW).  BE-NWup – data from plots located on 

an upper part of the slope; BE-NWdown – data from plots located at the base of the slope. 

 

 

As most N and P are exported in its particulate form, higher losses were found at the site 

with highest sediment losses (i.e. BE-NW). These results are also corroborated by the 

Pearson’s correlations (Table 5.4), since no relationship was found between NO3-N exports 

and the hydrological (I30: r = 0.44; Overland flow: r = 0.45) and erosion variables (r = 0.26) at 

the BE-SE site, unlike at the BE-NW site. As this dissolved N form has a higher contribution 

for overall exports than PO4-P (Table 5.3), no correlation was found in the site with lower 

sediment losses. When comparing the overall TN losses in the first 20 months after fire with 

the changes in soil N contents from the beginning to the end of the study period, it was 

noticeable that TN losses by overland flow at the BE-NW site represented twice as much of 

the topsoil N losses (14 %) than at the BE-SE site (7%). The same was true for P, since overall 

TP losses by overland flow corresponded to a 35% reduction in soil P stocks at the BE-NW 

site (and only to an 8% reduction at the BE-SE site (8%) (Table 5.2 and Table 5.3). 
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Table 5.4 – Pearson correlations between environmental variables (i.e. rainfall amount, maximum 

rainfall intensity during 30 min -I30, overland flow and suspended sediments) and nitrogen (NO3-N and 

TN) and phosphorus losses (PO4-P and TP) by overland flow (averages per read out). Significant values 

(p ≤ 0.05) are in bold. 

 

    Nutrient losses (g.m−2) 

Site Variable NO3-N TN PO4-P TP 

BE-SE Rainfall (mm) 0.54 0.79 0.87 0.79 

 I30 (mm h−1) 0.44 0.66 0.66 0.65 

 Overland flow (mm) 0.45 0.89 0.92 0.90 

 Sediments (g m−2) 0.26 0.75 0.72 0.80 

BE-NW Rainfall (mm) 0.53 0.81 0.78 0.79 

 I30 (mm h−1) 0.63 0.69 0.64 0.71 

 Overland flow (mm) 0.57 0.89 0.88 0.77 

  Sediments (g m−2) 0.61 0.74 0.63 0.81 

 

The results of the present work seem to contradict those of other studies carried out in 

the Mediterranean basin (Cerdá, 1998; Kutiel and Lavee, 1999; Sternberg and Shoshany, 

2001), since lower sediment losses were found at south-facing slopes rather than at north-

facing slopes. According to the previous studies, as south-facing slopes receive higher solar 

radiation than those facing north, this affects  soil moisture, and soil aggregation processes, 

which, in tum, affect vegetation growth that tends to be lower on these slopes (Kutiel and 

Lavee, 1999; Sternberg and Shoshany, 2001; Gabarrón-Galeote et al., 2013). As a result of its 

higher vegetation cover and therefore lower bare soil and rock outcrops, north-facing slopes 

typically present lower sediments losses than south-facing slopes (Cerdá, 1998; Kutiel and 

Lavee, 1999; Sternberg and Shoshany, 2001). As slope aspect is unlikely to have been 

responsible for the differences between sites, the alternative explanation would be the 

differences in pre-fire management operations, since the BE-NW site was under an intensive 

logging intervention of clear-cutting before the fire, which might have highly modified the soil 

surface and vegetation pattern. Clear-cutting is widely known not only to damage the ground 

and shrub layer but also to eliminate tree interception and promote soil compaction (Beasley 

and Granillo, 1985).  The removal of vegetation, in particular, makes the soil more vulnerable 

to splash erosion, thereby promoting overland flow generation and the associated sediment 

and nutrient losses (Beasley and Granillo, 1985). Soil compaction by mechanical soil 

disturbance also influences the hydrological and erosive response of forest areas by 

decreasing macroporosity as well as the soil hydraulic connectivity and infiltration capacity 
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(Carr and Loague, 2012; Huang et al., 1996). Taking into account the findings of present 

study, one might therefore hypothesize that pre-fire management operations are crucial for 

post-fire soil fertility losses. 

Within each site, overall nitrogen and phosphorus losses differed between plots with 

different locations along the slope, but the response was not consistent between sites site 

(Figure 5.2 andFigure 5.3). At the BE-SE site (Figure 2), NO3-N (0.06 vs. 0.02 g m-2) and TN 

exports (1.1 vs. 0.4 g m-2), as well as PO4-P (0.00003 vs. 0.00002 g m-2) and TP exports (0.2 vs 

0.09 g m-2) were higher at plots located at the base of the slope than at those located in an 

upper part of the slope. Conversely, at the BE-NW site, higher nitrogen (NO3-N: 0.13 vs. 0.03 g 

m-2; TN: 1.9 vs. 0.9 g m-2) and phosphorus (PO4-P: 0.0004 vs. 0.00004 g m-2; TP: 1.0 vs. 0.34 g 

m-2) losses were found for plots with an upper slope position than those located at the base of 

the slope (Figure 5.3). These results are in agreement to prior studies in the region, which 

found contradictory results on the role of slope position on post-fire runoff and erosion at the 

micro-plot scale (Malvar et al., 2015; Prats et al., 2014). 

5.3.3 Temporal variation patterns of nitrogen and phosphorus exports by overland flow 

At both study sites, peaks of NO3-N, TN, PO4-P, TP and sediments exports were generally 

associated to the major rainfall events (Figure 5.2 andFigure 5.3), as expected since these 

events generated the highest amounts of runoff and sediment losses (Figure 5.4 and Figure 

5.5), as also observed in other burnt areas of the Mediterranean region (Badía et al., 2014; 

Soto et al., 1997; Thomas et al., 1999, 2000b). 

The highest nitrogen and phosphorus losses occurred in the third week after the fire 

(Figure 5.2 andFigure 5.3) most likely because the rainfall amounts (> 20 mm) were large 

enough to saturate the ash layer and trigger overland flow and erosion processes. Nitrogen 

and phosphorus exports varied markedly in the first six months after fire, showing a clear 

decline with time-since-fire (Figure 5.2 andFigure 5.3). 

Subsequent peaks were lower and occurred in response to extreme rainfall events (>50 

mm per week). An exception pattern was found at the eucalypt site facing north (BE-NW), 

where clear peaks in N exports were observed along the monitoring period (Figure 5.3),in 

response to extreme rainfall events. At the BE-SE site, on the other hand, N exports were 

unrelated to rainfall amounts, after the first four months after fire (Figure 5.2).  

5.3.4 Nitrogen and phosphorus concentrations in overland flow 

The temporal patterns of nitrate (NO3-N), total nitrogen (TN), orthophosphate (PO4-P) 

and total phosphorus (TP) concentrations in overland flow for the 20 months following fire 

are presented in Figure 5.6 and Figure 5.7.  
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Figure 5.6 - Nitrate (NO3-N), total nitrogen (TN), orthophosphate (PO4-P) and total phosphorus (TP) 

concentrations in overland flow, within the first 20 months after fire, at the burnt eucalypt site facing 

South-East (BE-SE). BE-SEup – data from plots located on an upper part of the slope; BE-SEdown – 

data from plots installed on the base of the slope. 
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Figure 5.7 - Nitrate (NO3-N), total nitrogen (TN), orthophosphate (PO4-P) and total phosphorus (TP) 

concentrations in overland flow, within the first 20 months after fire, at the burnt eucalypt site facing 

North-West (BE-NW). BE-NWup – data from plots located on an upper part of the slope; BE-NWdown – 

data from plots located on the base of the slope. 
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Nitrogen and phosphorus concentrations in overland flow showed a distinctive variation 

pattern than N and P exports at both study sites (Figure 5.2 andFigure 5.3). Nitrogen and 

phosphorus concentration peaks were not directly related with the major overland flow 

events (Figure 5.6 and Figure 5.7), ), in contrast to the N and P exports (Figure 5.2 andFigure 

5.3). This was more evident immediately after the first significant post-fire rainfall event, 

when almost all the plots exhibited a major peak in dissolved and total nitrogen and 

phosphorus concentrations, most likely as a result of the detachment and transport of the 

nutrient enriched, easily erodible ash layer and of the partially combusted organic material 

on the ground surface (Ferreira et al., 2005, 2008; Thomas et al., 1999). After this first event, 

peaks in dissolved and total nutrient concentrations were often unrelated to 

rainfall/overland flow events, possibly because of the complex biogeochemical processes 

occurring in burnt forest areas (Caon et al., 2014; Murphy et al., 2006). 

 

5.4 Conclusions 

The present work evaluated post-fire nitrogen and phosphorus losses by overland flow 

at micro-plot scale in a recently burnt Mediterranean area, providing estimates of the range 

of N and P exports in a fire-prone landscape. It represents an important addition to the 

studies on post-fire nutrient losses by overland flow conducted in the Mediterranean region, 

which are crucial for anticipating the impacts of recurrent fires on soil productivity. Nitrogen 

and phosphorus exports were particularly pronounced in the three months after fire. 

However, after this initial period, peaks in N and P exports were also observed in association 

to intense rainfall events. These results thereby show that broader time scales are useful to 

gain insight into the soil fertility losses in burnt forest areas. 

Although micro-plots can provide a rapid characterization of the hydrological and 

erosion response in burnt forest areas, the results of this study should be analysed with some 

caution as micro-plots usually have some limitations regarding the representativeness of 

post-fire hydrological and erosive processes at the field scale. Regardless of these constraints, 

the present study can be viewed as an important contribution for a better understanding of 

post-fire nitrogen and phosphorus exports in the Mediterranean region, where wildfires are 

expected to become more frequent as a result of climate changes. Studies at larger spatial 

scales are also recommended for a comprehensive understanding of nutrient dynamics after 

wildfires and assessment of post-fire erosion risks, which has important implications for the 

recovery process of burned Mediterranean forests as well as for post-fire land management. 
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Chapter 6 - General conclusions 

The present study focused on post-fire nutrient mobilization by overland flow, and in 

relation to soil nutrient stocks, focusing on several features, with different nutrients: 

 

(i)  Short-term variation of base cations losses in contrasting slopes in terms of 

vegetation (eucalypt vs. pine) and parent material (granite vs. schist), at micro-plot scale 

and slope scale, with comparison to unburnt slope only at slope scale; in a selection of 

some rainfall events over the six-months monitoring period (Chapter 2); 

 

(ii)  Short-term variation of nitrogen losses in contrasting slopes in terms of 

vegetation (eucalypt vs. pine) and parent material (granite vs. schist), at micro-plot scale, 

over a six-months monitoring period (Chapter 3); 

 

(iii) Short-term variation of phosphorus losses in contrasting slopes in terms of 

vegetation (eucalypt vs. pine) and parent material (granite vs. schist), at micro-plot scale, 

over a six-months monitoring period (Chapter 4); 

 

(iv) Temporal and spatial variation of nitrogen and phosphorus losses in 

contrasting slopes in terms of slope aspect, in eucalypt plantations, at micro-plot, over a 

twenty-months monitoring period (Chapter 5). 

 

 

The fact that this work was carried out in the Mediterranean Basin is important since 

this region coincide with mountain areas where the soils are often weakly developed and 

poor in nutrients, regardless of their abundant vegetation. Also important for anticipating the 

impacts of recurrent fires on soil productivity because fire frequency is expected to increase 

in the future as a result of climate changes.  

 

The main conclusions from the results obtained in Chapters 2 to 5 are summarized as 

follows:  
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i) the existence of a protective litter layer (i.e. of scorched pine needles) at the burnt pine 

site considerably reduced post-fire N export compared to the burnt eucalypt site, mainly by 

decreasing overland flow generation and the associated sediment losses. This information 

can be considered relevant for post-fire land management since it emphasizes that 

spontaneous mulching can be highly effective to reduce soil (fertility) losses and, thereby, will 

make further soil conservation measures superfluous.    

 

 ii) overland flow and soil (fertility) losses were markedly lower at the eucalypt site on 

granite than at that at the eucalypt site on schist, probably due to the coarser texture and, 

thus, higher infiltration capacity of the granite soils. This parent material-related difference in 

post-fire erosion risk is important for defining priorities in post-fire land management and, in 

particular, for the application of soil conservation measures such as mulching.  

 

iii) overland flow and soil losses were also markedly lower at the site facing south than 

at that facing north. The pre-fire conditions could also have contributed to this difference, 

since the site facing north was having a logging operation at the time of the fire. This 

operation could have promoted forest soil disturbances, such as affecting soil infiltration 

capacity, and increased the amount of biomass available on the ground, enriching even more 

the nutrient-rich ash layer, contributing for the distinctly losses between sites; 

 

iv) nutrients exports were particularly intense in the two months after fire but after this 

initial period, peaks in nutrients concentrations were also observed in association to intense 

rainfall events. These results suggest that wider time scales (i.e. wider than 6 months) are 

needed to evaluate the full extension of wildfires on forest lands. Nevertheless, it seems 

reasonable to recommend that post-fire management efforts should focus on the first 3 

months after fire, to minimize the loss of soil fertility and degradation of burnt forest areas. 

 

v) scale size is an important factor when studying the effects of wildfires on soil 

degradation, since different responses were observed at micro-plot and slope scale. At 

smaller scales, cation losses were higher than at larger scales, possibly because runoff and 

erosion decreases at larger scales as a result of changes in the soil infiltration patterns. These 

findings confirm the idea that although micro-plots may be suitable to quickly characterize 

the hydrological and erosion response in burnt forest areas, studies carried out at a larger 

scale are probably closer to reality due to a better representation of the natural connectivity 

within forest systems. 
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Studies at broader spatial scales, as well as wider time scales, are therefore 

recommended to assess the effective risk of post-fire soil fertility loss, which has important 

implications for the recovery process of burned Mediterranean forests as well as for post-fire 

land management. 

 

The present findings are viewed as an important contribution to the current knowledge 

of post-fire nutrient mobilization and redistribution and of the resulting soil degradation in 

the Mediterranean Basin, especially since such information continues to be scarce for this 

region and since Mediterranean soils are typically nutrient poor. Future studies are, however, 

recommended to address broader spatial scales as well as wider time scales to fully 

understand post-fire nutrient dynamics and to assess the effective risk of post-fire soil 

fertility loss, which has important implications for the recovery process of burned 

Mediterranean forests as well as for post-fire land management. 

 


