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Abstract

Regular oriented hypermaps are triples (G; a, b) consisting of a finite 2-generated
group G and a pair a, b of generators of G, where the left cosets of ⟨a⟩, ⟨b⟩ and ⟨ab⟩
describe respectively the hyperfaces, hypervertices and hyperedges. They generalise
regular oriented maps (triples with ab of order 2) and describe cellular embeddings
of regular hypergraphs on orientable surfaces. In [5] we have classified the regular
oriented hypermaps with prime number hyperfaces and with no non-trivial regular
proper quotients with the same number of hyperfaces (i.e. primer hypermaps with
prime number of hyperfaces), which generalises the classification of regular oriented
maps with prime number of faces and underlying simple graph [13]. Now we classify
the regular oriented hypermaps with a prime number of hyperfaces. As a result of this
classification, we conclude that the regular oriented hypermaps with prime p hyperfaces
have metacyclic automorphism groups and the chiral ones have cyclic chirality groups;
of these the “canonical metacyclic” (i.e. those for which ⟨a⟩ is normal in G) have
chirality index a divisor of n (the hyperface valency) and the non “canonical metacyclic”
have chirality index p. We end the paper by counting, for each positive integer n and
each prime p, the number of regular oriented hypermaps with p hyperfaces of valency
n.

1 Introduction

Hypermaps (surface embeddings of hypergraphs), introduced by Cori [10] in 1975, have ac-
quired great importance in recent years as a connection between permutations, extended
triangle groups, Riemann surfaces, algebraic curves and Galois groups. As highlighted by
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Grothendieck [14], the absolute Galois group of the field of algebraic numbers acts faith-
fully on dessins d’enfants (hypermaps), combinatorial objects that, by Belyi’s theorem [1],
characterise the Riemann surfaces defined (as projective algebraic curves) over the field of
algebraic numbers. The correspondence between hypermaps and Riemann surfaces is in gen-
eral difficult to study, but becomes more manageable if the hypermaps are uniform (that
is, if all hyperfaces have the same size n, all hypervertices have the same degree k and all
hyperedges have the same size m) and particularly better handled when they are regular.

In this paper we concentrate on regular oriented hypermaps, which are algebraically
characterised by triples H = (G; a, b) consisting of a finite 2-generated group G and a pair a,
b of generators ofG; such triples encode cellular embeddings of regular hypergraphs (bipartite
graphs1) on compact orientable surfaces of genus

g =
2− (|G/l⟨b⟩|+ |G/l⟨ab⟩|+ |G/l⟨a⟩|)

2
,

where G/lH stands for the left cosets of the subgroup H in G and |X| the cardinality of X.
The left cosets of ⟨a⟩, ⟨b⟩ and ⟨ab⟩ determine the hyperfaces, hypervertices and hyperedges
of H. Regular oriented maps are regular oriented hypermaps (G; a, b) in which the product
ab has order 2.

Regular (cellular-) embeddings of graphs in orientable surfaces (regular orientable maps)
have been classified for certain classes of graphs. The closest to the present paper is the
classification of orientable regular embeddings of graphs of given order. This has been
achieved for simple graphs of prime order [13] and of order a product of two primes [12],
giving rise respectively to classifications of the regular oriented simple maps of prime order,
and of order a product of two primes. Regular oriented maps of type {|a|, |b|} are regular
hypermaps of type (|b|, 2, |a|). Here |g| is the order of g.

Up to a duality a primer hypermap is a generalisation of a simple map (map with un-
derlying simple graph). In [5] we classified the primer hypermaps with prime number of
hyperfaces (left cosets of ⟨a⟩ in G) and now we extend the classification to regular oriented
hypermaps with prime number of hyperfaces – or, by duality, to a classification of the regular
oriented hypermaps with prime number of hypervertices (left cosets of ⟨b⟩ ) or hyperedges
(left cosets of ⟨ab⟩ ).

There has been some contributions to the classification of regular (oriented or non-
oriented) hypermaps by given number of hyperfaces; namely, on regular hypermaps (non-
oriented hypermaps, which include non-orientable hypermaps and hypermaps with border)
with one and two hyperfaces [2], on non-orientable regular hypermaps with a prime num-
ber of hyperfaces [18], on chiral hypermaps up to 4 hyperfaces [7], and on regular oriented
hypermaps up to 5 hyperfaces [4].

This paper has five sections. The first is the actual introduction which includes two
subsections, one giving a quick overview of the theory of regular oriented hypermaps and the
second giving an overview of “primer” hypermaps. In this subsection we write down the most
important results of [5] that are used in the third section. For a complementary reading on
these subjects we address the reader to [16, 15, 11, 7, 8, 5]. In the second section we introduce
some families of hypermaps, called “derivations”, that arise from a given regular oriented

1Graphs in this paper are pseudographs, that is, they may have multiple edges, loops and free-edges.
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hypermap, and explore their properties. The third is the classification of the regular oriented
hypermaps with p (prime) hyperfaces, and this will be achieved by “lifting” the “primer”
hypermaps with p hyperfaces classified in [5]. In the fourth section, we compute the chirality
group and the “H-sequences” (an extension of type) of the regular oriented hypermaps with
p hyperfaces. And finally in the fifth section we compute the number of regular oriented
hypermaps with p hyperfaces of valency n.

Functions in this paper are read from right to left.

1.1 Regular oriented hypermaps

An (finite) oriented hypermap is a triple H = (Ω; a, b) consisting of a finite set Ω (the
set of darts) and two permutations a and b that generate a transitive group G (called the
monodromy group) on Ω. Hyperfaces, hypervertices and hyperedges of H are orbits of ⟨a⟩,
⟨b⟩ and ⟨ab⟩ respectively. Here ab means a followed by b since functions and actions in
this paper are supposed to act from right. H is uniform if the permutations a, b and ab
are regular permutations; this means that all the hyperfaces have common valency, all the
hypervertices have common valency and all the hyperedges have common valency. In general
we have |Ω| ≥ |G|. If |Ω| = |G|, that is, if G acts regularly on Ω, then we say that H is
a regular oriented hypermap. In such case Ω can be replaced by G and the right actions
of a and b by right multiplication. Conversely, any finite two generated group G = ⟨a, b⟩
determines a regular oriented hypermap (G; a, b) where the monodromy elements a and b are
the respective right permutation representations of a and b on G. The above triple describes
a cellular embedding of a hypergraph G in an oriented surface S (i.e., an orientable surface
with a fixed orientation). Viewing G as a bipartite graph, with the set of vertices partitioned
into black vertices and white vertices, the hypermap H can be seen as a bipartite mapM
where the black vertices of G represent the hypervertices, the white vertices the hyperedges
and the faces ofM the hyperfaces. In this representation the edges of G are the darts of H
and the permutations a and b locally permute the darts counter clockwise (CCW) around
hyperfaces and hypervertices respectively (actually in the literature it is more common a and
b be permutations of darts CCW around hypervertices and hyperedges, and usually denoted
by R and L).

!

!a

!b
!ab

Figure 2: The efect of the permutations a, b and ab on a dart ω.
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The type of a regular oriented hypermap H is a triple (k,m, n) where the positive integers
k = |b|, m = |ab|, n = |a| are the valencies of the hypervertices, hyperedges and hyperfaces,
in this order. An extended version of the type is the H-sequence [k,m, n ; V,E, F ; |G|] where
(k,m, n) is the type, V , E and F are respectively the number of hypervertices, hyperedges
and hyperfaces, and |G| is the size of G (or the number of darts of H). The Euler charac-
teristic of the underlying surface S is the characteristic of H, and it is given by the formula
χ = V + E + F − |G|.

If H = (G; a, b) and H′ = (G′; a′, b′) are two regular oriented hypermaps, then H covers
H ′ if the assignment a 7→ a′, b 7→ b′ can be extended to a (canonical) epimorphism of
monodromy groups G→ G′ . The hypermap H is isomorphic to H′, H ∼= H′, if the canonical
epimorphism G 7→ G′, is an isomorphism. A hypermap is reflexible if it is isomorphic to
its mirror image H = (G; a−1, b−1), otherwise it is chiral. The chirality group of H is the
smallest normal subgroup X(H) of G such that H/X(H) is reflexible. This group ranges
from X(H) = 1, when H is reflexible, to X(H) = Mon(H) when H is totally chiral [8, 9].
The Chirality index of H is the size κ = κ(H) = |X(H)|.

Let ∆ denote the free product C2 ∗ C2 ∗ C2 generated by r0, r1 and r2, and Γ be the
normal subgroup of index 2 in ∆ generated by a = r0r1 and b = r1r2, a free group of rank 2.
Any regular oriented hypermap H corresponds an unique normal subgroup H in Γ, called
the fundamental hypermap subgroup, such that H ∼= (Γ/H;Ha,Hb). In this context the
chirality group of H is given by X(H) = HH/H, where H = Hr1 . If ⟨a, b | R(a, b)⟩ is a
presentation of the monodromy group G, where R(a, b) denotes a set of relators on a and
b, then the chirality group of H is X(H) = ⟨R(a−1, b−1)⟩G, the normal closure in G of the
subgroup generated by R(a−1, b−1) [3].

The regular oriented hypermaps H = (G; a, b) with 1 and 2 hyperfaces are all reflexible
and the chiral hypermaps with 3 and 4 hyperfaces are all (face-)canonical metacyclic, that
is, the monodromy group G is the metacyclic group ⟨a, b | an = 1, bm = as, bab−1 = at⟩ with
(t−1)s = 0 modn and tm = 1 modn. Equally we say that (G; a, b) is vertex-canonical (resp.
edge-canonical) metacyclic if ⟨b⟩ (resp. ⟨ab⟩) is normal in G. H is vertex-canonical (resp.
edge-canonical) metacyclic if and only if Hδ1 (resp. Hδ0) is face-canonical metacyclic, where
δ1 is the dual operation a 7→ b−1, b 7→ a−1 that transpose hypervertices with hyperfaces,
and δ0 is the dual operation a 7→ ab, b 7→ b−1 that transpose hyperedges with hyperfaces.
Another dual operation is the mirror operation µ : a 7→ a−1, b 7→ b−1 that maps H to
its mirror image Hµ = H. Face-, vertex- and edge-canonical metacyclic hypermaps have
cyclic chirality groups with chirality index n

gcd(n, t2−1)
; while the chirality group of a face-

canonical hypermap is generated by at
2−1 [7], the chirality group of a vertex- or edge-canonical

metacyclic hypermap is generated by (at
2−1δ1)

−1 = bt
2−1 or by at

2−1δ0 = (ab)t
2−1, respectively

[6, Lemma 2.1]. Therefore a (face-, vertex- or edge-) canonical metacyclic hypermap is chiral
if and only if t2 ̸= 1 modn.

By canonical metacyclic we just mean face-canonical metacyclic.
In contrast, most of the hypermaps appearing in the classification [4] are not canonical

metacyclic. However, we will show that all regular oriented hypermaps with a prime number
of hyperfaces have metacyclic automorphism groups, though not necessarily being (face-,
vertex- or edge-) canonical metacyclic hypermaps.
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1.2 Primer hypermaps

We can use the equivalence of Proposition 11 of [5] for our definition of primer hypermap
as it gives a good general idea behind the concept. A (face-) primer hypermap is a regular
oriented hypermap with no non-trivial regular proper quotients with the same number of
hyperfaces.

Any regular hypermap H = (G; a, b) covers a unique primer hypermap P = P(H).
Particularly the hyperface valency l of its primer hypermap divides the hyperface valency n
of H. For consistence we reserve the letter ℓ to denote the valency of a hyperface of a primer
hypermap and set aside the letter n for the valency of a hyperface of a non necessarily primer
hypermap.

This primer hypermap can be constructed in the following way. When the elements of
G act on G (set of darts) on the right they act as monodromy elements, but when they
act on the left they act as automorphisms of H. Therefore each element γ ∈ G induces
an automorphism φγ : g 7→ γg of H. In particular the automorphisms φa : g 7→ ag and
φb : g 7→ bg, induced by a and b, correspond to one-step global counter-clockwise rotations
about the hyperface and the hypervertex (respectively) that contain the identity dart. Being
H regular we have Aut(H) = ⟨φa, φb⟩ ∼= G and since functions in this paper act on the right,
φγ1γ2 = φγ2φγ1 and thus φ(γ1γ2)−1 = φγ−1

1
φγ−1

2
, and so,

H = (G; a, b) ∼= (Aut(H); (φa)
−1, (φb)

−1) .

The action of Aut(H) on H induces a transitive action of Aut(H) on the set of the hyperfaces
F = G/l⟨a⟩ of H, where the symbol G/lK represents the left cosets of K in G. Under
this action, each φγ ∈ Aut(H), or equivalently each γ ∈ G, determines a permutation
πγ ∈ Sym(F) defined by g⟨a⟩ 7→ γg⟨a⟩. In particular, the automorphisms φa and φb give
rise to permutations A = πa

−1 and B = πb
−1 on F . Labelling the hyperfaces of H by 1,

2, . . . , F , the permutations A and B are elements of the symmetric group SF . Let P be
the subgroup of SF generated by A and B. Then P = P(H) = (P ;A,B) is the primer
hypermap determined by H [5]. The subgroup P of SF generated by A and B is called the
(face-) primer group of H. We note that we are not adopting the notation P = (P ;A−1, B−1)
we have used in [5].

The function Π : G −→ P , γ 7→ γΠ = πγ
−1 = πγ−1 which maps a 7→ A and b 7→ B, is an

epimorphism with kernel Kern(Π) = ⟨a|A|⟩ (Proposition 5 of [5]). Therefore it induces an
epimorphism Π : H −→ P branched over hyperfaces. Moreover, since P ∼= G/⟨a|A|⟩, we get:
Corollary 7 [5]: for any word r(A,B) on A, B, r(A,B) = 1 if and only if r(a, b) = au for
some u = 0 mod |A|”.
To recognise a canonical metacyclic hypermap from its primer we have the following propo-
sition:

Proposition 4 [5]: H is (face-) canonical metacyclic if and only if A = 1.

The chirality group of the primer hypermap is a factor group of the chirality group of the
hypermap (Proposition 9 of [5]), that is, X(P(H)) = X(H)/K for some K. Consequently,
the chirality index κ(P(H)) divides κ(H). Hence if P(H) is chiral then also H is chiral. The
converse is not true.

5
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The main theorem of [5] says:

Theorem 16 [5]: P is a primer hypermap with p (prime) hyperfaces (each of valency ℓ) if and
only if P ∼= Pp,ℓ,t

k = (M(p, ℓ, 0, t); y, xyk) for some ℓ, t ∈ {1, . . . , p−1} and k ∈ {0, ..., ℓ−1}
such that: (1) ℓ is a divisor of p− 1 , (2) tℓ = 1 mod p , (3) if ℓ > 1 , ti ̸= 1 mod p
for each i ∈ {1, 2, ..., ℓ − 1}. Here M(p, ℓ, 0, t) is the metacyclic group ⟨x, y | xp = yℓ =
1, xy = xt⟩ = ⟨x⟩ o ⟨y⟩. Different parameters k, ℓ and t correspond to non-isomorphic
primer hypermaps with p hyperfaces of valency ℓ.

Note that if H is a regular oriented hypermap with p (not necessarily prime) hyperfaces,
each of valency n, then H covers a unique primer hypermap P with p hyperfaces, each of
valency ℓ with ℓ dividing n. Also useful is the following corolloary:

Corollary 17 [5]: The H-sequences of the primer hypermaps Pp,ℓ,t
k given above are

(1) [p, p, 1 ; 1, 1, p ; p] if k = 0 and ℓ = 1 (⇒ t = 1) ;

(2) [p, ℓ, ℓ ; ℓ, p, p ; ℓp] if k = 0 and ℓ > 1 (⇒ p > 2) ;

(3) [ℓ, p, ℓ ; p, ℓ, p ; ℓp] if k = ℓ− 1 > 0 (⇒ p > 2) ;

(4)

[
ℓ

(ℓ, k)
,

ℓ

(ℓ, k + 1)
, ℓ ; p(ℓ, k), p(ℓ, k + 1), p ; ℓp

]
if 0 < k < ℓ− 1 (⇒ p > 2) ,

where, for space saving, (u, v) stands for gcd(u, v), the greatest common divider of u and v.

2 Derivations

Before we start with the classification, we introduce several families of regular oriented
hypermaps that are derived from a given hypermap. These families together with their
properties will be useful later on.

Let H = (G; a, b) be a regular (oriented) hypermap with F hyperfaces of valency n. The
following regular hypermaps, which we call derivations of H, all have the same number of
hyperfaces F , and the same hyperface-valency n.

(1) The mirror H = (G; a−1, b−1);

(2) The mid-mirror Mm(H) := (G; a, b−1);

(3) The k-Left family Lk(H) := (G; a, akb), for each k ∈ {1, ..., n− 1},

(4) The k-Right family Rk(H) := Lk(H)a
k

= (G; aa
k

, (akb)a
k

) = (G; a, bak), and

(5) The (0, 1)-dual D(0,1)(H) =Mm(L1(H)) = (G; a, (ab)−1); this is the hypermap resulting
from H by swapping hypervertices with hyperedges.

One easily sees thatH = H, Mm(Mm(H)) = H,D(0,1)(D(0,1)(H)) = H, Ln−k(Lk(H)) =
Lk(Ln−k(H)) = H and Rn−k(Rk(H)) = Rk(Rn−k(H)) = H.
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LetD(H) denote one of the derivations ofH. ThenD defines an operationD : H 7→ D(H)
that takes a regular oriented hypermap with F hyperfaces of valency n to a regular oriented
hypermap with F hyperfaces of valency n. This operation has the inverse defined by

D−1 =


D if D is the mirror, mid-mirror or the (0, 1)-dual
Ln−k if D = Lk

Rn−k if D = Rk .

Denote by Π, Π, ΠM , ΠL and ΠR the corresponding homomorphisms G −→ Sp, γ 7→
πγ−1 . For example, Π : a 7→ πa−1 , b 7→ πb−1 and ΠL : a 7→ πa−1 , akb 7→ πb−1a−k . As
bΠL = (a−kakb)ΠL = a−kΠL a

kbΠL = πakπb−1a−k = πb−1a−k ak = πb−1 , then ΠL = Π. Similarly
we have Π = Π = ΠL = ΠM . Since the primer hypermap of H is P(H) = (GΠ; aΠ, bΠ) and
H is primer if and only if Ker(Π) = 1, we immediately have,

Proposition 1 Let H be a regular hypermap and P(H) be its primer hypermap. Then

(1) P(D(H)) = D(P(H)), for any derivation D of H.

(2) H is primer if and only if any of its derivations is primer .

Let FP denote the family of regular hypermaps with primer hypermap P . As an im-
mediate consequence of above, D(FP) = FD(P), and as a consequence of this we have
D(H) ∈ FP ⇔ H ∈ FD−1(P).

Let H = (G; a, b) be a regular hypermap and ⟨a, b | R(a, b)⟩ be a presentation for the
monodromy group G. Let x = X(a, b) and y = Y (a, b) be another pair of generators of G.
Then the original generators a and b can be written as words in x and y, say a = A(x, y)
and b = B(x, y).

Proposition 2 If the change of generators a to x and b to y produce no extra relations, that
is, if x = X(A(x, y), B(x, y)) and y = Y (A(x, y), B(x, y)) are not new relations, and there
is a w ∈ G such that the conjugations Aw = w−1Aw and Bw = w−1Bw coincide with their

inverse order words, in symbols Aw =
←−
A and Bw =

←−
B , then both hypermaps H = (G; a, b)

and Q = (G;x, y) have the same chirality group.

Proof:
The non-existence of any extra relations implies that ⟨x, y | R(A(x, y), B(x, y)⟩ is another
presentation of G, this time as a function of the new generators x and y. By Theorem 1 of
[3] we have,

X(Q) = ⟨R(A(x−1, y−1), B(x−1, y−1))⟩G = ⟨R(←−A (x, y)
−1
,
←−
B (x, y)

−1
)⟩G

= ⟨R(Aw(x, y)−1, Bw(x, y)−1)⟩G = ⟨R(A(x, y)−1, B(x, y)−1)⟩G = ⟨R(a−1, b−1)⟩G

= X(H) .

We saw in Proposition 1 that H is primer if and only if any of its derivations D(H) is
also primer. Now we show that this is also true for chirality.
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Corollary 3 Let D be a derivation of H. Then X(D(H)) = X(H), that is H and its
derivations D(H) all share the same chirality group. In particular, if some derivation of H
is chiral then also H is chiral.

Proof:
In Proposition 2 take w = id if Q = H or Mm(H), and take w = a−k if Q = Lk(H) or
Rk(H).

Consider the families Pp

I
= {Pp,1,1

0 }, Pp

II
= {Pp,ℓ,t

0 }
ℓ,t

with ℓ > 1, Pp

III
= {Pp,ℓ,t

ℓ−1 }ℓ,t with

ℓ > 1, and Pp

IV
= {Pp,ℓ,t

k }
k,ℓ,t

with ℓ > 1 and 0 < k < ℓ − 1, of the primer hypermaps with

H-sequences (1), (2), (3) and (4) respectively, of Corollary 17 [5]. Then Pp

III
= Rℓ−1(P

p

II
)

and Pp

IV
= Rk(P

p

II
). Taking into account Corollary 3 and [7, Corollary 9] for the chirality

group of canonical metacyclic hypermap, we have the following result shown in [5]:

Corollary 4 If P = Pp,ℓ,t
k = (G; y, xyk) is a primer hypermap with p hyperfaces (p prime)

then

X(P) =

{
1 (reflexible) if P ∈ Pp

I

⟨yt2−1⟩ if P ∈ Pp

II
,Pp

III
or Pp

IV
.

3 The classification

Let p be a prime number. We now proceed with the classification of the regular oriented
hypermaps with p hyperfaces. Let H = (G; a, b) be a regular oriented hypermap with p
hyperfaces (of valency n) and P = (GΠ; aΠ, bΠ) = (P ;A,B) be its primer hypermap, which
also has p hyperfaces. In what follows,

M(n, p, u, t) := ⟨a, b | an = 1, bp = au, b−1ab = at⟩

is the metacyclic group with parameters n, p, u, t, and

Gp,ℓ,t
n,u,v := ⟨a, b | an = 1, bp = au, [aℓ, b] = 1, bab−t = av⟩ .

Before we state and prove the main theorem, we first prove the following lemma,

Lemma 5 Let G = ⟨a, b⟩, p an odd prime and t, ℓ positive integers such that t ̸= 1 mod p,
tℓ = 1 mod p and p = 1 mod ℓ. If (i) bp ∈ ⟨aℓ⟩, (ii) biab−it ∈ ⟨aℓ⟩a, for any i =
1, 2, . . . , p , then b� aℓ, where the symbol � means “commutes with”.

Proof:

As tℓ = 1 mod p, by (i) we have bt
ℓ−1 ∈ ⟨aℓ⟩. On the other hand, taking i = 1, t, t2, . . . , tℓ−1,

(ii) yields the following information bab−t, btab−t2 , ..., bt
ℓ−1

ab−tℓ ∈ ⟨aℓ⟩a. Multiplying the first

i of these words (in the same order as shown) and the last ℓ− i words we get baib−ti ∈ ⟨aℓ⟩ai

and bt
i

aℓ−ib−tℓ ∈ ⟨aℓ⟩aℓ−i, respectively. Then baℓb−tℓ ∈ ⟨aℓ⟩ and thus

baℓb−1 = (baℓb−tℓ) bt
ℓ−1 = aV
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for some V = 0 mod ℓ. On the other hand,

bt
i

aℓb−ti = (bt
i

aℓ−ib−1)(baib−ti) = (baib−ti)(bt
i

aℓ−ib−1) = baℓb−1 = aV

for each i ∈ {0, ..., ℓ − 1, ℓ}. Consequently, b(t
i−1)aℓb1−ti = b−1aV b = aℓ for every integer

i ∈ {0, ..., ℓ− 1, ℓ}. Taking i = ℓ we get

[aℓ, bt
i−1] = 1, i = 0, ..., ℓ.

In particular,
b(t−1)+(t2−1)+...+(tℓ−1−1) = b(1+t+t2+...+tℓ−1)−ℓ � aℓ . (1)

As t ̸= 1 mod p and tℓ − 1 = (t− 1)(1 + t+ t2 + ...+ tℓ−1) = 0 mod p, one has (1 + t+ t2 +
...+ tℓ−1) = 0 mod p, and so by (1) we have bℓ � aℓ. As ℓ is a divisor of p− 1, we also have
bp−1 � aℓ. Consequently

[aℓ, b] = 1.

Theorem 6 If H = (G; a, b) is a regular oriented hypermap with p (prime) hyperfaces, each
of valency n, then H is isomorphic to one of the following hypermaps:

(1) CMn,p,u,t = (M(n, p, u, t); a , b) , for some u, t ∈ {0, 1, . . . , n− 1} such that

(t− 1)u = 0 modn and tp = 1 modn ;

(2) Hp,ℓ,t,k
n,u,v = (Gp,ℓ,t

n,u,v; a , ba
k) (p odd prime) , for some ℓ ∈ {2, . . . , n},

u, v ∈ {0, . . . , n− 1}, k ∈ {0, ..., ℓ− 1} and t ∈ {2, . . . , p− 1} such that

(H1) gcd(p− 1, n) = 0 mod ℓ ,

(H2) tℓ = 1 mod p and ti ̸= 1 mod p for i ∈ {1, 2, ..., ℓ− 1}
(that is, t has order ℓ in Z∗

p = Zp\{0}) ,
(H3) u = 0 mod ℓ, v = 1 mod ℓ and

(H4) (t− 1)u+ p(v − 1) = 0 modn .

Moreover, all these hypermaps Hp,ℓ,t,k
n,u,v for ℓ, t, k, n, u, v satisfying the above conditions,

have p hyperfaces of valency n, and different parameters (ℓ, t, k, u, v) correspond to non-
isomorphic hypermaps with p hyperfaces of valency n.

Proof:
Let H = (G; a, b) be a regular oriented hypermap with p (prime) hyperfaces and P =
(P ;A,B) be its primer hypermap where A = aΠ and B = bΠ. By Theorem 16 of [5],
P = Pp,ℓ,t

k , for some k, ℓ and t. We treat separately the following cases: A=1 (Case 1),
A ̸= 1 and |B| = p (Case 2) and A ̸= 1 and |B| ̸= p (Case 3).

Case 1. If A = 1 thenH is canonical metacyclic and P = P is the spherical cyclic hypermap
Cp = (Cp; 1, B) (Proposition 4 of [5]). ThenH is isomorphic to CMn,p,u,t = (M(n, p, u, t); a, b)
for some u and t such that (t− 1)u = 0 modn and tp = 1 modn. �
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Case 2. |A| = ℓ > 1 and |B| = p. By Theorem 16 of [5], and Corollary 17 of [5] (see also
§1.2), P(H) = Pp,ℓ,t

0 = (P ;A,B), where

P = ⟨A,B | Aℓ = 1, Bp = 1, A−1BA = Bt⟩ , (2)

for some t ∈ {1, . . . , p− 1} such that tℓ = 1 mod p and ti ̸= 1 mod p for i = 1, 2, ..., ℓ− 1.
By Proposition 15 of [5], ℓ is a divisor of p− 1 (that is, p = 1 mod ℓ).

From A−1BA = Bt we deduce that, BiAB−it = A for each integer i. Applying Corollary
7 of [5] (see also §1.2), we derive the following relations in G:

(i) an = 1 with n = 0 mod ℓ;
(ii) bp = au, u = 0 mod ℓ;
(iii) biab−it = avi , vi = 1 mod ℓ, i = 1, ..., p− 1 (also true for i = p).

These equations define a group that is right factorised by K = ⟨a⟩ into p cosets. Indeed, on
the one hand K, Kb, . . . , Kbp−1 are distinct cosets because p is the smallest positive integer
such that bp belongs to K = ⟨A⟩, and on the other hand, since {0, t, 2t, ..., (p − 1)t} is a
complete set of residues modulo p, equation (iii) implies that the set of right cosets of K in
G is G/rK = {K, Kb, ... , Kbp−1}. Hence the monodromy group of H is given by

G = ⟨a, b | an = 1, bp = au, biab−it = avi , i = 1, ..., p− 1⟩

for some integers n = 0 mod ℓ, u = 0 mod ℓ and vi = 1 mod ℓ, i = 1, ..., p − 1. We now
simplify this presentation.

From relation (iii) we have biab−it ∈ ⟨aℓ⟩a, valid for any i. By Lemma 5 ,

[aℓ, b] = 1.

Adding the relation [aℓ, b] = 1 to the presentation of G, some relations of the previous pre-
sentation will turn out to be redundant. From (iii), i = 1, we deduce b2ab−2t = b(bab−t)b−t =
bav1b−t = av1−1bab−t = a2v1−1 = a2(v1−1)+1; and more generally

biab−it = ai(v1−1)+1, i = 1, ..., p− 1 and p.

Thus all the relations in (iii) except the first one are redundant. Now for i = p we also have
bpab−pt = a(1−t)u+1, therefore a(1−t)u+1 = ap(v1−1)+1 which implies

(1− t)u = p(v1 − 1) modn.

The hypermap H is then isomorphic to Hp,ℓ,t,0
n,u,v := (Gp,ℓ,t

n,u,v; a, b), where

Gp,ℓ,t
n,u,v = ⟨a, b | an = 1, bp = au, [aℓ, b] = 1, bab−t = av⟩ ,

for some ℓ, t, n, u and v such that p = 1 mod ℓ, tℓ = 1 mod p, ti ̸= 1 mod p for each
i ∈ {1, 2, ..., ℓ− 1}, u = 0 mod ℓ, v = 1 mod ℓ, n = 0 mod ℓ and (1− t)u = p(v− 1) modn.

Conversely, we show that if H = Hp,ℓ,t,0
n,u,v for some ℓ, t, n, u, v satisfying the above

conditions, then H has p hyperfaces of valency n. Factoring G = Gp,ℓ,t
n,u,v by the normal
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subgroup ⟨aℓ⟩ yields the monodromy group of the primer hypermap P = Pp,ℓ,t
0 with p

hyperfaces of valency ℓ. Then ℓ divides |a| and so both P = H/⟨aℓ⟩ and H have the same
number of hyperfaces, p.

As gcd(t − 1, p) = 1 there exist integers c and d such that c(t − 1) + dp = 1. Then
the assignment a 7→ a, b 7→ ac(1−v)+du turn each of the relators of G into the identity of
Cn = ⟨a | an = 1⟩ and so it defines an epimorphism from G to the cyclic group Cn. This
proves that the order of a in G is n. Consequently H has p hyperfaces of valency n. �

Case 3. |A| = ℓ > 1 and |B| ̸= p. By Theorem 16 of [5], and Corollary 17 of [5],

P(H) = Pp,ℓ,t
k = (M(p, ℓ, 0, t);A, βAk) = Rk((M(p, ℓ, 0, t);A, β)) = Rk(Pp,ℓ,t

0 )

for some k ∈ {0, ..., ℓ − 1} and t ∈ {1, 2, . . . , p − 1}, where M(p, ℓ, 0, t) = ⟨β,A | βp = Aℓ =
1, βA = βt⟩ = ⟨β⟩ o ⟨A⟩ and (1) ℓ is a divisor of p − 1 , (2) tℓ = 1 mod p and (3) if
ℓ > 1 , ti ̸= 1 mod p for each i ∈ {1, 2, ..., ℓ− 1}.

Then P(Rℓ−k(H)) = Pp,ℓ,t
0 . By case 2, Rℓ−k(H) = Hp,ℓ,t,0

n,u,v = (Gp,ℓ,t
n,u,v; a, b). Thus

H = Hp,ℓ,t,k
n,u,v := Rk(Hp,ℓ,t,0

n,u,v ) = (Gp,ℓ,t
n,u,v; a , ba

k) ,

for some k ∈ {0, ..., ℓ− 1}. �

Finally we show that different parameters lead to different hypermaps.

(1) If CMn,p,u,t = (M ; a, b) ∼= CMn′,p′,u′,t′ = (M ′;α, β) then p′ = p and n′ = n, since the
number of hyperfaces and their valencies should be the same. Then it becomes obvious that
we must have u′ = u and t′ = t since these parameters run from 0 to n− 1.

(2) If Hp,ℓ,t,k
n,u,v

∼= Hp′,ℓ′,t′,k′

n′,u′,v′ , then, as above, we must have p′ = p and n′ = n. Looking at the
primer hypermaps,

P(Hp,ℓ,t,k
n,u,v ) = P

p,ℓ,t
k

∼= P(Hp,ℓ′,t′,k′

n,u′,v′ ) = Pp,ℓ,t′

k′ ,

this forces ℓ′ = ℓ, t′ = t and k′ = k (Theorem 16 [5]). But then we have Hp,ℓ,t,k
n,u,v = Rk(Hp,ℓ,t,0

n,u,v )

and Hp,ℓ,t,k
n,u′,v′ = Rk(Hp,ℓ,t,0

n,u′,v′), so we must also have Hp,ℓ,t,0
n,u,v

∼= Hp,ℓ,t,0
n,u′,v′ . It is now clear that this

isomorphism implies u′ = u and v′ = v, since u, u′, v, v′ are restrict to {0, . . . , n− 1}.

Each hypermap H with p hyperfaces, p prime, with each hyperface of valency n, covers
only one primer hypermap also with p hyperfaces of valency ℓ = |A| (a divisor of n). This
primer hypermap is

P(CMn,p,u,t) = Cp = (Cp; 1, B) , if H = CMn,p,u,t, or

P(Hp,ℓ,t,k
n,u,v ) = P

p,ℓ,t
k = (Gp,ℓ,t

0 ; a, bak) , if H = Hp,ℓ,t,k
n,u,v .

Among the hypermaps in the family Hp,ℓ,t,k
n,u,v many of them share the same group and are

distinguished by different pairs of generators. In the previous proof we find the requisites
necessary to prove that Gp,ℓ,t

n,u,v is a metacyclic group.
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Proposition 7 Gp,ℓ,t
n,u,v is a metacyclic group isomorphic to Gp,ℓ,t

n,0,1 = M(p, n, 0, t) = ⟨β, α |
βp = 1, αn = 1, α−1βα = βt⟩ under the isomorphism ψ : a 7→ α, b 7→ βαθ, where θ =
c(1− v) + du, for some c, d satisfying c(t− 1) + dp = 1 = gcd(t− 1, p). Moreover, Hp,ℓ,t,k

n,u,v
∼=

Rθ+k(Hp,ℓ,t
n ), where Hp,ℓ,t

n is the canonical metacyclic hypermap (Gp,ℓ,t
n,0,1;α, β).

Proof:
Consider the group

Gp,ℓ,t
n,0,1 = ⟨α, β | αn = 1, βp = 1, βαβ−t = α⟩

= ⟨β, α | βp = 1, αn = 1, α−1βα = βt⟩
= M(p, n, 0, t) .

Note that βαβ−t = α ⇔ α−1βα = βt implies that βiαβ−it = α for any i; so by Lemma
5, [αℓ, β] = 1. This group, being metacyclic, has order np. Note also that the condition
tℓ = 1 mod p is stronger than the metacyclic condition tn = 1 mod p. Let c and d be such
that c(t− 1) + dp = 1, and let θ = c(1− v) + du. Then

θ = 0 mod ℓ, so αθ ∈ Z(Gp,ℓ,t
n,0,1) ,

θp = cp(1− v) + pdu = c(t− 1)u+ pdu = (c(t− 1) + pd)u = u , and

θ(1− t) = (1− t)c(1− v) + (1− t)u d
= (1− t)c(1− v) + p(v − 1)d
= (t− 1)c(v − 1) + p(v − 1)d
= (v − 1)((t− 1)c+ pd)
= v − 1 .

The assignment ψ : a 7→ α, b 7→ βαθ, transfers the relators of Gp,ℓ,t
n,u,v to relators of Gp,ℓ,t

n,0,1 as
we can observe:

1) an −→ αn = 1,

2) bpa−u −→ (βαθ)pα−u = βpαθpα−u = αuα−u = 1,

3) [aℓ, b] −→ [αℓ, βαθ] = [αℓ, β] = 1,

4) bab−ta−v −→ βαθα(βαθ)−tα−v = βαβ−tαθα−θtα−v = αθ(1−t)αα−v = αv−1α1−v = 1,

By the Substitution Test [17, Theorem 4, pg 29], ψ : Gp,ℓ,t
n,u,v → Gp,ℓ,t

n,0,1 is an epimorphism.

As |Gp,ℓ,t
n,0,1| = |Gp,ℓ,t

n,u,v|, ψ is indeed an isomorphism and thus Gp,ℓ,t
n,u,v is metacyclic. This

isomorphism also shows that Hp,ℓ,t
n,u,v = Hp,ℓ,t,0

n,u,v is isomorphic to Rθ(Hp,ℓ,t
n ). Then Hp,ℓ,t,k

n,u,v =

Rk(Hp,ℓ,t
n,u,v)

∼= Rθ+k(Hp,ℓ,t
n ).

Corollary 8 If H is a regular oriented hypermap with a prime number of hyperfaces then
its automorphism group is metacyclic, though H is not necessarily canonical metacyclic.

4 Chirality groups and H-sequences

Theorem 9 The chirality groups of CMn,p,u,t and Hp,ℓ,t,k
n,u,v are the cyclic groups ⟨at2−1⟩ and

⟨bt2−1⟩ respectively. The chirality index of CMn,p,u,t is n
(n,t2−1)

while the chirality index of
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Hp,ℓ,t,k
n,u,v is

p

gcd(p, t2 − 1)
=

{
1 , t = p− 1
p , t ∈ {2, . . . , p− 2}

Proof:
The canonical metacyclic hypermap CMn,p,u,t has chirality group ⟨at2−1⟩ [7].

By Proposition 7, Hp,ℓ,t,k
n,u,v = Rθ+k

(
Hp,ℓ,t

n

)
and, by Proposition 3, Hp,ℓ,t,k

n,u,v has the same

chirality group as the vertex-canonical metacyclic hypermap Hp,ℓ,t
n = (Gp,ℓ,t

n ; a, b), where

Gp,ℓ,t
n =M(p, n, 0, t) = ⟨b, a | bp = 1, an = 1, a−1ba = bt⟩ .

Hence Hp,ℓ,t,k
n,u,v has chirality group ⟨bt2−1⟩ [7], a subgroup of the cyclic group ⟨b⟩ of order p

(prime). If Hp,ℓ,t,k
n,u,v is not reflexible (bt

2−1 ̸= 1 ⇔ t ̸= −1 mod p, since t ≥ 2), it must has

order p, and thus Hp,ℓ,t,k
n,u,v has chirality index κ = p.

Corollary 10 If H is a regular oriented hypermap with a prime number of hyperfaces and
its primer hypermap is P = (P ;A,B), with A ̸= 1, then H is reflexible if and only if |A| = 2.

Theorem 11 The H-sequences of the hypermaps of Theorem 6 are

CMn,p,u,t :

[
pn

(n, u)
,

pn

(n, tp−1 + ...+ 1 + u)
, n ; (n, u), (n, tp−1 + ...+ 1 + u), p ; pn

]
Hp,ℓ,t,0

n,u,v :

[
pn

(n, u)
,

n

(n, θ + 1)
, n ; (n, u), p(n, θ + 1), p ; pn

]
Hp,ℓ,t,ℓ−1

n,u,v :

[
n

(n, θ + ℓ− 1)
, ((

pn

(n, u)
,
n

ℓ
)), n ; p(n, θ + ℓ− 1),

pn

(( pn
(n,u)

, n
ℓ
))
, p ; pn

]

Hp,ℓ,t,k
n,u,v :

[
n

(n, θ + k)
,

n

(n, θ + k + 1)
, n ; p(n, θ + k), p(n, θ + k + 1), p ; pn

]
,

(0<k<ℓ−1)

where, for space saving, (u, v) stands for gcd(u, v), ((u, v)) stands for lcm(u, v), the least
common multiple of u and v, θ = c(1 − v) + du, and c and d are integers such that c(t −
1) + dp = 1 = (t− 1, p).

Proof:
Recall that the H-sequence ofH = (G; a, b) is a sequence of numbers [|b|, |ab|, |a|;V,E, F ; |G|]
where |b| (the order of b) is the hypervertex-valency, |ab| is the hyperedge-valency, |a| is
the hyperface-valency, V = |G|

|b| is the number of hypervertices, E = |G|
|ab| is the number of

hyperedges and F = |G|
|a| is the number of hyperfaces.

- For the canonical metacyclic hypermap CMn,p,u,t = (G; a, b), where G =M(n, p, u, t) =
⟨a, b | an = 1, bp = au, b−1ab = at⟩, it is clear that |a| = n, |b| = pn

gcd(n,u)
and |G| = pn. We

only need to calculate |ab| = |ba|. From the relation b−1ab = at we get: amb = bamt and
abm = bmat

m

, for any positive integer m. From this we easily derive

(ba)m = bmat
m−1+···+t+1 .
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Now as CMn,p,u,t covers P = (Cp; 1, B), the order of ba is a multiple of p. As (ba)p =

at
p−1+···+t+1+u, then |ba| = pn

gcd(n,tp−1+...+1+u)
. The rest of the H-sequence is easily determined

from these values.

- For H = Hp,ℓ,t,0
n,u,v = (G; a, b), where G = Gp,ℓ,t

n,u,v, we also have |a| = n, |b| = pn
gcd(n,u)

and

by Proposition 7, |G| = pn. Therefore we only need to calculate |ab| = |ba|.
- For H = Hp,ℓ,t,ℓ−1

n,u,v = (G; a, baℓ−1), where G = Gp,ℓ,t
n,u,v, we have |a| = n, |abaℓ−1| = |baℓ| =

lcm(|b|, |aℓ|) = lcm( pn
gcd(n,u)

, n
ℓ
), where |G| = pn. Therefore we only need to calculate |baℓ−1|.

-For H = Hp,ℓ,t,k
n,u,v = (G; a, bak), where G = Gp,ℓ,t

n,u,v, we have |a| = n, |abak| = |bak+1| and
|G| = pn. Therefore we only need to calculate |bak+1|.

To complete the H-sequence in the last three cases, we need to calculate the order of
ajb for j ∈ {1, ..., ℓ − 1}, within the group G = Gp,ℓ,t

n,u,v. This group is isomorphic to the
metacyclic group M(p, n, 0, t) = ⟨β, α | βp = 1, αn = 1, βα = βt⟩ under the isomorphism
ψ : G→M(p, n, 0, t), a 7→ α, b 7→ βαθ (Proposition 7), where θ = c(1− v) + du (which is a
multiple of ℓ), and c and d are integers such that c(t− 1) + dp = 1. Then the order of ajb is
the order of αjβαθ = αθ+jβ = αiβ, where i = θ + j ̸= 0 mod ℓ. We now follow the proof of
Corollary 17 of [5] to compute the order of βαi.

The third equation of M(p, n, 0, t) implies that βαi

= βti ⇔ βαi = αiβti . By induction
we get

(βαi)m = αimβtim+ti(m−1)+···+ti = αimβV (m) ,

where V (m) = tim+ti(m−1)+· · ·+ti = ti(ti(m−1)+· · ·+t+1). Let U(m) = ti(m−1)+· · ·+t+1.
Now the order of βαi is the least positive integer m such that

(βαi)m = 1⇔ αimβV (m) = 1⇔ αim = β−V (m) ∈ ⟨α⟩ ∩ ⟨β⟩ = 1⇔ αim = βV (m) = 1 .

Hence m is multiple of |αi|. On the other hand, β has order p and βV (m) = 1 ⇔ V (m) =
0 mod p ⇔ tiU(m) = 0 mod p ⇔ U(m) = 0 mod p, since t ∈ Z∗

p = {1, 2, . . . , p − 1}. Now

ℓ | p − 1 and tℓ = 1 mod p and tq ̸= 1 mod p, for any q < ℓ, that is tq ̸= 1 mod p for any

q ̸= 0 mod ℓ. Since i = θ + j ̸= 0 mod ℓ, then U(m) = tim−1
ti−1

, and so

U(m) = 0 mod p ⇔ tim = 1 mod p .

Thus, if m is just the order of αi, that is, if m = n
gcd(n,i)

, then im is a multiple of n and so a

multiple of ℓ (n = 0 mod ℓ), and consequently m also satisfies βV (m) = 1. Hence |βαi| = |αi|,
that is,

|ajb| = |βαθ+j| = |αθ+j| = n

gcd(n, θ + j)
.

5 Number of hypermaps with p hyperfaces

To count the number of regular oriented hypermaps with p (prime) hyperfaces of valency
n it suffices to count the different parameters appearing in items (1) and (2) of Theorem
6. Let NH(1)(p, n) be the number of regular oriented hypermaps CMn,p,u,t in item (1) with
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p hyperfaces of valency n, and NH(2)(p, n) be the number of regular oriented hypermaps
Hp,ℓ,t,k

n,u,v in item (2) with p hyperfaces of valency n. Then

(1) Denote by Up(n) the subgroup of the units of Zn whose elements t satisfy tp = 1 modn.
Let µ(t) be the number of solutions u of (t− 1)u = 0 modn. Then

NH(1)(p, n) =
∑

t∈Up(n)

µ(t) =
∑

t∈Up(n)

gcd(t− 1, n) .

Now let NRH(1)(p, n) and NCH(1)(p, n) be the number of reflexible and chiral (respec-
tively) regular oriented canonical metacyclic hypermapsH = CMn,p,u,t in item (1) with
p hyperfaces of valency n. By Theorem 9, H is reflexible if and only if t2 = 1 modn.
This implies that tm = 1 modn for any even m, and so, combining with tp = 1 modn,
we get t = 1 modn. Then

NRH(1)(p, n) = gcd(0, n) = n

and
NCH(1)(p, n) =

∑
t∈U∗

p (n)

gcd(t− 1, n) ,

where U∗
p (n) = {t ∈ Up(n) | t ̸= 1 modn}.

(2) Denote by ℘(t, ℓ) the number of pairs (u, v) satisfying the equations u = 0 mod ℓ,
v − 1 = 0 mod ℓ and (H4). Since k freely ranges in {0, 1, . . . , ℓ− 1}, then

NH(2)(p, n) =
∑

ℓ|gcd(p−1,n)

ℓ>1

∑
t∈Gℓ

∑
k

℘(t, ℓ) =
∑

ℓ|gcd(p−1,n)

ℓ>1

∑
t∈Gℓ

ℓ℘(t, ℓ) ,

where Gℓ is the set of elements of order ℓ in the cyclic group Zp
∗ = Cp−1. Since p and

t− 1 are coprimes, the number of pairs of solutions (u, v− 1) mod n of (H4) is exactly
n; so the number ℘(t, ℓ) of solutions pairs (u, v − 1) modn which are multiple of ℓ,
where n = 0 mod ℓ, of (H4), is the number of solutions pairs (u

ℓ
, v−1

ℓ
) mod n

ℓ
of

u

ℓ
(t− 1) +

v − 1

ℓ
p = 0 mod

n

ℓ
,

which is exactly ℘(t, ℓ) = n
ℓ
. Therefore

NH(2)(p, n) =
∑

ℓ|gcd(p−1,n)

ℓ>1

∑
t∈Gℓ

ℓ
n

ℓ
= n

∑
ℓ|gcd(p−1,n)

ℓ>1

Φ(ℓ) ,

where Φ is the Euler Phi-function. In the special case when p is a Fermat prime, p− 1
is a power of 2 and so NH(2)(p, n) = 0 for n odd. The total number NH(p, n) of regular
oriented hypermaps with p (prime) hyperfaces of valency n is then given by:

NH(p, n) = NH(1)(p, n) +NH(2)(p, n) =
∑

t∈Up(n)

gcd(t− 1, n) +
∑

ℓ|gcd(p−1,n)

ℓ>1

nΦ(ℓ) .
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Denote by NRH(2)(p, n) and NCH(2)(p, n) the number of reflexible and chiral (respec-
tively) regular oriented hypermaps H = Hp,ℓ,t,k

n,u,v in item (2). By Theorem 9, H is
reflexible if and only if t = −1 mod p. This is equivalent to ℓ = 2 (and this implies n
even). Hence

NRH(2)(p, n) =

{
0 , if n is odd,

n , if n is even.

NCH(2)(p, n) = n
∑

ℓ|gcd(p−1,n)

ℓ>2

Φ(ℓ) .

Note that if n is odd then Hp,ℓ,t,k
n,u,v is chiral with chirality index p.

Denoting by NRH(p, n) and NCH(p, n) the number of reflexible and chiral regular
oriented hypermaps with p (prime) hyperfaces of valency n, then

NRH(p, n) = NRH(1)(p, n) +NRH(2)(p, n) =

{
n , if n is odd,

2n , if n is even.

and NCH(p, n) = NCH(1)(p, n) +NCH(2)(p, n).
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