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Resumo O Cálculo das Variações e o Controlo Ótimo são dois ramos da Matemática
que estão muito interligados entre si e também com outras áreas. Como
exemplo, podemos citar a Geometria, a Física, a Mecânica, a Economia, a
Biologia, bem como a Medicina. Nesta tese estudamos vários tipos de proble-
mas variacionais e de Controlo Ótimo, estabelecendo a ligação entre alguns
destes. Fazemos uma breve introdução sobre a Diabetes Mellitus, uma vez
que estudamos um modelo matemático que traduz a interação entre a glicose
e a insulina no sangue por forma a otimizar o estado de uma pessoa com
diabetes tipo 1.





Keywords Calculus of Variations, Euler’s Method, Euler–Lagrange equation, Optimal
Control, Diabetes Mellitus.

Abstract The Calculus of Variations and the Optimal Control are two branches of Math-
ematics that are very interconnected with each other and with other areas. As
example, we can mention Geometry, Physics, Mechanics, Economics, Biology
and Medicine. In this thesis we study various types of variational problems and
of Optimal Control, establishing the connection between some of these. We
make a brief introduction to the Diabetes Mellitus, because we study a math-
ematical model that reflects the interaction between glucose and insulin in the
blood in order to optimize the state of a person with diabetes type 1.





What we learn with pleasure we never forget.
- Alfred Mercier
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Introduction

In this thesis two important �elds of Mathematical Optimization are
considered: the Calculus of Variations and the Optimal Control. My �rst
interest in the problems of Mathematical Optimization was due to some
courses that I studied in the undergraduation and in the master. Those
that had more contribution for this interest were Nonlinear Optimization
with Constraints, Numerical Optimization and Mathematical Programming.
The goal of these �elds is to �nd the point x = (x1, . . . , xn) ∈ Rn that
maximizes, or minimizes, a real valued objective function and that satis�es a
system of equalities or inequalities constraints, where the objective function,
or some of the constraints, are nonlinear. As the Calculus of Variations
consists to determine the extrema functions that optimize a given functional
we can establish a connection between the courses that I have studied and
the Calculus of Variations. On the other hand, we can also establish a
connection between the Calculus of Variations and the Optimal Control,
because this last is a generalization of the �rst. Therefore, we can consider
that the Calculus of Variations is a particular area of the Optimal Control.

In Chapter 1 is studied the basic variational problem with �xed endpoints
that consists to �nd functions y ∈ C2[a, b] that optimize a de�nite integral
given by

J(y) =

∫ b

a
f(x, y(x), y′(x))dx (1)

and that verify the boundary conditions y(a) = ya and y(b) = yb, where f
is a function assumed to have continuous partial derivatives of the second
order with respect to x, y and y′ and a, b, ya and yb are �xed.

First, it is presented the Euler's approach in order to solve this prob-
lem by discretizing it and then the analytical manipulation that Lagrange
used to solve the same problem. So, it is studied the necessary and su�-
cient conditions for that a smooth function to be a solution of a variational
problem with �xed endpoints. It is also analysed the variational problem
with �xed endpoints for functionals containing second-order derivatives and
several dependent variables.

The variational problem that results of adding an isoperimetric constraint
to the problem mentioned before is also analysed. This constraint is given
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by

I(y) =

∫ b

a
g(x, y(x), y′(x))dx = L,

where I : C2[a, b] −→ R is a functional, g is a smooth function of x, y and y′

and L is a speci�ed constant. This problem is called Isoperimetric Problem.

Even if no boundary conditions are imposed and the endpoints are �xed,
the analytical procedure suggested by Lagrange, mentioned before, supplies
the right number of boundary conditions that we need to optimize the func-
tional given by (1) and it is proved in this chapter.

Finally, Chapter 1 ends with the variational problem with a variable
endpoint. Therefore, it is presented how to �nd the solution (x, y) ∈ ]a, b]×
C2[a, b] that optimizes a functional given by

J(x, y) =

∫ x

a
f(x, y(x), y′(x))dx

subject to the boundary condition y(a) = ya, where f is a function de�ned
as previously and a and ya are �xed. Thus, in these problems the endpoint
x of the integral is a variable of the problem, which isn't �xed.

Chapter 2 begins with the study of the Optimal Control theory. It is
stated and proved a version of the Pontryagin Maximum Principle that pro-
vides a set of necessary conditions for that the pair (y ,u) solves the basic
problem of Optimal Control given by

(POC) max J(y ,u) =

∫ b

a
f(x,y(x),u(x))dx

s.t. y ′(x) = g(x,y(x),u(x)), ∀ x ∈ ]a, b[ (2)

y(a) = ya,

where a, b ∈ R such that a < b, f ∈ C1([a, b] × Rk+m,R), g ∈ C1([a, b] ×
Rk+m,Rk), y ∈ PC1([a, b],Rk) and the control u ∈ PC([a, b],Rm) with
k,m ∈ N.

There are some problems of Optimal Control that can be written as
problems of Calculus of Variations and therefore these can have two possible
resolutions. This situation is illustrated in this chapter by examples.

The problem that was stated previously has a free control, but in the
real applications of Optimal Control the control is usually bounded. Then,
it is also analysed in this chapter a problem like (2), but with m = 1 and
with the constraint

u(x) ∈ U,

where U = [c, d] ⊆ R and c < d.

In Chapter 3 we study a real application of Optimal Control to Diabetes
Mellitus. First, we do a brief explanation of this disease in order to do a
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correct discussion of the solution that we intend to determine. The goal
is to minimize a speci�ed objective functional subject to a mathematical
model that translates the interaction between the glucose and the insulin in
the blood. We can solve this problem numerically by two methods. First,
we obtain a numerical solution of the necessary conditions and then, we
discretize the problem using the software IPOPT. Finally, we compare the
two numerical solutions with the exact solution and we interpret the results.
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Chapter 1

The Calculus of Variations

1.1 Introduction

In the Calculus of Variations we want to �nd the extrema functions that
maximize, or minimize, a given functional. Thus, this area is considered a
branch of optimization.

Generally, the functionals are given by de�nite integrals and the set of
admissible functions are de�ned by boundary conditions and smoothness
requirements, as we will see.

The Calculus of Variations and the Calculus were developed somewhat
in parallel. In 1927, Forsyth said that the Calculus of Variations �attracted
a rather �ckle attention at more or less isolated intervals in its growth� [41,
p. 1].

Leonhard Euler (1707�1783) was a Swiss mathematician and physicist.
He introduced a general mathematical procedure to �nd the general solu-
tion of variational problems in his pioneering work The method of �nding
plane curves that show some property of maximum and minimum, in 1744.
Along the way, he formulated the variational principle for mechanics (Eu-
ler's version of the principle of least action). Mathematicians consider that
this event was the beginning of the Calculus of Variations. It is not known
when he became seriously attracted by variational problems, but we know
that Euler was �rst in�uenced by Jacob and Johann Bernoulli and after by
Newton and Leibniz. The �rst version of the Calculus of Variations that
Euler developed was intuitive and required elementary mathematics and a
geometrical insight of the variational problem. We will study this approach
in the section Euler's Method of Finite Di�erences.

Joseph Louis Lagrange (1736�1813) was an Italian mathematician. In
1755, he wrote a letter to Euler where he showed that the resolution of each
variational problem can be reduced to a quite general and powerful analytical
manipulation. One point of this study consists in the Euler's solution to the
isoperimetric problem. This problem was present in Euler's work of 1744.
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Forthwith, he adopted the formal algebraic method of Lagrange that was
more rigorous. Euler renamed the subject Calculus of Variations and the
elegant techniques of Lagrange eliminated the intuitive approach and the
geometrical insight that Euler used.

Later, in 1900, David Hilbert presented 23 (now famous) problems, in
the International Congress of Mathematicians, and the 23rd was entitled
Further development of the methods of the calculus of variations. Before the
description of the problem he remarked [41, p. 1]:

� � . . . I should like to close with a general problem, namely with the
indication of a branch of mathematics repeatedly mentioned in this lecture �
which, in spite of the considerable advancement lately given it byWeierstrass,
does not receive the general appreciation which in my opinion it is due � I
mean the calculus of variations.�

After, there was a further development in this area and mathematicians
like David Hilbert, Emmy Noether, Leonida Tonelli, Henri Lebesgue and
Jacques Hadamard, among others, dedicated signi�cantly to the Calculus of
Variations. In the eighteenth and nineteenth centuries its development was
motivated especially by problems in mechanics.

Nowadays, this subject continues to cause concern, because it has ap-
plications in several areas: physics (particularly mechanics), economics and
urban planning, among others.

In this chapter we will study the variational problem with �xed endpoints
(�rst by the prospect of Euler and after by the prospect of Lagrange), the
isoperimetric problem and the variational problem with an endpoint variable.
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1.2 Variational Problem with Fixed Endpoints

Throughout the text, to refer a variational problem with �xed endpoints
we will just write VPFE. Before presenting this particular problem we are
going to recall some de�nitions and a fundamental result. We are going to
follow the approach used by van Brunt in [41].

We say that a function f is smooth if it has as many continuous deriva-
tives as are necessary to perform whatever operations that are required.

Theorem 1.2.1 (Optimality condition of �rst order) Let X be an
open subset of Rn and f : X → R a function. If f is di�erentiable at x̂
and if x̂ is a local extremizer of f , then ∇f(x̂) = 0.

De�nition 1.2.1 (Functional) Let X be a vector space of functions. A
functional J is a function with domain X and range R:

J : X → R.

Consider the vector space X = Cn[a, b], for some n ∈ N0 endowed with
a norm ‖ · ‖.

De�nition 1.2.2 (Local maximizer of a functional) Let S ⊆ X be a
normed space with norm || · ||. We say that y ∈ S is a local maximizer of
the functional J if there exists some ε > 0 such that J(ŷ)− J(y) 6 0 for all
ŷ ∈ S such that ||ŷ − y|| < ε.

Remark 1.2.1 We say that y ∈ S is a local minimizer of the functional J
if y is a local maximizer of the functional −J .

To simplify the writing we are going to say maximizer (minimizer) in-
stead of local maximizer (minimizer).

Problem Statement (VPFE): The basic variational problem with �xed
endpoints consists of �nding the functions y ∈ C2[a, b] that solves the prob-
lem

(PCV 1) max J(y) =

∫ b

a
f(x, y(x), y′(x))dx (1.1)

s.t. y(a) = ya

y(b) = yb,

where J : C2[a, b] −→ R is a functional, f (usually called Lagrangian) is
a function assumed to have, at least, continuous partial derivatives of the
second order with respect to x, y and y′ and a, b, ya and yb are �xed.

Sometimes, to simplify the notation, we can write f(x, y, y′) instead of
f(x, y(x), y′(x)), or simply f instead of f(x, y, y′).
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1.2.1 Euler's Method of Finite Di�erences

In this section we will show how Euler solved the variational problem
(PCV 1) before Lagrange write to him (see [27, p. 28�32]).

First, we de�ne

∆x :=
b− a
n+ 1

and we take in the interval [a, b] the points x0 = a, xi = x0 + i∆x for
i = 1, . . . , n and xn+1 = b. Note that n ∈ N. So, we divide the interval [a, b]
into n+ 1 equal parts. Consider the following de�nition.

De�nition 1.2.3 (Finite Forward Di�erence) Let f : [a, b] → R be a
function and consider xi = x0 + i∆x, for all i = 1, . . . , n, such that x0 = a,

xn+1 = b and ∆x =
b− a
n+ 1

. The �nite forward di�erence of �rst order of f

is given by
∆f(xi) := f(xi+1)− f(xi).

De�ne yi := y(xi) for all i = 0, . . . , n+1. For i = 1, . . . , n we don't know the
values yi, because the function which solves the problem is unknown yet.

As we know, the integral (1.1) is the limit of a summation and y′i can be
approximated by

yi+1 − yi
∆x

.

Consequently, we may approximate the integral (1.1) by the following func-
tion φ(y1, . . . , yn):

φ(y1, . . . , yn) =
n∑
i=0

f

(
xi, yi,

yi+1 − yi
∆x

)
∆x.

We can determinate the quantities yi, i = 1, . . . , n, using the following
equations:

∂φ

∂yi
(y1, . . . , yn) = 0, ∀i = 1, . . . , n.

Thus, for i = 1, . . . , n we have that

∂φ

∂yi
(y1, . . . , yn) =

∂

∂y

(
f

(
xi, yi,

yi+1 − yi
∆x

)
∆x

)
+

∂

∂y

(
f

(
xi−1, yi−1,

yi − yi−1

∆x

)
∆x

)
=
∂f

∂y

(
xi, yi,

yi+1 − yi
∆x

)
∆x− ∂f

∂y′

(
xi, yi,

yi+1 − yi
∆x

)
+
∂f

∂y′

(
xi−1, yi−1,

yi − yi−1

∆x

)
= 0.

8



Assuming that ∆yi = yi+1 − yi, we have that

∂f

∂y

(
xi, yi,

∆yi
∆x

)
−

∂f
∂y′

(
xi, yi,

∆yi
∆x

)
− ∂f

∂y′

(
xi−1, yi−1,

∆yi−1

∆x

)
∆x

= 0

⇒ ∂f

∂y

(
xi, yi,

∆yi
∆x

)
−

∆ ∂f
∂y′

∆x

(
xi, yi,

∆yi
∆x

)
= 0. (1.2)

The above equation is the �nite di�erence version of the Euler�Lagrange
equation (see (1.5) on page 15).

Example 1.2.1 Consider the problem

max J(y) =

∫ 1

0
(y′(x))2 − y2(x)− 2xy(x) dx

s.t. y(0) = 1 (1.3)

y(1) = 2.

We will �nd an approximation to the solution of this problem by Euler's
Method for n = 1, n = 2, n = 3 and n = 4.

For n = 1 we have that ∆x = 1
2 . Thus, x0 = 0, x1 = 1

2 and x2 = 1. We
know that y0 = 1 and y2 = 2. To determine y1 we need to write the function
φ given by

φ(y1) =
1∑
i=0

[(
yi+1 − yi

∆x

)2

− y2
i − 2xiyi

]
∆x

=
7

2
y2

1 −
25

2
y1 +

19

2

and solve

∂φ

∂y1
= 0⇔ 7y1 −

25

2
= 0⇔ y1 =

25

14
.

So, we obtain the points A = (0, 1); B =
(

1
2 ,

25
14

)
and C = (1, 2). We can

observe the approximation (dashed line), these points and the extremal1

y(x) =
3− cos(1)

sin(1)
sin(x) + cos(x)− x (1.4)

to problem (1.3) (solid line) in Figure 1.1 (see Example 1.2.2 on page 17).

1The concept of extremal is introduced later, in De�nition 1.2.5.
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Figure 1.1: Euler's Method for n = 1 versus the extremal to (1.3).

For n = 2 we have that ∆x = 1
3 . Thus, x0 = 0, x1 = 1

3 , x2 = 2
3 and

x3 = 1. We know that y0 = 1 and y3 = 2. To determine y1 and y2 we need
to write the function φ given by

φ(y1, y2) =
2∑
i=0

[(
yi+1 − yi

∆x

)2

− y2
i − 2xiyi

]
∆x

=
17

3
y2

1 +
17

3
y2

2 −
56

9
y1 −

112

9
y2 − 6y1y2 +

44

3

and solve the system{
∂φ
∂y1

= 0
∂φ
∂y2

= 0
⇔

{
34
3 y1 − 56

9 − 6y2 = 0
34
3 y2 − 112

9 − 6y1 = 0
⇔

{
y1 = 245

156

y2 = 301
156 .

So, we obtain the points

A = (0, 1); B =

(
1

3
,
245

156

)
; C =

(
2

3
,
301

156

)
and D = (1, 2).

We can observe the approximation (dashed line), these points and the ex-
tremal to problem (1.3) given by (1.4) (solid line) in Figure 1.2.
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Figure 1.2: Euler's Method for n = 2 versus the extremal to (1.3).

For n = 3 we have that ∆x = 1
4 . Thus, x0 = 0, x1 = 1

4 , x2 = 1
2 , x3 = 3

4
and x4 = 1. We know that y0 = 1 and y4 = 2. To determine y1, y2 and y3

we need to write the function φ given by

φ(y1, y2, y3) =

3∑
i=0

[(
yi+1 − yi

∆x

)2

− y2
i − 2xiyi

]
∆x

=
31

4
y2

1 +
31

4
y2

2 +
31

4
y2

3 −
65

8
y1 −

1

4
y2

−131

8
y3 − 8y1y2 − 8y2y3 +

79

4

and solve the system
∂φ
∂y1

= 0
∂φ
∂y2

= 0
∂φ
∂y3

= 0

⇔


31
2 y1 − 65

8 − 8y2 = 0
31
2 y2 − 1

4 − 8y1 − 8y3 = 0
31
2 y3 − 131

8 − 8y2 = 0

⇔


y1 = 80353

55676

y2 = 1599
898

y3 = 109987
55676 .

So, we obtain the points

A = (0, 1); B =

(
1

4
,
80353

55676

)
; C =

(
1

2
,
1599

898

)
; D =

(
3

4
,
109987

55676

)
and

E = (1, 2).

We can observe the approximation (dashed line), these points and the ex-
tremal to problem (1.3) given by (1.4) (solid line) in Figure 1.3.
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Figure 1.3: Euler's Method for n = 3 versus the extremal to (1.3).

For n = 4 we have that ∆x = 1
5 . Thus, x0 = 0, x1 = 1

5 , x2 = 2
5 , x3 = 3

5 ,
x4 = 4

5 and x5 = 1. We know that y0 = 1 and y5 = 2. To determine y1, y2,
y3 and y4 we need to write the function φ given by

φ(y1, y2, y3, y4) =

4∑
i=0

[(
yi+1 − yi

∆x

)2

− y2
i − 2xiyi

]
∆x

=
49

5
y2

1 +
49

5
y2

2 +
49

5
y2

3 +
49

5
y2

4 −
252

25
y1 −

4

25
y2

− 6

25
y3 −

508

25
y4 − 10y1y2 − 10y2y3 − 10y3y4 +

124

5

and solve the system
∂φ
∂y1

= 0
∂φ
∂y2

= 0
∂φ
∂y3

= 0
∂φ
∂y4

= 0

⇔


98
5 y1 − 252

25 − 10y2 = 0
98
5 y2 − 4

25 − 10y1 − 10y3 = 0
98
5 y3 − 6

25 − 10y2 − 10y4 = 0
98
5 y4 − 508

25 − 10y3 = 0

⇔


y1 = 11255699

8267755

y2 = 13727273
8267755

y3 = 15517472
8267755

y4 = 16488546
8267755 .

So, we obtain the points

A = (0, 1); B =

(
1

5
,
11255699

8267755

)
; C =

(
2

5
,
13727273

8267755

)
;

D =

(
3

5
,
15517472

8267755

)
; E =

(
4

5
,
16488546

8267755

)
and F = (1, 2).

We can observe the approximation (dashed line), these points and the ex-
tremal to problem (1.3) given by (1.4) (solid line) in Figure 1.4.
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Figure 1.4: Euler's Method for n = 4 versus the extremal to (1.3).

Graphically, we observe that the approximations converge to the ex-
tremal y given by (1.4). We remark that, for this extremal, J(y) ' −3.38
and that φ(y1) ' −1.66, φ(y1, y2) ' −2.23, φ(y1, y2, y3) ' −2.51 and
φ(y1, y2, y3, y4) ' −2.68. As the value of n increases, the values of the
approximation approach to J(y).

Note that for the four cases studied previously, we determine the points
xi and yi, for i = 0, . . . , n + 1, the function φ(y1, . . . , yn) and the graphics
with the help of the routines developed in MATLAB that are in Appendix
A.

1.2.2 Lagrange's Method

Now we will study the Lagrange's approach to solve the problem (PCV 1),
but before we will recall some de�nitions and prove some lemmas which we
will need later.

Lemma 1.2.2 Let α and β be two real numbers such that α < β. Then,
there exists a smooth function υ such that υ(x) > 0 for all x ∈ ]α, β[ and
υ(x) = 0 for all x ∈ R\]α, β[.

Proof: Consider the function θ : R −→ R de�ned by

θ(x) =

{
e−

1
x , x > 0

0 , x ≤ 0.

Let us prove, by mathematical induction, that for all m ∈ N0, θ ∈ Cm
and θ(m)(0) = 0. For m = 0 it is obvious. Suppose that θ ∈ Cm and
θ(m)(0) = 0. Now we will prove that θ ∈ Cm+1 and θ(m+1)(0) = 0. Clearly,

13



for all x ∈ R+

θ(m)(x) =
e−

1
xP (x)

Q(x)

and for all x ∈ R− we have that θ(m)(x) = 0, where P (x) and Q(x) are
polynomials. So,

θ(m+1)(0+) = lim
x→0+

θ(m)(x)− θ(m)(0)

x− 0
= lim

x→0+

θ(m)(x)

x
= lim

x→0+

e−
1
x
P (x)
Q(x)

x

= lim
x→0+

e−
1
xP (x)

xQ(x)
= 0

and

θ(m+1)(0−) = lim
x→0−

θ(m)(x)− θ(m)(0)

x− 0
= lim

x→0−

θ(m)(x)

x
= 0.

Therefore, θ(m+1)(0) = 0 and, consequently, θ ∈ Cm+1. Let ϕ : R −→ R be
the function de�ned by

ϕ(x) = θ(x)θ(1− x) =

{
e−

1
x
− 1

1−x , x ∈ ]0, 1[

0 , x ∈ R\]0, 1[.

As ϕ is a product of two smooth functions, ϕ is also smooth. Now let
ϕα,β : R −→ R be the function de�ned by

ϕα,β(x) =ϕ

(
x− α
β − α

)
= θ

(
x− α
β − α

)
θ

(
β − x
β − α

)
=

{
e
α−β
x−α+α−β

β−x , x ∈ ]α, β[

0 , x ∈ R\]α, β[.

Thus, there exists a smooth function υ = ϕα,β such that υ(x) > 0 for all
x ∈ ]α, β[ and υ(x) = 0 for all x ∈ R\]α, β[.

�

De�nition 1.2.4 (Inner Product of Functions) The vector space of all
real valued continuous functions on a closed interval [a, b] is an inner product
space, whose inner product is de�ned by

〈f, g〉 =

∫ b

a
f(x)g(x)dx, f, g ∈ C[a, b].

The following Lemma is known as the Fundamental Lemma of the Cal-
culus of Variations.
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Lemma 1.2.3 Let

H := {h ∈ C2[a, b] : h(a) = h(b) = 0}

be a set. If 〈h, g〉 = 0 for all h ∈ H and if g : [a, b] → R is a continuous
function, then g = 0 on the interval [a, b].

Proof: Suppose that g(c) 6= 0 for some c ∈ [a, b]. Without loss of generality
we will assume that g(c) > 0. Since g is continuous on the interval [a, b],
exists a subinterval ]α, β[ of [a, b] such that g(x) > 0 for all x ∈ ]α, β[. By
Lemma 1.2.2 there is a smooth function υ = ϕα,β such that υ(x) > 0 for all
x ∈ ]α, β[ and υ(x) = 0 for all x ∈ [a, b]\]α, β[. So, υ ∈ H and

〈v, g〉 =

∫ b

a
υ(x)g(x)dx =

∫ β

α
υ(x)g(x)dx > 0.

Therefore, there exists υ ∈ H such that 〈υ, h〉 6= 0. Consequently, g = 0 on
[a, b].

�

Remark 1.2.2 As the function ϕα,β of the proof of the Lemma 1.2.2 is
smooth, the above Lemma remains valid if h ∈ Cn[a, b] for n ∈ N.

With the following theorem we will derive a necessary condition for a
smooth function to be a solution of (PCV 1).

Theorem 1.2.4 Let S be the set de�ned by

S = {y ∈ C2[a, b] : y(a) = ya and y(b) = yb}

and J : S → R be a functional of the form

J(y) =

∫ b

a
f(x, y(x), y′(x))dx,

where ya and yb are given real numbers and f has continuous partial deriva-
tives of the second order with respect to x, y and y′. If y ∈ S is an extremizer
for J , then

∂f

∂y
(x, y(x), y′(x))− d

dx

(
∂f

∂y′
(x, y(x), y′(x))

)
= 0 (1.5)

for all x ∈ [a, b].

Proof: Suppose that y ∈ S is an extremizer for J . Let us consider the
variations y + εh ∈ S, where |ε| � 1 and h ∈ C2[a, b]. All these variations
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can be generated by an appropriate set H of functions h. As the variations
considered are in S and the endpoints are �xed, H should be de�ned by

H := {h ∈ C2[a, b] : h(a) = h(b) = 0}.

Let j be the function de�ned by

j(ε) =

∫ b

a
f(x, y(x) + εh(x), y′(x) + εh′(x))dx. (1.6)

Note that j(ε) = J(y + εh) and for the function j the variable is ε and y
and h are �xed. Consequently, y′ and h′ are also �xed. As y is a solution of
(PCV 1), then ε = 0 is an extremizer of j. Therefore, by Theorem 1.2.1 and
using integration by parts, we get

j′(0) = 0

⇔ d

dε

∫ b

a
f(x, y(x) + εh(x), y′(x) + εh′(x))dx

∣∣∣∣
ε=0

= 0

⇔
∫ b

a

df

dε
(x, y(x) + εh(x), y′(x) + εh′(x))

∣∣∣∣
ε=0

dx = 0

⇔
∫ b

a

(
∂f

∂y
(x, y(x), y′(x))h(x) +

∂f

∂y′
(x, y(x), y′(x))h′(x)

)
dx = 0

⇔
∫ b

a

(
∂f

∂y
(x, y(x), y′(x))− d

dx

(
∂f

∂y′
(x, y(x), y′(x))

))
h(x) dx

+

[
∂f

∂y′
(x, y(x), y′(x))h(x)

]b
a

= 0

⇔
∫ b

a

(
∂f

∂y
(x, y(x), y′(x))− d

dx

(
∂f

∂y′
(x, y(x), y′(x))

))
h(x)dx = 0.

As f has continuous partial derivatives of second order, by Lemma 1.2.3, we
have that for all x ∈ [a, b]

∂f

∂y
(x, y(x), y′(x))− d

dx

(
∂f

∂y′
(x, y(x), y′(x))

)
= 0.

This concludes the proof.

�

The second-order ordinary di�erential Equation (1.5) is generally nonlin-
ear and it is called the Euler�Lagrange equation. We can write it, in a
more concise way, as

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0.
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Remark 1.2.3 In the Equation (1.2) as n −→ ∞ we have that ∆x −→ 0
and it becomes the Euler�Lagrange equation (1.5).

De�nition 1.2.5 (Extremal) If y is a smooth function and satis�es the
Euler�Lagrange equation with respect to J , then y is called an extremal for
J .

De�nition 1.2.6 (First Variation) The quantity δJ(h, y) = j′(0), where
j is given by (1.6), is called the �rst variation of J at y in the direction h.

Now we revisit the problem of Example 1.2.1.

Example 1.2.2 For the problem

max J(y) =

∫ 1

0
(y′(x))2 − y2(x)− 2xy(x) dx

s.t. y(0) = 1

y(1) = 2

the Lagrangian is
f(x, y, y′) = (y′)2 − y2 − 2xy

and the Euler�Lagrange equation (1.5) gives

y′′(x) = −x− y(x).

So,
y(x) = c1 sin(x) + c2 cos(x)− x,

where c1 and c2 are real constants. As y(0) = 1 and y(1) = 2, we have that

c1 = 3−cos(1)
sin(1) and c2 = 1. Therefore,

y(x) =
3− cos(1)

sin(1)
sin(x) + cos(x)− x

and this function y(x) is the extremal (a candidate for maximizer) for the
given problem. We can con�rm these results with the help of Maple and the
following code:

with(VariationalCalculus);

F := (diff(y(x), x))^2-y(x)^2-2*x*y(x);

eqEL := EulerLagrange(F, x, y(x));

returns the Euler�Lagrange equation

{-2*x-2*y(x)-2*(diff(y(x), x, x))}.

To solve this equation we execute
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dsolve({op(eqEL), y(0) = 1, y(1) = 2}, y(x))

and we obtain

y(x) = sin(x)*(3-cos(1))/sin(1)+cos(x)-x

that is the solution that we determined previously. We can also see the
graphic of y(x) in Figure 1.5.

Figure 1.5: Graphic of the extremal y(x) to problem of Example 1.2.2.

Example 1.2.3 For the problem

max J(y) =

∫ 1

0
(y′(x))2 − 2xy(x) dx

s.t. y(0) = 1

y(1) = 3

the Lagrangian is

f(x, y, y′) = (y′)2 − 2xy.

The function y(x) = −x3

6 +x+1 satis�es the Euler�Lagrange equation (1.5),
but as y(1) = 11

6 6= 3, it isn't solution of the given problem.

Example 1.2.4 For the problem

max J(y) =

∫ 1

0
−(y′(x)− 1)2 dx

s.t. y(0) = 0

y(1) = 1

18



the Lagrangian is

f(x, y, y′) = −(y′ − 1)2

and the Euler�Lagrange equation (1.5) is given by

d

dx
2(y′(x)− 1) = 0.

Note that y∗(x) = x is a solution of the Euler�Lagrange equation. There-
fore, y∗ is an extremal for J . As J(y) ≤ 0 for all y and J(y∗) = 0, we have
that y∗ is actually a (global) maximizer for the given problem.

Now we intend to derive a su�cient condition for a smooth function to
be a solution of (PCV 1).

De�nition 1.2.7 (Concave Function) The function f(x, y, z) is concave
in M ⊆ R3 for the variables y and z if ∂f

∂y and ∂f
∂z exist and are continuous

and the condition

f(x, y + y1, z + z1)− f(x, y, z) ≤ ∂f

∂y
(x, y, z)y1 +

∂f

∂z
(x, y, z)z1

holds for every (x, y, z), (x, y + y1, z + z1) ∈M .

Theorem 1.2.5 If the function f(x, y, y′) of the problem (PCV 1) is concave
in [a, b] × R2 for the variables y and y′, then each solution y of the Euler�
Lagrange equation (1.5) is a solution of the problem (PCV 1).

Proof: Let h ∈ H be a function, where H is as de�ned in the proof of
Theorem 1.2.4, and ε such that |ε| � 1. So,

J(y + εh)− J(y)

=

∫ b

a
f(x, y(x) + εh(x), y′(x) + εh′(x))− f(x, y(x), y′(x)) dx

≤
∫ b

a

∂f

∂y
(x, y(x), y′(x))εh(x) +

∂f

∂y′
(x, y(x), y′(x))εh′(x) dx

= ε

∫ b

a

(
∂f

∂y
(x, y(x), y′(x))− d

dx

∂f

∂y′
(x, y(x), y′(x))

)
h(x) dx

= 0.

Therefore, as J(y + εh)− J(y) ≤ 0, we have that y is a solution of (PCV 1).

�
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Example 1.2.5 The function f of the Example 1.2.4 is concave, because

f(u, v + v1, w + w1)− f(u, v, w) ≤ ∂f

∂v
(u, v, w)v1 +

∂f

∂w
(u, v, w)w1

⇔− (w + w1 − 1)2 + (w − 1)2 ≤ −2(w − 1)w1

⇔− w2
1 ≤ 0

is true for all (u, v+ v1, w+w1), (u, v, w) ∈ R3. Now, by the Theorem 1.2.5,
we can conclude again that the extremal y∗(x) = x is a maximizer for the
problem of the Example 1.2.4.

Particular Cases

Now we are going to analyse three cases where the Euler�Lagrange equa-
tion can be simpli�ed. Suppose that the functional given by

J(y) =

∫ b

a
f(x, y(x), y′(x))dx

satis�es the conditions of Theorem 1.2.4.

1. First case: y does not appear explicitly in the integrand.
In this case the functional is of the form

J(y) =

∫ b

a
f(x, y′(x))dx

and the Euler�Lagrange equation becomes

d

dx

(
∂f

∂y′
(x, y′(x))

)
= 0⇒ ∂f

∂y′
(x, y′(x)) = c,

where c is a constant of integration.

2. Second case: The independent variable x does not appear explicitly
in the integrand (so called autonomous case).
In this case the functional is of the form

J(y) =

∫ b

a
f(y(x), y′(x))dx.

Theorem 1.2.6 Let J be a functional such that

J(y) =

∫ b

a
f(y(x), y′(x))dx (1.7)

and de�ne the function G by

G(y, y′) = y′
∂f

∂y′
(y, y′)− f(y, y′).

Then, G(y(x), y′(x)) is constant along any extremal y of (1.7).
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Proof: By de�nition of extremal (De�nition 1.2.5),

∂f

∂y
(y, y′)− d

dx

(
∂f

∂y′
(y, y′)

)
= 0.

Consequently, we have

dG

dx
(y, y′) = y′′

∂f

∂y′
(y, y′) + y′

d

dx

(
∂f

∂y′
(y, y′)

)
− d

dx
f(y, y′)

= y′′
∂f

∂y′
(y, y′) + y′

d

dx

(
∂f

∂y′
(y, y′)

)
−
(
y′
∂f

∂y
(y, y′) + y′′

∂f

∂y′
(y, y′)

)
=− y′

(
∂f

∂y
(y, y′)− d

dx

(
∂f

∂y′
(y, y′)

))
=− y′ × 0

= 0.

Thus, G(y(x), y′(x)) is constant along any extremal y of (1.7).

�

Remark 1.2.4 As G(y(x), y′(x)) is constant along any extremal, then
G(y(x), y′(x)) is constant along any extremizer of (1.7).

3. Third case (a degenerate case): the integrand is linear in y′.
Suppose that J is a functional of the form

J(y) =

∫ b

a
A(x, y(x))y′(x) +B(x, y(x))dx,

where A and B are smooth functions of x and y. In this case, the
Euler�Lagrange equation is

dA

dx
(x, y)−

(
y′
∂A

∂y
(x, y) +

∂B

∂y
(x, y)

)
= 0. (1.8)

Note that

dA

dx
(x, y) =

∂A

∂x
(x, y) + y′

∂A

∂y
(x, y)

⇔dA

dx
(x, y)− y′∂A

∂y
(x, y) =

∂A

∂x
(x, y).
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So, we can rewrite Equation (1.8) as

∂A

∂x
(x, y)− ∂B

∂y
(x, y) = 0⇔ ∂A

∂x
(x, y) =

∂B

∂y
(x, y) =: g(x, y). (1.9)

Then,

A(x, y) =

∫
g(x, y)dx+ fA(y)

and

B(x, y) =

∫
g(x, y)dy + fB(x),

where fA and fB are functions. Let φ be the function de�ned by

φ :=

∫ ∫
g(x, y)dxdy +

∫
fA(y)dy +

∫
fB(x)dx.

So, we have that

∂φ

∂x
=

∫
g(x, y)dy + fB(x) = B(x, y)

and
∂φ

∂y
=

∫
g(x, y)dx+ fA(y) = A(x, y).

In conclusion, if Equation (1.9) is an identity for all x ∈ [a, b] and for
all y ∈ S, this implies the existence of a smooth function φ such that

∂φ

∂y
(x, y) = A(x, y),

∂φ

∂x
(x, y) = B(x, y).

Thus, as f is the integrand

f =
∂φ

∂y
y′ +

∂φ

∂x
=
dφ

dx
⇔ fdx = dφ.

Consequently,

J(y) =

∫ b

a
dφ = φ(b, y(b))− φ(a, y(a)).

Conclusions:

(a) The value of J is independent of y, therefore the integrand is path
independent.

(b) J depends only on φ and the points (a, y(a)) and (b, y(b)).

Therefore, we can formulate the following Theorem and prove it.
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Theorem 1.2.7 Suppose that the functional J satis�es the conditions of
Theorem 1.2.4 and the Euler�Lagrange equation (1.5) reduces to an identity.
Then, the integrand must be linear in y′ and the value of the functional is
independent of y.

Proof: If the Euler�Lagrange equation reduces to an identity, then

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0, ∀x ∈ [a, b] and ∀y ∈ S

⇔∂f

∂y
− ∂2f

∂x∂y′
− ∂2f

∂y∂y′
y′ − ∂2f

∂y′2
y′′ = 0, ∀x ∈ [a, b] and ∀y ∈ S. (1.10)

As y′′ appears only in the last term, this can not be cancelled with any other
term of the above equation, and as the Equation (1.10) must hold for all
y ∈ S we can conclude that

∂2f

∂y′2
= 0⇒ ∂f

∂y′
= A(x, y)⇒ f = A(x, y)y′ +B(x, y)

for some functions A and B. So, the Euler�Lagrange equation is

∂A

∂x
(x, y) =

∂B

∂y
(x, y)

for all x ∈ [a, b] and for all y ∈ S. So, we have that

J(y) =

∫ b

a
dφ = φ(b, y(b))− φ(a, y(a)) = φ(b, yb)− φ(a, ya)

and therefore, the value of the functional is independent of y (a, b, ya and
yb are given).

�

1.2.3 Some Generalizations for the VPFE

VPFE for Functionals Containing Second-Order Derivatives

A procedure similar to the one of Section 1.2.2 can be done if the func-
tional J also contains second-order derivatives.

Theorem 1.2.8 Let S be the set de�ned by

S = {y ∈ C4[a, b] : y(m)(a) = y(m)
a and y(m)(b) = y

(m)
b for m = 0, 1}

and J : S → R be a functional of the form

J(y) =

∫ b

a
f(x, y(x), y′(x), y′′(x))dx, (1.11)
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where y(m)
a and y(m)

b form = 0, 1 are given real numbers and f has continuous
partial derivatives of the third order with respect to x, y, y′ and y′′. If y ∈ S
is an extremizer for J , then

∂

∂y
f(x, y(x), y′(x), y′′(x))− d

dx

(
∂

∂y′
f(x, y(x), y′(x), y′′(x))

)
+
d2

dx2

(
∂

∂y′′
f(x, y(x), y′(x), y′′(x))

)
= 0 (1.12)

for all x ∈ [a, b].

Proof: Suppose that y ∈ S is an extremizer for J. Again, let us consider
the variations y + εh ∈ S, where |ε| � 1 and h ∈ C4[a, b]. Now the set H
should be de�ned by

H := {h ∈ C4[a, b] : h(a) = h′(a) = h(b) = h′(b) = 0}.

Let j be the function de�ned by

j(ε) =

∫ b

a
f(x, y(x) + εh(x), y′(x) + εh′(x), y′′(x) + εh′′(x))dx.

It is known that if y ∈ S is an extremizer for J , then, by Theorem 1.2.1,

j′(0) = 0

⇔ d

dε

∫ b

a
f(x, y(x) + εh(x), y′(x) + εh′(x), y′′(x) + εh′′(x))

∣∣∣∣
ε=0

dx = 0

⇔
∫ b

a

d

dε
f(x, y(x) + εh(x), y′(x) + εh′(x), y′′(x) + εh′′(x))

∣∣∣∣
ε=0

dx = 0

⇔
∫ b

a

∂

∂y
f(x, y(x), y′(x), y′′(x))h(x)dx

+

∫ b

a

∂

∂y′
f(x, y(x), y′(x), y′′(x))h′(x)dx

+

∫ b

a

∂

∂y′′
f(x, y(x), y′(x), y′′(x))h′′(x)dx = 0.

Now we will eliminate the terms h′(x) and h′′(x) in the previous equation
using integration by parts.
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Elimination of the term h′(x):∫ b

a

∂

∂y′
f(x, y(x), y′(x), y′′(x))h′(x)dx

=

[
∂

∂y′
f(x, y(x), y′(x), y′′(x))h(x)

]b
a

−
∫ b

a

d

dx

(
∂

∂y′
f(x, y(x), y′(x), y′′(x))

)
h(x)dx

=−
∫ b

a

d

dx

(
∂

∂y′
f(x, y(x), y′(x), y′′(x))

)
h(x)dx.

Elimination of the term h′′(x):∫ b

a

∂

∂y′′
f(x, y(x), y′(x), y′′(x))h′′(x)dx

=

[
∂

∂y′′
f(x, y(x), y′(x), y′′(x))h′(x)

]b
a

−
∫ b

a

d

dx

(
∂

∂y′′
f(x, y(x), y′(x), y′′(x))

)
h′(x)dx

=−
∫ b

a

d

dx

(
∂

∂y′′
f(x, y(x), y′(x), y′′(x))

)
h′(x)dx

=−
[
d

dx

(
∂

∂y′′
f(x, y(x), y′(x), y′′(x))

)
h(x)

]b
a

+

∫ b

a

d2

dx2

(
∂

∂y′′
f(x, y(x), y′(x), y′′(x))

)
h(x)dx

=

∫ b

a

d2

dx2

(
∂

∂y′′
f(x, y(x), y′(x), y′′(x))

)
h(x)dx.

As f has continuous partial derivatives of the third order, by Lemma 1.2.3,
we have that for all x ∈ [a, b]

∂

∂y
f(x, y(x), y′(x), y′′(x))− d

dx

(
∂

∂y′
f(x, y(x), y′(x), y′′(x))

)
+
d2

dx2

(
∂

∂y′′
f(x, y(x), y′(x), y′′(x))

)
= 0.

This concludes the proof.

�

We can write the Euler�Lagrange equation (1.12) in a more concise way,
as

∂f

∂y
− d

dx

(
∂f

∂y′

)
+

d2

dx2

(
∂f

∂y′′

)
= 0.
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De�nition 1.2.8 The solutions y of (1.12) are called extremals for the func-
tional de�ned in (1.11).

Particular Cases for Functionals Containing Second-Order Deriva-

tives

Now we will also analyse three cases where the Euler�Lagrange equation
(1.12) is simpli�ed. We suppose that the functional given by

J(y) =

∫ b

a
f(x, y(x), y′(x), y′′(x))dx

satis�es the conditions of Theorem 1.2.8.

1. First case: y does not appear explicitly in the integrand.
In this case the functional is of the form

J(y) =

∫ b

a
f(x, y′(x), y′′(x))dx

and the Euler�Lagrange equation (1.12) is

− d

dx

(
∂f

∂y′
(x, y′(x), y′′(x))

)
+

d2

dx2

(
∂f

∂y′′
(x, y′(x), y′′(x))

)
= 0

⇒ − ∂f

∂y′
(x, y′(x), y′′(x)) +

d

dx

(
∂f

∂y′′
(x, y′(x), y′′(x))

)
= c,

where c is a constant of integration.

2. Second case: The independent variable x does not appear explicitly
in the integrand (autonomous case).
In this case the functional is of the form

J(y) =

∫ b

a
f(y(x), y′(x), y′′(x))dx.

Theorem 1.2.9 Let J be a functional such that

J(y) =

∫ b

a
f(y(x), y′(x), y′′(x))dx (1.13)

and de�ne G by

G(y, y′, y′′) = y′′
∂f

∂y′′
− y′

(
d

dx

∂f

∂y′′
− ∂f

∂y′

)
− f.

Then, G(y(x), y′(x), y′′(x)) is constant along any extremal y of (1.13).
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Proof: Suppose that y is an extremal for J . So, by De�nition 1.2.8

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′
= 0

for all x ∈ [a, b]. Thus, we get

dG

dx
(y, y′, y′′) =

d

dx

(
y′′
∂f

∂y′′
− y′

(
d

dx

∂f

∂y′′
− ∂f

∂y′

)
− f

)
= y′′′

∂f

∂y′′
+ y′′

d

dx

∂f

∂y′′
− y′′

(
d

dx

∂f

∂y′′
− ∂f

∂y′

)
− y′

(
d2

dx2

∂f

∂y′′
− d

dx

∂f

∂y′

)
− d

dx
f

= y′′′
∂f

∂y′′
+ y′′

∂f

∂y′
− y′ d

2

dx2

∂f

∂y′′
+ y′

d

dx

∂f

∂y′

− y′∂f
∂y
− y′′ ∂f

∂y′
− y′′′ ∂f

∂y′′

=− y′
(
∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′

)
=− y′ × 0

= 0.

Therefore, G(y(x), y′(x), y′′(x)) is constant along any extremal y of
(1.13).

3. Third case (a degenerate case): the integrand is linear in y′′.
Suppose that J is a functional of the form

J(y) =

∫ b

a
A(x, y(x), y′(x))y′′(x) +B(x, y(x), y′(x))dx, (1.14)

where A and B are smooth functions of x, y and y′. The Euler�
Lagrange equation (1.12) associated to (1.14) is

d2

dx2
A(x, y, y′)− d

dx

(
y′′
∂A

∂y′
+
∂B

∂y′

)
+ y′′

∂A

∂y
+
∂B

∂y
= 0

⇒ d

dx

(
∂A

∂x
+ y′

∂A

∂y
+ y′′

∂A

∂y′

)
−
(
y′′′

∂A

∂y′
+ y′′

d

dx

∂A

∂y′
+

d

dx

∂B

∂y′

)
+ y′′

∂A

∂y
+
∂B

∂y
= 0

⇒ d

dx

∂A

∂x
+ y′′

∂A

∂y
+ y′

d

dx

∂A

∂y
+ y′′′

∂A

∂y′
+ y′′

d

dx

∂A

∂y′
− y′′′ ∂A

∂y′

− y′′ d
dx

∂A

∂y′
− d

dx

∂B

∂y′
+ y′′

∂A

∂y
+
∂B

∂y
= 0
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⇒ d

dx

∂A

∂x
+ 2y′′

∂A

∂y
+ y′

d

dx

∂A

∂y
− d

dx

∂B

∂y′
+
∂B

∂y
= 0

⇒ ∂2A

∂x2
+ y′

∂2A

∂y∂x
+ y′′

∂2A

∂y′∂x
+ 2y′′

∂A

∂y
+ y′

(
∂2A

∂x∂y
+ y′

∂2A

∂y2
+ y′′

∂2A

∂y′∂y

)
− ∂2B

∂x∂y′
− y′ ∂

2B

∂y∂y′
− y′′∂

2B

∂y′2
+
∂B

∂y
= 0

⇒ y′′
(
∂2A

∂y′∂x
+ 2

∂A

∂y
+ y′

∂2A

∂y′∂y
− ∂2B

∂y′2

)
+ y′

(
∂2A

∂y∂x
+

∂2A

∂x∂y
+ y′

∂2A

∂y2
− ∂2B

∂y∂y′

)
+

(
∂2A

∂x2
− ∂2B

∂x∂y′
+
∂B

∂y

)
= 0.

As the functions A and B depend only on x, y and y′, the coe�cients
of y′′ and y′ and the other terms of the previous equation depend only on
x, y and y′. So, in this case the Euler�Lagrange equation is a di�erential
equation of at most second-order.

Remark 1.2.5 A di�erential equation of second order usually has two ar-
bitrary constants of integration. The problem de�ned in Theorem 1.2.8 has
four boundary conditions. This means that the necessary condition of opti-
mality usually leads to a impossible problem.

VPFE for Functionals Containing Derivatives of Order n

Analogously, we can obtain similar results when the functional J contains
derivatives of order n ∈ N. By mathematical induction, we can prove the
following formula of integration by parts:∫ b

a
t(x)h(n)(x)dx

=

[
n−1∑
i=0

(−1)it(i)(x)h(n−i−1)(x)

]b
a

+

∫ b

a
(−1)nt(n)(x)h(x)dx, (1.15)

where t, h : Cn[a, b] −→ R are two functions. With Equation (1.15), we
prove easily the following theorem.

Theorem 1.2.10 Let S be the set de�ned by

S = {y ∈ C2n[a, b] : y(m)(a) = y(m)
a and y(m)(b) = y

(m)
b for 0 ≤ m ≤ n− 1}

and J : S → R be a functional of the form

J(y) =

∫ b

a
f(x, y(x), y′(x), . . . , y(n)(x))dx,
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where y(m)
a and y(m)

b for m = 0, . . . , n− 1 are given real numbers and f has
continuous partial derivatives of the (n + 1)th order with respect to x, y,
y′, . . . , y(n). If y ∈ S is an extremizer for J , then

∂f

∂y
− d

dx

∂f

∂y′
+ . . .+ (−1)n

dn

dxn
∂f

∂y(n)
= 0

for all x ∈ [a, b].

VPFE for Functionals Containing Several Dependent Variables

In this section we will derive the Euler�Lagrange equations for the �xed
variational problem where the functional depends on several dependent vari-
ables and one independent variable. Consider that y = (y1, . . . , yk) and
y′ = (y′1, . . . , y

′
k), where k ∈ N. Let C 2

k[a, b] be the set de�ned by

C 2
k[a, b] = {(y1, . . . , yk) : y1, . . . , yk ∈ C2[a, b]}.

Theorem 1.2.11 Let S be the set de�ned by

S = {y ∈ C2
k[a, b] : y(a) = ya and y(b) = yb}

and J : S −→ R be a functional of the form

J(y) =

∫ b

a
f(x,y(x),y′(x))dx, (1.16)

where ya and yb are given vectors, f is a function that has continuous partial
derivatives of the second order with respect to x, yi and y′i for i = 1, . . . , k.
If y ∈ S is an extremizer for J , then

∂f

∂yi
− d

dx

∂f

∂y′i
= 0, ∀i = 1, . . . , k. (1.17)

Proof: By de�nition of S the set of variations H is de�ned by

H = {h ∈ C2
k[a, b] : h(a) = h(b) = 0}.

Note that h = (h1, . . . , hk), where hi ∈ C2[a, b] for i = 1, . . . , k. Suppose
that y is an extremizer for J . Also here, we can consider the variations
y + εh , where |ε| � 1 and h ∈ H.

Let j be the function de�ned by

j(ε) = J(y + εh) =

∫ b

a
f(x,y(x) + εh(x),y ′(x) + εh ′(x))dx.

29



As y ∈ S is an extremizer of J , then ε = 0 is an extremizer for j. Conse-
quently, j′(0) = 0. Computing, we obtain

j′(0) = 0

⇔ d

dε

∫ b

a
f(x,y + εh ,y ′ + εy ′)

∣∣∣∣
ε=0

dx = 0

⇔
∫ b

a

d

dε
f(x,y + εh ,y ′ + εh ′)

∣∣∣∣
ε=0

dx = 0

⇔
∫ b

a

k∑
i=1

(
∂f

∂yi
hi +

∂f

∂y′i
h′i

)
dx = 0, ∀ h ∈ H. (1.18)

The above equation is more complicated than those previously studied,
but good choices of functions h ∈ H can simplify it as we will see. For
i = 1, . . . , k let Hi be the set of functions in H de�ned by

Hi = {h ∈ H : hj = 0 if j 6= i}.

If the above equation is checked for all h ∈ H, then it is also satis�ed for all
h ∈ Hi, with i = 1, . . . , k. Thus, by Equation (1.18) we have that∫ b

a

(
∂f

∂yi
hi +

∂f

∂y′i
h′i

)
dx = 0, ∀i = 1, . . . , k.

If the above equation is checked for all h ∈ Hi, then it is also satis�ed for
all h ∈ Hi such that hi(a) = hi(b) = 0. So, we have that

∂f

∂yi
− d

dx

∂f

∂y′i
= 0, ∀i = 1, . . . , k.

This concludes the proof.

�

Observations:

1. In general, the above condition is a system of k second-order di�erential
equations for the k unknown functions y1, . . . , yk.

2. If y satis�es the above system, then Equation (1.18) is veri�ed for all
h ∈ H.

De�nition 1.2.9 The solutions y of (1.17) are called extremals for the func-
tional de�ned in (1.16).
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Particular Cases for Several Dependent Variables

Here, we will also analyse three cases where the Euler�Lagrange equation
(1.17) is simpli�ed. We suppose that the functional given by

J(y) =

∫ b

a
f(x,y(x),y ′(x))dx

satis�es the conditions of Theorem 1.2.11.

1. First case: y does not appear explicitly in the integrand.
In this case the functional is of the form

J(y) =

∫ b

a
f(x,y ′(x))dx.

So, writing the Euler�Lagrange equation (1.17) we have:

d

dx

∂f

∂y′i
(x,y′(x)) = 0, ∀i = 1, . . . , k

⇔ ∂f

∂y′i
(x,y′(x)) = ci, ∀i = 1, . . . , k,

where ci is a constant of integration for all i = 1, . . . , k.

2. Second case: The independent variable x does not appear explicitly
in the integrand (autonomous case).
In this case the functional is of the form

J(y) =

∫ b

a
f(y(x),y ′(x))dx.

Theorem 1.2.12 Let J be a functional such that

J(y) =

∫ b

a
f(y(x),y′(x))dx (1.19)

and de�ne the function G by

G(y,y′) =
k∑
i=1

y′i
∂f

∂y′i
− f.

Then, G(y(x),y′(x)) is constant along any extremal y of (1.19).

Proof: Suppose that y is an extremal for J . So, by De�nition 1.2.9
we know that

∂f

∂yi
− d

dx

∂f

∂y′i
= 0, ∀i = 1, . . . , k.
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Thus,

dG

dx
(y ,y ′) =

d

dx

(
k∑
i=1

y′i
∂f

∂y′i
− f

)
=

k∑
i=1

(
y′′i
∂f

∂y′i
+ y′i

d

dx

∂f

∂y′i

)
− df

dx

=
k∑
i=1

(
y′′i
∂f

∂y′i
+ y′i

d

dx

∂f

∂y′i
− y′i

∂f

∂yi
− y′′i

∂f

∂y′i

)

=

k∑
i=1

y′i

(
d

dx

∂f

∂y′i
− ∂f

∂yi

)
=

k∑
i=1

(y′i × 0) = 0.

So, G(y(x),y′(x)) is constant along any extremal y of (1.19).

�

3. Third case (a degenerate case): Let F = F (x,y) be any smooth
function and let M be a function de�ned by

M(x,y ,y ′) =

k∑
i=1

Ai(x,y)y′i +B(x,y),

where Ai(x,y) = ∂F
∂yi

and B(x,y) = ∂F
∂x .We will verify that the Euler�

Lagrange equations (1.17) for the functional

J(y) =

∫ b

a
M(x,y(x),y ′(x))dx

are satis�ed for any smooth function y . For j = 1, . . . , k

∂M

∂yj
− d

dx

∂M

∂y′j

=

(
k∑
i=1

y′i
∂2F

∂yj∂yi
+

∂2F

∂yj∂x

)
− d

dx

∂F

∂yj

=

k∑
i=1

y′i
∂2F

∂yj∂yi
+

∂2F

∂yj∂x
− ∂2F

∂x∂yj
−

k∑
i=1

y′i
∂2F

∂yi∂yj

= 0,

because F is a smooth function. Therefore, the Euler�Lagrange equa-
tions (1.17) for the functional J(y) are satis�ed for any smooth function
y . We have just proved the following result.

Theorem 1.2.13 Consider the problem that consists in �nding y ∈ S
(see Theorem 1.2.11) that extremizes

J(y) =

∫ b

a

(
k∑
i=1

Ai(x,y(x))y′i(x) +B(x,y(x))

)
dx. (1.20)
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Let F (x,y) =
∫
B(x,y)dx. If ∂F

∂yi
= Ai(x,y), then any y ∈ S is an

extremal of (1.20).

1.3 The Isoperimetric Problem

In this section we will study the isoperimetric problem (IP ) given by

(IP ) max J(y) =

∫ b

a
f(x, y(x), y′(x))dx

s.t. y(a) = ya

y(b) = yb

I(y) =

∫ b

a
g(x, y(x), y′(x))dx = L, (1.21)

where J, I : C2[a, b] −→ R are functionals, f and g are two smooth func-
tions of x, y and y′, ya and yb are �xed reals and L is a speci�ed constant.
Conditions like (1.21) are called Isoperimetric Constraints. We intend to
derive a necessary condition for a smooth function to be a solution of (IP ).
Recall the following theorem [41, p. 77].

Theorem 1.3.1 (Lagrange Multiplier Rule) Let Ω ⊂ Rn be a region
and let f, g : Ω −→ R be two smooth functions. If f has a local extremum at
x ∈ Ω subject to the condition g(x) = 0 for x ∈ Ω and if ∇g(x) 6= 0, then
there is a number λ such that

∇(f(x)− λg(x)) = 0.

Theorem 1.3.2 Suppose that y ∈ C2[a, b] is a solution of the problem (IP ).
Then, there exists (λ0, λ1) 6= (0, 0) such that

∂K

∂y
− d

dx

∂K

∂y′
= 0, (1.22)

where K = λ0f − λ1g.

1. If y is not an extremal for I, then we can take λ0 = 1.

2. If y is an extremal for I, then we can take λ0 = 0 and λ1 = 1.

Proof: Let y ∈ C2[a, b] be a solution of the problem (IP ). Consider the
variations y + ε1h1 + ε2h2, where |ε1| � 1, |ε2| � 1, h1, h2 ∈ C2[a, b] and
hm(a) = hm(b) = 0 for m = 1, 2. For a �xed choice of h1 and h2 we can
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regard J(y + ε1h1 + ε2h2) and I(y + ε1h1 + ε2h2) as functions of ε1 and ε2.
So we consider

j(ε1, ε2) = J(y + ε1h1 + ε2h2)

and
i(ε1, ε2) = I(y + ε1h1 + ε2h2).

Thus, we can convert the problem (IP ) to a �nite-dimensional constrained
optimization problem (IP ′) given by

(IP ′) max j(ε1, ε2) =

∫ b

a
f(x, y + ε1h1 + ε2h2, y

′ + ε1h
′
1 + ε2h

′
2)dx

s.t. i(ε1, ε2)− L = 0.

As y is a solution of (IP ), so (ε1, ε2) = (0, 0) is a solution of (IP ′). Therefore,
i(0, 0) = L.

Suppose that y is not an extremal for I. Since

∂i

∂εm
(0, 0) =

∫ b

a

(
∂g

∂y
− d

dx

∂g

∂y′

)
hmdx, for m = 1, 2,

and y is not an extremal for I, then, without loss of generality, there exists
h2 such that ∂i

∂ε2
(0, 0) 6= 0. So ∇i(0, 0) 6= (0, 0). Consider the function

ĝ : Λ→ R de�ned in the neighbourhood Λ ⊆ R2 of the point (0, 0) by

ĝ(ε1, ε2) = i(ε1, ε2)− L.

We know that ĝ(0, 0) = i(0, 0) − L = 0, ĝ is di�erentiable with respect to
ε2 and ∂ĝ

∂ε2
is continuous in Λ, because g is smooth. As ∂ĝ

∂ε2
(0, 0) 6= 0, we

have that, by the Implicit Function Theorem [41, p. 266�267], there are the
neighbourhoods Iε1 of ε1 = 0 and Iε2 of ε2 = 0 and the function φ : Iε1 → R
such that

1. φ(0) = 0,

2. For all ε1 ∈ Iε1 we have that (ε1, φ(ε1)) ∈ Λ and ĝ(ε1, φ(ε1)) = 0.

Therefore, we can write ε2 as a function of ε1, that is, ε2 = φ(ε1) and we can
assert that there is a subfamily of variations that satis�es the isoperimetric
constraint. Concluding, the function h1 can be regarded as arbitrary, but the
term ε2h2 can be viewed as a �correction term�, that is, the term ε2h2 ensures
that y + ε1h1 + ε2h2 satis�es the isoperimetric condition (1.21). Therefore,
h2 is not arbitrary.

By Theorem 1.3.1, as j and i are smooth functions, (ε1, ε2) = (0, 0) is a
solution of (IP ′) and ∇i(0, 0) 6= (0, 0), we know that there is a constant λ1

such that

∇(j(0, 0)− λ1i(0, 0)) = (0, 0) (1.23)

⇒ ∂

∂εm
(j(ε1, ε2)− λ1i(ε1, ε2))

∣∣∣∣
(ε1,ε2)=(0,0)

= 0 for m = 1, 2.
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Note that

∂j

∂εm
(ε1, ε2)

∣∣∣∣
(ε1,ε2)=(0,0)

=

∫ b

a

(
∂f

∂y
− d

dx

∂f

∂y′

)
hm dx for m = 1, 2

and

∂i

∂εm
(ε1, ε2)

∣∣∣∣
(ε1,ε2)=(0,0)

=

∫ b

a

(
∂g

∂y
− d

dx

∂g

∂y′

)
hm dx for m = 1, 2.

So, by Equation (1.23) we have that∫ b

a

(
∂F

∂y
− d

dx

∂F

∂y′

)
h1dx = 0,

where F = f − λ1g (λ0 = 1). As h1 is arbitrary, we know by Lemma 1.2.3
that

∂F

∂y
− d

dx

∂F

∂y′
= 0

for any extremizer y of (IP ).

Now suppose that y is an extremal for I. This case is obvious, because
for λ0 = 0 and λ1 = 1 we obtain K = −g. As y is an extremal for I, we
have that Equation (1.22) is satis�ed.

�

Example 1.3.1 Let us verify that there is a function that is an extremal of
the isoperimetric problem given by

max J(y) =

∫ 1

0
y2(x)(y′)2(x) dx

s.t. y(0) = 1

y(1) = 2

I(y) =

∫ 1

0
y2(x) dx =

7

3
.

If y isn't an extremal for I, then K = y2(x)(y′)2(x) − λ1y
2(x) and the

Euler�Lagrange equation (1.22) is given by

y2(x)y′′(x) = −y(x)(y′)2(x)− λ1y(x).

Using the software Maple, the solution of this equation is

y(x) = 0 ∨ y(x) = −
√
−λ1x2 − 2c1x+ 2c2 ∨ y(x) =

√
−λ1x2 − 2c1x+ 2c2.
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The functions y(x) = 0 and y(x) = −
√
−λ1x2 − 2c1x+ 2c2 are not admissi-

ble, since y(0) > 0. For y(x) =
√
−λ1x2 − 2c1x+ 2c2, we have that

y(0) = 1

y(1) = 2

I(y) = 7
3

⇒


c1 = −1

c2 = 1
2

λ1 = −1.

This system has a real solution. So, the function y(x) =
√
x2 + 2x+ 1 is an

extremal for the isoperimetric problem.
Now consider that y is an extremal for I. Then y(x) = 0 and we had

already seen that this function is not a solution for the problem.
Concluding, the unique extremal of the isoperimetric problem is

y(x) =
√
x2 + 2x+ 1 =

√
(x+ 1)2 = x+ 1

for x ∈ [0, 1].

1.4 Variational Problem with a Variable Endpoint

Throughout the text to refer a variational problem with a variable end-
point we will just write VPVE.

1.4.1 Natural Boundary Conditions

In the previous section we studied variational problems with �xed end-
points, that is, our goal was to determine the extremizers for a functional
J : C2n[a, b] −→ R given by

J(y) =

∫ b

a
f(x, y(x), y′(x), . . . , y(n)(x))dx

subject to given boundary conditions, for n ∈ N. These conditions take the
form y(m)(a) = y

(m)
a and y(m)(b) = y

(m)
b for m = 0, . . . , n − 1, where y

(m)
a

and y
(m)
b are known real numbers. However, there are variational problems

for which we don't know all of these boundary conditions, in other words,

sometimes y
(m)
a , or y

(m)
b , is unknown for some m = 0, . . . , n− 1. When this

happens our objective is to �nd the extremizers for a given functional and
also to determine the unknown boundary conditions that extremizers satisfy.
We will see that the methods of calculus of variations always supply exactly
the right number of boundary conditions, even if no boundary conditions are
imposed. There are essentially two types of boundary conditions:

1. The boundary conditions that are imposed on the problem.

2. The boundary conditions that arise from the variational process (nat-
ural boundary conditions).
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Natural Boundary Conditions for n = 1

Consider the functional J : C2[a, b] −→ R given by

J(y) =

∫ b

a
f(x, y(x), y′(x))dx,

where f is a smooth function. Now, no boundary conditions are imposed
on y and we want to determine the extremizers y ∈ C2[a, b] for J . Then,
we derive a necessary condition for J to have an extremum at y. Suppose
that y is an extremizer for J and consider again the variations y+ εh, where
|ε| � 1 and h ∈ C2[a, b]. As no boundary conditions are imposed we don't
require that h(a) = 0 and h(b) = 0. Therefore, for all h ∈ C2[a, b]

δJ(h, y) =

∫ b

a

(
∂f

∂y
h+

∂f

∂y′
h′
)
dx = 0

⇔
∫ b

a

(
∂f

∂y
− d

dx

∂f

∂y′

)
h dx+

[
∂f

∂y′
h

]b
a

= 0. (1.24)

For the variational problem with �xed endpoints the term
[
∂f
∂y′h

]b
a
van-

ished, because h(a) = h(b) = 0. Nevertheless, in the present variational
problem this term doesn't vanish for all h ∈ C2[a, b]. So, Equation (1.24) is
valid for all h ∈ C2[a, b]. In particular, it is valid for all h ∈ C2[a, b] such
that h(a) = h(b) = 0. Thus, by previously study of VPFE for n = 1 we
know that

∂f

∂y
− d

dx

∂f

∂y′
= 0 (1.25)

for any y at which J has an extremum. Combining the conditions (1.24) and
(1.25), we obtain [

∂f

∂y′
h

]b
a

= 0, ∀h ∈ C2[a, b]. (1.26)

Thus, we can always �nd functions h ∈ C2[a, b] such that

1. h(a) = 0 and h(b) 6= 0. So, [
∂f

∂y′

]
b

= 0. (1.27)

2. h(a) 6= 0 and h(b) = 0. So, [
∂f

∂y′

]
a

= 0. (1.28)
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Concluding, if J has an extremizer y ∈ C2[a, b] and no boundary condi-
tions are imposed, then y must satisfy the Euler�Lagrange equation (1.25)
along with Equations (1.27) and (1.28), because the Equation (1.26) is sat-
is�ed for all h ∈ C2[a, b]. The Equations (1.27) and (1.28) are evaluated
at b and a, respectively. Therefore, they are boundary conditions. These
conditions are not imposed, they arise in the variational process. They are
the natural boundary conditions.

The process, previously studied, is completely methodical, because:

1. If boundary conditions are imposed at a and at b, then the variational
formulation requires h(a) = h(b) = 0. Therefore, there are none natu-
ral boundary condition.

2. If only one boundary condition is imposed at a, then the variational
formulation requires h(a) = 0, but h(b) is free. So, the problem is
supplemented by the natural boundary condition (1.27).

3. If only one boundary condition is imposed at b, then the variational
formulation requires h(b) = 0, but h(a) is free. So, the problem is
supplemented by the natural boundary condition (1.28).

4. If no boundary conditions are imposed, then we have both natural
boundary conditions (1.27) and (1.28).

Natural Boundary Conditions for n = 2

Consider the functional J : C4[a, b] −→ R given by

J(y) =

∫ b

a
f(x, y(x), y′(x), y′′(x))dx,

where f is a smooth function. Our goal is the same as the case n = 1. What
di�ers is that here the integrand also depends on y′′. By Section 1.2.3, if y
is an extremizer for J , we have that for all h ∈ C4[a, b]

δJ(h, y) =

∫ b

a

(
∂f

∂y
h+

∂f

∂y′
h′ +

∂f

∂y′′
h′′
)
dx = 0

⇔
∫ b

a

(
∂f

∂y
h− d

dx

(
∂f

∂y′

)
h− d

dx

(
∂f

∂y′′

)
h′
)
dx+

[
∂f

∂y′′
h′
]b
a

+

[
∂f

∂y′
h

]b
a

= 0
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⇔
∫ b

a

(
∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′

)
h dx+

[
∂f

∂y′′
h′
]b
a

+

[(
∂f

∂y′
− d

dx

∂f

∂y′′

)
h

]b
a

= 0. (1.29)

If Equation (1.29) is satis�ed for all h ∈ C4[a, b], then it is also satis�ed for
all h ∈ C4[a, b] such that h(a) = h(b) = h′(a) = h′(b) = 0. So, we have that∫ b

a

(
∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′

)
h dx = 0

⇔ ∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′
= 0 (1.30)

for any y at which J has an extremum. Combining the conditions (1.29) and
(1.30), we obtain[

∂f

∂y′′
h′ +

(
∂f

∂y′
− d

dx

∂f

∂y′′

)
h

]b
a

= 0, ∀h ∈ C4[a, b].

Thus, we can always �nd functions h ∈ C4[a, b] such that

1. h(a) 6= 0, but h(b) = h′(a) = h′(b) = 0. So,[
∂f

∂y′
− d

dx

∂f

∂y′′

]
a

= 0.

2. h(b) 6= 0, but h(a) = h′(a) = h′(b) = 0. So,[
∂f

∂y′
− d

dx

∂f

∂y′′

]
b

= 0.

3. h′(a) 6= 0, but h(a) = h(b) = h′(b) = 0. So,[
∂f

∂y′′

]
a

= 0.

4. h′(b) 6= 0, but h(a) = h(b) = h′(a) = 0. So,[
∂f

∂y′′

]
b

= 0.

If y(a), y(b), y′(a) and y′(b) are �xed, we do not obtain any natural
boundary condition. If one of them is free, then we obtain a correspondent
supplementary condition. For example, if y(a) is free, we obtain[

∂f

∂y′
− d

dx

∂f

∂y′′

]
a

= 0.
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Natural Boundary Conditions for Several Dependent Variables

Consider the functional J : C2
k[a, b] −→ R given by

J(y) =

∫ b

a
f(x,y(x),y ′(x))dx,

where f is a smooth function. If no boundary conditions are imposed on
y at a and at b, then it is not required that h(a) = (0, . . . , 0) and that
h(b) = (0, . . . , 0). So, for all h ∈ C2

k[a, b] we have that

δJ(h ,y) =

∫ b

a

k∑
i=1

(
∂f

∂yi
hi +

∂f

∂y′i
h′i

)
dx = 0.

In particular, the above equation is satis�ed for all h ∈ Hi, where Hi is
de�ned by

Hi = {h ∈ C2
k[a, b] : hj = 0 if j 6= i}.

Therefore, for all i = 1, . . . , k and for all h ∈ Hi we have that∫ b

a

(
∂f

∂yi
hi +

∂f

∂y′i
h′i

)
dx = 0.

Integrating by parts, we obtain∫ b

a

(
∂f

∂yi
− d

dx

∂f

∂y′i

)
hi dx+

[
∂f

∂y′i
hi

]b
a

= 0. (1.31)

If the above equation is satis�ed for all h ∈ Hi, then it is also satis�ed for
all h ∈ Hi such that hi(a) = hi(b) = 0. Therefore,∫ b

a

(
∂f

∂yi
− d

dx

∂f

∂y′i

)
hi dx = 0, ∀i = 1, . . . , k.

Thus,
∂f

∂yi
− d

dx

∂f

∂y′i
= 0, ∀i = 1, . . . , k (1.32)

for any y at which J has an extremum. Combining the conditions (1.31)
and (1.32), we obtain[

∂f

∂y′i
hi

]b
a

= 0, ∀i = 1, . . . , k and ∀h ∈ Hi.

So, we can always �nd functions h such that

1. hi(a) = 0 and hi(b) 6= 0. Then,[
∂f

∂y′i

]
b

= 0, ∀i = 1, . . . , k.
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2. hi(a) 6= 0 and hi(b) = 0. Then,[
∂f

∂y′i

]
a

= 0, ∀i = 1, . . . , k.

The conclusions that can be drawn are similar to those we have discussed
previously.

1.4.2 The General Case

Previously, we assumed that the endpoint b of the integral was �xed.
Now we consider a more general case where the endpoint of the integral is a
variable of the problem. We intend to solve the following problem:

(PGC) max J(x, y) =

∫ x

a
f(x, y(x), y′(x))dx

s.t. y(a) = ya,

where (x, y) ∈ ]a, b]× C2[a, b]. We use the approach of Chiang in [12]. As x
and y(x) are free, their achievement will be obtained through the variational
process, in other words, now we intend to determine y, y(x) and x that
maximize the above problem (PGC). We will only study this case, but the
procedure is easily extended to the case where the initial point of the integral
xa is a variable of problem and xa ∈ [a, b[.

Theorem 1.4.1 Let (x, y) be a solution of the problem (PGC). Then, for
all x ∈ [a, x], the solution (x, y) satis�es

1. [f ]x = 0,

2. ∂f
∂y (x, y, y′)− d

dx
∂f
∂y′ (x, y, y

′) = 0 (Euler�Lagrange equation),

3.
[
∂f
∂y′

]
x

= 0 (natural boundary condition).

Proof: Let us consider the variations x + ε∆x and y + εh, where |ε| � 1,
∆x ∈ R and h ∈ C2[a, b]. Note that h(a) = 0, because ya is given. Let j be
the function de�ned by

j(ε) =

∫ x+ε∆x

a
f(x, y + εh, y′ + εh′)dx.

As (x, y) is a solution of (PGC), we know that j′(0) = 0. Recall that, if f̂ is
continuous and g is di�erentiable, then the function

ĵ(ε) =

∫ g(ε)

a
f̂(x, ε)dx
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is di�erentiable and

ĵ′(ε) = g′(ε)f̂(g(ε), ε) +

∫ g(ε)

a

∂f̂

∂ε
(x, ε)dx.

Therefore,

j′(ε) = ∆xf(x+ ε∆x, y + εh, y′ + εh′)

+

∫ x+ε∆x

a

∂f

∂ε
(x, y + εh, y′ + εh′)dx

= ∆xf(x+ ε∆x, y + εh, y′ + εh′)

+

∫ x+ε∆x

a

∂f

∂y
(x, y + εh, y′ + εh′)h(x)dx

+

∫ x+ε∆x

a

∂f

∂y′
(x, y + εh, y′ + εh′)h′(x)dx.

When ε = 0 we have that

j′(0) = ∆xf(x, y, y′) +

∫ x

a

∂f

∂y
(x, y, y′)h(x) +

∂f

∂y′
(x, y, y′)h′(x)dx

= ∆x[f ]x +

∫ x

a

(
∂f

∂y
(x, y, y′)− d

dx

∂f

∂y′
(x, y, y′)

)
h(x)dx+

[
∂f

∂y′
h

]
x

= 0.

Thus,

∆x[f ]x +

∫ x

a

(
∂f

∂y
(x, y, y′)− d

dx

∂f

∂y′
(x, y, y′)

)
h(x)dx +

[
∂f

∂y′
h

]
x

= 0.

(1.33)
As ∆x and h are arbitrary, we can conclude that for all x ∈ [a, x]

∆x[f ]x = 0,

∫ x

a

(
∂f

∂y
(x, y, y′)− d

dx

∂f

∂y′
(x, y, y′)

)
h(x)dx = 0

and [
∂f

∂y′
h

]
x

= 0.

This implies that

[f ]x = 0,
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∂f

∂y
(x, y, y′)− d

dx

∂f

∂y′
(x, y, y′) = 0 (1.34)

and [
∂f

∂y′

]
x

= 0.

This concludes the proof.

�

Note that the Euler�Lagrange equation is also a necessary condition when
the endpoint of the integral is a variable of the problem.

With the Figure 1.6 we can understand better the total variation in y.

Figure 1.6: Free end-time problem

From now on we will assume that ε = 1. As we can observe on Figure
1.6, the total variation in y is given by

∆y = (y + h)(x+ ∆x)− y(x). (1.35)

By Taylor's Theorem [41, p. 262�264], we know that

(y + h)(x+ ∆x)− (y + h)(x) = (y′ + h′)(x)∆x+O(∆x2).

As h is arbitrary we choose h′(x) = 0 . So,

(y + h)(x+ ∆x)− (y + h)(x) = y′(x)∆x+O(∆x2)

⇔ h(x) = (y + h)(x+ ∆x)− y(x)− y′(x)∆x+O(∆x2).

By Equation (1.35) we have that

h(x) = ∆y − y′(x)∆x+O(∆x2).
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Therefore, replacing h(x) by h(x) = ∆y−y′(x)∆x+O(∆x2) on the Equation
(1.33) and using Equation (1.34) we obtain

∆x[f ]x +

[
∂f

∂y′

]
x

(
∆y − y′(x)∆x+O(∆x2)

)
= 0

⇔ ∆x

[
f − ∂f

∂y′
y′
]
x

+ ∆y

[
∂f

∂y′

]
x

+O(∆x2) = 0

⇒ ∆x

[
f − ∂f

∂y′
y′
]
x

+ ∆y

[
∂f

∂y′

]
x

= 0. (1.36)

So, we can conclude that [
f − ∂f

∂y′
y′
]
x

= 0

and [
∂f

∂y′

]
x

= 0.

Unlike the Euler�Lagrange equation, the above equations are relevant
only on the point x = x. These equations bridge the gap caused by the
missing boundary condition (in this case for the terminal point). The Equa-
tion (1.36) is the general transversality condition and, depending on the
speci�c conditions of each problem, it can be written in various forms. Let's
see the following cases.

Specialized Transversality Conditions

1. Vertical Terminal Line:

Suppose that x is �xed and y(x) is arbitrary. So, there are no changes
in x which implies that ∆x = 0. Therefore, the general transversality
condition (1.36) is simpli�ed to

∆y

[
∂f

∂y′

]
x

= 0. (1.37)

As ∆y is arbitrary, we must have[
∂f

∂y′

]
x

= 0

to satisfy Equation (1.37). Note that the above equation is a natural
boundary condition, as we already studied (cf. (1.27)).
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2. Horizontal Terminal Line:

Supposed that x is free and that y(x) is �xed. Consequently, we have
that ∆x is arbitrary and that ∆y = 0. So, the general transversality
condition (1.36) is simpli�ed and it is given by

∆x

[
f − ∂f

∂y′
y′
]
x

= 0. (1.38)

Similarly, as ∆x is arbitrary, we must have[
f − ∂f

∂y′
y′
]
x

= 0 (1.39)

to check the Equation (1.38).

3. Terminal Curve:

Now let ∆x 6= 0 and ∆y 6= 0, simultaneously. We only know that
y(x) = φ(x), where φ is a given curve. As y(x) = φ(x) and as ∆x is a
small arbitrary number, we conclude that

∆y = φ′(x)∆x+O(∆x2).

Thus,

∆x

[
f − ∂f

∂y′
y′
]
x

+ φ′(x)∆x

[
∂f

∂y′

]
x

= 0

⇔ ∆x

[
f +

∂f

∂y′
(
φ′ − y′

)]
x

= 0.

Because ∆x is arbitrary, we must have[
f +

∂f

∂y′
(
φ′ − y′

)]
x

= 0.

The above equation is another transversality condition. In the two
previous cases, or we didn't know y(x), or we didn't know x. Here we
don't know the two, simultaneously, and so we have to determine both.
Thus, we need to know two conditions that are:[

f +
∂f

∂y′
(
φ′ − y′

)]
x

= 0 (1.40)

and

y(x) = φ(x). (1.41)
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4. Truncated Vertical Terminal Line:

Now we consider that x is �xed and y(x) ≥ ymin, where ymin is a
minimum permissible level for the vertical axis. So, we can analyse
two possibilities: y(x) > ymin, or y(x) = ymin.

(a) If we suppose that y(x) > ymin, then ∆y is arbitrary. So, we have
that [

∂f

∂y′

]
x

= 0.

(b) If we suppose that y(x) = ymin, then ∆y ≥ 0 and, consequently,
∆y is not completely arbitrary. Assuming that h(x) > 0, we have{

h(x) > 0

(y + εh)(x) ≥ y(x)
⇒ ε ≥ 0.

Note that

j′(0) = lim
ε−→0

j(ε)− j(0)

ε
.

For a maximization problem, j(ε) − j(0) ≤ 0 and we know that

ε ≥ 0. So, we can conclude that j′(0) ≤ 0. Thus, ∆y
[
∂f
∂y′

]
x
≤ 0.

As ∆y ≥ 0, we have that [
∂f

∂y′

]
x

≤ 0.

So, the transversality condition for a maximization problem can
be obtained as follows:


[
∂f
∂y′

]
x

= 0 for y(x) > ymin[
∂f
∂y′

]
x
≤ 0 for y(x) = ymin

⇒


[
∂f
∂y′

]
x
≤ 0

y(x) ≥ ymin
(y(x)− ymin)

[
∂f
∂y′

]
x

= 0.

Similarly, if the problem is to minimize J , then we have the following

transversality condition:
[
∂f
∂y′

]
x
≥ 0

y(x) ≥ ymin
(y(x)− ymin)

[
∂f
∂y′

]
x

= 0.
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5. Truncated Horizontal Terminal Line:

Now we consider that y(x) is �xed and x ≤ xmax(≤ b), where xmax is
a maximum permissible level for the horizontal axis. So, we can also
analyse two possibilities: x < xmax and x = xmax. Analogously, the
transversality condition for a maximization problem is given by

[
f − ∂f

∂y′ y
′
]
x
≥ 0

x ≤ xmax
(x− xmax)

[
f − ∂f

∂y′ y
′
]
x

= 0

and for a minimization problem is given by
[
f − ∂f

∂y′ y
′
]
x
≤ 0

x ≤ xmax
(x− xmax)

[
f − ∂f

∂y′ y
′
]
x

= 0.

Example 1.4.1 (Horizontal Terminal Line) [12, p. 67�69] For the
problem

max J(y) =

∫ x

0
xy′(x) + (y′(x))2 dx

s.t. y(0) = 1

y(x) = 10

the Lagrangian is
f(x, y, y′) = xy′ + (y′)2

and the Euler�Lagrange equation (1.5) gives

y′′(x) = −1

2
.

So,

y(x) = −x
2

4
+ c1x+ c2,

where c1 and c2 are real constants. As y(0) = 1, we have that c2 = 1. By
the transversality condition (1.39), we have that

[xy′ + (y′)2 − (x+ 2y′)y′]x = 0⇔ [y′]x = 0⇔ c1 =
x

2
.

Thus, as c1 = x
2 , c2 = 1 and y(x) = 10, we have that

y(x) = −x
2

4
+
x2

2
+ 1 = 10⇔ x = 6.

So, the function y(x) = −x2

4 + 3x + 1 is the extremal (a candidate for
maximizer) for the given problem.
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Example 1.4.2 (Terminal Curve) [12, p. 66�67] For the problem

max J(y) =

∫ x

0

√
1 + (y′(x))2 dx

s.t. y(0) = 1

y(x) = 2− x

the Lagrangian is
f(x, y, y′) =

√
1 + (y′)2,

the curve φ is given by φ(x) = 2− x and the Euler�Lagrange equation (1.5)
gives

−(y′(x))2y′′(x)(1 + (y′(x))2)−
3
2 + y′′(x)(1 + (y′(x))2)−

1
2 = 0.

So,
y(x) = c1x+ c2,

where c1 and c2 are real constants. As y(0) = 1, we have that c2 = 1. By
the condition (1.40), we have that

[
√

1 + (y′)2 + (1 + (y′)2)−
1
2 y′(−1− y′)]x = 0

⇔ [1 + (y′)2 + y′(−1− y′)]x = 0

⇔ c1 = 1.

Thus, the function y(x) = x+ 1 is the extremal (a candidate for maximizer)
for the given problem. Furthermore, by the condition (1.41), we have that

y(x) = x+ 1 = 2− x⇔ x =
1

2
.

Consequently, we obtain that

y(x) =
3

2
.
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Chapter 2

The Optimal Control

2.1 Introduction

The Optimal Control theory is an extension of the Calculus of Variations
as we will see later. This branch of mathematics is recent. In the beginning
of the Cold War (1945�1991) the USA and the USSR gave great importance
to mathematicians and their theories to develop defence techniques, because
this area had been recognized as advantageous during Second World War
(1939�1945). Therefore, several mathematicians developed solution methods
for problems which nowadays are considered as problems of Optimal Control.
An example of this, are the minimum time interception problems for �ghter
aircraft.

So, the conventional wisdom asserts that the Optimal Control was born
about 60 years ago due to the Pontryagin Maximum Principle carried out
by Lev Semenovich Pontryagin (1908�1988), a Russian mathematician, and
his group.

In this chapter we are going to study a basic problem of Optimal Con-
trol with free and bounded control and to establish the connection between
the Calculus of Variations and the Optimal Control. We can see several
approaches to Optimal Control, for example, in [6, 7, 24, 38].

2.2 The Basic Problem of Optimal Control

Consider the following de�nitions of piecewise continuous function and
of piecewise di�erentiable function.

De�nition 2.2.1 (Piecewise Continuous Function) Let I ⊆ R be an
interval (�nite, or in�nite). We say that y : I → R is a piecewise continuous
function if y is continuous at each x ∈ I, with the possible exception of a
�nite number of points x̂ of I, and if

y(x̂) = lim
x−→x̂+

y(x),
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or
y(x̂) = lim

x−→x̂−
y(x).

We write y ∈ PC(I,R).

De�nition 2.2.2 (Piecewise Di�erentiable Function) Let y : I → R
be a continuous function in I and di�erentiable at each x ∈ I, with the
possible exception of a �nite number of points of I. Furthermore, suppose
that y′ is continuous whenever it is de�ned. Then, we say that y is a piecewise
di�erentiable function. We write y ∈ PC1(I,R).

Remark 2.2.1 Consider the functions yi : I → R for i = 1, . . . , k, where
k ∈ N. Note that y = (y1, . . . , yk). When

• yi ∈ PC(I,R) for all i = 1, . . . , k, we write y ∈ PC(I,Rk).

• yi ∈ PC1(I,R) for all i = 1, . . . , k, we write y ∈ PC1(I,Rk).

Problem Statement: The basic problem of Optimal Control consists of
�nding a pair (y ,u) that solves the following problem (POC)

(POC) max J(y ,u) =

∫ b

a
f(x,y(x),u(x))dx

s.t. y ′(x) = g(x,y(x),u(x)), ∀ x ∈ ]a, b[

y(a) = ya,

where a, b ∈ R such that a < b, f ∈ C1([a, b] × Rk+m,R), g ∈ C1([a, b] ×
Rk+m,Rk), y ∈ PC1([a, b],Rk) and u ∈ PC([a, b],Rm) with k,m ∈ N. The
vector u(x) = (u1(x), . . . , um(x)) ∈ Rm is called the control (or controller)
and y(x) = (y1(x), . . . , yk(x)) ∈ Rk is the state.

As in the Calculus of Variations, we will derive necessary conditions for
the pair (y ,u) to be a solution of the problem (POC).

Theorem 2.2.1 (The Pontryagin Maximum Principle for (POC))
If (y,u) is an optimal pair for the problem (POC), then there exists λλλ ∈
PC1([a, b],Rk) such that

1. λλλ(b) = 0 (Transversality Condition),

2. y′(x) = ∂H
∂λλλ (x,y(x),u(x),λλλ(x)) (Control System),

3. λλλ′(x) = −∂H
∂y (x,y(x),u(x),λλλ(x)) (Adjoint Equation),

4. ∂H
∂u (x,y(x),u(x),λλλ(x)) = 0 (Optimality Condition),

where H(x,y,u,λλλ) = f(x,y,u) + λλλ · g(x,y,u) is the Hamiltonian.
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Remark 2.2.2 The Adjoint System is formed by the second and the third
items of Theorem 2.2.1, i.e., by the Control System and by the Adjoint
Equation.

Proof: Suppose that (y,u) is an optimal pair for the problem (POC). Let us
consider the variations uε = u+εh, where h = (h1, . . . , hm) ∈ PC([a, b],Rm)
and |ε| � 1. So, uε ∈ PC([a, b],Rm). Note that

1. lim
ε−→0

uε(x) = u(x), ∀x ∈ [a, b].

2. ∂uε

∂ε (x)
∣∣
ε=0

= h(x), ∀x ∈ [a, b].

Let yε(x) be the state variable corresponding to the control uε(x). By
formulation of the problem (POC), we know that

1. dyε

dx (x) =
(
dyε1
dx (x), . . . ,

dyεk
dx (x)

)
= g(x,yε(x),uε(x)).

2. yε(a) = ya.

We have that lim
ε−→0

yε(x) = y(x) and that there is the derivative

∂yε

∂ε
(x) =

(
∂yε1
∂ε

(x), . . . ,
∂yεk
∂ε

(x)

)
for all x ∈ [a, b].

Consider a function λλλ ∈ PC1([a, b],Rk). By the Fundamental Theorem
of Integral Calculus we have that∫ b

a

d

dx
(λλλ(x) · yε(x))dx = [λλλ(x) · yε(x)]ba.

So, ∫ b

a

d

dx
(λλλ(x) · yε(x))dx+ [λλλ(x) · yε(x)]ab = 0.

Thus, we have that

J(yε,uε) =

∫ b

a
f(x,yε(x),uε(x))dx

=

∫ b

a

(
f(x,yε(x),uε(x)) +

d

dx
(λλλ(x) · yε(x))

)
dx

+ [λλλ(x) · yε(x)]ab = 0

=

∫ b

a
f(x,yε(x),uε(x))dx

+

∫ b

a
(λλλ′(x) · yε(x) + λλλ(x) · g(x,yε(x),uε(x)))dx

+ [λλλ(x) · yε(x)]ab = 0.

51



To simplify notation, let A be a matrix k × m, v = (v1, . . . , vm) and w =
(w1, . . . , wk). By Av (wA) we mean the vector obtained as product of the
matrices Av (wTA). As (y,u) is a solution for the problem (POC), we know
that

0 =
d

dε
J(yε,uε)

∣∣∣∣
ε=0

=

∫ b

a

(
∂f

∂y
· ∂y

ε

∂ε
+
∂f

∂u
· ∂u

ε

∂ε

)∣∣∣∣
ε=0

dx

+

∫ b

a

(
λλλ′ · ∂y

ε

∂ε
+ λλλ

[
∂g

∂y

∂yε

∂ε
+
∂g

∂u

∂uε

∂ε

])∣∣∣∣
ε=0

dx

− λλλ(b) · ∂y
ε

∂ε
(b)

∣∣∣∣
ε=0

=

∫ b

a

(
∂yε

∂ε
·
[
∂f

∂y
+ λλλ′

]
+
∂f

∂u
· ∂u

ε

∂ε

)∣∣∣∣
ε=0

dx

+

∫ b

a
λλλ

(
∂g

∂y

∂yε

∂ε
+
∂g

∂u

∂uε

∂ε

)∣∣∣∣
ε=0

dx− λλλ(b)
∂yε

∂ε
(b)

∣∣∣∣
ε=0

=

∫ b

a

(
∂f

∂y
+ λλλ′ + λλλ

∂g

∂y

)
· ∂y

ε

∂ε

∣∣∣∣
ε=0

dx

+

∫ b

a

(
∂f

∂u
+ λλλ

∂g

∂u

)
· h
∣∣∣∣
ε=0

dx− λλλ(b)
∂yε

∂ε
(b)

∣∣∣∣
ε=0

, (2.1)

because

∂uε

∂ε
= h.

For each i ∈ {1, . . . , k} we are going to choose λi(x) so that the coe�-

cients of
∂yεi
∂ε

∣∣∣
ε=0

are equal zero. So, for all x ∈ [a, b], λλλ(x) should satisfy the

following conditions:

• λλλ′(x) = −
(
∂f
∂y + λλλ(x) ∂g∂y

)
= −∂H

∂y (x,y(x),u(x),λλλ(x)).

• λλλ(b) = 0.

Now we only need to prove the Optimality Condition. From (2.1) we get∫ b

a

(
∂f

∂u
+ λλλ

∂g

∂u

)
· h
∣∣∣∣
ε=0

dx = 0.
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As the above equation is valid for all h ∈ PC([a, b],Rm), it holds in particular
for h such that

h =
∂f

∂u
+ λλλ

∂g

∂u
.

Thus, we have that∫ b

a

(
∂f

∂u
+ λλλ

∂g

∂u

)2
∣∣∣∣∣
ε=0

dx = 0

⇔
(
∂f

∂u
+ λλλ

∂g

∂u

)2
∣∣∣∣∣
ε=0

= 0

⇔
(
∂f

∂u
+ λλλ

∂g

∂u

)∣∣∣∣
ε=0

= 0, ∀x ∈ [a, b]

⇔ ∂H

∂u
(x,y(x),u(x),λλλ(x)) = 0, ∀x ∈ [a, b].

So, we obtain the Optimality Condition.

�

Theorem 2.2.2 If y,λ ∈ C1([a, b],Rk), u ∈ C1([a, b],Rm) and (y,u,λλλ)
satis�es the Theorem 2.2.1, then

d

dx
H(x,y(x),u(x),λλλ(x)) =

∂H

∂x
(x,y(x),u(x),λλλ(x)).

Proof: Immediate computations lead to

d

dx
H =

∂H

∂x
+

k∑
i=1

∂H

∂yi
y′i +

m∑
i=1

∂H

∂ui
u′i +

k∑
i=1

∂H

∂λi
λ′i

=
∂H

∂x
+

k∑
i=1

∂H

∂yi

∂H

∂λi
−

k∑
i=1

∂H

∂λi

∂H

∂yi

=
∂H

∂x
.

This concludes the proof.

�

Example 2.2.1 The Variational Problem (P1) given by

(P1) max J(y) =

∫ b

a
f(x, y(x), y′(x))dx

s.t. y(a) = ya
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can be transformed into a problem (P2) of the Optimal Control given by

(P2) max J(y) =

∫ b

a
f(x, y(x), u(x))dx

s.t. y′(x) = u(x)

y(a) = ya.

We intend to �nd the Euler�Lagrange equation (1.5) and the natural
boundary condition (1.27) by applying Theorem 2.2.1 to (P2). By Theorem
2.2.1 we have that H(x, y, u, λ) = f(x, y, u) + λu and

λ(b) = 0
∂H
∂λ = y′(x)
∂H
∂y = −λ′(x)
∂H
∂u = 0

⇔


−
u(x) = y′(x)

λ′(x) = −∂f
∂y

λ(x) = −∂f
∂u

⇔ ∂f

∂y
− d

dx

∂f

∂y′
= 0.

Note that

λ(b) = 0⇔
[
∂f

∂u

]
b

=

[
∂f

∂y′

]
b

= 0,

which is nothing else than the natural boundary condition (1.27).

Example 2.2.2 The Variational Problem (P̂1) given by

(P̂1) max J(y) =

∫ b

a
f(x, y(x), y′(x), y′′(x), y′′′(x))dx

s.t. y(a) = ya

y′(a) = y(1)
a

y′′(a) = y(2)
a

can be transformed into a problem of the Optimal Control. Now we consider
y(x) = (y0(x), y1(x), y2(x)) such that ym(x) = y(m)(x) form = 0, 1, 2. Thus,
the equivalent problem of Optimal Control is given by

(P̂2) max J(y) =

∫ b

a
f(x,y(x), u(x))dx

s.t. y′(x) =

 y1(x)
y2(x)
u(x)


y0(a) = ya

y1(a) = y(1)
a

y2(a) = y(2)
a .
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Again, by Theorem 2.2.1, we have that

H(x,y, u,λλλ) =f(x,y, u) + λλλ · y′ = f(x,y, u) +

2∑
i=1

λiy
i + λ3u

and


∂H
∂λλλ = y′(x)
∂H
∂y = −λλλ′(x)
∂H
∂u = 0

⇔



y′(x) = y′(x)

λλλ′(x) =


− ∂f
∂y0

− ∂f
∂y1
− λ1(x)

− ∂f
∂y2
− λ2(x)


∂f
∂u + λ3(x) = 0.

So, we have that

d

dx

∂f

∂u
− ∂f

∂y2
− λ2(x) = 0⇔ λ2(x) =

d

dx

∂f

∂u
− ∂f

∂y2
.

As λ′2(x) = − ∂f
∂y1
− λ1(x),

d2

dx2

∂f

∂u
− d

dx

∂f

∂y2
= − ∂f

∂y1
− λ1(x)⇔ λ1(x) = − d2

dx2

∂f

∂u
+

d

dx

∂f

∂y2
− ∂f

∂y1
.

As λ′1(x) = − ∂f
∂y0

,

d3

dx3

∂f

∂u
− d2

dx2

∂f

∂y2
+

d

dx

∂f

∂y1
− ∂f

∂y0
= 0.

As u(x) = (y2)′(x) = y′′′(x), we obtain that

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′
− d3

dx3

∂f

∂y′′′
= 0. (2.2)

Note that Equation (2.2) is the Euler�Lagrange equation for n = 3. By
Theorem 2.2.1 we also know that

λλλ(b) = 0⇔

 λ1(b)
λ2(b)
λ3(b)

 =


[
− d2

dx2
∂f
∂y′′′ + d

dx
∂f
∂y′′ −

∂f
∂y′

]
b[

d
dx

∂f
∂y′′′ −

∂f
∂y′′

]
b[

∂f
∂y′′′

]
b

 = 0

(Transversality Condition).

55



Example 2.2.3 Consider the following problem:

max

∫ 5

1
u(x)y(x)− u2(x)− y2(x) dx

s.t. y′(x) = y(x) + u(x) (2.3)

y(1) = 2.

Resolution by Optimal Control: By Theorem 2.2.1, the Hamiltonian is
given by

H(x, y, u, λ) = uy − u2 − y2 + λ(y + u).

The Optimality Condition asserts that

∂H

∂u
(x, y(x), u(x), λ(x)) = 0

⇔ y(x)− 2u(x) + λ(x) = 0

⇔ λ(x) = −y(x) + 2u(x).

Using the Adjoint System,{
∂H
∂λ (x, y(x), u(x), λ(x)) = y′(x)
∂H
∂y (x, y(x), u(x), λ(x)) = −λ′(x)

⇔

{
y(x) + u(x) = y′(x)

λ′(x) = −u(x) + 2y(x)− λ(x).

With the Optimality Condition and the Adjoint System we have that

λ(x) = y′(x)− 2u′(x)− u(x) + 2y(x)

⇔− y(x) + 2u(x)− y′(x) + 2u′(x) + u(x)− 2y(x) = 0

⇔− 3y(x)− y′(x) + 3u(x) + 2u′(x) = 0

⇔− 3y(x)− y′(x) + 3(y′(x)− y(x)) + 2(y′′(x)− y′(x)) = 0

⇔ y′′(x) = 3y(x)

⇔ y(x) = c1e
√

3x + c2e
−
√

3x,

where c1 and c2 are real constants. By the Transversality Condition,

λ(5) = 0⇔ −y(5) + 2u(5) = 0⇔ −y(5) + 2(y′(5)− y(5)) = 0

⇔ y′(5) =
3

2
y(5).

Thus, we have to solve the following system to �nd c1 and c2:{
y(1) = 2

y′(5) = 3
2y(5)

⇔

{
c1e
√

3 + c2e
−
√

3 = 2√
3c1e

5
√

3 −
√

3c2e
−5
√

3 = 3
2(c1e

5
√

3 + c2e
−5
√

3)

⇔

c1 = (4
√

3+6)e−5
√
3

e4
√
3(2
√

3−3)+e−4
√
3(2
√

3+3)

c2 = (4
√

3−6)e5
√
3

e4
√
3(2
√

3−3)+e−4
√
3(2
√

3+3)
.
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Concluding,

y(x) =
(4
√

3 + 6)e
√

3(x−5) + (4
√

3− 6)e−
√

3(x−5)

e4
√

3(2
√

3− 3) + e−4
√

3(2
√

3 + 3)
. (2.4)

Resolution by the Calculus of Variations: As y′(x) = y(x) + u(x) we
can write the integrand f as a function of x, y and y′:

f(x, y, y′) = (y′ − y)y − (y′ − y)2 − y2.

Simplifying,

f(x, y, y′) = −3y2 + 3yy′ − (y′)2.

The initial optimal control problem can be transformed into the following
equivalent variational problem:

max

∫ 5

1
−3y2(x) + 3y(x)y′(x)− (y′)2(x) dx

s.t. y(1) = 2.

By the Euler�Lagrange equation (1.5), we obtain

−6y(x) + 3y′(x)− d

dx

(
3y(x)− 2y′(x)

)
= 0⇔ y′′(x) = 3y(x).

Again,

y(x) = c1e
√

3x + c2e
−
√

3x,

where c1 and c2 are real constants. As y(1) = 2 and using the natural
boundary condition (1.27)y(1) = 2[

∂f
∂y′

]
5

= 0
⇔

{
y(1) = 2

y′(5) = 3
2y(5).

So,

y(x) =
(4
√

3 + 6)e
√

3(x−5) + (4
√

3− 6)e−
√

3(x−5)

e4
√

3(2
√

3− 3) + e−4
√

3(2
√

3 + 3)
.

Therefore, this function y(x), which is the same as (2.4), is a candidate
for maximizer for the given problem (2.3).
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2.3 The Optimal Control Problem with Bounded
Control

Sometimes, we can �nd problems of Optimal Control that have a bounded
control, that is, ci ≤ ui(x) ≤ di, where ci, di ∈ R for all i = 1, . . . ,m. We
are going to study these problems for m = 1.

Problem Statement: The Optimal Control problem with bounded con-
trol, for m = 1, consists of �nding a pair (y, u) that solves the following
problem (POCb)

(POCb) max J(y , u) =

∫ b

a
f(x,y(x), u(x))dx

s.t. y ′(x) = g(x,y(x), u(x)), ∀ x ∈ ]a, b[

y(a) = ya

u(x) ∈ U,

where U = [c, d] ⊆ R and c < d.

In this case the Optimality Condition is changed into the Maximality
Condition, as we can observe in the next theorem (see [24, p. 185�187]).

Theorem 2.3.1 (The Pontryagin Maximum Principle for (POCb))
If (y, u) is an optimal pair for the problem (POCb), then there exists λλλ ∈
PC1([a, b],Rk) such that

1. λλλ(b) = 0 (Transversality Condition),

2. y′(x) = ∂H
∂λλλ (x,y(x), u(x),λλλ(x)) (Control System),

3. λλλ′(x) = −∂H
∂y (x,y(x), u(x),λλλ(x)) (Adjoint Equation),

4. u(x), x ∈ [a, b], is the solution of the problem

(Pv) max
v∈U

f(x,y(x), v) + λ(x) · g(x,y(x), v)

(Maximality Condition).

Remark 2.3.1 Again,

H(x,y, u,λλλ) = f(x,y, u) + λλλ · g(x,y, u)

and the Adjoint System is formed by the second and the third items of
Theorem 2.3.1, i.e., by the Control System and by the Adjoint Equation.
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The proof of Theorem 2.3.1 that we present here is based on the one
found in [24].

Proof: The �rst, the second and the third points can be obtained following
the same pattern as was done in Theorem 2.2.1. Then, we only have to prove
the last point.

By the Transversality Condition and by the Adjoint System, we have
that

d

dε
J(yε, uε)

∣∣∣∣
ε=0

=

∫ b

a

(
∂f

∂u
+ λλλ · ∂g

∂u

)
h

∣∣∣∣
ε=0

dx,

as we had already seen in the proof of Theorem 2.2.1. By Taylor's Theorem
[41, p. 262�264], we know that

J(yε, uε)− J(y, u) =
d

dε
J(yε, uε)

∣∣∣∣
ε=0

ε+O(ε2).

As (y, u) is an optimal pair for the problem (POCb), we have that

J(yε, uε)− J(y, u) ≤ 0.

This implies that

d

dε
J(yε, uε)

∣∣∣∣
ε=0

ε+O(ε2) =

(∫ b

a

(
∂f

∂u
+ λλλ · ∂g

∂u

)
h

∣∣∣∣
ε=0

dx

)
ε+O(ε2) ≤ 0.

Then, we have that∫ b

a

(
∂f

∂u
(x,y(x), u(x)) + λλλ(x) · ∂g

∂u
(x,y(x), u(x))

)
εh(x)dx ≤ 0. (2.5)

As (y, u) is an optimal pair of (POCb), for each x ∈ [a, b] we have that
u(x) ∈ R is a point of the optimal solution u. Observe that

a) If u(x) = c, then εh(x) ≥ 0. Thus, in order to verify the condition
(2.5) we must have that ∂f

∂u + λλλ · ∂g∂u ≤ 0 at x.

b) If u(x) = d, then εh(x) ≤ 0. Thus, in order to verify the condition
(2.5) we must have that ∂f

∂u + λλλ · ∂g∂u ≥ 0 at x.

c) If c < u(x) < d, then εh(x) ≤ 0, or εh(x) ≥ 0. Thus, in order to verify
the condition (2.5) we must have that ∂f

∂u + λλλ · ∂g∂u = 0 at x.

Note that these conditions are obtained using similar arguments as the ones
used to prove Lemma 1.2.3. The previous three items can be obtained by
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resolution of the problem (Pv), as we will verify. To solve the problem (Pv),
by Fritz�John's Theorem [8, p. 182�184], we have that

w0

(
∂f
∂v + λ · ∂g∂v

)
− w1

∂
∂v (v − d)− w2

∂
∂v (c− v) = 0

w1(v − d) = 0

w2(c− v) = 0

w0, w1, w2 ≥ 0

(w0, w1, w2) 6= (0, 0, 0)

⇔



w0

(
∂f
∂v + λ · ∂g∂v

)
− w1 + w2 = 0

w1(v − d) = 0

w2(c− v) = 0

w0, w1, w2 ≥ 0

(w0, w1, w2) 6= (0, 0, 0).

(2.6)

If w0 = 0, we have that



w1 = w2

w1(v − d) = 0

w2(c− v) = 0

w1, w2 ≥ 0

(w1, w2) 6= (0, 0)

⇔


w1 = w2

v = d

v = c

w1, w2 > 0

and this is a contradiction, because we must have c < d.

Therefore, w0 6= 0. Consider that w′1 = w1
w0

and w′2 = w2
w0
. With these

considerations the system (2.6) is equivalent to
∂f
∂v + λ · ∂g∂v − w

′
1 + w′2 = 0

w′1(v − d) = 0

w′2(c− v) = 0

w′1, w
′
2 ≥ 0.

When v = c, we have that
∂f
∂v + λ · ∂g∂v = −w′2 ≤ 0

w′1 = 0

w′2(c− v) = 0

w′2 ≥ 0
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and therefore we obtain a). Furthermore, when v = d, we have that
∂f
∂v + λ · ∂g∂v = w′1 ≥ 0

w′1(v − d) = 0

w′2 = 0

w′1 ≥ 0

and therefore we obtain b). Finally, when c < v < d, we have that
∂f
∂v + λ · ∂g∂v = 0

w′1 = 0

w′2 = 0

and therefore we obtain c).

Now we are going to prove that if the items a), b) and c) are true it is
possible to �nd w0, w1 and w2 that satisfy the system (2.6).

Consider the item a), in other words, suppose that u(x) = c. Therefore,
we have that

w0

(
∂f
∂v + λ · ∂g∂v

)
− w1 + w2 = 0

w1(v − d) = 0

w2(c− v) = 0

w0, w1, w2 ≥ 0

(w0, w1, w2) 6= (0, 0, 0)

v = c
∂f
∂v + λ · ∂g∂v ≤ 0

⇔



w0

(
∂f
∂v + λ · ∂g∂v

)
= −w2

w1 = 0

w0, w2 ≥ 0

(w0, w2) 6= (0, 0)
∂f
∂v + λ · ∂g∂v ≤ 0.

(2.7)

If ∂f∂v + λ · ∂g∂v = 0, we have the following system
w2 = 0

w1 = 0

w0 ≥ 0

w0 6= 0

⇔

{
w1 = w2 = 0

w0 > 0.

On the other hand, if ∂f
∂v + λ · ∂g∂v < 0, we choose w0 and w2 such that

w0, w2 > 0. This choice satisfy the �rst equation of system (2.7).

Consider the item b), in other words, suppose that u(x) = d. Therefore,
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we have that

w0

(
∂f
∂v + λ · ∂g∂v

)
− w1 + w2 = 0

w1(v − d) = 0

w2(c− v) = 0

w0, w1, w2 ≥ 0

(w0, w1, w2) 6= (0, 0, 0)

v = d
∂f
∂v + λ · ∂g∂v ≥ 0

⇔



w0

(
∂f
∂v + λ · ∂g∂v

)
= w1

w2 = 0

w0, w1 ≥ 0

(w0, w1) 6= (0, 0)
∂f
∂v + λ · ∂g∂v ≥ 0.

(2.8)

If ∂f∂v + λ · ∂g∂v = 0, we have the following system
w1 = 0

w2 = 0

w0 ≥ 0

w0 6= 0

⇔

{
w1 = w2 = 0

w0 > 0.

On the other hand, if ∂f
∂v + λ · ∂g∂v > 0, we choose w0 and w1 such that

w0, w1 > 0. This choice satisfy the �rst equation of system (2.8).

Consider the item c), in other words, suppose that c < u(x) < d. There-
fore, we have that

w0

(
∂f
∂v + λ · ∂g∂v

)
− w1 + w2 = 0

w1(v − d) = 0

w2(c− v) = 0

w0, w1, w2 ≥ 0

(w0, w1, w2) 6= (0, 0, 0)

c < v < d
∂f
∂v + λ · ∂g∂v = 0

⇔


w1 = w2 = 0

w0 ≥ 0

w0 6= 0.

So, we must have w1 = w2 = 0 and w0 > 0. Concluding, the conditions of
the items a), b) and c) are equivalent to the system (2.6). Thus, the fourth
item of Theorem 2.3.1 is proven.

�

An example of application of Theorem 2.3.1 is given in Chapter 3.
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Chapter 3

An Application of Optimal

Control

3.1 Introduction

In this chapter we are going to study an optimal control problem of
Diabetes Mellitus that was proposed by Swan in [40]. He found an exact
solution using the nonlinear algebraic Ricatti equation (see [7, p. 771], [40,
p. 799�802] and [43]). We are going to �nd the numerical solution of this
problem by two di�erent methods and then compare with the exact solution
[40]. One method uses the necessary conditions of Theorem 2.3.1 and the
other discretizes the problem. However, before we are going to do a brief
explanation about this disease in order to understand better the problem in
study (see, e.g., [13, 16, 17, 35, 40, 42]).

3.2 Diabetes Mellitus

Glucose is the sugar present in the blood that comes from food. It is
very important for life, because our body needs sugar to produce energy
necessary for normal functioning of the organs and of the tissues. For this
purpose, glucose has to be transported from the blood into the cells. This
transport is usually done through a hormone called insulin. Then, this hor-
mone is responsible for the regularization of glycemia (amount of glucose in
the blood).

Insulin is produzed in the pancreas, because it has specialized cells for
this. About 1�2% of the tissue of the pancreas is formed by islets of Langer-
hans cells. We can divide them in three distinct types of endocrine cells:
alpha, beta and delta cells. The alpha cells produce the hormone glucagon,
when the glycemia reaches an undesirable low level. Therefore, the function
of glucagon is to cause an elevation of the glucose in the blood. On the other
hand, when the level of glycemia is too high, the beta cells release their in-
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sulin in order to reduce this level. Finally, delta cells produce the hormone
somatostatin that inhibits the release of glucagon, or insulin, depending on
the organism needs.

Diabetes Mellitus is a metabolic disease characterized by an abnormal
and uncontrolled increase of the glycemia. It arises when the body doesn't
produce enough insulin, or when there is a resistance to the insulin produced.
There are several types of diabetes mellitus, but the three main are diabetes
mellitus type 1, diabetes mellitus type 2 and gestational diabetes.

Diabetes type 1 usually a�ects people under 20 years, but it can arise
at any age. Although this type is less common, it is the more serious. In
diabetes type 1 the increase of glycemia is caused by inability of pancreas to
produce insulin. This problem appears, because the beta cells are destroyed
by the immune system itself. Hence, it is an autoimmune disease. It isn't
known why the immune system reacts this way, but it is believed that this
behaviour is related to genetic characteristics, or to some possible infections.
In this case, the patient must receive daily insulin injections to control the
level of this hormone. He must also control the feed and practice exercise.

Diabetes type 2 usually strikes people over 30 years that are overweight
and that have cases in the family, but there are people without these charac-
teristics that are also a�ected. This type is the more common form. In this
case, the main causes for the increase of the glycemia are the progressive loss
of e�cacy of insulin (also known by �resistance to insulin�) and the decrease
of the insulin production by the pancreas. Nowadays it is known that due to
lifestyle and inherited genes, the insulin loses e�cacy and then the organism
is more resistant to insulin. In this situation the pancreas reacts and pro-
duces more insulin in order to keep balanced glycemia levels. In some people
the pancreas slowly begins to fail and, consequently, it isn't able to produce
enough insulin to control the glycemia levels and this increases, resulting in
the diabetes type 2. We know that the overweight, the excess fat in the
body and the physical inactivity can worsen diabetes type 2. So, a patient
with this type of diabetes should opt for healthy eating, lose weight, practice
exercise, reduce the blood pressure, improve cholesterol levels and take the
medication correctly. This medication usually consists in taking pills that
increase the sensitivity of the tissues to insulin. A patient with diabetes type
2 only receives insulin injections when the situation is serious.

Gestational diabetes only arises during pregnancy, but it is very similar
to diabetes type 2. If it is diagnosed and treated in the beginning of the
pregnancy, then there are no problems or to the mother, or to the baby.
It generally disappears with the birth of baby. Nevertheless, women that
have this type of diabetes are more likely to have diabetes type 2 later. So,
they must be careful with their health throughout life. Then, a pregnant
with gestational diabetes should opt for healthy eating, practice exercise,
control the blood pressure, take the medication correctly and make a careful
monitoring of the baby.
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3.3 An Optimal Control Problem of Diabetes Mel-

litus

Let G(t) and H(t) be the level of glucose and of net hormone in the blood
at time t (in minutes), respectively. Note that at the time t the person isn't
fasting. Consider the variables y1(t) and y2(t) de�ned by

y1(t) = G(t)−G0

and

y2(t) = H(t)−H0,

where G0 and H0 are the constant fasting values of glucose and of net hor-
mone, respectively. The value H(t) includes the weighted average of all
endocrine secretions, which tend to change the glycemia. Note that if the
person has high levels of glucose (hyperglycemia), then insulin is the hormone
that has the most contribution to H(t). On the other hand, if the person
has low levels of glucose (hypoglycemia), then glucagon is the hormone that
has the most contribution to H(t). The control variable u(t) is responsible
for the rate of infusion of exogenous insulin at time t. It is obvious that
u(t) ≥ 0. When we consider that G and H are not too di�erent from G0 and
H0, respectively, the mathematical model of glucose and insulin interaction
proposed by Ackerman in [1] is given by

y′1(t) = −m1y1(t)−m2y2(t)

y′2(t) = −m3y2(t) +m4y1(t) + u(t) (3.1)

y1(0) = y10

y2(0) = y20

m1,m2,m3 > 0 and m4 ≥ 0.

Consider an individual with diabetes of type 1 that is with high levels of
glucose. He isn't able to produce enough endogenous insulin. Therefore, the
organism detects the excess of the glucose in the blood, but this situation
doesn't cause an increase of the production of endogenous insulin. So, we
consider m4 = 0 in the Equation (3.1). Thus, he needs to administrate
exogenous insulin translated by the nonnegative term u(t) in the Equation
(3.1). With this administration, it is expected that the levels of the glucose
in the blood will decrease. In theses cases, we usually have that G(t) > G0

and that H(t) > H0. So, y1(t) > 0 and y2(t) > 0. As m1,m2 > 0, we have
that y′1(t) < 0 and this results in a decrease of glucose, as expected. We
know that u(t) ≥ 0 and −m3y2(t) < 0, because m3 > 0. The concentration
of insulin in the blood should increase until it reaches its maximum, due
to exogenous insulin administration. So, during this time it is required that
u(t) > m3y2(t) in order to y′2(t) > 0. This is obvious, because the function of
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infusion of exogenous insulin is to solve the low levels of endogenous insulin
caused by the destruction of the beta cells in the patient with diabetes type
1. It is expected that some time after insulin administration u(t) < m3y2(t),
that is, y′2(t) < 0, because the insulin will begin to be absorbed by tissues.

In [40], Swan also uses this mathematical model and he proposes the
following optimal control problem:

(PGI) min J(y1, u) =

∫ tf

0
(y1(t)− yd)2 + ρu2(t)dt

s.t. y′1(t) = −m1y1(t)−m2y2(t)

y′2(t) = −m3y2(t) +m4y1(t) + u(t)

u(t) ≥ 0

y1(0) = y10

y2(0) = y20,

where yd is a predetermined constant glucose level in a diabetic individual,
ρ is a scalar weighting factor (with dimensions of (time)2) such that ρ > 0
and m1, m2, m3 and m4 are as we de�ned previously.

As yd is a predetermined constant glucose level in a diabetic individual,
the goal is to minimize the di�erence between y1(t) and yd and the rate of
infusion of exogenous insulin. Therefore, the objective function is

f(y1, u) = (y1 − yd)2 + ρu2.

Note that, as we consider ρ > 0, large controls imply large values of J .

3.4 The Necessary Conditions

Now we are going to write the necessary conditions of Theorem 2.3.1 for
the problem (PGI). As we are going to study a situation of hyperglycemia,
we consider m4 = 0.

The Hamiltonian H = H(y1, y2, u, λ1, λ2) is given by

H = −(y1 − yd)2 − ρu2 + λ1(−m1y1 −m2y2) + λ2(−m3y2 + u).

The Transversality Condition is given by

λ1(tf ) = λ2(tf ) = 0.

The Adjoint System is given by
y′1(t) = ∂H

∂λ1

y′2(t) = ∂H
∂λ2

λ′1(t) = − ∂H
∂y1

λ′2(t) = − ∂H
∂y2

⇔


y′1(t) = −m1y1(t)−m2y2(t)

y′2(t) = −m3y2(t) + u(t)

λ′1(t) = 2(y1(t)− yd) +m1λ1(t)

λ′2(t) = m2λ1(t) +m3λ2(t).
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By the Maximality Condition, we have that u(t), t ∈ [0, tf ], is the solution
of

(Pv) max
v≥0

H(y1(t), y2(t), v, λ1(t), λ2(t)).

By Fritz�John's Theorem [8, p. 182�184], we have that the solution of (Pv)
is obtained solving the following system:

w0
∂H
∂v − w1

∂
∂v (−v) = 0

w1(−v) = 0

w0, w1 ≥ 0

(w0, w1) 6= (0, 0)

⇒


w0(−2ρv + λ2) + w1 = 0

w1v = 0

w0, w1 ≥ 0

(w0, w1) 6= (0, 0).

If w0 = 0 we obtained the following system
w1 = 0

w1v = 0

w0, w1 ≥ 0

(w0, w1) 6= (0, 0)

that is impossible, because (w0, w1) = (0, 0). Therefore, we can consider
that w0 = 1. For the condition w1v = 0 we have two possibilities: w1 = 0,
or v = 0. The second possibility doesn't make sense, because the patient
needs to receive exogenous insulin. So, we consider that w1 = 0 and v > 0
in order to verify the condition w1v = 0. Thus, we have that

v = λ2
2ρ

w1v = 0

w0, w1 ≥ 0

(w0, w1) 6= (0, 0).

Then, we can �nd the solution of (PGI) solving the following system:

y′1(t) = −m1y1(t)−m2y2(t)

y′2(t) = −m3y2(t) + λ2(t)
2ρ

λ′1(t) = 2(y1(t)− yd) +m1λ1(t)

λ′2(t) = m2λ1(t) +m3λ2(t)

y1(0) = y10

y2(0) = y20

λ1(tf ) = 0

λ2(tf ) = 0.

(3.2)
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3.5 The Exact Solution

The exact solutions y1(t) and u(t) of the problem (PGI) determined by
Swan in [40] are

u(t) = −K1y1(t)−K2y2(t) +K

and

y1(t) = e−αt
(

(y10 − ζ) cos(βt) +
1

β
[α(y10 − ζ)−m1y10] sin(βt)

)
+ ζ,

where

ξ = −

√
m2

1m
2
3 +

m2
2

ρ
,

K =
m2yd
ρξ

,

K2 =

√√√√
m2

1 +m2
3 + 2

√
m2

1m
2
3 +

m2
2

ρ
− (m1 +m3),

K1 = −K
2
2 + 2m3K2

2m2
,

α =
K2 +m1 +m3

2
,

β =

√
|m2

1 +m2
3 + 2ξ|

2
,

ζ =
yd

1 + ρ
(
m1m3
m2

)2 .

As y′1(t) = −m1y1(t)−m2y2(t) we have that

y2(t) = −y
′
1(t) +m1y1(t)

m2
.

So, the exact solution y2(t) is

y2(t) =
e−αt(y10 − ζ)

m2
(α cos(βt) + β sin(βt)−m1 cos(βt))

+
e−αt[α(y10 − ζ)−m1y10]

m2

(
α

β
sin(βt)− cos(βt)− m1

β
sin(βt)

)
−m1ζ

m2
.
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3.6 The Numerical Solution

Swan considered in [40] the situation in which y10 = 300 mg/dl, yd = 100
mg/dl, the concentration y20 is null and the value of ρ is 10. By Yipintsoi
in [44, p. 73, 75] the values of m1, m2 and m3 for a woman of 59 years old
diabetic 20 years ago, with 1.64m of height and with, approximately, 65kg
of weight, were given by m1 = 0.0009, m2 = 0.0031 and m3 = 0.0415. By
Yipintsoi in [44, p. 73], we also know that she was insulin dependent. Then,
we can conclude that she was diabetic type 1.

With these considerations, we are going to �nd a numerical solution
of the problem (PGI) for this woman by two di�erent methods. First, we
are going to solve the system (3.2) (so called indirect method), using the
software Maple, and then we are going to propose a second procedure that
solves directly the problem by discretizing it (so called direct method), using
the software IPOPT (Interior Point OPTimizer). For more on the subject
we refer the reader to [36]. To test the e�ciency of the results, we are
going to draw the exact solution given in Section 3.5 and the two numerical
solutions for t ∈ [0, 145]. In Appendix B we provide the codes for the indirect
(Appendix B.1) and direct (Appendix B.2) methods.

Figure 3.1: Solution y1(t) (exact versus approximations obtained by direct
and indirect methods).
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Figure 3.2: Solution y2(t) (exact versus approximations obtained by direct
and indirect methods).

Figure 3.3: Solution u(t) (exact versus approximations obtained by direct
and indirect methods).

3.7 Discussion

The numerical approximations obtained by Maple and by IPOPT are
very similar between them and very close to the exact solution, because as
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we can observe in the previous �gures the dashed black line is superimposed
on the line composed by the red points.

For a diabetic person, the levels of glucose in the blood are higher than
those of an individual that isn't diabetic. This is caused by inability to pro-
duce enough endogenous insulin to maintain the optimal levels of glycemia.
In [35] the levels of glucose in the blood (mg/dl) are:

1. G0 ∈ [70, 100] and G(t) ∈ [70, 140] for a normal person, after a meal
(approximately 2 hours);

2. G0 ∈ [100, 126] and G(t) ∈ [140, 200] for a person in the situation of
pre diabetes, after a meal (approximately 2 hours);

3. G0 > 126 and G(t) > 200 for a person with diabetes, after a meal
(approximately 2 hours).

Diabetics may not be able to maintain the levels mentioned in the items
1. and 2. So, the values proposed by Swan for y10, y20 and yd are coherent,
because as the woman had diabetes type 1 it is possible that she was with
high levels of glucose and with null levels of insulin. Therefore, this is the
hormone that has the most contribution to H(t) in this case.

The insulin is administrated in the patient at time t = 0. Consider
that the time at which the concentration of insulin in the blood reaches the
maximum value is tm. As we know the exact solution of y2(t), we conclude
that tm ' 31.77 minutes. From t = 0 the glycemia decreases and this
means that there is absorption of the insulin by tissues since the time of
its administration. However, there is more insulin to enter into blood than
into tissues for t ∈ [0, tm], because y2(t) is strictly increasing in this interval
of time. For t > tm the concentration of insulin in the blood is strictly
decreasing and this means that from t = tm there is more insulin to enter
into tissues than into blood.

Consider that Ii = [xi, xi+1] and ∆i = |y1(xi+1)− y1(xi)|.

i Ii ∆i

1 [0, 30] 52.35
2 [30, 60] 64.46
3 [60, 90] 42.00
4 [90, 120] 22.46
5 [120, 145] 9.52

Table 3.1: The absolute value of the decrease of glycemia for di�erent inter-
vals of time.

In Table 3.1 we can observe that the absolute value of the decrease of
glycemia was, approximately, 52.35 for t ∈ [0, 30] and 64.46 for t ∈ [30, 60].
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This is supposed to happen, because for t > tm insulin has more e�ect. Note
that for i = 3, 4, 5

∆1 > ∆i,

because after 60 minutes the level of glycemia (y1(60) = 183.19 mg/dl) is
not so worrying as in the beginning (y1(0) = 300 mg/dl).

After 145 minutes the insulin is absorbed almost entirely by tissues, be-
cause their levels in the blood are very low, as we can observe in Figure 3.2.
Consequently, the level of glucose in the blood decreases from 300 mg/dl to
109.22 mg/dl. Therefore, the patient reaches a good level of glucose with
the administration of insulin.

In Figure 3.3 we can observe the decreasing rate of infusion of exogenous
insulin over time.

The di�erence between the numerical solutions and the exact solution is
not signi�cant. Concluding, we obtained good numerical approximations to
the solution.
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Appendix A

Euler's Method in MATLAB

function[x,Solution_y,deltax]=met_euler(a,b,ya,yb,n,f,color)

% This function takes as input the extremes 'a' and 'b' of the

% interval, the values of ya, yb and n, the function and the

% color of the graphic. This routine returns the array x compo-

% sed by the values x_0,...,x_{n+1}, the array y composed by

% the values y_1,...,y_{n+1} and deltax.

% Startup and given information:

x=zeros(1,n+2);

x(1)=a;

x(n+2)=b;

% Calculation of delta x

deltax=(b-a)/(n+1);

% Calculation of the values of x(i)

for i = 2:n+1

x(i)=x(1)+(i-1)*deltax;

end

% Creation of the variables to determine y1,...,y(n+1)

y=sym('y',[1 n+2]);

y(1)=ya;

y(n+2)=yb;
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% Definition of the function phi

phi= 0;

for i = 1:n+1

phi=phi+feval(f,x(i),y(i),(y(i+1)-y(i))/deltax)*deltax;

end

pretty(simplify(phi))

dphi=sym('dphi',[1,n]);

for i = 1:n

dphi(i)=diff(phi,y(i+1));

end

S=solve(dphi);

Solution_y=zeros(1,n+2);

Solution_y(1)=ya;

Solution_y(n+2)=yb;

if n==1

Solution_y(2)=S;

else

SNames = fieldnames(S);

for i = 2:n+1

Solution_y(i) = S.(SNames{i-1});

end

end

plot(x,Solution_y,color,'LineWidth',2)

grid on

end

The code used to solve the Example 1.2.1 is

g=inline('(z^2)-(y^2)-(2*x*y)');

t=linspace(0,1,500);

g2=((3-cos(1))/sin(1))*sin(t)+cos(t)-t;

[x,Solution_y,deltax]=met_euler(0,1,1,2,1,g,'--ok')

hold on
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plot(t,g2,'-k','LineWidth',2)

legend('n=1','Extremal');

xlabel('x');

ylabel('y');

title('Euler''s Method of Finite Differences for n=1 versus the

extremal')

axis([0 1 0 3])

figure

[x,Solution_y,deltax]=met_euler(0,1,1,2,2,g,'--ok')

hold on

plot(t,g2,'-k','LineWidth',2)

legend('n=2','Extremal');

xlabel('x');

ylabel('y');

title('Euler''s Method of Finite Differences for n=2 versus the

extremal')

axis([0 1 0 3])

figure

[x,Solution_y,deltax]=met_euler(0,1,1,2,3,g,'--ok')

hold on

plot(t,g2,'-k','LineWidth',2)

legend('n=3','Extremal');

xlabel('x');

ylabel('y');

title('Euler''s Method of Finite Differences for n=3 versus the

extremal')

axis([0 1 0 3])

figure

[x,Solution_y,deltax]=met_euler(0,1,1,2,4,g,'--ok')

hold on

plot(t,g2,'-k','LineWidth',2)

legend('n=4','Extremal');

xlabel('x');

ylabel('y');

title('Euler''s Method of Finite Differences for n=4 versus the

extremal')

axis([0 1 0 3])
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Appendix B

The Numerical Solution of

(PGI)

B.1 Maple (indirect method)

m1 := 0.0009;

m2 := 0.0031;

m3 := 0.0415;

ro := 10;

yd := 100;

E1 := -sqrt(m1^2*m3^2+m2^2/ro);

K := m2*yd/(ro*E1);

K2 := sqrt(m1^2+m3^2+2*sqrt(m1^2*m3^2+m2^2/ro))-m1-m3;

K1 := -(K2^2+2*K2*m3)/(2*m2);

alfa := (K2+m1+m3)*(1/2);

bet := (1/2)*sqrt(abs(m1^2+m3^2+2*E1));

E2 := yd/(1+ro*(m1*m3/m2)^2);

system_ode := diff(y1(t), t) = -m1*y1(t)-m2*y2(t),

diff(y2(t), t) = -m3*y2(t)+(1/(2*ro))*lamb2(t),

diff(lamb1(t), t) = 2*(y1(t)-yd)+m1*lamb1(t),

diff(lamb2(t), t) = m2*lamb1(t)+m3*lamb2(t);

boundaryCond := y1(0) = 300, y2(0) = 0, lamb1(145) = 0,

lamb2(145) = 0;

solution := dsolve({boundaryCond, system_ode}, numeric,

range = 0 .. 145, output = listprocedure);

with(plots);
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y_1 := solution[4];

y_1 := rhs(y_1);

plot(y_1(t), t = 0 .. 145, color = black, linestyle = dash,

axes = boxed, labels = ['t', 'y[1](t)'], legend = 'Maple',

legendstyle = [location = right], size = [.5, .65]);

y_2 := solution[5];

y_2 := rhs(y_2);

plot(y_2(t), t = 0 .. 145, color = black, linestyle = dash,

axes = boxed, labels = ['t', 'y[2](t)'], legend = 'Maple',

legendstyle = [location = right], size = [.5, .65]);

u := (1/20)*solution[3];

u := rhs(u);

plot(u(t), t = 0 .. 145, color = black, linestyle = dash,

axes = boxed, labels = ['t', 'u(t)'], legend = 'Maple',

legendstyle = [location = right], size = [.5, .65]);

B.2 AMPL for IPOPT (direct method)

param ti := 0;

param tf := 145;

param n := 1500;

param h := (tf-ti)/n;

param yd := 100;

param m1 := 0.0009;

param m2 := 0.0031;

param m3 := 0.0415;

param ro := 10;

### State variables:

var y1 {i in 0..n};

var y2 {i in 0..n};

### Initial values

s.t. ivy1 : y1[0]=300 ;

s.t. ivy2 : y2[0]=0 ;

### Control variable
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var u {i in 0..n},>=0;

### Auxiliary functions for improved Euler

var fy1 {i in 0..n} = (-m1*y1[i])-(m2*y2[i]);

var fy2 {i in 0..n} = (-m3*y2[i])+u[i] ;

### Minimize cost

minimize cost: sum{i in 0..n}((y1[i]-yd)^2+(ro*(u[i])^2));

### Euler Method

s.t. lx {i in 0..n-1} : y1[i+1]=y1[i] + h*fy1[i] ;

s.t. ly {i in 0..n-1} : y2[i+1]=y2[i] + h*fy2[i] ;

##############################################################

option solver ipopt;

option ipopt_options "max_iter=9999999 acceptable_tol=1e-8";

solve;

##############################################################

display cost;

printf "------Values of t------\n";

printf {i in 0..n} "%18.10f\n", ti+i*h;

printf "------Values of y1------\n";

printf {i in 0..n} "%18.10f\n", y1[i];

printf "------Values of y2------\n";

printf {i in 0..n} "%18.10f\n", y2[i];

printf "------Values of u------\n";

printf {i in 0..n} "%18.10f\n", u[i];
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