

Departamento de Química

Ana Rita Chaves Botelho Vaz Mendes DESENVOLVIMENTO DE *STOCKS* DE REFERÊNCIA LIOFILIZADOS PARA CONTROLO DE QUALIDADE EM ANÁLISES MICROBIOLÓGICAS

Departamento de Química

ANA RITA CHAVES BOTELHO VAZ MENDES

DESENVOLVIMENTO DE *STOCKS* DE REFERÊNCIA LIOFILIZADOS PARA CONTROLO DE QUALIDADE EM ANÁLISES MICROBIOLÓGICAS

DEVELOPMENT OF LYOPHILIZED REFERENCE STOCK CULTURES FOR QUALITY CONTROL IN MICROBIOLOGICAL ANALYSIS

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Biotecnologia Alimentar, realizada sob orientação científica da Professora Doutora Maria Adelaide de Pinho Almeida, Professora Auxiliar com Agregação do Departamento de Biologia da Universidade de Aveiro e coorientação de Ana Paula Tavares Martins Costa, General Manager Iberia for Technical R&D and Quality – Controlvet SA. Dedico este trabalho à "Natélia", ao "Jorge" e ao "Rubim". Obrigada por terem acreditado em mim!

Presidente	Prof. Doutor João Manuel da Costa e Araújo Pereira Coutinho Professor Catedrático do Departamento de Química da Universidade de Aveiro
Arguente Principal	Doutora Ana Sofia Direito dos Santos Duarte Professora Auxiliar convidada do Departamento de Biologia da Universidade de Aveiro
Orientadora	Licenciada Ana Paula Tavares Martins Costa General Manager Iberia for Technical R&D and Quality – Controlvet SA

Agradecimentos

À Professora **Adelaide Almeida**, pelo excelente sentido de oportunidade, sem o qual este trabalho e este estágio não teriam existido.

À Dr.ª Ana Martins, pela proposta deste ambicioso projeto e por toda a orientação prestada.

À Eng.^a Elisa Maia, a pessoa que mais me ensinou e orientou. Muito obrigada pela sempre pronta ajuda. Foste essencial!

Ao Dr. **Rui Sereno**, por me ter ensinado a trabalhar com o liofilizador e por se ter mostrado sempre disponível para me ajudar.

Às **técnicas de laboratório** da Controlvet, que me ensinaram o trabalho de um laboratório de microbiologia.

À Controlvet ALS, por me ter recebido de braços abertos.

Aos meus pais, **Cidália** e **Jorge**. Obrigada pelo esforço e por nunca, nem por um segundo, terem duvidado de mim. Amo-vos!

Ao **Rúben**, amor da minha vida, agradeço, mais do que tudo, pela paciência. Não deve ter sido nada fácil. Amo-te!

Palavras-chave

Culturas *stock* de referência; liofilização; meio crioprotetor, gram-positiva; gramnegativa.

Resumo

No final de 2014 foi publicada a norma *ISO 11133* que obriga à realização de testes de performance em todos os lotes de meio produzidos, recorrendo ao uso de microrganismos de referência específicos, com um nível de inóculo estabelecido.

A liofilização é um processo de secagem de culturas microbianas, e que permite a sua preservação por largos períodos de tempo, sem ser necessária refrigeração.

Os efeitos de três meios crioprotetores diferentes (skim milk + 10% sacarose, nutrient broth nº2 + 20% glicerol, e sacarose 10%) na sobrevivência à liofilização de *Escherichia coli, Staphylococcus aureus, Listeria monocytogenes* e *Salmonella enterica* serogrupo Typhimurium; o acompanhamento da concentração celular de *S. aureus* ao longo do tempo, depois de ter sido liofilizado com skim milk + 10% sacarose; e ainda o estudo da estabilidade de *E. coli* e *S. aureus*, depois de liofilizados e armazenados à temperatura ambiente, foram investigados.

E. coli, S. aureus e *L. monocytogenes* foram liofilizadas com skim milk + 10% sacarose; *E. coli* e *S. aureus* foram liofilizadas com nutrient broth nº2 + 20% glicerol; e *Salmonella* Typhimurium e *E. coli* foram liofilizadas com sacarose 10%. Terminadas as liofilizações dos estudos de viabilidade, cada amostra foi reidratada e inoculada em PCA. Para o acompanhamento da concentração celular de *S. aureus*, com intervalos regulares ao longo do tempo, as amostras foram reidratadas e inoculadas em PCA e BP egg yolk. Para estudar a estabilidade de *E. coli* e *S. aureus* as amostras foram reidratadas e inoculadas e inoculadas em PCA e De gg yolk.

Skim milk + 10% sacarose é o melhor meio protetor dos três usados. Das bactérias grampositivas testadas, *L. monocytogenes* é a mais resistente, com uma redução na sua viabilidade virtualmente nula; das gram-negativas, a *Salmonella* Typhimurium foi a que obteve melhores resultados, com a redução de 1 Log. Naturalmente, as gram-positivas têm uma melhor capacidade de sobrevivência à liofilização por causa da composição da sua parede celular, rica em peptidoglicanos, e isso foi comprovado nos testes feitos. No estudo da estabilidade de *S. aureus*, a sua concentração celular manteve-se estável ao longo do tempo, acima dos 6 Log ufc/200 µl. Nos estudos em que a estabilidade de *E. coli* e *S. aureus* armazenados à temperatura ambiente foi avaliada, comprovou-se que culturas microbianas liofilizadas necessitam de refrigeração para manter a viabilidade. Com este trabalho deu-se início à investigação necessária para a elaboração de um protocolo com o intuito de produzir culturas *stock* de referência liofilizadas, com o nível

de inóculo necessário, para aplicação futura em análises microbiológicas.

Keywords

Reference stock cultures; lyophilization; cryprotective medium; gram-positive; gram-negative.

Abstract

In late 2014 it was published the standard ISO 11133 which obligates the achievement of performance tests in every batch of media produced, resorting to specific reference microorganisms, with an established inoculum level.

Lyophilization is a drying process applied to microbial cultures that allows its preservation for large periods of time, with no refrigeration needed.

The effects of three different cryoprotective media (skim milk + 10% sucrose, nutrient broth no2 + 20% glycerol, and sucrose 10%) on survival to lyophilization of *Escherichia coli*, *Staphylococcus aureus*, *Listeria monocytogenes* and *Salmonella enterica* serovar Typhimurium; a monitoring of *S. aureus* cell concentration over time, after being lyophilized with skim milk + 10% sucrose; and also a stability study of *E. coli* and *S. aureus* after lyophilization and storage at room temperature, were investigated.

E. coli, S. aureus and *L. monocytogenes* were lyophilized with skim milk + 10% sucrose; *E. coli* and *S. aureus* were lyophilized with nutrient broth no2 + 20% glycerol; and *Salmonella* Typhimurium and *E. coli* were lyophilized with sucrose 10%. Finished every lyophilization of the viability studies, each sample was rehydrated and inoculated in PCA. To monitor *S. aureus* cell concentration, the samples were rehydrated and inoculated in PCA and BP egg yolk, with regular intervals throughout time. For the stability study of *E. coli* and *S. aureus*, also in regular intervals, samples were rehydrated and inoculated in PCA and in the respective selective culture media.

Skim milk + 10% sucrose is the best cryoprotective medium used. From the grampositive bacteria tested, *L. monocytogenes* is the most resistant, registering a virtually null reduction in viability; from gram-negative, *Salmonella* Typhimurium performed best, with only 1 Log reduction. Naturally, gram-positive bacteria have a better survivability to lyophilization because of their cell wall composition, rich in peptidoglycan, and that was proven with the experiments performed. In *S. aureus* stability study, cellular concentration was kept stable over time, above 6 Log cfu/200µl. In the stability studies in which *E. coli* and *S aureus* were storage at room temperature, it has been proved that lyophilized microbial cultures require lyophilization to maintain viability.

This work initiated the research needed for the elaboration of a protocol intended for the production of lyophilized reference stock cultures, with a specific inoculum level, for future application in microbiological analyses.

TABLE OF CONTENTS

List of figuresix
List of tables xi
List of equations xii
List of acronyms and abbreviationsxiii
Introduction
Legal framework
Reference materials
Lyophilization
Prefreezing
Primary drying
Secondary drying
Cryoprotective media
The cell wall of bacteria
Scopes and objectives
Materials and Methods
Viability studies
Microorganisms
<i>Cell culture preparation</i>
<i>Cell concentration calculation</i> 36
Cryoprotective media preparation
Lyophilization
Rehydration and final cell concentration
Stability studies 40
Rehydrations
Statistical analysis 40
Results

Viability studies	. 42
Comparison of cryoprotective agents	. 42
Comparison of E. coli and S. aureus in different cryoprotective agents	. 44
Stability studies	. 46
Discussion	. 49
Stability studies	. 49
Viability studies	. 52
E. coli and S. aureus in skim milk + 10% sucrose	. 52
E. coli and S. aureus in nutrient broth $no2 + 20\%$ glycerol	. 53
L. monocytogenes in skim milk + 10% sucrose	. 53
E. coli and Salmonella Typhimurium in sucrose 10%	. 54
Conclusion	. 56
Bibliography	. 58
Annexes	. 61
Annex I, Commission Regulation (EC) No 2073/2005	. 61
Annex E, ISO 11133:2014	. 79
Annex F, ISO 11133:2014	. 97

LIST OF FIGURES

Figure 1 Bought reference strains. Image property of (Microbiologics, 2016)
Figure 2 Working cultures (Staphylococcus aureus and Escherichia coli). Property of
Controlvet ALS
Figure 3 Scheme representing the steps to prepare a reference stock starting from a
reference strain. Adapted from ISO 11133, 2014 19
Figure 4 Reference material presented in a pill. Image property of IELAB, 2016 21
Figure 5 Reference material in a form of a pellet. Image property of Microbiologics,
2016
Figure 6 Reference material imbedded in the form of lenticules. Property of Controlvet
ALS
Figure 7 Lyophilizer equipped with a freezing chamber. Equipment property of
Controlvet ALS
Figure 8 Scheme representing the difference of slow and rapid freezing (Ramaswamy e
Marcotte, 2006)
Figure 9 Illustration of a collecting system used for the extraction of frozen moisture of
the sample (Labconco, 2010)
Figure 10 Diagram phase (Labconco, 2010)
Figure 11 Lyophilization stages presented in a graphic time/temperature (Barbosa-
Cánovas e Vega-Mercado, 1996)
Figure 12 Difference between primary and secondary drying, respectively in the figure
(Barbosa-Cánovas e Vega-Mercado, 1996)
Figure 13 Cell walls of bacteria. (a, b) Schematics of gram-positive and gram-negative
cell walls. (c, d) Transmission electron micrographs of gram-positive and gram-negative
cell walls. Adapted from Madigan et al., 2009
Figure 14 Controlvet ALS Group logos. Provided by Controlvet ALS
Figure 15 Example of a cryotube with a gap between the lid and the vial for sublimation
to occur inside it
Figure 16 Clear stoppering chamber where cryotubes are closed in vacuum. Property of
Controlvet ALS
Figure 17 A) Cryotube with unsealed metallic cap. B) Cryotube with already sealed
metallic cap

Figure 18 Comparison in Log cfu/200 $\mu l,$ of cell concentration before and after
lyophilization, with skim milk+10% sucrose as cryoprotective
Figure 19 Comparison of S. aureus and E. coli cell concentration, before and after
lyophilization, with nutrient broth no $2 + 20\%$ glycerol as a cryoprotective agent 43
Figure 20 Cell concentration, pre and post lyophilization of Salmonella Typhimurium
and E. coli, with the solution of sucrose 10% as cryoprotective medium
Figure 21 Cell concentration, before and after lyophilization, of E. coli in skim milk +
10% sucrose, nutrient broth no2 + 20% glycerol and sucrose 10%
Figure 22 Comparison of S. aureus cell concentration, before and after lyophilization, in
skim milk + 10% sucrose and in nutrient broth no2 + 20% glycerol
Figure 23 S. aureus cell concentration over time, inoculated in parallel, in PCA and BP
egg yolk
Figure 24 E. coli cell concentration over time, inoculated in PCA
Figure 25 E. coli cell concentration over time, inoculated in TBX 47
Figure 26 S. aureus cell concentration over time, inoculated in PCA 48
Figure 27 S. aureus cell concentration over time, inoculated in BP egg yolk 48

LIST OF TABLES

Table 1 Example of food safety criterion displayed in Annex I, Commission Regulation
2073/2005. Adapted from Commission Regulation (EC) No 2073/200515
Table 2 An example of a test microorganism, and its performance criteria, for culture
media. Adapted from ISO 11133, 2014
Table 3 Comparison of the main characteristics between gram-positive and gram-
negative cell walls. Adapted from Lacasse, 1995; Tortora, Funke e Case, 2010
Table 4 Microorganisms used in viability studies. 35

LIST OF EQUATIONS

Equation 1 Equation used to calculate initial cell concentration	. 36
Equation 2 Equation applied to calculate the cell concentration, after lyophilization	. 39

LIST OF ACRONYMS AND ABBREVIATIONS

UA	University of Aveiro
ISO	International Standard Organization
WDCM	World Data Centre for Microorganisms
Pr	Productivity ratio
cfu	Colony forming units
ATCC	American Type Culture Collection
NCTC	National Collection of Type Culture
μl	microliter
TSA	Trypto-casein Soy Agar
°C	Degrees Celsius
NB2	Nutrient broth no2
ml	mililiter
TS	Tryptone-salt broth
PCA	Plate Count Agar
g	grams
min	minutes
BP egg	Baird-Parker agar with egg yolk tellurite
yolk	
mBar	milibar

INTRODUCTION

Under the Cooperation Protocol between University of Aveiro (UA) and Controlvet ALS, a project was designed with the goal of developing lyophilized reference stock cultures for quality control in microbiological analysis.

The entire project took place in Controlvet ALS' installations, in Tondela, and every material and equipment required were property of Controlvet ALS.

LEGAL FRAMEWORK

The main objective in food law is to ensure elevated levels of public health, as it is defined in *Regulation (EC) No 178/2002*. Microorganisms are a danger for foodstuffs, being a source of food-borne diseases in humans. Microbiological criteria give the orientation needed for the acceptability or deniability of foodstuffs. This is why it is important to establish the microbiological criteria and the food safety microbiological criteria to set a limit above which foodstuff should be considered unacceptable (*Commission Regulation (EC) No 2073*, 2005).

In 2005, the Commission of the European Communities, regarding the microbiological criteria for foodstuffs, released the Commission Regulation (EC) 2073/2005. In this Regulation, the microbiological criteria for specific microorganisms are established, as well as the analytical reference methods to be applied by the food business operators.

Three important definitions need to be kept in mind, as described in Regulation 2073/2005 (*Commission Regulation (EC) No 2073*, 2005).

- Microbiological criterion: "a criterion defining the acceptability of a product, a batch of foodstuffs or a process, based on the absence, presence or number or microorganisms, and/or on the quantity of their toxins/metabolites, per unit(s) of mass, volume, area or batch;"
- Food safety criterion: "a criterion defining the acceptability of a product or a batch of foodstuff applicable to products placed on the market;"
- Compliance with microbiological criteria: "obtaining satisfactory or acceptable results set in Annex I when testing against the values set for the

criteria through the taking of samples, the conduct of analyses and the implementation of corrective action, in accordance with food law and the instructions given by the competent authority."

A table with several food safety criteria composes the first chapter of the Annex I in the Commission Regulation 2073/2005. In this table, according to food category, there are the microorganisms/their toxins or metabolites that need to be taken into account, the sampling plan, the limits to be set, the analytical reference method and the stage at which the criterion applies. An example is presented in Table 1.

TABLE 1 Example of food safety criterion displayed in Annex I, Commission Regulation 2073/2005. Adapted from *Commission Regulation (EC) No* 2073/2005.

	Microorganisms/their toxins,	Sampling plan		Limits		Analytical	Stage where the
Food category	metabolites	n^1	c^2	m ³	M^4	reference method	criterion applies
Ready-to-eat foods intended for infants and ready-to-eat foods for special medical purposes	Listeria monocytogenes	10	0	Absence in 25g		EN/ISO 11290-1	Products placed on the market during their shelf-life

As shown in Table 1, for every food category there is a correspondent analytical reference method wherein the methodology to find the microorganism/toxin or metabolite is described. However, if we take a closer look to every analytical reference method mentioned in Commission Regulation 2073/2005 - Annex I, they all refer and redirect to ISO 11133.

The International Standard ISO 11133 edited in 2014 refers to the microbiology of food, animal feed and water, more specifically, the preparation, production, storage and performance testing of culture media.

ISO 11133:2014 defines every requirement needed for the preparation of culture media with the purpose of microbiological analysis of food, animal feed and water. Because many assays depend on the ability of culture media to provide consistent and

¹ Number of units comprising the sample

² Number of sample units giving values over m or between m and M

³ Lower limit

⁴ Maximum limit

reproducible results, it is very important to do performance tests on culture media (*ISO* 11133, 2014).

The performance tests done to culture media, evaluate (ISO 11133, 2014):

- Productivity of culture medium which is the level of recovery of a target microorganism in a specific culture medium;
- Selectivity of culture medium which is the degree of inhibition of a nontarget microorganism in a selective culture medium;
- Specificity of culture medium that demonstrates that the non-target microorganism do not show the same visual characteristics as target microorganisms.

An example of performance test applied to a medium is represented in Table 2.

TABLE 2 An example of a test microorganism,	and its performance crite	eria, for culture media. Adapted from ISO
11133, 2014.		

Media	Microorganism	ISO	Function	Control Strain	WDCM	Reference media	Method of control	Criteria	Characteristic reaction
			Productivity	Staphylococcus aureus	00034 ^b 00032	TSA	Quantitative	P _R ≥0.5	Black or grey colonies with clear halo (egg yolk clearing reaction)
Baird- Parker	Coagulase- positive staphylococci	ISO 6888- 1	Selectivity	Escherichia coli ^d	00012 00013		Qualitative	Total inhibition (0)	
			Specificity	Staphylococcus saprophyticus Staphylococcus epidermidis	00159 ^ь 00036		Qualitative		Black or grey colonies without egg yolk clearing reaction

As seen in the example featured in Table 2, for every performance test done to a specific medium, there is a specific control strain to be used. This is specified in ISO 11133:2014 Annex E and Annex F. In these two annexes, the test microorganisms to be used in food and water microbiology, respectively, are displayed.

^b Strains to be used as a minimum.

^d Strains free of choice.

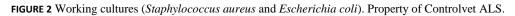
Another requirement from *ISO 11133*, 2014, relates to the fact that depending on the function and method of control of the performance tests, there is a specific inoculum level to be used.

Productivity testing is divided in (ISO 11133, 2014):

- quantitative testing, in which a level of 100 cfu is required to achieve precision;
- qualitative testing, wherein plate media testing needs an inoculum of 10³ to 10⁴ cfu, and pre-enrichment and enrichment media require ≤100 cfu.

For selectivity testing, the inoculum should contain 10^4 to 10^6 cfu, and for specificity testing, the level of inoculum should be 10^3 to 10^4 cfu (ISO 11133, 2014).

Test microorganisms must be representative of their species and this is why to perform these tests, microorganisms from reference cultures collections should be used (*ISO 11133*, 2014).


The definition presented in ISO 11133:2014 of reference strain (Figure 1) says that it is a microorganism obtained directly from a reference culture collection. However, if the laboratory is going to use a reference strain every time it performs a performance test, then the costs are going to be too elevated. ISO 11133:2014, taking the latter into account, provides a way to overcome this obstacle by producing reference stock cultures and working cultures.

By the book (*ISO 11133*, 2014), a reference stock culture is a set of separate identical cultures obtained by a single subculture from the reference strain either in the laboratory or from a supplier. A working culture (Figure 2) is a subculture from a reference stock culture and is produced for routine use (EURACHEM, 2013).

FIGURE 1 Bought reference strains. Image property of (Microbiologics, 2016).

Because there is an elevated risk of cross-contamination, alteration of typical characteristics and mutation, reference stock cultures prepared from reference strains should be multiplied and stored deep frozen (-70°C) or lyophilized (*ISO 11133*, 2014).

A few steps must be followed before storage at -70°C or lyophilizing. Those are represented in Figure 3.

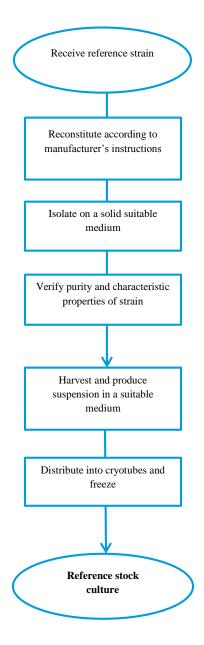


FIGURE 3 Scheme representing the steps to prepare a reference stock starting from a reference strain. Adapted from *ISO 11133*, 2014.

REFERENCE MATERIALS

Reference materials, besides being used as starting point in the development of lyophilized reference stock cultures with the final goal of the execution of performance tests, can be used with other purposes, such as:

- implementation of a new methodology;
- qualification and training of an analyst;
- positive and negative control of confirmation tests;
- positive control of an executing method;
- execution of parallel and duplicate assays, for quality control.

For the implementation of a new methodology, validation is required, which culminates in a series of evaluations (EURACHEM, 2013). Generally, accuracy and relative accuracy are evaluated, and for both, reference materials are used for artificially contaminate samples every time naturally contaminated samples are not available (*EN ISO 16140*, 2002; EURACHEM, 2013).

When qualifying and training a new analyst or technician, as well as in maintaining qualification, the use of reference materials is very common. Once again, in the event of the use of naturally contaminated samples is not possible, these are contaminated with said reference materials so as to fulfill the qualification tests needed (Lightfoot e Maier, 1998).

For the confirmation tests, a positive and negative control should be used. These are obtained from fresh working cultures to facilitate the interpretation and confirmation of the results obtained (*ISO/IEC 17025*, 2005).

ISO/IEC 17025 (2005), in the case of the detection methods, recommends the completion of positive controls for the execution method. For this, a reference strain is submitted to the full method. In the end, the method should be capable to adequately recover the target microorganism.

To ensure a good precision in results, duplicate and parallel assays are performed. These must be executed regularly, and can be done in water or food samples. For both cases, the matrix is contaminated with reference materials, once again (*ISO/IEC 17025*, 2005). In Controlvet's microbiology laboratory, to achieve every purpose evidenced earlier, reference stock cultures are used. Starting from bought reference cultures (Figure 1) and following the scheme presented in Figure 3, the reference stock cultures are obtained and then maintained at freezing temperatures. Weekly or when necessary, one of the cryotubes is thawed, in order to inoculate a subculture – working culture. Routinely, the working cultures are mostly used for confirmation tests.

Reference cultures can be sold in different shapes and quantities; consequently, prices may vary. Sticks (Figure 1), pills (Figure 4), pellets (Figure 5) or lenticules (Figure 6) are the most common forms commercialized.

FIGURE 4 Reference material presented in a pill. Image property of IELAB, 2016.

FIGURE 5 Reference material in a form of a pellet. Image property of Microbiologics, 2016.

FIGURE 6 Reference material imbedded in the form of lenticules. Property of Controlvet ALS.

Relating to prices, these may vary, depending on the way reference materials are presented, because it is related to their final purpose.

Pills and lenticules, routinely used for the execution of parallel and duplicate assays, are cheaper, around $5 \in$ per unit, wherein they are usually sold in packs of 5 or 10 units. Pellets and sticks, most used as starting point of stock cultures, are more expensive, $20 \in$ per unit. In these formats, the actual reference material, that is, the microorganism, can influence the final price.

The lyophilized reference stock cultures this project aims to develop may one day be used for every application previously mentioned in this chapter. However, the main goal is the development of these lyophilized reference stock cultures for the realization of performance tests in culture media.

By demand of *ISO 11133* edited in 2014, for every batch of media produced, performance tests should be executed. In these, the microorganisms to be used depend, naturally, from the culture media the laboratory uses. In Controlvet's microbiology laboratory in Tondela, taking into account *Commission Regulation (EC) No 2073* (2005), the main analysis conducted are to determine the presence of microrganisms indicative of process hygiene, as well as, the presence of pathogenic microorganisms as is the case of *Listeria monocytogenes* and *Salmonella (Commission Regulation (EC) No 2073*, 2005).

Because the latest analysis represent the bulk of the work performed in Controlvet's microbiology laboratory, the choice of the microorganisms to test in this project lies here. For being important to study both gram-positive and gram-negative bacteria, due to reported differences during lyophilization (Lacasse, 1995; Madigan *et al.*, 2009; Miyamoto-Shinohara *et al.*, 2006; Tortora, Funke e Case, 2010), two microorganisms of each group were chosen:

- Gram-positive:
 - o Staphylococcus aureus
 - Listeria monocytogenes
- Gram-negative
 - o Escherichia coli
 - o Salmonella enterica serovar Typhimurium

Listeria monocytogenes is known for causing listeriosis, an infection provoked by the ingestion of contaminated food stuffs (*ID 3*, 2014).

Salmonella species are commonly found in poultry, eggs and even in raw meat and milk. Cross contamination is frequent, leading to severe food poisoning incidents. The mere presence of *Salmonella* species in ready-to-eat foods is considered to be not in accordance (*FNES16 (F13)*, 2014).

LYOPHILIZATION

Lyophilization, also known as freeze-drying, is a drying process used for several years with many applications, including the processing of food and development of drugs (Labconco, 2007), or even the restoration of books or other artifacts damaged by water, and the preservation of specimens for future museum display (Labconco, 2010). However, it is the fact of this process' possibility to be used in the preservation and storage of biological samples (Carvalho *et al.*, 2003), that it is one of the most used methodologies in microbial industry (Miyamoto-Shinohara *et al.*, 2006; Morgan *et al.*, 2006) and in microbial culture collections, including the American Type Culture Collection (ATCC) and the National Collection of Type Cultures (NCTC), that makes it so remarkable.

The advantages associated with this methodology include (Barbosa-Cánovas e Vega-Mercado, 1996):

- the easy reconstitution to the original shape and structure of the product/cell, by simply adding a liquid;
- the fact that this same reconstitution is fairly quick;
- the rehydrated product is similar to the original product, in terms of features;
- the actual porosity of products that were lyophilized enables a faster and complete rehydration than with air dried products.

The two biggest disadvantages of lyophilization are the energy cost and the drying time, both very elevated (Barbosa-Cánovas e Vega-Mercado, 1996).

Lyophilized materials loose a small percentage of its original weight (Barbosa-Cánovas e Vega-Mercado, 1996) and do not need refrigeration (Barbosa-Cánovas e Vega-Mercado, 1996; Costa *et al.*, 2000; Labconco, 2010). This also contributes, logistically speaking, for bigger winnings.

The process of lyophilization consists in two main steps: freezing and drying (Barbosa-Cánovas e Vega-Mercado, 1996).

The principal behind lyophilization is the exclusion of a solvent, usually water, from a frozen product, through sublimation (Castro, Teixeira e Kirby, 1997; Labconco, 2010) in which the frozen solvent goes directly to the gaseous phase without passing through the liquid state (Labconco, 2007).

For lyophilization to occur, there are three separate parts of the process that need to be completed. These are prefreezing, primary drying and secondary drying (Labconco, 2010; Morgan *et al.*, 2006).

Prefreezing

Before drying, samples must be frozen in order to sublimation can later occur.

Freezing can be done separately from drying, commonly at -80°C, prior handling the freeze dryer, or inside the freeze dryer chamber (Figure 7) if the equipment is prepared for such (Morgan *et al.*, 2006).

FIGURE 7 Lyophilizer equipped with a freezing chamber. Equipment property of Controlvet ALS.

How fast or slow a microbial culture is frozen, is a matter of massive importance. A slow cooling translates into the formation of large crystals extracellularly (Ramaswamy e Marcotte, 2006), causing harm to the cells membrane or eventual death due to the lack of ability to repair after desiccation (Morgan *et al.*, 2006). A rapid cooling means that the numerous crystals are formed with a very small size, both intra and extracellularly, not causing a significant injury to the cells (Morgan *et al.*, 2006; Ramaswamy e Marcotte, 2006). Therefore, the aim when freezing, is a rapid cooling to obtain small ice crystals and an amorphous state (Barbosa-Cánovas e Vega-Mercado, 1996).

In Figure 8, a schematic of the difference between slow cooling and fast cooling is illustrated. Ice crystals are represented in black and cells in white. It is clear to see that with slow freezing, cells are deformed due to the increasing size of the ice crystals. As for rapid freezing, the crystals formed are so small in size that they are not even distinguishable in the figure. It is the small size of the ice that allows the cell structure to be maintained practically intact (Ramaswamy e Marcotte, 2006).

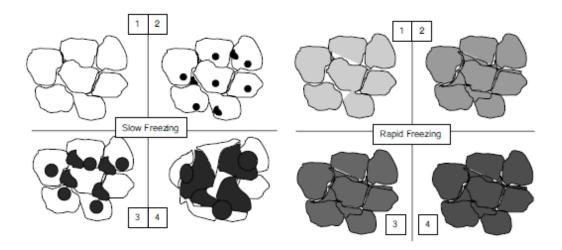


FIGURE 8 Scheme representing the difference of slow and rapid freezing (Ramaswamy e Marcotte, 2006).

When lyophilizing, it is important for samples (microbial cells) to be in a complete frozen state; however, it can be difficult to know when that state is reached or even which temperature is needed for the frozen state to be achieved. This is the point where the knowledge of the term "eutectic temperature" comes in hand. To understand this concept, the notion of eutectic product must first be revised.

The most part of products to be lyophilized are comprised in water, or any other solvent, and a solute. An eutectic product is, basically, a mixture of solutes that freezes at lower temperatures than the solvent (Labconco, 2010). This means that at a certain temperature, the sample may seem completely frozen because its solvent is frozen, but the rest of the components of the sample are not, leading to the erroneous idea that the sample is ready to be lyophilized.

This term can also be applied to cells, since water represents 80 to 90% of the whole cell (Pelczar, Chan e Krieg, 1996). Thereby, the term "eutectic temperature" refers to the temperature at which the frozen state is reached in all constituents of the eutectic sample (Labconco, 2010); thus, when the intention is to lyophilize cells, it is important that the prefreezing at an appropriate temperature happens in order for the eutectic temperature is achieved and the sample becomes correctly and uniformly frozen.

Primary drying

In this second phase, the frozen moisture in the sample is extracted by sublimation via reduction of the dryer chamber's pressure to below the vapor pressure of the ice within the sample (Barbosa-Cánovas e Vega-Mercado, 1996; Morgan *et al.*, 2006); the result being a dry and intact sample.

In primary drying, there are two very important criteria that require attention: temperature and pressure (Labconco, 2010).

Water molecules naturally migrate from higher pressure points to lower pressure points. Vapor pressure and temperature are two connected components. This is why when drying, for the water molecules to go from the frozen product to the water collector, it is required that the water/cold collector (Figure 9) is at a lower temperature than the frozen sample (Labconco, 2010).

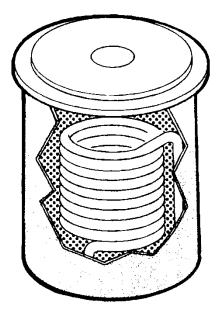


FIGURE 9 Illustration of a collecting system used for the extraction of frozen moisture of the sample (Labconco, 2010).

It is very important for a balance between the temperature that keeps the product integrity and the temperature that maximizes the vapor pressure of the product to exist.

Figure 10 illustrates a phase diagram. As a matter of security, samples are commonly frozen below their eutectic temperature (A). For lyophilization to start, pressure is lowered and the temperature is slightly raised (B) in order for the water molecules can migrate to the water collector. For lyophilization to proceed correctly is essential for the vacuum pump to lower the pressure around the product (C) and for the water collector's temperature (D) to be lower than the product temperature (Labconco, 2010).

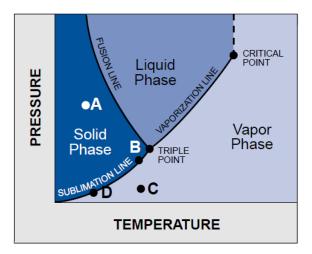


FIGURE 10 Diagram phase (Labconco, 2010).

The initial rate of drying is quite high because the resistance to heat or mass flux is low, but with time, a resistive layer starts to build up around the material, slowing the process down (Barbosa-Cánovas e Vega-Mercado, 1996). Figure 11 illustrates the rate of the drying process in lyophilization.

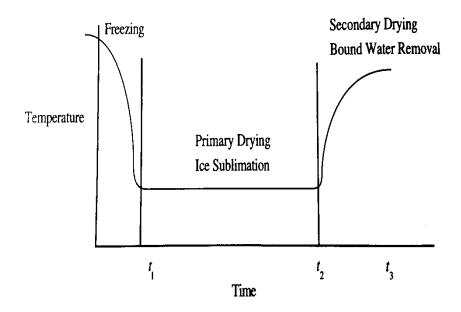
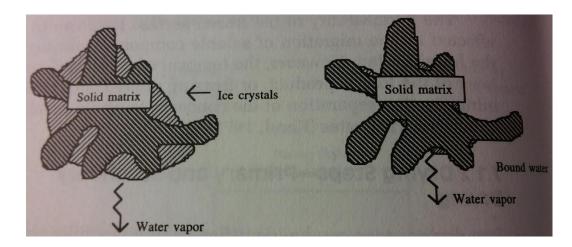



FIGURE 11 Lyophilization stages presented in a graphic time/temperature (Barbosa-Cánovas e Vega-Mercado, 1996).

Secondary drying

The second drying starts when no more unbound water is in the sample -all the ice has sublimated- and the moisture lies in the partially bound water of the drying material (Barbosa-Cánovas e Vega-Mercado, 1996; Labconco, 2010).

FIGURE 12 Difference between primary and secondary drying, respectively in the figure (Barbosa-Cánovas e Vega-Mercado, 1996).

This process is necessary to reduce the moisture content to optimum values (Labconco, 2010), being those values as low as 2% (Barbosa-Cánovas e Vega-Mercado, 1996).

Secondary drying can take up to 1/3 of the entire lyophilization time (Barbosa-Cánovas e Vega-Mercado, 1996; Labconco, 2010), making this the reason why it is a process with energy costs.

Figure 12 illustrates the difference between primary and secondary drying, for a better understanding of the process itself.

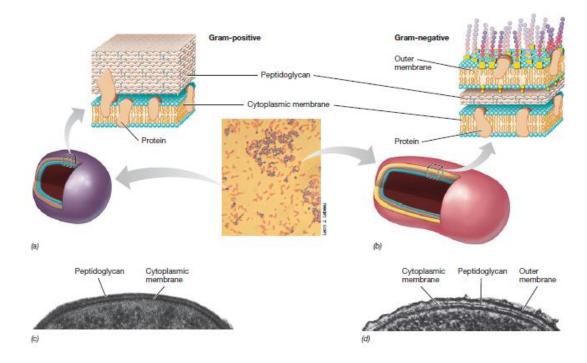
CRYOPROTECTIVE MEDIA

Bacterial cell survival during lyophilization depends on several factors, including the initial cell concentration, the cryoprotective medium, rehydration and storage terms (Costa *et al.*, 2000; Otero, Espeche e Nader-Macías, 2007). Intrinsic factors like genus, species, cell wall composition can affect the way bacteria act during lyophilization, translating in a higher or lower cell concentration after this process (Carvalho *et al.*, 2004; Otero, Espeche e Nader-Macías, 2007).

Of all the above mentioned, probably the one factor with most relevance in the lyophilization process success, is the composition of the cryoprotective medium (Hubálek, 2003). The addition of an adequate cryoprotective increases survival as is showed in the studies performed in *Pantoea agglomerans* by Costa et al. 2000, or in *Enterococcus* spp. by Carvalho et al. 2003.

In 2000's Costa et al. study, different additives were tested as cryoprotectives against injuries endured during lyophilization. Five different groups of additives were examined; the best results were achieved with sugars suspensions. Inside the sugars group, different sugars were tested, being the best results trehalose at 5%, followed by sucrose at 10% concentration. Because of the elevated cost of trehalose, its use becomes limited, thus making it sucrose the best option.

The summary presented by Hubálek in 2003 mentions skim milk, at varying concentrations, sometimes in combination with other substances, being used successfully as a protective agent in lyophilization processes.


Morgan *et al.* (2006) arrives at the conclusion that the most efficient cryoprotectives are indeed a mixture of sugars and proteins; it is therefore possible to combine a protein like skim milk with an inexpensive sugar such as sucrose, to create a good cryoprotective agent.

THE CELL WALL OF BACTERIA

The cell wall of bacteria can be considered a complex structure (Tortora, Funke e Case, 2010) responsible for numerous functions such as the maintenance of the cell shape and rigidity (Madigan *et al.*, 2009; Tortora, Funke e Case, 2010).

The bacteria cell wall is mainly composed of peptidoglycan, a disaccharide that can form a network alone or in composition with other components (Lacasse, 1995; Madigan *et al.*, 2009; Tortora, Funke e Case, 2010).

Bacteria species can be divided in gram-positive and gram-negative, according with the cell wall composition (Madigan *et al.*, 2009). In gram-positive bacteria, peptidoglycan composes almost 90% of the cell wall, making it a homogenous rigid structure (Figure 13 a) and c)) (Lacasse, 1995; Madigan *et al.*, 2009; Tortora, Funke e Case, 2010). As for gram-negative species, the cell wall has a thinner sheet of peptidoglycan (Lacasse, 1995; Madigan *et al.*, 2009; Tortora, Funke e Case, 2010) and is more complex, having also an outer membrane, composed of lipids and polysaccharides, primarily responsible for keeping the structure of the cell (Figure 14 b) and d)) (Madigan *et al.*, 2009).

FIGURE 13 Cell walls of bacteria. (a, b) Schematics of gram-positive and gram-negative cell walls. (c, d) Transmission electron micrographs of gram-positive and gram-negative cell walls. Adapted from Madigan *et al.*, 2009.

Gram-positive and gram-negative differences in the cell wall can affect the bacteria's ability to endure in the environment, its nutritional requirements and many other physiological functions (Lacasse, 1995). In Table 3, a summary of the principle differences between gram-positive and gram-negative bacteria is presented.

Feature	Gram-positive	Gram-negative
Peptidoglycan layer	Thick	Thin
Outer membrane	Absent	Present
Resistance to physical disruption	High	Low
Resistance to drying	High	Low
Nutritional needs	Complex	Simple
Resistance to osmotic shock	High	Low

TABLE 3 Comparison of the main characteristics between gram-positive and gram-negative cell walls. Adapted from Lacasse, 1995; Tortora, Funke e Case, 2010.

Gram-negative species, because of their thinner peptidoglycan layer and complex composition (with the presence of the outer membrane), the resistance to physical

disruption and drying is lower, but because of their cell wall complexity, they are more resistant to digestive enzymes and to several antibiotics. Gram-positive bacteria, because of their thick peptidoglycan layer, have a higher resistance to mechanical and osmotic shocks, and elevated resistance to drying, electing lyophilization as one of the best preservation processes (Tortora, Funke e Case, 2010).

SCOPES AND OBJECTIVES

Controlvet ALS Group (Figure 14) started as Controlvet Segurança Alimentar providing test services to the food industry in the field of food microbiology, diagnosis and immunological tests. Along the years, Controlvet became a reference in Portugal. In 2015, Controlvet was acquired by ALS (Australian Laboratory Services), promoting a faster growth in the food sector in the Iberian Peninsula.

FIGURE 14 Controlvet ALS Group logos. Provided by Controlvet ALS.

As mentioned before, in late 2014 the International Standard ISO 11133 was published. This standard says that for every batch of medium produced, a performance test should be done with a determined control microorganism. This presents a problem on the amount of control microorganisms needed once, on a daily-basis, a laboratory of food safety, produces multiple batches.

ISO 11133:2014 also emphasizes the fact that for such performance tests, accordingly to function and method of control, there is an inoculum level to respect, making this a time-costing measure for laboratories, requiring them to do serial dilutions.

The production of lyophilized reference stock cultures is not new, however there are several problems associated with the acquisition of reference stock cultures. They are highly expensive, generally unstable, and the way the transportation occurs can cause changes in the product. Not only will be important and of relevance for Controlvet ALS to cause a great impact on the market, but also, it will allow a bigger economic sustainability to the company.

Due to the fact control microorganisms need to be representative of their species, the use of reference strains for every performance test is economically unviable, and lyophilization is one of the recommended procedures to preserve reference stock cultures, rises the opportunity to create a protocol to produce reference stock cultures with the correct inoculum level.

This project aims, with collaboration of Controlvet ALS, to start the development of a protocol intended for the commercialization of lyophilized reference stock cultures.

Listeria monocytogenes and *Salmonella* Typhimurium are two pathogenic microorganisms whose presence in ready-to-eat foods is considered to be nonconforming, according with *Commission Regulation (EC) No 2073*, 2005. Due to the importance and danger of these microorganisms, a major amount of tests for the detection of these bacteria is performed in food safety laboratories. Reason why, it is important the immediate development of lyophilized reference stock cultures for the realization of performance testes in culture media used for the detection of the referred microorganisms.

In this work, viability studies to the gram-positive bacteria *S. aureus* and *L. monocytogenes* and to the gram-negative bacteria *E. coli* and *Salmonella* Typhimurium, are performed with different cryoprotective agents – skim milk + 10% sucrose, nutrient broth no2 + 20% glycerol and sucrose 10%. A stability study with skim milk + 10% sucrose as a protective agent is done to the gram-positive bacteria *Staphylococcus aureus*, as well as, three stability studies with skim milk + 10% sucrose as a cryoprotectant is conducted with *Escherichia coli* and *Staphylococcus aureus*.

MATERIALS AND METHODS

VIABILITY STUDIES

Viability studies are meant to understand the behavior of the different cells to lyophilization, while changing some variables such as cryoprotective medium or bacterial species.

In total, seven viability studies were conducted, with three different cryoprotective agents: skim milk + 10% sucrose, nutrient broth no2 + 20% glycerol and a suspension of sucrose at 10%.

E. coli and *S. aureus* were submitted to lyophilization with skim milk + 10% sucrose as a cryoprotective agent. Lyophilization was repeated with nutrient broth no2 + 20% glycerol as a cryoprotective. *E. coli* and *Salmonella enterica* serovar Typhimurium, two gram-negative bacteria, were subjected to lyophilization with a solution of sucrose at 10% and *Listeria monocytogenes*, a gram-positive bacteria, was lyophilized with skim milk + 10% sucrose as a cryoprotective agent.

Microorganisms

All the microorganisms used in the study were obtained from the reference stock culture stored at -20°C in Controlvet ALS's Laboratory in Tondela. Originally, the references strains were obtained from a culture collection, as referenced in Table 4.

Microorganism	Culture Collection Number	WDCM number
Escherichia coli	ATCC 25922	00013
Staphylococcus aureus	ATCC 6538	00032
Listeria monocytogenes serovar 4b	ATCC 13932	00021
Salmonella enterica serovar Typhimurium	ATCC 14028	00031

 TABLE 4 Microorganisms used in viability studies.

Cell culture preparation

Culture preparation was the same for the different microorganisms, in the viability studies.

After thawing the reference stock culture, with a 10 μ l loop, a TSA plate was inoculated in order to get isolated colonies. The TSA plate was left to incubate at 37°C, overnight. Past that, 1 colony was put in a test tube with nutrient broth no2 (NB2) (Biokar, Allonne, FR), an enrichment media intended for microbial growth, at 37°C, overnight, with occasional shaking for a better cell spreading. Finally, 1 ml of the broth with the microorganism of interest was suspended in 9 ml of the cryoprotective agent to be tested. This suspension, after vortex, was distributed in sterilized cryotubes, suitable to the lyophilization process.

Cell concentration calculation

Before lyophilizing, is essential to know the initial cell concentration. To do so, tenfold dilutions were made using triptone-salt broth (TS) (Biokar, Allonne, FR), a diluent. Dilutions made, 0.1 ml of each dilution was inoculated in PCA (Biokar, Allonne, FR) by incorporation. The plates were left to incubate at 37°C, overnight, and the number of cfu was counted. In order to know how many cfu were in the cryotube before lyophilizing, the following equation was used.

EQUATION 1 Equation used to calculate initial cell concentration.

$$N_i = \frac{V_c \times n \times D}{V_i}$$

 N_i = initial cell concentration

 V_c = volume of suspension in the cryotube

n= number of cfu counted in the Petri dish

D= dilution in which the cfu count was made

 V_i = volume of suspension inoculated

Cryoprotective media preparation

The suspensions of cryoprotectives were prepared with distilled water.

For the skim milk + 10% sucrose suspension, to 50 ml of distilled water, 1 g of skim milk powder (Molico, Nestlé) and 5g of sucrose were added. To produce the NB2 + 20% glycerol, 6.25 g of NB2 (Biokar, Allonne, FR) were added to 200 ml of distilled water, followed by 50 ml of glycerol. To prepare the 10% sucrose solution, 5 g of sucrose were added to 50 ml of distilled water.

After correct homogenization of the suspensions, they all were sterilized at 121°C for 15 min.

Lyophilization

For each viability test, 6 cryotubes were filled with 200 μ l of the bacterial suspension with the cryoprotective agent. Of the 6 vials, 3 were used as samples.

For a proper lyophilization, is important to leave a gap between the vial and the lid (Figure 15), in order for sublimation to occur inside the cryotube.

FIGURE 15 Example of a cryotube with a gap between the lid and the vial for sublimation to occur inside it.

The cryotubes were placed in the freezing chamber of the lyophilizer and the refrigeration mode was activated manually. The samples were left to freeze for 2h, reaching the temperature of -53°C. Past the 2h refrigeration, vacuum was switched on, and the samples were left 24h at 0.045 mBar to lyophilize.

After the 24h in vacuum, this was switched off. To properly close the cryotubes, the samples were set in the clear stoppering chamber (Figure 16), the vacuum was again activated and once it reached 0.060 mBar, the cryotubes were mechanically closed. Once the gap between the lid and the vial was shut, the lyophilizer was turned off.

FIGURE 16 Clear stoppering chamber where cryotubes are closed in vacuum. Property of Controlvet ALS.

To ensure higher levels of security, both to the operator and to the sample – to minimize possible entry to the vial of humidity – a metallic cap was put over the vial's lid and sealed (Figure 17).

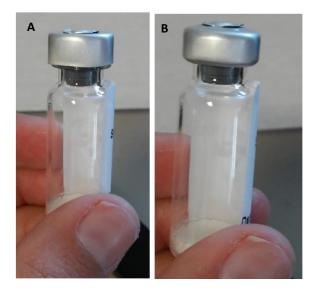


FIGURE 17 A) Cryotube with unsealed metallic cap. B) Cryotube with already sealed metallic cap.

Rehydration and final cell concentration

After lyophilization, the samples were immediately rehydrated to their original volume with NB2 and homogenized in the vortex.

To record the final cell concentration, a series of tenfold dilutions were made and inoculated in PCA medium by incorporation. These plates were then incubated at 37°C, overnight.

To calculate the final cell concentration, after lyophilization, Equation 2 was used.

EQUATION 2 Equation applied to calculate the cell concentration, after lyophilization.

$$N_f = \frac{V_c \times n \times D}{V_i}$$

 N_f = final cell concentration

 V_c = volume of suspension in the cryotube

n= number of cfu counted in the Petri dish

D= dilution in which the cfu count was made

 V_i = volume of suspension inoculated

STABILITY STUDIES

The stability study aims to do a description over time of the cells' concentration after lyophilization.

The first study was conducted with skim milk + 10% sucrose as cryoprotective agent and *S. aureus* (Table 4) as the microorganism test. The last two studies were performed in *E. coli* and *S. aureus* (Table 4) with three separate lyophilization processes, both with skim milk + 10% sucrose as protective agent.

All the stability studies had the same cell culture preparation, cryoprotective media preparation and lyophilization as described previously in the Viability studies. Regarding storage, in the first study the lyophilized cultures were placed at 2 to 8°C, while for the last two studies the cryotubes were left at room temperature.

Rehydrations

For the first study, every two weeks following lyophilization, a rehydration to the original volume with NB2 of three samples was made, as well as tenfold dilutions were plated in PCA and BP egg yolk (Biokar, Allonne, FR), a selective medium intended for the detection and enumeration of *S. aureus*.

In the last three stability studies, every two weeks, three samples were rehydrated with NB2 to their original volume. Tenfold dilutions were made and plated in PCA and BP egg yolk in the case of *S. aureus*, and in PCA and TBX (Biokar, Allonne, FR), in the case of *E. coli*.

To know the cell concentration at each time, in every stability study, Equation 2 was used.

STATISTICAL ANALYSIS

A comparison between the same species of bacteria in different cryoprotective mediums, and between different species in the same cryoprotective agent was made with the respective mean and standard deviation. For pre-lyophilization, data was retrieved once, while for post lyophilization, data was collected three times.

To verify if there were any significant differences between the same species of bacteria in different cryoprotective mediums, and between different species in the same cryoprotective agent, the t-test was applied to the difference of cell concentration before and after lyophilization. With a P-value below 0.05, the null hypotheses (no significant differences between the same species of bacteria in different cryoprotective mediums, and no significant differences between different species in the same cryoprotective agent) were rejected, favoring the alternative hypotheses (there is significant differences between the same species of bacteria in different cryoprotective mediums, and there is significant differences between different species in the same cryoprotective agent).

For the first stability study, to track *S. aureus* concentration after lyophilization, for every t (time analyzed), mean and standard deviation were collected for both PCA and BP egg yolk. To verify if there were any significant differences between culture media (PCA vs. BP egg yolk) the t test was, once again, applied. If the P-value was below 0.05 the null hypothesis (no significant differences between culture media) would be rejected; otherwise the null hypothesis would be maintained (meaning there is significance in the difference between culture media).

For the last three stability studies also cell concentration over time was analyzed. Mean and standard deviation at each time, for both selective and non-selective media, in *S. aureus* and *E. coli*, were collected.

Student t-test is a hypothesis test that compares medium values of two normal populations. The t-test statistics allows you to take an objective decision on the hypothesis you are investigating (Pestana e Velosa, 2010).

RESULTS

VIABILITY STUDIES

Comparison of cryoprotective agents

The results of cell concentration for the different cryoprotective agents, before and after lyophilization, are presented in Figures 18 to 20.

In Figure 18, cell concentration before and after lyophilization is presented for *E. coli*, *S. aureus* and *L. monocytogenes* with skim milk + 10% sucrose as a cryoprotective agent. Log cfu/200 µl for *E. coli*, *S. aureus* and *L. monocytogenes* with skim milk + 10% sucrose before and after lyophilization are 6.61, 6.60, 6.69 and 5.65 ± 0.20 , 6.21 ± 0.72 , 6.74 ± 0.08 , respectively. The difference between *E. coli* and *S. aureus*, as well as, between *S. aureus* and *L. monocytogenes* is not statistically significant (P > 0.05), while the difference between *E. coli* and *L. monocytogenes* has statistical significance (P < 0.05).

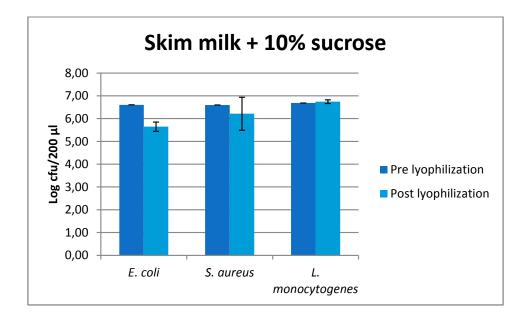


FIGURE 18 Comparison in Log cfu/200 µl, of cell concentration before and after lyophilization, with skim milk+10% sucrose as cryoprotective.

In Figure 19, cell concentration before and after lyophilization is presented for *E*. *coli* and *S. aureus*, with the cryoprotective agent NB2 + 20% glycerol. Log cfu/200µl

for *E. coli* and *S. aureus*, before and after lyophilization, are 6.99, 6.75 and 3.97 ± 0.58 , 6.07 ± 0.04 , respectively. The difference between *E. coli* and *S. aureus* is statistically significant (P < 0.05).

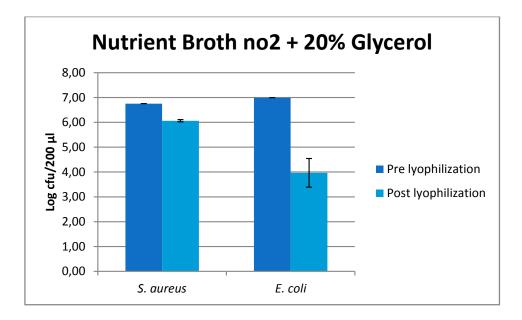


FIGURE 19 Comparison of *S. aureus* and *E. coli* cell concentration, before and after lyophilization, with nutrient broth no2 + 20% glycerol as a cryoprotective agent.

In Figure 20, the cell concentration pre lyophilization and post lyophilization is presented for *Salmonella* Typhimurium and *E. coli*, with the cryoprotective medium, sucrose 10%. Log cfu/200 µl for *Salmonella* Typhimurium and *E. coli*, before and after lyophilization, are 6.82, 6.87 and 5.76 \pm 0.03, 4.52 \pm 0.34, respectively. The difference between *Salmonella* Typhimurium and *E. coli* is also statistically significant (P < 0.05).

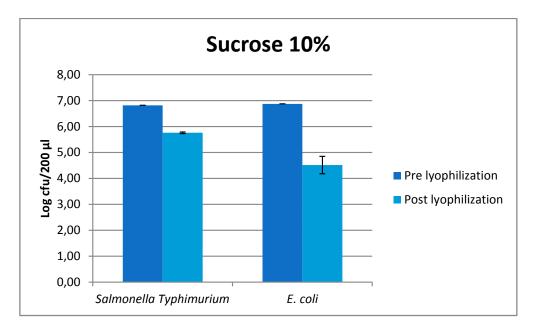


FIGURE 20 Cell concentration, pre and post lyophilization of *Salmonella* Typhimurium and *E. coli*, with the solution of sucrose 10% as cryoprotective medium.

Comparison of E. coli and S. aureus in different cryoprotective agents

The results of the viability studies of *E. coli* and *S. aureus* in the different cryoprotective media are summarized in Figures 21 and 22.

In Figure 21, a comparison of the different cryoprotective agents in which *E. coli* was lyophilized is displayed. Comparing the difference between pre and post lyophilization, the different results of *E. coli* lyophilized with skim milk + 10% sucrose and NB2 + 20% glycerol, as well as, skim milk + 10% sucrose and sucrose 10%, are statistically significant (P<0.05). On the other hand, the results of *E. coli* lyophilized with sucrose 10%, are not statistically significant (P>0.05).

FIGURE 21 Cell concentration, before and after lyophilization, of *E. coli* in skim milk + 10% sucrose, nutrient broth no2 + 20% glycerol and sucrose 10%.

In Figure 22, data relating *S. aureus* lyophilization in skim milk + 10% sucrose and in NB2 + 20% glycerol are presented. Once again it is the difference between pre and post lyophilization cell concentration that is used for comparison. The results of lyophilization with skim milk + 10% sucrose and with NB2 + 20% glycerol, are not statistically significant (P>0.05).

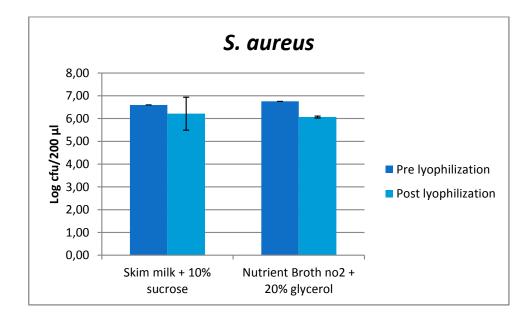


FIGURE 22 Comparison of *S. aureus* cell concentration, before and after lyophilization, in skim milk + 10% sucrose and in nutrient broth no2 + 20% glycerol.

STABILITY STUDIES

The averages of three determinations and respective standard deviation of the first stability study performed in *S. aureus* after lyophilization, in which the cell concentration is registered over time, is presented in Figure 23. For each reconstitution, tenfold dilutions were plated in PCA and BP egg yolk, in parallel. A comparison between the results obtained in PCA and in BP egg yolk was made, being those differences not statistically significant (P>0.05).

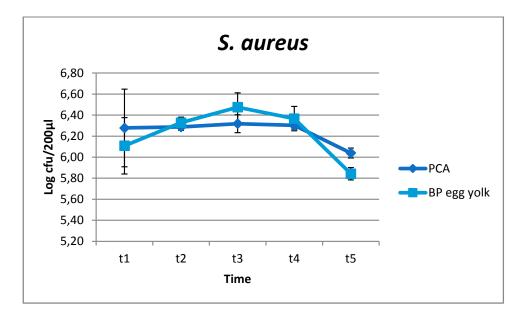


FIGURE 23 S. aureus cell concentration over time, inoculated in parallel, in PCA and BP egg yolk.

For the last two stability studies, the mean and standard deviation of three determinations was registered over time, for both *E. coli* (Figures 24 and 25) and *S. aureus* (Figure 26 and 27).

In all the three lyophilizations performed with *E. coli* as test microorganism, the reconstitutions executed involved the concretization of tenfold dilutions which were then plated in PCA and TBX. At all times, in the three studies, mean and standard deviation were calculated and are presented in Figure 25 for PCA and Figure 26 for TBX data. For the three studies, the starting cell concentration prior to lyophilization (pre lyoph.), is also shown.

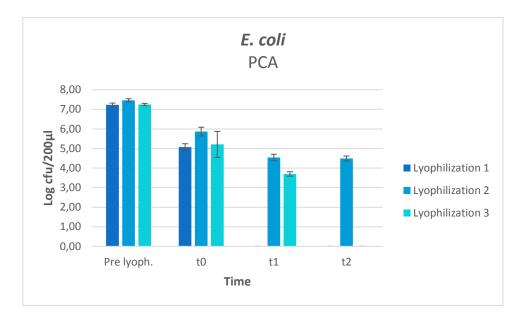


FIGURE 24 E. coli cell concentration over time, inoculated in PCA.

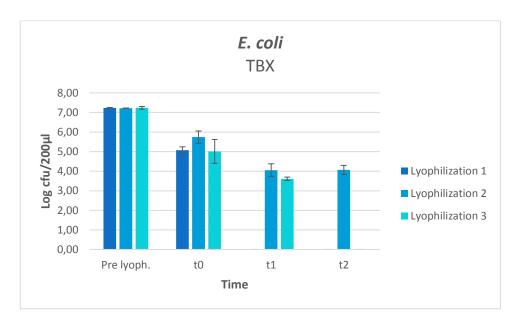


FIGURE 25 E. coli cell concentration over time, inoculated in TBX.

In *S. aureus* case, the reconstitutions over time were also made for all three studies. The tenfold dilutions needed were conducted and inoculated in in parallel in PCA and BP egg yolk. Mean and standard deviation were collected in every reconstitution for the three studies performed with *S. aureus*, for PCA (Figure 26) and BP egg yolk (Figure 27). Once again, cell concentration before lyophilization for the three *S. aureus* studies in the two media, is also figured in the graphics.

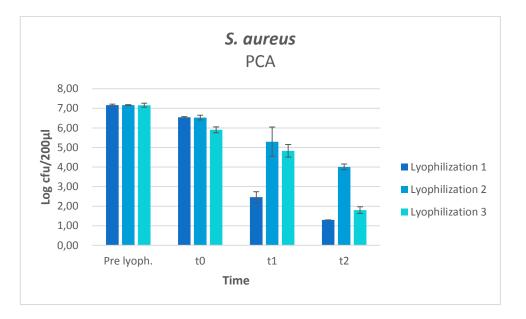


FIGURE 26 S. aureus cell concentration over time, inoculated in PCA.

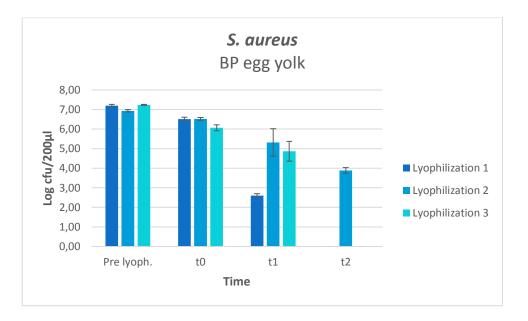


FIGURE 27 S. aureus cell concentration over time, inoculated in BP egg yolk.

DISCUSSION

STABILITY STUDIES

S. aureus is a gram-positive bacteria (Madigan *et al.*, 2009). This group is known for its greater ability to survive lyophilization (Conrad *et al.*, 2000; Miyamoto-Shinohara *et al.*, 2006) mainly because of their cell wall composition – rich in peptidoglycan layers (Lacasse, 1995; Madigan *et al.*, 2009; Tortora, Funke e Case, 2010). Because positive results were expected, *S. aureus* cell concentration, after being lyophilized with skim milk + 10% sucrose was studied, to try to understand its behavior after lyophilization over large periods of time.

Relating storage, it is noteworthy that microbial cultures were left at refrigeration temperatures. Although lyophilization is a process known for the production of products which storage can be done at room temperature (Barbosa-Cánovas e Vega-Mercado, 1996; Costa *et al.*, 2000; Labconco, 2010), several authors suggest that in the particular case of lyophilized microbial cultures, these must be kept at refrigeration temperatures (Carvalho *et al.*, 2004; Miyamoto-Shinohara *et al.*, 2006; Morgan *et al.*, 2006) to ensure maximum viability during storage.

With lyophilization, *S. aureus* concentration was expected to suffer a decrease in viability (Carvalho *et al.*, 2003; Miyamoto-Shinohara *et al.*, 2006) followed by a stabilization during storage (Carvalho *et al.*, 2003; Conrad *et al.*, 2000; Miyamoto-Shinohara *et al.*, 2006). In this experiment, cell concentration remained stable, around 6 Log cfu/200 μ l, confirming the expectations predicted in literature.

In all data collections, inoculations were made in two different culture media: PCA and BP egg yolk. This procedure was due to ensure that if there were any kind of contamination, BP egg yolk's data would be reliable. Although in every reconstitution, sterility tests have been conducted and ISO 11133:2014 states that selective media compared with non-selective media have a $P_R \ge 0.50$ (i.e. the culture medium has a recoverability of cfu greater than or equal to 0.50), and non-selective media compared with non-selective media have a $P_R \ge 0.70$ (i.e. the culture medium has a recoverability of cfu greater than or equal to 0.70), the decision to compare PCA and BP egg yolk data using the t-test, was made. Therefore, PCA and BP egg yolk's difference in medium productivity is not considered statistically significant (P>0.05), which means that the differences registered in both media, are not related to the recoverability/productivity of media, but most probably with the intrinsic variability of the method. In true, there are several sources of uncertainty incremented in a method, being the main sources, the operator (especially if said operator has little practice), time, equipment, culture media and reagents used (*ISO/TS 19036*, 2006).

Because the results obtained in the first stability study were promising, the idea to initiate a more complete study that would allow evaluating cell concentration after lyophilization, over time, of two bacteria, *S. aureus* (gram-positive) and *E. coli* (gram-negative), emerged.

The choice of these two microorganisms lies in the need to compare bacteria of the two gram groups. Gram-positive bacteria, as stated above, have a higher capacity of survival to the lyophilization process (Conrad *et al.*, 2000; Miyamoto-Shinohara *et al.*, 2006) due to the cell wall composition, high in peptidoglycan layers (Lacasse, 1995; Madigan *et al.*, 2009; Tortora, Funke e Case, 2010). Gram-negative bacteria, on the other hand, have a reduced peptidoglycan layer (Lacasse, 1995; Madigan *et al.*, 2009; Tortora, Funke e Case, 2010). Gram-negative bacteria, on the other hand, have a reduced peptidoglycan layer (Lacasse, 1995; Madigan *et al.*, 2009; Tortora, Funke e Case, 2010), conferring, theoretically, a lower resistance to lyophilization (Miyamoto-Shinohara *et al.*, 2006).

This study consisted in performing three independent lyophilizations, with one week apart from each other. The cultures were lyophilized in the same conditions as the previous stability study, with skim milk + 10% sucrose as the cryoprotective agent. After lyophilization, the cryotubes were left at room temperature.

Lyophilization is a process known for its advantage of, products and microbial cultures that underwent lyophilization, do not need refrigeration (Costa *et al.*, 2000; Labconco, 2010). Carvalho *et al.* (2003) confirms the latest information in his study when cultures are left at room temperature during storage.

Taking a first look at *S. aureus*, it was expected that, like the previous study, there was a decrease in cell concentration with the lyophilization process, followed by a stabilization of said cell concentration. However, the latest description was not observed. Effectively, there was an initial minor decrease in cell concentration, justified by the lyophilization, but during storage, cell concentration decreased significantly

(Figure 26). The accentuated decline in cell concentration during storage can only be explained by the fact that the microbial cultures were kept at room temperature and not at refrigeration temperatures like the first stability study.

In truth, there are a few studies reporting the need to keep lyophilized microbial cultures at refrigeration temperatures as is the case of Carvalho *et al.* (2004), Miyamoto-Shinohara *et al.*, (2006) and Morgan *et al.* (2006). Also interlaboratory studies, commonly presented as lyophilized cultures, come with instructions to storage the lyophilized microbial cultures between 2°C and 8°C (*Standard scheme*, 2015).

Most likely, the fact that lyophilized cultures were storage at room temperature explains the accentuated decline in viability, up until 6 Log.

On the other hand, comparing the three lyophilizations it is possible to note:

- in the first lyophilization, cell concentration decreased between 6.5 and 5.2 Log, depending on culture media;
- in the second study/lyophilization, both the selective and non-selective culture media registered a decline in biomass of only 2.5 Log;
- the third study, registered a generalized decline of 6 Log.

Given that the three studies, performed in exactly the same conditions, have had so disparate results, reveals some level of imprecision linked to the method.

Turning now the attention to the studies performed with *E. coli*, a gram-negative, it was expected this bacteria had less survivability to lyophilization, when compared to *S. aureus*, a gram-positive (Miyamoto-Shinohara *et al.*, 2006). The expectation was confirmed (Table 7), having been noticed a reduction of 2 Log, comparatively with 0.5 - 1 Log observed with *S. aureus*.

Once again, during storage, there was a clear decrease in cell concentration, mainly in studies 1 and 3, having the counts reached 0 cfu. These results should also be associated with the fact that storage happened at room temperature.

It is also evident that the three lyophilizations, although in the same conditions, produced different results; especially the second study. Evaluating the graphic of Figure 25 and the data of Table 7, becomes clear that the lyophilization method used in this studies is probably still imprecise.

VIABILITY STUDIES

E. coli and S. aureus in skim milk + 10% sucrose

After the first data collection of *S. aureus* stability study, the idea of comparing the surviving ability to lyophilization between a gram-positive, *S. aureus*, and a gram-negative, *E. coli*, emerged. Thus, the viability study of *S. aureus* and *E. coli* with skim milk + 10% sucrose proceeded.

Analyzing Figure 19 it is seen that in the case of *E. coli*, there is a significant difference in cell concentration before lyophilization and after lyophilization having had an average reduction of 1 Log in cell concentration. In the case of *S. aureus*, the difference between before and after lyophilization is not significant when the standard deviation after lyophilization is taken into account.

These results were expected. In the study carried out by Miyamoto-Shinohara *et al.* (2006), a comparison of the survival of different gram-positive and gram-negative species to lyophilization, was conducted. In these experiments, gram-positive species revealed a better capacity of survival to lyophilization by showing more elevated values of cell concentration after lyophilization, when compared with gram-negative species.

The higher survivability of gram-positive is due to the composition of its cell wall (Miyamoto-Shinohara *et al.*, 2006; Tortora, Funke e Case, 2010). The fact that gram-positive cell walls are rich in peptidoglycan layers (Lacasse, 1995; Madigan *et al.*, 2009; Tortora, Funke e Case, 2010), allows them to endure high stress processes such as lyophilization.

A comparative study amongst *E. coli* and *S. aureus* was made, to know if with the cryoprotective media used, skim milk + 10% sucrose, there were any statistically significant differences in the decreasing viability. The results were both surprising and positive as there is no statistically significant differences (P>0.05), meaning that skim milk + 10% sucrose might be a very good option as a cryoprotective agent for lyophilization in future experiments with both gram-positive and gram-negative bacteria.

E. coli and S. aureus in nutrient broth no2 + 20% glycerol

Completed the study with *S. aureus* and *E. coli* in skim milk + 10% sucrose, the opportunity to repeat the viability study of *S. aureus* and *E. coli* but this time with NB2 + 20% glycerol as cryoprotective medium, emerged. This cryoprotective agent is used in Controlvet ALS, and other laboratories, to preserve microbial cultures at freezing temperatures.

From Figure 20, it is very clear that with NB2 + 20% glycerol, *S. aureus* viability, but mainly *E. coli*'s, suffers a marked decrease with lyophilization. *S. aureus* concentration declines practically 1 Log while *E. coli* viability decreases approximately 3 Log.

With NB2 + 20% glycerol as a cryoprotective medium, the expected differences between gram-positive and gram-negative bacteria in terms of survival to lyophilization (Miyamoto-Shinohara *et al.*, 2006), become more apparent. This statement gains conviction when the t-test result states that the difference between *E. coli* and *S. aureus* lyophilized with NB2 + 20% glycerol is statistically significant (P<0.05).

Comparing skim milk + 10% sucrose with NB2 + 20% glycerol, becomes clear that *E. coli* (Figure 19) has better chances of surviving to lyophilization if skim milk + 10% sucrose is used as cryoprotective medium (P<0.05). On the other hand, in the case of *S. aureus* (Figure 20), the differences in viability between the two cryoprotective media are not significant (P>0.05), reason why in future, any of the two cryoprotectives could be used.

L. monocytogenes in skim milk + 10% sucrose

In parallel with *E. coli* and *S. aureus* viability study in NB2 + 20% glycerol, a viability study in *L. monocytogenes* with skim milk + 10% sucrose was carried out. The reason for this study lies in the need to compare the results obtained with *S. aureus* (lyophilized with skim milk + 10% sucrose), with another gram-positive bacteria, *L. monocytogenes* (*ID 3*, 2014), a pathogenic species considered to be a risk to public health when limits are exceeded (*Commission Regulation (EC) No 2073*, 2005, *FNES22 (F19)*, 2014).

By lyophilizing, *L. monocytogenes* has not suffered any lost in viability counts. This should be explained, once again, by cell wall composition – abundant in peptidoglycan layers (Lacasse, 1995; Madigan *et al.*, 2009; Tortora, Funke e Case, 2010).

Observing Figure 19, to compare *L. monocytogenes* with *S. aureus* is inevitable once both species belong to the same group of bacteria and both were lyophilized with the same cryoprotective. The differences observed are of no significance (P>0.05).

A comparison between *L. monocytogenes* and *E. coli*, both lyophilized with skim milk + 10% sucrose, by way of a t-test concludes that the differences stated between the two bacteria are statistically significant (P<0.05). The same assessment among *E. coli* and *S. aureus* dictated that there were no significant differences.

From here one can extrapolate that among the cells lyophilized in skim milk + 10% sucrose, from the gram-positives; *L. monocytogenes* is most probably the one with better or more resistance mechanisms to lyophilization, and amongst gram-positives and gram-negatives, the latest are the least resistant to the lyophilization process.

E. coli and Salmonella Typhimurium in sucrose 10%

Concomitantly with the viability studies of *E. coli* and *S. aureus* in NB2 + 20% glycerol and the study of *L. monocytogenes* in skim milk + 10% sucrose, two more studies were performed with a solution of sucrose at 10% as protective media and *E. coli* and *Salmonella* Typhimurium as objects of study.

The constant mention in literature of the use of sugars as protective agents in lyophilization (Carvalho *et al.*, 2004; Costa *et al.*, 2000; Hubálek, 2003; Leslie *et al.*, 1995; Morgan *et al.*, 2006) raised the interest in experimenting a sugar solution as cryoprotective media in a lyophilization. Sucrose 10% choice, in particular, was inspired by the results obtained by Costa *et al.* (2000).

The choice of the bacteria was based in the raw results of *E. coli*'s viability study with skim milk + 10% sucrose. The apparent worse survivability of *E. coli* in skim milk + 10% sucrose was essential for the decision to test the new protective media only in gram-negative species. The additional choice of *Salmonella* Typhimurium relates to the fact that this is a highly pathogenic bacteria, considered to be a hazard to public health

(*Commission Regulation (EC) No 2073*, 2005, *FNES16 (F13)*, 2014) reason why its control at the level of food safety needs to be very strict (*Commission Regulation (EC) No 2073*, 2005).

Assessing Figure 21, after lyophilization with sucrose 10%, *E. coli* suffers a decrease in its cell concentration of 2.5 Log. *Salmonella* Typhimurium viability, on the other hand, decreases approximately 1 Log. An immediate comparison between the two species allows reaching the conclusion that although both *E. coli* and *Salmonella* Typhimurium are gram-negative bacteria, the latest seems to resist better to lyophilization. This information is confirmed by the result of the t-test, giving to the differences demonstrated between *E. coli* and *Salmonella* Typhimurium a statistical significance (P<0.05).

At last, the comparison of the results of *E. coli* lyophilized with sucrose 10% with the results of *E. coli* lyophilized in skim milk + 10% sucrose and in NB2 + 20% glycerol is inevitable (Figure 22). From the three protective agents, skim milk + 10% sucrose is definitely the one that allows less lost in *E. coli* viability when the bacteria is lyophilized and this may be due to the ability of the proteins contained in skim milk to form a protective coat around the cells (Carvalho *et al.*, 2004), helping skim milk + 10% sucrose to become the most efficient cryoprotective media (Hubálek, 2003; Morgan *et al.*, 2006); it also helps the fact that sugars such as sucrose, have the ability to preserve protein structure, and consequently, their function, enabling the proteins present in skim milk to create the protective coat.

CONCLUSION

This project aims to initiate the development of a protocol for the production of lyophilized reference stock cultures. This work, is based on *ISO 11133*, 2014 that states that performance tests should be done to every batch of culture media, using specific control microorganisms for every medium, with an adequate inoculum level.

It was first assessed the behavior of *S. aureus*, after lyophilization with skim milk + 10% sucrose, over time (stability study). The cellular concentration was always kept stable, around 6 Log cfu/200 μ l, thus giving the first evidence that the lyophilization process truly allows the preservation of microbial cultures over extensive periods of time.

Taking into account the good results obtained with *S. aureus* stability study, the survivability during storage of *E. coli* and *S. aureus* after three separate lyophilizations was evaluated.

After lyophilization and during storage, cultures were left at room temperature, unlike the previous stability study. The weak results obtained allow to reach the conclusion that in the particular case of lyophilized microbial cultures, is essential to storage them at refrigeration temperatures, to guarantee their viability.

Be emphasized that different results were noted amongst the different lyophilizations, although the exact same conditions were applied. A possible explanation for these unexpected results relates with the errors associated with the method and technology.

In the impossibility to evaluate cultures stability over time, it can be highlighted the survivability of *S. aureus* to lyophilization, comparatively with *E. coli*, revealing losses in cell concentration around 1 Log, while *E. coli* had a loss in biomass rounding 2 Log. These results are easily explained by the cell wall composition of both bacteria.

To know the survivability of different bacteria to lyophilization, some variables such as protective media or bacterial species were played with, and multiple viability studies were done. From those studies, it was possible to draw some interesting conclusions. With cryoprotective media NB2 + 20% glycerol, it became clear what already had been mentioned in literature: there are significant differences when lyophilizating gram-positive and gram-negative cells. Because of cell wall composition poor in peptidoglycan, gram-negative cells are not as resistant to lyophilization, suffering heavy losses in their viability, as seen in this study.

From NB2 + 20% glycerol viability studies, one can draw another conclusion. NB2 + 20% glycerol, as protective medium, is very weak. This can be stated when a comparison with other cryoprotective media is made.

The solution of sucrose at 10% was applied as cryoprotective to the gram-negative bacteria, *E. coli* and *Salmonella* Typhimurium. Although both bacteria are from the same group, *Salmonella* Typhimurium has demonstrated a better capacity to resist lyophilization, which should be due to the presence of more cellular protection mechanisms.

E. coli, *S. aureus* and *L. monocytogenes* were lyophilized with skim milk + 10% sucrose. As expected, *E. coli* was the one with most cell concentration loss; while the gram-positive bacteria lyophilization was more successful.

L. monocytogenes compared with *S. aureus*, had a virtually null viability decrease, what should be justified, once again, by the presence of different resistance mechanisms, probably absent in *S. aureus*.

When doing a comparison between all three the protective media used in this work, skim milk + 10% sucrose is definitely the one elected the best cryoprotective media.

In a future continuation of this work, new viability studies could be performed to new microorganisms, using skim milk + 10% sucrose as protective medium; as well as, new stability studies should be done to *L. monocytogenes* and *Salmonella* Typhimurium. Given the contradiction of results due to the imprecision in the method and technology, new stability studies should be performed with *S. aureus* and *E. coli* in order to verify the viability of this project.

BIBLIOGRAPHY

BARBOSA-CÁNOVAS, Gustavo V.; VEGA-MERCADO, Humberto - **Dehydration** of Foods. [S.l.] : Chapman & Hall, 1996. ISBN 0-412-06421-9.

CARVALHO, A S. *et al.* - Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans. **Journal of applied microbiology**. ISSN 1364-5072. 94:6 (2003) 947–52. doi: 10.1046/j.1365-2672.2003.01853.x.

CARVALHO, Ana S. *et al.* - Relevant factors for the preparation of freeze-dried lactic acid bacteria. **International Dairy Journal**. ISSN 09586946. 14:10 (2004) 835–847. doi: 10.1016/j.idairyj.2004.02.001.

CASTRO, H. P.; TEIXEIRA, P. M.; KIRBY, R. - Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying. Journal of Applied Microbiology. . ISSN 1364-5072. 82:1 (1997) 87–94. doi: 10.1111/j.1365-2672.1997.tb03301.x.

Commission Regulation (EC) No 2073. Official Journal of the European Union. 2073/2005 (05-

CONRAD, P. B. *et al.* - Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. **Cryobiology**. . ISSN 0011-2240. 41:1 (2000) 17–24. doi: 10.1006/cryo.2000.2260.

COSTA, E. *et al.* - Effect of protective agents rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freezedrying. **Journal of Applied Microbiology**. . ISSN 13645072. 89:5 (2000) 793–800. doi: 10.1046/j.1365-2672.2000.01182.x.

EN ISO 16140. Microbiology of food and animal feeding stuffs - Protocol for the validsation of alternative methods (02-

EURACHEM - Eurachem Guide: Accreditation for Microbiological Laboratories. ISBN 9789187017926.

FNES16 (F13). Detection of Salmonella species (14-

FNES22 (F19). Detection and enumeration of Listeria monocytogenes and other

Listeria species (14-

HUBÁLEK, Zdenek - Protectants used in the cryopreservation of microorganisms. **Cryobiology**. . ISSN 00112240. 46:3 (2003) 205–229. doi: 10.1016/S0011-2240(03)00046-4.

ID 3. Identification of Listeria species, and other Non-Sporing Gram Positive Rods (except Corynebacterium) (14-

IELAB - **Reference materials catalogue** [Em linha], atual. 2016. [Consult. 2 jul. 2016]. Disponível em WWW:<URL:https://www.ielab.es/userfiles/mrcs-en/index.html>.

ISO 11133. Microbiology of food, animal feed and water — Preparation, production, storage and performance testing of culture media (14-

ISO/IEC 17025. General requirements for the competence of testing and calibration laboratories (05-

ISO/TS 19036. Microbiologie des aliments — Lignes directrices pour l'estimation de l'incertitude de mesure pour les déterminations quantitatives (06-

LABCONCO - User 's Manual FreeZone® Clear Stoppering Chambers

LABCONCO - A Guide to freeze drying for the laboratory

LACASSE, Denise - Introduction à la microbiologie alimentaire. [S.l.] : Les Éditions Saint-Martin, 1995. ISBN 972-771-102-2.

LESLIE, S. B. *et al.* - Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. **Applied and Environmental Microbiology**. ISSN 00992240. 61:10 (1995) 3592–3597.

LIGHTFOOT, N. F.; MAIER, E. A. (EDS.) - Microbiological analysis of food and water: guidelines for quality assurance

MADIGAN, Michael T. *et al.* - **Brock Biology of Microorganisms**. 13th. ed. San Francisco : Benjamin Cummings, 2009. ISBN 978-0-321-64963-8.

MICROBIOLOGICS - KWIK-STIKTM [Em linha], atual. 2016. [Consult. 2 jul. 2016].

Disponível em WWW:<URL:http://microbiologics.com/Products/KWIK-STIK>.

MICROBIOLOGICS - **LYFO DISK**® [Em linha], atual. 2016. [Consult. 2 jul. 2016]. Disponível em WWW:<URL:http://microbiologics.com/Products/LYFO-DISK>.

MIYAMOTO-SHINOHARA, Yukie *et al.* - Survival curves for microbial species stored by freeze-drying. **Cryobiology**. . ISSN 00112240. 52:1 (2006) 27–32. doi: 10.1016/j.cryobiol.2005.09.002.

MORGAN, C. A. *et al.* - Preservation of micro-organisms by drying; A review. Journal of Microbiological Methods. . ISSN 01677012. 66:2 (2006) 183–193. doi: 10.1016/j.mimet.2006.02.017.

OTERO, María Claudia; ESPECHE, María Carolina; NADER-MACÍAS, María Elena -Optimization of the freeze-drying media and survival throughout storage of freeze-dried Lactobacillus gasseri and Lactobacillus delbrueckii subsp. delbrueckii for veterinarian probiotic applications. **Process Biochemistry**. ISSN 13595113. 42:10 (2007) 1406– 1411. doi: 10.1016/j.procbio.2007.07.008.

PELCZAR, Michael J.; CHAN, E. C. S.; KRIEG, Noel R. - Microbiologia - Conceitos e Aplicações. 2. ed. São Paulo : [s.n.]. ISBN 9788578110796.

PESTANA, Dinis; VELOSA, Sílvio - **Introdução à Probabilidade e à Estatística**. 4^a. ed. Lisboa : Fundação Calouste Gulbenkian, 2010. ISBN 978-972-31-1150-7.

RAMASWAMY, Hosahali.; MARCOTTE, Michèle. - Food Processing - Principles and Applications. Boca Raton : [s.n.]. ISBN 1-58716-008-0.

Regulation (EC) No 178/2002. Official Journal of the European Communities (02-

Standard scheme - [Em linha], atual. 2015. [Consult. 4 jul. 2016]. Disponível em WWW:<URL:https://www.gov.uk/government/publications/standard-scheme-sample-instruction-sheets>.

TORTORA, Gerard J.; FUNKE, Berdell R.; CASE, Christine L. - Microbiology: An introduction. 10th. ed. San Francisco : Benjamin Cummings, 2010. ISBN 9788578110796.

ANNEXES

ANNEX I, COMMISSION REGULATION (EC) NO 2073/2005

L 338/8		EN	Official Journal of the European Union	22.12.2005
			ANNEX I	
			Microbiological criteria for foodstuffs	
	Chapter	1.	Food safety criteria	9
	Chapter	2.	Process hygiene criteria	15
		2.1.	Meat and products thereof	15
		2.2.	Milk and dairy products	18
		2.3.	Egg products	21
		2.4.	Fishery products	22
		2.5.	Vegetables, fruits and products thereof	23
	Chapter	3.	Rules for sampling and preparation of test samples	24
		3.1.	General rules for sampling and preparation of test samples	24
		3.2.	Bacteriological sampling in slaughterhouses and at premises producing minced meat and meat preparations	24

221	2 2005
2.1	

EN

		Micro-organisms/their	Sampling	Sampling-plan (1)	Limits (²)	Analytical reference	0
	rood category	toxins, metabolites	u	c	m	method (³)	Stage where the criterion applies
1.1.	Ready-to-eat foods intended for infams and ready-to-eat foods for special medical purposes (4)	Listeria monogrogenes	10	0	Absence in 25 g	EN/ISO 11290-1	Products placed on the market during their shelf-life
1.2.	Ready-to-eat foods able to support the growth of L monogragenes, other than these intended for infants and for starcial	Listeria monocytogenes	5	0	100 cfu/g (⁵)	EN/ISO 11290-2 (⁶)	Products placed on the market during their shelf-life
	medical purposes		5	0	Absence in 25 g (?)	EN/ISO 11290-1	Before the food has left the immediate control of the food business operator, who has pro- duced it
1.3.	Ready-to-eat foods unable to support the growth of L monogreases, other than those intended for infants and for special medical purposes $\{\vartheta, \emptyset\}$	Listeria monoytogenes	5	0	100 chilg	EN/ISO 11290-2 (⁶)	Products placed on the market during their shelf-life
1.4.	 Minced meat and meat preparations intended to be eaten raw 	Salmonella	5	0	Absence in 25 g	EN/ISO 6579	Products placed on the market during their shelf-life
1.5.	Minced meat and meat preparations made from poultry meat intended to be eaten cooked	Salmonella	5	0	From 1.1.2006 Absence in 10 g From 1.1.2010 Absence in 25 g	EN/ISO 6579	Products placed on the market during their shelf-life
1.6.	Minced meat and meat preparations made from other species than poultry intended to be eaten cooked	Saimonella	5	0	Absence in 10 g	EN/ISO 6579	Products placed on the market during their shelf-life
1.7.	1.7. Mechanically separated meat (MSM) (°)	Saimoneila	5	0	Absence in 10 g	EN/ISO 6579	Products placed on the market during their shelf-life
1.8.	Meat products intended to be eaten raw, excluding products where the manufac- turting process or the composition of the product will eliminate the salmonella risk	Salmonella	S	0	Absence in 25 g	EN/ISO 6579	Products placed on the market during their shelf-life

Chapter 1. Food safety criteria

	Micro-organisms/their	Samplin	Sampling-plan (1)	Limits (2)	Analytical reference	6. 1 A. 4.4
rood caregoly	toxins, metabolites	u	c	m	method (3)	stage where the criterion applies
 Meat products made from poultry meat intended to be eaten cooked 	Salmonella	2	0	From 1.1.2006 Absence in 10 g From 1.1.2010 Absence in 25 g	EN/ISO 6579	Products placed on the market during their shelf-life
1.10. Gelatine and collagen	Salmonella	5	0	Absence in 25 g	EN/ISO 6579	Products placed on the market during their shelf-life
1.11. Cheeses, butter and cream made from raw milk or milk that has undergone a lower heat treatment than pasterirsation $(^{0})$	Salmonella	2	0	Absence in 25 g	EN/ISO 6579	Products placed on the market during their shelf-life
1.12. Milk powder and whey powder $(^{19})$	Salmonella	5	0	Absence in 25 g	EN/ISO 6579	Products placed on the market during their shelf-life
1.13. Ice cream (¹¹), excluding products where the manufacturing process or the com- position of the product will eliminate the salmonella risk	Saimonella	2	0	Absence in 25 g	EN/ISO 6579	Products placed on the market during their shelf-life
 1.14. Egg products, excluding products where the manufacturing process or the com- position of the product will eliminate the salmonella risk 	Saimonella	5	0	Absence in 25g	EN/ISO 6579	Products placed on the market during their shelf-life
 Ready-to-eat foods containing raw egg. excluding products where the manufac- turing process or the composition of the product will eliminate the salmonella risk 	Saimonella	5	0	Absence in 25 g or ml	EN/ISO 6579	Products placed on the market during their shelf-life
1.16. Cooked crustaceans and molluscan shell- fish	Salmonella	5	0	Absence in 25 g	EN/ISO 6579	Products placed on the market during their shelf-life
1.17. Live bivalve molluscs and live echino- derms, tunicates and gastropods	Salmonella	2	0	Absence in 25g	EN/ISO 6579	Products placed on the market during their shelf-life

L 338/10

EN

		67	69						
0. 1 4 4 4 4	Stage where the criterion applies	Products placed on the market during their shelf-life	Products placed on the market during their shelf-life	Products placed on the market during their shelf-life	Products placed on the market during their shelf-life	Products placed on the market during their shelf-life	Products placed on the market during their shelf-life	Products placed on the market during their shelf-life	Products placed on the market during their shelf-life
Analytical reference	method (³)	EN/ISO 6579	EN/ISO 6579	EN/ISO 6579	European screening method of the CRL for Milk (¹³)	EN/ISO 6579	ISO/DTS 22964	ISO TS 16649-3	HPLC (¹⁸)
s (²)	М	in 25 g	in 25 g	in 25 g	cd in 25g	in 25 g	in 10 g	s of flesh and lar liquid	200 mg/kg
Limits (2)	ш	Absence in 25 g	Absence in 25 g	Absence in 25 g	Not detected in 25g	Absence in 25 g	Absence in 10 g	230 MPN/100g of flesh and intra-valvular liquid	100 mg/kg
-plan (¹)	υ	0	0	0	0	0	0	0	2
Sampling-plan (1)	u	2	2	5	2	30	30	1 (¹⁵)	9 (¹⁷)
Micro-organisms/their	toxins, metabolites	Salmonella	Salmonella	Salmonella	Staphylococcal entero- toxins	Salmonella	Enterobacter sakazakii	E.coli (¹⁴)	Histamine
	rood category	1.18. Sprouted seeds (ready-to-eat) (12)	1.19. Pre-cut fruit and vegetables (ready-to-eat)	1.20. Unpasteurised fruit and vegetable juices (ready-to-eat)	1.21. Cheeses, milk powder and whey powder, as referred to in the coagulase-positive staphylococci criteria in Chapter 2.2 of this Annex	1.22. Dried infant formulae and dried dietary foods for special medica purposes intended for infants below six months of age, as referred to in the Enterobacter- iaceae criterion in Chapter 2.2 of this Annex	1.23. Dried infant formulae and dried dietary foods for special medical purposes intended for infants below six months of age, as referred to in the Enterobacter- iaceae criterion in Chapter 2.2 of this Annex	1.24. Live byvalve molluses and live echino- derms, tunicates and gastropods	1.25. Fishery products from fish species as so-clated with a high amount of histidine $^{(16)}$

22.12.2005 EN

montacycle totrue, metabolites n c m M method () method ()	9 9 ving values over m or l ving values over m or l r the following ready-to t e to eliminate L. <i>menosy</i> 1 seeds, 1 seeds, cts cts cts cts cts cts cts cts cts cts	2 2 etween m and M etweet m and M uthority that the p uthority that the p deam the end of 1	m 2000 mg/kg inag/kg inag/kg inag/kg	M 400 mg/kg possible after th	method (³) HPLC (¹⁸) is treatment (e.g. products hea chilg throughout the shelf-life	Products placed on the market during their shelf-life at treated in their final package), at treated in their final package),
Fishery products which have undergome Histamine manufactured from fish species associated with a high amount of histidine (¹⁶) with a high amount of histidine (¹⁶) and the number of ample units or points 1.1-1.24 m=M. The most recent edition of the standard shall be used. The most recent edition of the standard shall be used. For spatial manual and manufactures and fruits, excluding sprutter fields, under orderion is not useful in normal circumstances the branch or packed waters products. Bottled or packed waters so if dirtics, beer, edging sprutter fields, under confectionery, including coord and choices processing effect fields, under confectionery, including coord and choices processing effect in the brance.	9 ving values over m or t r the following ready-to t to eliminate L monoy 1 seeds, fillor products, cts.	2 etween m and M etween m and M beat foods ogenes, when reco ogenes, when reco	2000 mg/kg ntamination is not roduct will not exc	400 mg/kg possible after th	HPLC (²⁵) is treatment (e.g. products hea chilg throughout the shelf-life	Products placed on the market during their shelf-life at treated in their final package),
= number of units comprising the sample: c = number of sample units r points 1.1.1.2.4 m=/M. we most recent edition of the standard shall be used. The most recent edition of the standard shall be used into which have received heat treatment or other processing effect those which have received heat treatment or other processing effect these which have received heat treatment or other processing effect these which have received heat treatment or other processing effect these which have received heat treatment or other processing these, there is no processed vegetables and fruits, excluding sprout bread, biscuits and similar products. bottled or packed waters, soft drinks, beet, citler, wine, spirits and s signat, honey and confectionery, including cocoa and chocolate pro- live breadve molluses.	ving values over m or h ving values over m or h or the following ready-to is eeds, lift products, cts, cts. i 100 che competent a ction of the competent a	etween m and M seat foods bysrus, when reco bysrus, when reco	ntamination is not noduct will not exc	possible after th	is treatment (e.g. products hea totalg throughout the shelf-life	at treated in their final package), . The operator may fix intermediate limi
The points 1.1.2.4 nin-on the most recent edition of the standard shall be used an extrement edition of the standard shall be used guilar resting aganst the criterion is not useful in normal circumstances those which have received heat treatment or other processing effect fresh, uncut and unprocessed vegetables and fruits, excluding sprou- bread, biscuits and similar products. bottled or packed waters, soft drinks, beer, cider, whie, spirits and s signat, honey and confectionery, including cocoa and chocolate pro- live byradive molluses.	or the following ready-to the following ready-to a seeds, filter products, cts, cts, cts following is no excert following is not excert following is not excert	-eat foods ogenes, when reco uthority that the p distorted at the end of 1 distorted	ntamination is not roduct will not exc the shelf-life.	possible after th eed the limit 100	is treatment (e.g. products hea ethologic child in the shelf-life	at treated in their final package), . The operator may fix intermediate limi
 bottled or packed waters, soft drinks, beet, cider, wine, spirits and s sugar, honey and confectionery, including cocca and chocolate proc live bivative moliuxsx. live bivative moliuxsx internon applies if the manufacturer is able to demonstrate, to the state is criterion applies if the manufacturer is able to demonstrate, to the state 	tilar products, tts, ttion of the competent a i 100 cfu/g is not exceed	uthority, that the P led at the end of 1 dismoter	roduct will not exe the shelf-life.	eed the limit 100	chu/g throughout the shelf-life	e. The operator may fix intermediate lim
is criterion applies if the manufacturer is able to demonstrate, to the satis	ction of the competent a [100 cfu/g is not exceed Petri dishes of 90 mm	uthority, that the p led at the end of 1 dismeter	rroduct will not exc the shelf-life.	eed the limit 100	the chu/g throughout the shelf-life	e. The operator may fix intermediate lim
during the process that should be low enough to guarance that the unit of 100 ctug is not exceeded at the end of the shell-inte. 1 ml of inoculum is ulated on a Petri dish of 140 mm diameter or on three Petri dishes of 90 mm diameter.		u di humana.				
This criterion applies to products before they have left the immediate control of the producing food business operator, when he is not able to demonstrate, to the satisfaction of the competent authority, that the product will not exceed the limit of 100 cfu/g throughout the shelf-life.	of the producing food I	pusiness operator,	when he is not able	to demonstrate,	to the satisfaction of the com	petent authority, that the product will 1
Products with pH = 4.4 or a s 0.92, products with pH = 5,0 and a s 0.94, products with a shelf-life of less than five days are automatically considered to belong to this category. Other categories of products can also belong to this category, subject to scientific justification.	products with a shelf-lif	e of less than five o	lays are automatica	∐y considered to	belong to this category. Other	r categories of products can also belong
This criterion applies to mechanically separated meat (MSM) produced with the techniques referred to in Chapter III, paragraph 3, in section V of Annex III to Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin.	he techniques referred to imal origin.	in Chapter III, pai	ragraph 3, in sectio	n V of Annex III	to Regulation (EC) No 853/200	04 of the European Parliament and of
Excluding products when the manufacturer can demonstrate to the satisfaction of the competent authorities that, due to the ripening time and a work the product where appropriate, there is no salmonella risk. Only ice creams containing milk instructions.	ion of the competent au	thorities that, due	to the ripening tir	ne and a of the	product where appropriate, th	here is no salmonella risk.
Preliminary testing of the batch of seeds before starting the sprouting process or the sampling to be carried out at the stage where the highest probability of finding Submerfla is expected	ss or the sampling to b	e carried out at th	e stage where the l	nghest probabilit	y of finding Salmonella is expe	ected.
Reference: Hennekinne et al., J. AOAC Internat. Vol. 86, No 2, 2003. E. coli is used here as an indicator of faecal contamination.						
A pooled sample comprising a minimum of 10 individual animals.						
	yjemaae, romatomaae, 5 laid down in Article 14(omoresostate. 6) of Regulation ()	EC) No 178/2002,	according to wh	ich the whole batch should be	e deemed unsafe, shall not apply.
References 1. Maile P., Valle M., Bouquelet S. Assay of biogenic amines involved in fish decomposition. J. AOAC Internat. 1996, 79, 43-49. 2. Duflos G., Dervin C., Maile P., Bouquelet S. Relevance of matrix effect in determination of biogenic amines in plaite (Planonetes platesa) and whiting (Merlangus merlangus). J. AOAC Internat. 1999, 82, 1097-1101.	lyed in fish decomposit determination of bioger	ion. J. AOAC Inter tic amines in plaic	nat. 1996, 79, 43- e (Pleuronectes plate	49. ssa) and whiting	(Merlangus merlangus), J. AOAC	C Internat. 1999, 82, 1097-1101.

EN

22.12.2005	EN	Official Journal of the European Union	L 338/13
Interpretation of the test results The limits given refer to each sample unit tested, excluding live bivalve molluses and live echinoderns, tunicates and gastropods in relation to testing <i>E. coli</i> , where the limit refers to a pooled sample.	The test results demonstrate the microbiological quality of the batch tested $(^{i})$.	 L mmogragens in ready-to-cat foods intended for infants and for special medical purposes e satisfactory, if the relates observed indicate the absence of the bacterium. unsatisfactory, if the presence of the bacterium is detected in any of the sample units. Lemmogragens in ready-to-cat foods able to support the growth of L mmogragenes before the food has left the immediant control of the producing food business operator when he is not able to demonstrate that the product wall not exceed the limit of 100 chigh throughout the sheet of the bacterium. e satisfactory, if the presence of the bacterium is detected in any of the sample units. unsatisfactory, if all the values observed indicate the absence of the bacterium. unsatisfactory, if all the values observed indicate the absence of the bacterium. e satisfactory, if all the values observed and E. coli in live livelyte mollues: e satisfactory, if any of the values observed and E. coli in live livelyte mollues: e satisfactory, if any of the values are > the limit. e unstitutory, if all the values observed indicate the absence of the bacterium. e satisfactory, if all the values observed indicate the absence of the bacterium. e satisfactory, if all the values observed indicate the absence of the bacterium. e unstitutory, if all the values observed indicate the absence of the bacterium. 	() The test results can be used also for demonstrating the effectiveness of the HACCP or good hygiene procedure of the process.

Stap	Staphylococcal enterotoxins in dairy products:
1	satisfactory, if in all the sample units the enterotoxins are not detected,
L	unsatisfactory, if the enterotoxins are detected in any of the sample units.
Ente	Enterobacter sukazakii in dried infant formulae and dried dietary foods for special medical purposes intended for infants below 6 months of age:
L	satisfactory, if all the values observed indicate the absence of the bacterium,
I	unsatisfactory, if the presence of the bacterium is detected in any of the sample units.
Hist	Histamine in fishery products from fish species associated with a high amount of histidine:
I.	satisfactory, if the following requirements are fulfilled:
	1. the mean value observed is $\leq m$
	2. a maximum of c_{fn} values observed are between m and M
	3. no values observed exceed the limit of M,
I	unsatisfactory, if the mean value observed exceeds m or more than c/n values are between m and M or one or more of the values observed are >M.

EN

		100		2.41.53	/	L			1
	Action in case of unsatisfactory	results	Improvements in slaughter hygiene and review of pro- cess controls	Improvements in slaughter hygtene and review of pro- cess controls	Improvements in slaughter hygiene and review of pro- cess controls	Improvements in slaughter hygiene and review of pro- cess controls	Improvements in slaughter hygiene, review of process controls and of origin of animals	Improvements in slaughter hygiene and review of pro- cess controls, origin of am- mals and of the biosecurity measures in the farms of origin	Improvements in slaughter hygiene and review of pro- cess controls, origin of ani- mals and biosecurity measures in the farms of origin
	Stage where the	criterion applies	Carcases after dres- sing but before chil- ling	Carcases after dres- sing but before chil- ling	Carcases after chilling				
	Analytical reference	method $(^3)$	ISO 4833	ISO 21528-2	ISO 4833	ISO 21528-2	EN/ISO 6579	EN/ISO 6579	EN/ISO 6579
thereof	Limits (²)	М	5,0 log cfu/cm ² daily mean log	2,5 log cfu/cm ² daily mean log	5,0 log cfu/cm ² daily mean log	3,0 log cfu/cm ² daily mean log	Absence in the area tested per carcase	Absence in the area tested per carcase	Absence in 25 g of a pooled sample of neck skin
Meat and products thereof	Limi	ш	3,5 log cfu/cm ² daily mean log	1,5 log cfu/cm ² daily mean log	4,0 log cfu/cm ² daily mean log	2,0 log cfu/cm ² daily mean log	Absence in tested pe	Absence i tested pe	Absence in pooled sam sk
2.1. Meat	Sampling plan (1)	C					2 (%)	5 (%)	7 (%)
	Sampling	n					50 (⁵)	50 (?)	50 (⁵)
	1.	MICTO-OFGAIIISTIIS	Aerobic colony count	Enterobacteriaceae	Aerobic colony count	Enterobacteriaceae	Salmoneila	Saimonella	Saimonella
		rood caregory	2.1.1. Carcases of cattle, sheep, goats and horses (*)		2.1.2. Carcases of pigs (⁶)		2.1.3. Carcases of cattle, sheep, goats and horses	2.1.4. Carcases of pig	2.1.5. Poultry carcases of broilers and turkeys

Chapter 2. Process hygiene criteria

22.12.2005

EN

Official Journal of the European Union

L 338/15

ctory	.	ction ents in of	ction ents in of	ction ants in of	ction ents in of	ction mts in of	g low
Action in case of unsatisfactory	results	Improvements in production hygiene and improvements in selection and/or origin of raw materials	Improvements in production hygiene and improvements in selection addor origin of raw materials	Improvements in production hygiene and improvements in selection and/or origin of raw materials	Improvements in production hygiene and improvements in selection and/or origin of raw materials	Improvements in production hygiene and improvements in selection and/or origin of raw materials	te mean of these log values. ember States or regions havi
Stage where the	criterion applies	End of the manufac- turing process	End of the manufac- turing process	End of the manufac- turing process	End of the manufac- turing process	End of the manufac- turing process	sult and then calculating the salmonella prevalence. M
Analytical reference	method (³)	ISO 4833	ISO 16649-1 or 2	ISO 4833	ISO 16649-1 or 2	ISO 16649-1 or 2	of each individual test re áns Regulation gress made in reducing th
ts (²)	М	5x10° cfu/g	500 cfu/g	5x10 ⁶ cfu/g	500 cfu/g	5 000 cfu/ g or cm ²	king a log value s laid down in t account the pro-
Limits (2)	ш	5x10 ⁵ cfu/g	50 cfu/g	5x10 ⁵ cfu/g	50 cfu/g	500 cfu/g or cm ²	f. lated by first ta s and frequencie der to take into
(plan (¹)	υ	2	7	7	7	7	etween m and M nean log is calci to review in or
Sampling plan (1)	u	ŝ	5 10 1	ν.	10	ν.	grying values b hod. The daily r cordance with th c value is subjec
	Micro-organisms	Aerobic colony count (?)	E.coli (⁸)	Aerobic colony count	E.coli (°)	E.coli (°)	the sample: c = number of sample units giving values between m and M. andrul shall be used. to samples taken by the destructive method. The daily mean log is calculated by first taking a log value of each indivi- to samples taken by the destructive method. The daily mean log is calculated by first taking a log value of each indivi- to samples taken by the destructive subject to review in order to take into account the progress made in r wer c values even before the review.
	Food category	2.1.6. Minced meat		2.1.7. Mechanically separated meat (MSM) (*)		2.1.8. Meat preparations	 n = number of units comprising the sample: c = number of sample units giving values between m and M. For points 2.1.3 — 2.1.5 m=M. The most recent m and Mi apply only to standard shall be used. The most recent m and Mi apply only to consecutive sampling estably mean log is calculated by first taking a log value of each individual test result and then calculating the mean of these log values. The 50 samples are derived from 10 consecutive sampling sessions in accordance with the sampling rules and frequencies laid down in this kegulation. The number of samples where the presence of salmonella is detected. The c value is subject to review in outer to take into account the progress made in reducing the salmonella prevalence. Member States or regions having low salmonella prevalence may use lower c values even before the review.

L 338/16

EN

2
resul
test
the
of
tion
retai
terp
E

The limits given refer to each sample unit tested, excluding testing of carcases where the limits refer to pooled samples.

The test results demonstrate the microbiological quality of the process tested.

Enterobacteriaceae and aerobic colony count in carcases of cattle, sheep, goats, horses and pigs:

- satisfactory, if the daily mean log is < m,
- -- acceptable, if the daily mean log is between m and M,
- unsatisfactory, if the daily mean log is >M.

Salmonella in carcases:

- -- satisfactory, if the presence of Salmonella is detected in a maximum of c/n samples,
- unsatisfactory, if the presence of Salmonella is detected in more than c/n samples.

After each sampling session, the results of the last ten sampling sessions are assessed in order to obtain the n number of samples.

E. coli and aerobic colony count in minced meat, meat preparations and mechanically separated meat (MSM):

- satisfactory, if all the values observed are < m,
- acceptable, if a maximum of c/n values are between m and M, and the rest of the values observed are < m,

L 338/	/18		EN	Official Jour	nal of the E	uropean Union		22.12.2005
	Action in case of unsatisfactory	results	Check on the efficiency of heat- treatment and preven- tion of recontamination as well as the quality of raw materials	Improvements in production hygiene and selection of raw materials	Improvements in production hygiene and selection of raw materials. If values >10 ⁵ ctufg	are detected, the cheese batch has to be tested for staphy- lococcal enterotoxins.	Improvements in production hygene. If values > 10' cfu/g are detected, the cheese batch has to be tested for staphy- lococcal enterotoxins.	Improvements in production hygiene and selection of raw materials
	Stage where the	o criterion applies	End of the manufac- turing process	At the time during the manufacturing process when the E. <i>all</i> count is expected to be highest (⁹)	At the time during the manufacturing process when the	number of staphylo- cocci is expected to be highest	End of the manufac- turing process	End of the manufac- turing process
	Analytical reference	method (³)	ISO 21528-1	ISO 16649- 1 or 2	EN/ISO 6888-2	EN/ISO 6838-1 or 2	EN/ISO 6888-1 or 2	ISO 16649- 1 or 2
oducts	s (²)	М	5 cfu/ml	1 000 cfu/ g	10 ⁵ cfu/g	1 000 cfu/ g	100 cfu/g	100 cfu/g
Milk and dairy products	Limits (2)	ш	<1 cftifml	100 cfu/g	104 cfu/g	100 cfu/g	10 cfu/g	10 cfu/g
2.2. Milk	plan (1)	c	5	2	5	2	5	2
	Sampling plan (1)	u	μ γ ι.	LO I	S	ν.	ν.	s
		Micro-organisms	Emterobacteriaceae	E.oli ()	Coagulase-positive staphylococci	Coagulase-positive staphylococci	Coagulase-positive staphylococci	E.coli (*)
		Food category	2.2.1. Pasteurised milk and other pasteurised liquid dairy products (⁴)	2.2.2. Cheeses made from milk or whey that has undergone heat treatment	2.2.3. Cheeses made from raw milk	2.2.4. Cheeses made from milk that has undergone a lower heat treatment than pasternisation $(?)$ and ripened cheeses made from milk or whey that has undergone pasternisation or a stronger heat treatment $(?)$	2.2.5. Unripened soft cheeses (fresh cheeses) made from milk or whey that has undergone pasternisation or a stronger heat treatment $\langle \hat{\gamma} \rangle$	2.2.6. Butter and cream made from raw milk or milk that has undergone a lower heat treatment than pasteurisation

71

		Sampling	Sampling plan (1)	Limi	Limits (²)	Analytical reference	Stage where the	Action in case of unsatisfactory
Food category	Micro-organisms	u	υ	ш	М	method (3)	criterion applies	results
2.2.7. Milk powder and whey powder (4)	Enterobacteriaceae	1003	0	10 c	10 cfu/g	ISO 21528- 1	End of the manufac- turing process	Check on the efficiency of heat treatment and preven- tion of recontamination
	Coagulase-positive staphylococci	LA.	6	10 cfu/g	100 cfu/g	EN/ISO 6888-1 or 2	End of the manufac- turing process	Improvements in production hygiene. If values > 10^5 cfu/g are detected, the batch has to be tested for staphylococcal enterotoxins.
2.2.8. Ice cream (*) and frozen dairy desserts	Enterobacteriaceae	2	2	10 cfu/g	100 cfu/g	ISO 21528- 2	End of the manufac- turing process	Improvements in production hygiene
2.2.9. Dried infant formulae and dried dietary foods for special medical purposes intended for infants below six months of age	Enterobacteriaceae	10	0	Absence	Absence in 10 g	ISO 21528- 1	End of the manufac- turing process	Improvements in production hygiene to minimise con- internation. If Enterobacter- iacea are detected in any of the sample units, the batch has to be tested for E, sakazakii and Sathonella
n = number of units comprising the sample: c = number of sample units giving values between m and M. The most recent edition of the standard shall be used. The criterion does not standard shall be used. The criterion does not you to the level of hygien. For there as an indicator for the level of hygien. For there with a renot able to support the growth of <i>E</i> . odi, tit is normally at the end of the ripening period, and for cheeses which are able to support the growth of <i>E</i> . odi, it is normally at the end of the ripening period. For there where the manufacturer can demonstrate, to the satisfaction of the competent authorities, that the product does not pose a risk of staphylococcal entertoxins. Only the creases orbiting milk nytredents.	the sample: c = number of sample units giving values between m and M. andard shall be used. roducts intended for further processing in the food industry. r for the level of hygiene. support the growth of E. odi, the E. adi count is usually the highest at the begulaturer can demonstrate, to the satisfaction of the competent authoritie ingredients.	s giving values b in the food indi unt is usually th ction of the cor	etween m and ustry. e highest at the f	M. M. beginning of the 1 ties, that the pro	ripening period,	and for cheeses which are ose a risk of staphylocoo	able to support the growth	of E. coli, it is normally at the end o

22.12.2005

EN

Enterobacteriaceae in dried infant formulae and dried dietary foods for special medical purposes intended for infants below six months of age: Interpretation of the test results unsatisfactory, if one or more of the values observed are >M or more than c/n values are between m and M. acceptable, if a maximum of c/n values are between m and M, and the rest of the values observed are < m, unsatisfactory, if the presence of the bacterium is detected in any of the sample units E. coli, enterobacteriaceae (other food categories) and coagulase-positive staphylococci: satisfactory, if all the values observed indicate the absence of the bacterium, The test results demonstrate the microbiological quality of the process tested. satisfactory, if all the values observed are < m, The limits given refer to each sample unit tested. Ĩ ï I l Ĩ

22.12.20		EN		Official Journal of the European Union	L
Action in case of unsatisfactory	results	Checks on the efficiency of the heat treatment and prevention of recontamina- tion			
Stage where the	criterion applies	End of the manufac- turing process			
Analytical reference	method (²)	ISO 21528-2			
its	М	100 cfu/g or ml		esults	
Egg products Limits	m	10 cfu/g or ml	231	Interpretation of the test results the values observed are ≤ m, 1 values are between m and M.	
2.3. plan (¹)	0	2	tween m and M	interpretation the values obs	
Z Sampling plan (¹)	u	S	giving values be	rrest of han c/r	
	Micro-organisms	Enterobacteriaceae	= number of sample units { e used.	ed. al quality of the process e < m, are between m and M, a ues observed are >M or	
	Food category	2.3.1. Egg products	() $n = n$ umber of units comprising the sample: $c = n$ number of sample units giving values between m and M. () The most recent edition of the standard shall be used.	Interpretation of the test re- The limits given refer to each sample unit tested. The test results demonstrate the microbiological quality of the process tested. Enterobacteriaceae in egg products: satisfactory, if all the values observed are $<$ m, unstitisfactory, if one or more of the values observed are $>$ m or more than c/n values are between m and M,	

122		EIN			 ,	100000	i uie	Laro		1.1.1.1.1.1.1.1	1000				
Action in case of unsatisfactory	results	Improvements in production hygiene	Improvements in production hygiene												
Stage where the	criterion applies	End of the manufac- turing process	End of the manufac- turing process												
Analytical reference	method (²)	ISO TS 16649-3	EN/ISO 6888-1 or 2												
its	М	10 cfu/g	1 000 cfu/ g		esults						vI.				Ţ
Limits	в	1 cfu/g	100 cfu/g	5	Interpretation of the test results					erved are ≤ m	tween m and l			erved are < m	tween m and h
plan (1)	c	2	2	ween m and M.	nterpretation			:		the values obs	values are bet	ıellfish:		the values obs	values are bet
Sampling plan (1)	и	5	5	riving values bet	-		tested.	luscan shellfisl		d the rest of	more than c/n	d molluscan sl		id the rest of	more than c/n
1	Micro-orgamisms	E.colì	Coagulase-positive staphylococci	= number of sample units g		.pc	al quality of the process	ced crustaceans and moll	_< m,	re between m and M, ar	tes observed are >M or 1	I cooked crustaceans and	< m,	re between m and M, ar	tes observed are >M or 1
	rood category	2.4.1. Shelled and shucked products of cooked crustaceans and molluscan shellfish		(1) $n = number$ of units comprising the sample, $c = number$ of sample units giving values between m and M. (3) The most recent edition of the standard shall be used.		The limits given refer to each sample unit tested.	The test results demonstrate the microbiological quality of the process tested.	E. coli in shelled and shucked products of cooked crustaceans and molluscan shellfish:	— satisfactory, if all the values observed are $\leq m$,	— acceptable, if a maximum of c/n values are between m and M, and the rest of the values observed are \leq m,	unsatisfactory, if one or more of the values observed are >M or more than c/n values are between m and M.	Coagulase-positive staphylococci in shelled and cooked crustaceans and molluscan shellfish:	— satisfactory, if all the values observed are < m,	— acceptable, if a maximum of c/n values are between m and M, and the rest of the values observed are < m,	unsatisfactory, if one or more of the values observed are >M or more than c/n values are between m and M.

Official Journal of the European Union

22.12.2005

L 338/22

EN

Food category Micro-organisms Sampling plan (¹) Limits 2.5.1. Pre-cut fruit and vegetables (ready-to- cat) E.coli 5 2 1000 cftr/g 1000 cftr/g 12	7. T
Mcro-organisms n c ready-to- E.coli 5 2	Analytical reference Stage where the Action in case of unsatisfactory
ready-to- E.coli 5 2	criterion applies
	100 cfu/g 1 000 cfu/ ISO 16649- 1 or 2 Manufacturing pro- g cess hygiene, selection of raw materials
2.5.2. Unpartentised fruit and vegetable jutices Exoli 5 2 100 cfu/g 1 000 cfu/ 1 (ready-to-eat)	100 cfu/g 1 000 cfu/ ISO 16649- 1 or 2 Manufacturing pro- g cess hygiene, selection of raw materials
() $n = number of units comprising the sample; c = number of sample units giving values between m and M.(2) The most sector advision of the standard shall he used$	

Interpretation of the test results

The limits given refer to each sample unit tested.

The test results demonstrate the microbiological quality of the process tested.

E. coli in pre-cut fruit and vegetables (ready-to-eat) and in unpasteurised fruit and vegetable juices (ready-to-eat):

— satisfactory, if all the values observed are $\leq m$,

- acceptable, if a maximum of c/n values are between m and M, and the rest of the values observed are \leq m,

-- unsatisfactory, if one or more of the values observed are >M or more than c/n values are between m and M.

EN

Chapter 3. Rules for sampling and preparation of test samples

3.1. General rules for sampling and preparation of test samples

In the absence of more specific rules on sampling and preparation of test samples, the relevant standards of the ISO (International Organisation for Standardisation) and the guidelines of the Codex Alimentarius shall be used as reference methods.

3.2. Bacteriological sampling in slaughterhouses and at premises producing minced meat and meat preparations

Sampling rules for carcases of cattle, pigs, sheep, goats and horses

The destructive and non-destructive sampling methods, the selection of the sampling sites and the rules for storage and transport of samples are described in standard ISO 17604.

Five carcases shall be sampled at random during each sampling session. Sample sites should be selected taking into account the slaughter technology used in each plant.

When sampling for analyses of enterobacteriaceae and aerobic colony counts, four sites of each carcase shall be sampled. Four tissue samples representing a total of 20 cm² shall be obtained by the destructive method. When using the non-destructive method for this purpose, the sampling area shall cover a minimum of 100 cm² (50 cm² for small ruminant carcases) per sampling site.

When sampling for Salmonella analyses, an abrasive sponge sampling method shall be used. The sampling area shall cover a minimum of 100 $\rm cm^2$ per site selected.

When samples are taken from the different sampling sites on the carcase, they shall be pooled before examination.

Sampling rules for poultry carcases

For the *Salmonella* analyses, a minimum of 15 carcases shall be sampled at random during each sampling session and after chilling. A piece of approximately 10 g from neck skin shall be obtained from each carcase. On each occasion the neck skin samples from three carcases shall be pooled before examination in order to form $5 \ge 25$ g final samples.

Guidelines for sampling

More detailed guidelines on the sampling of carcases, in particular concerning the sampling sites, may be included in the guides to good practice referred to in Article 7 of Regulation (EC) No 852/2004.

Sampling frequencies for carcases, minced meat, meat preparations and mechanically separated meat

However, when justified on the basis of a risk analysis and consequently authorised by the competent authority, small slaughterhouses and establishments producing minced meat and meat preparations in small quantities may be exempted from these sampling frequencies.

In the case of sampling for Salmonella analyses of minced meat, meat preparations and carcases, the frequency can be reduced to fortnightly if satisfactory results have been obtained for 30 consecutive weeks. The salmonella sampling frequency may also be reduced if there is a national or regional salmonella control programme in place and if this programme includes testing that replaces the described sampling. The sampling frequency may be further reduced if the national or regional salmonella control programme demonstrates that the salmonella prevalence is low in animals purchased by the slaughterhouse.

As regards the sampling of minced meat and meat preparations for E. ωli and aerobic colony count analyses and the sampling of carcases for enterobacteriaceae and aerobic colony count analyses, the frequency may be reduced to fortnightly testing if satisfactory results are obtained for six consecutive weeks.

The food business operators of slaughterhouses or establishments producing minced meat, meat preparations or mechanically separated meat shall take samples for microbiological analysis at least once a week. The day of sampling shall be changed each week to ensure that each day of the week is covered.

ANNEX E, ISO 11133:2014

ISO 11133:2014(E)

Annex E

(normative)

Test microorganisms and performance criteria for culture media commonly used in food microbiology

This annex gives information on the culture medium, culture conditions, test microorganisms, culture collection number of test organisms and the expected reactions when performance testing of culture media is carried out.

Specific strains have been selected for testing in order to ensure consistency between laboratories and to facilitate the demonstration of differences between media (batch to batch, between manufacturers). These strains have been fully evaluated to ensure their suitability and consistency in performance.

Where more than one strain is listed for each aspect of performance testing (productivity, selectivity, specificity), the minimum strains to be used have been indicated by the letter b. Commercial or noncommercial suppliers are expected to use additional strains e.g. those shown in <u>Table E.1</u> to further ensure the quality of the culture media they supply.

Table E.1 has been established taking into account the control strains used in the European Pharmacopoeia (EP) and the recommendations for culture media for food microbiology from the Working Party of the International Committee on Food Microbiology and Hygiene (ICFMH). These criteria shall be included in specific International Standards when prepared or revised in the future. A validated batch of culture medium is one which has shown satisfactory performance. The strain numbers specified in Table E.1 are those from the catalogue of universal strain identifiers compiled by the World Data Centre for Microorganisms (WDCM).^[20] This catalogue contains details of the reference strains represented by each WDCM number and contact details of the culture collections. All cited media are described within European and International Standards.

If strain variability is encountered, investigate the effect of the culture medium (e.g. by obtaining the same medium from a different manufacturer), and obtain an additional reference culture from the culture collection in which it was originally deposited. Users are requested to give relevant feedback on strain variability to WG 5, *Culture media*, of ISO/TC 34/SC 9 through the secretariat of ISO/TC 34/SC 9.

The footnotes used in <u>Table E.1</u> are the following:

- ^a Full names of media abbreviated terms are given in Table E.2.
- b Strains to be used as a minimum.
- c Make reference to the reference strain catalogue available on http://www.wfcc.info for information on culture collection strain numbers and contact details.
- d Strain free of choice; one of the strains has to be used as a minimum.
- e L: liquid medium, S: solid medium, SS: semi-solid medium.
- f Growth/turbidity is categorized as: 0 no growth/no turbidity; 1 weak growth/slight turbidity; 2 — growth/good turbidity (see 7.4.1.2, 8.4.1).
- g Escherichia coli WDCM 00013 is given by the specific standard.
- $h = Escherichia \ coli$ WDCM 00013 is a strong β -d-glucuronidase producer and WDCM 00202 is a weak β -d-glucuronidase producer.
- i Some national restrictions and directions may require the use of a different serovar. Make reference to national requirements relating to the choice of Salmonella serovars.
- j In case of both quantitative and qualitative use for the medium, only results of the quantitative tests are required (see <u>Table F.1</u>).
- k More details for quality control of MSRV medium including final concentration of the inoculum and criteria are given in ISO 6579.
- ¹ If nutrient agar is used for two or three of these different applications: perform the *Salmonella* growth test as a minimum (if laboratory tests for this organism).
- ^m If BPW is used for two or three of these different applications: perform the *Salmonella* enrichment test as a minimum (if laboratory tests for this organism).
- ⁿ Choose the strain(s) according to the method for which TSA is used as a reference medium.

© ISO 2014 - All rights reserved

					Selective medi	Selective media for enumeration of microorganisms	croorganisi	ms				_
Media ^a	Typee	Microorgan- ism	Inter- national Standard	Function	Incubation	Control strain	WDCM number ^c	Reference media	Method of control	Criteria	Characteristic reaction	
Agar Listeria according to	s	Listeria monocytogenes	ISO 11290-2 Productiv- ity	Productiv- ity		Listeria monocytogenes 4b	00021b	чот	Quantita-		Blue green colonies with opaque	
Ottaviani and Agosti						Listeria monocytogenes 1/2a	00109	WC I	tive	c,∪≤ _A 7	halo	
				Selectivity	(44 ± 4) h/ (37 ± 1) °C	Escherichia coli ^d	00012 or 00013			Total inhihi-		
						Enterococcus faecalis ^d	00009 or 00087	I	Qualitative	Qualitative tion (0)	I	
				Specificity		Listeria innocua	00017	1	Qualitative	Ι	Blue green colonies without opaque halo	-
Baird- Parker	S	Coagulase-posi- ISO 6888-1 tive staphylo- cocci	ISO 6888-1	Productiv- ity	(24 ± 2) h to (48 ± 2) h/ $(37 \pm °1)$ °C	Staphylococcus aureus	00034 ^b 00032	TSA	Quantita- tive	$P_{\rm R} \ge 0.5$	Black or grey colonies with clear halo (egg yolk clearing reaction)	
				Selectivity	[48±2] h/ [37±1] °C	Escherichia colid	00012 00013	Ţ	Qualitative	Total inhibi- tion (0)	L	-
				Specificity	(24 ± 2) h to (40 ± 2) h to	Staphylococcus saprophyticus	00159b		onitestino.		Black or grey colonies without egg	_
					(48±2) II/ (37±1) °C	Staphylococcus epidermidis	00036	[Qualitative	I	yolk clearing reaction	
BGBLB	г	Coliforms	ISO 4831	Productiv- ity		Escherichia coli	00012 ^b 00013			Turbidity (2)f		-
					(24 ± 2) h to [48 ± 2] h/	Citrobacter freundii	00006	I	Quairtauive	and gas in Durham tube	taas production and turbidity	
				Selectivity	(30±1)°C	Enterococcus faecalisd	28000	L	Qualitative	Partial inhibition without gas production	l	
CFC	s	Pseudomonas spp.	ISO 13720	Productiv- ity		Pseudomonas fiuorescens	00115b	TSA	Quantita-	P _R ≥ 0.5	I	_
					(44 ± 4) h/ (25 ± 1) °C	Pseudomonas fragi	00116		tive			_
				Selectivity		Escherichia coli ^d	00012 00013	T	Qualitative	Total inhibi- tion (0)	Ţ	

46

		Characteristic colony/propagules	accol utiling to each species			ſ		Characteristic colony/propagules	according to each species			I	Gas production and turbidity	Т	Black colonies	No blackening
		$P_{\rm R} \ge 0.5$			N	Qualitative No grow til		$P_{\rm R} \ge 0.5$				NO BLOW III	Turbidity (2) ^f and gas in Durham tube	No growth	$P_{\rm R} \ge 0,5$	I
		Quantita-	avn			Quairtative		Quantita-	avin			Quairtative	Qualitative	Qualitative	Quantita- tive	Qualitative
		SDA			10 E	I		SDA						I	TSA or other non- selective medium for anaer- obes	T
6	00058b	00182 ^b	00183	00184	00012 or 00013g	00003	00058b	00053b	00054	00181	00012 or 000138	00003	00012 ^b 00013	00025	00080 00080	00012 00013
Table E.1 (continued)	Saccharomyces cerevisiae	Wallemia sebi	Aspergillus restrictus	Eurotium rubrum	Escherichia coli	Bacillus subtilis subsp. spizizenii	Saccharomyces cerevisiae	Aspergillus brasiliensis	Candida albicans	Mucor racemosus	Escherichia coli	Bacillus subtilis subsp. spizizenii	Escherichia coli	Pseudomonas£ aeruginosa	Clostridium perfringens	Escherichia coli ^d
Ta				5 d/ (25 ± 1) °C					E dame /	25±1)°C			(24±2) h to (48±2) h/ (44±1)°C		(24±3) h to (48±2) h/ (37±1) °C anaerobic	aunospnere
	Productiv- ity				Selectivity		Productiv- ity				Selectivity		Productiv- ity	Selectivity	Productiv- ity	Specificity
	ISO 21527-2 Productiv- ity						ISO 21527-1						ISO 7251		ISO 15213	
	Yeasts and moulds						Yeasts and moulds						Escherichia coli ISO 7251		Sulfite-reducing ISO 15213 bacteria	
	s						S						Г		S	
	DG18						DRBC						EC		IS ("TS")	

© ISO 2014 - All rights reserved

Characteristic colonies according to each species Greyish, flat and moist, sometimes with metallic sheen Yellow colonies without precipita-tion halo with precipitation halo Gas production and turbidity Gas production and turbidity T 1 1 Pink colonies Turbidity (2)^f and gas in Durham tube Turbidity (2)^{fi} and gas in Durham tube Total inhibi-tion (0) Total inhibi-tion (0) $P_{\rm R} \ge 0, 5$ No growth No growth $P_{\rm R} \geq 0,7$ $P_{\rm R} \ge 0.5$ 1 I. Quantita-tive Qualitative Qualitative Qualitative Qualitative Qualitative Qualitative Qualitative Qualitative Qualitative Quantita-tive Quantita-tive Media batch MRS already validated **3lood** agar TSA T T Ĩ Ţ 1 00012 or 00013 00016b 00012 or 00013 00012b 00013 00012^b 00013 00156 00005 00015b 00158 60000 00012 or 00013 00034 90000 60000 00004 00003 00001 00001 Table E.1 (continued) Staphylococcus aureus Bacillus subtilis subsp. spizizenii Enterococcus faecalis^d Enterococcus faecalisd Campylobacter jejunid Campylobacter colid ediococcus pentosaceu Citrobacter freundii Lactobacillus sakei Lactococcus lactis Escherichia coli Escherichia coli Escherichia colid Escherichia colid Escherichia colid Bacillus cereus Bacillus cereus (24 ± 2) h to (48 ± 2) h/ (30 ± 1) °C (24 ± 2) h to (48 ± 2) h/ (37 ± 1) °C (44±4) h/ (41,5±1) °C microaerobic atmosphere (24 ± 3) h to (44 ± 4) h/ (30 ± 1) °C (72±3) h/ (30±1) °C (44±4) h/ (30±1) °C (72±3) h/ (30±1) °C Productiv-ity Productiv-ity Productiv-ity Productiv-ity Productiv-ity Selectivity Selectivity Selectivity Selectivity Selectivity Specificity ISO 10272-2 ISO 15214 ISO 7932 ISO 4831 ISO 7251 Escherichia coli Campylobacter Bacillus cereus Lactíc acid bacteria Coliforms S Ч s S mCCDA MYP MRS LST

ISO 11133:2014(E)

	Black or grey colonies with opac- ity halo	Ι	Black or grey colonies without	opacity halo	4 100		I	Blue colonies	T	White to green-beige colonies		Black colonies	I			Pink to red colonies with or with- out precipitation halo	I
	$P_{\rm R} \ge 0,5$	Total inhibi- tion (0)		Ŭ.	Do S A E	rKzv,J	Total inhibi- tion (0)	$P_{\rm R} \ge 0,5$	Total inhibi- tion (0)	Ē		$P_{\rm R} \ge 0,5$	Total inhibi- tion (0)			$P_{\rm R} \ge 0.5$	Total inhibi- tion (0)
	Quantita- tive	Qualitative	Ourlitetino	Qualitative	Quantita-	tive	Qualitative	Quantita- tive	Qualitative	Qualitative		Quantita- tive	Qualitative			Quantita- tive	Qualitative
	TSA	Î	0		TCA	461	1	TSA				TSA or other non- selective medium for anaer- obes	Ĩ			TSA	Ţ
)	00034 ^b 00032	00012 or 00013	00159b	00036	00115 ^b	00025	00012 or 00013	00012d 00013d 00202b	00000 00087	00006b	00025	08000 00080	00012 or 00013	00025	00012 ^b 00013	00031 00030	00009 00087
Table E.1 (continued)	Staphylococcus aureus	Escherichia coli ^d	Staphylococcus saprophyticus	Staphylococcus epidermidis	Pseudomonas fluorescens	Pseudomonas aeruginosa	Escherichia coli ^d	Escherichia coli ^h	Enterococcus faecalis ^d	Citrobacter freundii Pseudomonas	aeruginosa	Clostridium perfringens	Escherichia colid	Pseudomonas aeruginosa	Escherichia coli	Salmonella Typhimurium ^{d,I} Salmonella Enteritidis ^{d,I}	Enterococcus faecalisd
Υ.	$(24 \pm 2) h$ to $(48 \pm 2) h/$ $(37 \pm 1) \circ C$	(48±2) h/ (37±1) °C	(24 ± 2) h to (40 ± 7) h to	$(37 \pm 1)^{\circ}C$		(48±2) h/ (25±1) °C			(21 ± 3) h/ (44 ± 1) °C			(20±2)h/ (37±1)°C	anaeropic atmosphere			(24±2) h/ (37±1) °C	
	Productiv- ity	Selectivity	Specificity		Productiv- ity		Selectivity	Productiv- ity	Selectivity	Specificity		Productiv- ity	Selectivity		Productiv- ity		Selectivity
	ISO 6888-2				ISO/ TS 11059			ISO 16649-1 and ISO 16649-2				ISO 7937			ISO 21528-2 Productiv- ity		
	Coagulase-posi- tive staphylo- cocci				Pseudomonas spp.			β-D- Glucuronidase- positive	Escherichia coli			Clostridium perfringens			Entero- bacteriaceae		
	s				s			S				s			s		
	RPFA				PPA			TBX				TSC (SC)			VRBG		

© ISO 2014 – All rights reserved

Characteristic reactions of tar-get microorganism Greyish, flat and moist, sometimes with metallic sheen Purplish-red colonies with or without precipitation halo Colourless to beige colonies Characteristic reactions 1 1 > 10 colonies (on mCCDA Total inhibi-tion (0) on TSA Total inhibi-tion (0) $P_{\rm R} \ge 0.5$ Criteria $P_{\rm R} \ge 0,7$ Criteria Method of control Reference Method of media control Quantita-tive Qualitative Qualitative Qualitative Quantita-tive Qualitative Reference media TSA TSA L Non-selective media for enumeration of microorganisms WDCM 00156 or 00005 00004 00012^b 00013 WDCM num-bers^c 00012^b 00013 00012 000097 00087 00003b 00023 00012 00013 00023 00025 num-bers^c 00034 Table E.1 (continued) Selective enrichment media Staphylococcus aureus Enterococcus faecalis^d Bacillus subtilis subsp. Campylobacter jejuni^d Campylobacter coli **Control strains** + Escherichia colid + Proteus mirabilis Proteus mirabilis **Control strains** Escherichia coli Pseudomonas aeruginosa Escherichia coli Escherichia colid spizizenii $\begin{array}{c} (5 \pm 1) \ h/\\ (37 \pm 1) \ ^{\circ}C \ then\\ (44 \pm 4) \ h/\\ (41,5 \pm 1) \ ^{\circ}C\\ microaerobic\\ atmosphere\\ \end{array}$ (24±2)h/ (30±1)°C Incubation (72±3)h/ (30±1)°C Incubation Productiv-ity Productiv-ity Productiv-ity Selectivity Selectivity Specificity Function Function Interna-tional Standard Interna-tional Standard ISO 10272-1 ISO 4833 ISO 4832 Campylobacter Micro-organisms Colony count Micro-organisms Coliforms Typee Typee S S Ч Mediaa Mediaa Bolton PCA MPCA VRBL

ISO 11133:2014(E)

50

			Qualitative 2 to coloures with on WRBG out precipitation halo		1			Blue green colonies with opaque	halo			1	1		Characteristic colonies according to each medium (see ISO 6888-1	for Baird Parker and ISO 6888-2		Ι
		1-01	on VRBG		Total inhibi- tion (0) on TSA			A -	according to Ottaviani and Agosti	D		Total inhibi- tion (0) on TSA	< 100 colo- nies on TSA		> 10 colonies on			Qualitative Total inhibi- tion (0) on TSA
			Qualitative		Qualitative				Qualifiantye			Qualitative	Qualitative			Qualitative		Qualitative
			1		Ĩ				I			1	I			I		Ĩ
0	00012 ^b 00013	00009 or 00087	00031 or 00030	00009 or 00087	00009 or 00087	00021b	00012 or 00013	00009 or 00087	00109	00012 or 00013	00009 or 00087	00012 or 00013	00009 or 00087	00034b	00012 or 00013	00032	00012 or 00013	00012 or 00013
Table E.1 (continued)	Escherichia coli	+ Enterococcus faecalisd	Salmonella Typhimurium ¹ Salmonella Enteritidis ¹	+ Enterococcus faecalis ^d	Enterococcus faecalisd	Listeria monocytogenes 4b	+ Escherichia colid	+ Enterococcus faecalis ^d	Listeria monocytogenes 1/2a	+ Escherichia colid	+ Enterococcus faecalis ^d	Escherichia colid	Enterococcus faecalis ^d	Staphylococcus aureus	+ Escherichia colid	Staphylococcus aureus	+ Escherichia colid	Escherichia colid
Τ			(24 ± 2) h/ (37 ± 1) °C						7410+81	$(37 \pm 1)^{\circ}C$				(24 ± 2) h to	(48 ± 2) n/ (37 ± 1) °C			(48±2) h/ (37±1) °C
	Productiv- ity				Selectivity	Productiv- ity						Selectivity		Productiv-	Ity			Selectivity
	ISO 21528-1					ISO 11290-1								ISO 6888-3				
	Enterobacter- iaceae					Listeria mono- cytogenes								Coagulase-posi- ISO 6888-3	tive staphylo- cocci			
	Г					r								Г				
	EE					Fraser								Giolitti Cantoni				

© ISO 2014 – All rights reserved

			s Blue green colonies with opaque				T	1		s Characteristic colonies according to each medium [see ISO 10273])			Characteristic colonies according to each medium [see ISO 6579]		T.	s
			A -	to	1000B17 pmp	0	Total inhibi- tion (0) on TSA	< 100 colo- nies on TSA		> 10 colonies on CIN or	20155	Total inhibi- tion (0) on	TSA	> 10 colonies	E	choice	Partial inhi- bition ≤ 100 colonies on TSA	< 10 colonies on TSA
				Qualitative			Qualitative	Qualitative		Qualitative		Qualitative			Qualitative		Qualitative	Qualitative
				I			1	1		Ï		1			T		Γ	I
(00021b	00012 or 00013	00009 or 00087	00109	00012 or 00013	00009 or 00087	00012 or 00013	00009 or 00087	00038b	00012 or 00013	00025	00025	00023	00030 00031	00012 or 00013	00025	00012 or 00013	00009 or 00087
Table E.1 (continued)	Listeria monocytogenes 4b	+ Escherichia colid	+ Enterococcus faecalisd	Listeria monocytogenes 1/2a	+ Escherichia colid	+ Enterococcus faecalisd	Escherichia colid	Enterococcus faecalis ^d	Yersinia enterocolitica	+ Escherichia colid	+ Pseudomonas aeruginosa	Pseudomonas aeruginosa	Proteus mirabilis	Salmonella Enteritidis ^{d,i} Salmonella Typhimurium ^{d,i}	+ Escherichia coli ^d	+ Pseudomonas aerugi- nosa	Escherichia coli ^d	Enterococcus faecalis ^d
Ϋ́,				/ 4 [[] + 16.]	$(30 \pm 1)^{\circ}$ C						(44 ± 4) h/ (25 ± 1) °C					(24±3) h/ [37+1] °C		
	Productiv- ity						Selectivity		Productiv-	ILY		Selectivity		Productiv- ity			Selectivity	
	ISO 11290-1								ISO 10273					ISO 6579				
	Listeria mono- cytogenes								Yersinia entero- ISO 10273	contrica				Salmonella				
	Ц								L					Г				
	Half-Fraser								ITC					MKTTn				

52

		Possible extra: characteristic colo- nies after subculturing on XLDk	T	Ì.	Colour change to yellow				Characteristic colonies according	to each medium (see ISO 10273)			Ţ	
	Grey-white, turbid zone extending out from	drop(s). After After 24-48 h, the turbid zone(s) will be (almost) fully migrated over the plate.	Possible growth at the place of the inocu- lated drop(s) without a turbid zone.	No growth	Qualitative Acid produc- tion	No growth			> 10 colonies	on CIN or SSDC			Total inhibi- tion (0) on	TSA
	-	Qualitative	Qualitative	Qualitative	Qualitative	Qualitative				Qualitative			Oualitative	
		Ĩ	L	Ĩ	Ţ	T				1			Î	
(00030	00031	00012 or 00013	00009 or 00087	00012 ^b 00013	00009 or 00087	00038b	00012 or 00013	00025	00160	00012 or 00013	00025	00025	00023
Table E.1 (continued)	<i>Salmoneila</i> Enteritidisd ¹	<i>Salmonella</i> Typhimurium ^{d,1}	Escherichia colid	Enterococcus faecalis ^d	Escherichia coli	Enterococcus faecalisd	Yersinia enterocolitica	+ Escherichia colid	+ Pseudomonas aeruginosa	Yersinia enterocolitica	+ Escherichia colid	+ Pseudomonas aeruginosa	Pseudomonas aeruginosa	Proteus mirabilis
Та		2 × (24 ± 3) h/ (41,5 ± 1) °C			[24±2] h/	(37±1)°C					(25±1)°C			
	Productiv- ity		Selectivity		Productiv- ity	Selectivity	Productiv-	ity					Selectivity	
	ISO 6579				ISO 16649-3		ISO 10273							
	Salmonella				β-D- Glucuronídase- nocitive F coli	Totalaco de	Yersinia entero- ISO 10273	colitica						
	SS				L.		Ч							
	MSRVk				DMM		PSB							

© ISO 2014 – All rights reserved

		Characteristic colonies according to each medium (see ISO 6579)		I	Ę	Characteristic colonies according to each medium (see ISO 21871)	I		Characteristic reactions	I	ſ			I
	> 10 colonies	н	choice	Partial inhi- bition ≤ 100 colonies on TSA	< 10 colonies on TSA	Qualitative on PEMBA or MYP	Qualitative Total inhibi- TSA TSA		Criteria	Turbidity (1–2) ^f	Turbidity	(1-2) ^f	±30 %	To (±30 % of original count)
		Qualitative		Qualitative	Qualitative	Qualitative	Qualitative		Reference Method of media control	Qualitative	Qualitative	0		Quantita- tive
		1		1	Ĩ	I	T		Reference media	L	Ī			TSA
0	00030 00031	00012 or 00013	00025	00012 or 00013	00009 or 00087	00001	00012 or 00013	а	WDCM num- bers ^c	00034	00156 00005	00004	00012 or 00013	00034 ^b
Table E.1 (continued)	Salmonella Enteritidisd. ¹ Salmonella Typhimuriumd. ¹	+ Escherichia coli	+ Pseudomonas aeruginosa	Escherichia coli ^d	Enterococcus faecalis ^d	Bacillus cereus	Escherichia colid	Non-selective liquid media	Control strains	Staphylococcus aureus	Campylobacter jejuni ^d	Campylobacter colid	Escherichia colid	Staphylococcus aureus
Та			(24±3) h/ [41.5±1] °C			(48±4) h/	(30±1)°C	No	Incubation	(24 ± 2) h/ (37 ± 1) °C	$2 \text{ to } 5 \text{ days}/$ $(41, 5 \pm 1) \circ C$	microaerobic atmosphere		45 min - 1 h/ 20 °C to 25 °C
	Productiv- ity			Selectivity		Productiv- ity	Selectivity		Function	Productiv- ity	Productiv- ity		Diluent	
	ISO 6579					ISO 21871			Interna- tional Standard	ISO 6888-1 ISO 6888-3	ISO 10272 (all parts)		ISO 6887 (all parts)	
	Salmonella					Bacillus cereus ISO 21871			Micro- organisms	Coagulase-posi- tive staphylo- cocci	Campylobacter		Dilution liquids ISO 6887 (all parts)	
	Г					Т			Type ^e	Г	ц		г	
	RVS					TSPB			Media ^a	BHI	Brucella		Diluents for special pur-	poses e.g. BPW with bromo-cresol- purple

Blue green colonies with opaque halo Greyish, flat and moist, sometimes with metallic sheen Blue green colonies without opaque halo Characteristic reactions No characteristic colonies Total or partial inhi-bition ±30 % colonies/ T₀(±30 % of original count] Good growth [2] Total inhibi-tion (0) Good growth (2) Total inhibi-tion (0) Turbidity Turbidity Criteria (0 - 1)[1-2]f (1-2)^f Reference Method of media control Qualitative Qualitative Qualitative Qualitative Qualitative Qualitative Qualitative Quantita-tive Qualitative TSA T 1 Ĵ 1 00012 or 00013 00009 or 00087 000012 or 00013 00012 or 00013 WDCM num-bers^c 00034b 00021b 00021b 00017 00156 00005 00034 20000 00109 00100 00004 Listeria monocytogenes 4b Listeria monocytogenes 1/2a Listeria monocytogenes 1/2a Selective isolation media Staphylococcus aureus Clostridium perfringens Staphylococcus aureus Enterococcus faecalisd Listeria monocytogenes 4b Campylobacter colid **Control strains** Escherichia coli^d Escherichia colid Escherichia colid Listeria innocua Campylobacter jejunid 45 min - 1 h/ 20 °C to 25 °C $(44 \pm 4) h/$ $(41,5 \pm 1) °C$ microaerobic atmosphere (21±3)h/ (37±1)°C (21±3) h/ (25±1) °C Incubation (44±4) h/ (37±1) °C Productiv-ity Productiv-ity Productiv-ity Selectivity Productiv-ity Selectivity Diluent Function Specificity ISO 6887 (all parts) Interna-tional Standard ISO 11290-1 ISO 11290 (all parts) ISO 10272 (all parts) ISO 7937 Dilution liquids Listeria mono-cytogenes Listeria mono-cytogenes Clostridium perfringens Campylobacter Micro-organisms Typee S Ч Ч Γ S Phosphate buffer solution Agar Listeria according to Ottaviani and Agostii Peptone solu-tion Thioglycollate eptone-salt Media^a Quarter-strength Ringer's mCCDAi TSYEB

ISO 11133:2014(E)

© ISO 2014 - All rights reserved

Ē

Table E.1 (continued)

1

T

ity Escherichia coli 0157:H7 (non-
(21±3) h/ (37+1) °C
Selectivity (3/ ± 1) V Staphylococcus aureus ^d
Escherichia colla
Productiv- ity
Selectivity $\begin{pmatrix} 21 \pm 3 \\ (30 \pm 1) °C \end{pmatrix} = Bscherichia colid$
Staphylococcus aureus
Productiv- ity Vibrio vulnificus
$\begin{array}{c} (24 \pm 3) \text{ h/} \\ (37 \pm 1) \text{ \circC} \\ \end{array} \text{non-01/non-0139} \end{array}$
Selectivity Escherichia colid
Productiv- $\begin{array}{c} (21\pm3) \ h \\ ty \\ ty \\ (30\pm1)^{\circ}C \end{array}$ Bacillus cereus
Selectivity $[44 \pm 4] h/$ Escherichia colid
Specificity (30 ± 1) °C Bacillus subtilis subsp. spizizenii
Productiv- $\begin{bmatrix} 21 \pm 3 \\ 4 \pm 4 \end{bmatrix}$ htp ity $\begin{bmatrix} 44 \pm 4 \\ 37 \pm 1 \end{bmatrix}$ of Bacillus cereus
Selectivity [44 ± 4] h/ Escherichia colid
Specificity $(37 \pm 1)^{\circ}$ C Bacillus subtlis subsp. spizizenii

56

ISO	11	133	3:2	014	(E)
100	**	TOU		O L L	(~)

	Purple/green colonies with an opaque halo	Yellow colonies with an opaque halo	1	Blue colonies	1	White to among being coloniae	wince to green-neige colonies		Pink to red colonies with or with- out precipitation halo	1	Colonies with black centre and a lightly transparent zone of	change of the medium	Yellow colonies	I.		Characteristic reactions
	Good growth [2]	Good growth (2)	Total inhibi- tion (0)	Good growth (2)	Total inhibi- tion (0)				Good growth (2)	Total inhibi- tion (0)	Good	grow ui (2)	Growth or partial inhibition (0 - 1)	Total inhibi- tion (0)		Criteria
	Qualitative	Qualitative	Qualitative	Qualitative	Qualitative	Ounditestites	Qualitative		Qualitative	Qualitative	Qualitative		Qualitative	Qualitative		Reference Method of media control
	Î	Ţ		Ē.	1		l		Ĺ	Ī	Ĩ		Ĺ	Ī		Reference media
(00187 ^b	00203b	00012 or 00013 or 00090	00012d 00013d 00202b	00009 or 00087	00006 ^b	00025	00012 ^b 00013	00031 or 00032	00009 or 00087	00031	00030	00012 or 00013	00009 or 00087	lia	WDCM num- bers ^c
Table E.1 (continued)	Vibrio vulnificus	Vibrio cholerae non-01/non-0139	Escherichia colid	Escherichia colf ^h	Enterococcus faecalisd	Citrobacter freundii	Pseudomonas aerugi- nosa	Escherichia coli	Salmonella Typhimurium ⁱ Salmonella Typhimurium ⁱ	Enterococcus faecalisd	<i>Salmonella</i> Typhimurium ^d .i	Salmonella Enteritidisd,i	Escherichia coli ^d	Enterococcus faecalis ^d	Non-selective isolation media	Control strains
Τ		(24±3) h/ (37±1) °C			(21 ± 3) h/ (44 ± 1) °C				(24±2) h/ (37±1) °C				(24±3) h/ (37±1) °C		Non	Incubation
	Productiv- ity		Selectivity	Productiv- ity Selectivity	611111111	Specificity		Productiv- ity		Selectivity	Productiv- ity		Selectivity			Function
	ISO/ TS 21872-2			ISO 16649-3				ISO 21528-1			ISO 6579					Interna- tional Standard
	Vibrio spp. other than	Vibrio parahaemolyt- icus/V. cholerae		β-D- Glucuronidase- positive	Escherichia coli			Entero- bacteriaceae			Salmonella					Micro- organisms
	S			S				S			S					Typee
	SDS			TBXI				VRBG			XLD					Media®

© ISO 2014 – All rights reserved

Г

Т

		1			Ĩ.		Characteristic reactions		ſ		Į:	-			1		Characteristic reactions		1
		Good growth [2]		Good	growth [2]		Criteria	±30 % colonies/ 7. (+30 02	of original count)	±30 % colonies/	of original count)	Turbidity	(1-2)	Turbidity	(1-2) ^f		Criteria		$P_{\rm R} \ge 0,7$
		Qualitative			Qualitative		Reference Method of media control	Quantita-	tive	Quantita-	tive	Qualitative			Qualitative		Reference Method of media control	:	Quanuta- tive
		1			Ī		Reference media	TCA	001	ron	WCI	1			ī	sms	Reference media	Media batch	blood agar already validated
(00012 ^b 00013	00030	00038 ^b 00160	00021b	00109		WDCM num- bers ^c	00012 ^b 00013	00034 ^b	00021b	00109	00031	00030	00012 ^b 00013	00031 or 00030	croorgani	WDCM num- bers ^c	00156	00005
Table E.1 (continued)	Escherichia coli	Salmonella Typhimurium ^{d,i} Salmonella Enteritidis ^{d,i}	Yersinia enterocolitica	Listeria monocytogenes 4 ^b	Listeria monocytogenes 1/2a	Multipurpose media	Control strains	Escherichia coli	Staphylococcus aureus	Listeria monocytogenes 4b	Listeria monocytogenes 1/2a	<i>Salmonella</i> Typhimurium ^{d,i}	Salmonella Enteritidisd,i	Escherichia coli	Salmonella Typhimurium ⁱ Salmonella Enteritidis ⁱ	Reference media for enumeration of microorganisms	Control strains	Campylobacter jejuni ^d	Campylobacter colid
Ĩ	$(24 \pm 2) h/$ $(37 \pm 1) °C$	(24 ± 2) h/ (37 ± 1) °C	(24±2) h/ (30±1) °C	[21±3]h/	(37 ± 1) °Ć		Incubation	45 min - 1 h/	20 °C to 25 °C	(1 h±5°min) /	(20±2)°Ć	$(18 \pm 2) h/$	ט. (ד ד / כן	71 10 1 10 10	(37±1) °C	Reference medi	Incubation	1.1.0	(41,5±1) °C (41,5±1) °C
	Productiv- ity			Productiv- ity	You and		Function	Dilution		Dilution		Productiv- ity		Productiv- ity			Function	Productiv- ity	•
	ISO 21528 (all parts)	ISO 6579	ISO 10273	ISO 11290 (all parts)			Interna- tional Standard	ISO 6887 (all parts), ISO 6007 E	C-/000 ACT	ISO 11290-2		ISO 6579		ISO 21528-1			Interna- tional Standard	ISO 10272-2	
	Entero- bacteriaceae	Salmonella	Yersinia entero- colitica	Listeria mono- cytogenes			Micro- organisms	Diluent for all enumerations	isms	Diluent for Listeria	monocycogenes enumeration	Pre-enrichment ISO 6579 for Salmonella	detection	Pre-enrichment ISO 21528-1 for Entero-	bacteriaceae detection		Micro- organisms	Campylobacter	
	s			s			Typee	ц									Type ^e	S	
	Nutrient agar ^l			TSYEA			Media ^a	BPWm									Media ^a	Blood agar	

58

					F	Table E.1 (continued)	(
TSAn	s	Colony count	I	Productiv- ity		Bacillus cereus	00001				
						Bacillus subtilis subsp. spizizenii	00003				
					As specified in the method in which TSA is used as refer- ence medium	Escherichia coli Escherichia coli 0157:H7	00012 00014 (non- toxigenic strain)	Media batch TSA already validated	Quantita- tive	$P_{\mathrm{R}} \ge 0,7$	Characteristic colony according to each species
						Listeria monocytogenes 4b Staphylococcus aureus	00021 00034				
SDA	s	Colony count	Ĩ	Productiv- ity	As specified in the method in which SDA is used as ref- erence medium	Saccharomyces cerevisiae Aspergillus brasiliensis	00058 ^b	Media batch SDA already validated	Quantita- tive	$P_{\rm R} \ge 0.7$	Characteristic colony/propagules/ germs according to each species
a Full names of	media ab	Full names of media abbreviated terms are given in <u>Table E.2</u>	re given in <u>Tal</u>	ole E.2.							
 but and the used as a munimum. c Make reference to the references 	used as a ce to the I	minimum. reference strain cai	italogue availa	ble on http://	www.wfcc.info f	orrains to be used as a minimum. Make reference to the reference strain catalogue available on http://www.wfcc.info for information on culture collection strain numbers and contact details.	collection :	strain numbe	rs and contac	t details.	
d Strain free of	choice; o	Strain free of choice; one of the strains has to be used as a minimum.	as to be used a	s a minimum.							
 E. L: liquid med f Growth/turbid 	ium, S: s(dity is cat	 Ilquid medium, S: solid medium, SS: semi-solid medium. Growth/turbidity is categorized as: 0 — no growth/no turb 	emi-solid med to growth/no	ium. turbidity; 1 —	- weak growth/s	 Iiquid medium, S: solid medium, SS: semi-solid medium. Growth/turbidity is categorized as: 0 — no growth/no turbidity; 1 — weak growth/slight turbidity; 2 — growth/good turbidity [see <u>74.1.2</u>, <u>8.4.1</u>]. 	th/good tur	bidity (see <u>7</u> .	41.2,841).		
8 Escherichia co	oli WDCM	Escherichia coli WDCM 00013 is given by the specific standard.	the specific st	andard.							
h Escherichia co	hi WDCM	00013 is a strong	β-d-glucuroni	dase produce	r and WDCM 002	Escherichia coli WDCM 00013 is a strong β-d-glucuronidase producer and WDCM 00202 is a weak β-d-glucuronidase producer.	lidase prod	ucer.			
¹ Some national	l restricti	ions and directions	s may require	the use of a di	fferent serovar. l	Some national restrictions and directions may require the use of a different serovar. Make reference to national requirements relating to the choice of Salmonelia serovars.	l requireme	ents relating t	the choice	of Salmonella	serovars.
) In case of both k More details f	n quantita for quality	ative and qualitativ v control of MSRV r	ve use for the r medium incluc	medium, only ling final conc	results of the qu	In case of both quantitative and qualitative use for the medium, only results of the quantitative tests are required [see <u>Table E.J.</u>]. More details for multive control of MSRV medium including final concentration of the inculum and criteria are of one in 150,6579	ed (see Tab given in IS	le E.J). 0.6579			
1 If nutrient aga	rr is used	for two or three of	f these differer	t application:	s: perform the Sa	If nutrient agar is used for two or three of these different applications: perform the Salmonella growth test as a minimum (if laboratory tests for this organism).	minimum (if laboratory	tests for this	organism].	
m If BPW is used	d for two	or three of these di	'ifferent applic	ations: perfor	m the Saimonelly	m If BPW is used for two or three of these different applications: perform the Salmonella enrichment test as a minimum (if laboratory tests for this organism)	imum (if la	boratory test	s for this org	anism).	
n Choose the sti	rain(s) ac	$^{\pi}$ Choose the strain(s) according to the method for which TSA is used as a reference medium.	thod for which	TSA is used a	is a reference me	dium.					

© ISO 2014 – All rights reserved

Abbreviated media term	Full name of the media	International Standard
Baird –Parker	Baird-Parker agar	ISO 6888-1
BGBLB	Brilliant green lactose bile broth	ISO 4831
BHI	Brain heart infusion broth	ISO 6888-1 and ISO 6888-3
Bolton	Bolton broth	ISO 10272-1
BPW	Buffered peptone water	ISO 6887 (all parts) ISO 6579 ISO 11290-2 ISO 21528-1
Brucella	Brucella broth	ISO 10272 (all parts)
CFC	Cephalothin fucidin cetrimide agar	ISO 13720
CIN	Cefsulodin, Irgasan novobiocin agar	ISO 10273
CPC	Cellobiose polymyxin B colistin agar	ISO/TS 21872-2
CT-SMAC	Cefixime tellurite sorbitol MacConkey agar	ISO 16654
DG18	Dichloran glycerol agar	ISO 21527-2
DRBC	Dichloran-rose bengal chloramphenicol agar	ISO 21527-1
EC	EC broth	ISO 7251
EE	Buffered brilliant green bile glucose broth	ISO 21528-1
Fraser	Fraser broth	ISO 11290-1
Half-Fraser	Half Fraser broth	ISO 11290-1
IS ("TS")	Iron sulfite agar ("Tryptose sulfite agar")	ISO 15213
ITC	Irgasan, ticarcillin chlorate broth	ISO 10273
LST	Lauryl sulfate broth, lauryl tryptose broth	ISO 4831 and ISO 7251
mCCDA	Modified charcoal cefoperazone deoxycholate agar	ISO 10272 (all parts)
mCPC	Modified cellobiose polymyxin B colistin agar	ISO/TS 21872-2
MKTTn	Muller-Kauffmann tetrathionate novobiocin broth	ISO 6579
MMG	Minerals-modified glutamate medium	ISO 16649-3
MPCA	Plate count agar with skimmed milk/ milk plate count agar	ISO 4833
MRS	MRS medium (de Man, Rogosa and Sharpe)	ISO 15214
MSRV	Modified semi-solid Rappaport-Vassiliadis medium	ISO 6579
МҮР	Mannitol egg yolk polymyxin agar	ISO 7932
PCA	Plate count agar	ISO 4833
РЕМВА	Polymyxin pyruvate egg yolk mannitol bromothy- mol blue agar	ISO 21871
PPA	Penicillin and pimaricin agar	ISO/TS 11059
PSB	Peptone, sorbitol and bile salts broth	ISO 10273
RPFA	Rabbit plasma fibrinogen agar	ISO 6888-2

Table E.2 — Abbreviated terms	for media used in Table E.1

Abbreviated media term	Full name of the media	International Standard
RVS	Rappaport-Vassiliadis soya peptone broth	ISO 6579
SDA	Sabouraud dextrose agar	
SDS	Sodium dodecyl sulfate polymyxin sucrose agar	ISO/TS 21872-2
SSDC	Salmonella Shigella deoxycholate calcium agar	ISO 10273
TBX	Tryptone bile X-glucuronide agar	ISO 16649 (all parts)
TCBS	Thiosulfate citrate bile salts sucrose agar	ISO/TS 21872-1
Thioglycollate	Fluid thioglycollate medium	ISO 7937
TSA	Tryptone soya agar	.—.
TSC/SC	Sulfite cycloserine agar/ tryptose sulphite cycloserine agar without egg yolk	ISO 7937
TSPB	Tryptone soya polymyxin broth	ISO 21871
TSYEA	Tryptone soya yeast extract agar	ISO 11290 (all parts)
TSYEB	Tryptone soya yeast extract broth	ISO 11290 (all parts)
VRBG	Violet red bile glucose agar	ISO 21528 (all parts)
VRBL	Violet red bile lactose agar	ISO 4832
XLD	Xylose lysine deoxycholate agar	ISO 6579

Table E.2 (continued)

© ISO 2014 - All rights reserved

ANNEX F, ISO 11133:2014

ISO 11133:2014(E)

Annex F

(normative)

Test microorganisms and performance criteria for culture media commonly used in water microbiology

Specific strains have been selected for testing in order to ensure consistency between laboratories and to facilitate the demonstration of differences between media (batch to batch, between manufacturers). The strains specified in Table F.1 have been fully evaluated to ensure their suitability and consistency in performance.

Where more than one strain is listed for each aspect of performance testing (productivity, selectivity, specificity), the minimum strains to be used have been indicated by the letter b. Commercial or noncommercial suppliers are expected to use additional strains e.g. those shown in <u>Table F.1</u> to further ensure the quality of the culture media they supply.

These criteria shall be included in specific standards when prepared or revised in the future. A validated batch of media is one which has shown satisfactory performance. The strain numbers specified in Table F.1 are those from the catalogue of universal strain identifiers compiled by the World Data Centre for Microorganisms (WDCM).^[20] This catalogue contains details of the reference strains represented by each WDCM number and contact details of the culture collections. All cited media are described within EN and ISO standards.

If strain variability is encountered, investigate the effect of the culture medium (e.g. by obtaining the same medium from a different manufacturer), and obtain an additional reference culture from the culture collection in which it was originally deposited. Users are requested to feed back relevant information on strain variability to WG 5, *Culture media*, of ISO/TC 34/SC 9 through the secretariat of ISO/TC 34/SC 9.

© ISO 2014 - All rights reserved

The footnotes used in <u>Table F.1</u> are the following:

- ^a Full names of media abbreviated terms are given in Table F.2.
- b Strains to be used as a minimum.
- c Make reference to the reference strain catalogue available on http://www.wfcc.info for information on culture collection strain numbers and contact details.
- d Strain free of choice; one of the strains has to be used as a minimum.
- e L: liquid medium, S: solid medium, SS: semi-solid medium.
- f More details for quality control of *Legionella* media including storage of the control strains are given in ISO 11731.
- g More details for quality control and quality criteria of MUG/EC medium are given in ISO 9308-3:1998, Annex E; selectivity is not specified in the standard.
- h More details for quality control and quality criteria of MUD/SF medium are given in ISO 7899-1:1998, Annex E.
- i Some national restrictions and directions may require the use of a different serovar. Make reference to national requirements relating to the choice of *Salmonella* serovars.
- Growth/turbidity is categorized as: 0 no growth/turbidity; 1 weak growth/turbidity; 2 good growth/turbidity (see 7.4.1.2, 8.4.1).
- k If BPW is used for two of these different applications: perform the *Salmonella* enrichment test as a minimum (if laboratory tests for this organism).
- 1 Choose the strain(s) according to the method for which TSA is used as a reference medium.

© ISO 2014 - All rights reserved

Yellow colour equal or greater than the comparator for coliform bacteria Yellow colour in the medium under the membrane for Yellow colonies; Phophatase test positive White-grey-blue-purple colonies with an entire edge and exhibit-ing a characteristic ground-glass Less yellow than the comparator Blue colonies; Phosphatase test negative Red colonies, blue colour in the Yellow colour and fluorescence **Characteristic reactions** appearance medium Ê Table F.1 — Test microorganisms and performance criteria for culture media commonly used in water microbiology Total or par-tial inhibition Total inhibi-tion (0) Total inhibi-tion (0) Total inhibi-tion [0] Total inhibi-tion (0) Criteria $P_{\rm R} \ge 0.5$ $P_{\rm R} \ge 0,5$ $P_{\rm R} \geq 0, 5$ $P_{\rm R} \ge 0,5$ $P_{\rm R} \ge 0.5$ (0-1) Selective media for enumeration of microorganisms by comparing with a non-selective reference medium Method of control Qualitative Quantita-tive Qualitative Qualitative Qualitative Quantita-tive Qualitative Qualitative Quantita-tive Qualitative Quantita-tive Quantita-tive Reference media TSA or other non-selective medium for anaerobes BCYE TSA TSA TSA 1 Î. I Ē Ĩ. WDCM numbers^c 00207 or 00025 00026 or 00025 00012 or 00013 00009 or 00087 00025 or 00026 00012 or 00013 00009 or 00087 00013^b 00090 00107b 00180 00179^b 00012 00013 00007b 00080 00174 00206 00175 00000 00079 00106 Enterococcus faecalis⁶ Citrobacter freundii **Control strains** Escherichia colid Escherichia coli^d Enterobacter aerogenes Pseudomonas aeruginosa^d Escherichia coli Legionella pneumophila Legionella anisa Enterococcus faecalisd Pseudomonas aeruginosad Escherichia coli Clostridium bifermentans Clostridium perfringens Klebsiella pneumo Pseudomonas aeruginosa⁰ $(21 \pm 3) h/$ $(44 \pm 1) {}^{\circ}C$ anaerobic atmosphere $(21 \pm 3) h/$ $(36 \pm 2) °C$ Incubation (20±2)°h/ (36±2) °C 2-5 days/ (36±2) °C 3 days/ (36±2) °C 5-10 days/ (36±2) °C Selectivity Productiv-ity Productiv-ity Productiv-ity Specificity Productiv-ity Specificity Function Selectivity Selectivity Selectivity ISO 11731 and ISO 11731-2 ISO 9308-1 ISO 9308-2 Inter-national Standard Council Directive 98/83/EC Escherichia coli / coliform bacteria Escherichia coli /coliform bacteria Micro-organisms Clostridium perfringens Legionella Typee s S Γ S Media^a Lactose TTC Colilert GVPCf mCP

ISO 11133:2014(E)

64

	Blue-green colonies with fluores- cence under UV light (360 ± 20 nm)	Ē		Red-maroon-pink colonies			I	Black colonies	No blackening	Black colonies	I		Characteristic reactions
	$P_{R} \ge 0.5$ Bl	Total inhibi-	tion (0)	$P_{\rm R} \ge 0.5$		Total inhibi-	tion (0)	$P_{\rm R} \ge 0.5$	1	P _R ≥0,5	Total inhibi- tion (0)	in special cases)	Criteria
	Quantita- tive		Quantative	Quantita-	evu		Qualitative	Quantita- tive	Qualitative	Quantita- tive	Qualitative	batch (for use	Method of control
	TSA		l	TSA		ļ	l	TSA or Blood agar or other non- selective medium for anaerobes	1	TSA or Blood agar or other non- selective medium for anaerobes	I	sly accepted l	Reference media
(pən	00024 ^b 00025 00026	00012 or 00013	00009 or 00087	00009b 00087 00176	00177 00178	00012 or 00013	00032 or 00034	00007 ^b 00080	00012 or 00013	00007b 00080 00174	20003	h a previous	WDCM numbers ^c
Table F.1 (continued)	Pseudomonas aeruginosa	Escherichia coli ^d	Enterococcus faecalis ^d	Enterococcus faecalis	Enterococcus faecium ^d	Escherichia coli ^d	Staphylococcus aureus ^d	Clostridium perfringens	Escherichia colid	Clostridium perfringens	Bacillus subtilis subsp. spizizenii	Selective media for enumeration of microorganisms by comparing with a previously accepted batch (for use in special cases)	Control strains
		(44±4) h/ (36±2) °C			$(44 \pm 4) h/$	J. (20±2)		(44±4)h/ (37±1)°C anaerobic atmosphere		(21±3) h/ (44±1)°C anaerobic atmosphere		of microorganis	Incubation
	Productiv- ity	Selectivity		Productiv- ity		Selectivity		Productiv- ity	Specificity	Productiv- ity	Selectivity	enumeration	Function
	ISO 16266			ISO 7899-2				ISO 6461-2		ISO 14189		tive media for	Interna- tional Standard
	Pseudomonas aeruginosa			Intestinal ente- rococci				Sulfite-reducing anaerobes (clostridia)		Clostridium perfringens		Select	Micro- organisms
	s			s				S		s			Type ^e
	Pseudo- monas CN			Slanetz and Bar- tley				Sulfite Iron Tryptose Sulfite (TS)		TSC			Media ^a

© ISO 2014 - All rights reserved

5											_				_			
	Yellow colour and fluorescence for <i>E. coli</i>	Yellow colour equal or greater than the comparator for coliform bacteria	Less yellow than the comparator	White-grey-blue-purple colonies	with an entire euge and exiniti- ing a characteristic ground-glass appearance	Ē	8 (b)	1	-	Yellow colour in the medium under the membrane		1	Red colonies, blue colour in the medium	Vollow coloriae. Phonhatase tast	positive positive		Blue colonies; Phosphatase test negative	Ţ
	$P_{\rm R} \ge 0.7$	$P_{\rm R} \ge 0,7$	Total inhibi- tion (0)		$P_{\rm R} \ge 0.7$	Total inhibi- tion (0)	Total or par- tial inhihition	(0 - 1)		$P_{\rm R} \ge 0,7$		Total inhibi- tion (0)		100-0100 - 20.000	$P_{\rm R} \ge 0,7$		I	Total inhibi- tion (0)
	Quantita- tive	Quantita- tive	Qualitative		tive	Qualitative		Quantative		Quantita- tive		Qualitative	Qualitative	Ourantita.	tive		Qualitative	Qualitative
	previously validated batch Colilert	previously validated batch Colilert	1	Media batch	GVPC already val- idated	Ĺ		1	Media batch Lac-	tose TTC already validated		L		Media batch	mCP	already validated	Ĩ	1
(pəi	00013b 00090	00206	00207 or 00025	00107 ^b 00180	00106	00009 or 00087	00026 or 00025	00012 or 00013	00179 ^b 00012 00013	00175	00000	00009 or 00087	00025 or 00026	00007b	00080	4/TOO	00079	00012 or 00013
Table F.1 (continued)	Escherichia coli	Klebsiella pneumoniae	Pseudomonas aeruginosa ^d	Legionella pneumophila	Legionella anisa	Enterococcus faecalis ^d	Pseudomonas aeruginosa ^d	Escherichia coli ^d	Escherichia coli	Enterobacter aerogenes	Citrobacter freundii	Enterococcus faecalis ^d	Pseudomonas aeruginosa ^d	Plastridium	perfringens		Clostridium bifermentans	Escherichia coli ^d
		(20 ± 2)h/ (36±2)°C		2-5 days/ (36±2) °C	5-10 days/ (36±2) °C		3 days/ (36±2) °C	а. 2		/4 וג + 31 או	(36 ± 2) °C				$(21 \pm 3) h/$ (44 + 1) °C	anaerobic atmosphere		
	Productiv- ity		Selectivity	Productiv- ity		Selectivity			Productiv- ity			Selectivity	Specificity	Productiv- ity			Specificity	Selectivity
	ISO 9308-2			ISO 11731 and	11/31-2				ISO 9308-1					Council Directive 98/83/EC	1-1-1-			
	Escherichia coli /coliform bacteria			Legionella					Escherichia coli / coliform bacteria					Clostridium perfringens				
	ľ			s					s					s				
	Colilert			GVPCf					Lactose TTC					тсР				

66

	$P_R \ge 0.7 \qquad \qquad Blue-green colonies with fluores-cence under UV light (360 \pm 20 nm)$	Tc		ia- P _P ≥ 0,7 Red-maroon-pink colonies	1	Total inhibi-		$P_{R} \ge 0.7$ Black colonies	ive — No blackening		$P_{\rm R} \ge 0,7$ Black colonies	$P_{\rm R} \ge 0,7$ Total inhibi- tion (0)	P _R ≥ 0,7 Total inhibi- tion (0)	P _R ≥ 0.7 Total inhibi- tion (0) Criteria Chara	$P_{R} \ge 0.7$ Total inhibi- tion (0) Criteria $P_{R} \ge 0.7$
	- Quantita-		Quantative	Qu	l		Qualitative	n Quantita- tive	Qualitative		C Quantita- tive			2 L 1220	
	Media batch Pseu- domonas CN already validated		I.	Media batch Slanetz and	Bartley already validated		I	Media batch Sulfite iron or TS already validated	Т	Media	batch TSC already validated	batch TSC already validated	batch TSC already validated - rganisms	batch TSC already validated - rganisms Reference media	batch TSC already validated - rganisms Reference media batch YEA
(pən	00024 ^b 00025 00026	00012 or 00013	00009 or 00087	00009b 00087 00176	00177 00178	00012 or 00013	00032 or 00034	000080 00080	00012 or 00013	10000	000000 00080 00174	000070 00080 00174 00174	00080 00174 00003 00003 10f microo	0000/* 00080 00174 00003 00003 00003 00003 00003 00003 00003	0000/ 00174 00174 00103 00003 NDCM numbers ^c 00012 00013
Table F.1 (continued)	Pseudomonas aeruginosa	Escherichia coli ^d	Enterococcus faecalis ^d	Enterococcus faecalis	Enterococcus faecium ^d	Escherichia coli ^d	Staphylococcus aureus ^d	Clostridium perfringens	Escherichia coli ^d	Constant Find	Clostridium perfringens	Clostridium perfringens Bacillus subtilis subsp. spizizenii	(21±3) h/ anaerobic Clostridium perfringens 00060 00174 blatch TS already already ontra- perfringens anaerobic Bacillus subtlis subsp 00003 blatch TS validate atmerobic Bacillus subtlis subsp 00003 blatch TS validate atmosphere spizizenii - - show subtlis subsp 00003 - - Non-selective media for enumeration of microorganisms - -	Clostridium perfringens Bacillus subtilis subsp. spfatzenti media for enumeration Control strains	Clostridium perfringens Bacillus subtilis subsp. spizitzenii media for enumeration Control strains Escherichia colid Bacillus cubtilis cubco
	(44±4) h/	(36±2) °C			(44±4) h/	ר (ז ± מנ)		(44±4)h/ (37±1)°C anaerobic atmosphere	-		(21±3) h/ (44±1) °C anaerobic	(21±3) h/ (44±1) °C anaerobic atmosphere	(21±3) h/ (44±1) °C anaerobic atmosphere Non-selective	(21±3)h/ (44±1)°C anaerobic atmosphere Non-selective Incubation	(21 ± 3) h/ (21 ± 3) oc anaerobic atmosphere Non-selective Incubation (44 ± 4) h/ (36 ± 2) oc
	Productiv- ity	Selectivity		Productiv- ity		Selectivity		Productiv- ity	Specificity	Productiv-	ίη.	Selectivity	Selectivity	Selectivity	Function
	ISO 16266			ISO 7899-2				ISO 6461-2		ISO 14189				Interna- tional Standard	Interna- tional Standard 1SO 6222
	Pseudomonas aeruginosa			Intestinal ente- rococci				Sulfite-reducing anaerobes (clostridia)		Clostridium perfringens	>	\$	5		
	s			s				S		s				Type	Type ^e S
	Pseudo- monas CN			Slanetz and Bar- tley				Sulfite Iron Tryptose Sulfite (TS)		TSC				Media ^a	Media ^a YEA

© ISO 2014 - All rights reserved

	Characteristic reactions	Small flat or convex coloriae with	a glossy surface		1		Details for method of control and quality criteria of MUG/EC medium are given in ISO 9308-3:1998, Annex E.				Details for method of control and quality criteria of MUD/SF medium are given in ISO 7899-1:1998, Annex E.			Characteristic coloniae according			J		
	Criteria	> 10 colonios	on mCCDA		Total inhibi- tion on TSA	(0)	ntrol and qualit 1 in ISO 9308-3:				ntrol and qualit in ISO 7899-1:			> 10 colonies	0		Partial inhibi- tion ≤ 100 colonies on TSA	< 10 colonies on TSA	
	Method of control		Qualitative		Qualitative		r method of co give			0.1.6	or method of co giver				Qualitative		Qualitative	Qualitative	
	Reference media		l		I		Details fo			P. 1.1.6	Details to				1		I	l	
(pən	WDCM numbers ^c	00156 00005 00004	00012 or 00013	00023	00012 or 00013	00023	00179	00176	68000	00178	00061	00016	00132	00030 00031	00012 or 00013	00025	00012 or 00013	00009 or 00087	nedia
Table F.1 (continued)	Control strains	Campylobacter jejuni ^d Campylobacter coli ^d	+ Escherichia colid	+ Proteus mirabilis	Escherichia colid	Proteus mirabilis	Escherichia coli	Enterococcus faecalis	Enterococcus hirae	Enterococcus faecium	Aerococcus viridans	Lactococcus lactis	Staphylococcus epidermidis	Salmonella Enteritidis ^{d,l} Salmonella Typhimurium ^{d,l}	+ Escherichia coli ^d	+ Pseudomonas aeruginosa	Escherichia colid	Enterococcus faecalis ^d	Non-selective liquid media
	Incubation		(44 ± 4) h/ (37 ± 1) °C	microaerobic atmosphere			48 h/ (44 ± 0,5) °C			1 1 62 1 62 2	(44±4) n/ (44±0,5) °C	e A				$(24 \pm 3) h/$ $(41, 5 \pm 1) \circ C$			
	Function	Productiv- ity			Selectivity		Productiv- ity	Productiv-	ity		Selectivity			Productiv- ity			Selectivity		
	Interna- tional Standard	ISO 17995					ISO 9308-3	ISO 7899-1						ISO 19250					
	Micro- organisms	Campylobacter					Escherichia coli / coliform bacteria	Intestinal ente-	rococci					Salmonella					
	Type ^e	T					L	Γ						T					
	Media ^a	Bolton Preston					MUG/EC¢	MUD/SFh						RVS					

68

	Characteristic reactions	Blackening	No blackening				Ī				Characteristic reactions	Small, fla	a glossy surface	No characteristic colonies	Ι
	Criteria	Turbidity (1-2) ^j	Turbidity (0-1)			+/- 30 % colonies/	T ₀ (+/- 30 % of original count)				Criteria	Good growth	[7]	Total or par- tial inhibition (0-1)	Total inhibi- tion (0)
	Method of control	Qualitative	Qualitative			Ouantita-	tive				Method of control	Qualitative		Qualitative	Qualitative
	Reference media	Ē	L				TSA				Reference media	Î		Ē	T
(pən	WDCM numbers ^c	00007 ^b 00080	00012 or 00013	00012 or 00013			00034			edia	WDCM numbers ^c	00156 or 00005	00004	00012 or 00013 or 00179 or 00090	00032 or 00034
Table F.1 (continued)	Control strains	Clostridium perfringens	Escherichia colid	Escherichia colid			Staphylococcus aureus			Selective isolation media	Control strains	Campylobacter jejuni ^d	Campylobacter coli ^d	Escherichia coli ^d	Staphylococcus aureus ^d
	Incubation	(44±4) h/ (36±1) °C	anaerobic atmosphere			45 min - 1 h /	20 °C - 25 °C				Incubation		[44±4] h/	(41,5±1)°C microaerobic atmosphere	
	Function	Productiv- ity	Specificity	Diluent							Function	Productiv- ity		Selectivity	
	Interna- tional Standard	ISO 6461-1		ISO 8199							Interna- tional Standard	ISO 17995			
	Micro- organisms	Sulfite-reducing anaerobes [clostridia]		Dilution liquids							Micro- organisms	Campylobacter			
	Type ^e	Г		Γ							Type ^e	s			
	Mediaa	DRCM		Saline salt	Peptone diluent	Peptone salt solu- tion	Ringer's solu-	tion (1/4 strength)	Phosphate buffer solution		Media ^a	mCCDA			

© ISO 2014 - All rights reserved

ISO 11133:2014(E)

	Colonies with black centre and a	lightly transparent zone of reddish colour due to the colour change of the medium	Yellow colonies	1		Characteristic reactions		1				Characteristic reactions	White-grey-blue-purple colonies with an entire edge and exhibit- ing a characteristic ground-glass appearance
		Good growth (2)	Growth or partial inhibi- tion	(0-1) Total inhibi-	(a) man	Criteria	+/- 30 % colonies/T0	(+/- 30 % of original count)	Turbidity	(1-2)		Criteria	$P_{\rm R} \ge 0,7$
	Qualitative		Qualitative	Qualitative		Method of control	Ouantita-	tive	Ourliter Hard	Quantauve		Method of control	Quantita- tive
	Ĩ		ł	Ĭ		Reference media		TSA			anisms	Reference media	Media batch BCYE already validated
(pən	00031	00030	00012 or 00013	60000	ia www.	WDCM numbers ^c	00012 or 00013	00034	00031	00030	of microorga	WDCM numbers ^c	00107 ^b
Table F.1 (continued)	Salmonella	Jyphimurium ^{a,i} <i>Salmonella</i> Enteritidis ^{d,i}	Escherichia colid	Enterococcus faecalis ^d	Multipurpose media	Control strains	Escherichia colid	Staphylococcus aureus	Salmonella Typhímurium ^{d,i}	<i>Salmonella</i> Enteritidis ^d ,i	Reference media for enumeration of microorganisms	Control strains	Legionella pneumophila
	(24 ± 3) h/ (36 ± 2) °C				Incubation	45 min - 1 h/	20 °C to 25 °C	(18±2) h/	[36±2] °C	Reference me	Incubation	2-5 days / (36±2) °C	
	Productiv- ity Selectivity		Selectivity			Function	Dilution		Productiv- ity			Function	Productiv- ity
	ISO 19250				Interna- tional Standard	ISO 6887		ISO 19250			Interna- tional Standard	ISO 11731 and ISO 11731-2	
	Saimoneita				Micro- organisms	Diluent for enumerations of	all microorgan- isms	Pre-enrichment for Salmonella	аетестіоп		Micro- organisms	Colony count	
	S					Type ^e	Г					Type ^e	s
	XLD					Media ^a	BPWk					Media ^a	BCYE

70

						Table F.1 (continued)	(pən				
TSA	s	Colony count	I	Productiv- ity	As specified in	Escherichia coli ^d	00012 00013 00090 00179				
					the method in which TSA is used as refer-	Clostridium perfringens	00007	Media batch TSA already	Quantita- tive	$P_{\rm R} \ge 0,7$	Characteristic colony according to each species
					ence medium	Pseudomonas aeruginosa	00024				
						Enterococcus faecalis	00087				
a Fullnam	es of mee	Full names of media abbreviated terms are given in <u>Table F.2</u> .	re given in	Table F.2.	8						
b Strains t	o be usec	Strains to be used as a minimum.									
c Make ref	erence to	Make reference to the reference strain catalogue available on http://www.wfcc.info for information on culture collection strain numbers and contact details.	talogue av	railable on h	ttp://www.wfcc.in	fo for information on cu	lture collecti	on strain nun	thers and cont	act details.	
d Strain fre	ee of cho	Strain free of choice; one of the strains has to be used as a minimum.	is to be us	ed as a mini	mum.						
e L: liquid	medium	L: liquid medium, S: solid medium, SS: semi-solid medium.	mi-solid a	medium.							
f More det.	ails for q	More details for quality control of Legionelia media including storage of the control strains are given in ISO 11731.	ila media	includingst	orage of the contro	l strains are given in ISC	011731.				
g More det	ails for q	g More details for quality control and quality criteria of MUG/EC medium are given in ISO 9308-3:1998, Annex E; selectivity is not specified in the standard.	ty criteria	of MUG/EC	medium are given	in ISO 9308-3:1998, Ann	ıex E; selecti	vity is not spe	cified in the st	andard.	
h More det	cails for q	^h More details for quality control and quality criteria of MUD/SF medium are given in ISO 7899-1:1998, Annex E.	ty criteria	a of MUD/SF	medium are given	in ISO 7899-1:1998, Ann	lex E.				
i Some nat	ional res	Some national restrictions and directions may require the use of a different serovar. Make reference to national requirements relating to the choice of Safmonella serovars.	may requ	tire the use (of a different serove	ar. Make reference to nat	tional requir	ements relatio	ng to the choic	e of Salmonelli	z serovars.
j Growth/1	curbidity	$Growth/turbidity$ is categorized as: $0 - no$ growth/turbidity; $1 - weak$ growth/turbidity; $2 - good$ growth/turbidity (see $\overline{Z4.12}, \underline{8.4.1}$)	to growth	/turbidity; 1	1 — weak growth/t	urbidity; 2 — good grov	vth/turbidit	y [see 7.4.1.2,	8.4.1).		
k If BPW is	used for	If BPW is used for two of these different applications: perform the Safmonella enrichment test as a minimum (if laboratory tests for this organism)	pplication	1s: perform	the Salmonella enriv	chment test as a minimu	ım (if laborat	ory tests for t	this organism]		
1 Choose th	ie straini	Choose the strain(s) according to the method for which TSA is used as a reference medium.	nod for wl	nich TSA is u	ised as a reference i	nedium.					

© ISO 2014 - All rights reserved

Media abbreviated term	Full name of the media	International Standard
BCYE	Buffered charcoal yeast extract agar medium	ISO 11731 and ISO 11731-2
Bolton	Bolton broth	ISO 17995
BPW	Buffered peptone water	ISO 6887 ISO 19250
DRCM	Differential reinforced clostridial medium	ISO 6461-1
GVPC	Buffered charcoal yeast extract agar with glycine, van- comycin, polymyxin B, cycloheximide	ISO 11731 and ISO 11731-2
Lactose TTC	Lactose triphenyltetrazolium chloride agar with sodium heptadecylsulfate	ISO 9308-1
mCCDA	Modified charcoal cefoperazone deoxycholate agar	ISO 17995
mCP	Membrane clostridium perfringens agar	Council Directive 98/83/ EC
MUD/SF	4-methylumbelliferyl-α-D glucoside /SF medium	ISO 7899-1
MUG/EC	4-methylumbelliferyl-β-D glucuronide /EC medium	ISO 9308-3
Preston	Preston broth	ISO 17995
Pseudomonas CN	Pseudomonas cetrimide nalidixic acid agar	ISO 16266
RVS	Rappaport-Vassiliadis soya peptone broth	ISO 19250
Slanetz and Bartley	Slanetz and Bartley medium	ISO 7899-2
Sulfite Iron	Iron Sulfite agar	ISO 6461-2
Tryptose Sulfite (TS)	Tryptose sulphite agar	ISO 6461-2
TSA	Tryptone soya agar	
TSC	Tryptose sulphite cycloserine agar (without egg yolk)	ISO 14189
XLD	Xylose lysine deoxycholate agar	ISO 19250
YEA	Yeast extract agar	ISO 6222

Table F.2 —	Abbreviated terr	ns for media use	d in Table F.1
Table I.E	Abbi eviaceu teri	no for media use	a m nabic fit

© ISO 2014 – All rights reserved