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Resumo

Célculo das Variagdes, Método de Euler, equacao de Euler-Lagrange, Con-
trolo Otimo, Diabetes Mellitus.

O Célculo das Variagdes e o Controlo Otimo sdo dois ramos da Matematica
que estdo muito interligados entre si e também com outras areas. Como
exemplo, podemos citar a Geometria, a Fisica, a Mecanica, a Economia, a
Biologia, bem como a Medicina. Nesta tese estudamos varios tipos de proble-
mas variacionais e de Controlo Otimo, estabelecendo a ligagdo entre alguns
destes. Fazemos uma breve introdugao sobre a Diabetes Mellitus, uma vez
gue estudamos um modelo matematico que traduz a interagéo entre a glicose
e a insulina no sangue por forma a otimizar o estado de uma pessoa com
diabetes tipo 1.
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Calculus of Variations, Euler's Method, Euler-Lagrange equation, Optimal
Control, Diabetes Mellitus.

The Calculus of Variations and the Optimal Control are two branches of Math-
ematics that are very interconnected with each other and with other areas. As
example, we can mention Geometry, Physics, Mechanics, Economics, Biology
and Medicine. In this thesis we study various types of variational problems and
of Optimal Control, establishing the connection between some of these. We
make a brief introduction to the Diabetes Mellitus, because we study a math-
ematical model that reflects the interaction between glucose and insulin in the
blood in order to optimize the state of a person with diabetes type 1.






What we learn with pleasure we never forget.
- Alfred Mercier
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Introduction

In this thesis two important fields of Mathematical Optimization are
considered: the Calculus of Variations and the Optimal Control. My first
interest in the problems of Mathematical Optimization was due to some
courses that I studied in the undergraduation and in the master. Those
that had more contribution for this interest were Nonlinear Optimization
with Constraints, Numerical Optimization and Mathematical Programming.
The goal of these fields is to find the point x = (z1,...,z,) € R™ that
maximizes, or minimizes, a real valued objective function and that satisfies a
system of equalities or inequalities constraints, where the objective function,
or some of the constraints, are nonlinear. As the Calculus of Variations
consists to determine the extrema functions that optimize a given functional
we can establish a connection between the courses that I have studied and
the Calculus of Variations. On the other hand, we can also establish a
connection between the Calculus of Variations and the Optimal Control,
because this last is a generalization of the first. Therefore, we can consider
that the Calculus of Variations is a particular area of the Optimal Control.

In Chapter 1 is studied the basic variational problem with fixed endpoints
that consists to find functions y € C?[a, b] that optimize a definite integral
given by

b
J@z/fmmmymMr (1)

and that verify the boundary conditions y(a) = y, and y(b) = yp, where f
is a function assumed to have continuous partial derivatives of the second
order with respect to z, y and ' and a, b, y, and 1y, are fixed.

First, it is presented the Euler’s approach in order to solve this prob-
lem by discretizing it and then the analytical manipulation that Lagrange
used to solve the same problem. So, it is studied the necessary and suffi-
cient conditions for that a smooth function to be a solution of a variational
problem with fixed endpoints. It is also analysed the variational problem
with fixed endpoints for functionals containing second-order derivatives and
several dependent variables.

The variational problem that results of adding an isoperimetric constraint
to the problem mentioned before is also analysed. This constraint is given
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where I : C2[a,b] — R is a functional, g is a smooth function of z, y and 3/
and L is a specified constant. This problem is called Isoperimetric Problem.

Even if no boundary conditions are imposed and the endpoints are fixed,
the analytical procedure suggested by Lagrange, mentioned before, supplies
the right number of boundary conditions that we need to optimize the func-
tional given by (1) and it is proved in this chapter.

Finally, Chapter 1 ends with the variational problem with a variable
endpoint. Therefore, it is presented how to find the solution (Z,y) € Ja, b] x
C?[a, b] that optimizes a functional given by

ﬂam—/ﬁuwmwmmm

subject to the boundary condition y(a) = y,, where f is a function defined
as previously and a and y, are fixed. Thus, in these problems the endpoint
T of the integral is a variable of the problem, which isn’t fixed.

Chapter 2 begins with the study of the Optimal Control theory. It is
stated and proved a version of the Pontryagin Maximum Principle that pro-
vides a set of necessary conditions for that the pair (y, u) solves the basic
problem of Optimal Control given by

b
(Poc) memw:/fmmmwwm

st y'(x) = g(z, y(x), u(x)), Yz cla,b (2)
y(a) =y,

where a, b € R such that a < b, f € C'([a,b] x RET™ R), g € C'([a,b] x
RFm RE) gy € PCY([a,b],R¥) and the control u € PC([a,b],R™) with
k,m € N.

There are some problems of Optimal Control that can be written as
problems of Calculus of Variations and therefore these can have two possible
resolutions. This situation is illustrated in this chapter by examples.

The problem that was stated previously has a free control, but in the
real applications of Optimal Control the control is usually bounded. Then,
it is also analysed in this chapter a problem like (2), but with m = 1 and
with the constraint

u(z) € U,

where U = [¢,d] C R and ¢ < d.
In Chapter 3 we study a real application of Optimal Control to Diabetes
Mellitus. First, we do a brief explanation of this disease in order to do a



correct discussion of the solution that we intend to determine. The goal
is to minimize a specified objective functional subject to a mathematical
model that translates the interaction between the glucose and the insulin in
the blood. We can solve this problem numerically by two methods. First,
we obtain a numerical solution of the necessary conditions and then, we
discretize the problem using the software IPOPT. Finally, we compare the
two numerical solutions with the exact solution and we interpret the results.






Chapter 1

The Calculus of Variations

1.1 Introduction

In the Calculus of Variations we want to find the extrema functions that
maximize, or minimize, a given functional. Thus, this area is considered a
branch of optimization.

Generally, the functionals are given by definite integrals and the set of
admissible functions are defined by boundary conditions and smoothness
requirements, as we will see.

The Calculus of Variations and the Calculus were developed somewhat
in parallel. In 1927, Forsyth said that the Calculus of Variations “attracted
a rather fickle attention at more or less isolated intervals in its growth” [41,
p. 1].

Leonhard Euler (1707-1783) was a Swiss mathematician and physicist.
He introduced a general mathematical procedure to find the general solu-
tion of variational problems in his pioneering work The method of finding
plane curves that show some property of mazimum and minimum, in 1744.
Along the way, he formulated the variational principle for mechanics (Eu-
ler’s version of the principle of least action). Mathematicians consider that
this event was the beginning of the Calculus of Variations. It is not known
when he became seriously attracted by variational problems, but we know
that Euler was first influenced by Jacob and Johann Bernoulli and after by
Newton and Leibniz. The first version of the Calculus of Variations that
Euler developed was intuitive and required elementary mathematics and a
geometrical insight of the variational problem. We will study this approach
in the section Euler’s Method of Finite Differences.

Joseph Louis Lagrange (1736-1813) was an Italian mathematician. In
1755, he wrote a letter to Euler where he showed that the resolution of each
variational problem can be reduced to a quite general and powerful analytical
manipulation. One point of this study consists in the Euler’s solution to the
isoperimetric problem. This problem was present in Euler’s work of 1744.



Forthwith, he adopted the formal algebraic method of Lagrange that was
more rigorous. Fuler renamed the subject Calculus of Variations and the
elegant techniques of Lagrange eliminated the intuitive approach and the
geometrical insight that Fuler used.

Later, in 1900, David Hilbert presented 23 (now famous) problems, in
the International Congress of Mathematicians, and the 23rd was entitled
Further development of the methods of the calculus of variations. Before the
description of the problem he remarked [41, p. 1]:

“ — ...I should like to close with a general problem, namely with the
indication of a branch of mathematics repeatedly mentioned in this lecture —
which, in spite of the considerable advancement lately given it by Weierstrass,
does not receive the general appreciation which in my opinion it is due — I
mean the calculus of variations.”

After, there was a further development in this area and mathematicians
like David Hilbert, Emmy Noether, Leonida Tonelli, Henri Lebesgue and
Jacques Hadamard, among others, dedicated significantly to the Calculus of
Variations. In the eighteenth and nineteenth centuries its development was
motivated especially by problems in mechanics.

Nowadays, this subject continues to cause concern, because it has ap-
plications in several areas: physics (particularly mechanics), economics and
urban planning, among others.

In this chapter we will study the variational problem with fixed endpoints
(first by the prospect of Euler and after by the prospect of Lagrange), the
isoperimetric problem and the variational problem with an endpoint variable.



1.2 Variational Problem with Fixed Endpoints

Throughout the text, to refer a variational problem with fixed endpoints
we will just write VPFE. Before presenting this particular problem we are
going to recall some definitions and a fundamental result. We are going to
follow the approach used by van Brunt in [41].

We say that a function f is smooth if it has as many continuous deriva-
tives as are necessary to perform whatever operations that are required.

Theorem 1.2.1 (Optimality condition of first order) Let X be an
open subset of R™ and f : X — R a function. If f is differentiable at T
and if T is a local extremizer of f, then V f(Z) = 0.

Definition 1.2.1 (Functional) Let X be a vector space of functions. A
functional J is a function with domain X and range R:

J: X —R.

Consider the vector space X = C"[a,b], for some n € Ny endowed with
a norm || -|.

Definition 1.2.2 (Local maximizer of a functional) Let S C X be a
normed space with norm || - ||. We say that y € S is a local mazimizer of
the functional J if there exists some € > 0 such that J(y) — J(y) < 0 for all
y € S such that ||y — y|| < e.

Remark 1.2.1 We say that y € S is a local minimizer of the functional J
if y is a local maximizer of the functional —.J.

To simplify the writing we are going to say maximizer (minimizer) in-
stead of local maximizer (minimizer).

Problem Statement (VPFE): The basic variational problem with fixed
endpoints consists of finding the functions y € C?[a, b] that solves the prob-
lem

b

(Pevi) max J(y) = / f(,y(@), o (@))de (L1)
st yla) =ya
y(b) = s,

where J : C?[a,b] — R is a functional, f (usually called Lagrangian) is

a function assumed to have, at least, continuous partial derivatives of the

second order with respect to z, y and v and a, b, y, and y; are fixed.
Sometimes, to simplify the notation, we can write f(x,y,y’) instead of

f(z,y(x),y (x)), or simply f instead of f(xz,y,y’).



1.2.1 Euler’s Method of Finite Differences

In this section we will show how Euler solved the variational problem
(Pcyi) before Lagrange write to him (see |27, p. 28-32]).
First, we define
b—a
n+1

Az =

and we take in the interval [a,b] the points ¢ = a, z; = z¢ + Az for
i=1,...,nand x,4+; = b. Note that n € N. So, we divide the interval [a, b]
into n 4+ 1 equal parts. Consider the following definition.

Definition 1.2.3 (Finite Forward Difference) Let f : [a,b] — R be a
function and consider x; = xg + iAx, for alli=1,...,n, such that o = a,

h—
Tptr1 = b and Az = ni—i—? The finite forward difference of first order of f

s given by

Af(z) == f(xiv1) — f(xi).

Define y; := y(z;) foralli =0,...,n+1. Fori =1,...,n we don’t know the
values y;, because the function which solves the problem is unknown yet.

As we know, the integral (1.1) is the limit of a summation and gy} can be
approximated by

Yi+1 — Yi
AV

Consequently, we may approximate the integral (1.1) by the following func-
tion (y1,-..,Yn):

_ - L Y Y
¢(y17‘°'7yn) _Zf ('Twyla A.I )Aﬂf

We can determinate the quantities y;, ¢ = 1,...,n, using the following
equations:

o9
0y;

Thus, for ¢ = 1,...,n we have that
99 0 Yirl — Yi

sy Yn) = A Y | A
ayi(yh +Yn) a9 <f (w Yir — Ag x

0 i — Yi
+8y<f (%Ll»yilay AZ 1)A$>

_ af( _ yi+1_yi>A / < _ yiJrl_yi)
- 1"1/73/177 $_7, x’uy’b?i

(Y1, syn) =0, Vi=1,...,n.

0
Ay Ax oy Ax
of Yi — Yi-1
+ oy (xi—lvyi—la Ag:) = 0.



Assuming that Ay, = y;11 — i, we have that

of . Ay of ) ) Ayi—
of Ay o (wow 3) = B (e i, 245
- | Zi,Yiy - =0

oy Ax Ax
of Au\  ASL Ay;
). L2 R Y o ) —
" By <xy Am) Az (‘Ty Ax) 0- (1.2)

The above equation is the finite difference version of the Euler-Lagrange
equation (see (1.5) on page 15).

Example 1.2.1 Consider the problem

1
max  J(y) = /0 (o (2))? — ?(x) — 20y(z) de

s.t. y(0)
y(1)

We will find an approximation to the solution of this problem by Euler’s
Method forn =1, n=2,n=3 and n = 4.

For n = 1 we have that Ax = % Thus, xg =0, 1 = % and 2o = 1. We
know that yg = 1 and y» = 2. To determine y; we need to write the function
¢ given by

(1.3)

1
2.

—_

1 2
i=0
T B 19
—2?/1 9 U 5
and solve
19J0) 25 25

So, we obtain the points A = (0,1); B = (%,%) and C' = (1,2). We can

observe the approximation (dashed line), these points and the extremall
3 —cos(1)

s (D) sin(x) 4 cos(z) — x (1.4)

y(z) =

to problem (1.3) (solid line) in Figure 1.1 (see Example 1.2.2 on page 17).

!The concept of extremal is introduced later, in Definition 1.2.5.
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Figure 1.1: Euler’s Method for n = 1 versus the extremal to (1.3).

For n = 2 we have that Az = 1. Thus, zg = 0, 1 = %, Ty = % and
x3 = 1. We know that yo = 1 and y3 = 2. To determine y; and ys we need
to write the function ¢ given by

ol

2 2
d(y1,y2) = <y’+1 ) — 7 — 2z | Ax
P
AT, 17, 56 12 L 4
—3 Y1 3 Y2 9 n 9 Y2 Y1Y2 3

and solve the system

So, we obtain the points

1 245 2 301
A= 1); B=|-,—]; C=|-,— D =(1,2).
0.0 8= (5.20) = (3 5) aap-a.2

We can observe the approximation (dashed line), these points and the ex-
tremal to problem (1.3) given by (1.4) (solid line) in Figure 1.2.

10
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Figure 1.2: Euler’s Method for n = 2 versus the extremal to (1.3).

For n = 3 we have that Az = %. Thus, g =0, 21 = %, To = %, :1:3:%

and x4 = 1. We know that yo = 1 and y4 = 2. To determine y;, y2 and y3
we need to write the function ¢ given by

3 2
Yi+1 — Yi
o(y1,Y2,Y3) :Z <A$> — Y} — 2wyi | Ax
i=0
81, 8L, 81, 6 1
—4y1 42/2 493 83/1 4y2
L TO
3 Y3 Y1Yy2 Y2Y3 1
and solve the system
06 __ 31 65 80353
?_0 S —% —8)»=0 Y1 = 55676
% =0 And %yQ - % - 83/1 - 893 =0 ~ Yo = 1859989
o6 31 131 _ __ 109987
Bys = 0 SYs— 5 —8y2=0 Y3 = 55676 -

So, we obtain the points

1 80353 1 1599 3 109987
A=(0,1); B= (222 o= (2,2}, p= (2 d
(0, 1); <4’55676)’ ¢ (2’ 808 > <4’ 55676) an

E=(1,2).

We can observe the approximation (dashed line), these points and the ex-
tremal to problem (1.3) given by (1.4) (solid line) in Figure 1.3.

11
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Figure 1.3: Euler’s Method for n = 3 versus the extremal to (1.3).

For n = 4 we have that Ax = % Thus, xg =0, 1 = é, Ty =
Ty = % and x5 = 1. We know that yg = 1 and y5 = 2. To determine y1, yo,

y3 and y4 we need to write the function ¢ given by

2
Yi+1 — Yi
< = z) —yi — 22y,

T Ar Ax

4
S(Y1, Y2, Y3, Y1) = ) _
=0

49, 49, 49, 49, 2% 4
=5 Y1 5 Y2 5 Ys 5 Ya o5 n 2511/2
6 508 124
— gy — “—yy — 10y1y2 — 10y2y3 — 10 =
253/3 55 Y4 Y1Y2 Y2Y3 Y3ya + 5
and solve the system
99 _ 252 11255699
887% - y — %5 —10y2=0 Y1 = o005
- __ 13727273
oy, = 0 o 592_%_1091_101/3—0 o Y2 T 8267755
99 _ — 5 10uys — 10us = O _ 15517472
%yg 5 >3 25 Y2 Ya = Y3 = 3267755
508 16488546
aTi:O Ty1— 55 —10y3 =0 Y4 = 8267755 -
So, we obtain the points
1 11255699 2 13727273
A=(0,1); B= - -
5’ 8267755 5’ 8267755
3 15517472 4 16488546
—— | E=(-,————— | and F = (1,2).
57 8267755 5 8267755

We can observe the approximation (dashed line), these points and the ex-
4.

tremal to problem (1.3) given by (1.4) (solid line) in Figure 1

12
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Figure 1.4: Euler’s Method for n = 4 versus the extremal to (1.3).

Graphically, we observe that the approximations converge to the ex-
tremal y given by (1.4). We remark that, for this extremal, J(y) ~ —3.38
and that ¢(y1) ~ —1.66, ¢(y1,y2) ~ —2.23, d(y1,¥y2,y3) ~ —2.51 and
d(y1,y2,y3,y4) ~ —2.68. As the value of n increases, the values of the
approximation approach to J(y).

Note that for the four cases studied previously, we determine the points
x; and y;, for i = 0,...,n + 1, the function ¢(y1,...,yn) and the graphics
with the help of the routines developed in MATLAB that are in Appendix
A.

1.2.2 Lagrange’s Method

Now we will study the Lagrange’s approach to solve the problem (Pcy1),
but before we will recall some definitions and prove some lemmas which we
will need later.

Lemma 1.2.2 Let a and 8 be two real numbers such that o < 3. Then,
there exists a smooth function v such that v(z) > 0 for all x € |a, B and
v(z) =0 for all x € R\|e, 3.

Proof: Consider the function 6 : R — R defined by

G(x):{e c , x>0

0 , ¢ <0.
Let us prove, by mathematical induction, that for all m € Ny, 8 € C™

and A (0) = 0. For m = 0 it is obvious. Suppose that # € C™ and
6(™)(0) = 0. Now we will prove that § € C™*! and #(™*+1D(0) = 0. Clearly,

13



for all z € RT )
e = P(x)
Q(x)
and for all z € R~ we have that §(™)(z) = 0, where P(z) and Q(z) are
polynomials. So,

00 () =

—1p(x)
(m) _ p(m) (m) e =
pomD (o4) = fi @ OO @)y, T
_1
— lim e = P(x) 0

and

(m) — g(m) (m)
z—0~ z—0 x—0~ T

Therefore, 8™*1)(0) = 0 and, consequently, § € C™*1. Let ¢ : R — R be
the function defined by

1

T 2 el l]

pl@) = 8@ — ) = {S 2 €R\]0,1].

As ¢ is a product of two smooth functions, ¢ is also smooth. Now let
©Ya,8 : R — R be the function defined by

T — T — o f—=x
Spa,,é’(x) _90<6_a> _0</8—04>0<5_05>
= = |
0 , ¢ € R\]a, .

Thus, there exists a smooth function v = ¢, g such that v(z) > 0 for all
x € Ja, B[ and v(x) = 0 for all z € R\|e, O]

O

Definition 1.2.4 (Inner Product of Functions) The vector space of all
real valued continuous functions on a closed interval [a, b] is an inner product
space, whose inner product is defined by

b
(f.g) = / f(@)g(@)dz, f.g e Cla,b].

The following Lemma is known as the Fundamental Lemma of the Cal-
culus of Variations.
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Lemma 1.2.3 Let
H :={h € C?%a,b] : h(a) = h(b) = 0}

be a set. If (h,g) = 0 for all h € H and if g : [a,b] — R is a continuous
function, then g = 0 on the interval [a, b].

Proof: Suppose that g(c) # 0 for some ¢ € [a, b]. Without loss of generality
we will assume that g(c) > 0. Since g is continuous on the interval [a,b],
exists a subinterval Ja, 5[ of [a, b] such that g(x) > 0 for all = € |a, B[. By
Lemma 1.2.2 there is a smooth function v = ¢, g such that v(z) > 0 for all
z € Ja, B] and v(x) = 0 for all x € [a,b]\]e, B[. So, v € H and

b B
(v,9) :/ v(z)g(z)dz :/ v(z)g(z)dz > 0.

Therefore, there exists v € H such that (v, h) # 0. Consequently, g = 0 on
[a, b].

O

Remark 1.2.2 As the function ¢, g of the proof of the Lemma 1.2.2 is
smooth, the above Lemma remains valid if h € C"[a, b] for n € N.

With the following theorem we will derive a necessary condition for a
smooth function to be a solution of (Poy1).

Theorem 1.2.4 Let S be the set defined by
S={y € C?a,b] : y(a) = ya and y(b) = yo}

and J : S — R be a functional of the form

b
J(y) = / F(y(@), o (2))de,

where y, and y, are given real numbers and f has continuous partial deriva-
tives of the second order with respect to x, y and y'. Ify € S is an extremizer
for J, then

af d (8f

afy(aay(x),y'(x)) ~ ay,(wvy(x),y’(x)o =0 (1.5)

for all x € [a,b].

Proof: Suppose that y € S is an extremizer for J. Let us consider the
variations y + eh € S, where || < 1 and h € C?[a,b]. All these variations

15



can be generated by an appropriate set H of functions h. As the variations
considered are in S and the endpoints are fixed, H should be defined by

H := {h € C*a,b] : h(a) = h(b) = 0}.

Let j be the function defined by

b
= / f(x,y(z) + eh(z),y () + eh/(z))dz. (1.6)

Note that j(e) = J(y + eh) and for the function j the variable is € and y
and h are fixed. Consequently, ¥’ and h’ are also fixed. As y is a solution of
(Pcvi), then € = 0 is an extremizer of j. Therefore, by Theorem 1.2.1 and
using integration by parts, we get

J(0)=0

- / flapte) + eh(a). /@) + e (@))dz| =0
/ d*f ) + eh(z),y (x) + eh'(2)) e:()dx:o
/ (g =yl >>h<w>+§§,<w y(@), y’(x))h'(m) dz =0
/ <g y'(@) - % (gi(w@,y/(x)))) h(z) do

b

[a o7 (@ (e )y/@?))h(a:)} —0

a

o [(Beswven - & (Eevw @) ) e =o

As f has continuous partial derivatives of second order, by Lemma 1.2.3, we
have that for all x € [a, b

of / of / _
@ @) - (G -

This concludes the proof.
O

The second-order ordinary differential Equation (1.5) is generally nonlin-
ear and it is called the Euler—Lagrange equation. We can write it, in a

more Cconcise way, as
of _d (Of\ _
oy dx \0y )
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Remark 1.2.3 In the Equation (1.2) as n — oo we have that Az — 0
and it becomes the Euler-Lagrange equation (1.5).

Definition 1.2.5 (Extremal) If y is a smooth function and satisfies the
Buler—Lagrange equation with respect to J, then y is called an extremal for

J.

Definition 1.2.6 (First Variation) The quantity 6.J(h,y) = j'(0), where
j is given by (1.6), is called the first variation of J at y in the direction h.

Now we revisit the problem of Example 1.2.1.

Example 1.2.2 For the problem

1
max J(y) = /0 () — *(x) — 20y(z) de

the Lagrangian is
f,yy) =) —y* — 22y
and the Euler-Lagrange equation (1.5) gives

y'(z) = —x — y(z).

So,
y(z) = 1 sin(z) + ¢ cos(z) — x,

where ¢; and cg are real constants. As y(0) = 1 and y(1) = 2, we have that

¢ = 3;20(51()1) and co = 1. Therefore,
_ cos(1
v(a) = Sy i) cos(a)

and this function y(x) is the extremal (a candidate for maximizer) for the
given problem. We can confirm these results with the help of Maple and the
following code:

with(VariationalCalculus);
F := (diff(y(x), x))"2-y(x)~2-2%x*y(x);
eqEL := EulerLagrange(F, x, y(x));

returns the Euler-Lagrange equation
{-2%x-2*y(x) -2 (diff (y (x), x, x))}.

To solve this equation we execute

17



dsolve({op(eqEL), y(0) =1, y(1) = 2}, y(x))
and we obtain
y(x) = sin(x)*(3-cos(1))/sin(1)+cos(x)-x

that is the solution that we determined previously. We can also see the
graphic of y(z) in Figure 1.5.

¥

054

0.1 o o1 02 03 04 05 06 o7 08 0a 1 1

Figure 1.5: Graphic of the extremal y(x) to problem of Example 1.2.2.

Example 1.2.3 For the problem

1
max () = [ /(@) = 209(a) do
st. y(0)=1
y(1) =3

the Lagrangian is
flay.y) = () - 2xy.

The function y(x) = —%3 +x+1 satisfies the Euler-Lagrange equation (1.5),
but as y(1) = % = 3, it isn’t solution of the given problem.

Example 1.2.4 For the problem

1
max J(y) =/0 —(y/(x) —1)* da
st. y(0)=0
y(1) =1

18



the Lagrangian is
f(x7y7y/) = _(y/ - 1)2

and the Euler-Lagrange equation (1.5) is given by

d
2y (@) — 1) = 0.

Note that y*(x) = z is a solution of the Euler-Lagrange equation. There-
fore, y* is an extremal for J. As J(y) < 0 for all y and J(y*) = 0, we have
that y* is actually a (global) maximizer for the given problem.

Now we intend to derive a sufficient condition for a smooth function to
be a solution of (Poy1).

Definition 1.2.7 (Concave Function) The function f(x,y, z) is concave
in M C R? for the variables y and z if g and 8£ exist and are continuous
and the condition

flay s+ 2) - Flo2) < G @ om + )

holds for every (x,y, 2), (x,y +y1,2+ 21) € M.

Theorem 1.2.5 If the function f(x,y,y’) of the problem (Poy1) is concave
in [a,b] x R? for the variables y and y', then each solution y of the Euler—
Lagrange equation (1.5) is a solution of the problem (Pov1).

Proof: Let h € H be a function, where H is as defined in the proof of
Theorem 1.2.4, and € such that |e| < 1. So,

J(y+eh)—J(y)

/ f(2,y(@) + (@), ¥ () + e (@) — f(2,y(@),y/(2)) da

< / oL @) (2)ehla) + (o pta). @) el ) o

b
.y / (ggu,yu),yw)—;;g;@,y(x),y,(x))) o)

= 0.
Therefore, as J(y + eh) — J(y) <0, we have that y is a solution of (Pcy1).

O
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Example 1.2.5 The function f of the Example 1.2.4 is concave, because

0 0
flu,v+ v, w+wy) — flu,v,w) < Fi(u,v,w)vl + a—i(u,v,w)wl

& —(wHw —1)? 4 (w—1)* < —=2(w — Dw;
@—w%g()

is true for all (u, v + vy, w +wq), (u,v,w) € R3. Now, by the Theorem 1.2.5,
we can conclude again that the extremal y*(z) = x is a maximizer for the
problem of the Example 1.2.4.

Particular Cases

Now we are going to analyse three cases where the Euler-Lagrange equa-
tion can be simplified. Suppose that the functional given by

b
1w = [ feyle).y @)z
satisfies the conditions of Theorem 1.2.4.

1. First case: y does not appear explicitly in the integrand.
In this case the functional is of the form

b
J@z/f@wmm

and the Euler-Lagrange equation becomes

d (0f of
i (Ghev@) =0+ ey =c
where ¢ is a constant of integration.

2. Second case: The independent variable z does not appear explicitly
in the integrand (so called autonomous case).
In this case the functional is of the form

b
ﬂw:/ﬂmmwmm.

Theorem 1.2.6 Let J be a functional such that

b
ﬂm:/meMqu (1.7)

and define the function G by

Gy,y') = y'g;(y, y)— fy.y).

Then, G(y(x),y' (x)) is constant along any extremal y of (1.7).
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Proof: By definition of extremal (Definition 1.2.5),

0f (05,
T -4 (Ghwan) =0

Consequently, we have

dG 0 d (0 d
o —(y,y) = 'ai(y v)+y I <6f(y y)> dwf(y,y')

(Tf( y’)+y’@ (a?f,(yjy’o
< (v ) +y" gf,(yy)>
=—y <g‘£(y,y') o <gf,(y y’)))

:—y’xO
=0.

Thus, G(y(z),y'(z)) is constant along any extremal y of (1.7).

g

Remark 1.2.4 As G(y(z),y'(x)) is constant along any extremal, then
G(y(z),y (x)) is constant along any extremizer of (1.7).

. Third case (a degenerate case): the integrand is linear in y/'.
Suppose that J is a functional of the form

/Amy (z) + B(z, y(x))dz,

where A and B are smooth functions of x and y. In this case, the
Euler-Lagrange equation is

dA ,0A 0B
e - (Ve S en) =0 0y
Note that
dA _0A ,0A
dA ,0A 0A

& (@,y) —y yy(aﬁ,y) = %(m’,y).
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So, we can rewrite Equation (1.8) as

0A 0 0A 0
o) = S =0 Sy = S ) = gley). (1)
Then,
Alwy) = [ gl + fa)
and

Blz.y) = / oz, y)dy + f5(x),

where f4 and fp are functions. Let ¢ be the function defined by

o= [ [ s wizay+ [ 1awiy+ [ o).

So, we have that

gi = [ 9(z,y)dy + fB(x) = B(z,y)
and 26
3 = g(z,y)dz + faly) = Az, y).

In conclusion, if Equation (1.9) is an identity for all = € [a,b] and for
all y € S, this implies the existence of a smooth function ¢ such that

g‘;’(x,y) = A(z,y), %(;x, y) = B(z,y).

Thus, as f is the integrand

0 0 d
f—az)y’ %z%@fdx:m
Consequently,
b
Iw) = [ do=o(b.y(®) - dlayla).
Conclusions:

(a) The value of J is independent of y, therefore the integrand is path
independent.

(b) J depends only on ¢ and the points (a,y(a)) and (b, y(b)).

Therefore, we can formulate the following Theorem and prove it.
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Theorem 1.2.7 Suppose that the functional J satisfies the conditions of
Theorem 1.2.4 and the Euler-Lagrange equation (1.5) reduces to an identity.
Then, the integrand must be linear in y' and the value of the functional is
independent of y.

Proof: If the Euler-Lagrange equation reduces to an identity, then

of d [Of
@_MQW
of o &y, f,

dy  Oxdy  Oydy 4 8y’2y

)zO,VazE[a,b] and Vy € S

=0,Vz € [a,b] and Vy € S.  (1.10)

As 9" appears only in the last term, this can not be cancelled with any other
term of the above equation, and as the Equation (1.10) must hold for all
y € S we can conclude that

OPf _ o O _ _ /
57 =07 gy = Alwy) = = Ayl + Blx,y)

for some functions A and B. So, the Euler-Lagrange equation is

0A 0B
%(w‘,y) = yy(w,y)

for all € [a,b] and for all y € S. So, we have that

b
Iw) = [ do=o(b,y(8) - dlavla)) = 606.1) — ola.10)
and therefore, the value of the functional is independent of y (a, b, y, and
yp are given).

O

1.2.3 Some Generalizations for the VPFE
VPFE for Functionals Containing Second-Order Derivatives

A procedure similar to the one of Section 1.2.2 can be done if the func-
tional J also contains second-order derivatives.

Theorem 1.2.8 Let S be the set defined by

S ={yeC¥ab]:y"™(a) =y™ and y'"™(b) = yém) form=0,1}

a

and J : S — R be a functional of the form
b
I = [ fy(@)y @),/ () da, (111)
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where yC(L ™) cmdy form =0, 1 are given real numbers and f has continuous

partial derivatives of the third order with respect to x, y, vy andy”. Ify € S
1s an extremizer for J, then

o Py @) @) — 1 (). @) (2))
2
1 (o (o) (0).0 ) = 0 112)

for all x € [a,b].

Proof: Suppose that y € S is an extremizer for J. Again, let us consider
the variations y + eh € S, where |¢| < 1 and h € C%[a,b]. Now the set H
should be defined by

H := {h € C*a,b] : h(a) = W' (a) = h(b) = W' (b) = 0}.
Let j be the function defined by
b
— [ #oy(@) + ehla).y/ @) + el )./ &) + el () do

It is known that if y € S is an extremizer for J, then, by Theorem 1.2.1,

/0=

; f(z,y(z) + eh(z), v (x) + el (z),y" (x) + eh” (x)) _de:O
/ z) +eh(z),y (z) + eh/(2),y" (z) + eh”(z)) _dezo
o [ 2 st @)

+ / 2),9/ (@), (@)W (2)d

+/a By (@, y(x),y (), y" (2) b (x)de = 0.

Now we will eliminate the terms A'(z) and h”(x) in the previous equation
using integration by parts.
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Elimination of the term //(z):
e
@f(x’ y(@),y (), y" ()W (x)dz

a

b
_ {jy,ﬂx,y<x>7y'<x>,y'/<x>>h<x>}a

-/ g (9t )0)) o)

= [ (2 feate) @0 @) ) o

Elimination of the term " (x):

As f has continuous partial derivatives of the third order, by Lemma 1.2.3,
we have that for all z € [a, b]

o flapla) )" ) - 41 (5 anala). o/ @).o"))
d2

9 / " .
This concludes the proof.

O

We can write the Euler-Lagrange equation (1.12) in a more concise way,
of _d (of\, @ (9f)_,
dy dx \ 9y de2 \oy" )
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Definition 1.2.8 The solutions y of (1.12) are called extremals for the func-
tional defined in (1.11).

Particular Cases for Functionals Containing Second-Order Deriva-
tives

Now we will also analyse three cases where the Euler—Lagrange equation
(1.12) is simplified. We suppose that the functional given by

b
I = [ £ y(@)/ @),/ (2))da
satisfies the conditions of Theorem 1.2.8.

1. First case: y does not appear explicitly in the integrand.
In this case the functional is of the form

b
) = [ £y @).y" @)
and the Euler-Lagrange equation (1.12) is

- (Ledwa @)+ o (e @y e)) =0

= - e @) (e =

where ¢ is a constant of integration.

2. Second case: The independent variable = does not appear explicitly
in the integrand (autonomous case).
In this case the functional is of the form

b
I = [ $0(@) @), (@) de.
Theorem 1.2.9 Let J be a functional such that

b
J@zjfmwymwax (1.13)

and define G by

d
G(y,y/,y//) — y// af 2/ < af af) o f

oy dz oy’ B 373//

Then, G(y(z),y'(z),y"(x)) is constant along any extremal y of (1.13).
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Proof: Suppose that y is an extremal for J. So, by Definition 1.2.8
of d of d> of

oy  dx dy + @8(7/’ -

for all = € [a,b]. Thus, we get

E I a oy of i af B g
dx (.9, 97) = dx <y oy -y dx oy" Oy -/
— y/// af + y//i af _ " i af _ ai
oy dx Oy" dx 0y’ Oy
(Lor dory
dz2 oy"  dxz Oy dx
of  ,of ,d> of ,d of
o n9) a4 ) @ of
Y oy +y oy’ Y a2 oy Yz oy’
—y 87f y//ai oy of
dy oy’ oy
(o5 dor oo
N oy dxdy  dx?dy"
=—y' x0

= 0.

Therefore, G(y(z),y'(z),y”(x)) is constant along any extremal y of
(1.13).

. Third case (a degenerate case): the integrand is linear in y”.
Suppose that J is a functional of the form

b
=/ Az, y(@),y (2))y"(x) + Bz, y(z), ¥ (z))dx,  (1.14)

where A and B are smooth functions of z, y and 3y’. The Euler—
Lagrange equation (1.12) associated to (1.14) is

2 A OB A OB
diA( yy)j(y”gy,+gy,)+y”2y+g=0
d <8A+ 8A+y,,aA> ) ( OA L d 8A+daB>
dx \ 0 oy oy’ oy’ de 0y dx 0y
,0A OB
' T oy
i%_’_ //814 Ty , d 0A +y’”%+ //i% _y///%
dx Ox By d:c By oy’ dx 0y’ oy’

,d9A  d 9B ,0A 8B

Y e dy  dx oy Y dy | Oy =0
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d0A,, 04, d0A d0OB 0B

T wor T oy TV oy oy T oy
N 92 A Ly 92A Ly 92A +2y,,% y ( 92A +y,827A Ly 92A
Ox? Oyox oy'Ox Oy 0x0y 0y? 0y’ Oy
B, ®B _ ,0°B 0B _

- Oz0y 4 Oyoy’ 4 o2 By
. [ O?A 0A , 0’°A  9°B
AL S -
Oy’ Ox oy oy'dy  Oy'?
L (PA A PA B
Y Oyoxr  Oxdy Y oy?  Oyoy
9*A  9’°B 0B
e
ox?  0xdy = Oy

As the functions A and B depend only on z, y and 3/, the coefficients
of y” and ¢y’ and the other terms of the previous equation depend only on
x, y and y'. So, in this case the Euler-Lagrange equation is a differential
equation of at most second-order.

Remark 1.2.5 A differential equation of second order usually has two ar-
bitrary constants of integration. The problem defined in Theorem 1.2.8 has
four boundary conditions. This means that the necessary condition of opti-
mality usually leads to a impossible problem.

VPFE for Functionals Containing Derivatives of Order n

Analogously, we can obtain similar results when the functional J contains
derivatives of order n € N. By mathematical induction, we can prove the
following formula of integration by parts:

b
/ Ha)h™ () dar
¢ b

N /b(_l)ntm) (@)h(z)dz,  (1.15)

a

n—1
=b}4ﬁ%mw””w>

1=0

where t,h : C"[a,b] — R are two functions. With Equation (1.15), we
prove easily the following theorem.

Theorem 1.2.10 Let S be the set defined by
S ={y e C®[a,b] : y™(a) = y{™ and y™ (b) = y"™ for 0 <m <n -1}

and J : S — R be a functional of the form
b
I = [ fy@)/ @)y @),
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where y((zm) and yl(,m) form=0,...,n—1 are given real numbers and [ has

continuous partial derivatives of the (n + 1)th order with respect to x, vy,
Y, ..,y Ify €S is an extremizer for J, then

pdt of

for all x € [a,b].

VPFE for Functionals Containing Several Dependent Variables

In this section we will derive the Euler—Lagrange equations for the fixed
variational problem where the functional depends on several dependent vari-
ables and one independent variable. Consider that y = (y1,...,yx) and
y' = (y},...,y,), where k € N. Let C%[a,b] be the set defined by

Cila,b] = {(y1,---,ur) - Y1, -, Yk € C?[a,b]}.
Theorem 1.2.11 Let S be the set defined by

S={ye Cila,b]: yla) =y, and y(b) = y,}

and J : S — R be a functional of the form

b
J(y) = / f(x, y(z), o (2))de, (1.16)

where y, and y, are given vectors, f is a function that has continuous partial
derivatives of the second order with respect to x, y; and y, for i =1,... k.
If y € S is an extremizer for J, then

of daf

Proof: By definition of S the set of variations H is defined by

H = {h € C3[a,b] : h(a) = h(b) = 0}.
Note that b = (hi,...,hy), where h; € C?[a,b] for i = 1,..., k. Suppose
that y is an extremizer for J. Also here, we can consider the variations

y + €h, where |[¢] < 1 and h € H.
Let j be the function defined by

b
j(e) = J(y + eh) = / f(,y(@) + eh(z), o (@) + b (z))do.
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As y € S is an extremizer of J, then € = 0 is an extremizer for j. Conse-
quently, j/(0) = 0. Computing, we obtain

7'(0)=0
d [* / /
< — | flx,y+eh,y +ey) dr =20
de J, =0
bd
@/ —f(:c,y—i—eh,y’—i—eh’) dr =0
e=0
of
hi + ==h! | dz = h e H. 1.1
/ (93,/@ +a,z>x 0, Vhe (1.18)

The above equation is more complicated than those previously studied,
but good choices of functions h € H can simplify it as we will see. For
1=1,...,k let H; be the set of functions in H defined by

If the above equation is checked for all h € H, then it is also satisfied for all
h € H;, with i = 1,... k. Thus, by Equation (1.18) we have that

of . of o
/{1<8 h‘JrF Z)dx—O, V’L—l,...,k‘.

If the above equation is checked for all h € H;, then it is also satisfied for
all h € H; such that h;(a) = hi(b) = 0. So, we have that

of d of
dyi  dz oy,

This concludes the proof.

Observations:

1. In general, the above condition is a system of k£ second-order differential
equations for the k unknown functions yi, ..., yx.

2. If y satisfies the above system, then Equation (1.18) is verified for all
heH.

Definition 1.2.9 The solutionsy of (1.17) are called extremals for the func-
tional defined in (1.16).
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Particular Cases for Several Dependent Variables

Here, we will also analyse three cases where the Euler-Lagrange equation
(1.17) is simplified. We suppose that the functional given by

b
ﬂm:/fmmmy@wm

satisfies the conditions of Theorem 1.2.11.

1. First case: y does not appear explicitly in the integrand.
In this case the functional is of the form

b
ﬂw:/ﬂawmm.

So, writing the Euler-Lagrange equation (1.17) we have:

dof, .o
%ayg($7y($))—ov Vi=1,...,k
of .

<:> ay;(aj"y/(m‘))zc,“ VZ:I’._.jk,

where ¢; is a constant of integration for all t = 1,..., k.

2. Second case: The independent variable x does not appear explicitly
in the integrand (autonomous case).
In this case the functional is of the form

b
sz/fwwwwWw

Theorem 1.2.12 Let J be a functional such that

b
ﬂw—/fM@d@Ww (1.19)

and define the function G by
Eof
Gly) =Syl _ ¢
(v, 9) ;:l Uiy f

Then, G(y(x),y'(z)) is constant along any extremal y of (1.19).

Proof: Suppose that y is an extremal for J. So, by Definition 1.2.9
we know that

of dof .
ayl %@—0, VZ—].,,IC
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Thus,

dG
dx

d (< : POy 01 A

dx(? 8yl_f> Zl< de@y) dx
:i p0f | d0f L Of ,,8f>
=

6yz de oy, Yi Oyi Yi 0y}

dof 0 i
= yi<cmg—ai>=z<y£x0>=0-

i=1 i=1

So, G(y(z),y'(r)) is constant along any extremal y of (1.19).

O

. Third case (a degenerate case): Let F' = F(z,y) be any smooth
function and let M be a function defined by

k

M(z,y,y') =) Ai(z,y)y; + B(z,y),
i=1

where A;(z,y) = gF and B(z,y) = 8—F . We will verify that the Euler—
Lagrange equations (1.17) for the functlonal

/ M(z, y(z), y/(2))dz
are satisfied for any smooth function y. For j =1,... k

oM d oM

dy;  dx Oy
_ <Zk:y< O*F | O°F ) _40F

P '0y;0y;  Oy;0x dzx Jy;

L OF | OF
_; g0y | dygor axay] Z ayzayj
=0,

because F' is a smooth function. Therefore, the Euler-Lagrange equa-
tions (1.17) for the functional J(y) are satisfied for any smooth function
y. We have just proved the following result.

Theorem 1.2.13 Consider the problem that consists in finding y € S
(see Theorem 1.2.11) that extremizes

/ <ZA z, y(z))y;(z) + B(z, y(z ))) dzx. (1.20)
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Let F(x,y)

= f x,y)dx. If = A;(z,y), then any y € S is an
extremal of (1.20)

1.3 The Isoperimetric Problem

In this section we will study the isoperimetric problem (IP) given by

(IP) max J(y) / z,y(x),y (x))dx
st yla) =y,
y(b) = U

1) = [ ooy @par =1, @2
a

where J,I : C?[a,b] — R are functionals, f and g are two smooth func-
tions of z, y and 7/, y, and vy, are fixed reals and L is a specified constant.
Conditions like (1.21) are called Isoperimetric Constraints. We intend to

derive a necessary condition for a smooth function to be a solution of (I P).
Recall the following theorem [41, p. 77].

Theorem 1.3.1 (Lagrange Multiplier Rule) Let Q@ C R"™ be a region
and let f,g: Q — R be two smooth functions. If f has a local extremum at
T € Q subject to the condition g(x) = 0 for x € Q and if Vg(Z&) # 0, then
there is a number \ such that

V(f(@) - \g(@)) = .

Theorem 1.3.2 Suppose that y € C?[a,b] is a solution of the problem (IP).
Then, there exists (Ao, A1) # (0,0) such that

0K d 0K

where K = \of — M\g.

1. If y 1s not an extremal for I, then we can take g = 1.

2. If y is an extremal for I, then we can take \g = 0 and A\ = 1.

Proof: Let y € C?[a,b] be a solution of the problem (IP). Consider the
variations y + €1y + eaha, where |e1| < 1, |e2| < 1, hy, ha € C?[a,b] and
hm(a) = hm,(b) = 0 for m = 1,2. For a fixed choice of hy and hs we can
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regard J(y + €1h1 + eaho) and I(y + €1hy + e2ho) as functions of €; and es.
So we consider

j(er, e2) = J(y + €1h1 + €2h2)
and

i(e1,€2) = I(y + e1h1 + eah2).
Thus, we can convert the problem (IP) to a finite-dimensional constrained
optimization problem (IP’) given by

b
(IP") max j(e1,e) = / f(x,y + e1hy + e2ha, v’ + e1h) + e2hy)dx

s.t. i(q, 62) —L=0.

As y is a solution of (I P), so (e1,€2) = (0,0) is a solution of (IP’"). Therefore,
i(0,0) = L.
Suppose that y is not an extremal for I. Since

0i brog d dg
aEm](O,O)—/a <C{)y_d]j8y/> hmd.’lf, form—1,2,

and y is not an extremal for I, then, without loss of generality, there exists
he such that a%(0,0) # 0. So Vi(0,0) # (0,0). Consider the function
g : A — R defined in the neighbourhood A C R? of the point (0,0) by

g(e1,€2) = i(e1,€2) — L.

We know that §(0,0) = i(0,0) — L = 0, g is differentiable with respect to
€2 and 5—692 is continuous in A, because g is smooth. As %(O’O) #£ 0, we
have that, by the Implicit Function Theorem [41, p. 266-267|, there are the
neighbourhoods I, of € = 0 and I, of e = 0 and the function ¢ : I, -+ R

such that
1 6(0) =0,
2. For all ¢; € I, we have that (€1, ¢(e1)) € A and g(e1, ¢(e1)) = 0.

Therefore, we can write €3 as a function of €1, that is, 2 = ¢(€1) and we can
assert that there is a subfamily of variations that satisfies the isoperimetric
constraint. Concluding, the function h; can be regarded as arbitrary, but the
term eoho can be viewed as a “correction term”, that is, the term eshsy ensures
that y + €1h1 + exho satisfies the isoperimetric condition (1.21). Therefore,
ho is not arbitrary.

By Theorem 1.3.1, as j and i are smooth functions, (e1,e2) = (0,0) is a
solution of (IP’) and Vi(0,0) # (0,0), we know that there is a constant A
such that

V(4(0,0) — X4(0,0)) = (0,0) (1.23)
é%(]’(el,eg)—)\li(el,eﬁ) =0 for m=1,2.

(€1,€2)=(0,0)
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Note that

j b
261762 = g_ig h’m dxfOI‘m:]_’2
/
Oem (e1,e2)=(0,0) o \Oy dzxdy
and
) b
ﬂ€1762 = @_i@ hm dxform:LQ
/
Fem (e1,€2)=(0,0) o« \0y dxdy

So, by Equation (1.23) we have that

b
OF d OF
— — —— | hidz =0
/a <3y dw@y’) e
where F' = f — A\ig (Ao = 1). As hy is arbitrary, we know by Lemma 1.2.3

that
oF d OF

dy dvoy
for any extremizer y of (IP).
Now suppose that y is an extremal for I. This case is obvious, because

for A\g = 0 and A; = 1 we obtain K = —g. As y is an extremal for I, we
have that Equation (1.22) is satisfied.

0

Example 1.3.1 Let us verify that there is a function that is an extremal of
the isoperimetric problem given by

1
max J(y) = /0 V(@) () (x) da

st. y(0)=1

If y isn’t an extremal for I, then K = y?(z)(y')?(x) — \1y?(x) and the
Euler-Lagrange equation (1.22) is given by

v (2)y" (z) = —y(2)(y)* () — Ary().

Using the software Maple, the solution of this equation is

y(x) =0V y(z) = —\/—)\1:1:2 —2c1x 4+ 2¢ V y(z) = \/—)\1332 —2c17 + 2¢9.
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The functions y(z) = 0 and y(z) = —v/—A\12%2 — 2c17 + 2¢2 are not admissi-
ble, since y(0) > 0. For y(z) = v=M\122 — 2c1x + 2¢2, we have that

y(O):l cp=-—1
yl)=2 = 62:%
I(y) =3 A= -1

This system has a real solution. So, the function y(z) = Va2 + 2z + 1 is an
extremal for the isoperimetric problem.
Now consider that y is an extremal for I. Then y(z) = 0 and we had
already seen that this function is not a solution for the problem.
Concluding, the unique extremal of the isoperimetric problem is

yz)=vat+2z+1=/(z+1)2=zx+1

for x € [0,1].

1.4 Variational Problem with a Variable Endpoint

Throughout the text to refer a variational problem with a variable end-
point we will just write VPVE.

1.4.1 Natural Boundary Conditions

In the previous section we studied variational problems with fixed end-
points, that is, our goal was to determine the extremizers for a functional
J : C*"[a,b] — R given by

b
J(y) = / F@y(@), o @), .,y ™ (@))da

subject to given boundary conditions, for n € N. These conditions take the
form y(m) (a) = yém) and y(m)(b) = yém) for m = 0,...,n — 1, where y((lm)
and ylgm) are known real numbers. However, there are variational problems
for which we don’t know all of these boundary conditions, in other words,
sometimes y((lm), or yém), is unknown for some m = 0,...,n — 1. When this
happens our objective is to find the extremizers for a given functional and
also to determine the unknown boundary conditions that extremizers satisfy.
We will see that the methods of calculus of variations always supply exactly
the right number of boundary conditions, even if no boundary conditions are

imposed. There are essentially two types of boundary conditions:

1. The boundary conditions that are imposed on the problem.

2. The boundary conditions that arise from the variational process (nat-
ural boundary conditions).
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Natural Boundary Conditions for n =1

Consider the functional J : C%[a,b] — R given by

b
J(y) = / fa,y(@), o (@))de,

where f is a smooth function. Now, no boundary conditions are imposed
on y and we want to determine the extremizers y € C2[a,b] for J. Then,
we derive a necessary condition for J to have an extremum at y. Suppose
that y is an extremizer for J and consider again the variations y 4 eh, where
le| < 1 and h € C?[a,b]. As no boundary conditions are imposed we don’t
require that h(a) = 0 and h(b) = 0. Therefore, for all h € C?[a, b]

0J(h,y) = /b <afh+8fh'> dx =0

oy oy’
brof  d of af 1"
@[L <8y_dx8y/>hd$+|:ay/h:|a_0 (124)

For the variational problem with fixed endpoints the term [a% h} ’ van-
ished, because h(a) = h(b) = 0. Nevertheless, in the present variational
problem this term doesn’t vanish for all h € C?[a,b]. So, Equation (1.24) is
valid for all h € C?[a,b]. In particular, it is valid for all h € C?[a,b] such
that h(a) = h(b) = 0. Thus, by previously study of VPFE for n = 1 we
know that

22 (1.25)

for any y at which J has an extremum. Combining the conditions (1.24) and
(1.25), we obtain

af 1" 2
[ay/h] =0, Vh € C?[a, b). (1.26)

a

Thus, we can always find functions h € C?|a, b] such that

1. h(a) =0 and h(b) # 0. So,

[gﬂ = 0. (1.27)
2. h(a) # 0 and h(b) = 0. So,
[S;L =0. (1.28)



Concluding, if J has an extremizer y € C?[a, b] and no boundary condi-
tions are imposed, then y must satisfy the Euler-Lagrange equation (1.25)
along with Equations (1.27) and (1.28), because the Equation (1.26) is sat-
isfied for all h € C?[a,b]. The Equations (1.27) and (1.28) are evaluated
at b and a, respectively. Therefore, they are boundary conditions. These
conditions are not imposed, they arise in the variational process. They are
the natural boundary conditions.

The process, previously studied, is completely methodical, because:

1. If boundary conditions are imposed at a and at b, then the variational
formulation requires h(a) = h(b) = 0. Therefore, there are none natu-
ral boundary condition.

2. If only one boundary condition is imposed at a, then the variational
formulation requires h(a) = 0, but h(b) is free. So, the problem is
supplemented by the natural boundary condition (1.27).

3. If only one boundary condition is imposed at b, then the variational
formulation requires h(b) = 0, but h(a) is free. So, the problem is
supplemented by the natural boundary condition (1.28).

4. If no boundary conditions are imposed, then we have both natural
boundary conditions (1.27) and (1.28).

Natural Boundary Conditions for n = 2

Consider the functional J : C4[a,b] — R given by

b
J(y) = / f(y(@). o (@), 4" (@) de,

where f is a smooth function. Our goal is the same as the case n = 1. What
differs is that here the integrand also depends on y”. By Section 1.2.3, if y
is an extremizer for .J, we have that for all h € C*[a, b]

b
0J(h,y) :/ <g£h+g§,h'+ f?ay]j’h,/> dx =0
brof d (Of d [Of\ ., af 1°
@/a <8yh_dw<3y’>h_d$<3y”>h>dx+ {3?/’4&

af 1°
+[ay,h] _0

a
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brof dof 4 of af 1"
o [ (G~ aoy - amay) " o]

a

of d of b
|5 ) 1], o e

a

If Equation (1.29) is satisfied for all h € C*[a,b], then it is also satisfied for
all h € C%a,b] such that h(a) = h(b) = h/(a) = W' (b) = 0. So, we have that

brof daf  d% of

/a(ay—dwumy,,)hdw—o
2

of d of d af:O (1.30)

oy dxdy | dx?dy"

for any y at which J has an extremum. Combining the conditions (1.29) and
(1.30), we obtain

of ,  (of daf\, 1" "
[8y”h+<8y’ oy )| =0 Vh € C*[a, b).

a

Thus, we can always find functions h € C*[a, b] such that
1. h(a) # 0, but h(b) = h'(a) = h'(b) = 0. So,

of d of]
L‘W - dway”L -
2. h(b) # 0, but h(a) = h'(a) = h'(b) = 0. So,
of d of]
o,
3. h'(a) # 0, but h(a) = h(b) = '(b) = 0. So,
of 1
7).~
4. h'(b) # 0, but h(a) = h(b) = h'(a) = 0. So,
of |
),

If y(a), y(b), ¥'(a) and 3/ (b) are fixed, we do not obtain any natural
boundary condition. If one of them is free, then we obtain a correspondent
supplementary condition. For example, if y(a) is free, we obtain

[6]“ daf} _0

oy dx 0y"
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Natural Boundary Conditions for Several Dependent Variables

Consider the functional J : C%[a,b] — R given by

b
— / flz,y(z),y' (z))dz,

where f is a smooth function. If no boundary conditions are imposed on
y at a and at b, then it is not required that h(a) = (0,...,0) and that
h(b) = (0,...,0). So, for all h € Ci[a, b] we have that

J(h,y) = / ( gf,h;>d = 0.

In particular, the above equation is satisfied for all h € H;, where H; is
defined by

H; = {h € Cila,b] : h; = 0if j # i}.
Therefore, for all ¢ = 1,...,k and for all h € H; we have that

f [
/a<8 h+a,hl>d = 0.

Integrating by parts, we obtain

b
of d of of
———= | h; dx h;| =0. 1.31
/a <8yi dm@yé) + [(9 ! (131)
If the above equation is satisfied for all h € H;, then it is also satisfied for
all h € H; such that h;(a) = h;(b) = 0. Therefore,

brof  dof
i =1,...,k.
/a(ayz iz O] )h dx =0, Vi N

of d of ,
- = =1,... 1.32

for any y at which J has an extremum. Combining the conditions (1.31)
and (1.32), we obtain

of
o

Thus,

b
hz] =0,Vi=1,...,k and Vh € H,.

So, we can always find functions A such that

1. hi(a) = 0 and h;(b) # 0. Then,

or =0, Vi=1,...,k
dy; b
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2. hi(a) # 0 and h;(b) = 0. Then,
of :
—| = =1,...,k.
[&U;L 0, Vi N

The conclusions that can be drawn are similar to those we have discussed
previously.

1.4.2 The General Case

Previously, we assumed that the endpoint b of the integral was fixed.
Now we consider a more general case where the endpoint of the integral is a
variable of the problem. We intend to solve the following problem:

(Pae) max J(T,y) = /z flx,y(z),y (x))dx
s.t. y(a) = yq,

where (Z,y) € Ja,b] x C?[a,b]. We use the approach of Chiang in [12]. As Z
and y(T) are free, their achievement will be obtained through the variational
process, in other words, now we intend to determine y, y(Z) and T that
maximize the above problem (Pgc). We will only study this case, but the
procedure is easily extended to the case where the initial point of the integral
T, is a variable of problem and Z, € [a, b[.

Theorem 1.4.1 Let (Z,y) be a solution of the problem (Pgc). Then, for
all x € [a,T|, the solution (T,y) satisfies

2. g—g(x,y,y’) - %g—?f,(:p,y,y’) = 0 (Euler—Lagrange equation),

3. [%}E = 0 (natural boundary condition).

Proof: Let us consider the variations T + eAz and y + eh, where |¢| < 1,
Az € R and h € C?%[a,b]. Note that h(a) = 0, because y, is given. Let j be
the function defined by

THeAx
j(e) = / f(x,y+eh,y +eh)dx.
a
As (Z,y) is a solution of (Pg¢), we know that j'(0) = 0. Recall that, if fis
continuous and ¢ is differentiable, then the function
- g9(e)

je) = [z, e)dx

a
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is differentiable and

Therefore,
j'(e) = Axf(T + eAx,y + eh,y' + eh’)

T+eAx f
+ / 8—(:1:, y+eh,y + eh)dx
a €

= Azf(T+ eAz,y+eh,y +eh’)
T+eAx f
+ / 8—y($, y+eh,y' + eh)h(z)dz
T+eAx f
+ / 8—?/(96, y+eh,y +eh)h (z)dz.

When € = 0 we have that

7(0) = A:vf(a:yy)+/ %f(w (o) + 5 o W ()
_ f Y) f / of
Thus,
Aalfle+ [ (Ghtens) = ooy hads + | 558 o
(1.33)
As Az and h are arbitrary, we can conclude that for all = € [a, T]
T(0 d o
/a (az(:v,y, y) — dxa;,(w,y,y')> h(z)dz =0
and
of B
[61/ ] -
This implies that
[flz =0,



of d of

—(z,y,y) — %a—y/(:c, y,y) =0 (1.34)

and

This concludes the proof.
O

Note that the Euler-Lagrange equation is also a necessary condition when
the endpoint of the integral is a variable of the problem.
With the Figure 1.6 we can understand better the total variation in y.

Figure 1.6: Free end-time problem

From now on we will assume that e = 1. As we can observe on Figure
1.6, the total variation in y is given by

Ay = (y+ h)(T + Azx) — y(T). (1.35)
By Taylor’s Theorem [41, p. 262-264], we know that
(y + 1) (T + Azx) — (y + 1) (@) = (y + 1)(@)Az + O(Az?).
As h is arbitrary we choose h/(T) =0 . So,

(y 4+ h) (T + Az) — (y + h)(T) = ¥ (T) Az + O(Az?)
& h(Z) = (y+ h) (T + Az) — y(@) — ¥ (T)Az + O(Az?).

By Equation (1.35) we have that
h(Z) = Ay — v (T) Az + O(Az?).
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Therefore, replacing h(T) by h(T) = Ay—y' () Az+O(Ax?) on the Equation
(1.33) and using Equation (1.34) we obtain

Ax[flz + [(gg/‘f,] (Ay — ¢/ (@) Az + O(Az?)) =0

& Ax [f gfy'] + Ay [af] =0
f f
canfr 2] vs[2] <o a9
So, we can conclude that
of
[ oy’ yL "
and of
),

Unlike the Fuler-Lagrange equation, the above equations are relevant
only on the point x = =. These equations bridge the gap caused by the
missing boundary condition (in this case for the terminal point). The Equa-
tion (1.36) is the general transversality condition and, depending on the
specific conditions of each problem, it can be written in various forms. Let’s
see the following cases.

Specialized Transversality Conditions
1. Vertical Terminal Line:
Suppose that T is fixed and y(Z) is arbitrary. So, there are no changes

in T which implies that Az = 0. Therefore, the general transversality
condition (1.36) is simplified to

Ay Bﬂ 0. (1.37)

As Ay is arbitrary, we must have

of B
[any‘O

to satisfy Equation (1.37). Note that the above equation is a natural
boundary condition, as we already studied (cf. (1.27)).
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2. Horizontal Terminal Line:

Supposed that T is free and that y(z) is fixed. Consequently, we have
that Ax is arbitrary and that Ay = 0. So, the general transversality
condition (1.36) is simplified and it is given by

K

Ax[ of ] ~0. (1.38)

x

Similarly, as Az is arbitrary, we must have

af | _
[‘f@y’y] =0 (1.39)

T

to check the Equation (1.38).

3. Terminal Curve:

Now let Ax # 0 and Ay # 0, simultaneously. We only know that
y(T) = ¢(T), where ¢ is a given curve. As y(T) = ¢(7) and as Ax is a
small arbitrary number, we conclude that

Ay = ¢'(T)Azx + O(Az?).

Thus,
0 0
ae s - aéiy'L* (@A [aﬂ 0
0
@ aelr 57 0= =0

Because Az is arbitrary, we must have

a / /
{f+8;§’(¢ —y)]—().

T

The above equation is another transversality condition. In the two
previous cases, or we didn’t know y(Z), or we didn’t know Z. Here we
don’t know the two, simultaneously, and so we have to determine both.
Thus, we need to know two conditions that are:

e R
and
y(T) = ¢(2). (1.41)
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. Truncated Vertical Terminal Line:

Now we consider that 7 is fixed and y(Z) > ymin, Where ymi, is a
minimum permissible level for the vertical axis. So, we can analyse
two possibilities: ¥(Z) > Ymin, o Y(T) = Ymin-

(a) If we suppose that y(T) > ymin, then Ay is arbitrary. So, we have

that of
{ay} -0

(b) If we suppose that y(ZT) = Ymin, then Ay > 0 and, consequently,
Ay is not completely arbitrary. Assuming that h(Z) > 0, we have

{h(:c) >0 L >0
(y + €h)(z) = y(7) B
Note that _ (0

For a maximization problem, j(e) — j(0) < 0 and we know that
e > 0. So, we can conclude that j'(0) < 0. Thus, Ay [%}7 <0.
As Ay > 0, we have that ’

or) <.

oy |z~

So, the transversality condition for a maximization problem can
be obtained as follows:

"Lf,} <0
[%ﬂf = 0 for Y(T) > Ymin [ 3 z
of z = y(-f) > Ymin

[Ty/}f < 0 for Y(T) = Ymin

Similarly, if the problem is to minimize J, then we have the following

transversality condition:
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5. Truncated Horizontal Terminal Line:

Now we consider that y(Z) is fixed and T < Zpe,(< b), where X0, 18
a maximum permissible level for the horizontal axis. So, we can also
analyse two possibilities: T < Tyee and T = Tymaz. Analogously, the
transversality condition for a maximization problem is given by

— o ’} >0
[f ay’Y T

T < Timax

T — _of | —

(l‘ l‘maz) [f oy Y i|f =0

and for a minimization problem is given by
_ 9f /} <0
[f oY z
T < Tiaz

(@ = 2mac) |£ = Ghy']_=0.

Example 1.4.1 (Horizontal Terminal Line) [12, p. 67-69] For the
problem

max J(y) = /0 "2y (2) + (¢ ())? da

st y(
y(

o
S~—
I

1
) =10

S|

the Lagrangian is
flayy) =2y + ()
and the Euler-Lagrange equation (1.5) gives

So,
x
y(x) = 7 +c1x + ca,

where ¢; and cg are real constants. As y(0) = 1, we have that ¢ = 1. By
the transversality condition (1.39), we have that

x
[y + ) =@+ 2 W =0eYlr=0ea=7.
Thus, as ¢; = %, co = 1 and y(Z) = 10, we have that
—
¢ T
T)=-"—+° 4+1=107=6.
y(T) 1 + 5 + T
So, the function y(z) = —%2 + 3z + 1 is the extremal (a candidate for

maximizer) for the given problem.
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Example 1.4.2 (Terminal Curve) [12, p. 66-67] For the problem

max J(y):/ow\/l—k(y’(x))? dx
st. y(0)=1

y(T)=2-7

the Lagrangian is
fl@y.y) = V1+ )

the curve ¢ is given by ¢(z) = 2 — z and the Euler-Lagrange equation (1.5)
gives

N

— (' (@)%Y (@) (1 + (4 (2))>) "2 + ¢ (@) (1 + (¢ (2))?) "2 = 0.

So,
y(z) = c1x + ca,

where ¢; and ¢y are real constants. As y(0) = 1, we have that co = 1. By
the condition (1.40), we have that

W1+ )2+ 1+ ) 2 (-1 —y)z=0
S+ +y(-1-y)=0
S = 1.

Thus, the function y(z) = z + 1 is the extremal (a candidate for maximizer)
for the given problem. Furthermore, by the condition (1.41), we have that

. _ 1
y(x):x+1:2f:c<:>x:§.

Consequently, we obtain that
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Chapter 2

The Optimal Control

2.1 Introduction

The Optimal Control theory is an extension of the Calculus of Variations
as we will see later. This branch of mathematics is recent. In the beginning
of the Cold War (1945-1991) the USA and the USSR gave great importance
to mathematicians and their theories to develop defence techniques, because
this area had been recognized as advantageous during Second World War
(1939-1945). Therefore, several mathematicians developed solution methods
for problems which nowadays are considered as problems of Optimal Control.
An example of this, are the minimum time interception problems for fighter
aircraft.

So, the conventional wisdom asserts that the Optimal Control was born
about 60 years ago due to the Pontryagin Maximum Principle carried out
by Lev Semenovich Pontryagin (1908-1988), a Russian mathematician, and
his group.

In this chapter we are going to study a basic problem of Optimal Con-
trol with free and bounded control and to establish the connection between
the Calculus of Variations and the Optimal Control. We can see several
approaches to Optimal Control, for example, in [6, 7, 24, 38].

2.2 The Basic Problem of Optimal Control

Consider the following definitions of piecewise continuous function and
of piecewise differentiable function.

Definition 2.2.1 (Piecewise Continuous Function) Let I C R be an
interval (finite, or infinite). We say thaty : I — R is a piecewise continuous
function if y is continuous at each x € I, with the possible exception of a
finite number of points T of I, and if

y(z) = lim y(z),
T—rT
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y(r) = lim_y(z).

T—T

We write y € PC(I,R).

Definition 2.2.2 (Piecewise Differentiable Function) Let y : I — R
be a continuous function in I and differentiable at each x € I, with the
possible exception of a finite number of points of I. Furthermore, suppose
that v/ is continuous whenever it is defined. Then, we say that y is a piecewise

differentiable function. We write y € PC'(I,R).

Remark 2.2.1 Consider the functions y; : I — R for ¢ = 1,...,k, where
k € N. Note that y = (y1,...,yx). When

e y; € PC(I,R) foralli =1,...,k, we write y € PC(I,R¥).

e y; € PCYI,R) foralli =1,...,k, we write y € PC*(I,RF).

Problem Statement: The basic problem of Optimal Control consists of
finding a pair (y, u) that solves the following problem (Po¢)

b
(Poc) max J(y,u) = / F (@), u(z))da

s.t. y'(z) = g(x,y(x),u(x)), Vo€ la,b
y(a) =y,

where a, b € R such that a < b, f € C'([a,b] x RF™ R), g € C'([a,d] x
RF+m RF) € PCY([a,b],R¥) and u € PC([a,b],R™) with k,m € N. The
vector u(z) = (ui(x),...,um(x)) € R™ is called the control (or controller)
and y(x) = (y1(x),...,yx(x)) € R¥ is the state.

As in the Calculus of Variations, we will derive necessary conditions for
the pair (y,u) to be a solution of the problem (Ppc).

Theorem 2.2.1 (The Pontryagin Maximum Principle for (Pp¢))
If (y,u) is an optimal pair for the problem (Poc), then there exists A €
PCY([a,b], R*) such that

1. X(b) = 0 (Transversality Condition),

2. y'(z) = %—il(x,y(x),u(m),)\(x)) (Control System),

3. N(z) = =% (z,y(z), u(x),\(x)) (Adjoint Equation),
4. Y (z,y(z),u(z),A(z)) = 0 (Optimality Condition),

where H(xz,y,u,A) = f(z,y,u) + X g(x,y,u) is the Hamiltonian.
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Remark 2.2.2 The Adjoint System is formed by the second and the third
items of Theorem 2.2.1, i.e., by the Control System and by the Adjoint
Equation.

Proof: Suppose that (y,u) is an optimal pair for the problem (Po¢). Let us
consider the variations u¢ = u+ech, where h = (hq,..., hy) € PC([a,b],R™)
and |e] < 1. So, u € PC([a,b],R™). Note that

1. Eh_r{lou (x) = u(z), Yz € [a,].

2. 88“65 (:L')L:O = h(z), Yz € [a,b].

Let y“(z) be the state variable corresponding to the control u¢(z). By
formulation of the problem (Ppc¢), we know that

duy® dyt dy€
L @) = (@), B @) = gy (@), u (@),
2. ye(a) =Y
We have that limo y(z) = y(x) and that there is the derivative
E—>

Vo= (Gha Grw)

for all = € [a, b].
Consider a function A € PC*([a,b], R¥). By the Fundamental Theorem
of Integral Calculus we have that

b d
/ %(A(«I) . yE(x))dx = [A(:L’) . ye(x)}g
So,

b d
/ @(/\(ﬂc) -y (z))dz + [A(z) -y (2)]y = 0.

Thus, we have that

b
ﬂ¢mw—/fmw%mw@mm

b
=/fuw%mwmmm

b
+/Xxm»y%@+Awymay%ww%m»m
@) -y @) =o.
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To simplify notation, let A be a matrix k x m, v = (v1,...,0,,) and w =
(w1,...,wg). By Av (wA) we mean the vector obtained as product of the
matrices Av (w? A). As (y,u) is a solution for the problem (Po¢), we know
that

d
0= —J(y, uf
df (y7u)

e=0

brof oye  IOf Ouf
_/a (8y'86+8u'86) d

e=0

b oy° 0g 0y¢  0dg du®
/ —_— —_—
+/a <’\ De +/\[8y oc | ou aeD L
oy©
A0 G|
b roye [Of , of Ouf
- [ (G o ¥ a )| L
0y°

b 0g 0y¢  0dg du®
+/a/\<8y(96 +8u86>

dw = A(b) - (b)

e=0 e=0

b
of 99\ Oy
= —+XN+AZ)- d
/a (3?; AT 8y> o
b
af | 9y 9y*
— 4+ A= | -h dx — X(b b 2.1
o[ (Gorge) b ar—awm P (2.1)
because
ou‘
= h.
Oe
For each 7 € {1,...,k} we are going to choose \;(z) so that the coeffi-
cients of %yj are equal zero. So, for all z € [a, b], A(z) should satisfy the

following conditions:
e X(@) =~ (% +A@)5) = ~ % (2. y(@), u(@), M),
e \(b) =0.
Now we only need to prove the Optimality Condition. From (2.1) we get
[ (o)
o \Ou ou
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As the above equation is valid for all h € PC([a, b],R™), it holds in particular
for h such that
of |

h = 8u 8u

Thus, we have that

braf g
/a<<9u+)\8u> _OdZU—O
of  ,9g\°
of dg B
& <8u —i—)\a) _ =0, Yz € [a,b]

& aail(x,y(x),u(x),)\(x)) =0, Vx € [a,b].

So, we obtain the Optimality Condition.

O
Theorem 2.2.2 If y,A € C'([a,b],R¥), u € C'([a,b],R™) and (y,u,)
satisfies the Theorem 2.2.1, then

d OH

T H (2, y(2), ul@), A@) = 5 (@, y(@), u(z), Mz).

Proof: Immediate computations lead to

k m k

d , _OH  N~oH OH o
d' Tor T aiyﬁZaui“i o
Z OH OH Z OH OH
8yi 8)\ 8/\1 6y2‘
_87H
Oz

This concludes the proof.

Example 2.2.1 The Variational Problem (P;) given by

(P) max J(y /fwy (2))da

s.t. = Yq

93



can be transformed into a problem (P») of the Optimal Control given by

b

(P) max Jw)= [ fay@).ul@))do
st y(z) =u(x)
y(a) = Ya.

We intend to find the Euler-Lagrange equation (1.5) and the natural
boundary condition (1.27) by applying Theorem 2.2.1 to (P). By Theorem
2.2.1 we have that H(z,y,u,\) = f(x,y,u) + Au and

A(b) = 0 -

O =y (x) ol W=yl of dof
ZTZ = —\N(x) N(z) = _a%i dy  dr oy
o _ Mz) = -9

Note that 9 5
0o (2] -[2] -

which is nothing else than the natural boundary condition (1.27).

Example 2.2.2 The Variational Problem (131) given by

. b
(1) max J(y)=/ fz,y(2), 9/ (2), y"(x), y" (z))d

st y(a) = ya
y'(a) =yt
y"(a) =y

can be transformed into a problem of the Optimal Control. Now we consider
y(z) = (y°(x), y (z), y*(x)) such that y™(z) = y"™ (x) for m = 0,1, 2. Thus,
the equivalent problem of Optimal Control is given by

R b
(By) max J(y) = / F(a, y(x), u(z))de

y'(x)
st y'(z) = | ¥*(z)

u(z)
yO(a) = Ya
y'(a) =y
y*(a) = y?.



Again, by Theorem 2.2.1, we have that

2
H(x7y7u7A) :f(fﬁay,U) +)‘y/ = f(x,y,u) +ZAZZ/Z +A3U
i=1

and
Y (x) =9 (z)
0
B =v() =5k
W= Na)e{ Na)=| -5k -\
9 _ S — Xa(x)
% + A3(z) =
So, we have that
d of Of B _dof of
dx Ou Oy Ao(7) =0 Aaofa) = dr Ou  Oy?

As Ny(a) = — 25— \i(a),

2 of daf  of &2 af  doaf of
@ ou aray oy M ON T Ta Y aa T ey

As Xi(2) = — 24,

éof d* of dof of

da@ou da? oy dwdyl oy
As u(z) = (y*)(z) = y"(x), we obtain that

of dof d* af & of

oy dzdy ' dx? 0y’ dxd oy’

(2.2)

Note that Equation (2.2) is the Euler-Lagrange equation for n = 3. By
Theorem 2.2.1 we also know that

_ 2 of | dof _ of
dzZ oy’ dx Oy” ay’ b

A1(b)
Ab) =0 [)\Q(b)] — [%;’Tf_%f}b —0

]
8yl// b

(Transversality Condition).
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Example 2.2.3 Consider the following problem:

5
max /1 u(z)y(x) — u*(x) — y2(x) da
st. Y (z) =y(x) +u(x) (2.3)
y(1) = 2.

Resolution by Optimal Control: By Theorem 2.2.1, the Hamiltonian is
given by

H(z,y,u,\) = uy — u?® —y* + Ay + u).
The Optimality Condition asserts that

O (i (@) u(x), A(x)) = 0

8
y(z) — 2u(z) + A(z) =
ANz) = —y(z) + 2u(x).

Using the Adjoint System,

o (@ y(@)u@) @) =y (@) Jy@) +ul@) =y'(@)

Gz, y(@), u(x), Az)) = =N (x) N(z) = —u(z) + 2y(z) — A(2).
With the Optimality Condition and the Adjoint System we have that

Az) =y (2) — 2u/(2) — u(z) + 2y()
& —y(r) + 2u(z) — 9/ (z) + 2/ (z) + u(z) — 2y(x) =0

—3y(x) — ¢ (z) + 3u(z) +2u/(z) =0
—3y(z) —y'(z) +3(y'(2) — y(2)) +2(y"(z) — /() = 0
y"(x) = 3y(x)

< y(x) = c1e¥3T 4 coe ‘/395,

where ¢; and co are real constants. By the Transversality Condition,
A(5) =0 & —y(5) +2u(5) = 0 = —y(5) +2(y'(5) —y(5)) =0

& y/(5) = Sy(5)

Thus, we have to solve the following system to find ¢; and co:

y(1) = o cle‘[—i—ch V3 _ 9
y'(5) = %y(5) V3e1e7V3 — Beae V3 = 3(c1e7V3 + cpeV3)
1 = (4\/§+6)e*5‘/§
el T AVARVB8)+e1VE(2/313)
y — (4\/376)65\/3
27 AVB(2V/3-3)te1V3(21/3+3)
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Concluding,

(4v/3 +6)eV3@ ) 1 (44/3 — 6)e~V3(@D)

eMV3(2¢/3 — 3) + e4V3(2¢/3 4 3) (24)

y(z) =

Resolution by the Calculus of Variations: As y/(z) = y(x) + u(z) we
can write the integrand f as a function of z, y and ¥/

fayy) =0 —vy— o —y)? -y

Simplifying,

flzy,y) = =3y* + 3yy — (V)%

The initial optimal control problem can be transformed into the following
equivalent variational problem:

max / ~3y2(x) + 3y()y (2) — ()2 (x) da

st. y(l) =2.

By the Euler-Lagrange equation (1.5), we obtain

by(x) + 3¢/ (x) — L (3y(z) — 2/ (z)) = 0 & " (x) = 3y(x).

dx
Again,
y(x) = creV3® + coe™ V32,
where ¢; and cg are real constants. As y(1) = 2 and using the natural

boundary condition (1.27)

So,

(4v/3 + 6)eV3@=5) 1 (44/3 — 6)eV3(=—5)

y(z) = 64\/§(2\/§ -3)+ 6_4\/§(2\/§ +3)

Therefore, this function y(z), which is the same as (2.4), is a candidate
for maximizer for the given problem (2.3).
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2.3 The Optimal Control Problem with Bounded
Control

Sometimes, we can find problems of Optimal Control that have a bounded
control, that is, ¢; < u;(z) < d;, where ¢;,d; € Rforalli =1,...,m. We
are going to study these problems for m = 1.

Problem Statement: The Optimal Control problem with bounded con-
trol, for m = 1, consists of finding a pair (y,u) that solves the following
problem (Poc,)

(Poc,) max J(y, /fa: y(x),u(z))dr

s.t. y’(w) 9(z, y(x),u(x)), vz € a,b]

where U = [¢,d] C R and ¢ < d.
In this case the Optimality Condition is changed into the Maximality
Condition, as we can observe in the next theorem (see [24, p. 185-187]).

Theorem 2.3.1 (The Pontryagin Maximum Principle for (Poc,))
If (y,u) is an optimal pair for the problem (Poc,), then there exists A €
PCY([a,b],R¥) such that

1. X(b) = 0 (Transversality Condition),

2. y(x) = G5 (2. y(2),u(z), X(x)) (Control System),

3. N(x) = —%—g(x y(x),u(x),\(x)) (Adjoint Equation),

4. u(x), x € [a,b], is the solution of the problem

(P) max f(r,y(2),0) + Al) - g(w, y(@),v)

(Mazimality Condition).
Remark 2.3.1 Again,

H(x7y7u7A) = f(xayvu) +)\g($7y7u)

and the Adjoint System is formed by the second and the third items of
Theorem 2.3.1, i.e., by the Control System and by the Adjoint Equation.
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The proof of Theorem 2.3.1 that we present here is based on the one
found in [24].

Proof: The first, the second and the third points can be obtained following
the same pattern as was done in Theorem 2.2.1. Then, we only have to prove
the last point.

By the Transversality Condition and by the Adjoint System, we have

that
b
of 9y
0 /a <8u + 8u)
as we had already seen in the proof of Theorem 2.2.1. By Taylor’s Theorem
[41, p. 262-264], we know that

d
—J(y*, u)

d
de *

e=0

e+ O(é%).
e=0

d
‘](yevue) - J(yvu) = %J(yea UE)

As (y,u) is an optimal pair for the problem (Ppc,), we have that
J(yu) — J(y,u) <0.
This implies that

d
= J(yE. ut
7 (y©,u)

dac) e+0(?) <o.
e=0

brof 0g
2\ —_J R
gzo”o(e)‘Ua (au“ au)h .

Then, we have that

b
/ (giu,y(m,u(x» @) giu,y(m),u(x))) h(x)dz <0.  (25)

As (y,u) is an optimal pair of (Poc,), for each = € [a,b] we have that
u(z) € R is a point of the optimal solution u. Observe that

a) If u(z) = ¢, then eh(z) > 0. Thus, in order to verify the condition
(2.5) we must have that % +A- % <0 at .

b) If u(x) = d, then eh(x) < 0. Thus, in order to verify the condition
(2.5) we must have that % +A- % >0 at .

c) If c < u(z) < d, then eh(x) <0, or eh(x) > 0. Thus, in order to verify

the condition (2.5) we must have that % +A- % =0 at x.

Note that these conditions are obtained using similar arguments as the ones
used to prove Lemma 1.2.3. The previous three items can be obtained by
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resolution of the problem (P,), as we will verify. To solve the problem (P,),
by Fritz—John’s Theorem [8, p. 182-184], we have that

wo (%—i—)\-%) —wlg%(v—d)—wga%(c—v)zo

wi(v—d) =0

wa(c—wv) =0

wg, wi, ws > 0

(wo, wy,w2) # (0,0,0)

wo (%—i—)\-%) —w; +we =0

wi(v—d) =0

< Qwa(c—v)=0 (2.6)
wo, wi, wp > 0

(wo, wy,w2) # (0,0,0).

If wg = 0, we have that

w1 = W2
wy = w
wi(v—d) =0 ! J 2
v =
wa(c—wv) =0 &
v=c
wy,wz > 0 50
w1, w2
(w17w2) 7& (070)

and this is a contradiction, because we must have ¢ < d.
Therefore, wo # 0. Consider that w} = §1 and wj = 3. With these

w
considerations the system (2.6) is equivalent to

%—i—)\‘%—w’l%-wézo
wi(v—d)=0
wh(c—v) =0

wh, wh > 0.
When v = ¢, we have that

%—i—)\'%:—wégo
w) =0
wh(c—v) =0

wh >0
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and therefore we obtain a). Furthermore, when v = d, we have that

A =20
wi(v—d)=0

wh =10

w) >0

and therefore we obtain b). Finally, when ¢ < v < d, we have that

of dg
g TG =
w) =0
wh =0

and therefore we obtain c).
Now we are going to prove that if the items a), b) and c) are true it is
possible to find wg, wy and we that satisfy the system (2.6).

Consider the item a), in other words, suppose that u(z) = ¢. Therefore,
we have that

rwo (%—1—)\-%) —wi +wz =0

wy (v —d) =0 wg(%vL)\-%):—wg
wa(c—v) =0 wy; =0

wo, w1, ws > 0 < § wo,wy >0

(wo, w1, w2) # (0,0,0) (wo, w2) # (0,0)

v=-c %—F)\-%SO.

9 1 x- % <o

If % +A- gg = 0, we have the following system

wy =0

w1:0 w1:w2:0
=

wg > 0 wg > 0.

wo#O

On the other hand, if % + A % < 0, we choose wy and wsy such that
wp, wg > 0. This choice satisfy the first equation of system (2.7).

Consider the item b), in other words, suppose that u(x) = d. Therefore,
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we have that

wo<g—£+)\-g—g>—w1+w2:0 )

wy(v—d) =0 wo(%+)\-%):w1
wa(c—v) =0 wy =0

wo, wi,ws > 0 A wo, wy > 0

(wo, w1, w2) # (0,0,0) (wo, w1) # (0,0)
v=d g{+>\-%zo.

U 1x-%>0

(2.8)

If g—i + A % = 0, we have the following system

w1:0

’U)Q:O w1:w2:0
-

wg > 0 wo > 0.

wo # 0

On the other hand, if % + X % > 0, we choose wg and wy such that
wp, w; > 0. This choice satisfy the first equation of system (2.8).

Consider the item c), in other words, suppose that ¢ < u(z) < d. There-
fore, we have that

wo (45 +A-52) = wi+wy =0

wi(v—d)=0

wo(c—v) =0 w; =wy =0
wo, wi, wy > 0 & wy >0

(wo, w1, w2) # (0,0,0) wo # 0.
c<v<d

o 4 x-% =

So, we must have w; = we = 0 and wy > 0. Concluding, the conditions of
the items a), b) and c¢) are equivalent to the system (2.6). Thus, the fourth
item of Theorem 2.3.1 is proven.

O

An example of application of Theorem 2.3.1 is given in Chapter 3.
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Chapter 3

An Application of Optimal
Control

3.1 Introduction

In this chapter we are going to study an optimal control problem of
Diabetes Mellitus that was proposed by Swan in [40]. He found an exact
solution using the nonlinear algebraic Ricatti equation (see [7, p. 771], [40,
p. 799-802| and [43]). We are going to find the numerical solution of this
problem by two different methods and then compare with the exact solution
[40]. One method uses the necessary conditions of Theorem 2.3.1 and the
other discretizes the problem. However, before we are going to do a brief
explanation about this disease in order to understand better the problem in
study (see, e.g., 13, 16, 17, 35, 40, 42]).

3.2 Diabetes Mellitus

Glucose is the sugar present in the blood that comes from food. It is
very important for life, because our body needs sugar to produce energy
necessary for normal functioning of the organs and of the tissues. For this
purpose, glucose has to be transported from the blood into the cells. This
transport is usually done through a hormone called insulin. Then, this hor-
mone is responsible for the regularization of glycemia (amount of glucose in
the blood).

Insulin is produzed in the pancreas, because it has specialized cells for
this. About 1-2% of the tissue of the pancreas is formed by islets of Langer-
hans cells. We can divide them in three distinct types of endocrine cells:
alpha, beta and delta cells. The alpha cells produce the hormone glucagon,
when the glycemia reaches an undesirable low level. Therefore, the function
of glucagon is to cause an elevation of the glucose in the blood. On the other
hand, when the level of glycemia is too high, the beta cells release their in-
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sulin in order to reduce this level. Finally, delta cells produce the hormone
somatostatin that inhibits the release of glucagon, or insulin, depending on
the organism needs.

Diabetes Mellitus is a metabolic disease characterized by an abnormal
and uncontrolled increase of the glycemia. It arises when the body doesn’t
produce enough insulin, or when there is a resistance to the insulin produced.
There are several types of diabetes mellitus, but the three main are diabetes
mellitus type 1, diabetes mellitus type 2 and gestational diabetes.

Diabetes type 1 usually affects people under 20 years, but it can arise
at any age. Although this type is less common, it is the more serious. In
diabetes type 1 the increase of glycemia is caused by inability of pancreas to
produce insulin. This problem appears, because the beta cells are destroyed
by the immune system itself. Hence, it is an autoimmune disease. It isn’t
known why the immune system reacts this way, but it is believed that this
behaviour is related to genetic characteristics, or to some possible infections.
In this case, the patient must receive daily insulin injections to control the
level of this hormone. He must also control the feed and practice exercise.

Diabetes type 2 usually strikes people over 30 years that are overweight
and that have cases in the family, but there are people without these charac-
teristics that are also affected. This type is the more common form. In this
case, the main causes for the increase of the glycemia are the progressive loss
of efficacy of insulin (also known by “resistance to insulin”) and the decrease
of the insulin production by the pancreas. Nowadays it is known that due to
lifestyle and inherited genes, the insulin loses efficacy and then the organism
is more resistant to insulin. In this situation the pancreas reacts and pro-
duces more insulin in order to keep balanced glycemia levels. In some people
the pancreas slowly begins to fail and, consequently, it isn’t able to produce
enough insulin to control the glycemia levels and this increases, resulting in
the diabetes type 2. We know that the overweight, the excess fat in the
body and the physical inactivity can worsen diabetes type 2. So, a patient
with this type of diabetes should opt for healthy eating, lose weight, practice
exercise, reduce the blood pressure, improve cholesterol levels and take the
medication correctly. This medication usually consists in taking pills that
increase the sensitivity of the tissues to insulin. A patient with diabetes type
2 only receives insulin injections when the situation is serious.

Gestational diabetes only arises during pregnancy, but it is very similar
to diabetes type 2. If it is diagnosed and treated in the beginning of the
pregnancy, then there are no problems or to the mother, or to the baby.
It generally disappears with the birth of baby. Nevertheless, women that
have this type of diabetes are more likely to have diabetes type 2 later. So,
they must be careful with their health throughout life. Then, a pregnant
with gestational diabetes should opt for healthy eating, practice exercise,
control the blood pressure, take the medication correctly and make a careful
monitoring of the baby.
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3.3 An Optimal Control Problem of Diabetes Mel-
litus

Let G(t) and H (t) be the level of glucose and of net hormone in the blood
at time ¢ (in minutes), respectively. Note that at the time ¢ the person isn’t
fasting. Comnsider the variables y;(t) and y2(t) defined by

and
y2(t) = H(t) — Ho,

where Gy and Hjy are the constant fasting values of glucose and of net hor-
mone, respectively. The value H(t) includes the weighted average of all
endocrine secretions, which tend to change the glycemia. Note that if the
person has high levels of glucose (hyperglycemia), then insulin is the hormone
that has the most contribution to H(¢). On the other hand, if the person
has low levels of glucose (hypoglycemia), then glucagon is the hormone that
has the most contribution to H(t). The control variable u(t) is responsible
for the rate of infusion of exogenous insulin at time ¢. It is obvious that
u(t) > 0. When we consider that G and H are not too different from G and
Hy, respectively, the mathematical model of glucose and insulin interaction
proposed by Ackerman in [1] is given by

Y1 (t) = —myyi(t) — maya(t)

Ya(t) = —may2(t) + mayi (t) + u(t) (3.1)
y1(0) = Y10

y2(0) = y20

mi, mo, mg > 0 and myg > 0.

Consider an individual with diabetes of type 1 that is with high levels of
glucose. He isn’t able to produce enough endogenous insulin. Therefore, the
organism detects the excess of the glucose in the blood, but this situation
doesn’t cause an increase of the production of endogenous insulin. So, we
consider my = 0 in the Equation (3.1). Thus, he needs to administrate
exogenous insulin translated by the nonnegative term w(t) in the Equation
(3.1). With this administration, it is expected that the levels of the glucose
in the blood will decrease. In theses cases, we usually have that G(t) > Gg
and that H(t) > Hy. So, y1(t) > 0 and y2(t) > 0. As mq,mg > 0, we have
that y7(t) < 0 and this results in a decrease of glucose, as expected. We
know that u(¢) > 0 and —mgy2(t) < 0, because m3 > 0. The concentration
of insulin in the blood should increase until it reaches its maximum, due
to exogenous insulin administration. So, during this time it is required that
u(t) > mayz2(t) in order to y4(t) > 0. This is obvious, because the function of
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infusion of exogenous insulin is to solve the low levels of endogenous insulin
caused by the destruction of the beta cells in the patient with diabetes type
1. Tt is expected that some time after insulin administration u(t) < msys(t),
that is, y5(¢) < 0, because the insulin will begin to be absorbed by tissues.

In [40], Swan also uses this mathematical model and he proposes the
following optimal control problem:

(Per) min J(y,u) = /0 ") — ya)® + pu(t)dt

s.b. Y1 (1) = —maya(t) — moya(t)
Yo(t) = —maya(t) + mayi (t) + u(t)

u(t) >0
y1(0) = w10
y2(0) = y20,

where y4 is a predetermined constant glucose level in a diabetic individual,
p is a scalar weighting factor (with dimensions of (time)?) such that p > 0
and my1, mo, ms and my are as we defined previously.

As yq is a predetermined constant glucose level in a diabetic individual,
the goal is to minimize the difference between y;(t) and y4 and the rate of
infusion of exogenous insulin. Therefore, the objective function is

flyr,u) = (g1 — ya)® + pu.

Note that, as we consider p > 0, large controls imply large values of J.

3.4 The Necessary Conditions

Now we are going to write the necessary conditions of Theorem 2.3.1 for
the problem (Pgr). As we are going to study a situation of hyperglycemia,
we consider my4 = 0.

The Hamiltonian H = H(y1,y2,u, A1, A2) is given by

H = —(y1 = ya)* — pu’ + Mi(=miyr — mayz) + Aa(—mays + u).
The Transversality Condition is given by
AL(ty) = Aa(ty) = 0.

The Adjoint System is given by

yi(t) = 55, y1(t) = —maya(t) — maya(t)
vh(t) = 5% o ) %at) = —maya(t) + u(?)

() = fé%f A (1) = 2(y1(t) — ya) + maAi(t)
Xo(t) = -5 Ay (1) = ma (t) + mada(t).
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By the Maximality Condition, we have that u(t), t € [0,tf], is the solution
of

(Pv) Iilf“())( H(yl( ) yQ(t)avuAl(t)a)‘Q(t))'

By Fritz—John’s Theorem [8, p. 182-184], we have that the solution of (P,)
is obtained solving the following system:

wo%lg w1%(—v) =0 wo(—2pv 4+ Xo) + w1 =0
wi(—v) =0 wiv =10
=
wo,wy = 0 wp,wy > 0
(w07w1) 7é (070) (wval) 7é (070)'

If wg = 0 we obtained the following system

w1:O
wiv =0
Wo, W1 ZO

(wOv wl) 7& (07 0)

that is impossible, because (wp,w;) = (0,0). Therefore, we can consider
that wg = 1. For the condition wiv = 0 we have two possibilities: w; = 0,
or v = (0. The second possibility doesn’t make sense, because the patient
needs to receive exogenous insulin. So, we consider that w; = 0 and v > 0
in order to verify the condition wyv = 0. Thus, we have that

Then, we can find the solution of (Pgr) solving the following system:

Y1 (t) = —maya(t) — maya(t)

yh(t) = —maya(t) + 228

M) =21 (t) — ya) + mii(t)

A(t) = mai(t) + maa(t) (3.9)
y1(0) = y1o

y2(0) = y20

A(ty) =0

\)\Z(tf ) =0.
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3.5 The Exact Solution

The exact solutions y;(¢) and u(t) of the problem (Pgr) determined by
Swan in [40] are

u(t) = —Kiyi(t) — Koya(t) + K

and

where

E=— m%m%-i—i,
mayd
K = ;
I3
2
m
KgJm%—l—m%—l—%/m%m%—i—;(ml—i—mg),
o= BG4 2mao
! 2m2
o — Ko +mq 4+ mg
2 )
g — Vlmi+mi+2¢]
= 5 ,
¢ = Yd

S [
1o (222)
As i (t) = —=may1(t) — maya(t) we have that

yalt) = 40 +mﬂ;1y1(t).

So, the exact solution ya(t) is

ya(t) :W(a cos(ft) 4+ Bsin(fBt) — mq cos(St))
e a(y10 — ¢) —mayio] [ . mi
+ - (5 sin(ft) — cos(pt) — 5 sm(,Bt))
_mg¢
mo
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3.6 The Numerical Solution

Swan considered in [40] the situation in which y19 = 300 mg/dl, y4 = 100
mg/dl, the concentration ygo is null and the value of p is 10. By Yipintsoi
in [44, p. 73, 75] the values of m1, my and ms for a woman of 59 years old
diabetic 20 years ago, with 1.64m of height and with, approximately, 65kg
of weight, were given by my = 0.0009, mo = 0.0031 and ms = 0.0415. By
Yipintsoi in [44, p. 73], we also know that she was insulin dependent. Then,
we can conclude that she was diabetic type 1.

With these considerations, we are going to find a numerical solution
of the problem (Pgr) for this woman by two different methods. First, we
are going to solve the system (3.2) (so called indirect method), using the
software Maple, and then we are going to propose a second procedure that
solves directly the problem by discretizing it (so called direct method), using
the software IPOPT (Interior Point OPTimizer). For more on the subject
we refer the reader to [36]. To test the efficiency of the results, we are
going to draw the exact solution given in Section 3.5 and the two numerical
solutions for ¢ € [0, 145]. In Appendix B we provide the codes for the indirect
(Appendix B.1) and direct (Appendix B.2) methods.

300
280
260
240

220

F(f) @  [POPT
200 » [F]

— — Maple

120

160

140

120

1] 20 40 a0 20 100 120 140
f

Figure 3.1: Solution y;(t) (exact versus approximations obtained by direct
and indirect methods).
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Figure 3.2: Solution ya(t) (exact versus approximations obtained by direct
and indirect methods).

50

40

z(t) 30 o IPOPT
u(ﬂ'j

— — Muaple

20

Figure 3.3: Solution u(t) (exact versus approximations obtained by direct
and indirect methods).

3.7 Discussion

The numerical approximations obtained by Maple and by IPOPT are

very similar between them and very close to the exact solution, because as
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we can observe in the previous figures the dashed black line is superimposed
on the line composed by the red points.

For a diabetic person, the levels of glucose in the blood are higher than
those of an individual that isn’t diabetic. This is caused by inability to pro-
duce enough endogenous insulin to maintain the optimal levels of glycemia.
In [35] the levels of glucose in the blood (mg/dl) are:

1. Gp € [70,100] and G(t) € [70,140] for a normal person, after a meal
(approximately 2 hours);

2. Gy € [100,126] and G(t) € [140,200] for a person in the situation of
pre diabetes, after a meal (approximately 2 hours);

3. Go > 126 and G(t) > 200 for a person with diabetes, after a meal
(approximately 2 hours).

Diabetics may not be able to maintain the levels mentioned in the items
1. and 2. So, the values proposed by Swan for y1g, yo0 and y4 are coherent,
because as the woman had diabetes type 1 it is possible that she was with
high levels of glucose and with null levels of insulin. Therefore, this is the
hormone that has the most contribution to H(¢) in this case.

The insulin is administrated in the patient at time t = 0. Consider
that the time at which the concentration of insulin in the blood reaches the
maximum value is ¢,,. As we know the exact solution of ys(t), we conclude
that ¢, ~ 31.77 minutes. From t = 0 the glycemia decreases and this
means that there is absorption of the insulin by tissues since the time of
its administration. However, there is more insulin to enter into blood than
into tissues for t € [0, t,,], because y2(t) is strictly increasing in this interval
of time. For t > t,, the concentration of insulin in the blood is strictly
decreasing and this means that from ¢ = t,, there is more insulin to enter
into tissues than into blood.

Consider that I; = [z, zi+1] and A; = |y1(xi4+1) — y1(zi)]-

1| [0,30] | 5235
2| [30,60] | 64.46
3| [60,90] |42.00
4| [90,120] | 22.46
5| [120,145] | 9.52

Table 3.1: The absolute value of the decrease of glycemia for different inter-
vals of time.

In Table 3.1 we can observe that the absolute value of the decrease of
glycemia was, approximately, 52.35 for ¢ € [0,30] and 64.46 for ¢t € [30, 60].
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This is supposed to happen, because for t > t,, insulin has more effect. Note
that for 1 = 3,4,5
A > A,

because after 60 minutes the level of glycemia (y1(60) = 183.19 mg/dl) is
not so worrying as in the beginning (y;(0) = 300 mg/dl).

After 145 minutes the insulin is absorbed almost entirely by tissues, be-
cause their levels in the blood are very low, as we can observe in Figure 3.2.
Consequently, the level of glucose in the blood decreases from 300 mg/dl to
109.22 mg/dl. Therefore, the patient reaches a good level of glucose with
the administration of insulin.

In Figure 3.3 we can observe the decreasing rate of infusion of exogenous
insulin over time.

The difference between the numerical solutions and the exact solution is
not significant. Concluding, we obtained good numerical approximations to
the solution.
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Appendix A

Euler’s Method in MATLAB

function[x,Solution_y,deltax]=met_euler(a,b,ya,yb,n,f,color)

This function takes as input the extremes ’a’ and ’b’ of the
interval, the values of ya, yb and n, the function and the
color of the graphic. This routine returns the array x compo-
sed by the values x_0,...,x_{n+1}, the array y composed by

the values y_1,...,y_{n+1} and deltax.
Startup and given information:
x=zeros(1,n+2);

x(1)=a;

x(n+2)=b;

Calculation of delta x
deltax=(b-a)/(n+1);

Calculation of the values of x(i)

for i = 2:n+1

x(i)=x(1)+(i-1)*deltax;
end

Creation of the variables to determine yi,...

y=sym(’y’,[1 nt+2]);
y(1)=ya;
y(n+2)=yb;
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% Definition of the function phi

phi= O;

for i = 1:n+1
phi=phi+feval(f,x(i),y(i),(y(i+1)-y(i))/deltax)*deltax;

end

pretty(simplify(phi))
dphi=sym(’dphi’, [1,n]);

for i = 1:n
dphi(i)=diff (phi,y(i+1));
end

S=solve(dphi);
Solution_y=zeros(1,n+2);
Solution_y(1)=ya;

Solution_y(n+2)=yb;

if n==
Solution_y(2)=S;
else
SNames = fieldnames(S);
for i = 2:n+1
Solution_y(i) = S.(SNames{i-13});
end

end

plot(x,Solution_y,color,’LineWidth’,2)
grid on

end
The code used to solve the Example 1.2.1 is
g=inline (’ (z"2)-(y~2)-(2*x*y)’);

t=linspace(0,1,500);
g2=((3-cos(1))/sin(1))*sin(t)+cos(t)-t;

[x,Solution_y,deltax]=met_euler(0,1,1,2,1,g,’--0k?)
hold on

74



plot(t,g2,’-k’,’LineWidth’,2)

legend(’n=1’,’Extremal’);

xlabel(’x?);

ylabel(’y?);

title(’Euler’’s Method of Finite Differences for n=1 versus the
extremal’)

axis([0 1 0 3])

figure

[x,Solution_y,deltax]=met_euler(0,1,1,2,2,g,’--0k’)

hold omn

plot(t,g2,’-k’,’LineWidth’,2)

legend(’n=2’,’Extremal’);

xlabel(’x?);

ylabel(’y?);

title(’Euler’’s Method of Finite Differences for n=2 versus the
extremal’)

axis([0 1 0 31)

figure

[x,Solution_y,deltax]=met_euler(0,1,1,2,3,g,’--0k’)

hold omn

plot(t,g2,’-k’,’LineWidth’,2)

legend(’n=3’, ’Extremal’);

xlabel(’x?);

ylabel(’y?);

title(’Euler’’s Method of Finite Differences for n=3 versus the
extremal’)

axis([0 1 0 3])

figure

[x,Solution_y,deltax]=met_euler(0,1,1,2,4,g,’--0k’)

hold omn

plot(t,g2,’-k’,’LineWidth’,2)

legend(’n=4’,’Extremal’);

xlabel(’x?);

ylabel(’y?);

title(’Euler’’s Method of Finite Differences for n=4 versus the
extremal’)

axis([0 1 0 3])
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Appendix B

The Numerical Solution of
(Par)

B.1 Maple (indirect method)

ml := 0.0009;
m2 := 0.0031;
m3 := 0.0415;

ro := 10;

yd := 100;

El := -sqrt(m1~2#*m3~2+m2~2/ro);

K := m2*xyd/(ro*El);

K2 := sqrt(m1~2+m3~2+2*sqrt (m1~2*m3~2+m2~2/ro))-ml1-m3;
K1 := -(K272+2%K2*m3)/ (2*m2) ;

alfa := (K2+m1+m3)*(1/2);
bet := (1/2)*sqrt(abs(ml~2+m3~2+2*E1));
E2 := yd/(1+ro*x(m1*m3/m2)"~2);

system_ode := diff(yl(t), t) = -mlxyl(t)-m2*y2(t),
diff(y2(t), t) = -m3*y2(t)+(1/(2*ro))*lamb2(t),
diff(lambl(t), t) = 2*(y1(t)-yd)+ml*lambl(t),
diff(lamb2(t), t) = m2*lambl(t)+m3*lamb2(t);

boundaryCond := y1(0) = 300, y2(0) = 0, lamb1(145) = 0,
lamb2(145) = 0;

solution := dsolve({boundaryCond, system_ode}, numeric,
range = O .. 145, output = listprocedure);

with(plots);
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y_1 solution[4];

y_1 rhs(y_1);

plot(y_1(t), t = 0 .. 145, color = black, linestyle = dash,
axes = boxed, labels = [’t’, ’y[1]1(t)’], legend = ’Maple’,
legendstyle = [location = right], size = [.5, .65]);

y_2 := solution[5];

y_2 rhs(y_2);

plot(y_2(t), t = 0 .. 145, color = black, linestyle = dash,
axes = boxed, labels = [’t’, ’y[2](t)’], legend = ’Maple’,
legendstyle = [location = right], size = [.5, .65]);

(1/20)*solution[3];

u := rhs(u);

plot(u(t), t = 0 .. 145, color = black, linestyle = dash,
axes = boxed, labels = [’t’, ’u(t)’], legend = ’Maple’,
legendstyle = [location = right], size = [.5, .65]);

u

B.2 AMPL for IPOPT (direct method)

param ti := 0;

param tf := 145;
param n := 1500;
param h := (tf-ti)/n;

param yd := 100;
param ml := 0.0009;
param m2 := 0.0031;
param m3 := 0.0415;
param ro := 10;

### State variables:

var y1 {i in 0..n};
var y2 {i in 0..n};

### Initial values

s.t. ivyl : y1[0]=300 ;
s.t. ivy2 : y2[0]=0 ;

### Control variable
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var u {i in 0..n},>=0;
### Auxiliary functions for improved Euler

var fyl {i in 0..n} = (-mixy1[i])-(m2*y2[i]);
var fy2 {i in 0..n} = (-m3*y2[i])+uli] ;

### Minimize cost
minimize cost: sum{i in 0..n}((y1[i]-yd)~2+(rox(uli]l)~2));
### Euler Method

s.t. 1x {i in 0..n-1} : y1[i+1]l=y1[i] + hxfy1[i] ;
s.t. ly {1 in O0..n-1} : y2[i+1]=y2[i] + hxfy2[i] ;

HAHHHRHH AR R R R R AR R R R AR R R HH AR R R AR R R R AR R R R R SR ¢
option solver ipopt;

option ipopt_options '"max_iter=9999999 acceptable_tol=1e-8";
solve;

#H# SR R R R R R

display cost;

printf "------ Values of t------ \n";
printf {i in 0..n} "%18.10f\n", ti+ix*h;
printf "------ Values of yl------ \n";
printf {i in 0..n} "%18.10f\n", y1[il;
printf "------ Values of y2------ \n";
printf {i in 0..n} "%18.10f\n", y2[il;
printf "------ Values of u------ \n";

printf {i in O0..n} "%18.10f\n", ulil;
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