
Applicable Analysis and Discrete Mathematics
available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 10 (2016), 152–167. doi:10.2298/AADM160311004F

A HUKUHARA APPROACH TO THE STUDY OF

HYBRID FUZZY SYSTEMS ON TIME SCALES

Omid S. Fard, Delfim F. M. Torres, Mohadeseh R. Zadeh

We introduce a new approach to study the practical stability of hybrid fuzzy

systems on time scales in the Lyapunov sense. Our method is based on the

delta-Hukuhara derivative for fuzzy valued functions and allow us to obtain

new interesting stability criteria. We also show the validity of the results of

M. Sambandham: Hybrid fuzzy systems on time scales, Dynam. Systems

Appl., 12 (1–2) (2003), 217–227, by embedding the space of all fuzzy subsets

into a suitable Banach space.

1. INTRODUCTION

In natural systems engineering, the lowest level in the hierarchical structure
is usually characterized by the dynamics of a continuous variable while the highest
level is described by a logical decision making mechanism [8]. The interaction of
these different levels, with their different types of information, leads to a hybrid sys-

tem. Examples of real world hybrid systems include systems with relays, switches,
hysteresis, disk drivers, transmissions, step motors, constrained robots, automated
transportation systems, modern manufacturing and flight control systems [22].

The mathematical modeling of dynamic processes is often discussed in the
literature via difference or differential equations. In spite of this tendency of in-
dependence between discrete and continuous dynamic systems, there is a striking
similarity between both theories. From a modeling point of view, it is perhaps
more realistic to model a phenomenon by a dynamic system, which incorporates
both discrete and continuous times simultaneously, namely by considering time as
an arbitrary closed set of reals, called a time scale. The theory of time scales was
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introduced in 1988 by Stefan Hilger and is now a well-developed subject [6, 7].
Here we use dynamic systems on time scales as a model to hybrid systems. Moti-
vation comes from the fact that hybrid systems refer to the construction of models
combining both continuous and discrete dynamics. They are useful for describing
the interaction between physical and computational processes, such as in digital
feedback control systems [16].

In the study of stability of dynamical systems, Lyapunov functions play a
central role in the proof of stability of equilibrium points on the state space [3].
Moreover, since practical stability only requires to stabilize a system into a region
of the phase space, Lyapunov functions have been widely used in applications.
More precisely, when one intends to analyze a real world phenomenon, it is also
necessary to deal with uncertain factors. In this case, the theory of fuzzy sets
is one of the best non-statistical or non-probabilistic approach, which leads us
to investigate stability of fuzzy dynamical models. In recent years, the use of
hybrid fuzzy systems has increased drastically. For instance, Kim and Sakthivel

[12] studied the predictor-corrector method for hybrid fuzzy differential equations,
Nieto et al. [17] and Allahviranloo and Salahshour [2] investigated the
numerical solution of (hybrid) fuzzy differential equations using a generalized Euler
approximation method, and Ahmadian et al. [1] employed a numerical algorithm
to solve a first-order hybrid fuzzy differential equation based on the high-order
Runge–Kutta method. Particularly for hybrid fuzzy systems on time scales, the
theory of practical stability has developed rather intensively in the last few years
– see [11, 15, 19, 21, 23] and references therein.

In [15], Lakshmikantham and Vatsala investigated practical stability of
hybrid systems on time scales. The results of [15] were then extended by Sam-

bandham for hybrid fuzzy systems on time scales [19]. In [21], Lyapunov-like
functions for hybrid dynamic equations on time scales with the state space R

n

are studied using Dini derivatives and comparison principles. Related studies are
found in [23], for incremental stability of stochastic hybrid systems, in [11] for
practical stability of discrete hybrid systems with different initial times, and in [20]
for stability analysis of abstract Takagi–Sugeno fuzzy impulsive systems.

In this paper, we propose a new approach to investigate practical stability of
hybrid fuzzy systems on time scales. Our method is more general, being based on
the use of the delta-Hukuhara derivative, which has recently been defined for fuzzy
valued functions [10]. After a short review of this calculus of fuzzy functions on
time scales in Section 2, we prove new stability criteria in Section 3. We proceed
with Section 4, where an inconsistency in [19] is noted and fixed, ending with
Section 5 of conclusions.

2. PRELIMINARIES

In this section, we present some basic concepts and results on the calculus of
fuzzy functions on time scales. We assume, however, the reader to be familiar with
the standard calculus on time scales [6, 7].
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Definition 2.1 (Upper ∆-Dini derivative [15]). Let T be a time scale with forward

jump operator σ, f : T → R be a real valued function, and UT be a neighborhood

of t ∈ T. We call D+
∆f(t) ∈ R the upper ∆-Dini derivative (or upper ∆-generalized

derivative) of f at t, provided that for any ε > 0 there exists a right neighborhood

Uε ⊂ UT of t (i.e., Uε = (t, t+ ε) ∩ T) such that

f(σ(t))− f(s)

µ∗(t, s)
< D+

∆f(t) + ε

for s ∈ Uε and s > t, where µ∗(t, s) = σ(t)− s.

Proposition 2.2 (See [15]). Let T be a time scale with forward jump operator σ
and graininess function µ. If f : T → R is a continuous function at t ∈ T and t is
right-scattered, then the upper ∆-Dini derivative of f coincides with the standard

delta-derivative:

D+
∆f(t) = f∆(t) =

f(σ(t))− f(t)

µ(t)
.

Definition 2.3 (Fuzzy set [5]). Let X be a nonempty set. A fuzzy set u in X is

characterized by its membership function u : X → [0, 1]. Then, for each x ∈ X we

interpret u(x) as the degree of membership of the element x in the fuzzy set u :
u(x) = 0 corresponded to non membership; 0 < u(x) < 1 to partial membership;

and u(x) = 1 to full membership.

Definition 2.4 (The space of fuzzy numbers RF – see, e.g., [19]). We denote by

RF the class of fuzzy subsets of the real axis u : R → [0, 1] satisfying the following

properties :

(i) u is normal, i.e., there exists x0 ∈ R with u(x0) = 1;

(ii) u is a convex fuzzy set, i.e., u(kx+(1−k)y) ≥ min{u(x), u(y)} for all k ∈ [0, 1]
and x, y ∈ R;

(iii) u is upper semicontinuous on R;

(iv) {x ∈ R : u(x) > 0} is compact, where A denotes the closure of a set A.

We call RF the space of fuzzy numbers.

Clearly, R ⊂ RF (because R is understood as R = {χx : x is a real number}).
For later purposes, we define 0̃ = χ{0}, that is, 0̃ is the fuzzy set defined by 0̃(x) = 1

if x = 0 and 0̃(x) = 0 if x 6= 0.

Definition 2.5 (The α-level set [5]). For 0 < α 6 1, the α-level set [u]α of a fuzzy

set u on R is defined as

[u]α = {x ∈ R : u(x) ≥ α},

while its support [u]0 is the closure of the union of all the level sets, that is,

[u]0 =
⋃

α∈(0,1]

[u]α = {x ∈ R : u(x) > 0}.
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Remark 2.6. For any α ∈ [0, 1], [v]α is a bounded closed interval in R, presented by
[v]α = [vα, vα], where vα, vα ∈ R.

For u, v ∈ RF and λ ∈ R, the sum of two fuzzy numbers and the multiplication
between a real and a fuzzy number are defined respectively by

[u⊕ v]α = [u]α + [v]α = {x+ y : x ∈ [u]α, y ∈ [v]α}

and

[λ · u]α = λ[u]α = {λx : x ∈ [u]α}

for all α ∈ [0, 1], where [u]α + [v]α is the usual addition of two intervals of R and
λ[u]α is the usual product of a number and a subset of R.

Definition 2.7 (The gH-difference [10]). Given u, v ∈ RF , the gH-difference is the

fuzzy number w, if it exists, such that

u⊖gH v = w ⇔ u = v ⊕ w or v = u⊕ (−1) · w.

Remark 2.8. If u⊖gH v exists, then its α-level set is given by

[u⊖gH v]α = [min {uα − v
α
, u

α − v
α} ,max {uα − v

α
, u

α − v
α}] .

Let A and B be two nonempty bounded subsets of a metric space (X, d). The
Hausdorff distance between A and B is given by

(1) dH(A,B) = max
[
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)
]
.

Definition 2.9 (Hausdorff distance between two fuzzy numbers). The Hausdorff

distance between two fuzzy numbers is the function d∞ : RF × RF → R+ ∪ {0}
defined in terms of the Hausdorff distance between their level sets, that is,

d∞(u, v) = sup {dH([u]α, [v]α) : α ∈ [0, 1]} .

Proposition 2.10 (See [9]). The pair (RF , d∞) is a complete metric space and

the following properties hold :

(i) d∞(u ⊕ w, v ⊕ w) = d∞(u, v) for all u, v, w ∈ RF ;

(ii) d∞(k · u, k · v) = |k|d∞(u, v) for all u, v ∈ RF and for all k ∈ R;

(iii) d∞(u ⊕ v, w ⊕ e) ≤ d∞(u,w) + d∞(v, e) for all u, v, w, e ∈ RF .

Definition 2.11 (The set of rd-continuous functions from T to RF [10]). A map-

ping f : T → RF is rd-continuous if it is continuous at each right-dense point

and its left-side limits exist (finite) at left-dense points in T. We denote the set of

rd-continuous functions from T to RF by Crd[T,RF ].
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Definition 2.12 (The ∆-Hukuhara derivative of f at t [10]). Assume f : T → RF

is a fuzzy function and let t ∈ T
κ. Let ∆Hf(t) be an element of RF (provided it

exists) with the property that given any ε > 0, there exists a neighborhood UT of t
(i.e., UT = (t− δ, t+ δ) ∩ T for some δ > 0) such that

d∞
[
f(t+ h)⊖gH f(σ(t)),∆Hf(t)(h− µ(t))

]
≤ ε(h− µ(t))

and

d∞
[
f(σ(t)) ⊖gH f(t− h),∆Hf(t)(µ(t) + h)

]
≤ ε(µ(t) + h)

for all t−h, t+h ∈ UT with 0 ≤ h < δ. We call ∆Hf(t) the ∆-Hukuhara derivative

of f at t. We say that f is ∆H-differentiable at t if its ∆H -derivative exists at t.
Moreover, we say that f is ∆H-differentiable on T

κ if its ∆H-derivative exists at

each t ∈ T
κ. The fuzzy function ∆Hf : Tκ → RF is then called the ∆H-derivative

of f on T
κ.

The next result shows that the ∆H -derivative is well defined.

Proposition 2.13 (See [10]). If the ∆H-derivative of f at t ∈ T
κ exists, then it

is unique.

Theorem 2.14 (See [10]). Let T be an arbitrary time scale and consider a function

f : T → RF . Then, the following holds for all t ∈ T
κ :

(i) If f is continuous at t and t is right-scattered, then f is ∆H-differentiable at

t with

∆Hf(t) =
f(σ(t))⊖gH f(t)

µ(t)
.

(ii) If t is right-dense, then f is ∆H-differentiable at t if and only if both limits

lim
h→0+

f(t+ h)⊖gH f(t)

h
and lim

h→0+

f(t)⊖gH f(t− h)

h

exist and satisfy the equalities

lim
h→0+

f(t+ h)⊖gH f(t)

h
= lim

h→0+

f(t)⊖gH f(t− h)

h
= ∆Hf(t).

Let us denote by R
n
F the space of all fuzzy subsets u of Rn that satisfy the

assumptions

(i) u maps Rn onto I = [0, 1];

(ii) u is fuzzy convex;

(iii) u is upper semicontinuous;

(iv) [u]0 is a compact subset of Rn.
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The most commonly used metric on R
n
F involves the Hausdorff metric distance

between the level sets of the fuzzy sets, which is defined for any u,v ∈ R
n
F as

D∞(u,v) = sup {dH([u]α, [v]α) : α ∈ [0, 1]} ,

where dH is the Hausdorff distance defined by (1). The pair (Rn
F , D∞) is a complete

metric space. Proposition 2.10 can be extended to (Rn
F , D∞) [13].

Definition 2.15. Assume that u : T → R
n
F is a fuzzy vector valued function and

t ∈ T
κ. We say that u is ∆H-differentiable at t, if its all components are ∆H-

differentiable at t.

Definition 2.16. The function f : T× R
n
F → R

n
F is rd-continuous if

(i) it is continuous at each (t,x) with t right-dense, and

(ii) the limits lim
(s,y)→(t−,x)

f(s,y) = f(t−,x)
(
i.e., for all ε > 0 there exists δ >

0 such that D∞(y,x) + |s − t−| < δ =⇒ D∞(f(s,y), f(t−,x)) < ε
)
and

limy→x f(t,y) = f(t,x)
(
i.e., for all ε > 0 there exists δ > 0 such that

D∞(y,x) < δ =⇒ D∞(f(t,y), f(t,x)) < ε
)
exist at each (t,x) with t left-

dense.

We denote by Crd[T × R
n
F ,R

n
F ] the set of all rd-continuous functions f :

T×R
n
F → R

n
F . The spaces Crd[T×R

n
F ,R+] and Crd[T×R+,R] are defined similarly.

3. MAIN RESULTS

We investigate the practical stability of hybrid fuzzy systems on time scales,
defined through delta-Hukuhara derivatives. Consider the fuzzy dynamic system

(2) ∆Hu(t) = f (t,u(t)) , u(t0) = u0,

where f ∈ Crd[T× R
n
F ,R

n
F ] and ∆Hu(t) denotes the ∆H -derivative of u at t ∈ T.

Definition 3.17. Let V ∈ Crd[T× R
n
F ,R+]. We say that D+

∆V (t,u(t)) ∈ R is the

upper ∆-Dini derivative of V (t,u(t)) with respect to (2), if for any given ε > 0
there exists a right neighborhood Uε of t ∈ T such that

1

µ∗(t, s)

[
V
(
σ(t),u(σ(t))

)
−V

(
s,u(σ(t))⊖gH µ∗(t, s)f(t,u(t))

)]
< D+

∆V (t,u(t)) + ε

for each s ∈ Uε and s > t, where u(t) is solution of the dynamic system (2).

Theorem 3.18. Assume that V ∈ Crd[T×R
n
F ,R+]. If t ∈ T is right-scattered and

V (t,u(t)) is continuous at t, then

D+
∆V (t,u(t)) =

V (σ(t),u(σ(t)))− V (t,u(t))

µ(t)
.
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Proof. Because of continuity of V at t,

lim
s→t+

V
(
σ(t),u(σ(t))

)
− V

(
s,u(σ(t))⊖gH µ∗(t, s)f(t,u(t))

)

σ(t)− s

=
V
(
σ(t),u(σ(t))

)
− V

(
t,u(σ(t))⊖gH µ(t)∆Hu(t)

)

µ(t)
.

Since u is continuous at t and t is right-scattered, it follows from item (i) of Theo-
rem 2.14 that

lim
s→t+

V
(
σ(t),u(σ(t))

)
− V

(
s,u(σ(t))⊖gH µ∗(t, s)f(t,u(t))

)

σ(t)− s

=
V
(
σ(t),u(σ(t))

)
− V

(
t,u(t)

)

µ(t)
.

From this last equality, we get that for a given ε > 0 there exists a right neighbor-
hood Uε ⊆ T of t such that

1

µ∗(t, s)

[
V
(
σ(t),u(σ(t))

)
− V

(
s,u(σ(t)) ⊖gH f(t,u(t))

)]

−
V
(
σ(t),u(σ(t))

)
− V

(
t,u(t)

)

µ(t)
< ε.

Consequently,

1

µ∗(t, s)

[
V
(
σ(t),u(σ(t))

)
− V

(
s,u(σ(t)) ⊖gH f(t,u(t))

)]

<
V
(
σ(t),u(σ(t))

)
− V

(
t,u(t)

)

µ(t)
+ ε.

This means that (V (σ(t),u(σ(t))) − V (t,u(t))) /µ(t) is the upper ∆-Dini derivative
of V (t,u(t)). ✷

Theorem 3.19. Assume that

(i) V ∈ Crd[T × R
n
F ,R+], V (t,u) is locally Lipshitzian in u for each right-dense

t ∈ T (i.e., ∃ L > 0 such that |V (t,u1)− V (t,u2)| < LD∞(u1,u2) for all

u1,u2 ∈ R
n
F);

(ii) D+
∆V (t,u(t)) ≤ g (t, V (t,u(t))) , where g ∈ Crd[T×R+,R] and g(t, r)µ(t) + r

is nondecreasing in r for each t ∈ T;

(iii) r(t) = r(t, t0, r0) is the maximal solution of r∆(t) = g (t, r(t)) , r(t0) = r0 ≥ 0,
existing on T.

Then, V (t0,u0) ≤ r0 implies that V (t,u(t)) ≤ r(t, t0, r0) for all t ∈ T, t ≥ t0.

Proof. The proof is similar to the one of [14, Theorem 3.1.1]. ✷
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3.1. A comparison theorem

We now establish a comparison result (Theorem 3.20), which is useful to prove
practical stability (Theorem 3.23). Because of the local nature of the solution u(t),
stability properties are proved with respect to one condition on the Lyapunov-like
function V (t,u(t)) that is defined only on T× S(ρ),

(3) S(ρ) =
{
u ∈ R

n
F : D∞(u, 0̃) < ρ

}
.

Let T be a nonnegative unbounded time scale with tk ∈ T, k ∈ N0, satisfying
0 ≤ t0 < t1 < t2 < · · · < tk < · · · and tk → ∞ as k → ∞.We consider the following
hybrid fuzzy dynamic system:

(4)
∆Hu(t) = f (t,u(t), λ(t,u(t))) , t ≥ t0, t ∈ T,

u(t0) = u0 ∈ S(ρ),

where f ∈ Crd[T × S(ρ) × R
n
F ,R

n
F ], S(ρ) is given by (3), and λ : T × R

n
F → R

n
F is

a piecewise constant function defined by λ(t,u(t)) = λk(tk,u(tk)) for t ∈ [tk, tk+1],
k = 0, 1, 2, . . . . If a solution u(t) to system (4) exists, then it can be written as a
piecewise function:

(5) u(t) = u(t, t0,u0) = uk(t), tk ≤ t ≤ tk+1, k = 0, 1, 2, . . . ,

with uk(t) = uk(t, tk,uk) being the solution of ∆Hu(t) = f (t,u(t), λk (tk,uk)) ,
uk = u(tk) ∈ S(ρ), tk ≤ t ≤ tk+1, k ∈ N0. We also consider the scalar comparison

delta hybrid dynamic system

(6)
r∆(t) = g (t, r(t), ψ(r(t))) , t ≥ t0, t ∈ T,

r(t0) = r0 ∈ R+,

where g ∈ Crd[T×R+ ×R+,R] and ψ : R+ → R+ is a piecewise constant function:
ψ(r(t)) = ψk(r(tk)), t ∈ [tk, tk+1], k = 0, 1, 2, . . . . Note that a piecewise function

(7) r(t) = r(t, t0, r0) = rk(t), tk ≤ t ≤ tk+1, k = 0, 1, 2, . . .

is a maximal solution of (6) if and only if rk(t) = r(t, tk, rk) is maximal solution of

r∆(t) = g (t, r(t), ψk(rk)) , rk = r(tk), tk ≤ t ≤ tk+1, k = 0, 1, 2, . . . .

Now, we state and prove a comparison theorem with respect to a Lyapunov-like
function V. Here, the Lyapunov-like function V serves as a vehicle to transform
the ∆-Hukuhara hybrid fuzzy dynamic system (4) into a scalar comparison delta
hybrid dynamic system (6), being enough to consider the stability properties of the
simpler comparison system (6).
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Theorem 3.20. Let V ∈ Crd[T× S(ρ),R+] be such that:

(i) V (t,u) is locally Lipshitzian in u for each right-dense t ∈ T, tk ≤ t ≤ tk+1,
k = 0, 1, 2, . . . ;

(ii) D+
∆V (t,u(t)) ≤ g(t, V (t,u(t)), ψk(V (tk,uk))), where g ∈ Crd[T×R+×R+,R],

ψk : R+ → R+, g(t, r, v)µ(t)+r is nondecreasing in r for each (t, v), and ψk(v)
and g(t, r, v) are nondecreasing in v.

Moreover, let

(iii) r(t) given by (7) be the maximal solution of the scalar comparison hybrid

dynamic system (6), which we assume to exist for each t ≥ t0, t ∈ T.

If u(t) given by (5) is a solution of the hybrid fuzzy dynamic system (4) with

V (t0,u0) ≤ r0, then

(8) V (t,u(t)) ≤ r(t) for all t ≥ t0, t ∈ T.

Remark 3.21. Note that by (5), inequality (8) implies that V (t,uk(t)) ≤ rk(t), tk ≤ t ≤
tk+1, for all k ∈ N0.

Proof. Let u(t) be a solution of (4) on [t0,∞) ∩ T. Set m(t) = V (t,u(t)). Then,

m(σ(t))−m(t)

µ(t)
=
V (σ(t),u(σ(t)))− V (t,u(t))

µ(t)
.

Moreover, by condition (ii), the inequality

D+
∆m(t) ≤ g(t, V (t,u(t)), ψk(V (tk,uk))) = g (t,m(t), ψk(mk))

is obtained for tk ≤ t ≤ tk+1, where mk = V (tk,uk). First, consider t ∈ [t0, t1]∩T.
Since m(t0) = V (t0,u0) ≤ r0, by Theorem 3.19 we conclude that

(9) V (t,u0(t)) ≤ r0(t, t0, r0), t0 ≤ t ≤ t1,

where u0(t) = u0(t, t0,u0) is the solution of

∆Hu0(t) = f(t,u0(t), λ0(t0,u0)), u0(t0) = u0, t0 ≤ t ≤ t1,

and r0(t) = r0(t, t0, r0) is the maximal solution of

r∆0 (t) = g(t, r0(t), ψ0(r0)), r0(t0) = r0, t0 ≤ t ≤ t1.

Now, choose u1 = u0(t1). Then,

D+
∆m(t) ≤ g (t,m(t), ψ1(m1)) , t1 ≤ t ≤ t2,

where m1 = m(t1) = V (t1,u0(t1)). On the other hand, the inequality (9) gives us

V (t1,u0(t1)) ≤ r0(t1, t0, r0).



A Hukuhara approach to the study of hybrid fuzzy systems on time scales 161

Set r0(t1, t0, r0) = r1. Due to the monotone property of ψ1 and g(t, r, v) in v,

D+
∆m(t) ≤ g(t,m(t), ψ1(r1))

and
m(t) ≤ r1, t ∈ [t1, t2].

Similarly,
V (t,u1(t)) ≤ r1(t, t1, r1), t ∈ [t1, t2],

is established, where u1(t) = u1(t, t1,u1) is the solution of

∆Hu1(t) = f(t,u1(t), λ1(t1,u1)), u1(t1) = u1, t1 ≤ t ≤ t2,

and r1(t) = r1(t, t1, r1) is the maximal solution of

r∆1 (t) = g(t, r1(t), ψ1(r1)), r1(t1) = r1, t1 ≤ t ≤ t2.

By repeating the process and using the special choice

uk = uk−1(tk), k = 1, 2, . . . ,

we have
V (t,uk(t)) ≤ rk(t, tk, rk), tk ≤ t ≤ tk+1,

where uk(t) = uk(t, tk,uk) is the solution of

∆Huk(t) = f(t,uk(t), λk(tk,uk)), uk(tk) = uk, tk ≤ t ≤ tk+1,

and rk(t) = rk(t, tk, rk) is the maximal solution of

r∆k (t) = g (t, rk(t), ψk(rk)) , rk(tk) = rk, tk ≤ t ≤ tk+1,

with rk−1(tk) = rk−1(tk, tk−1, rk−1) = rk for each k = 2, 3, . . . By means of these
inequalities, we end with the desired result. ✷

3.2. A criterium for practical stability

Now, we provide a sufficient condition for practical stability of the ∆-Hukuhara
hybrid fuzzy dynamic system (4). The definitions of practical stability for (4) are
similar to the corresponding notions of practical stability for the scalar comparison
delta hybrid dynamic system (6) [15].

Definition 3.22. The hybrid fuzzy dynamic system (4) is

• practically stable if, for given λ,A ∈ R+ with 0 < λ < A,

(10) D∞(u0, 0̃) < λ⇒ D∞(u(t), 0̃) < A ∀ t ≥ t0,

t ∈ T, where u(t) is any solution (5) of (4);



162 Omid S. Fard, Delfim F. M. Torres, Mohadeseh R. Zadeh

• practically quasi-stable if, for given (λ,B, T0) > 0 such that t0 + T0 ∈ T,

(11) D∞(u0, 0̃) < λ⇒ D∞(u(t), 0̃) < B ∀ t ≥ t0 + T0,

t ∈ T, where u(t) is any solution (5) of (4);

• strongly practically stable if both (10) and (11) hold ;

• practically asymptotically stable if (10) holds and for any ε > 0 there exists

T0 > 0 such that t0 + T0 ∈ T and D∞(u0, 0̃) < λ implies D∞(u(t), 0̃) < A
for all t ≥ t0 + T0 in the time scale T, where u(t) is any solution (5) of (4).

Theorem 3.23. Assume that 0 < λ < A. Let

(i) V ∈ Crd[T×S(A),R+], V (t,u) be locally Lipshitzian in u for each right-dense

t ∈ T, tk ≤ t ≤ tk+1, k = 0, 1, 2, . . . ;

(ii) D+
∆V (t,u(t)) ≤ g(t, V (t,u(t)), ψk(V (tk, uk))), where g ∈ Crd[T×R+×R+,R],

ψk : R+ → R+, g(t, r, v)µ(t)+r is nondecreasing in r for each (t, v), and ψk(v)
and g(t, r, v) are nondecreasing in v;

(iii) V (t,u) satisfies

b(D∞(u, 0̃)) ≤ V (t,u) ≤ a(D∞(u, 0̃)), (t,u) ∈ T× S(A),

where a, b ∈ K := {f ∈ C[R+,R+] : f(x) is increasing and f(0) = 0} , and
a(λ) < b(A).

Then, any practical stability property (practically stable, practically quasi-stable,
strongly practically stable or practically asymptotically stable) of the scalar com-

parison delta hybrid dynamic system (6), imply the corresponding practical stability

property of the ∆-Hukuhara hybrid fuzzy dynamic system (4) (see Definition 3.22).

Proof. First, suppose that the scalar comparison hybrid dynamic system (6) is
practically stable. It follows that for given a(λ), b(A) ∈ R+ we have

(12) 0 ≤ r0 < a(λ) =⇒ r(t, t0, r0) < b(A), t ≥ t0, t ∈ T,

where r(t) = r(t, t0, r0) is a solution of (6). ConsiderD∞(u0, 0̃) < λ. Now, we assert
that D∞(u(t), 0̃) < A, t ≥ t0, t ∈ T, where u(t) = u(t, t0,u0) is a solution of (4).
Assume, to the contrary, that there exists a t1 ≥ t0 and a solution u(t) = u(t, t0,u0)
with D∞(u0, 0̃) < λ such that

D∞(u(t1), 0̃) ≥ A and D∞(u(t), 0̃) < A, t0 ≤ t < t1.

This implies that V (t1,u(t1)) ≥ b(D∞(u0, 0̃)) ≥ b(A). Choose V (t0,u0) = r0 and
make the special choice of uk and rk as in the proof of Theorem 3.20, to arrive at

V (t,u(t)) ≤ r(t, t0, V (t0,u0)), t0 ≤ t < t1.
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Thus,

b(A) ≤ b(D∞(u0, 0̃)) ≤ V (t1,u(t1)) ≤ r(t1, t0, V (t0,u0))

≤ r(t1, t0, a(D∞(u0, 0̃))) ≤ r(t1, t0, a(λ)) < b(A).

This contradiction proves that the hybrid fuzzy dynamic system (4) is practically
stable. Note that the last inequality arises from relation (12). Secondly, we prove
that the hybrid fuzzy dynamic system (4) is practically quasi-stable, if the scalar
comparison hybrid dynamic system (6) is practically quasi-stable. Due to quasi-
stability of (6), we deduce that

0 ≤ r0 < a(λ) =⇒ r(t, t0, r0) < b(B), t ≥ t0 + T0, t, t0 + T0 ∈ T,

where r(t) = r(t, t0, r0) is a solution of (6). Suppose that D∞(u0, 0̃) < λ. From
Theorem 3.20, V (t,u(t)) ≤ r(t, t0, V (t0,u0)), t ≥ t0. Set V (t0,u0) = r0. Then,

b
(
D∞(u(t), 0̃)

)
≤ V (t,u(t)) ≤ r(t, t0, V (t0,u0))

≤ r(t, t0, a(D∞(u0, 0̃))) ≤ r (t, t0, a(λ)) < b(B)

for all t ≥ t0 + T0. Because b is an increasing function, D∞(u(t), 0̃) < B and,
therefore, we have practical quasi-stability of (4). The strongly practically stability
of (4) is obvious; practical asymptotic stability of (4) is proved similarly.

We illustrate the applicability of Theorem 3.23 with an example. Recall
that a function p : T → R is called regressive provided 1 + µ(t)p(t) 6= 0 for all
t ∈ T

κ. For given regressive functions p and q, the “circle plus” and “circle minus”

operations are defined, respectively, by p ⊕r q = p + q + µpq, p ⊖r q =
p− q

1 + µq
,

and ⊖rp = 0 ⊖r p (see, e.g., [6]). It is easy to check that p ⊕r (⊖rq) = p ⊖r q,

⊖r(⊖rp) = p, p⊖r q = ⊖r(q⊖r p), and p⊖r p = 0. Note that ⊖r1 = 0⊖r 1 =
−1

1 + µ
.

For convenience, we denote ⊖r1 by ⊖r.

Now we are ready to illustrate our approach with a simple example of a hybrid
fuzzy dynamic system on time scales.

Example 3.1. Let us consider the following hybrid fuzzy dynamic system on the time
scale T = N0:

(13) △H u(t) = ⊖ru(t)⊕ η(t)λk(uk), t ∈ [τk, τk+1],

u(τk) = uk ∈ S(ρ), k = 0, 1, 2, . . . ,

where η(t) =
1

1 + µ(t)
and

λk(τ ) =

{
0̃ if k = 0,

τ if k ∈ {1, 2, . . .}.
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Note that all points t of the time scale T are right-scattered. Let us choose V (t,u(t)) =

D∞

(
u(t), 0̃

)
for all t ∈ T. If u(t) = u (t, t0,u0) is a solution of (13) corresponding to the

initial value u(t0) = u(τ0) = u(0) = u0, then we have

D
+
△ V (t,u(t)) =

V (σ(t),u(σ(t)))− V (t,u(t))

µ(t)
=
D∞

(
u(σ(t)), 0̃

)
−D∞

(
u(t), 0̃

)

µ(t)
.

Now, let us take g(t,w, ψ(w)) =
w + wk

1 + µ(t)
. Since t is right-scattered, then

D
+
△ V (t,u(t)) =

D∞

(
u(σ(t)), 0̃

)
−D∞

(
u(t), 0̃

)

µ(t)

≤
D∞(u(σ(t))⊖gH u(t), 0̃)

µ(t)
= D∞

(
△H u(t), 0̃

)

= D∞

(
⊖r u(t)⊕ η(t)λk(uk), 0̃

)
= D∞

(
uk ⊕ (−1) · u(t)

1 + µ(t)
, 0̃

)

≤ g
(
t,D∞(u(t), 0̃), ψ(D∞(u(t), 0̃))

)
.

It follows from Theorem 3.23 that any practical stability property of the solution of the

system (6) with g(t,w, ψ(w)) =
1

1 + µ(t)
(w + wk) and r(t0) = D∞(u0, 0̃) implies the

corresponding stability property of the solution to (13).

4. A REMARK ON SOME PREVIOUS RESULTS

In [19], Sambandham considers the delta-derivative f∆ for a function f :
T → X, where X is a Banach space. He investigates the following hybrid fuzzy
system on time scales:

(14)
u∆ = f(t,u, λk(tk,uk)), t ∈ [tk, tk+1],

u(tk) = uk ∈ S(ρ), k = 0, 1, 2, . . . ,

where S(ρ) =
{
u ∈ R

n
F : D∞(u, 0̃) < ρ

}
. Unfortunately, in [19] it is mistakenly

assumed that the space of all fuzzy subsets in R
n, Rn

F , is a Banach space. However,
R

n
F is just a complete metric space and not a Banach space due to the fact that Rn

F

is not a normed space [4]. Here we note that such inconsistency in [19] is easily
overcome. For that we make use of the well-known embedding theorem (see, e.g.,
[4, 5, 18]), to embed the space R

n
F into a Banach space.

Theorem 4.24 (Embedding theorem [18]). There exists a real Banach space X
such that R

n
F can be embedded as a closed convex cone C with vertex 0 in X.

Furthermore, the embedding j is an isometry (i.e., j preserves distance).

Let us denote by ‖ · ‖ the function ‖ u ‖= D∞(u, 0̃) defined for u ∈ R
n
F . The

next lemma asserts that ‖ · ‖ has properties similar to the properties of a norm in
the usual crisp sense, without being a norm. It is not a norm because R

n
F is not a

linear space and, consequently, (Rn
F , ‖ · ‖) is not a normed space.



A Hukuhara approach to the study of hybrid fuzzy systems on time scales 165

Lemma 4.25. Function ‖ · ‖ has the following properties :

(i) ‖ u ‖= 0 if and only if u = 0̃;

(ii) ‖ λ · u ‖= |λ|· ‖ u ‖ for all u ∈ R
n
F and λ ∈ R;

(iii) ‖ u⊕ v ‖≤‖ u ‖ + ‖ v ‖ for all u,v ∈ R
n
F .

Proof. (i) By definition of ‖ · ‖, we have that ‖ u ‖= 0 if and only if D∞(u, 0̃) =
0. Since (Rn

F , D∞) is a metric space, u = 0̃.

(ii) For each u ∈ R
n
F and λ ∈ R we have that

‖ λ · u ‖= D∞(λ · u, 0̃) = D∞(λ · u, λ · 0̃) = |λ|D∞(u, 0̃) = |λ| ‖ u ‖

because of item (ii) of Proposition 2.10.

(iii) The intended inequality follows from item (iii) of Proposition 2.10:

‖ u⊕ v ‖ = D∞(u⊕ v, 0̃) = D∞(u⊕ v, 0̃ ⊕ 0̃)

≤ D∞(u, 0̃) +D∞(v, 0̃) =‖ u ‖ + ‖ v ‖ .

The proof is complete.

From Lemma 4.25, we deduce that all sufficient conditions presented in [19]
hold true in the Banach space X asserted by Theorem 4.24. Indeed, it is enough to
replace Rn

F by j(Rn
F ) in [19] to conclude with the validity of the sufficient conditions

of [19] for the practical stability of the hybrid fuzzy system on time scales (14) in
j(Rn

F ). Because j is invertible, one can then extend the results to R
n
F .

5. CONCLUSION

We investigated hybrid fuzzy systems on time scales with two outstanding
purposes: to establish practical stability of hybrid fuzzy systems on time scales
in the Lyapunov sense, based on the delta-Hukuhara derivative; to improve and
state a clarification of the results of [19]. Furthermore, a comparison theorem
was discussed, which is useful to prove the practical stability criterion. A smart
example of a hybrid fuzzy dynamic system on time scales was also stated and
discussed, illustrating the main results of the paper.
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