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Abstract

In this paper we present three types of Caputo–Hadamard derivatives of variable fractional

order, and study the relations between them. An approximation formula for each fractional

operator, using integer-order derivatives only, is obtained, and an estimation for the error is

given. At the end we compare the exact fractional derivative of a concrete example with some

numerical approximations.
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1 Introduction

At the same time ordinary calculus was developed for integer-order derivatives in the seventeenth
century, L’Hôpital and Leibniz wondered about the notion of derivative of order n = 1/2. Two
centuries later, with the works of Fourier, Riemann, Liouville, Hadamard, Grünwald, etc., nu-
merous definitions trying to generalize the notion of ordinary derivative were developed. This
was primarily a theoretical study for mathematicians, with several notions of fractional operators
appearing and their properties well studied. In the past decades, with the discovery that processes
like conservation mass, viscoelasticity, nanotechnology, signal processing, and several other appli-
cations in engineering are better described by fractional derivatives, these discoveries have gained
a great importance. Fractional derivatives are nonlocal concepts, and for this reason may be more
suitable to translate natural phenomena. In our days, one can find several books and journals
dedicated exclusively to fractional calculus theory, not only on the subject of mathematics but
also physics, engineering, economics, applied sciences, etc.

Due the complexity of dealing with fractional operators, we find different numerical approaches
to solve the desired problems. One of those available methods consists in approximating the frac-
tional derivative by an expansion that depends on integer-order derivatives only [1, 12, 13]. With
this technique in hand, given any problem involving fractional operators, we can simply replace
them with the given expansion, obtaining a new problem that depends on integer-order derivatives
only. After that, we can apply any known technique to solve it. The main advantage of this pro-
cedure is that we do not need higher-order derivatives in order to have a good approximation, in
opposite to other methods e.g. the approximation for the Riemann–Liouville fractional derivative
[15],

aD
α
t x(t) =

∞
∑

n=0

(

α

n

)

(t− a)n−α

Γ(n+ 1− α)
x(n)(t)

and for the Hadamard fractional derivative we have [2]

H
0 D

α
t x(t) =

∞
∑

n=0

S(α, n)tnx(n)(t),
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where S(α, n) is the Stirling function.

2 Fractional calculus of variable order

In this section, we present three new types of fractional operators, which combine the Caputo with
the Hadamard fractional derivatives. The order of the derivative is a function α(t), that depends
on time, and when it is constant we prove that the three definitions coincide. To start, we review
some concepts on fractional derivative operators with constant order [9, 10, 15]. Let α be a real
in the interval (0, 1) and x be a real valued function with domain [a, b]. The Caputo fractional
derivative of x of order α is given by

C
aD

α
t x(t) = aD

α
t [x(t)− x(a)],

where aD
α
t stands for the Riemann-Liouville fractional derivative:

aD
α
t x(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− τ)−αx(τ)dτ.

If x is differentiable, using integration by parts and then differentiating the integral, we obtain an
equivalent definition for the Caputo fractional derivative:

C
aD

α
t x(t) =

1

Γ(1− α)

∫ t

a

(t− τ)−αx′(τ)dτ.

With respect to the Hadamard fractional derivative, we have the following definition:

H
a D

α
t x(t) =

t

Γ(1− α)

d

dt

∫ t

a

(

ln
t

τ

)−α
x(τ)

τ
dτ.

For example, for γ > 0, if we take the two functions x(t) = (t− a)γ and y(t) =
(

ln t
a

)γ
, then

C
aD

α
t x(t) =

Γ(γ + 1)

Γ(γ + 1− α)
(t− a)γ−α and H

a D
α
t y(t) =

Γ(γ + 1)

Γ(γ + 1− α)

(

ln
t

a

)γ−α

.

One natural extension of these two concepts is to define the Caputo–Hadamard fractional derivative
of order α [6, 7]:

CH
a D

α
t x(t) =

t

Γ(1− α)

d

dt

∫ t

a

(

ln
t

τ

)−α
x(τ) − x(a)

τ
dτ,

or in an equivalent way,

CH
a D

α
t x(t) =

1

Γ(1− α)

∫ t

a

(

ln
t

τ

)−α

x′(τ)dτ.

We extend the previous notions by considering the order of the derivative a real valued function
α : [a, b] → (0, 1). This is a very recent direction of research, and was studied for the first
time in [16] with respect to the Riemann–Liouville fractional derivative. Since these fractional
operators are nonlocal, and contain memory about the past dynamic, it is natural to consider the
order of the derivative also variable, depending on the process. In fact, several applications were
found and it is nowadays a growing subject that has attracted the attention of a vast community
[3, 4, 5, 8, 11, 14, 17]. In this paper we deal with a combined Caputo–Hadamard fractional
derivative with fractional variable order. Three different types of operators are given.

Definition 1. Let a, b be two reals with 0 < a < b, and x : [a, b] → R be a function. The left

Caputo–Hadamard fractional derivative of order α(t)
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1. type 1 is defined by

aD
α(t)
t x(t) =

1

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)

x′(τ)dτ ;

2. type 2 is defined by

aD
α(t)
t x(t) =

t

Γ(1− α(t))

d

dt

(

∫ t

a

(

ln
t

τ

)−α(t)
x(τ) − x(a)

τ
dτ

)

;

3. type 3 is defined by

aD
α(t)
t x(t) = t

d

dt

(

1

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)
x(τ) − x(a)

τ
dτ

)

.

Analogous definitions for the right fractional operators are given:

Definition 2. Let a, b be two reals with 0 < a < b, and x : [a, b] → R be a function. The right

Caputo–Hadamard fractional derivative of order α(t)

1. type 1 is defined by

tD
α(t)
b x(t) =

−1

Γ(1− α(t))

∫ b

t

(

ln
τ

t

)−α(t)

x′(τ)dτ ;

2. type 2 is defined by

tD
α(t)
b x(t) =

−t

Γ(1− α(t))

d

dt

(

∫ b

t

(

ln
τ

t

)−α(t) x(τ) − x(b)

τ
dτ

)

;

3. type 3 is defined by

tD
α(t)
b x(t) = −t

d

dt

(

1

Γ(1 − α(t))

∫ b

t

(

ln
τ

t

)−α(t) x(τ) − x(b)

τ
dτ

)

.

We will see that these definitions do not coincide. To start, we prove the following Lemma.

Lemma 1. Let γ > 0 and consider the function x(t) =
(

ln t
a

)γ
. Then

1. aD
α(t)
t x(t) =

Γ(γ + 1)

Γ(γ + 1− α(t))

(

ln
t

a

)γ−α(t)

.

2. aD
α(t)
t x(t) =

Γ(γ + 1)

Γ(γ + 1− α(t))

(

ln
t

a

)γ−α(t)

−
tα′(t)Γ(γ + 1)

Γ(γ + 2− α(t))

(

ln
t

a

)γ+1−α(t) [

ln

(

ln
t

a

)

+ ψ(1− α(t))− ψ(γ + 2− α(t))

]

.

3. aD
α(t)
t x(t) =

Γ(γ + 1)

Γ(γ + 1− α(t))

(

ln
t

a

)γ−α(t)

−
tα′(t)Γ(γ + 1)

Γ(γ + 2− α(t))

(

ln
t

a

)γ+1−α(t) [

ln

(

ln
t

a

)

− ψ(γ + 2− α(t))

]

.
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Proof. We only prove the first one; the others are proven in a similar way. First, observe that

aD
α(t)
t x(t) =

1

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)
γ

τ

(

ln
τ

a

)γ−1

dτ

=
γ

Γ(1− α(t))

(

ln
t

a

)−α(t) ∫ t

a

(

1−
ln τ

a

ln t
a

)−α(t)
(

ln
τ

a

)γ−1 dτ

τ
.

If we proceed with the change of variables

ln
τ

a
= s ln

t

a
,

we get

aD
α(t)
t x(t) =

γ

Γ(1− α(t))

(

ln
t

a

)−α(t) ∫ 1

0

(1− s)−α(t)sγ−1

(

ln
t

a

)γ−1(

ln
t

a

)

ds

=
γ

Γ(1− α(t))

(

ln
t

a

)γ−α(t) ∫ 1

0

(1 − s)−α(t)sγ−1ds

=
γ

Γ(1− α(t))

(

ln
t

a

)γ−α(t)

B(1 − α(t), γ),

where B(·, ·) is the beta function. Using the relation

B(1 − α(t), γ) =
Γ(1− α(t))Γ(γ)

Γ(γ + 1− α(t))
,

we prove the desired formula.

In a similar way we have the following:

Lemma 2. Let γ > 0 and consider the function x(t) =
(

ln b
t

)γ
. Then

1. tD
α(t)
b x(t) =

Γ(γ + 1)

Γ(γ + 1− α(t))

(

ln
b

t

)γ−α(t)

.

2. tD
α(t)
b x(t) =

Γ(γ + 1)

Γ(γ + 1− α(t))

(

ln
b

t

)γ−α(t)

+
tα′(t)Γ(γ + 1)

Γ(γ + 2− α(t))

(

ln
b

t

)γ+1−α(t) [

ln

(

ln
b

t

)

+ ψ(1− α(t))− ψ(γ + 2− α(t))

]

.

3. tD
α(t)
b x(t) =

Γ(γ + 1)

Γ(γ + 1− α(t))

(

ln
b

t

)γ−α(t)

+
tα′(t)Γ(γ + 1)

Γ(γ + 2− α(t))

(

ln
b

t

)γ+1−α(t) [

ln

(

ln
b

t

)

− ψ(γ + 2− α(t))

]

.

Theorem 1. The following relations hold:

aD
α(t)
t x(t) = aD

α(t)
t x(t) +

tα′(t)

Γ(2− α(t))

∫ t

a

(

ln
t

τ

)1−α(t)

x′(τ)

[

1

1− α(t)
− ln

(

ln
t

τ

)]

dτ

and

aD
α(t)
t x(t) = aD

α(t)
t x(t) +

tα′(t)ψ(1 − α(t))

Γ(1 − α(t))

∫ t

a

(

ln
t

τ

)−α(t)
x(τ) − x(a)

τ
dτ.
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Proof. Starting with the formula

aD
α(t)
t x(t) =

t

Γ(1− α(t))

d

dt

(

∫ t

a

(

ln
t

τ

)−α(t)
x(τ) − x(a)

τ
dτ

)

,

and integrating by parts choosing

u′(τ) =

(

ln
t

τ

)−α(t)
1

τ
and v(τ) = x(τ) − x(a),

we obtain

aD
α(t)
t x(t) =

t

Γ(1− α(t))

d

dt

(

1

1− α(t)

∫ t

a

(

ln
t

τ

)1−α(t)

x′(τ)dτ

)

.

Differentiating the product, we prove the formula. The second one follows immediately from the
definition.

From this result, for an arbitrary function x, we see that these three definitions coincide

aD
α(t)
t x(t) ≡ aD

α(t)
t x(t) ≡ aD

α(t)
t x(t),

only when the order α(t) or the function x are constant.
For what concerns the right fractional operators, we have the two following relations.

tD
α(t)
b x(t) = tD

α(t)
b x(t) +

tα′(t)

Γ(2− α(t))

∫ b

t

(

ln
τ

t

)1−α(t)

x′(τ)

[

1

1− α(t)
− ln

(

ln
τ

t

)

]

dτ

and

tD
α(t)
b x(t) = tD

α(t)
b x(t) −

tα′(t)ψ(1− α(t))

Γ(1− α(t))

∫ b

t

(

ln
τ

t

)−α(t) x(τ) − x(b)

τ
dτ.

Theorem 2. Let x be of class C1. Then

aD
α(t)
t x(t) = aD

α(t)
t x(t) = aD

α(t)
t x(t) = 0,

at t = a.

Proof. For what concerns aD
α(t)
t x(t), we have

∣

∣

∣aD
α(t)
t x(t)

∣

∣

∣
≤

‖x′‖

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)
1

τ
· τdτ.

Integrating by parts, we get

∣

∣

∣aD
α(t)
t x(t)

∣

∣

∣
≤

‖x′‖

Γ(2− α(t))

[

a

(

ln
t

a

)1−α(t)

+

∫ t

a

(

ln
t

τ

)1−α(t)

dτ

]

,

which vanishes at t = a. To prove that aD
α(t)
t x(t) = 0 at t = a, using Theorem 1, is enough to

prove that
∫ t

a

(

ln
t

τ

)1−α(t)

dτ =

∫ t

a

(

ln
t

τ

)1−α(t)

ln

(

ln
t

τ

)

dτ = 0,

for t = a. With respect to the first integral, is obvious. For the second one, let

f(τ) =

(

ln
t

τ

)1−α(t)

ln

(

ln
t

τ

)

, τ ∈ [a, t[.
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Since f(τ) → 0 as τ → t, we can extend continuously f to the closed interval [a, t] by letting
f(t) = 0. Finding the extremals for f , we prove that for all τ ∈ [a, t],

|f(τ)| ≤ max

{

(

ln
t

a

)1−α(t) ∣
∣

∣

∣

ln

(

ln
t

a

)
∣

∣

∣

∣

,
1

e(1− α(t))

}

.

With this we prove the second part. The last one is clear, using the second relation in Theorem
1 and integration by parts.

3 Expansion formulas for the Caputo–Hadamard fractional

derivatives

Define the sequence (xk)k∈N recursively by the formula

x1(t) = tx′(t) and xk+1(t) = tx′k(t), k ∈ N.

Also, for k ∈ N, define the quantities

Ak =
1

Γ(k + 1− α(t))



1 +

N
∑

p=n−k+1

Γ(α(t)− n+ p)

Γ(α(t)− k)(p− n+ k)!



 ,

Bk =
Γ(α(t)− n+ k)

Γ(1− α(t))Γ(α(t))(k − n)!
,

and the function

Vk(t) =

∫ t

a

(

ln
τ

a

)k

x′(τ)dτ.

Theorem 3. Let x : [a, b] → R be a function of class Cn+1, for n ∈ N, and fix N ∈ N with N ≥ n.
Then,

aD
α(t)
t x(t) =

n
∑

k=1

Ak

(

ln
t

a

)k−α(t)

xk(t) +

N
∑

k=n

Bk

(

ln
t

a

)n−k−α(t)

Vk−n(t) + E(t),

with

E(t) ≤
(t− a) exp((n− α(t))2 + n− α(t))

Γ(n+ 1− α(t))Nn−α(t)(n− α(t))

(

ln
t

a

)n−α(t)

max
τ∈[a,t]

|x′N (τ)| .

Proof. Integrating by parts the integral

aD
α(t)
t x(t) =

1

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)
1

τ
x1(τ)dτ,

with

u′(τ) =

(

ln
t

τ

)−α(t)
1

τ
and v(τ) = x1(τ),

we get

aD
α(t)
t x(t) =

1

Γ(2 − α(t))

(

ln
t

a

)1−α(t)

x1(a) +
1

Γ(2 − α(t))

∫ t

a

(

ln
t

τ

)1−α(t)
1

τ
x2(τ)dτ.

If we proceed integrating by parts n− 1 more times, the following formula is obtained:

aD
α(t)
t x(t) =

n
∑

k=1

1

Γ(k + 1− α(t))

(

ln
t

a

)k−α(t)

xk(a)+
1

Γ(n+ 1− α(t))

∫ t

a

(

ln
t

τ

)n−α(t)
1

τ
xn+1(τ)dτ.
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By the Taylor’s Theorem, we obtain the sum

(

ln
t

τ

)n−α(t)

=

(

ln
t

a

)n−α(t)(

1−
ln τ

a

ln t
a

)n−α(t)

=

(

ln
t

a

)n−α(t) N
∑

p=0

(

n− α(t)

p

)

(−1)p
(

ln τ
a

)p

(

ln t
a

)p + E1(t),

where

E1(t) =

(

ln
t

a

)n−α(t) ∞
∑

p=N+1

(

n− α(t)

p

)

(−1)p
(

ln τ
a

)p

(

ln t
a

)p

and
(

n− α(t)

p

)

(−1)p =
Γ(α(t) − n+ p)

Γ(α(t) − n)p!
.

Using this relation, we get the new formula

aD
α(t)
t x(t) =

n
∑

k=1

1

Γ(k + 1− α(t))

(

ln
t

a

)k−α(t)

xk(a)

+
1

Γ(n+ 1− α(t))

(

ln
t

a

)n−α(t) N
∑

p=0

Γ(α(t)− n+ p)

Γ(α(t) − n)p!
(

ln t
a

)p

×

∫ t

a

(

ln
τ

a

)p 1

τ
xn+1(τ)dτ + E(t),

where

E(t) =
1

Γ(n+ 1− α(t))

∫ t

a

E1(t)
1

τ
xn+1(τ)dτ.

If we split the sum into the first term p = 0 and the remaining ones p = 1 . . .N , and use integration
by parts taking

u(τ) =
(

ln
τ

a

)p

and v′(τ) =
1

τ
xn+1(τ) = x′n(τ),

we get

aD
α(t)
t x(t) =

n−1
∑

k=1

1

Γ(k + 1− α(t))

(

ln
t

a

)k−α(t)

xk(a) +An

(

ln
t

a

)n−α(t)

xn(t)

+
1

Γ(n− α(t))

(

ln
t

a

)n−1−α(t) N
∑

p=1

Γ(α(t)− n+ p)

Γ(α(t) + 1− n)(p− 1)!
(

ln t
a

)p−1

×

∫ t

a

(

ln
τ

a

)p−1 1

τ
xn(τ)dτ + E(t).

Observe that
1

τ
xn(τ) = x′n−1(τ).

Repeating this procedure, i.e., splinting the second sum (first term p = k plus the remaining ones
p = k+ 1 . . .N) and integrating by parts the integral that appears in the sum p = k+ 1 . . .N , we
obtain the desired the formula. For the error, observe that for τ ∈ [a, t], we have

0 ≤

(

ln τ
a

)p

(

ln t
a

)p ≤ 1.

7



Thus,

|E1(t)| ≤

(

ln
t

a

)n−α(t) ∞
∑

p=N+1

exp((n− α(t))2 + n− α(t))

pn+1−α(t)

≤

(

ln
t

a

)n−α(t) ∫ ∞

N

exp((n− α(t))2 + n− α(t))

pn+1−α(t)
dp

=

(

ln
t

a

)n−α(t)
exp((n− α(t))2 + n− α(t))

Nn−α(t)(n− α(t))
.

The rest of the proof follows immediately.

Observe that, for N sufficiently large, we have the approximation

aD
α(t)
t x(t) ≈

n
∑

k=1

Ak

(

ln
t

a

)k−α(t)

xk(t) +

N
∑

k=n

Bk

(

ln
t

a

)n−k−α(t)

Vk−n(t). (1)

Theorem 4. Let x : [a, b] → R be a function of class Cn+1, for n ∈ N, and fix N ∈ N with N ≥ n.
Then,

aD
α(t)
t x(t) =

n
∑

k=1

Ak

(

ln
t

a

)k−α(t)

xk(t) +

N
∑

k=n

Bk

(

ln
t

a

)n−k−α(t)

Vk−n(t) +
tα′(t)

Γ(2 − α(t))

(

ln
t

a

)1−α(t)

×

[

(

1

1− α(t)
− ln

(

ln
t

a

)) N
∑

p=0

(

1− α(t)

p

)

(−1)p
(

ln t
a

)p Vp(t)

+

N
∑

p=0

(

1− α(t)

p

)

(−1)p
N
∑

r=1

1

r
(

ln t
a

)p+r
Vp+r(t)

]

+ E(t),

with

E(t) ≤
(t− a) exp((n− α(t))2 + n− α(t))

Γ(n+ 1− α(t))Nn−α(t)(n− α(t))

(

ln
t

a

)n−α(t)

max
τ∈[a,t]

|x′N (τ)|

+
(t− a)t |α′(t)| exp((1 − α(t))2 + 1− α(t))

Γ(2− α(t))N1−α(t)(1− α(t))

(

ln
t

a

)1−α(t)

max
τ∈[a,t]

|x′(τ)|

×

∣

∣

∣

∣

1

1− α(t)
− ln

(

ln
t

a

)

+
(2t− a) ln t

a

N

∣

∣

∣

∣

.

Proof. Recalling Theorem 1, we have

aD
α(t)
t x(t) = aD

α(t)
t x(t) +

tα′(t)

Γ(2− α(t))

∫ t

a

(

ln
t

τ

)1−α(t)

x′(τ)

[

1

1− α(t)
− ln

(

ln
t

τ

)]

dτ,

and so we only need to expand the second term in the right side:

tα′(t)

Γ(2− α(t))

∫ t

a

(

ln
t

τ

)1−α(t)

x′(τ)

[

1

1− α(t)
− ln

(

ln
t

τ

)]

dτ. (2)

On one hand, as was seen in the proof of Theorem 3, we have

(

ln
t

τ

)1−α(t)

=

(

ln
t

a

)1−α(t)
[

N
∑

p=0

(

1− α(t)

p

)

(−1)p
(

ln τ
a

)p

(

ln t
a

)p + E1(t)

]

,

where

E1(t) =

∞
∑

p=N+1

(

1− α(t)

p

)

(−1)p
(

ln τ
a

)p

(

ln t
a

)p .
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On the other hand,

ln

(

ln
t

τ

)

= ln

(

ln
t

a

)

+ ln

(

1−
ln τ

a

ln t
a

)

= ln

(

ln
t

a

)

−

N
∑

r=1

(

ln τ
a

)r

r
(

ln t
a

)r − E2(t),

where

E2(t) =

∞
∑

r=N+1

(

ln τ
a

)r

r
(

ln t
a

)r .

Substituting these two relations in Eq. (2), we obtain

tα′(t)

Γ(2− α(t))

(

ln
t

a

)1−α(t)

×

[

(

1

1− α(t)
− ln

(

ln
t

a

)) N
∑

p=0

(

1− α(t)

p

)

(−1)p
(

ln t
a

)p Vp(t) +

N
∑

p=0

(

1− α(t)

p

)

(−1)p
N
∑

r=1

1

r
(

ln t
a

)p+r
Vp+r(t)

]

+
tα′(t)

Γ(2− α(t))

(

ln
t

a

)1−α(t)

×

[(

1

1− α(t)
− ln

(

ln
t

a

))
∫ t

a

E1(t)x
′(τ) dτ +

∫ t

a

E1(t)E2(t)x
′(τ) dτ

]

.

We now determine the upper bound for the error. As was seen in proof of Theorem 3, we have

|E1(t)| ≤
exp((1 − α(t))2 + 1− α(t))

N1−α(t)(1− α(t))
.

On the other hand,
∫ t

a

E2(t) dτ =
∞
∑

r=N+1

1

r
(

ln t
a

)r

∫ t

a

τ ·
(

ln
τ

a

)r dτ

τ
.

Integrating by parts,

∫ t

a

E2(t) dτ =

∞
∑

r=N+1

1

r(r + 1)

[

t ln
t

a
−

∫ t

a

(

ln τ
a

)r+1

(

ln t
a

)r dτ

]

≤
∞
∑

r=N+1

1

r(r + 1)

[

t ln
t

a
+

∫ t

a

ln
t

a
dτ

]

≤ (2t− a) ln
t

a

∫

∞

N

1

r2
dr =

(2t− a) ln t
a

N
.

Combining these relations, we prove the result.

Finally, we have the expansion formula for the Caputo–Hadamard fractional derivative of order
α(t) type 3.

Theorem 5. Let x : [a, b] → R be a function of class Cn+1, for n ∈ N, and fix N ∈ N with N ≥ n.
Then,

aD
α(t)
t x(t) =

n
∑

k=1

Ak

(

ln
t

a

)k−α(t)

xk(t) +

N
∑

k=n

Bk

(

ln
t

a

)n−k−α(t)

Vk−n(t) +
tα′(t)

Γ(2− α(t))

(

ln
t

a

)1−α(t)

×

[

(

ψ(2− α(t))− ln

(

ln
t

a

)) N
∑

p=0

(

1− α(t)

p

)

(−1)p
(

ln t
a

)p Vp(t)

+
N
∑

p=0

(

1− α(t)

p

)

(−1)p
N
∑

r=1

1

r
(

ln t
a

)p+r
Vp+r(t)

]

+ E(t),
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with

E(t) ≤
(t− a) exp((n− α(t))2 + n− α(t))

Γ(n+ 1− α(t))Nn−α(t)(n− α(t))

(

ln
t

a

)n−α(t)

max
τ∈[a,t]

|x′N (τ)|

+
(t− a)t |α′(t)| exp((1 − α(t))2 + 1− α(t))

Γ(2− α(t))N1−α(t)(1− α(t))

(

ln
t

a

)1−α(t)

max
τ∈[a,t]

|x′(τ)|

×

∣

∣

∣

∣

ψ(2− α(t))− ln

(

ln
t

a

)

+
(2t− a) ln t

a

N

∣

∣

∣

∣

.

Proof. By Theorem 1, we only need to expand the term

tα′(t)ψ(1 − α(t))

Γ(1− α(t))

∫ t

a

(

ln
t

τ

)−α(t)
x(τ) − x(a)

τ
dτ.

Integrating by parts, we get

tα′(t)ψ(1− α(t))

Γ(2− α(t))

∫ t

a

(

ln
t

τ

)1−α(t)

x′(τ)dτ.

Using Taylor’s Theorem on the term
(

ln t
τ

)1−α(t)
, combining with Theorem 4 and using the formula

ψ(1− α(t)) +
1

1− α(t)
= ψ(2 − α(t)),

we prove the result.

Similar formulas are obtained for the right Caputo–Hadamard fractional derivatives. Letting,
for k ∈ N,

Ak =
(−1)k

Γ(k + 1− α(t))



1 +

N
∑

p=n−k+1

Γ(α(t) − n+ p)

Γ(α(t)− k)(p− n+ k)!



 ,

Bk =
−Γ(α(t)− n+ k)

Γ(1− α(t))Γ(α(t))(k − n)!
,

and

V k(t) =

∫ b

t

(

ln
b

τ

)k

x′(τ)dτ,

we have the next three approximation formulas:

tD
α(t)
b x(t) ≈

n
∑

k=1

Ak

(

ln
b

t

)k−α(t)

xk(t) +

N
∑

k=n

Bk

(

ln
b

t

)n−k−α(t)

V k−n(t),

tD
α(t)
b x(t) ≈

n
∑

k=1

Ak

(

ln
b

t

)k−α(t)

xk(t)+

N
∑

k=n

Bk

(

ln
b

t

)n−k−α(t)

V k−n(t)+
tα′(t)

Γ(2− α(t))

(

ln
b

t

)1−α(t)

×

[

(

1

1− α(t)
− ln

(

ln
b

t

)) N
∑

p=0

(

1− α(t)

p

)

(−1)p
(

ln b
t

)p V p(t) +

N
∑

p=0

(

1− α(t)

p

)

(−1)p
N
∑

r=1

1

r
(

ln b
t

)p+r V p+r(t)

]

,

and

tD
α(t)
b x(t) ≈

n
∑

k=1

Ak

(

ln
b

t

)k−α(t)

xk(t)+

N
∑

k=n

Bk

(

ln
b

t

)n−k−α(t)

V k−n(t)+
tα′(t)

Γ(2 − α(t))

(

ln
b

t

)1−α(t)

×

[

(

ψ(2− α(t))− ln

(

ln
b

t

)) N
∑

p=0

(

1− α(t)

p

)

(−1)p
(

ln b
t

)pV p(t) +

N
∑

p=0

(

1− α(t)

p

)

(−1)p
N
∑

r=1

1

r
(

ln b
t

)p+r
V p+r(t)

]

.
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4 Examples

In this section we test the efficiency of the purposed method, by comparing the exact fractional
derivative of the function

x(t) = ln t, for t ∈ [1, 5],

with some numerical approximations. We fix the order α(t) = t/20, and for the approximations
using Theorems 3, 4 and 5, we take n = 1 and varyN ∈ {10, 20, 30}. The error of approximation at
the point t0 is given by the absolute value of the difference between the exact and the approximation
at t = t0. Below we give the exact fractional derivatives of x, obtained by Lemma 1

1D
α(t)
t x(t) =

1

Γ (2− α(t))
(ln t)1−α(t)

1D
α(t)
t x(t) =

1

Γ (2− α(t))
(ln t)1−α(t) −

tα′(t)

Γ (3− α(t))
(ln t)2−α(t)

× [ln(ln t) + ψ (1− α(t))− ψ (3− α(t))] ,

1D
α(t)
t x(t) =

1

Γ (2− α(t))
(ln t)1−α(t) −

tα′(t)

Γ (3− α(t))
(ln t)2−α(t) [ln(ln t)− ψ (3− α(t))] .

(a) 1D
α(t)
t

x(t) (b) Error

Figure 1: Analytic versus numerical approximations by Theorem 3.

(a) 1D
α(t)
t

x(t) (b) Error

Figure 2: Analytic versus numerical approximations by Theorem 4.
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(a) 1D
α(t)
t

x(t) (b) Error

Figure 3: Analytic versus numerical approximations by Theorem 5.

For the right Caputo–Hadamard fractional derivatives, we take

y(t) = ln
5

t
, for t ∈ [1, 5],

n = 1 and N ∈ {2, 4, 6}. The fractional derivatives are in this case given by the expressions

tD
α(t)
5 y(t) =

1

Γ (2− α(t))

(

ln
5

t

)1−α(t)

tD
α(t)
5 y(t) =

1

Γ (2− α(t))

(

ln
5

t

)1−α(t)

+
tα′(t)

Γ (3− α(t))

(

ln
5

t

)2−α(t)

×

[

ln

(

ln
5

t

)

+ ψ (1− α(t))− ψ (3− α(t))

]

,

tD
α(t)
5 y(t) =

1

Γ (2− α(t))

(

ln
5

t

)1−α(t)

+
tα′(t)

Γ (3− α(t))

(

ln
5

t

)2−α(t) [

ln

(

ln
5

t

)

− ψ (3− α(t))

]

.

The results are shown in Figure 4 below.
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