
Universidade de Aveiro
Departamento de Electrónica,
Telecomunicações e Informática

2015
das Universidades de Aveiro, Minho e Porto
Programa de Doutoramento em Informática

Alina Liliana

Trifan

Deteção de objetos coloridos em robôs inteligentes

com restrições temporais

Time-constrained colored object detection for

intelligent robots

Universidade de Aveiro
Departamento de Electrónica,
Telecomunicações e Informática

2015
das Universidades de Aveiro, Minho e Porto
Programa de Doutoramento em Informática

Alina Liliana

Trifan

Deteção de objetos coloridos em robôs inteligentes

com restrições temporais

Time-constrained colored object detection for

intelligent robots

Dissertação apresentada às Universidade de Aveiro, Minho e Porto para

cumprimento dos requesitos necessários à obtenção do grau de Doutor

em Informática, realizada sob a orientação cient́ıfica de António José

Ribeiro Neves e Manuel Bernardo Cunha, Professores do Departamento

de Electrónica, Telecomunicações e Informática da Universidade de Aveiro

Trabalho financiado pelas seguintes entidades:

> VARIANTES DA MARCA
A marca foi pensada para ser utilizada de variadas formas.
Com descritivo da sigla, sem descritivo, com assinatura e como símbolo.

02/03

GOVERNO DA REPÚBLICA
PORTUGUESA

UNIÃO EUROPEIA
Fundo Social Europeu

K�>ŽŐŽƟƉŽ�ĚĂ�&�d�ĨŽŝ�ƉƌĞǀŝƐƚŽ�Ğŵ�ĚƵĂƐ�
únicas versões.

�ŵ�ƚĞƌŵŽƐ�ĚĞ�ĚŝƐƉŽƐŝĕĆŽ�ŶĞŶŚƵŵĂ�ŽƵƚƌĂ�
ǀĂƌŝĂŶƚĞ�Ġ�ƉŽƐƐşǀĞů͘

ůŽŐŽƟƉŽ
- versão vertical

CORES

POSITIVO / CINZA

NEGATIVO

| v
ar

ia
çõ

es
 d

a
m

ar
ca

 | u
til

iz
aç

õe
s

in
de

vi
da

s
e

nã
o

pe
rm

iti
da

s
|

variações da marca
variações para utilização em situações especiais:
marca com logotipo à esquerda numa linha
marca com logotipo em 2 linhas
marca e logotipo em linha para aplicações de redução limite [aplicações em lápis, canetas, etc]
marca para aplicação em estacionário [papel de carta, envelope, fax, etc]

universidade de aveirotheoria poiesis praxis 30 anos a projectar futuros

universidade de aveirotheoria poiesis praxis 30 anos a projectar futuros

universidade de aveiro universidade
de aveiro universidade de aveiro

30 anos a projectar futurosuniversidade de aveiro

30 anos a projectar futurosuniversidade de aveiro

30 anos a projectar futurosuniversidade de aveiro

30 anos a projectar futuros
universidade de aveiro

30 anos a projectar futurosuniversidade de aveiro

30 anos a projectar futurosuniversidade de aveiro 30 anos a projectar futurosuniversidade de aveiro

30 anos a projectar futurosuniversidade de aveiro 30 anos a projectar futurosuniversidade de aveiro

30 anos a projectar futuros
universidade de aveiro

30 anos a projectar futurosuniversidade de aveiro

30 anos a projectar futurosuniversidade de aveiro 30 anos a projectar futurosuniversidade de aveiro 30 anos a projectar futurosuniversidade de aveiro

30 anos a projectar futurosuniversidade de aveiro 30 anos a projectar futurosuniversidade de aveiro

30 anos a projectar futurosuniversidade de aveiro 30 anos a projectar futurosuniversidade de aveiro

alguns exemplos de utilizações indevidas
a utilização da logomarca não suporta distorções, alteração de posição
relativa dos elementos, mudanças de tipografia ou qualquer outras
configurações para além das previstas pelo autor.

o júri / the jury

presidente / president Prof. Doutor Amadeu Mortágua Velho da Maia Soares

Professor Catedrático da Universidade de Aveiro (por delegação da Reitoria da

Universidade de Aveiro)

vogais / examiners committee Prof. Doutor Fernando Manuel Augusto da Silva

Professor Catedrático da Universidade do Porto

Prof. Doutor Lúıs Filipe Barbosa de Almeida Alexandre

Professor Catedrático da Universidade da Beira Interior

Prof. Doutor Paulo Jorge Santos Gonçalves Ferreira

Professor Catedrático da Universidade de Aveiro

Prof. Doutor Alexandre José Malheiro Bernardino

Professor Associado da Universidade Técnica de Lisboa

Prof. Doutor António José Ribeiro Neves

Professor Auxiliar da Universidade de Aveiro (orientador)

agradecimentos Primeiro que tudo, gostava de agradecer ao meu orientador, Professor

António Neves, pela orientação, partilha de conhecimentos e todo o apoio

durante o meu doutoramento. Agradeço a sua paciência, o seu otimismo

contagiante e todas as conversas inspiradoras que me ajudaram concluir

esta Tese. Estou agradecida ao meu co-orientador, Professor Bernardo

Cunha, pelo seu entusiasmo e por todas as revisões do meu trabalho. Que-

ria também agradecer ao Professor José Lúıs Azevedo por toda a sua ajuda

e pelas palavras de incentivo durante cada competição robótica. À Uni-

versidade de Aveiro, especialmente ao IEETA e ao DETI, agradeço por me

providenciarem as condições necessárias para desenvolver este trabalho e

todo o apoio financeiro prestado nas mais diversas ocasiões. Esta Tese não

podia ter sido realizada sem a cooperação dos meus colegas do laboratório

IRIS, principalmente os que fazem parte do projeto CAMBADA. O tempo

que passei na Universidade de Aveiro não teria sido igual sem a amizade

dos meus colegas Aneesh e Bruno. Aos meus amigos Diana, Cristina, Paul,

Annamaria e Marisa, um grande obrigada por estarem sempre perto, mesmo

estando à milhares de kilometros. Ao Tozé, obrigada por partilhares a minha

paixão por uma vida mais saudável e por seres o meu companheiro de treino.

À minha mãe, um muito obrigada por me ter permitido seguir os meus son-

hos. Por último, um agradecimento muito especial ao HB pelo apoio e amor

incondicionados, pela compreensão e motivação nos momentos de menos

força e pela felicidade que me proporciona todos os dias.

acknowledgements First and foremost, I would like to express my endless gratitude to Professor

António Neves, my main advisor, for his guidance, sharing of knowledge and

continuous support. Thank you for all your patience, contagious optimism

and for all the inspiring discussions that led to the conclusion of this Thesis. I

am thankful to Professor Bernardo Cunha, my co-adviser, for his enthusiasm

and for always reviewing my work. I am also grateful to Professor José

Lúıs Azevedo for his help and his kind words at the end of each robotics

competition. I would like to thank the University of Aveiro, mainly IEETA

and DETI, for providing me the conditions to pursue this Ph.D. and for all

the financial support. This Thesis could not have been possible without the

cooperation of my colleagues from IRIS Laboratory, mainly the members

of the CAMBADA project. The time at the University of Aveiro would

not have been the same without the friendship of Aneesh and Bruno. To

my friends Diana, Cristina, Paul, Annamaria and Marisa, a huge thank

you for always having my back and for having you close, even though we

were many kilometres away. Tozé, thank you for sharing my passion for a

healthier living and for becoming my training buddy. To my mother, a huge

thank you for allowing me to follow my dreams. Last and most importantly,

I would like to thank HB for his support and unconditional love, for his

understanding and motivation through my weakest moments and for the

daily dose of happiness.

Palavras-chave Constrangimento de tempo de processamento, robôs moveis e autónomos,

sistema de visão, deteção por cor, deteção de objetos

Resumo A deteção de objetos em imagem digital com baixo custo computacional e

tempo de processamento é uma necessidade de várias áreas de investigação,

como por exemplo: robótica, vigilância por v́ıdeo ou análise de trânsito.

Com os mais recentes avanços da tecnologia e o decréscimo nos preços dos

sensores e das câmaras digitais, hoje em dia as câmaras podem adquirir

imagens com resoluções e taxas de acquisição bastante elevadas. Isso sig-

nifica que uma grande quantidade de informação tem que ser processada

num intervalo de tempo muito curto. Este trabalho de doutoramento está

focado no problema da deteção de objetos coloridos, com restrições tempo-

rais, e usa como plataforma de teste robôs inteligentes que jogam futebol de

uma forma autónoma. O trabalho está integrado no laboratório de Robôs e

Sistemas Inteligentes do Instituto de Engenharia Electrónica e Informática

da Universidade de Aveiro. A equipa de futebol robótico CAMBADA foi

utilizada como plataforma de teste de todo o trabalho desenvolvido neste

doutoramento. O objetivo era apresentar uma solução modular para um

sistema de visão que pudesse ser usado pelos robôs da equipa CAMBADA

para deteção de objetos coloridos, com restrições temporais. Foram desen-

volvidos algoritmos para a calibração colormetrica da câmara, optimização

da pesquisa numa imagem e formação de manchas de cor e com base neles

construiram-se sistemas de visão que pudessem ser usados pelos mesmos

rôbos. Estes sistemas de visão foram usados em ambientes competitivos

de futebol robótico e os resultados obtidos provam a sua eficiência. Além

disso, todos os algoritmos e software desenvolvidos foram agregados numa

biblioteca de visão por computador, de acesso livre e sem custos, que fora

desenvolvida para a deteção com restrições temporais de objetos coloridos.

Foram desenvolvidas também várias ferramentas para a monitorização re-

mota e a calibração de um sistema de visão robótico.

Keywords Time-constrained processing, autonomous mobile robots, vision system,

color detection, object detection

Abstract Object detection in digital images with small computational costs and pro-

cessing time is a necessity of some of the most diverse domains, such as:

robotics, video surveillance or traffic analysis, among others. With current

advances in technology and the decrease of prices in image sensors and video

cameras, nowadays digital cameras can acquire images at high resolutions

and frame rates. This means that a great amount of visual information

has to be processed in a small amount of time. This Ph.D. addresses the

problem of time-constrained detection of colored objects and uses as a test

bed intelligent robots that play soccer in an autonomous manner. This

work is integrated in the Intelligent Robotics and Systems Laboratory from

the Institute of Electronics and Informatics Engineering of Aveiro of Uni-

versity of Aveiro. The autonomous robotic soccer team CAMBADA was

the test bed of all the work developed during this Ph.D. The objective was

to present a modular solution of a vision system that could be used for

time-constrained color detection in the aforementioned robotic project. Al-

gorithms for colormetric camera calibration, optimal image scanning and

colored blob formation have been designed and based on them functional

robotic vision systems have been developed. These vision systems have

been used in real adversarial soccer scenarios and the results obtained prove

their efficiency. Moreover, all the developed algorithms and software have

been aggregated within a computer vision library, which is both free and

open source and designed for time-constrained colored object detection. In

addition, several support tools have been implemented as well, as tools for

remote monitoring or color calibration of a robotic vision system.

Contents

List of Figures viii

List of Tables x

Acronyms xi

1 Introduction 1

1.1 Motivation . 2

1.1.1 CAMBADA Robotic Soccer Team . 4

1.2 Research Goals and Achievements . 5

1.3 Scientific Contributions . 7

1.3.1 Software Releases . 8

1.3.2 Scientific Publications . 8

1.4 Thesis Structure . 11

2 Vision Systems in Autonomous Mobile Robots 13

2.1 The RoboCup Initiative . 14

2.2 The Middle Size League . 15

2.3 Vision Systems in Autonomous Mobile Robots 16

3 Vision System Calibration 25

3.1 Color Spaces . 26

3.1.1 Conversions Between Color Spaces . 28

3.2 Color Classification Under Different Color Spaces 30

3.3 Colormetric Calibration of a Digital Camera 33

3.3.1 Colormetric Parameters of a Camera 34

3.3.2 Proposed Algorithm . 38

3.3.3 Experimental Results . 40

3.4 Calibration of Intrinsic and Extrinsic Camera Parameters 44

3.4.1 Pinhole Camera Model . 44

i

4 Colored Object Detection 49

4.1 Scan Lines . 50

4.2 Look-Up Tables . 57

4.2.1 Color Classification LUT . 57

4.2.2 Image Conversion LUT . 58

4.3 Run Length Encoding . 62

4.4 Colored Blobs . 63

5 Applications 67

5.1 Omni-directional Vision System . 68

5.2 Perspective Vision System . 74

5.3 Kinect-based Vision System . 77

5.3.1 Color Filtering Using Depth Information 79

6 Performance Evaluation 83

6.1 Colored Object Detection Performance Evaluation 84

6.1.1 Scan Lines Performance Evaluation . 84

6.1.2 Performance Evaluation on Different Image Resolutions 90

6.2 Delay Measurements between Perception and Action 95

6.2.1 Measuring Setup . 96

6.2.2 Delay Measurements . 97

6.2.3 Detection Performance on Raw Images 97

7 Tools 101

7.1 colorSpaces Tool . 101

7.2 calibVision Tool . 103

7.3 GUICalib Tool . 106

8 Conclusions and Future Work 111

8.1 Conclusions and Discussion . 111

8.2 Future Work . 113

8.3 Acknowledgements . 114

A UAVision Library 115

A.1 Image Acquisition Module . 116

A.2 Camera Calibration Module . 117

A.3 Color-coded Object Segmentation Module . 119

A.4 TCP Communications Module . 121

B Structure of the Configuration File 123

ii

C Color Classification Questionnaire 125

D Software Arguments 127

D.1 Omni-directional Vision System . 127

D.2 Perspective Vision System . 129

D.3 Kinect-based Vision System . 130

D.4 calibVision Tool . 131

Bibliography 138

iii

iv

List of Figures

1.1 Examples of autonomous robots. 3

1.2 CAMBADA Team. 5

1.3 MSL Soccer Game. 5

1.4 Robot setup during a game. 6

2.1 RoboCup Soccer Leagues. 15

2.2 A RoboCup MSL game. 16

2.3 Vision system architecture presented in [1]. 18

2.4 Detection results presented in [2]. 19

2.5 Detection results presented in [3]. 20

2.6 Image processing steps presented in [4]. 20

2.7 An example of an object recognition presented in [5]. 22

2.8 Ellipse candidates and ball recognition results presented in [6]. 23

3.1 RGB cube. 27

3.2 HSV color space representations. 27

3.3 HSL color space representation. 28

3.4 U-V color plane representation. 29

3.5 Examples of test images for the color classification study. 31

3.6 Images acquired with wrong colormetric parameters. 33

3.7 A typical image processing pipeline for a tri-stimulus system. 35

3.8 Histograms of underexposed and overexposed images. 36

3.9 Influence of white balance on an image. 37

3.10 Statistical measures of an image. 38

3.11 Saturation histograms. 39

3.12 Colormetric calibration experiments. 41

3.13 Variations of colormetric parameters of the camera during calibration. 42

3.14 Results of the colormetric calibration algorithm. 43

3.15 Intensities histograms. 43

3.16 Outdoor results of the colormetric calibration algorithm. 44

3.17 Pinhole camera principle. 45

v

3.18 Projection of a 3D point into a 2D point based on the pinhole model. 45

3.19 Chessboard orientations. 47

3.20 Chessboard pattern used for intrinsic and extrinsic camera calibration. 47

3.21 Map correction. 48

3.22 Geometrical parameter extraction. 48

4.1 Examples of the 4 types of scan lines. 50

4.2 Examples of the 4 types of scan lines displayed on the images acquired by

robotic vision systems. 51

4.3 Scan lines diagram. 52

4.4 Illustration of horizontal and vertical scan lines. 53

4.5 Illustration of 3-level radial scan lines. 55

4.6 Octants considered for the construction of circular scan lines. 55

4.7 Illustration of circular scan lines. 56

4.8 Example of an image of labels. 57

4.9 Example of an image mask. 58

4.10 Bayer arrangement of color filters. 60

4.11 A raw Bayer image and the interpolated RGB image. 60

4.12 RLE illustration based on a scan line. 62

4.13 Blobs and RLE information examples. 65

5.1 Common software pipeline of the vision systems. 68

5.2 Omni-directional vision system. 69

5.3 Ball size-distance relationship function. 70

5.4 Color-coded object detection by the omni-directional vision system. 71

5.5 Index and color-classified images. 71

5.6 Body markers detection. 72

5.7 Ball detection results when the ball is stopped and the robot is in a tour around

the field. 73

5.8 Ball detection results when the robot is stopped and the ball is sent across the

field. 73

5.9 Ball detection results when both the robot and the ball are moving. 74

5.10 Illustration of the soccer field and the placement of the two cameras. 75

5.11 Results obtained with a perspective vision system. 76

5.12 Visualization tool for the positioning of multiple cameras on the soccer field. 76

5.13 Ball detection and vector projection with a perspective vision system. 77

5.14 Projection of two vectors towards the center of the ball. 77

5.15 CAMBADA goalie. 79

5.16 Images acquired by a Kinect sensor. 79

5.17 Pipeline of the Kinect-based vision system. 80

vi

5.18 Filtered image for the detection of aerial balls. 81

5.19 Screenshot of the application used for the calibration of the Kinect sensor. . . 81

5.20 Goalie defense in game situations. 82

6.1 Detection results of the omni-directional vision system at different distances. 85

6.2 Detection results with the robot rotating. 86

6.3 Perspective ball detection at different distances. 88

6.4 Ball detection accuracy of the perspective vision system with different vertical

scan lines configurations. 89

6.5 Graphics representing the ball detection for the three resolutions using the blob

algorithm. 93

6.6 Graphics representing the ball detection for the three resolutions using the

contours detection algorithm. 93

6.7 Ball detection with region growing clustering. 94

6.8 Ball detection based on blob algorithm at 12m. 94

6.9 Watershed results. 96

6.10 Delay measurement diagram. 96

6.11 Histograms showing the delay between perception and action. 97

6.12 Ball detection on raw and RGB images. 98

6.13 Objects of interest detected on a raw image. 99

6.14 Ball detection during a robot tour. 99

6.15 Ball detection when both the robot and the ball are moving. 100

7.1 colorSpaces tool. 102

7.2 Examples of test images. 102

7.3 Ground truth and user classified images. 103

7.4 colorSpaces tool for supervised classification. 104

7.5 calibVision tool. 104

7.6 Result of the color classification procedure. 105

7.7 GUICalib tool. 106

7.8 Local Access function. 106

7.9 Grab Frames function. 107

7.10 Server Connection function. 107

7.11 Receive and Send Info functions. 108

7.12 Color Classification function. 108

7.13 Manual Calibration function. 109

A.1 Camera Factory. 117

A.2 Image Acquisition Module. 117

A.3 Camera Calibration Module. 118

vii

A.4 Camera Settings Factory. 118

A.5 Illustration of an image mask. 119

A.6 Color Ranges Software Block. 119

A.7 Color Object Detection Module. 120

A.8 Scan Lines Software Block. 120

A.9 TCP Communications Module. 121

viii

List of Tables

3.1 colorSpaces tool manual classification results. 32

3.2 colorSpaces tool region growing results. 33

3.3 Processing time of the colormetric calibration algorithm. 42

5.1 Partial processing times for the omni-directional vision system. 74

5.2 Partial processing times for the perspective vision system. 78

5.3 Processing times for aerial ball detection. 82

6.1 Effect of the scan lines level on visited and repeated pixels. 86

6.2 Ball detection for five radial scan lines configurations. 87

6.3 Ball detection results for three scan lines configurations at 6m or more. . . . 87

6.4 Ball detection results for three scan lines configurations at 6m or more. . . . 87

6.5 Omni-directional vision system processing time for different scan lines config-

urations. 88

6.6 Omni-directional vision system partial processing times for different scan lines

configurations. 88

6.7 Perspective vision system processing time for different vertical scan lines con-

figurations. 89

6.8 Perspective vision system partial processing times for different vertical scan

lines configurations. 89

6.9 IGEPv2 processing time. 90

6.10 IGEPv2 partial processing times. 90

6.11 Average and maximum processing times for each of the three algorithms. . . 91

6.12 Maximum distance at which the ball is detected. 91

6.13 Percentages of correct ball detection for the three algorithms. 92

6.14 Ball detection percentages for the three algorithms at more than 6m. 92

6.15 Ball detection percentages for the three algorithms at more than 9m. 92

6.16 Partial processing times for the Watershed transform. 95

6.17 Partial processing times for the Watershed transform on the IGEPv2 board. . 95

B.1 Structure of the configuration file. 123

ix

x

Acronyms

MSL Middle Size League

SPL Standard Platform League

HL Humanoid League

SSL Small Size League

SL Simulation League

FIFA Fédération Internationale de Football Association

RLE Run Length Encoding

LUT Look-Up Table

GUI Graphical User Interface

RTDB Real-Time Database

MSV Mean Sample Value

xi

xii

“There is no innovation

and creativity without failure.”

Brené Brown

1
Introduction

For more than half of century, the scientific community of researchers working in computer

vision has focused on enabling machines with an artificial sense of vision, at least as good as the

human one. Two of the key characteristics of human visual processing that are most difficult

to reproduce in an artificial vision system are the discerning of relevant information in a given

situation or environment and the rapid processing of this information, like “in the blink of an

eye”. The amount of information that the human processing unit, the brain, receives from

the eyes must be at least two orders of magnitude greater than all the information it obtains

from the other senses [7]. The human brain can process all the visual information provided

by the eyes in a short amount of time since it possesses 1010 neurons, out of which, some have

over 10000 synapses with other neurons [7]. Looking at each neuron as a microprocessor and

considering that these microprocessors are able to work in parallel, the human CPU cannot

even be compared to any computer that has been invented so far.

We live in what could be called nowadays the “speed era”, in which things around us

happen and expand at a fast pace. Either it’s technological innovations, medical procedures

or social interaction, everything around us seems to evolve at an elevated rhythm and our

actions and evolution have to follow this fast trend. Just as we humans need to react fast,

prioritize what is relevant for us and process that information in real-time, this Ph.D. Thesis

intends to endorse autonomous intelligent robots with similar capabilities. The solution that

we propose comes in the form of time-constrained colored object detection algorithms, as well

as a modular solution for robotic vision systems to acquire and process visual information in

the smallest possible amount of time.

1

The word “robot” comes from the Czech word “robota”, meaning forced labor or servitude.

The Merriam–Webster Dictionary1 definition of a robot is:

• A real or imaginary machine that is controlled by a computer and is often made to look

like a human or animal.

• A machine that can do the work of a person and that works automatically or is controlled

by a computer.

• A machine that looks like a human being and performs various complex acts (as walking

or talking) of a human being; also, a similar but fictional machine whose lack of capacity

for human emotions is often emphasized.

The Robot Institute of America2 defines a robot as a re-programmable, multi-functional

manipulator designed to move material, parts, tools, or specialized devices through various

programmed functions for the performance of a variety of tasks.

By some of these definitions, many of the nowadays electronic household objects, such

as a vacuum cleaner or a washing machine, can be seen as robots. However, such machines

do not possess intelligence, probably the most important feature of today’s most advanced

robots. Although there is not a standardized definition of the word “robot”, today’s robots

are more than simple manipulators and they share most of the following capabilities: sensing,

artificial intelligence, movement and energetic autonomy.

Figure 1.1 shows some of today’s most advanced robots. Nowadays autonomous robots

are an ubiquitous part of industry, medicine, space exploration or rescue operations.

Among the capabilities of an advanced autonomous robot, “vision is recognized as the

most powerful of robot sensory capabilities”[8]. The goal of machine or computer vision has

been, for years, to endue machines with a sense of vision at least as strong as the human

vision. The human vision system is capable of remarkable things but it is not solely based

on our eyes, our brain is just as or even more important. There are many powerful artificial

vision sensors available nowadays which allow machines to acquire images similarly or, in some

cases, depending on the type of sensor, even with greater detail than the human eyes. The

big issue that computer vision is still tackling with is actually providing to a robot, a machine

or a computer the capabilities of image processing and understanding that the human brain

has.

1.1 Motivation

Robots are an ubiquitous part of our daily life and we want them smarter and faster each

day. We expect robots to be able to perform most of the actions or tasks of a person, but with

1http://www.merriam-webster.com/dictionary
2www.robotics.org

2

http://www.merriam-webster.com/dictionary
www.robotics.org

(a) Care-O-Bot II (b) ASIMO (c) Curiosity

(d) Industrial (e) Big Dog (f) Amazon warehouse robots

(g) TUG (h) Santander (i) Amazon delivery drone

Figure 1.1: Several examples of autonomous robots used for some of the most diverse tasks.

more precision, in less time and in a safe manner. In many applications the work of a robot

already outperforms the work of a person, especially when tasks are repetitive, monotonous

or dangerous. But in just as many applications, there is yet no comparison between the

capabilities of a robot and the ones of a human.

This Ph.D. Thesis is an effort towards lowering the number of applications in which

robots have limitations. It focuses on the study and development of innovative algorithms

for colored object detection, that allow the development of modular vision systems to be

used on intelligent robots. These vision systems meet all the challenges of time-constrained

performance and they can be used on a wide range of autonomous robots, independently of

their hardware architecture.

In many applications in the areas of Robotics and Automation the environment is still

controlled up to a certain extent in order to allow progressive advancements in the different

development directions that stand behind these applications. There are many industrial

3

applications in which semi or fully autonomous robots perform repetitive tasks in controlled

environments, where the meaningful universe for such a robot is reduced. For example, in some

applications the universe of the robot is limited to a set of relevant objects and locations that

are known a priori. In other applications, the illumination of a scene is controlled, meaning

that it can be constant or that only artificial light is being used. In applications such as

industrial inspection, traffic sign detection or robotic soccer, among others, the environment

is either reduced to a set of objects of interest that are color-coded (or color-labeled) or the

color segmentation of the objects of interest is the first step of the object detection procedure.

This is mainly due to the fact that segmenting a region based on colors is less heavy from the

point of view of the computational resources involved than the detection of objects based on

generic features. To our knowledge, at the beginning of this Ph.D., there was no free, open

source available library that could provide a complete set of algorithms dedicated to time-

constrained object detection. This Ph.D. Thesis intends to be a contribution in that matter,

providing modular and configurable time-constrained algorithms for colored object detection,

an open-source computer vision library and several robotic vision systems fully usable.

1.1.1 CAMBADA Robotic Soccer Team

Several vision systems have been developed throughout this Ph.D.: a perspective (with two

different aims: detection of flying objects and ground truth monitoring), an omni-directional

and an embedded one. These systems have been fully integrated within the software of the

robotic soccer team of University of Aveiro. The CAMBADA robotic soccer team (acronym

of Cooperative Autonomous Mobile roBots with Advanced Distributed Architecture)3 is the

RoboCup4 Middle Size League (MSL) soccer team of the University of Aveiro (IEETA -

Institute of Electronics and Telematics Engineering of Aveiro and DETI - Department of

Electronics Telecommunications and Informatics), Portugal (Fig. 1.2). The team was founded

in 2003 and since then it has attended each year the Portuguese, European and Worldwide

RoboCup competitions.

RoboCup is an international federation focused on promoting research in the area of

robotics, through different types of competitions that bring together researchers from all over

the world, working on the most diverse areas of robotics. The Soccer League was the first

RoboCup League to be created and it uses the game of soccer to captivate both researchers

and general public with interest in multi-agent systems. More detail on RoboCup and the par-

ticularities of the MSL soccer games are given in Section 2.1 and Section 2.2. An illustration

of a robotic soccer game in MSL is shown in Fig. 1.3.

The CAMBADA robots are completely autonomous, able to perform holonomic motion

and are equipped with an omni-directional vision system that allows them to have a 360◦

view of the environment in which they are found [9] (Fig. 1.4). In addition, the goalie is

3http://robotica.ua.pt/CAMBADA/
4www.robocup.org

4

http://robotica.ua.pt/CAMBADA/
www.robocup.org

Figure 1.2: CAMBADA robotic soccer team.

Figure 1.3: A game situation in MSL.

also equipped with a perspective vision system used for the detection of balls that were sent

through air. In order to play soccer, a robot has to detect, in useful time, the ball, the limits

of the field and the field lines, the goal posts and the other robots that are on the field. These

robots can move with a speed of 4m/s and the ball can be kicked with a velocity of more than

10m/s, which leads to the need of having fast object detection algorithms.

1.2 Research Goals and Achievements

This Thesis is intended as a contribution to the software architecture of the CAMBADA

robots. The omni-directional and perspective vision systems that have been built during this

Ph.D. have reached the maximum technological readiness level [10]. These systems have been

tested and used in several robotic competitions in the last years, namely:

5

Figure 1.4: On the left and center images, an example of a robot setup during a soccer game.

On the right, the world as the robot understands it, displayed on the team base-station.

• Robotica 2013 - 13th Edition of the Portuguese Robotics Open, April 2013, Lisbon,

Portugal - 2nd place.

• RoboCup 2013 - 17th RoboCup World Championship, June 2013, Eindhoven, Nether-

lands - 3rd place.

• RoboCup IranOpen 2014 - April 2014, Tehran, Iran - 2nd place.

• Robotica 2014 - 14th Edition of the Portuguese Robotics Open, May 2014, Espinho,

Portugal - 2nd place.

• RoboCup 2014 - 18th RoboCup World Championship, July 2014, João Pessoa, Brazil

- 3rd place.

• Robotica 2015 - 15th Edition of the Portuguese Robotics Open, April 2015, Vila Real,

Portugal - 2nd place.

In addition, the computer vision library that resulted from this work is functional, open

source and freely available.

The main objective of this Thesis was the development of fast computer vision algorithms

for object detection, that can be used in time-constrained robotic applications. The objectives

of this work have been the following:

• Study the environment of robotic soccer from a scientific point of view and identify the

challenges of this particular robotic application.

• Review published literature on computer vision algorithms and methodologies that can

be used in time-constrained robotics.

• Develop time-constrained color object detection algorithms for the detection of the

objects of interest in a robotic soccer game.

• Implement a fully functional and modular robotic vision system that would allow the

use of the robotic soccer team in real, competitive scenarios.

6

• Develop support tools for the calibration of the vision system.

• Integrate all algorithms and methodologies in an open-source computer vision library

for time-constrained applications, that can be shared with the scientific community and

that could be a valuable contribution to this field of study.

• Deployment of the developed software and guarantee its full integration and execution

in official competitions, within the existent restrictions.

1.3 Scientific Contributions

The work developed during this Ph.D. covers the field of time-constrained computer vision

algorithms. The main contributions of this Thesis are:

• A modular computer vision library for time-constrained color object detection. The

modular design of this library allows the independent use of the different modules that

make it up in applications that use a digital camera as a sensorial element.

• A collection of time-constrained algorithms for the calibration of the colormetric param-

eters of a digital camera and for the detection of colored objects, either on the ground

or aerial.

• Fully functional vision systems that can attend to all the challenges of autonomous

robotic soccer, such as: real-time object detection, low computational resources, detec-

tion of flying object and ground truth generation.

• The design of image scanning patterns that are highly configurable to the processing

time and accuracy demands of an artificial autonomous vision system.

• A novel study on the use of raw data for color object detection and the effects on terms

of detection accuracy.

• A study on the delay between perception and action in an autonomous soccer robot,

using both raw and RGB data.

• A graphical user interface (GUI) tool for the study of the most common color spaces

and their use for manual calibration by a human user.

• A tool for remote communication with an autonomous robot and exchange of visual

data. This tool supports the exchange of information and the calibration between a

robot performing a given task and a remote client, without this exchange interfering

with the completion of its task.

7

• As a result of the work developed during the 4 years of this Ph.D., several scientific

manuscripts have been published in national and international peer-reviewed confer-

ences.

1.3.1 Software Releases

An open source, modular, time-constrained computer vision library for color object de-

tection has been developed. The library is available at http://sweet.ua.pt/an/uavision/,

along with several test sequences and instructions on the use of the library.

Based on this library, a generic time-constrained vision system pipeline for autonomous

soccer robots has been defined and several vision systems have been implemented. These

vision systems have a technological readiness level of 9 and they have proven their efficiency

in several official robotic competitions, as well as in laboratory tests. Moreover, an embedded

vision system has been built and it is designed for the use on robotic platforms with very

limited computing capabilities.

Along with these vision systems, several external calibration and monitoring tools have

been built and are currently in use by the robotic soccer team.

1.3.2 Scientific Publications

The following scientific publications have resulted from the work presented in this Thesis:

B International peer-reviewed journals:

• Alina Trifan, António J. R. Neves, Bernardo Cunha, José Lúıs Azevedo: Real-Time

Color Coded Object Detection Using a Modular Computer Vision Library, Advances in

Computer Science : an International Journal, Volume 5, Issue 1, January 2016 (ac-

cepted).

B National peer-reviewed conferences/proceedings:

• Alina Trifan, António J. R. Neves, Bernardo Cunha, Nuno Lau: A color-coded vision

system for a NAO robot, Proceedings of the 17th Portuguese Conference on Pattern

Recognition, RecPad 2011, Porto, Portugal, October 2011.

• Alina Trifan, António J. R. Neves, Bernardo Cunha, Nuno Lau: The importance of

color spaces in robotic vision, Proceedings of the 18th Portuguese Conference on Pattern

Recognition, RecPad 2012, Coimbra, Portugal, October 2012.

8

http://sweet.ua.pt/an/uavision/

B International peer-reviewed conferences/proceedings:

• Alina Trifan, António J. R. Neves, Bernardo Cunha, Nuno Lau: A modular time-

constrained vision system for humanoid robots, Proceedings of IS&T Electronic Imaging

2012, San Francisco, USA, January 2012.

• Alina Trifan, António J. R. Neves, Bernardo Cunha: Evaluation of color spaces for

user-supervised color classification in robotic vision, Proceedings of the 17th Interna-

tional Conference on Image Processing, Computer Vision, and Pattern Recognition,

ICPV13, Las Vegas, Nevada, USA, July, 2013.

• Alina Trifan, António J. R. Neves, Bernardo Cunha : An overview on the application

of machine vision in soccer robots, Proceedings of the 17th International Conference

on Image Processing, Computer Vision, and Pattern Recognition, ICPV13, Las Ve-

gas,Nevada, USA, July, 2013.

• António J. R. Neves, Alina Trifan, Bernardo Cunha : Self-calibration of colormetric

parameters in vision systems for autonomous soccer robots, Proceedings of the 17th

RoboCup International Symposium, Eindhoven, Netherlands, July, 2013.

• Alina Trifan, António J. R. Neves, Bernardo Cunha: UAVision: A modular time-

constrained vision library for color-coded object detection, Proceedings of CompIm-

age2014, Pittsburgh, USA, September, 2014.

• Alina Trifan, António J. R. Neves, Bernardo Cunha: UAVision: A modular time-

constrained vision library for soccer robots, Proceedings of the 18th RoboCup Interna-

tional Symposium, João Pessoa, Brazil, July, 2014.

• António J. R. Neves, Alina Trifan, Paulo Dias, José Lúıs Azevedo. Detection of aerial

balls in robotic soccer using a mixture of color and depth information, Proceedings of the

2015 IEEE International Conference on Autonomous Robot Systems and Competitions

(ICARSC 2015), Vila Real, Portugal, April 2015.

• António J. R. Neves, Alina Trifan, José Lúıs Azevedo. Time-constrained detection of

colored objects on raw Bayer data, Proceedings of V ECCOMAS Thematic Conference

on Computational Vision and Image Processing (VIPIMAGE 2015), Tenerife, Canary

Islands, Spain, October 2015.

• Alina Trifan, António J. R. Neves, Bernardo Cunha. Image scanning techniques for

speeded-up color object detection, Proceedings of V ECCOMAS Thematic Conference

on Computational Vision and Image Processing (VIPIMAGE 2015), Tenerife, Canary

Islands, Spain, October 2015.

9

• Alina Trifan, António J. R. Neves. On the use of feature descriptors on raw data,

Proceedings of 5th International Conference on Pattern Recognition Applications and

Methods (ICPRAM 2016), Rome, Italy, February 2016 (accepted).

• António J. R. Neves, Fred Gomes, Paulo Dias, Alina Trifan. A ground truth vi-

sion system for robotic soccer, Proceedings of 5th International Conference on Pattern

Recognition Applications and Methods (ICPRAM 2016), Rome, Italy, February 2016

(accepted).

• Alina Trifan, António J. R. Neves. A Survey on Lossless Compression of Bayer Color

Filter Array Images, Proceedings of ICIPACV 2016 : 18th International Conference

on Image Processing, Analysis and Computer Vision, Los Angeles, USA, April 2016

(accepted).

• António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan. Object Detection Based

on Plane Segmentation and Features Matching for a Service Robot, Proceedings of IC-

IPACV 2016 : 18th International Conference on Image Processing, Analysis and Com-

puter Vision, Los Angeles, USA, April 2016 (accepted).

B Technical reports:

• CAMBADA2013: Team Description Paper. R. Dias, A. J. R. Neves, J. L. Azevedo, B.

Cunha, J. Cunha, P. Dias, A. Domingos, L. Ferreira, P. Fonseca, N. Lau, E. Pedrosa,

A. Pereira, R. Serra, J. Silva, P. Soares and A. Trifan, Eindhoven, Netherlands, June

2013.

• CAMBADA2014: Team Description Paper. R. Dias, F. Amaral, J. L. Azevedo, R.

Castro, B. Cunha, J. Cunha, P. Dias, N. Lau, C. Magalhaes, A. J. R. Neves, A. Nunes,

E. Pedrosa, A. Pereira, J. Santos, J. Silva and A. Trifan, João Pessoa, Brazil, July

2014.

• CAMBADA2015: Team Description Paper. B. Cunha, A. J. R. Neves, P. Dias, J. L.

Azevedo, N. Lau, R. Dias, F. Amaral, E. Pedrosa, A. Pereira, J. Silva, J. Cunha and

A. Trifan, Hefei, China, July 2015.

• SPL Portuguese Team: Team Description Paper for RoboCup 2011. A. J. R. Neves, N.

Lau, L. P. Reis, A. P. Moreira, A. Trifan, B. Pimentel, C. Sobrinho and E. Domingues,

Istanbul, Turkey, July 2011.

• SPL Portuguese Team: Team Description Paper for RoboCup 2012. A. J. R. Neves, N.

Lau, L. P. Reis, A. P. Moreira, A. Trifan, B. Pimentel, C. Sobrinho, E. Domingues,

N. Shafii, S. Miranda and L. Cruz, Mexico City, Mexico, June 2012.

10

• Portuguese Team: Team Description Paper for RoboCup 2013. A. J. R. Neves, N. Lau,

L. P. Reis, A. P. Moreira, J. Silva, A. Trifan, N. Shafii, V. Santos, S. Zadegan and S.

Bahmankhah, Eindhoven, Netherlands, June 2013.

1.4 Thesis Structure

This Thesis is structured in 8 chapters, first of them being this Introduction.

Chapter 2 enframes the work presented in this Thesis within current similar research

efforts done in the field of robotic vision. It focuses mainly on robotic vision systems used in

soccer competitions.

Chapter 3 particularizes the algorithm that has been developed for the calibration of

the colormetric parameters of a digital camera. We also address the intrinsic and extrinsic

calibration of a digital camera and the integration of these algorithms within the library

produced.

Chapter 4 focuses on the time-constrained object detection algorithms that have been

developed. We present the particularities of these algorithms that allow their use in time-

constrained applications and we motivate their use on other computer vision practical appli-

cations than the one at which this Thesis was aimed.

Chapter 5 presents the robotic vision systems that have been implemented using the

library built.

In Chapter 6 we evaluate and discuss the performance of these vision systems in real,

competitive robotic soccer scenarios.

Chapter 7 presents different tools that have been developed in order to support the robotic

vision systems that have been implemented.

Chapter 8 concludes this document and contains final remarks and acknowledgements of

the institutions that supported this Thesis.

11

12

“The eyes are useless when the

mind is blind.”

Unknown

2
Vision Systems in Autonomous Mobile Robots

Just like humans, robots can “sense” the surrounding world by means of different sensors,

but usually, a digital camera is their main sensorial element. A digital camera is capable to

provide a great amount of spatial, temporal and morphological information.

The vision system of a robot has to perform different tasks, depending on the purpose of

that robot. The majority of the systems must perform object detection or recognition and

localization. Also in a vast range of applications, an efficient robotic vision system should

be able to perform its tasks under a certain time limit, which means that several constraints

are imposed. One of the most important constraints is, perhaps, that algorithmic complexity

is limited when it comes to time constrained applications. Thus, the limit of the processing

time of such an application is usually very low, of the order of milliseconds.

In robotic soccer, which has become a popular research branch of robotics, the environ-

ment is always changing, the ball and the robots are always moving, most of the time in

an unpredictable way. The vision system of a soccer robot is responsible for capturing all

these fast changing scenes, processing them and taking valid decisions in the smallest possi-

ble amount of time, thus allowing real-time reactions. Because in a robotic soccer game the

events unfold very fast, algorithms for tracking the objects of interest are not robust enough

to keep up with the sudden and repetitive changes in the environment. This makes soccer an

excellent test-bed for time-constrained vision systems of intelligent robots.

In this Chapter we will present a brief overview of the robotic soccer environment and

we will discuss state-of-the-art scientific contributions that have been presented so far on the

subject of time-constrained object detection algorithms for soccer robots.

13

2.1 The RoboCup Initiative

RoboCup is an international initiative that fosters research in robotics and artificial in-

telligence, on multi-robot systems in particular, through competitions like RoboCup Robot

Soccer, RoboCup Rescue, RoboCup@Home and RoboCupJunior. The main focus of the

RoboCup competitions is the game of soccer, where the research goals concern cooperative

multi-robot and multi-agent systems in dynamic adversarial environments.

The ultimate goal of the RoboCup initiative is stated as follows:

“By mid-21st century, a team of fully autonomous humanoid robot soccer players shall win

the soccer game, complying with the official rule of the FIFA, against the winner of the most

recent World Cup.”

Such a goal might sound still overly ambitious given the state of the art of affordable

technology and research. Building humanoid soccer players requires an equally long period

of time as well as extensive efforts on a broad range of research areas. Most probably the

goal will not be met in any near term, however it is important that such a long range goal be

claimed and pursued.

The RoboCup Robot Soccer competition is divided into the following leagues: Middle

Size League, Standard Platform League (SPL), Humanoids League (HL), Small Size League

(SSL) and Simulation League (SL). Each league portraits soccer games among autonomous

robots, but the hardware platforms in each of the leagues differ (Fig. 2.1).

Although different in many aspects and each of them imposing different research chal-

lenges, all of these four soccer leagues share certain common features. In all leagues, robots

play soccer on a green field, with white lines, according to FIFA rules that suffered small

adjustments in order to be applicable to robots. Moreover, in almost all leagues, except for

MSL, the robots play with an orange ball and protect white goals. Finally, all robots wear

cyan or magenta body markers or t-shirts in order to distinguish between the two teams that

are competing in a game.

In MSL the games are played between teams of up to five wheeled robots that each

participating team is free to build, keeping in mind only the maximum dimensions and weight

of the robots. In SPL all teams compete using the same robotic platform, a humanoid NAO

built by Aldebaran [11] and the games take place between teams of up to five NAOs. In

HL the games are played between humanoid robots, that is robots that imitate the human

body, and the number of players in a game depends on the sub-league in which a team is

participating: Kid-Size League, Teen League or Adult League. In SSL teams of 6 small robots

identified by colored patches compete in the game of soccer. These robots must fit within

an 180mm diameter circle and must be no higher than 15cm. The SL competitions are the

simulated version of the SPL ones.

All the physical RoboCup soccer games occur in closed, controlled environments. The

robots play soccer indoor, on a green with white lines carpet and the color of the ball is

14

(a) MSL (b) SPL

(c) SSL (d) HL

Figure 2.1: Game situations on the four physical soccer leagues of RoboCup.

known in advance. The vision system of these robots rely on a vision sensor, responsible for the

acquisition of images and a processing unit, responsible for processing the images in real-time.

In most cases, the processing unit has small capabilities compared to nowadays most advanced

computers, and this is due both to size and energy limitations. SSL - Vision [12] is the

standardized vision system used by all competing teams in the SSL League. It that processes

the data provided by two cameras that are attached to a camera bar located 4m above the

playing surface. In this league, off-field computers are used to communicate referee commands

and position information to the robots. These computers perform all of the processing required

for coordination and control of the robots.

2.2 The Middle Size League

A great percentage of the work presented in this Thesis has been tested and applied to

robotic soccer games taking place in the RoboCup MSL. Because of this, this Section provides

an overview of this league.

In the context of RoboCup, the MSL is one of the most challenging and more evolved. In

this league, each team is composed of up to 5 robots with a maximum size of 50cm × 50cm

width, 80cm height and a maximum weight of 40kg, playing on a field of 18m×12m (Fig. 2.2).

15

Figure 2.2: An image of a RoboCup MSL soccer game.

The RoboCup MSL competition is a standard real-world test for autonomous multi-robot

systems [13]. In this league, omni-directional vision systems have been explored in the last

years, allowing a robot to see in all directions at the same time without moving itself or its

camera. The games of this league resemble the most the ones played among humans. This

is mainly due to the fact that the environment is not as restricted as in the other leagues

and the robots have reached a high level of autonomy, thus turning the games more dynamic.

The color restriction of the ball has been raised. Nowadays, MSL robots play soccer with an

arbitrary ball, whose color is only decided before a tournament. The only rule applied is that

the surface of the ball should be 80% of a certain color.

These robots can move at speeds higher than 4m/s and are able to kick the ball at more

than 10m/s. The speed of the robots and the power of their kick has a great influence on

the performance of a vision system that such a robot should have. The vision system has to

keep up with the speed of the robot, to compensate the noise in an acquired image produced

by the movements of these robots and to process the environment with high precision and at

high frame rates. A high frame rate is directly related to the processing time of the vision

system, given that the higher the number of frames acquired per second, the less available

time for processing them. In addition, the fact that the ball is often kicked through air limits

the possibilities of using object tracking algorithms.

2.3 Vision Systems in Autonomous Mobile Robots

The library that resulted from this Ph.D. work is an important contribution for the Com-

puter Vision community since, so far, there are no free, open source machine vision libraries for

this application. This library can be employed for the development of both omni-directional

and perspective time-constrained vision systems. The omni-directional vision systems, which

are nowadays the preferred choice in RoboCup MSL provide a 360◦ visualization of the sur-

roundings. The processing of the images acquired by an omni-directional vision sensor is more

complex, mainly due to the distortion of the image and higher degradation in the resolution

16

with growing distances away from the robot [14].

CMVision [15], a machine vision library developed at the Carnegie Mellon University was

one of the first approaches to build such a library. However, it remained quite incomplete

and has been discontinued in 2004. Several other machine vision libraries, such as Adaptive

Vision [16], CCV [17] or RoboRealm [18], provide machine vision software to be used in

industrial and robotic applications but they come at a cost and they are not open source.

Our library, called UAVision, aims at being a free, open-source library that can be used for

robotic vision applications that have to deal with time constraints.

On the other hand, several solutions for the design of vision systems for autonomous

robots systems have been proposed in the last decade, some of them in the context of the

RoboCup initiative. Since the computer vision library that we propose has been mainly used

for the implementation of a vision system for robots that play soccer, this Section will focus

on recent work that has been done in this particular field. Even though there is no comparable

computer vision library yet, the scientific papers that will be reviewed in this Section address,

individually, many of the challenges that UAVision tries to solve.

A case study presented in [1] exposes the functional and non-functional requirements of

a robotic vision system. The non-functional requirements: modifiability, extensibility and

portability dictate the architecture of a vision system. The functional requirements usually

relate to the object detection algorithm of such systems. A software architecture that fulfills

the non-functional requirements criteria (Fig. 2.3) is presented. The resulting vision system

has been used on a Darwin-OP humanoid robot1 that takes part in the RoboCup HL com-

petitions. The proposed architecture is structured on two layers: interface, control and data

storage in the top layer and all the components for feature detection in the bottom layer. The

top layer concentrates all external communications into two wrapper modules: a Controller

module and a Blackboard module that stores locally all the information required by the low

level processing stages, as well as their results. Their approach for feature detection starts

with a detection of the horizon based on a combination of kinematics and search for green

color, followed by vertical and horizontal scan lines in search of sequential pixels of the same

color (the ball color). Results of this system working at 80fps are presented, however with a

success rate of the ball detection of only 50% when the ball is occluded.

Illumination is an important aspect when dealing with color object detection. In robotic

soccer games, most of the times the illumination of the soccer field is a mixture of artificial

and natural light. This uneven illumination turns the soccer field brighter in some parts and

covered by shadows in others. The vision systems of soccer robots have to overcome this

challenge and accurately detect the objects of interest no matter where they are on the field.

Different techniques for color object recognition that can adapt to changes in illumination are

presented in [2, 3, 19].

A soft labelling of pixel class followed by a hard decision using an adaptive threshold is

1http://www.trossenrobotics.com/p/darwin-OP-Deluxe-humanoid-robot.aspx

17

http://www.trossenrobotics.com/p/darwin-OP-Deluxe-humanoid-robot.aspx

Figure 2.3: Vision system architecture proposed in [1].

detailed in [19]. Connected pixels are conglomerated using a connected component analysis.

Objects of interest are detected and recognized by searching for nearby regions that match

a-priori models, with soft-comparisons to account for variations in shape, size and missing

features. This technique can be considered a pioneer for the computer vision algorithms

applied to RoboCup, since it was one of the early ones applied to SSL robots. Results are

presented on images of 320× 240 pixels acquired at frame-rates of 30fps, far from what can

be achieved with nowadays digital cameras.

Similar image resolutions with processing times rounding 34ms are presented in [2]. Their

approach is based on an adaptive color calibration method built on top of the Bayes Theo-

rem [20] and chrominance histograms. A randomised Hough Transform [21–23] is used for

ball detection and an orthogonal regression is computed for goals and flag posts detection. An

initial table which contains the mapping between the chrominance and the classified object

(the color map) is used to mark image regions occupied by the objects of interest. After

applying the color map, the contours and neighborhood of the object are checked to see if

they are indeed objects of interest. On success, histograms are updated and a new color map

is calculated. A second map, that specifies the maximum chrominance set is added. A-priori

probabilities for each object are calculated based on relative frequencies in the histograms

and the a-posteriori probability is given by Bayes Theorem. At each pixel, the object with

the highest probability is classified and the object belonging to a chrominance pair is stored

in a look-up table. A result of this approach is shown in Fig. 2.4.

18

Figure 2.4: On the left, an initial color classification. In the middle, the color classification

after calibration. On the right, ball, posts and flag detected. Images taken from [2].

Another solution for the vision system of a Sony Aibo 2 SSL player has been proposed in [3].

The independence of the lighting conditions of their approach can be obtained by focusing

on contrast patterns in three different color channels and auto-adapting color classification.

The horizon is calculated from the rotation of head and body of the robot and for each of

the areas below and above the horizon an optimized grid layout is used for scanning. From

the horizon, vertical scan lines extend into the lower half of the image. These lines are evenly

spaced and the distance depends on the distance to the ball. Scan lines above the horizon are

used for finding color coded flags placed at the corners and at the side of the field. Every pixel

at the grid lines is assigned to a color class. Green is the reference color, defined by upper

and lower boundaries in the YUV space. Other colors are defined in relation to the green

cube. The drawback of this approach is that colors that are close to each other in color space

are grouped together. When the lighting conditions change, the knowledge that the relative

positions of the colors to each other is maintained, is enough to only readjust the reference

cube. Object detection is done based on different sequences of edges and color transitions.

This algorithm does not work in bright light or under very little light. Figure 2.5 presents

results of their object detection, even with the ball partially occluded.

Other approaches for overcoming the illumination challenge during a soccer game is the

use of previously trained color look-up tables. An automatic on-line color calibration of

soccer-playing robots based on a geometrical model of the field lines in world coordinates and

of the ball in image coordinates is presented in [24]. The localization of the robot on the field

is based on edge detection. A region tracker is used, it stops growing a region when a possible

field line is encountered. The stopping criterion is based on the assumption that a field line is

brighter than neighbor pixels. The calibration time amounts to 1-2 seconds, which is a little

bit far from the time requirements of soccer robots vision systems.

A three-step method based on adaptive camera parameters control, image segmentation

and color classification is addressed in [4]. Color stability in the YUV color space is improved

with a controller of the camera colormetric parameters. Segmentation is performed based

2http://www.sony-aibo.com/

19

http://www.sony-aibo.com/

Figure 2.5: Detection of the objects of interest presented in [3].

on Markov Random Fields [25] in order to detect spatially coherent regions of uniform color

belonging to objects of interest. The labeling of the colors is done based on a Gaussian color

distribution (Fig. 2.6).

Figure 2.6: Image processing steps presented in [4].

An object recognition method for a MSL omni-directional vision system, that is adaptive

to light conditions is presented in [26]. In their paper, the authors prove that the conditional

probability density distributions of the YUV values mapping to each color are Gaussian. The

means and variances are learnt by manual calibration. Classifying color seeds are chosen

based on means and variances. The assumption that colors in an object region should be

similar stands at the basis of forming color regions. Means and variances are updated in

20

order to adapt to changing illumination. This algorithm works on images of 500× 492 pixels,

with an average processing time of 35ms.

Most vision systems designed for robotic soccer still take advantage of the color labeling

of the objects of interest. The color of an object is an important property that permits

the leverage of image analysis and processing techniques. Color is the main clue for the

detection of an object of interest in a robotic soccer game. Color segmented images for initial

object hypotheses and grayscale images for final classification are used in [27]. The color

segmented image is used for finding objects on the field and the grayscale image is used

to decide whether those objects are Sony Aibo players in the games of RoboCup SSL. The

CMVision [15] algorithm is applied to the YUV image based on four main assumptions: every

pixel below the horizon line belongs to part of the field or something on the field; objects

of interest are not green; objects of interest intersect the field horizon and finally, objects of

interest intersect the horizon line. The field horizon is considered to be the limit of green and

the highest point of four consecutive green pixels is the horizon. The algorithm for finding

the objects of interest starts by scanning along each column from below the field horizon

to search for non-green. When enough green is detected, the end of an object is signalized.

Enough green can mean only one green pixel, depending on the height at which it has been

found. Neighboring columns are grouped together and their lengths are averaged to find the

length for that group. The bounding box for each group is the initial hypothesis. For the

classification of the initial objects, an integral image is calculated over the grayscale image

for object classification. A robot hypothesis is compared to a previous stored robot model.

Occluded robots cannot be detected by this approach and the frame rate at which this system

works is 30fps, with a lower bound of 5fps.

An omni-directional vision system proposed in [28] introduces the notion of jump points

when scanning for a color of interest. 1500 jump points are used in this approach, independent

of the image resolution. In the worst case scenario, for an unsuccessful search, all jump points

have to be tested. However, if an object of interest is present in the image, the authors claim

that it will be surely found since the jump points are distributed so that at least 7 jump

points overlap with the smallest object of interest, in this case the soccer ball.

More recent efforts concentrate on providing robotic vision systems as independent of a

scene as possible. The color of an object is disregarded, with consequences on the maturity

and performance of such a vision system. A robust object recognition system based on a

wide-baseline matching is proposed in [5]. The wide-baseline matching is performed between

a reference image (object model) and a test image, in which the object of interest is searched.

Local interest points are extracted independently from both the test and the reference image,

then characterized using invariant descriptors. Several matches between similar descriptors

from both images are used to get an affine transformation between the two images (Fig. 2.7).

The algorithm has been tested in the Humanoid League and the @Home League, on images of

160× 120 pixels. This approach only delivers near real-time performance, processing images

21

at as low as 3− 9 frames per second.

Figure 2.7: An example of an object recognition presented in [5].

A novel algorithm, Wave3D, that maintains 3D hypotheses of the presence of objects in

real 3D world relative to a NAO robot from 2D images that the robot acquires is proposed

in [29]. Every new frame is processed as a continuation of the processing of previous frames.

The system hypothesizes 3D positions where the objects can be found and then validates

them in the 2D image. The novelty of this approach resides in the fact that the objects of

interest are not treated as collections of pixels, but rather real elements whose position is

initially guessed.

An arbitrary ball recognition method based on omni-directional vision for soccer robots

is presented in [6] and applied to MSL robots. The method is based on the approximation

of the soccer ball by an ellipse and edge points calculated from the transitions between two

colors, without specifying these colors. Circular and radial scan lines are used to search for

color variations of every two neighboring pixels. The color variations are measured by the

Euclidean distance in the YUV color space. If the color variation is higher than a predefined

threshold, a possible contour point is found. The distance between each two possible contour

points is calculated. If the minor and major axis value of an eclipse with its center located on

the middle point of the two possible contour points, correspond to these distances, a possible

ellipse center is found (Fig. 2.8). If the two points almost coincide with each other, a candidate

ellipse exists and its equation is calculated. The processing time of this approach is around

100ms, for images of 444× 442 pixels.

All these vision systems address different aspects and challenges of an autonomous, time-

constrained vision system for robotic soccer. However, none of them presents a complete set

of algorithms that can solve all the inherent issues of such a system, from image acquisition to

camera and color calibration and finally to real-time object detection. The computer vision

library and the robotic vision system pipeline that are proposed in this Thesis represent a

whole package that can solve all the aforementioned questions. In addition, the algorithms

22

Figure 2.8: On the left image, the centres of the ellipse candidates are marked. On the right,

the result of the ball detection. Images taken from [6].

that we have developed have been organized in modules that constitute the library and which

are configurable and easily adapted to the available computational power. The pipeline of the

vision systems that we introduce can also be applied to other vision systems than the ones

we present.

Many aspects of the methods already proposed by the scientific community can be re-

trieved in our work, however in an optimized and time-constrained oriented manner. The

algorithms that we present make use of different scan patterns in order to maximize the scan

area of an image and minimize the scan time. The scan patterns that we have designed are

robust and easily configurable in order to guarantee a maximum processing time and/or a

level of detection accuracy required by a given application. Color clues and trained color

look-up tables are also used as a hint for an object of interest and green color information

is related to the area of the image that makes sense processing. On the other hand, another

important assumption that can be found in literature and retrieved in our work is that the

objects of interest can be of any color, except for green.

Our library and vision system integrate a real-time colormetric calibration algorithm that

can be used during a soccer game, without delaying the rest of the processing pipeline.

This algorithm guarantees the functioning of the system independent of the illumination

system. Our approach has even been tested in outdoor environments and to our knowledge,

it represents the first scientific published work on this matter. Outdoor soccer games are

the next challenge to be overcame by the RoboCup community and the first steps in that

direction have been given by introducing Technical Challenges related to this idea.

Another innovation that can be retrieved in our work is the use of raw data for object

23

detection. We have conducted a study that proves that the interpolation of raw data is an

unnecessary step in object detection, since the use of raw data for color object detection

delivers similar results as the use of interpolated images. Another novel contribution is the

study on the delay between the perception and action of an autonomous soccer robot in which

we show that the use of raw data is slightly more advantageous.

Our work is also validated by a benchmarking methodology for evaluating robotic soccer

vision system proposed in [30]. This methodology states that a public repository with data

sets and algorithms that can be dynamically updated should me maintained, along with

evaluation metrics, error functions and comparison results. The work that we present is

open source, free and publicly available, along with test sequences and published comparative

results of our methods.

24

“Look at how a single candle

can both defy and define the

darkness.”

Anne Frank

3
Vision System Calibration

One of the main challenges of object detection algorithms is to guarantee their good

performance independently of the illumination of a scene. Robotic soccer games are currently

taking place indoor, on fields that are both naturally and artificially illuminated. This results

in shadows on the soccer field that have to be compensated by the vision system. Moreover,

one of the nearest future goals of the RoboCup Soccer League is to organize outdoor soccer

games. The first steps in this directions have been made with the introduction, in the last

couple of years, of technical challenges in which the robots play soccer not on a carpet but

on artificial turf.

Overcoming changes in illumination is a challenge for any robot that has to perform a

task in an outdoor environment, such as most search and rescue robots or traffic surveillance

autonomous systems are, just to name a few. In robotic soccer games, where the color of an

object is the first clue towards its detection, color consistency independent of the illumination

conditions has to be guaranteed during the performance of a robot. The color consistency in

digital images can be related to certain camera parameters, as it will be thoroughly described

in this Chapter.

Moreover, the relation between pixel coordinates and world coordinates for an object of

interest is another aspect that has to be considered in the performance of any autonomous

robot. All these aspects are related to the terms “camera calibration”. Camera calibration can

be of different types, as we will present next, depending on the camera parameters that have

to be adjusted in order to reach a high level of accuracy, either in terms of image acquisition

or accuracy of the metrics. In addition, in color coded environments the process of color

25

calibration is common, in which color ranges of a certain color of interest are determined,

either statically or dynamically.

This Chapter will focus on the description of the algorithm for calibration of the color-

metric parameters of a camera that has been developed and integrated as the Calibration

Module of the UAVision library. This algorithm allows the use of the vision system almost

independently of the illumination. Moreover, it has been tested outdoor and results are

presented.

The algorithms for the intrinsic and extrinsic calibration of the camera parameters will

also be described. However, these algorithms are not a novel contribution of this Thesis

and represent previous work done within our research group or the international scientific

community. They have been applied to the digital cameras that we use in our experimental

results and have been integrated within the UAVision library.

3.1 Color Spaces

A color space is a mathematical model for defining and representing a color. We present

in this section five color spaces that are the most used in computer vision. They are: RGB,

HSV, YUV, HSL and HSI. The conversions between these five color spaces are based on linear

equations [31, 32]. Each of the color spaces has emerged at some moment in history due to

the necessity of rendering images on different devices or with different infrastructures [33].

The RGB color space [34, 35] is the foundation of much visual technology, being used

mostly for the sensing, representation, and display of images in electronic systems, such as

televisions and computers, though it has also been used in conventional photography [36].

The RGB color space is an additive color space, defined by the three chromaticities of red,

green, and blue. To form a color with RGB, three colored light beams (one red, one green, and

one blue) must be superimposed (Fig. 3.1). Each of the three beams is called a component of

that color, and each of them can have an arbitrary intensity, from fully off to fully on, in the

mixture. The RGB color space is not visually uniform and not very intuitive from a visual

point of view, as humans do not perceive color as the superimposition of the three primary

colors.

The HSV color space is a related representation of points in an RGB color space, which

attempts to describe perceptual color relationships more accurately than RGB [36]. HSV

stands for hue, saturation, value and it describes colors as points in a cone. The HSV color

space is mathematically cylindrical (Fig. 3.2), but it can be thought of conceptually as an

inverted cone of colors (with a black point at the bottom, and fully–saturated colors around

a circle at the top). Because HSV is a simple transformation of device-dependent RGB, the

color defined by the (H,S, V) triplet depends on the particular color of red, green, and blue

“primaries” used.

The central axis of the cone ranges from black at the bottom to white at the top, with

26

Figure 3.1: On the left, the RGB cube and on the right, an example of an additive color

mixing: adding red to green yields yellow, adding all three primary colors together yields

white [32].

neutral colors between them, where the angle around the axis corresponds to “hue”, the dis-

tance from the axis corresponds to “saturation”, and the distance along the axis corresponds

to “value”. The hue represents the percentage of color blend, the saturation is the strength

of the color and the value is the brilliance or brightness of the color [35]. Varying H corre-

sponds to traversing the color circle. Decreasing S (de-saturation) corresponds to increasing

whiteness, and decreasing V (devaluation) corresponds to increasing blackness [35].

This color model is based on how colors are organized and conceptualized in human vision

in terms of hue, lightness, and chroma, as well as on traditional color mixing methods which

involve mixing brightly colored pigments with black or white to achieve lighter, darker, or less

colorful colors [35]. For these reasons, the HSV color space is considered the most intuitive

for humans.

Figure 3.2: The conical and cylindrical representations of the HSV color space [32].

The HSL color space is similar to the HSV one, the definition of hue and saturation being

the same as for the HSV color space [33]. The “value” component is replaced by “lightness”

and the main difference is the fact that the value, or the brightness of a pure color is considered

27

to be the brightness of white, whereas the lightness of a pure color is the lightness of medium

gray. The geometrical representation of the HSL color space is a double cone or double

hexcone [35] (Fig. 3.3). Although the HSL color space is used interchangeably with HSV in

many textbooks, it was originally used to describe another (distinct) color space. Hue and

Saturation are defined as for the HSV color space, but lightness quantifies the energy in a

color rather than its non-blackness.

The HSI color space is yet another variation from the HSV color space [32]. The H and S

components have the same meaning as for the HSV color space, while I stands for intensity

and it is the simple average of the three components of the RGB color space. The advantage

is that this representation preserves angles and distances from the RGB cube.

Figure 3.3: The geometrical representation of the HSL color space [33].

In the YUV color space [32, 33], the color is represented in terms of a luminance component

(Y stands for luma) and two chrominance, or color, components (U and V) (Fig. 3.4). This

color space appeared as a necessity of introducing color television using a black and white

infrastructure and encodes a color image also taking the human perception into consideration,

that is, separating the luminance information from the color information.

3.1.1 Conversions Between Color Spaces

Conversions from one color space to another are based on mathematic expressions that

are presented as follows. The Image Acquisition Module of our library (described in more

detail in Appendix A) supports the acquisition of RGB or raw Bayer images [37]. Conversions

between different color spaces are also supported, based on the formulas found in [32]. In all

following formulas, we consider the R, G and B components with values from 0 to 255.

28

Figure 3.4: Geometrical representation of U-V color plane, when Y =0.5 [33].

• RGB to HSV:

V = max(R,G,B)

S =

V−minR,G,B

V if V 6= 0

0 otherwise

H =

60(G−B)/S if V = R

120 + 60(B −R)/S if V = G

240 + 60(R−G)/S if V = B

• RGB to HSL:

Vmax = max (R,G,B)

Vmin = min (R,G,B)

L =
Vmax + Vmin

2

S =

Vmax−Vmin
Vmax+Vmin

if L < 0.5

Vmax−Vmin
2−(Vmax+Vmin) L ≥ 0.5

H =

60(G−B)/S if Vmax = R

120 + 60(B −R)/S if Vmax = G

240 + 60(R−G)/S if Vmax = B

29

• RGB to HSI

Vmax = max (R,G,B)

Vmin = min (R,G,B)

I =
R+G+B

3

S =

Vmax−Vmin
Vmax+Vmin

if L < 0.5

Vmax−Vmin
2−(Vmax+Vmin) L ≥ 0.5

H =

60(G−B)/S if Vmax = R

120 + 60(B −R)/S if Vmax = G

240 + 60(R−G)/S if Vmax = B

• RGB to YUV

Y = KrR+ (1−Kr −Kb)G+KbB

U = 0.5(B − Y)/(1−Kb)

V = 0.5(R− Y)/(1−Kr)

where Kr = 0.299 and Kb = 0.114.

3.2 Color Classification Under Different Color Spaces

In robotic soccer the color of an object of interest is the first clue towards its detection.

The stability of the colormetric calibration of a digital camera results in the uniformity of a

certain color in an acquired image, independently of the type of illumination. We will discuss

in Section 3.3 the algorithm that we have designed for the colormetric camera calibration.

In order to classify a color of interest, or to determine the digital range of a color of interest

we have chosen one manual and one semi-automatic approach. With the use of a GUI tool

which we present in more detail in Chapter 7, an user of any of the robotic vision systems

that we propose can define either manually, or in a supervised manner, the ranges of a color

of interest. This tool was intended for a study regarding color classification under the five

color spaces previously presented. We present the results of this study in this Section. Two

examples of images that were used in this study can be found in Fig. 3.5. For each object in

the image, the user of this tool had to define color ranges for the color of the object, under

the five color spaces presented. The color classification procedure could be done in two ways:

either manually or user supervised.

30

Figure 3.5: On the left, an example of a simple image and on the left a more complex image

from de data set that was used in this study.

The manual classification process was based on sliders interaction. The user would define

color ranges with the use of sliders and the pixels in the image belonging to that color range

would be highlighted. For the supervised color classification process, two region growing

algorithms have been tested.

The first approach for supervised color classification was based on the region growing

algorithms provided by the OpenCV library 1 [38]. The user has to choose a starting point

(seed point) for each of the colors that he wants to classify and the algorithm will return all

the pixels in the image that have the same color, +/- a predefined threshold, based on the

following equation:

src(sP.x, sP.y)r/g/b − infThresh <= src(x, y)r/g/b <= src(sP.x, sP.y)r/g/b + supThresh

(3.1)

where sP represents the seed point, infThresh is the value of the threshold to be used when

calculating the minimum value of the color range and supThresh is the value of the threshold

to be used when calculating the maximum value of the color range for the classification of a

pixel. In this example the equations are presented for (r, g, b) values of the pixels but they

have been used in the same form for the triplets describing the value of a pixel in all the

mentioned color spaces.

Starting from the seeding point and based on the values of the threshold introduced

by the user, the algorithm will search the neighbor pixels (both 4-neighbor and 8-neighbor

implementations were tested). If the color of a neighbor pixel is in the range

[(colorseedPoint − infThresh), (colorseedPoint + supThresh)], (3.2)

the neighbor is classified as having the same color as the seed point and it is marked as

1www.opencv.org

31

the new seed point for the following iteration. The algorithm stops when there are no more

pixels to be classified.

The second approach was the implementation of a region growing algorithm from scratch.

The logic behind the algorithm is the same as previously described, with a small twist.

Starting from the seed point, the 4-neighbors or the 8-neighbors pixel values are checked and

if a neighbor’s value is in the proximity of the seed point’s value (+/- a threshold), the pixel

is marked as visited and is considered to be the new seed point for the following iteration.

The small twist for this algorithm is that the threshold value has to be the same for all of the

three components that give the value of a pixel in each of the color spaces.

For the manual classification of the color ranges, the results are presented in Table 3.1. A

number of 15 non-specialized subjects have been tested and asked to classify colors in different

images. These subjects were either researchers from our research unit or undergraduate

students that were taking a Computer Vision class. The results show that most of them had

the best performance in the YUV color space, both in terms of correctness and performance

time. This result is novel considering that in literature the idea that the HSV color space is

more intuitive to humans is promoted [39].

RBG HSV HSL HSI YUV

Average Time 5min 33s 4min 19s 4min 34s 4min 49s 4min 13s

Correctness 72% 92% 89% 85% 95%

Table 3.1: Results of the manual color classification task using he colorSpaces tool presented

in Chapter 7.

Just like the HSV color space, in which the users actually have similar performance as

in the YUV color space, the latter separates the color information into luminance and chro-

maticity. These characteristics make it indeed more intuitive to humans, considering it is

similar to the way we perceive colors. This result is very important because most of digital

cameras nowadays acquire images in the YUV color space and being able to perform the color

classification in the same color space, would save important processing time that is spent in

converting the YUV images to a different color space.

Table 3.2 presents the results in terms of correctness of the user-supervised classification.

For this part of the study, each user had to choose a seed point for each of the colors of

interest. 2 versions of the region-growing algorithm have been used in order to grow a region

starting from that seed. These algorithms consider 4 or 8 neighbor pixels when growing the

region.

These results show once again that the color classification algorithm performs better in

the YUV color space. Moreover, in terms of implementation logic, the results prove to be

more accurate when the supervising user has the possibility of choosing different threshold

values for the three components of a color.

At the end of the trials, the subjects were also asked to fill in a questionnaire that would

32

RBG HSV HSL HSI YUV

OpenCV-4n 87% 90% 85% 72% 92%

OpenCV-8n 90% 90% 87% 77% 93%

RG-4n 80% 75% 70% 63% 85%

RG-8n 82% 78% 71% 63% 90%

Table 3.2: Correctness of the region growing algorithms for all the color spaces.

help the authors understand if there is any preferred or easier to use color space. The ques-

tionnaire is presented in Appendix C. The results show so far that the users preferred YUV,

HSV and HSL color spaces, in this order, while RGB and HSI were more difficult to handle.

All of them considered the “primary colors”, red, green and blue easier to be classified.

3.3 Colormetric Calibration of a Digital Camera

To extract information from an acquired image, such as shapes or colors, a good camera

calibration is very important. Camera calibration refers to the calibration of intrinsic and

extrinsic parameters of a camera, as well as to the calibration of its colormetric parameters.

In this Section we present an algorithm for the colormetric calibration of a camera, which

allows a soccer robot to perform its task independently of the lighting conditions, even in

outdoor environments.

The most common colormetric parameters of a camera are: gain, exposure, gamma, white-

balance, brightness, sharpness, shutter and saturation. If these colormetric parameters of a

camera are wrongly calibrated, the image details are lost, noise is added to the image and it

may become almost impossible to recognize anything based on shape or color (Fig. 3.6).

Figure 3.6: Images acquired with wrong parameters. From left to right, wrong value of gamma

(high), exposure (low), saturation (high), saturation (low), white-balance (high both in Blue

and Red gains).

Digital cameras working in auto-mode fail in acquiring sharp, noiseless images under

certain situations or illumination conditions, even considering the most recent cameras. Al-

gorithms developed for calibration of digital cameras assume some standard scenes under

some type of light, which fails in certain environments.

33

Most of the teams participating in RoboCup MSL do not use any algorithm running on

the robots to self-calibrate the colormetric parameters of the digital cameras. This means

that their cameras are only adjusted manually before a robot starts its operation. Some of

the teams however, have tried to solve the problem by developing algorithms for run-time

color calibration [40, 41].

Our approach towards solving the lighting conditions independence of a robotic vision

system is by adjusting the colormetric parameters of the camera in order to guarantee the

correct colors in an image, independent on the source or on the amount of light.

We have designed and implemented an algorithm to configure the most important color-

metric parameters of the cameras, namely gain, exposure, gamma, white-balance, brightness,

sharpness and saturation, depending on the availability of these parameters in the digital

camera that is being used. This approach differs from the well known problem of photo-

metric camera calibration [42], since we are not interested in obtaining the camera response

values. We are interested in configuring its parameters according to some statistical measures

obtained from the acquired image.

The algorithm works in real-time, in a different thread than the main vision system of

the soccer robots. Nowadays computers generally have more than one core and the processes

running on them can be shifted to different cores when necessary in order to speed up the

performance. This means that different threads can be executed in parallel, at the same time.

When the colormetric calibration process is used by the soccer robots in run-time it runs in

a different thread, which guarantees that the overall processing time is not influenced by it.

3.3.1 Colormetric Parameters of a Camera

Luminance is normally defined as a measurement of the photometric luminous intensity

per unit area of light traveling in a given direction. Therefore, it is used to describe the

amount of light that goes through or is emitted from a particular area and falls within a given

solid angle.

Chrominance describes the way a certain amount of light is distributed among the visible

spectrum. Chrominance has no luminance information but it is used together with it to

describe a colored image defined, for instance, by an RGB triplet. Any RGB triplet in which

the value of R = G = B has no chrominance information.

Gain, exposure, gamma and contrast are related and we use the information of the lumi-

nance of the image to calibrate them. The priority is to keep gamma out and the exposure to

the minimum possible value to reduce noise in the image and the effect of the moving objects

in the image. Only in worst case scenarios, the algorithm calibrates the gamma and exposure

time. Gain is a constant factor that is applied to all the pixels in the image when the image

is acquired.

Exposure time is the time that the image sensor (CCD or CMOS) is exposed to light.

34

Gamma correction is the name of a non-linear operation used to code and decode luminance

or RGB tristimulus values. One of the most used definitions of contrast is the difference in

luminance along the 2D space that makes an object distinguishable.

The configuration of the parameters of digital cameras is crucial for object detection and

has to be performed with every change in the illumination conditions of a scene. The calibra-

tion procedure should be effective and fast. The proposed calibration algorithm processes the

image acquired by the camera and computes several measurements that allow the calibration

of the most important colormetric parameters of a digital camera, as presented in Fig. 3.7.

Besides the referred parameters, the hardware related parameters gain and exposure are also

taken into consideration.

Figure 3.7: A typical image processing pipeline (inside the image device) for a tri-stimulus

system. This processing can be performed on the YUV or RGB components depending on

the system. This should be understood as a mere example.

To calibrate all these parameters, the histogram of luminance is calculated and a statistical

measure to balance the histogram of the acquired image is used. The histogram of the

luminance of an image is a representation of the number of times that each intensity value

appears in the image. Histograms can indicate if the image is underexposed or overexposed.

For a camera correctly calibrated, the distribution of the luminance histogram should be

centered around 127 (for an 8 bits per pixel image). An underexposed image will have the

histogram leaning to the left, while an overexposed image will have the histogram leaning to

the right (Fig. 3.8).

Statistical measures can be extracted from digital images to quantify the image quality

[43, 44]. A number of typical measures used in the literature can be computed from the image

gray level histogram. Based on the experiments presented in [13], in our algorithm we use

the mean sample value (MSV):

MSV =

∑4
j=0(j + 1)xj∑4

j=0 xj
,

35

Figure 3.8: On the upper row, an image acquired with the gain parameter set at the minimum

value and the histogram of the image. On the lower row, an image acquired with the gain

parameter set at maximum and the corresponding image histogram. The upper image is

clearly underexposed and its histogram its leaning to the left. The lower image is too bright,

making object details and contours to be lost.

where xj is the sum of the gray values in region j of the histogram (in our approach we

divide the histogram into five regions). When the histogram values of an image are uniformly

distributed within the possible values, then MSV ≈ 2.5.

Brightness is basically a constant (or offset) that can be added (or subtracted) from the

luminance component of the image. It represents a measure of the average amount of light

that is integrated over the image during the exposure time. If the brightness it too high,

overexposure may occur. If this happens, the saturated part or the totality of the image will

become whiten. The proposed algorithm considers a black area in the image as reference to

calibrate this parameter. The concept is that the black area should be black - in the RGB

color space, this means that the average values of R, G and B should be close to zero in this

region.

36

White balance is the global adjustment of the intensities of the colors (typically red, green,

and blue - primary colors). An important goal of this adjustment is to render specific colors

– particularly neutral colors – correctly; hence, the general method is sometimes called gray

balance, neutral balance, or white balance. This balance is required because of the different

color spectrum energy distribution depending on the illumination source. The proposed

algorithm uses a gray area as reference to calibrate this parameter. The gray region should

not have color – in the YUV color space this means that the average value of U and V should

be 127 for cameras that have blue and red white balance control parameters. In cameras that

have individual control of each of the three white balance gains (red, green and blue) it is

expected that the average R, G and B values of a gray region to have the same value and that

value should be, ideally, 127. Figure 3.9 shows the effects of the white balance parameter on

the acquisition of an image.

Figure 3.9: Wrongly calibrated blue and red gains and the effect that has on the acquired

images. Zooming in into a supposedly gray region when each of these gains is wrongly

calibrated shows that the field lines become very noise and harder to be classified as white.

In the case of the CAMBADA robots, due to the use of an omni-directional vision system,

the body of the robot can be seen in the image and a white and black area were placed close

to the mirror.

The saturation of a color is determined by a combination of light intensity that is acquired

by a pixel and how much this light is distributed across the spectrum of different wavelengths.

Saturation is sometimes also defined as the amount of white that is blended into a pure color.

In the proposed algorithm, we consider the histogram of the saturation (obtained in the

HSV color space) and we force the MSV value of this histogram to 2.5, calibrating thus this

parameter.

Sharpness is a measure of the energy frequency spatial distribution over the image. It ba-

sically allows the control of the cut-off frequency of a low pass spatial filter. This may be very

useful if the image is afterwards intended to be decimated, since it allows to prevent spatial

aliases artifacts. We do not consider this parameter in the proposed calibration algorithm as

in the referred applications of the robots we work with the resolution of the images acquired

by the camera.

A graphical representation of the statistical measures extracted from the image acquired

by the camera and their relation to the parameters to be calibrated is presented in Fig. 3.10.

37

Figure 3.10: A graphical representation of the statistical measures extracted from the image

acquired by the camera and their relation to the parameters to be calibrated on the camera.

3.3.2 Proposed Algorithm

The algorithm that we designed configures the most important parameters, as referred

above. For each one of these parameters that are available on a given camera, a PI controller

has to be implemented. PI controllers are used instead of proportional controllers as they

result in better control, having no stationary error. The constants of the controller must be

obtained experimentally, guaranteeing the stability of the system and an acceptable time to

reach the desired reference.

The coefficients of the controller were obtained experimentally [14]: first, the proportional

gain was increased until the camera parameter started to oscillate. Then, it was reduced to

about 70% of that value and the integral gain was increased until an acceptable time to reach

the desired reference was obtained [45]. The convergence time of the camera parameters are

directly related to the efficiency of the PI controller. In this algorithm, the aim was not the

deep exploration of the control efficiency, but rather the design of a simple solution that can

provide the expected outcome in terms of what is the acceptable time for a given application.

The algorithm presented next starts by the configuration of the parameters related to the

luminance on the image, namely gain, exposure and gamma, by this order if necessary. To

38

improve the quality of the image, i.e. to have as less noise as possible, exposure should be as

high as possible. On the other hand, gamma should be the one that gives the best dynamic

range for the intensity and we only want to change it if the gain and exposure alone cannot

deliver good results.

When the image acquired has enough quality in terms of luminance, considering that the

MSV for the histogram of intensities is between 2 and 3, the algorithm starts calibrating

the other parameters, namely white-balance and brightness, according to the ideas expressed

in the previous Section. Saturation is calibrated based on the MSV value of the saturation

histogram (Fig. 3.11), which should also be 2.5.

Figure 3.11: On the upper row, an image acquired when saturation is set at the minimum

value and the corresponding saturation histogram. On the lower row, an image acquired when

saturation is set to maximum and the corresponding saturation histogram.

The algorithm stops when all the parameters have converged. This procedure solves the

problem of the correlation that exists between the parameters.

39

do

acquire image

calculate the histogram of Luminance

calculate the MSV value for Luminance

if MSV != 2.5

if exposure and gain are in the limits

apply PI controller to adjust gamma

else if gain is in the limit

apply PI controller to adjust exposure

else

apply PI controller to adjust gain

end

set the camera with new gamma, exposure and gain values

end

if MSV > 2 && MSV < 3

calculate the histogram of saturation

calculate the MSV value for saturation

calculate average U and V values of a white area

calculate average R, G and B values of a black area

if MSVsat != 2.5

apply the PI controller to adjust saturation

set the camera with new saturation value

end

if U != 127 || V != 127

apply the PI controller to adjust WB_BLUE

apply the PI controller to adjust WB_RED

set the camera with new white-balance parameters

end

if R != 0 || G != 0 || B != 0

apply the PI controller to adjust brightness

set the camera with new brightness value

end

end

while any parameter changed

3.3.3 Experimental Results

The experiments that follow have been conducted using the cameras of the CAMBADA

robots with different initial configurations inside a laboratory with both artificial and natural

40

light sources. In Fig. 3.12, the experimental results are presented both when the algorithm

starts with the parameters of the camera set to the lowest value as well as when set to

the highest values. As it can be seen, the configuration obtained after using the proposed

algorithm is approximately the same, independently of the initial configuration of the camera.

Figure 3.12: Some experiments using the proposed automated calibration procedure. On the

left an image captured with some of the parameters of the camera set to lower values. In the

middle, an image captured with some of the parameters of the camera set to higher values

and on the right, the corresponding image obtained after applying the proposed calibration

procedure.

In Fig. 3.13 we present the variation of the camera parameters related to the experiment

described above. The convergence of the parameters is fast. It took less than 100 cycles for

the camera to converge to the correct parameters in order to obtain the images presented in

Fig. 3.12.

In this experiment, the camera was working at 30 fps and that means a calibration time

below 3 seconds. These are the worst case scenarios in colormetric calibration. Most of the

times, in practical use, the camera can start in auto mode and the algorithm is applied after

that. In these situations, the camera converges in a reduced number of cycles.

Table 3.3 presents the average processing time taken by the calibration thread when

running in runtime. The most time consuming operation is the computation of the MSV.

In Fig. 3.14 we present an image acquired with the camera in auto mode. The results

obtained using the camera with the parameters in auto mode are overexposed and the white

balance is not correctly configured. The auto-calibration algorithms that come integrated in

the digital cameras are not sufficient in these applications because the cameras are typically

expecting a natural image. In most robotic applications, as is the example of robotic soccer,

the scenario has specific characteristics (omni-direction vision systems, green carpets, black

robots, ...) that turn the image less natural. Moreover, as the case of the omni-directional

vision system, the camera analyses the entire image and, as can be seen in Fig. 3.12, there are

41

Figure 3.13: On the left, a graphic showing the variation of the parameters of the camera

when the camera started with low values. On the right, a graphic showing the variation of the

parameters of the camera when the camera started with high values. In both experiments,

there is a fast convergence of the parameters.

Operation Time [ms]

Calculate RGB mean value 0.0043

Calculate YUV mean value 0.0045

Calculate MSV 2.05

Set new camera parameters 0.00035

Total 2.13

Table 3.3: Processing time of the colormetric calibration algorithm.

large black regions corresponding to the robot itself. In addition, due to the changes in the

environment around the robot as it moves, leaving the camera in auto mode would lead to

undesirable changes in the parameters of the camera, causing problems for the correct object

detection.

The good results of the automated calibration procedure can also be confirmed by the

histograms presented in Fig. 3.15. The histogram of the image obtained after applying the

proposed automated calibration procedure (Fig. 3.15 (b)) is centred near the intensity 127.

The histogram of the image acquired using the camera in auto mode (Fig. 3.15 (a)) shows

that the image is overexposed, leading to the majority of the pixels to have saturated values.

As far as we know about the work of other teams that participate in RoboCup Soccer

(MSL, SPL and HL), as well as according to our personal experience, most of the robots

uses their digital cameras in manual mode even with most advanced and recent cameras.

This statement is easily supported and verified in practice. The algorithms developed by the

industry for calibration of digital cameras assume some standard scenes under some type of

light. However, besides the user manuals of the cameras tested, we did not find scientific

42

Figure 3.14: On the left, an image acquired with the camera working in auto mode and on

the right, an image after the proposed algorithm.

Figure 3.15: The histogram of the intensities of the two images presented in Fig. 3.12. On

the left, the histogram of the image obtained with the camera parameters set to maximum.

On the right, the histogram of the image obtained after applying the colormetric calibration

algorithm.

references for these algorithms.

In a near future, it is expected that the MSL robots will have to play under natural lighting

conditions and in outdoor fields [46]. This introduces new challenges. In outdoor fields, the

illumination may change slowly during the day, due to the movement of the sun, but also may

change quickly in short periods of time due to a partial and temporarily varying covering of

the sun by clouds. In this case, the vision systems of the robots have to adjust, in real-time,

the camera parameters, in order to adapt to new lighting conditions. Figure 3.16 shows that

the algorithm works well even with different light conditions, outdoor.

43

Figure 3.16: On the left, an image acquired outdoors using the camera in auto mode. The

colors in this image are washed out. That happens because the camera’s auto-exposure

algorithm tries to compensate the black around the mirror. On the right, the same image

with the camera calibrated using the proposed algorithm. In this image the colors and their

contours are better defined.

3.4 Calibration of Intrinsic and Extrinsic Camera Parameters

The Camera Calibration Module of UAVision includes two algorithms for the calibration

of the intrinsic and extrinsic parameters of a digital camera. A first algorithm, based on

the work presented in [14, 47], can be used for the calibration of an omni-directional vision

system. The second one, presented in [48], is a well-known algorithm for the intrinsic and

extrinsic calibration of a perspective camera. These algorithms do not hold considerable

scientific novelty within this Thesis, they have been studied and integrated within the library

in order to deliver a cohesive and coherent Camera Calibration Module.

3.4.1 Pinhole Camera Model

The principle of the camera obscura, or better known as pinhole camera, is based on

passing light rays through a small hole. If the hole is sufficiently small, an image of the

outside view on the opposite wall inside the camera will be created [49] (Fig. 3.17). The size

of the hole is of the orders of millimetres. This basic principle of projection, based on the

rectilinear propagation of light has been first recorded as a natural occurring phenomenon,

in ancient China. The principle is valid until today and it is used in any camera. In digital

cameras the celluloid film that was initially used has been replaced by a CCD or CMOS

sensor.

Camera calibration is a necessary step in any computer vision algorithm which has to ex-

44

Figure 3.17: Pinhole camera principle [49]. In this representation, f represents the focal

length and c is the center of the camera.

tract metric information from 2D images. For this, the intrinsic and extrinsic parameters of a

camera have to be calculated. The intrinsic parameters of a camera link the image coordinates

of an image point to its corresponding camera coordinates. The intrinsic parameters are: the

image center (or principal point), the size of the pixel and the focal length. Moreover, since a

real camera lens does not act like a perfect pinhole, there are deviations from the model illus-

trated above. The most significant of these is known as radial distortion [50]. The extrinsic

parameters of a camera are: a 3D translation vector, t, describing the relative locations of

the origins of the two coordinate systems (image coordinates and camera coordinates) and a

3× 3 rotation matrix, R, an orthogonal matrix that brings the corresponding axes of the two

systems onto each other.

The relationship between a 3D point P and its image projection p (Fig. 3.18) is given

in [51]:

Figure 3.18: Projection of a 3D point into a 2D point based on the pinhole model.

sp̃ = A[Rt]P̃ , (3.3)

45

where :

• p̃ is the augmented vector, with the homogeneous coordinates of p: p̃ = [u, v, 1]T and

P̃ = [X,Y, Z, 1]T

• s is an arbitrary scale factor

• R is the rotation matrix

• t is the translation vector

• A is the camera intrinsic matrix and is given by:

A =

 α γ u0

0 β v0

0 0 1

with

– (u0, v0) being the coordinates of the principal point

– α and β the scale factors in image u and v axes

– γ the parameter describing the skewness of the two image axes.

The method for camera calibration proposed in [51] is probably the most used method

nowadays, mainly due do its simplicity. This approach only requires that the camera should

observe a planar pattern shown at at least two different orientations. Most of the times the

chosen planar pattern is a chessboard (Fig. 3.19).

The implementation of this algorithm in the OpenCV library2 has been integrated in

the UAVision library as part of the Calibration Module. A graphical application has been

designed in order to calculate the relation between image coordinates and world coordinates.

The user of this application has to click on a point in an image and manually introduce its

coordinates in world referential. This algorithm is used for the calibration of perspective

video systems.

The application works as follows: the user provides several views of the chessboard

(Fig. 3.20), at different orientations. The corners of each square are calculated and the

intrinsic parameters of the camera are estimated based on this relation. For the calculation

of the extrinsic parameters, the user has to click on a point in an image and manually in-

troduce its coordinates in real-world referential. The positioning of the camera relative to a

global referential can be estimated by the correspondence of a pixel in a 2D image and the

3D coordinates of the same point.

2http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration

46

http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration

Figure 3.19: Chessboard images at different orientations [52] used for the calibration process.

Figure 3.20: Different orientations of the chessboard pattern chosen for the calibration of the

intrinsic and extrinsic camera parameters. Corners are detected and highlighted in different

colors.

For an omni-directional vision system, by exploring a back-propagation ray-tracing ap-

proach and the physical properties of the mirror surface [47], the relation between the distances

in the image and the distances in the real world is known.

This solution effectively compensates for the misalignment that results from the mechan-

ical setup. Two simple image feedback tools have been developed. The first one creates a

reverse mapping of the acquired image into the real world distance map. A fill-in algorithm

is used to integrate image data in areas outside pixel mapping on the ground plane. This

produces a plane vision from above, allowing visual check of line parallelism and circular

asymmetries (Fig. 3.21).

The second generates a visual grid with 0.5 m distances between both lines and columns,

which is superimposed on the original image. This provides an immediate visual clue for the

need of possible further distance correction (Fig. 3.22). With this tool, it is also possible to

47

Figure 3.21: Acquired image after reverse-mapping into the distance map. On the left, the

map was obtained with all misalignment parameters set to zero. On the right, after automatic

correction.

determine some other important parameters, namely the mirror center and the area of the

image that will be processed by the object detection algorithms.

Figure 3.22: A 0.5 m grid, superimposed on the original image. On the left, with all correction

parameters set to zero. On the right, the same grid after geometrical parameter extraction.

48

“Science never solves a problem

without creating ten more.”

George Bernard Shaw

4
Colored Object Detection

Current advances in technology along with the decrease of prices of image sensors and

digital cameras, allow nowadays that digital vision systems acquire images at resolutions

higher than 1 Megapixel at high frame rates. This implies that a considerable data size has

to be processed in a very small period of time, in applications where real-time operations and

data processing are required. For example, for a camera working at 50fps the total processing

time of any given real-time application should not exceed 20ms. Industrial inspection and

production lines, where autonomous robots or robotic arms repeatedly perform the same task

that includes visual processing are just an example of applications in which cameras working

at high frame rates are desirable. Another example is of course, intelligent autonomous robots,

as the case of robotic soccer players. In MSL, the ball and the robots move at high speeds

and thus the need to process the environment at the same pace arises. When the resolution

of the images acquired by these cameras are of 1 Megapixel or even more, the amount of data

that has to be processed is significantly high and inversely proportional to the time available

for its processing.

In this Chapter we detail the time constrained algorithms that have been implemented for

the detection of colored objects. These algorithms have been integrated into the UAVision

library, presented in Appendix A.

49

4.1 Scan Lines

A simple solution for reducing the processing time of an object detection algorithm is

to sample the data, to process only parts of an image or to acquire and process smaller

resolution images. The challenge is to perform a sampling that guarantees that no important

information is lost. Most algorithms for colored object detection, just as the name implies,

start with a color segmentation step in which pixels of the same color are grouped together.

For scanning an image in search of some type of information, we introduce the notion of scan

lines. A scan line, or a search line, is a list of pixel positions in the image, whose shape

depends on its type. We have designed three different types (or patterns) of scanning: linear

(which can be horizontal or vertical), radial or circular. Figure 4.1 shows the three different

types of scan lines.

(a) horizontal scan lines (b) vertical scan lines

(c) circular scan lines (d) radial scan lines

Figure 4.1: Examples of different types of scan lines.

50

Figure 4.2 shows the same types of scan lines on images acquired by a perspective and an

omni-directional vision systems of the soccer robots. The horizontal and vertical scan lines

are shown on an image acquired by a perspective vision system. The circular and the radial

scan lines are shown on an image acquired by an omni-directional vision system. The circular

and radial scan lines are not used on the central part of the image, which includes the robot

itself. The radial lines presented in this image are displayed on a single level, simply for a

better visualization.

(a) horizontal scan lines

(b) vertical scan lines

(c) circular scan lines (d) radial scan lines

Figure 4.2: Examples of the 4 types of scan lines displayed on the images acquired by robotic

vision systems.

In order to save processing time, the scan lines are constructed once, at the beginning of

51

the object detection process, and saved in a structure. This approach improves the access to

these pixels by other modules of the vision pipeline that will be presented next (Fig. 4.3). The

scan lines are highly configurable when created. The user can choose to sweep all pixels in a

given direction (horizontal, vertical, radial or anti-clockwise) or each n pixels (where n is user

defined). The sparsity within a scan line is also denoted from herein as intra-scan line sparsity.

Moreover, scan lines can be created adjacent or a given distance between consecutive scan

lines can be specified when created. The distance between consecutive scan lines is denoted

from herein as inter-scan line sparsity. A scan line is described by its start and end points

and the total number of points that make up the scan line. The amount and characteristics

of these scan lines depend on the parameters (start and end positions, vertical, horizontal or

angular inter-scan line sparsity and intra-scan line sparsity).

Figure 4.3: Diagram of the use of scan lines for color detection.

For the linear scan lines, the positions in the scan line are the result of a horizontal or

vertical sweep of the image. Figure 4.4 presents a more graphical description of the linear

scan lines.

The linear scan lines can be constructed on more than one level, if needed. In this case,

the level of the scan lines correspond to different lengths. For example, in systems in which

the digital camera is positioned so that it acquires images of the environment under a certain

angle, vertical scan lines can be constructed on more than one level considering different

distances away from the camera.

The radial and circular scan lines are constructed based on Bresenham’s algorithm for

approximating a straight line between two points [53], and its modified version for rendering

circular arcs [54]. Bresenham’s algorithm is a fast, yet simple algorithm, commonly used

in computer graphics, that was initially designed for rendering straight lines on a computer

screen. We have chosen this algorithm for designing the radial scan lines and a slightly

modified version for the creation of the circular scan lines, mainly because the algorithm is

based on cheap operations such as subtractions, additions or bit-shifting.

The algorithm assumes that the pixel coordinates on a display increase to the right and

52

Figure 4.4: Graphical description of horizontal scan lines on the left and vertical scan lines

on the right.

downwards, being the top left point (0, 0). This algorithm only deals with integer positions,

therefore the center of a pixel is also an integer. Given a line segment whose start point is

(x0, y0) and its end point is (x1, y1), its slope can dictate the intermediate points that are

found on that line segment. The slope, m, is calculated based on the following formula:

m =
y1 − y0

x1 − x0
. (4.1)

If the absolute value of the slope is ≥ 1, the line is more horizontal than vertical. Other-

wise, the line is more vertical. For example, for a more horizontal line segment, in which the

following condition is verified:

|x1 − x0| ≥ |y1 − y0|

the ideal y values for successive integer values of x can be computed starting from y0 and

repeatedly adding the slope.

The radial scan lines can be organized on multiple levels or layers (Figure 4.5).

This approach prevents the passage through the same positions more than once and sig-

nificantly reduces both the time for the construction of the scan lines, as well as the total

processing time of the algorithms that will follow. In this way, we guarantee that only a small,

but meaningful, number of pixels will have to be processed further along the vision system

pipeline.

The number of levels and total number of scan lines, as well as the intra-scan line sparsity

are defined by the user when the radial scan line is created. The number of scan lines, per

level, is calculated following Algorithm 1.

The pseudocode for calculating the pixel positions on a radial scan line is presented in

Algorithm 2.

53

Algorithm 1 Computation of the number of radial scan lines on a level.
1: for l = 0; l < nLevels; l + + do

2: if l == 0||l == 1 then

3: nSensorsOnLevel← nSensors/2nLevels−1

4: else

5: nSensorsOnLevel← 2× nSensorsOnLevel

6: end if

7: end for

Algorithm 2 Computation of the the integer pixel positions on a radial scan line.
1: dx← (x1− x0)

2: dy ← (y1− y0)

3: dxabs← abs(dx)

4: dyabs← abs(dy)

5: x← dyabs >> 1

6: y ← dxabs >> 1

7: px← x1

8: py ← y1

9: if dxabs ≥ dyabs then

10: for i = 0; i < dxabs; i + + do

11: y ← y + dyabs

12: if y ≥ dxabs then

13: y ← y − dxabs

14: py ← py + signum(dy)

15: end if

16: px← px + signum(dx)

17: scanline← px + py × image.cols

18: end for

19: else

20: for i = 0; i < dyabs; i + + do

21: x← x + dxabs

22: if x ≥ dyabs then

23: x← x− dyabs

24: px← px + signum(dx)

25: end if

26: py ← py + signum(dy)

27: scanline← px + py × image.cols

28: end for

29: end if

54

Figure 4.5: Graphical description of radial scan lines disposed on three levels.

The algorithm for calculating the pixel positions on a circular scan line considers the image

plane divided in eight octants, as shown in Fig 4.6.

Figure 4.6: Octants considered for the construction of circular scan lines. The numbering

of the octants points toward the direction in which the lines are constructed, which is anti-

clockwise.

A more detailed illustration of circular scan lines can be seen in Fig. 4.7.

The equation of a circle is used in order to determine all the integer pixel positions that

belong to the same scan line. Given a circle of radius r and center (x0, y0), its equation is

given by:

(x− x0)2 + (y − y0)2 = r2. (4.2)

55

Figure 4.7: Graphical description of circular scan lines.

Given a point P (xp, yp), the following measure gives us an idea about where P is situated

relatively to the previously introduced circle:

√
x2
p + y2

p −
√
r2. (4.3)

If this measure is 0, P lies on the circle. If this measure is negative, P lies inside the

circle and if this measure is positive it means that P lies outside the circle. The algorithm

for constructing circular scan lines uses a lighter version of this measure in order to decide

which are the pixel positions that lie on a given circular scan line:

error = |x2
i + y2

i − r2|.

Algorithm 3 illustrates the construction of a circular arc, in the first octant.

Algorithm 3 Computation of the pixel positions on a circular arc, in the first octant.
1: error1← fabs(radius− sqrt((p.x) ∗ (p.x) + (p.y) ∗ (p.y)))

2: error2← fabs(radius− sqrt((p.x) ∗ (p.x) + (p.y − 1) ∗ (p.y − 1)))

3: error3← fabs(radius− sqrt((p.x) ∗ (p.x) + (p.y + 1) ∗ (p.y + 1)))

4: if error2 < error1 then

5: p.y ← p.y − 1

6: octant← 1

7: else

8: if error3 < error1 then

9: p.y ← p.y + 1

10: octant← 7

11: end if

12: end if

56

4.2 Look-Up Tables

Look-Up Tables (LUT) are data structures, in this case arrays, used for replacing a runtime

computation by a basic array indexing operation. We make use of look-up tables for solving

different tasks of the object detection algorithms that we have designed. For a fast color

classification, color classes are defined through the use of a LUT. For some vision systems,

such as the case of the omni-directional vision system that we will present in more detail in

Section 5.1, LUTs can be used for the extraction and storage of the pixel positions that have

to be processed, taking into consideration a possible image mask. We identified another use

of a LUT in the conversion of images, from one color space to another, as is the case of the

conversion of Bayer images into grayscale images.

4.2.1 Color Classification LUT

For fast color classification, color classes are defined through the use of a LUT. The images

can be acquired in the RGB, YUV or raw Bayer format and they are converted to an index

image (image of labels) using an appropriate LUT for each one of the three possibilities

(Fig. 4.8).

Figure 4.8: On the left, an original RGB image. On the right, the grayscale image of labels.

The table consists of 16,777,216 entries (224, 8 bits for R, 8 bits for G and 8 bits for

B) with one byte each. The table size is the same for the other two possibilities (YUV or

raw data), but the meaning and position of the color components in the image changes. For

example, considering a RGB image, the index of the table to be chosen for a specific triplet

is obtained as

idx = R << 16|G << 8|B,

57

being the << a bitwise shift to the left operation and | the bitwise OR. The raw data (Bayer

pattern) is also RGB information, however, the position where the R, G and B information

are picked changes. These positions are also calculated only once by the LUT module in order

to obtain a faster access during color classification.

The table entries can contain as many bits as the number of colors needed in a specific

applications (8, 16, 32 - depending on the data type chosen for their manipulation - char,

short, int, etc.). In the case of soccer robot, there are no more than 8 colors of interest. Each

bit in the table entries expresses if one of the colors of interest (white, green, blue, yellow,

orange, red, blue sky, black, gray - no color) is within the corresponding class or not. A given

color can be assigned to multiple classes at the same time.

For classifying a pixel, first the value of the color of the pixel is read and then used as an

index into the table. The 8-bit value then read from the table is called the “color mask” of

the pixel. It is possible to perform image sub-sampling in this stage in systems with limited

processing capabilities in order to reduce even more the processing time. If an image mask

exists, color classification is only applied to the valid pixels defined by the mask (Fig. 4.9).

Figure 4.9: Illustration of an image mask used with the omni-directional vision system. In

this particular case, only the red pixels will be processed at any time.

Algorithm 4 presents the implementation of a LUT that contains only the valid pixel

position, both for RGB and Bayer images.

4.2.2 Image Conversion LUT

In digital cameras, a Color Filter Array (CFA) is a mosaic of tiny color filters placed

over the pixels of an image sensor to capture color information. They are needed because

the typical photosensors detect light intensity with little or no wavelength specificity, and

therefore cannot separate color information [55].

58

Algorithm 4 Creation of a LUT with valid pixel positions, considering an image mask.
1: for j = 0; j < scanlines.size(); j + + do

2: scanline← scanlines.getLine(j)

3: for i = 0; i < scanline.size(); i + + do

4: p← scanline[i]

5: if mask[p] > 0 then

6: / ∗RGB ∗ /
7: validP ixels.add(p)

8: validP ixels.add(p ∗ 3)

9: validP ixels.add(p ∗ 3 + 1)

10: validP ixels.add(p ∗ 3 + 2)

11: / ∗BAY ER ∗ /
12: row ← p/mask.cols

13: col← p%mask.cols

14: if row% == 0 then

15: if col% == 0 then

16: r ← p

17: g ← p + 1

18: b← p + mask.cols + 1

19: else

20: g ← p

21: r ← p− 1

22: b← p + mask.cols

23: end if

24: else

25: if col% == 0 then

26: g ← p

27: r ← p−mask.cols

28: b← p + 1

29: else

30: g ← p− 1

31: r ← p−mask.cols− 1

32: b← p

33: end if

34: end if

35: validP ixels.add(p)

36: validP ixels.add(r)

37: validP ixels.add(g)

38: validP ixels.add(b)

39: end if

40: end for

41: end for

59

A Bayer filter mosaic is a type of CFA for arranging RGB color filters on a square grid

of photosensors. Its particular arrangement is used in most single-chip digital image sensors

used in digital cameras, camcorders, and scanners to create a color image. The filter pattern

is 50% green, 25% red and 25% blue, usually called BGGR, RGBG, GRGB, RGGB, etc.

depending on the position of the filters (Fig. 4.10).

Figure 4.10: Bayer arrangement of color filters.

Most modern digital cameras acquire images using a single image sensor overlaid with a

CFA, so demosaicing is part of the processing pipeline required to render these images into a

viewable format. However, in most of them it is possible to retrieve images in a raw format

allowing the user to demosaic them using software, rather than using the camera’s built-in

firmware (Fig 4.11).

(a) (b)

Figure 4.11: In (a) an example of a raw image acquired by the camera (grayscale image

containing the RGB information directly from the sensor - Bayer pattern). In (b) the image

(a) after the interpolation of the missing information for each pixel in order to obtain a

complete RGB image.

60

In most of the image processing applications, the raw data acquired by the image sensor

passes through a demosaicing algorithm in order to obtain a full color image [56]. This is a

digital image process used to reconstruct a full color image from the incomplete color samples

output from an image sensor overlaid with a CFA. There are several well known algorithms,

namely Simple Interpolation [57], Variable Number of Gradients [58], Pixel Grouping [59] or

Adaptive homogeneity-directed [60].

As it can be seen in the image on the left, the raw image data is a single channel image

where the value of each pixel corresponds to the information about a specific color, depending

on the position of the filters in the sensor, as described before. In this Thesis we have explored

the use of raw data for object detection and we provide results in Chapter 6. This study is a

novel contribution in computer vision which can have a real impact on the design of nowadays

modern digital cameras. This initial study shows that the interpolation of a raw image is not a

compulsory step for object detection, but rather a feature of the camera that renders a better

image visualization for the user. However, this feature can be redundant when the main use

of the camera is not the rendering of the images for human inspection or visualization.

Taking into consideration a CFA BGGR, the LUT for the position of the R, G and B

components for each pixel is built based on Algorithm 5.

Algorithm 5 Extraction of the R, G and B pixel positions from a Bayer image.
1: for p = 0; p < cols ∗ rows; p + + do

2: row = p/cols

3: col = p%cols

4: if row%2 == 0 then

5: if col%2 == 0 then

6: R← p

7: G← p + 1

8: B ← p + cols + 1

9: else

10: G← p

11: R← p− 1

12: G← p + cols

13: end if

14: else

15: if col%2 == 0 then

16: G← p

17: R← p− cols

18: B ← p + 1

19: else

20: G← p− 1

21: R← p− cols− 1

22: B ← p

23: end if

24: end if

25: end for

61

4.3 Run Length Encoding

For each scan line, an algorithm of run length encoding (RLE) is applied in order to obtain

information about the existence of a specific label of interest in that scan line. To do this, we

iterate through its pixels to calculate the number of runs of a specific label and the position

where they occur. Moreover, we extended this idea and the user has the option to perform the

search for occurrences of other labels, both in a window before and after the occurrence of the

desired label. This allows the user to determine both label transitions and labels occurrences

using this approach.

For the process of color classification, the label of a pixel is its color. Nevertheless, all

the previously described algorithms can be used for other applications, in which labels can

have a different meaning. In Fig. 4.12 we provide an example of the RLE analysis for color

classification.

Figure 4.12: RLE illustration based on a scan line. Each square represents the label corre-

sponding to the pixel position given by each position of the scan line. In this example we are

searching for the occurrence of label O and we analyze the neighbor pixels, both before and

after in a window of 5 pixels.

Run lengths are fed with the positions defined by the scan lines. Different types of scan

lines can be used for the construction of the same run length. In the same application, the

user of the algorithm can define different scanning patterns and all scanned positions can be

used for the construction of the same run length structure.

When searching for run lengths, the user can specify the label of interest, the label before,

the label after, the search window for these last two labels and three thresholds that can be

used to determine the valid information. These thresholds are application dependent and

should be determined experimentally.

As a result, the user will obtain a list of positions in each scan line and, if needed, for all

the scan lines, where a specific label occurs, as well as the amount of pixels in each occurrence.

Taking into consideration the example of Fig. 4.12, the list of occurrences regarding the label

of interest is the following:

list = {(14, 12, 3, 3) ; . . .}

In the previous example, considering a search window of 5 pixels both before and after the

occurrence of the label of interest, the first quadruple in the list describes the first detection

62

of the label of interest, the second one the second detection of the color of interest and so

on. The values presented in each quadruple represent the following information, by order:

position of the first found pixel with the label of interest, number of pixels with that label,

number of pixels with the label chosen before the label of interest and number of pixels with

the label chosen after the label of interest. In this example, the before and after label was G.

The number of pixels found before or/and after the label of interest are optional and can be

specified when searching for transitions between colors (Fig. 4.13).

Algorithm 6 depicts the construction of RLEs in their most complex form, considering a

search of different colors in windows before and after the color of interest.

4.4 Colored Blobs

A RLE object contains information about the occurrence of a color of interest in a given

scan line. The information contained by the RLE object is: the position of the first found

pixel of the color of interest, the number of consecutive pixels of the same color and the

position of the last found pixel of the color of interest. The middle point between the first

and last found pixels of the color of interest can be calculated for each RLE.

When searching for blobs, the first blob is considered to be the first found RLE and the

center of the blob is the center of the RLE. Running through all the RLEs that have been

found, based on the Euclidean distance between middle points in each run lengths, the color

information in adjacent RLEs is merged if the calculated Euclidean distance is between a given

threshold. This threshold has to be experimentally calculated. If the calculated distance is

not lower than the threshold, the given RLE is considered to be the starting point of a new

blob and the process is repeated. Algorithm 7 presents the construction of the color blobs.

When joining another RLE to the Blob, the center of the blob, as well as other measure-

ments such as area, width/height relationship and solidity are being calculated and updated.

The blobs are then validated as being objects of interest if they fulfill different application-

related criteria (Fig. 4.13).

63

Algorithm 6 Construction of RLEs.
1: for j = 0; j < scanlines.size(); j + + do

2: for i = 0; i < scanline.size(); i + + do

3: if !image.ptr()[scanline[i]]&colorOfInterest then

4: continue

5: end if

6: pointsColor ← 0

7: pointsColorAfter ← 0

8: rle.start← scanline[i]

9: rle.startBefore← scanline[i]

10: while i < scanline.size()− 1&&image.ptr()[scanline[i]]&colorOfInterest do

11: pointsColor ← pointColor + 1

12: i← i + 1

13: end while

14: rle.end← scanline[i]

15: rle.endAfter ← scanline[i]

16: rle.center ← scanline[i− pointsColor/2]

17: if pointsColor < threshColorOfInterest then

18: continue

19: end if

20: pointsColorBefore← 0

21: for k = i− pointsColor; k > (i− pointsColor − searchWindow)&&k >= 0; k −− do

22: if image.ptr()[scanline[k]]&colorBefore then

23: pointsColorBefore← pointsColorBefore + 1

24: end if

25: end for

26: rle.startBefore← scanline[k]

27: pointsColorAfter ← 0

28: for k = i; k < (i + searchWindow)&&k < scanline.size()− 1; k + + do

29: if image.ptr()[scanline[k]]&colorAfter then

30: pointsColorAfter ← pointsColorAfter + 1

31: end if

32: end for

33: rle.endAfter = scanline[k]

34: if pointsColorAfter >= threshColorAfter&&pointsColorBefore >=

threshColorBefore&&pointsColor >= threshColorOfInterest then

35: rle.Idx← j

36: rle.lengthColor ← pointsColor ∗ scanlines.getStep()

37: rle.lengthColorBefore← pointsColorBefore ∗ scanlines.getStep()

38: rle.lengthColorAfter = pointsColorAfter ∗ scanlines.getStep()

39: rleStruct.pushBack(rle)

40: end if

41: end for

42: end for

64

Algorithm 7 Construction of color blobs.
1: if rleStructure.size() == 0 then

2: return

3: end if

4: for i = 0; i < rleStruct.size(); i + + do

5: idx← findBlob(rle, threshold, i)

6: if idx == −1 then

7: BlobInfob(rle, i)

8: blobs.pushBack(b)

9: else

10: updateBlob(blobs[idx], rle, i, robotCenter

11: end if

12: end for

Figure 4.13: On the left, an original image. On the right, the result of RLE algorithm for

the line detection, in white and green, and the blobs that have been validated as objects of

interest are circled in magenta.

65

66

“There’s a way to do it better -

find it.”

Thomas Edison

5
Applications

Based on the algorithms that we have developed, we have designed several functional

vision systems that are currently in use by intelligent soccer robots. In this Chapter we detail

each of these vision systems.

For a soccer robot, the surrounding world that carries meaningful information is reduced

to the soccer field. The objects of interest for such a robot are: the soccer ball, the field

lines and goals, and the other robots that can be either team-mates or opponents. The vision

system of a soccer robot has to detect the lines of the field in order for the robot to localize

itself, the ball so that the game can take place and the other robots in order to avoid them

or to cooperate with them (in the case of team-mates).

We have developed a common software architecture for different types of vision systems,

that serve the purpose of a soccer robot. We present in this Chapter an omni-directional

vision system, a perspective one as well a Kinect-based one. The vision systems that will be

detailed next follow the same pipeline, presented in Fig. 5.1.

The pipeline of the object detection procedure is the following:

• After having acquired an image and defined the scanning pattern, the original image

is transformed into an image of labels using a LUT previously built. This image of

color labels, also designated by index image, will be the basis of all the processing that

follows.

• The positions of the scan lines in the index image are searched for colors of interest or

transitions between colors of interest and this information will be run length encoded.

67

Figure 5.1: Common software pipeline of the vision systems presented in this Chapter.

• Blobs are constructed by merging adjacent RLEs of a color of interest.

• The blob is labeled as object of interest if it passes several validation criteria that are

application dependent.

• When an object of interest is validated, its center coordinates are passed to higher-

level processes and are shared on a Real-Time Database (RTDB) [61] in the case of the

omni-directional and the Kinect-based vision system.

5.1 Omni-directional Vision System

The first vision system that has been developed is an omni-directional one and is used

by all robots within the team during a soccer game. An image of the physical set-up of the

digital camera and the mirror can be seen in Fig. 5.2. The camera used by the CAMBADA

robots is an IDS UI-5240CP-C-HQ-50i Color CMOS 1/1.8” Gigabit Ehernet camera [62] and

can provide images with a resolution of 1280 × 1024 pixels at 50fps. However, a region of

interest of 1024 × 1024 pixels is being acquired and used since the remaining of the image

only contains parts of the robot.

Using the modules of the UAVision library, a vision system composed of two different

applications has been developed with the purpose of detecting the objects of interest. The

two applications are of the type client-server and have been implemented using the TCP/IP

communications protocol. The core application, that runs in real time on the processing units

of the robots, was implemented as a server that accepts the connection of a calibration tool

68

Figure 5.2: Mirror and digital camera disposal of the omni-directional vision system.

client. This client is used for configuring the vision system (color ranges, camera parameters,

etc.) and for debug purposes and is presented in more detail in Chapter 7. The main task of

the server application is to perform real time color-coded object detection.

The omni-directional vision system follows the generic pipeline in order to detect blobs

of the color of interest or color transitions between colors of interest. For the ball detection,

in order to decide if a found blob is indeed an object of interest, a mapping function of the

size-distance relation has been designed (Fig. 5.3). This function maps the expected size of

the soccer ball to the distance from the robot at which it is found. Further validations of the

ball rely on a solidity measure and a width-height ratio measure, based on the fact that the

ball is expected to be a fairly round blob.

These validations are made taking into consideration the detection of the ball even when

it is partially occluded. The problem of ball occlusion is addressed taking into consideration

the worst case scenario. Because we are dealing with cooperative multi-agent systems in the

games of robotic soccer, even when one of the players does not have a visible ball, chances are

that one of his team-mates detects the ball and the ball position is shared among them. The

situation in which the ball is not visible for one or more of the robotic agents are due to the

occlusion of the ball by other robots. When the ball is only partially occluded, its detection is

still possible considering the restraints we can impose on the shape and features of the colored

blobs. Looking at Fig. 5.3, we can observe the real ball sizes acquired at different distances.

In order to guarantee the detection of occluded balls, we consider a range of [0.5− 1.5] of the

calculated function.

For the detection of the field lines, we are interested in finding color transitions of the type

green-white-green. A white line of the field is always surrounded by some green carpet. This

logical observation narrows down to 0 the probability of considering line candidates outside of

the soccer field. For each color transition, experimental thresholds of green pixels have been

determined both before and after the encounter of the color of interest, in this case white.

69

Figure 5.3: A function describing the radius (in pixels) of the object of interest (in this case,

an orange soccer ball) as a function of the distance (in centimeters) between the robot and

the object. The blue marks represent the measures obtained, the green line the fitted function

and the cyan and red line the upper and lower bounds considered for validation.

Thresholds of 2 green pixels before and after the encounter of at least 2 white pixels on the

radial scan lines and 8 white pixels on the circular ones are used in order to validate a field

line.

Searching for isolated field lines is different than searching for lines that are close to another

object. As seen in Fig. 5.4, many times there are robots close to a line. In these situations,

since we detect lines based on color transitions, the search windows before and after the color

of interest have to be adjusted in order to accommodate a possible noise introduced by the

other objects. Also, the length of a line close to a robot is much bigger than the length of a

line found at 6m, for example. These challenges can be overcome by choosing proper search

windows for the task. However, the processing time is directly proportional to the size of these

windows. When a field line is found, the middle point of the white segment is calculated and

passed to a higher level process that is responsible for the integration of this information.

Obstacles are detected based on the search for the black color. For each RLE that contains

more than 4 black pixels, the lower end of the RLE (in terms of (x, y) coordinates) is calculated

and passed to the same higher level integration process.

The following scan lines configurations are used for the detection of the ball, obstacles

and field lines by the omni-directional vision system:

• 1440 radial scan lines disposed on 4 levels, for ball detection.

• 360 radial scan lines disposed on 1 level, for obstacles and field lines detection.

• 90 circular scan lines, for field lines detection.

70

In this application circular scan lines are very important for the detection of the objects

of interest, mainly field lines. Circular scan lines are used for the detection of all field lines

that intersect the center of the robot. Visual examples of the detected objects in an image

acquired by the vision system are presented in Fig. 5.4 and Fig. 5.5. The objects of interest

(balls, lines and obstacles) are correctly detected even when they are far from the robot.

Figure 5.4: On the left, an image acquired by the omni-directional vision system. On the

right, the result of the color-coded object detection. The blue circles mark the white lines,

the white circles mark the black obstacles and the magenta circles mark the orange blobs that

passed the validation thresholds.

Figure 5.5: On the left, the index image in which all of the colors of interest are labeled.

In the middle, the color classified image and on the right, the surrounding world from the

perspective of the robot.

Being a highly configurable approach, the color object detection that we implemented can

71

be used for the detection of different other objects of interest that have a given color. Not

only the scanning pattern can be customized so that it fulfills the requirements of a given

application, but the blob segmentation algorithm can be applied to any colored object. In

Fig. 5.6 we present results of the use of these algorithms for the detection of body markers.

Figure 5.6: On the left, the original image in which all the detected objects are marked. The

ball is marked by the blue circle, the obstacles are marked with a circle of the same color as

the obstacle itself and the field lines are marked in black. In the middle, the color classified

image and on the right, the surrounding world from the perspective of the robot.

Several game scenarios have been tested in our indoor laboratory. In Fig. 5.7 we present

a graphic with the result of the ball detection when the ball is stopped in a given position

(the central point of the field, in this case) while the robot is moving. The graphic shows a

consistent ball detection while the robot is performing a tour around the field. The field lines

are also properly detected, as the result of this is the correct localization of the robot in all

the experiments.

The second scenario that has been tested is illustrated in Fig. 5.8. The robot is stopped

on the middle line of the field and the ball is sent across the field. This graph shows that

the ball detection is accurate even when the ball is found at a distance of 9m away from the

robot. The omni-directional vision system is able to detect the ball up to distances of 11m,

but the 9m threshold is imposed by the integration process as a matter of caution.

Finally, in Fig. 5.9 both the robot and the ball are moving. The robot is making a tour

around the soccer field, while the ball is being sent across the field.

In all these experiments, no false positives were observed and the ball has been detected

in more than 90% of the frames. The times when the ball was not detected were due to

the fact that it was hidden by the bars that hold the mirror of the omni-directional vision

system. The measurements of the correct detections have been obtained by direct comparison

to manually annotated images.

The processing time taken by the omni-directional vision system is in average, of 5.4ms

for images of 1024 × 1024 pixels. We consider this to be an important contribution for this

72

Figure 5.7: Ball detection results when the ball is stopped and the robot is in a tour around

the field.

Figure 5.8: Ball detection results when the robot is stopped and the ball is sent across the

field.

field of research since, until now we have not found in the literature documented real-time

vision systems that can present this performance. Table 5.1 shows the processing time taken

by each one of the tasks involved in the object detection pipeline, as well as the average total

time taken by this system. The most time consuming tasks are the conversion of the original

image into the image of labels and the run length encoding of the color information, each of

them with an average processing time of 2ms. After having constructed a solid run length

73

Figure 5.9: Ball detection results when both the robot and the ball are moving.

structure, the blob formation and validation tasks are straightforward.

Operation Time (ms)

Acquisition 0.5

Conversion to idxImage 2

RLE 2

Blob creation 0.02

Blob validation 0.01

Total 5.4

Table 5.1: Average processing times measured for the omni-directional vision system.

5.2 Perspective Vision System

Another vision system that we have designed is a perspective one that can be used for

the detection of the same objects of interest. The perspective camera used is a Point Grey

Zebra2 Ethernet camera1. We present results obtained with the perspective vision system

based on the use of the same software architecture as presented before. The images acquired

from this camera have been used at a resolution of 1600× 1200 pixels.

The perspective vision system is intended as a ground truth validation system that could

be used during real robotic soccer games. The ground truth system is illustrated in Fig. 5.10

1https://www.ptgrey.com/zebra2-gige-vision-poe-hd-sdi-cameras

74

Figure 5.10: Illustration of the soccer field and the placement of the two cameras.

So far there is no ground truth validation system in use by the teams participating in the

MSL. With this is mind, this system is intended as another contribution for this research area.

A preliminary ground truth system for validating the positions of the objects of interest has

been developed in a dissertation within out research group based on the perspective vision

system that we present in this Chapter. This system is used for the detection of the soccer

ball by one or multiple cameras strategically placed on the soccer field. The ball coordinates

obtained from different cameras are interpolated in order to find the 3D ball position on the

field.

Figure 5.11 shows some detection results obtained with the perspective vision system.

A graphical tool for visualizing the position of the cameras on the soccer field has been

designed. Moreover, this tool supports the visualization of the projection of the ball direction

vectors, for different cameras, as well as the ball position on the field (Fig. 5.12). Initial

experiments using up to four cameras have been conducted.

The ball detection algorithm follows the approach presented in Fig. 5.1, in which blobs of

the color of the ball are detected. The ball is validated based on a series of measurements such

as: roundness, size and width/height relation. In order to find the 3D position of the ball,

the ball is detected in an image acquired by the first camera and its center is calculated. This

procedure is repeated for the frame acquired by the second camera. For each ball center, a

vector is projected from the optical center towards the center of the ball. In a triangulation of

two vectors, due to errors in the ball position, these vectors might not intersect. To overcome

this, instead of calculating the intersection between two vectors, the closest point between

them is calculated.

Figure 5.13 (a) shows the detection of the ball in an image and Figure 5.13 (b) shows

the projection of a 3D vector towards the pixel corresponding to the center of the ball. The

intersection of the vector with the plan of the field does not correspond to the real coordinates

75

(a) original image (b) index image

(c) color classified image (d) annotated image

Figure 5.11: Results obtained using a perspective camera.

Figure 5.12: Visualization tool for the positioning of multiple cameras on the soccer field.

of the ball and this is due to the height of the ball, which is higher than the plan of the floor.

To compensate this, more cameras should be used.

Figure 5.14 shows the projection of two vectors for the two different cameras used in this

first test. The closest point between them defines the 3D coordinates of the ball.

The perspective vision system can detect the ball up to 18m, taking an average time of

76

(a) (b)

Figure 5.13: (a) Ball detection using the library UAVision. (b) Projection of a vector, from

the optical center towards the center of the ball.

Figure 5.14: Projection of the two vectors towards the center of the ball; the intersection of

these vectors defines the 3D center of the ball.

3ms. Table 5.2 details the processing time taken by each of the tasks. The total processing

time for this system is very low, with all of its tasks working under 1ms. For this system,

horizontal and vertical scan lines have been used. The configuration of the horizontal scan

lines had a 4 pixel inter-sparsity and a 4 pixel intra-sparsity. The vertical scan lines had an

8 pixel inter-sparsity and a 4 pixel intra-sparsity.

5.3 Kinect-based Vision System

Detection of aerial objects is a difficult problem to tackle given the dynamics and speed

of a flying object. The problem is even more difficult when considering a non-controlled

environment, when the vision system is located on a moving platform. Omni-directional

vision systems only detect the ball when it is on the ground, and thus precise information

77

Operation Time (ms)

Acquisition 0.5

Conversion to idxImage 1

RLE 0.8

Blob creation 0.01

Blob validation 0.01

Total 3.1

Table 5.2: Average processing times measured for the perspective vision system.

on the ball position is lost, when the ball is in the air. Because the MSL soccer games have

evolved a lot in the last years and they have become very competitive, a solution was needed

for the detection of the aerial balls by the goalie of the CAMBADA team. Nowadays most

of the teams, if not all, focus on shooting the ball through the air towards the goal because

this approach is more likely to be successful. We have implemented a novel approach for

aerial ball detection using a mixture of color and depth information. For this, we use color

information to detect blobs of the ball color and the depth information to filter the image in

order to remove color information regarding objects that are found outside the soccer field

limits.

A Kinect sensor has been mounted on the goalie of CAMBADA robotic soccer team

(Fig. 5.15) and the Kinect-based vision system has been integrated within its architecture.

This vision system has been used in the RoboCup 2014 and RoboCup Portuguese Open 2015

competitions and the logs saved by the robots prove that this addition to the regular omni-

directional vision system has been successfully used in several game situations, allowing the

defense of what could have been several possible goals.

Kinect is a motion sensing input device developed by Microsoft and launched on November

2010. The sensor includes an RGB camera, an infra-red laser projector, a monochrome CMOS

sensor, and other components less relevant for our application. The field of view is 57 degrees

horizontally, and around 43 degrees vertically. Acquisition of the 3D data from the Kinect is

done using a C++ wrapper for libfreenect2 that transforms depth images into an OpenCV3

matrix. The images acquired have a resolution of 640× 480 pixels.

In its original configuration, Kinect normal working range is from 0.8 meters to 4 meters.

However, the sensor provides distance measurements for longer distances while suffering from

additional errors and loss of precision, which cause a discretization effect to appear when

distance increases. In our experimental results we have reached the conclusion that we can

rely on the depth information retrieved from the depth sensor for distances up to 7m.

2https://github.com/OpenKinect/libfreenect
3http://docs.opencv.org

78

https://github.com/OpenKinect/libfreenect
http://docs.opencv.org

Figure 5.15: The goalie of the robotic soccer team CAMBADA with the Kinect sensor installed

on its frontal part.

In Fig. 5.16 we can see an example of the images acquired by a Kinect sensor.

Figure 5.16: Images acquired by a Kinect sensor. On the left, the color image in RGB color

space and on the right, the depth image as single channel grayscale image.

The pipeline of the Kinect-based vision system is presented in Fig. 5.17. The pipeline is

similar to the general software pipeline that has been illustrated in Fig. 5.1. The additional

filtering step is presented next.

5.3.1 Color Filtering Using Depth Information

In this step of the processing pipeline, the depth information from the Kinect sensor is

used for discarding the color of the objects that are found farther than a certain distance (in

the case of the CAMBADA goalie, 7m were considered). This complements the previous step

79

Figure 5.17: Pipeline of the Kinect-based vision system.

by filtering possible objects of the ball color found outside the field. As stated before, this

step is applied after the color classification.

First, a calibration between the RGB and depth images provided by the sensor has to

be performed. The default calibration parameters available in the ROS package for Kinect

calibration4 have been used for this purpose with some small experimental adjustments.

After having the correct calibration parameters, the distance in meters according to the

pixel values of the depth image has been obtained. Two look-up tables relating the pixels

of the depth image and the RGB image are created every cycle based on the current depth

information. This allows filtering the RGB information as stated before. In Fig. 5.18 we

present an example of the filtering step. As shown in the images, after filtering, the classified

pixels that are farther than 7m are discarded. There are regions close to the limits of the

image that are not filtered due to the fact that there is no correspondence between the depth

and RGB pixels for those positions. These regions are not considered for processing regarding

since we configured the limits of the scan lines to be inside the filtered area.

Using the distortion coefficients of the RGB image and the intrinsic parameters of the

depth camera, information from the depth camera can be projected to a metric 3D space.

Having a valid ball, the next step is to calculate its 3D position relative to the robot, as

described next. This step is necessary in order to estimate the direction towards which the

goalie should move in order to defend a goal. This is done by establishing a relation between

the coordinates of the center of the blob in the RGB image and in the depth image.

To obtain the correct 3D position of the ball relatively to the center of the robot, the

calibration of the position of the Kinect sensor relative to its position on the robot has to

be calculated. The coordinates of the detected ball on the field coordinate frame can then

be obtained by applying the transformation from Kinect to robot system coordinates and

then from robot to world coordinates. In the developed vision system, for the goalkeeper,

the same calibration application as presented in [63] has been employed. This application

4http://wiki.ros.org/kinect_camera

80

http://wiki.ros.org/kinect_camera

Figure 5.18: On the left, the obtained color classified image after filtering. On the right, the

original classified image. These images were taken during RoboCup 2014.

(see Fig. 5.19) acquires on demand an image from Kinect and allows the user to pick some

points on the 3D cloud of points. The chosen points correspond to points in the world whose

relative position to the robot are known by the user. The software then evaluates the rigid

body transform between the 2 coordinates systems corresponding to the position of the Kinect

and its orientation relatively to the origin of the robot coordinates system.

Figure 5.19: Application for the calibration of the position of the Kinect with 3 reference

points on the Kinect cloud and the corresponding coordinates in robot coordinates system [63].

The configuration of the scan lines used in this vision system is the following: horizontal

and vertical scan lines with a 2 pixel intra-sparsity and 2 pixel inter-sparsity. The total

processing time taken is, in average, of 20ms. Partial processing times are presented in

Table 5.3.

81

Operation Time (ms)

Acquisition 1

Color classification 2

Filtering 16.5

RLE 0.2

Blob creation 0.04

Blob validation 0.02

Total 20

Table 5.3: Average processing times measured for the aerial ball detection.

The most time consuming task is the one of image filtering. This is done to the fact that

using a pre-defined LUT is not possible in this particular task, given that the 3D(x, y, z)

coordinates of the current pixel depend on the depth information and this information is not

static.

After having analyzed the last two games of the RoboCup 2014 competition, the semi-

final where the CAMBADA team lost the game by 2− 1 and the 3rd/4th place game where

the CAMBADA team won by 4− 0, the ball was detected by the proposed algorithm in 110

images, on a total of 16 game situations where the ball was kicked by the opponent team

towards the goalkeeper and traveled by air (see some game situations on Fig. 5.20). As the

game results shows, our team only suffered two goals, being one of them achieved by the ball

moving on the ground and after being kicked by one of our own robots.

Figure 5.20: Three game situations during RoboCup where the goalie correctly defended

the ball. We can see the moment after the kick and on the right the goalkeeper correctly

positioned on the goal line when the ball reaches it.

82

“Science, at bottom, is really

anti-intellectual. It always dis-

trusts pure reason and demands

the production of the objective

fact.”

Henry Louis Mencken

6
Performance Evaluation

In this Chapter we present further results on the use of the vision systems presented in

Chapter 5. These results focus on the evaluation of the performance of the vision systems and

on the comparison of our methods against other popular algorithms for color object detection.

The code is written in C++ and the main processing unit is an Intel Core i5-3340M

CPU @ 2.70GHz 4 processor, running Linux (distribution Ubuntu 14.04. LTS Thrusty Tahr).

This computing unit is available on the robots and has been used for the evaluation of the

performance of the vision systems. Moreover, we complement these results with the use of

an IGEPv2 board, a low power single-board computer1.

We provide results with the IGEPv2 board in order to simulate a processing unit of

lower capabilities, such as the ones of autonomous robots that play soccer in other RoboCup

leagues. For example, an SPL robot is equipped with a single-core Intel Atom 512K Cache,

1.60 GHz, 533 MHz FSB CPU, 1GB RAM memory and an 8GB hard drive. The processing

characteristics of a DARWIN robot, which is currently on of the most popular choices among

teams participating in the RoboCup HL, are very similar to the ones of the NAO robots. In

fact, the CPU is the same, however the HDD is a 4GB SSD. The IGEPv2 board has a 1

GHz (DM3730) ARMv7 Cortex-A8 CPU, 512MB of LPDDR SDRAM 200 MHz and an 8GB

micro-SD card.

Because we do not have access to any of the robotic platforms used in RoboCup SPL or

HL, we have used the IGEPv2 board to simulate their computational unit and provide results

that prove the contribution of our approach for the area of embedded systems and robotics.

1https://www.isee.biz/products/igep-processor-boards/igepv2-dm3730

83

In addition, the board that we are using is an example of an embedded system that can be

used in different other real-time applications.

The work that we presented in [64] and [65] were the first attempts towards building

a stable and modular vision system for robots that have low processing capabilities. The

approaches that we have presented in those articles have been improved and matured during

the period of this PhD. and resulted in the algorithms that we presented in Chapter 4. The

research project involving humanoid soccer robots was discontinued within our research group.

Therefore, we present results of the object detection algorithms running on an IGEPv2 board,

as a simulator of the aforementioned low processing capabilities systems.

In the implementation of the vision systems presented in Chapter 5 we did not use multi-

threading. The parallelism of our software is not done for the following reason: the Linux

kernel installed on the used computers is configured to use a 10ms scheduling interval. At

this time interval the kernel determines whether the current process continues on the same

core, or performs a context switch to another core. Since none of the modules of our vision

system requires a processing time higher than 10ms, except for the filtering step based on

depth information, using threads would not improve its performance. In slower systems or

in applications that have to deal with higher resolution images, parallelism can be an option

and several tasks of the vision system can work in different threads.

The Technology Readiness Level [10] of the proposed vision systems, representing their

technological maturity has reached a maximum value. The results that will be presented next

support this claim.

6.1 Colored Object Detection Performance Evaluation

In this Section we present detailed experimental results of color object detection in the

context of robotic soccer, based on the use of scan lines for color clustering. The experimen-

tal results were obtained both for the omni-directional and the perspective vision systems

presented in Chapter 5. These experimental results focus on time measurement and on the

efficiency of the object detection algorithm. We explored the parameters available on the scan

lines module in order to understand its effect on the processing time and on the detection

efficiency. Moreover, we present results with different image resolutions and we discuss the

compromise between object detection rate and image resolution. We compare the results

obtained using our approach with other well-known algorithms that will be presented next.

6.1.1 Scan Lines Performance Evaluation

In this Subsection we present comparative results on the performance of the omni-directional

and perspective vision systems when using different configurations of the scan lines.

Figures 6.1 and 6.3 show examples of images captured by the two types of vision systems.

Similar images have been used for generating the following results. For the omni-directional

84

vision system, a total of 5471 frames with resolution of 1024 × 1024 pixels have been used,

while for the perspective one the total number of used frames was 312 with a resolution of

1600× 1200 pixels.

(a) (b) (c)

(d) (e) (f)

Figure 6.1: (a) Ball at 1m from the robot. (b) Ball at 4m from the robot. (c) Ball at 10m

from the robot. (d), (e), (f) The results of color segmentation based on radial scan lines of

the images presented in (a), (b) and (c), respectively.

Table 6.1 shows the influence of choosing a different number of levels for the radial scan

lines, on an 1024× 2014 resolution image. The possibility of creating more than one level of

scan lines has an impact on the overall efficiency of the system, since the number of visited

pixels as well as repeated visits can be adjusted according to the requirements of a given

application.

Figure 6.1 shows the results of the image segmentation and clustering algorithm, followed

by object detection and validation for the omni-directional vision system. The images show

a correct ball detection, at distances varying from 1m to 10m. Moreover, we can observe a

correct detection of the white lines at different distances, needed for the robot localization,

as well as a correct detection of the obstacles, used by the robots for cooperation issues

(team mates and opponent detection) and for obstacles avoidance. In this experiment, a total

85

scan lines # levels % visited pixels % repeated pixels

2880 4 38.57 0.11

2880 3 53.07 1.48

1440 4 19.34 0

1440 3 27.28 0

720 4 9.66 0

720 3 13.64 0

Table 6.1: Effect of the scan lines levels on the number of visited pixels and the number pixels

that are processed more than once (repeated pixels).

number of 720 radial scan lines, disposed on 4 layers, have been constructed and used, with

1 pixel sparsity within the scan line and 1 pixel inter-sparsity.

The ball has been placed at distances from 1m up to 12m from the robot. For each

placement of the ball, the robot would do a complete rotation around its axis and the result

of the ball detection precision and accuracy are presented in Fig. 6.2. Several numbers of

radial scan lines have been tested: 360, 720 and 1440 scan lines. For 720 scan lines a sparsity

of 2 and respectively 4 pixels within the scan line have been tested.

Figure 6.2: Ball detection results with the ball placed at distances ranging from 1m to 12m

from the robot and with the robot rotating around its axis for different radial scan lines

configurations. On the upper row, 360 scan lines on the left and 1440 scan lines on the right.

On the lower row, 720 scan lines on the left, 720 scan lines with a 2 pixel intra-scan line

sparsity and 720 scan lines with a 4 pixel intra-scan line sparsity.

86

Table 6.2 presents the detection accuracy for the five chosen configurations. 720−2 refers

to 720 scan lines and sparsity of 2 pixels within the scan line, while 720 − 4 represents the

configuration of 720 scan lines and sparsity of 4 pixels within the scan line.

Configuration 360 720 1440 720-2 720-4

Percentage 62.62% 95.06% 99.08% 65.37% 29.49%

Table 6.2: Ball detection percentages of the omni-directional vision system for five different

radial scans configurations.

The detection percentages when using 720 scan lines are considerably higher than the ones

achieved when using only 360 scan lines and slightly worse than the results obtained with

1440 scan lines. The sparsity parameter has a beneficial influence on the processing time, as

it will be shown next, but the price that has to be paid is a smaller detection rate.

A percentage of 62.62% in the detection rate when using 360 scan lines can be considered

a fair price to be paid in order to further reduce the processing time. This is an important

issue, mainly when developing embedded systems with limited computational power. A more

detailed analysis of the detection rate shows that at distances starting from 6m, only a quarter

of the balls are detected (Table 6.3).

Configuration 360 720 1440

Percentage 23.76% 90.69% 98.27%

Table 6.3: Percentages of correct ball detection for the three chosen scan lines configurations

for balls found at 6m or more from the robot.

The abrupt decreasing trend in ball detection for 360 scan lines is even more evident

for distances equal or greater than 9m (Table 6.4). For balls found at these distances, the

detection rate is only 14.4%. On the other hand, while the decreasing trend can be observed

for the other two configurations, the detection rates are still close to 90% for 720 scan lines

and 100% for 1440 scan lines.

Configuration 360 720 1440

Percentage 14.40% 88.70% 97.11%

Table 6.4: Percentages of correct ball detection for the three chosen scan lines configurations

for balls found at 9m or more from the robot.

Processing times for the five scan lines configurations for the omni-directional vision sys-

tem are presented in Table 6.5. The maximum average processing time is measured when

using 1440 radial scan lines and it is under 7ms for an image of 1024 × 1024 pixels. If the

digital camera would allow it, the vision software could work at a frame rate higher than

87

100fps. By reducing the number of radial scans to half (720) with a 4 pixel intra-scan line

sparsity, the processing time amounts to only 1ms.

Configuration 360 720 1440 720-2 720 - 4

Average 2.13 3.59 6.28 1.97 1.17

Max 3.38 5.46 8.08 3.51 2.78

Min 1.89 3.30 5.89 1.82 1.01

Table 6.5: Processing time results, in ms, for the color object detection with an omni-

directional vision system.

Even using a Linux Operating System without a real-time kernel, we measured a deviation

of less than 2ms of the maximum and minimum processing times with respect to the average

processing time. Table 6.6 shows that the most time consuming operation is the conversion

of the original image into the image of labels.

Configuration 360 720 1440 720-2 720-4

Conversion to index image 0.98 1.01 2.27 0.68 0.54

RLE 0.87 1.53 2.91 0.81 0.49

Blobs formation 0.05 0.11 0.24 0.04 0.03

Validations 0.02 0.03 0.04 0.02 0.02

Table 6.6: Partial processing times for the omni-directional vision system.

A result of the color object detection provided by the perspective vision system are pre-

sented in Fig. 6.3. The images show a correct ball detection, at distances varying from 3 to

18m. This is an important contribution considering the correct detection of an object with

a radius of 12cm so far from the camera. Moreover, a correct detection of the white lines at

different distances, as well as a correct detection of the obstacles can be noted.

Figure 6.3: Perspective ball detection at different distances: 3m, 6m and 18m. The correct

identification of lines and obstacles can also be noted.

Several configurations for the vertical scan lines used in the perspective vision system

have been tested. Figure 6.4 shows results of ball detection accuracy for three different

88

configurations of the vertical scan lines: 2 pixels intra-scan line sparsity and 2 pixels inter-

scan line sparsity; 4 pixels intra-scan line sparsity and 4 pixels inter-scan line sparsity and 8

pixels intra-scan line sparsity and 8 pixels inter-scan line sparsity.

(a) (b) (c)

Figure 6.4: Ball detection accuracy for the following vertical scan lines configurations: (a) 2

pixels intra-scan line sparsity and 2 pixels inter-scan line sparsity. (b) 4 pixels intra-scan line

sparsity and 4 pixels inter-scan line sparsity. (c) 8 pixels intra-scan line sparsity and 8 pixels

inter-scan line sparsity.

The most time consuming configuration of the vertical scan lines is the 2−2 combination,

whose total average processing time is 11ms (Table 6.7). However, for applications in which a

fast performing algorithm has more priority than a high detection rate, an 8−8 configuration

of the scan lines leads to an average total time of 0.64ms.

Configuration 2-2 2-4 2-8 4-2 4-4 4-8 8-2 8-4 8-8

Average 10.63 3.45 1.94 5.05 1.89 1.05 3.13 1.10 0.76

Max 11 3.8 2.1 5.48 2.30 1.24 3.37 1.50 0.97

Min 10.30 3.26 1.91 5.01 1.87 1.01 2.85 1.09 0.64

Table 6.7: Processing time results of the perspective vision system for different vertical scan

lines configurations.

Partial processing times for the perspective vision system are presented in Table 6.8. Like

in the omni-directional vision system, the most time consuming operation is the conversion

of the original image into the image of labels.

Configuration 2-2 2-4 2-8 4-2 4-4 4-8 8-2 8-4 8-8

Conversion to index image 6.25 1.61 0.86 3.13 0.99 0.48 1.27 0.58 0.34

RLE 3.02 1.37 0.83 1.40 0.69 0.40 1.06 0.36 0.26

Blob formation 1.17 0.29 0.08 0.34 0.06 0.04 0.20 0.34 0.26

Validations 0.07 0.08 0.06 0.06 0.05 0.05 0.05 0.05 0.05

Table 6.8: Partial processing times for the perspective vision system for different vertical scan

lines configurations.

89

In Table 6.9 we present the processing time of the algorithms implemented for the omni and

for the perspective vision systems using an IGEPv2 board. For the omni-directional sequences,

we have used 720 radial scan lines. This configuration represents the best compromise between

object detection accuracy and processing time in the situation of a robotic soccer game. The

perspective system is currently used for monitoring purposes with a configuration of vertical

scan lines with an 8 pixels intra-scan line sparsity, as well as an 8 pixels inter-scan lines

sparsity. These results show that even with a limited processing unit, it is possible to use the

proposed approach at more than 15fps.

Configuration Persp.-8x8 Omni-720

Average 59.64 87.66

Max 67.99 137.67

Min 59.02 82.03

Table 6.9: Processing time results on a IGEPv2 processing unit.

In Table 6.10 we present the processing time of each one of the modules implemented for

the omni-directional and for the perspective vision systems, running on the IGEPv2 board.

Configuration Persp.-8x8 Omni-720

Conversion to index image 27.03 33.94

RLE 26.03 45.32

Blob formation 2.24 3.92

Validations 0.80 0.75

Table 6.10: Partial processing time for each operation on the IGEPv2 board.

For further comparisons, we tested the same algorithms, using the omni-directional se-

quences in the IGEPv2 board, considering lower resolutions. The average processing time

obtained for a resolution of 512 × 512 pixels is 50ms, while a resolution of 256 × 256 pixels

would allow the use of the camera at almost 30fps, with the average processing time of 35ms.

In this experiment we used the same scan lines configuration as presented before for a direct

comparison.

6.1.2 Performance Evaluation on Different Image Resolutions

We have studied the performance of the omni-directional vision system with different

image resolutions. We were interested in finding a relation between image resolution and

the reliability of the object detection algorithm. We compare the results obtained using our

approach with two other algorithms: the first one, based on finding connected contours and

the second one based on region growing segmentation. We tested the following three image

resolutions: 1024× 1024, 512× 512 and 256× 256 pixels.

The OpenCV library provides two alternative algorithms for color object detection that

have been used for comparison of the results. The first algorithm that has been used is a

90

region growing algorithm [32], in which, using methods from the OpenCV library, the image

is scanned horizontally and every time a pixel of the color of interest is found, it is considered

to be the seed for the clustering algorithm. The second approach was based on the use of the

same library for contour detection [66] and scanning the pixels inside each contour. If the

pixels belonging to a given contour are of the color of interest, that contour is validated as

being a blob of the color of interest. For all of the three algorithms, for fast color classification,

color classes are defined through the use of the LUT already described. The use of a LUT has

an important effect on reducing the processing time. Without the use of a LUT, the run-time

computations involved for checking the color of a pixel would slow down the performance of

the application. The image of color labels will be the basis of all the processing that has been

previously described. Using an image of labels not only saves computational time but it also

introduces less noise than using the grayscale version of the original image.

For this experiment, we have used a configuration of the radial scan lines of 2880 scan

lines, disposed on 4 levels.

Table 6.11 shows that at any of the chosen resolutions, the blob detection algorithm

performs faster and the maximum processing time of a frame that was measured was 10ms,

while for example, the contour detection algorithm can take a maximum time of 35ms for the

processing of one frame.

Blobs Contours Region Growing

Mean Max Mean Max Mean Max

1024×1024 8.72 10 17.16 35 8.86 21

512×512 2.9 7 5.16 16 2.03 7

256×256 1 5 1.02 3 1 1

Table 6.11: Average and maximum time processing, in milliseconds, for each of the three

algorithms studied.

Table 6.12 shows the maximum distances at which the ball is being detected by each of

these algorithms. The blob detection algorithms achieves correct results for balls found at

a distance of up to 12m, even for the smallest chosen resolution, while the results of the

contours detection algorithm and region growing clustering algorithm slightly degrade with

distance.

Blobs Contours Region Growing

1024×1024 12m 12m 11m

512×512 12m 12m 11m

256×256 12m 11m 11m

Table 6.12: Maximum distance from the robot at which the ball is correctly detected by each

of the algorithms.

Table 6.13 presents the percentages of correct ball detection for each of the three algo-

91

rithms. In the video sequences that have been used for tests the robot rotates around itself

and the ball is placed in front of it at distances from 1m to 12m. These sequences have a

total of 5040 frames, out of which, the ball is present in 4580 frames. The situation in which

the ball is not present in a frame is due to the hardware architecture of the vision system.

When the ball is aligned with any of the four supportive bars of the vision system, it cannot

be seen in the image as it is fully hidden by one of the bars. The blob detection algorithm

has a detection rate of 100% for full resolution images and the decrease of the resolution is

followed by a slight decrease in the performance of the algorithm. Out of the three algorithms,

the one based on contour detection is not only the heaviest from a computational point of

view, but it also performs worse that the other two. Moreover, for the smallest resolution,

the contours algorithm can only detect the ball in a quarter of the frames.

Blobs Contours Region Growing

1024×1024 100% 68.5% 73.1%

512×512 95.7% 63.7% 69%

256×256 85.7% 24.6% 53.9%

Table 6.13: Percentages of correct ball detection for the three algorithms.

All three algorithms can detect the ball up to distances of at least 11m (12m in some

cases). However, for some of the algorithms, the detection rate at longer distances is very

small. Tables 6.14 and 6.15 present the detection accuracy for balls that are found further

than 6m and 9m, respectively, from the robot.

Blobs Contours Region Growing

1024×1024 100% 63.8% 70%

512×512 91% 62.8% 64.7%

256×256 70% 16.3% 22.9%

Table 6.14: Percentages of correct ball detection for the three algorithms for balls found at

6m or more from the robot.

Blobs Contours Region Growing

1024×1024 100% 67.6% 68.8%

512×512 78.4% 58.8% 66.2%

256×256 44.5% 11.5% 11.2%

Table 6.15: Percentages of correct ball detection for the three algorithms for balls found at

9m or more from the robot.

Graphics 6.5, 6.6, 6.7 show the ball detection accuracy for the three algorithms, for each

of the three resolutions. The graphics illustrate the position of the detected balls, relative to

the robot, in world coordinate at the ground level.

92

(a) 1024× 1024 (b) 512× 512 (c) 256× 256

Figure 6.5: Graphics representing the ball detection for the three resolutions using the blob

algorithm.

The four “valleys” that can be noted in all of the graphics represent four bars that support

the vision system in the hardware architecture of the robot. When the ball is aligned with

any of these bars, the ball is not visible.

For images of 256 × 256 pixels, the contours detection algorithms provides quite poor

results. When the ball is found at 6m or more from the robot, it is only detected in 16% of

the cases. The results are even less reliable for balls found at 9m or more from the robot. In

this case, only 10% of the balls are correctly detected.

(a) 1024× 1024 (b) 512× 512 (c) 256× 256

Figure 6.6: Graphics representing the ball detection for the three resolutions using the con-

tours detection algorithm.

The region growing clustering algorithm delivers slightly better results, compared to the

contours detection algorithm but it is still far from achieving the detection rate of the blob

detection algorithm. These results prove that working with images at full resolution can

provide optimal results in a small amount of time when using an appropriate scanning pattern

of the image. For applications where detection accuracy and total lack of false positives is

required, the algorithm based on radial scan lines and blob formation is a suitable solution

since its detection rate is 100% and it can be used with sensors working at 100fps, if the

hardware allows it. A smaller resolution can lead to an even smaller processing time, for

93

applications where fast performance is preferred against a having 100% correct detection.

(a) 1024× 1024 (b) 512× 512 (c) 256× 256

Figure 6.7: Graphics representing the ball detection for the three resolutions using the region

growing clustering algorithm.

In Fig. 6.8 we present an image with the ball correctly detected by the blob algorithm at

a distance of 12m from the robot.

Figure 6.8: Ball detection using the blob algorithm at 12m. The detected ball is marked with

a magenta circle.

Another proof of the effectiveness of the proposed algorithm was obtained by comparing

its results in terms of processing time with the results of the watershed transform [67], a

well known algorithm for color segmentation. This is just an example of how the use of a

LUT for color color labeling is more effective. The watershed transform is a method for

defining color regions in an image, but its complexity leads to high processing times, as

it will be presented next. For this comparison, we have used sequences obtained with the

94

perspective vision system. The implementation of the watershed algorithm provided by the

OpenCV library [31] has been used. For an image of 1600× 1200 pixels, the same used in the

perspective vision system, the watershed transform algorithm working on the laptop with the

i5 processor takes an average of 128.4ms. Table 6.16 presents the partial processing times

taken by the Watershed transform:

Operation Time [ms]

Canny Edge Detection 11.1

Contour Detection and Marking 7.3

Applying the Watershed Transform 110

Table 6.16: Partial processing times for the Watershed transform.

The same algorithm, running on the IGEPv2 board, takes an average time of 1509.8ms.

Table 6.17 presents the distribution of this processing time among the several steps of the

processing pipeline:

Operation Time [ms]

Canny Edge Detection 356.1

Contour Detection and Marking 120.2

Applying the Watershed Transform 1033.6

Table 6.17: Partial processing times for the Watershed transform on the IGEPv2 board.

For this experiment, the thresholds used in the Canny edge detection parameters have

been experimentally obtained, through iterations until the green carpet of the soccer field

became a single region. Looking carefully into these last processing times, we can observe

that a simple operation of edge detection takes more time than the detection of the objects

of interest in the referred applications using the proposed approach.

An example of the application of this algorithm in the referred image is presented in

Fig. 6.9. We have to underline that using this approach for object detection would require

another step for evaluating regions with the same color.

6.2 Delay Measurements between Perception and Action

In addition to the good performance in the detection of objects, both in terms of number

of times that an object is visible and detected and in terms of error in its position, the

vision system must also perform well in minimizing the delay between the perception of the

environment and the reaction of the robot. We consider this study an important contribution

of this Thesis since we did not come across anything similar in the literature and its results are

relevant for the area of intelligent autonomous robotics. It is obvious that the delay between

perception and action depends on several factors, namely the type of the sensor used, the

processing unit, the communication channels and the actuators, among others.

95

Figure 6.9: On the left, edges obtained after the Canny algorithm. On the right, regions

marked after running the Watershed algorithm. A different color is assigned to every region.

For object detection, a last step of analyzing the average color of each region is still needed.

6.2.1 Measuring Setup

The delay measurement system that has been used for this study is based on a micro-

controller board connected to the omni-directional vision processing PC through an USB port

(Fig. 6.10). The micro-controller periodically turns on a LED, during a fixed period of time,

and measures the time that the whole vision system takes to detect it in the acquired image.

The measured time includes camera acquisition time, image data transfer time and vision

processing time. In the setup used for these experiments, the camera is configured with an

exposure time of 5ms and Gigabit Ethernet connection that can provide for our setup (cable,

network card, computer and operating system) 80MB/s, far from the theoretical 125MB/s.

The vision software in this setup is a simplification of the one described in [68] since we do

not have to detect the obstacles and white lines and takes, on average, 3ms to detect the

led. The vision system detects the led on and when that happens, it sends a message to the

micro controller. This is the normal working mode of every robot that uses vision as its main

sensor.

Figure 6.10: The blocks used in our measurement setup.

96

6.2.2 Delay Measurements

Some digital cameras do not provide frame rates above 30fps in RGB, but allow the access

to the raw data of the sensor at higher frame rates, mostly due to processing and bandwidth

restrictions when the interpolating algorithm runs on the camera. Moreover, it is expected

that the conversion between the raw sensor data and a specific color space in the camera or

in the device driver on the computer side will take some time. Therefore, we compared the

delay when acquiring frames in RGB and when accessing the raw data. Based on the graphics

presented in Fig. 6.11, we measured an improvement of 23% of the reaction time at 50fps

when using raw data. If the camera used by the robot could deliver raw data, these results

prove that it is more advantageous to use it as such.

Using a different algorithm in another application, the delay time will be proportional to

the processing time of the algorithm used and the scene complexity. Regarding external con-

ditions, namely illumination or other factors, we use in our robots algorithms that guarantee

the same properties of the acquired images [69].

Figure 6.11: Histograms showing the delay between perception and action on the vision

system of the CAMBADA robots. On the left, the camera is acquiring RGB frames and is

working at 50fps (average = 34.2ms, max = 48ms, min = 29ms). On the right, the camera

acquiring single channel frames, returning the raw data of the sensor (Bayer pattern) (average

= 26.4ms, max = 34ms, min = 23ms).

6.2.3 Detection Performance on Raw Images

After concluding that using the raw images is more advantageous for the compensation of

the delay between perception and action in autonomous mobile, we pursued a study on the

use of our algorithms for object detection directly on the raw data.

In Fig. 6.12 we present the ball position detected by the omni-directional vision system

after the robot performs a kick, considering two different configurations. In one case, the

97

vision system was processing directly the raw image data acquired from the camera and in

the other one the full RGB data was processed. As we can see in both graphics, the ball is

correctly detected for all its trajectory, both when we process the raw image data and when

the processing is performed in the full RGB image.

Figure 6.12: Ball detection after being kicked by the robot. On the left, a graphic showing

the ball detection on full RGB images after demosicing and on the right, the ball detection

on raw image data.

Figure 6.13 shows an example of the result of the color detection algorithms applied

directly to a raw image.

Two game scenarios have been tested using the CAMBADA autonomous mobile robots.

In each one, two experiments have been made. In one experiment, the vision system processed

the full RGB image after interpolation. In the other, the raw image data was processed.

In Fig. 6.14 we present a graphic with the result of the ball detection when the ball is

stopped at a given position (the central point of the field, in this case) while the robot is

moving. The graphic shows a consistent ball detection with both configurations while the

robot is performing a tour around the field. The field lines are also properly detected, as it is

proven by the correct localization of the robot in all the experiments.

The second scenario that has been tested is illustrated in Fig. 6.15, where both the robot

and the ball are moving. The robot is making a tour around the soccer field, while the ball

is being sent across the field. In all these experiments, no false positives were observed and

the ball has been detected in more than 90% of the images acquired by the robot. Most of

the times when the ball was not detected was due to the fact that it was hidden by the bars

that hold the mirror of the omni-directional vision system.

We can observe a different robot trajectory in the tours performed by the robots when

the vision system processed the full RGB images, when comparing with the scenario when

the vision system processed the raw image data. Since the control parameters were adjusted

to the vision system processing the raw image data, the robot has a different behaviour in

98

Figure 6.13: Images acquired by the omni-directional vision system with the result of the

color-coded object detection on raw images. On the left, the ball was at one meter of the

robot. On the right, the ball was at 10m from the robot. Blue circles mark the white lines,

the white circles mark the black obstacles and the magenta circles mark the orange blobs that

passed the validation thresholds and are considered ball.

Figure 6.14: Ball detection with the robot moving around the field and the ball stopped in

the middle of the field. On the left, a graphic showing the ball detection on full RGB images

after interpolation and on the right the ball detection on raw image data.

this situation.

The processing time of each captured image, both in raw data and full RGB color, using

the developed vision system is considerably low. The full execution of the pipeline, from

image acquisition to object detection after validation (balls, lines and obstacles) only takes

at most 10ms, allowing thus a frame rate of 100fps if the digital camera supports it and if

99

Figure 6.15: Ball detection when both the robot and the ball are moving. On the left, a

graphic showing the ball detection on full RGB images after interpolation and on the right

bottom the ball detection on raw image data.

other control or artificial intelligence processes can run in parallel.

100

“The production of too many

useful things results in too many

useless people.”

Karl Max

7
Tools

In this Chapter we present three tools that have been developed to complement the robotic

vision systems presented in Chapter 5. The first tool was designed with the purpose of choos-

ing the most intuitive color space to be used for manual or user-supervised color calibration.

The second tool, with its initial design, was mainly dedicated to the task of manual color

classification. A more complex version of this tool has been developed and it allows not only

manual but also supervised color classification and eases the robot-human interaction and

information exchange.

7.1 colorSpaces Tool

A study on the use of color spaces in artificial vision has been conducted, in order to

understand if there is a more appropriate one to be used in this kind of applications. A

tool for defining color ranges, both by an user and by a semi-automatic algorithm of region

growing, under different color spaces, has been developed. The results obtained by using this

tool facilitate the choice of a color space when implementing a vision system for robotic soccer

players and its application can be extended to any computer vision procedure that requires

color segmentation or classification.

As a first functionality, the tool can be used for the manual classification of several colors,

under five color spaces - RGB, HSV, HSL, HSI and YUV - (Fig. 7.1). Using sliders, users can

manually determine the ranges for each one of the following colors: red, blue, green, yellow,

orange, white and black.

101

Figure 7.1: Illustration of the feature of the colorSpaces tool allowing manual classification

of colors.

This feature works as follows: the user chooses an image that wants to classify, called

TrialImageX, where X is a number identifying the chosen image. The set of trial images

contains several images that have different degrees of difficulty of color classification. That

is, some of the images contain simple colored objects, without any shadows and without

being affected by much noise. The color ranges of these objects are very close to the color

ranges established in the literature, which makes the classification easier. The trial images

set contains also images that might be more difficult to classify since they contain objects

whose colors are affected by the illumination (Fig. 7.2).

Figure 7.2: On the left, an example of a simple image used for testing manual color classifica-

tion. On the right, a more complex image that contains color gradients, shadows and objects

with more details.

When gathering results about this part of the study, each user has been advised to try

the classification of at least one simple image and one complex image. When choosing the

TrialImageX, the GroundTruthX image is also loaded and will be further used for generating

102

the results of the classification. The ground truth image is an image that has been already

classified by an experienced user (Fig. 7.3). This image is considered to have the correct color

ranges for all the colors and will be used for computing the correctness of the classification of

each user. The correctness is calculated by direct comparison, pixel by pixel, of the images

GroundTruthX and TrialImageX, when the user concludes the classification. In terms of

results, the users are asked to record their correctness as well as their performance time, for

each of the color spaces. The performance time is calculated by the graphical tool from the

moment in which the user started the classification until the moment that he decided that

his classification is correct. When the user finishes the process of color classification, he has

to request the comparison with the ground truth.

Figure 7.3: On the left, one of the images used as ground truth validation. On the right, the

color classification performed by an user.

For the second part of the evaluation method, we have tested two different implementa-

tions of a region growing segmentation algorithm [32, 70], that have been detailed in Section

3.2. The user chooses a trial image from the same set that was already presented and the

correctness of the performance of the algorithm is calculated, as before, by direct comparison

with the corresponding ground truth image. This feature of the colorSpaces tool is illustrated

in Fig. 7.4.

7.2 calibVision Tool

calibVision is a graphical tool designed based on the highgui module of the OpenCV library
1for the manual classification of color classes. The user defines color ranges for each of the

colors of interest using this tool (Fig. 7.5).

The performance of the vision systems that have been presented in Chapter 5 is directly

influenced by the quality of the color classification. Prior to the use of any of the vision

1http://docs.opencv.org/2.4/modules/highgui/doc/highgui.html

103

Figure 7.4: Illustration of the feature of the colorSpaces tool allowing supervised classification

of the colors.

Figure 7.5: A screenshot of the calibVision tool.

systems in a new environment, a color classification is required. The result of the classification

procedure is a range of maximum and minimum H, S and V values for each of the colors of

interest that is saved onto the configuration file. The structure of this file is presented in

Appendix B. We have chosen the approach of manual color classification based on the use of

104

the calibVision tool. The use of the algorithm for colormetric calibration of the camera allows

the re-use of the same configuration file and the same color ranges as long as the robots perform

in the same environment. Because of this, the task of manual color classification cannot be

considered time-consuming and is not compulsory prior to each performance of the robots,

only when the environment changes.

This tool can communicate with the vision system running on the robots through a

TCP/IP connection. The TCP/IP module of the UAVision Library has been employed in

order to build this connection. This module, described with more emphasis in Section A.4

addresses the implementation of a client-server type of communication system. The vision

system that runs on the robot works as a server that accepts a client connection. In this case,

the calibVision tool is the client. The client can request visual information from the robot

and evaluate the perception of the robot on the surrounding environment. The request and

information exchange is done based on key interactions. These key interactions are presented

in more detail in Appendix D. The information exchanged can be an image (with or without

debug symbols), an image mask or a color range structure. The color range structure contains

the maximum and minimum limits of the (H, S, V) triplet for each color of interest.

With the use of sliders and mouse interaction, the user defines the H, S and V minimum

and maximum values for a color of interest (Fig. 7.5). The tool supports up to 8 colors of

interest. The user can click on the image and the H, S and V value of a certain pixel is drawn

on a window of the tool in order to ease the color classification procedure and reduce time.

Figure 7.6 shows a result of a color classification process. Once the user finishes this process,

he sends the color ranges to the server side, where they are updated accordingly, both on the

configuration file and in real-time use in the color segmentation step of the object detection

pipeline.

Figure 7.6: On the left, an original image acquired by the robot that was sent to the calibVision

client. In the middle, the color classification result on the client side. On the right, the debug

points displayed after the color ranges have been received on the server side and the objects

of interest have been detected.

105

Moreover, this tool can be used to send commands to the vision system, such as activating

the flag for the auto-calibration of the colormetric parameters. These commands are sent by

key interactions.

7.3 GUICalib Tool

GUICalib tool was designed after the experience with calibVision as a calibration tool of

the robotic vision systems, but more generic, flexible and user-friendly. This tool (Fig. 7.7)

works as a client that can connect to the vision system server. Apart from supporting the

color classification procedure, both manually and user-supervised, this tool integrates more

features that will be presented next.

Figure 7.7: A screenshot of the GUICalib

The Local Access function (Fig. 7.8) of this tool allows the user to choose the type of

camera that is available either locally or on the server side, as well as the configuration file.

If there is no configuration file, the user can choose to create a new one, that will include

default values for the type of camera chosen. The types of digital cameras that are currently

supported are: USB, Ethernet, Firewire or Kinect.

Figure 7.8: Local Access function.

The Grab Frames functions allow the user to choose to grab a single frame or to receive

a continuous stream from the server (Fig. 7.9). In a game situation, if performed by an

106

experienced user, a single frame can be sufficient for the color classification process. When the

user wants to monitor the detection of the object detection algorithm during the performance

of the robots, for example, grabbing a continuous video stream from the robot can be of

more help. These frames are available at the client side either as the original images that the

cameras acquire or with debug information overimposed. The debug information represents

visual marks on the objects of interest that are being detected when the frame was grabbed.

Figure 7.9: Grab Frames function.

The Server Connection function awaits for a server address and port in order to establish

a TCP/IP connection (Fig. 7.10). By default, the client tool connects to the local host, where

it expects to find a server running. When in use with the CAMBADA robots, their IPs have

been predefined and the user has the option to chose the number of the robot to which he

wants to connect. When the robot number is chosen, the options for introducing the IP and

port are disabled.

Figure 7.10: Server Connection function.

The Receive Info and Send Info functions provide the options for the client to request

different information from the server and at his turn, to send back to the server the same

type of information (Fig. 7.11). This information can be the whole configuration file or only

individual blocks of information, such as: the color ranges, camera settings, image mask or

map of coordinates.

107

Figure 7.11: Receive Info function on the left and Send Info Function on the right.

GUICalib supports the same manual color classification procedure as calibVision through

the Color Classification function. In addition, a method for semi-autonomous, supervised

color classification is available (Fig. 7.12). First the user has to choose the object of interest

whose color he wants to classify. When choosing manual mode, the sliders become enabled

and the user can choose the (H, S, V) maximum and minimum values for each of the objects

of interest. In supervised mode, the threshold input lines become enabled and the sliders

are disabled. In this mode the user chooses the seed on the object that we wants to color

classify and can choose a minimum and maximum threshold values. After having chosen the

thresholds, the user has to click on a point in the image that belongs to the object of interest

that he chose. A region growing algorithm uses the clicked point as a seed for growing a region

of that color. The minimum and maximum threshold values will be used for comparing the

neighboring pixel values with the seed in order to establish if they are part of the same color

region.The (H, S, V) average values of that region will be used as the color ranges of that

specific color.

Figure 7.12: Color Classification function.

108

Finally, the Manual Calibration function allows the user to manually change the colormet-

ric parameters of the camera in use, by means of sliders. Figure 7.13 shows all the colormetric

parameters supported by this tool. However, not all of them are available on all the cameras

supported. When working with a given camera that does not include any one of these pa-

rameters, the corresponding sliders are disabled. Moreover, this tool supports the option of

activating an auto-calibration flag, which will start the automatic colormetric calibration of

the camera on the server side.

Figure 7.13: Manual Calibration function.

109

110

“You do not need to know all

the answers. No one is smart

enough to ask you all the ques-

tions.”

Unknown

8
Conclusions and Future Work

This document presented an approach for time-constrained color object detection algo-

rithms for robotic applications. Several robotic vision systems and algorithms have been

detailed and experimental results with application in autonomous robotic soccer have been

presented. In this Chapter, we draw the conclusions and discuss the effectiveness of the

proposed solutions. Moreover, we identify possible future work directions.

8.1 Conclusions and Discussion

Robotic soccer has been in the last years a popular test bed for innovations in artificial

intelligence, biped walking, multi-agent cooperation and computer vision. The game of soccer

imposes many challenges that can lead to great innovations in all the aforementioned research

areas. In the case of computer vision, since the movements of the robots impose many

challenges on the task of processing the environment, a soccer game can only take place by

overcoming them.

This Ph.D. was focused on providing a modular solution for the detection of colored ob-

jects, with focus on the robotic soccer games in the RoboCup MSL. We introduced a novel

computer vision library, UAVision, that can be used for solving the task of time-constrained

colored object detection. The library is composed of several modules that can be used sepa-

rately for solving individual tasks of an object detection pipeline or that can be joined into

a complete time-constrained vision system, such as the ones presented in Chapter 5. An

important contribution of this Thesis was the study on the raw images, on their use for ob-

111

ject detection as well as on the effect of the delay between the perception and action of an

autonomous intelligent robot.

We have presented different approaches for solving most of the image processing tasks

of a vision system for soccer robots in Chapter 2. These approaches make use of the color

information in order to detect the objects of interest. However, we have not found any

complete description of a functional robotic vision system for robotic soccer, each of these

related works only addressing individual aspects of this challenge. Therefore, we consider

this Ph.D. an important contribution for this research area. The work that we presented

is a complete set of algorithms and support tools that allow the implementation of a fully

functional robotic vision system for colored object detection.

In Chapter 3 we have addressed the calibration aspect of a camera, with more emphasis

on a novel algorithm for colormetric calibration of the camera that we proposed. Before

proceeding to any type of image processing it is necessary to guarantee, in any artificial

vision system, a precise camera calibration. This calibration can reflect either the tuning of

the intrinsic and extrinsic parameters of the camera in order to find a viable correspondence

between the camera frame and world frame, or it can maximize the quality of the acquired

image by finding the most appropriate values for the colormetric parameters of a camera. An

efficient colormetric calibration of a camera should result in less noise in an image. We have

introduced an algorithm for the colormetric calibration of a camera that can work in real-time,

without affecting the global processing time of the vision system. This algorithm allows the

robots to play soccer outdoor, which is the main next goal of the RoboCup Soccer League. The

results that we have presented show that it is possible for the camera parameters to converge

to stable and optimal values, even when working in very dark or very bright environments.

Chapter 4 was dedicated to the algorithms developed for time-constrained color detection.

We have presented a flexible approach for scanning an image, that ensures the optimal com-

promise between the amount of information that is being processed and the processing time

spent. We have introduced as well several LUTs based on which complex operations can be

replaced by simple indexations. The use of LUTs further improves the processing time of the

global system. Blobs have been introduced as data structures and they can be seen as the

initial hypothesis of an object of interest. Given the geometry of an object of interest, differ-

ent measurements of the blobs have been presented and they are used for further refinement

of the valid candidates. All the algorithms that have been described have been merged into

a computer vision library. These algorithms can be used independently of each other or they

can be used as a whole, complementing each other towards solving a complex task, such is

the one of detecting objects of interest during a robotic soccer game.

The solutions that we have developed, based on the complementary use of these algorithms

have been presented in Chapter 5. We have presented a common structure of three kind of

robotic vision systems: an omni-directional one, a perspective one and a Kinect-based one

developed for the detection of aerial balls. The vision systems that we have presented have

112

proven their efficiency in several robotic competitions throughout the last years. With average

processing times under 10ms for images of 1024× 1024 pixels and detection rates very close

to 100%, these vision systems represent an effective contribution not just for the RoboCup

community, but to the computer vision and robotics fields in general, as well.

Furthermore, we discussed the performance of our approaches in Chapter 6. We provided

results of the algorithms for different image resolutions and we highlighted the effects of res-

olution, scanning pattern and number of scanned points on the object detection rates and

accuracy. We have compared our approach with two well-known computer vision algorithms

for colored object detection, which are supported by the OpenCV library. The results prove

that our solution outperforms the other two, both in terms of detection accuracy and process-

ing time for each of the tested resolutions. We have included results of the use of an IGEP v2

controller as main processing unit, in order to simulate a possible robotic system with lower

computing resources. These results showed that it is possible to use the complete software

pipeline at high frame rates on robotic platforms that are both affordable and reduced in size

and processing capabilities. Moreover, we have presented a study on the use of raw images

for object detection that proves that the detection efficiency is not compromised and that

the interpolation step of raw images is not compulsory for object detection. This study was

complemented with experiments on the use of raw and RGB images for the exploration of the

delay between perception and action of an intelligent autonomous robot.

Chapter 7 presented different tools that we have developed as further support of the

software used in soccer games. The first tool served as a study for the most appropriate color

space to be used for applications which involve human supervision and human recognition of

color. The second tool, in its two versions, is another significant contribution for the RoboCup

Soccer League. It is used for the manual or semi-automatic training of the colors of interest

and it is an approach widely used by this community. In addition, this tool can be used for

remote monitoring of the vision systems of the robots, in real-time, without interfering with

their normal flow of operations.

8.2 Future Work

There is always room to improve any research effort and this work is not an exception.

Towards the end of its development, several development directions have been identified and

are presented as follows:

• On the matter of colormetric calibration, the development of an autonomous procedure

for the detection of the white area would increase the autonomy of the algorithm. In

its current version, the algorithm uses a white area that is defined in advance for the

tuning of the white balance parameter. Using the approach of scan lines to search

for white areas that are always present in the image, without depending on their pre-

defined position, would turn the algorithm more autonomous and independent of prior

113

artifacts. However, this has a direct implication on the processing time of the calibration

algorithm. In addition, a solution for dealing with situations in which there is no white

information present in the captured images should be thoroughly designed.

• The scan patterns that have been implemented and used in this paper can be employed

for other types of search, different than color search. Transitions between intensities,

which lead to edge detection, can be found using scan lines. This approach can stand

at the basis of ball detection independently of its color, as a further application to the

domain of robotic soccer.

• In what concerns raw images, their use by the Computer Vision community has been

so far limited. We have proven that in terms of object detection, there are no negative

aspects when using the raw data directly. Moreover, we have shown that the delay

between perception and action in a robot can be reduced when processing directly the

raw images. In addition, we have conducted an initial study on the compression of raw

data, which shows that the raw data can be compressed in an efficient way. A further

study on the compression of such images could be of great importance for domains that

require remote monitoring or exchange of big amount of visual data between an agent

and a base station.

• Still on the subject of raw data, we have also conducted a set of initial experiments

on the use of the SURF [71] and SIFT [72] feature transforms directly on Color Filter

Array images. The results that we have obtained show that the use of these transforms

directly on raw data is similar to their use on grayscale images in terms of number and

quality of keypoints. We are interested in further continuing this research direction and

perform generic object detection on raw data.

8.3 Acknowledgements

This work was developed in the Institute of Electronics and Informatics Engineering of

University of Aveiro and was partially supported by FEDER through the Operational Pro-

gram Competitiveness Factors - COMPETE and by National Funds through FCT - Founda-

tion for Science and Technology in a context of a PhD Grant (FCT reference SFRH/BD/85855/2012)

and in the context of the projects UID/CEC/00127/2013 and Incentivo/EEI/UI0127/2014.

114

“There are two ways of con-

structing a software design: One

way is to make it so simple

that there are obviously no de-

ficiencies, and the other way is

to make it so complicated that

there are no obvious deficien-

cies. The first method is far

more difficult.”

Tony Hoare A
UAVision Library

Even though digital cameras are quite inexpensive nowadays, thus making artificial vision

an affordable and popular sensor in many applications, the research done in this field has still

many challenges to overcome. The main challenge when developing an artificial vision system

is to process all the information acquired by the sensors within the limit of the frame rate

and to decide in the smallest possible amount of time which of this information is relevant

for the completion of a given task.

This Appendix presents the UAVision library, a free, open source computer vision library

that resulted from the work accomplished during this Ph.D. The library aims at being a

complete collection of software for real-time color object detection. UAVision can be split into

several independent modules that will be presented in the following sections. The architecture

of the modules that make up this library is of the type “plug and play”, meaning that it offers

support for different digital cameras technologies and the software created using the library

can be shared among different types of cameras. Hence, the library is modular as each module

can be used independently as a link in an image processing chain or several modules can be

used for creating a complete pipeline of an artificial vision system.

This library has been developed taking into consideration time constraints. All the algo-

rithms behind it have been implemented focusing on maintaining the processing time as low

as possible and allowing the use of digital cameras at the maximum frame rates that their

hardware supports. In Autonomous Mobile Robotics, performing in “real-time” is a demand

of almost all applications. The main purpose of robots is to imitate humans and we, humans,

have the capacity of analysing the surrounding world in “real-time”. Even though there is

115

not a strict definition of real-time, almost always it refers to the amount of time elapsed

between the acquisition of two consecutive frames. Real-time processing means processing

the information captured by the digital cameras within the limits of the frame rate.

The UAVision library has been built using some of the features of the OpenCV library,

mostly data structures for image manipulation. Although a powerful tool for developers work-

ing in image processing, the OpenCV library does not provide all the necessary support for

implementing a complete robotic vision system from scratch. To name some of the contri-

butions of our library, it provides support for accessing different types of cameras using the

same interface, algorithms for camera calibration (colormetric, catadioptric and perspective

calibration) and the possibility of using image masks to process only relevant parts of the

image.

This Thesis aims at being an important contribution for the Computer Vision community

and it introduces a novel computer vision library, whose design focuses on maintaining a low

processing time, a common constraint of nowadays autonomous systems.

A.1 Image Acquisition Module

Three different camera technologies are currently supported and have been used in prac-

tical applications in order to prove the versatility of the proposed library and to exemplify

the range of options that an user has for implementing a vision system using the UAVision

library.

UAVision provides the necessary software for accessing and capturing images from three

different camera interfaces, so far: USB (including a Kinect1 sensor), Firewire and Ethernet

cameras. For this purpose, the Factory Design Pattern [73] has been used in the implemen-

tation of the Image Acquisition Module of the library. A factory called “Camera” has been

implemented and the user of the library can choose from these four different types of cameras

in the moment of the instantiation (Fig. A.1). This software module uses some of the basic

structures from the core functionality of OpenCV library: the Mat structure as a container

of the frames that are grabbed and the Point structure for the manipulation of points in 2D

and 3D coordinates. Images can be acquired in the YUV, RGB color format or as raw, Bayer

data. The library also provides software for accessing and capturing both color and depth

images from a Kinect sensor [74].

Apart from the Kinect sensor, the drivers for the following cameras have been implemented

and are currently supported:

• IDS UI-5240CP-C-HQ-50i Color CMOS 1/1.8 Gigabit Ehernet camera2.

1https://dev.windows.com/en-us/kinect
2https://en.ids-imaging.com/store/ui-5240cp.html

116

Figure A.1: Illustration of the Camera Factory pattern.

• Point Grey Flea3 FireWire camera3.

• Point Grey Zebra2 Ethernet camera4.

Apart from the image acquisition software, this module also supports methods for con-

verting images between the most used color spaces: RGB to HSV, HSV to RGB, RGB to

YUV, YUV to RGB, Bayer to RGB and RGB to Bayer (Fig. A.2).

Figure A.2: Image Acquisition Module.

A.2 Camera Calibration Module

The correct calibration of all the parameters related to a vision system is crucial in any

application. The Camera Calibration Module (Fig. A.3) includes algorithms for calibration

of the intrinsic and extrinsic camera parameters, the computation of the inverse distance

map, the calibration of the colormetric camera parameters and the detection and definition

of regions in the image that do not have to be processed. The process of the vision system

calibration handles four main blocks of information: camera settings, image mask, map and

color ranges.

3https://www.ptgrey.com/flea3-ieee-1394b-firewire-cameras
4https://www.ptgrey.com/zebra2-gige-vision-poe-hd-sdi-cameras

117

Figure A.3: Camera Calibration Module.

The camera settings block represents basic camera information. Among others, this in-

cludes: the resolution of the acquired image, the Region of Interest regarding the CCD or

CMOS of the camera and the colormetric parameters. This block is also designed following

the Factory Design Pattern (Fig. A.4).

Figure A.4: Illustration of the Camera Settings Factory pattern.

The image mask is a binary image representing the areas of the image that do not have to

be processed, since it is known a-priori that they do not contain relevant information. Using a

mask for marking non-interest region is an important approach especially when dealing with a

omni-directional vision system. These systems provide a 360◦of the surrounding environment

and that includes, most of the times, parts of the robot itself. By using a mask that allows

skipping the processing of certain regions, the processing time decreases significantly.

The map, as the name suggests, is a matrix that represents the mapping between pixel

coordinates and world coordinates for a specific plan. This mapping between the pixels of

the acquired image and real coordinates allows the vision system to characterize the objects

of interest, their position or size.

The color ranges block contains the color ranges for each color of interest (at most 8

different colors) in a specific color space (ex. RGB, YUV, HSV, etc.). In practical means, it

contains the lower and upper bounds of each one of the three color components for a specific

color of interest (Fig. A.6).

118

Figure A.5: Illustration of an image mask used with the omni-directional vision system. In

this particular case, only the red pixels will be processed at any time.

Figure A.6: Information contained by the color ranges block.

The Camera Calibration module of the library allows the storage of all of the information

contained in these four blocks in a binary or text configuration file that is presented in

Appendix B.

A.3 Color-coded Object Segmentation Module

The Color-Coded Object Segmentation Module is composed of three sub-modules that

are illustrated in Fig. A.7).

• Look-Up Table - For fast color classification, color classes are defined through the use

119

Figure A.7: Color Object Detection Module.

of a look-up table. A LUT represents a data structure, in this case an array, used for

replacing a runtime computation by a basic array indexing operation. This approach

has been chosen in order to save significant processing time. The images can be acquired

in the RGB, YUV or Bayer format and they are converted to an index image (image of

labels) using an appropriate LUT for each one of the three possibilities.

• Scan lines - To extract color information from the image we have implemented three

types of search lines, which we also call scan lines: radial, linear (horizontal or vertical)

and circular (Fig. A.8). They are constructed once, when the application starts, and

saved in a structure in order to improve the access to these pixels in the color extraction

module.

Figure A.8: Scan Lines Software Block.

• Run Length Encoding - For each scan line, an algorithm of run length encoding is

applied in order to obtain information about the existence of a specific color of interest

in that scan line. To do this, we iterate through its pixels to calculate the number of

runs of a specific color and the position where they occur. Moreover, we extended this

idea and it is optional to search, in a window before and after the occurrence of the

desired color, for the occurrence of other colors. This allows the user to determine both

color transitions and color occurrences using this approach. As a result of this module,

the user will obtain a list of positions in each scan line and, if needed, for all the scan

lines, where a specific color occurs, as well as the amount of pixels in each occurrence.

• Blob formation - To detect objects with a specific color in a scene, one has to detect

120

regions in the image of that color, usually designated as blobs. In order to construct

the blobs, we use information about the position where a specific color occurs based on

the Run Length Sub-module previously described. We iterate through all of the run

lengths of a specific color and we apply an algorithm of clustering based on Euclidean

distance.

A.4 TCP Communications Module

Figure A.9: TCP Communications Module.

Two of the major limitations that have to be considered when working with autonomous

robots are the energetic autonomy of the robot and its processing capacities. The broad

experience in autonomous robotics within our research group has pointed out the fact that

certain calibration tasks, that have to be performed prior to the functioning of a robot, might

require too much of the on board resources. Therefore, following the approach “divide and

conquer” a TCP Communications Module has been integrated within the library.

The TCP module (Fig. A.9) allows us to remotely communicate with a robot and distribute

some of the tasks that are solely related to calibration processes or real-time monitoring of the

performance of the robot. This module is particularly relevant when developing applications

for logging or monitoring, in which the robot performs autonomously and there is the need

of having a real-time remote logger/monitor.

This module allows the user to have a client and a server that can exchange information via

121

a TCP connection. The exchanged information is an image, with or without any annotated

information. Based on this module, the vision system that will run on a robot can act as a

server and an external application, the client, can request information from the server while

it is performing its regular task. By using threads, the communications with the client will

not affect the normal flow of operations on the server side. A tool for color calibration and

monitoring of the vision system has been developed and was presented in Chapter 7.

122

“Information is not knowledge.”

Albert Einstein

B
Structure of the Configuration File

Data Size (bytes)

File version 4

Existent camera settings flag 4

Existing color ranges flag 4

Existing map flag 4

Existing mask flag 4

Number of columns (nCols) 4

Number of rows (nRows) 4

CCD center column 4

CCD center row 4

Image center column 4

Image center row 4

CCD interior radius 4

CCD exterior radius 4

Frame rate 4

Video mode 4

Colour coding 4

Number of channels 4

Used camera flag 4

In-use camera flag 4

Map (vector of nRows*nCols of doubles) nCols*nRows*1

Mask (vector of nRows*nCols of unsigned chars) nCols*nRows*8

Color range (name - 64 chars, Hmin, Hmax, Smin, Smax, Vmin, Vmax) 9*92

Colourmetric parameter A 4

Colourmetric parameter B 4

... ...

Colourmetric parameter N 4

Table B.1: Meaning and size of the information that can be registered in a typical configura-

tion file. Colourmetric parameters from A to N depend on the type of camera and can be any

of the following, depending on what a given camera supports: exposure, brightness, shutter,

gain, saturation, white balance.

123

124

“The scientist is not a person

who gives the right answers, he

is one who asks the right ques-

tions.”

Claude-Levi Strausse

C
Color Classification Questionnaire

Each user of the colorSpaces tool, that was presented in Chapter 7 was asked to fill in

a questionnaire concerning his interaction this tool. The questions asked are presented as

follows, along with the averaged responses obtained from the users.

• Are you working in the area of computer vision/image processing?

The first question was relevant for the authors of the applications in order to establish a

connection between the performance time of each user and its background in a related field.

The subjects were mainly non experienced users, only 20% of them have had some experience

in this field. The users that were familiar to these issues, performed slightly faster (in average,

30 seconds faster).

• The notion of color spaces was familiar to you at the beginning of this test?

All users replied that they were aware of the definition of a color space. However, most

of them were not familiar with the characteristics of each color space. The tool has a “Help

me!” button which allows the user to choose a color space and the geometrical representation

of the color spaces will be displayed in a separate window, similar to the ones presented in

Section 3.2.

• Do you think that some of the color spaces were more intuitive to use, than the others?

If yes, which ones were easier to use?

65% of the users’ first choice was YUV, followed by HSL. In opposition to this, RGB was

the more difficult one for all the users.

• Do you think that some of the colors that you had to classify were more intuitive to

classify than others? If yes, which ones?

125

85% of the users answered that white, black and the RGB primary colors were easier to

classify that the rest.

126

“Talk is cheap. Show me the

code”

Linus Torvalds

D
Software Arguments

All the software implemented during this Ph.D. is free and open source [75]. We detail

here the commands for running any of the vision systems that have been developed, as well

as all of their optional arguments. The software was implemented in C++ and runs under

Ubuntu 14.04 LTS Trusty Thar.

D.1 Omni-directional Vision System

The command for running the software behind the omni-directional vision system is:

./omniVision -cf configFileName,

where configF ileName represents the name of the configuration file to be used.

Other optional arguments that can be used are:

-h (help)

-nodisp (do not show image)

-server (accept connections from a client)

-debug (show visual debug information on the image)

-v (verbose)

127

-port # (port number when in server mode)

-load "fileToLoad" (load a video file)

-save "fileToSave" (save a video file)

-loop (play video file in loop mode)

-fs (full size display)

-bayer (acquire images in the bayer format)

-rgb (acquire images in RGB format; used by default)

-ball # (the color of the object of interest: 1 - orange 2 - yellow 3 - magenta

4 - cyan 5 - blue; if nothing is specified, orange is considered by default)

-cam # (camera type: 0 - Ethernet, 1 - USB, 2 - Firewire)

-ncf "newConfigFileName" (create a default configuration file for the type

of camera chosen)

-ns # (number of radial scan lines)

-step # (intra-scan line sparsity)

-p "polynomialFile" (load a file that contains the coefficients

of the size-distance function of the object of interest)

-v (verbose mode)

-tv (time verbose mode)

When the vision software runs in display and debug mode (./omniVision -debug), the

following keys can be used:

1 - display the original image

2 - display the "index" image (grayscale)

3 - display the color segmented image (RGB)

4 - display the "reality of the robot" image (RGB)

p - pause image

f - freeze image

g - every hit on the g key displays only a frame

a - start the colormetric auto-calibration of the camera

d - display debug information on the original image

s - save the current image to the disk

u - update the configuration file

h - display the help manual on the original image

q - quit

128

D.2 Perspective Vision System

The command for running the software behind the perspective vision system is:

./frontVision -cf configFileName,

where configF ileName represents the name of the configuration file to be used. The

software expects the following file ../config/frontParams.xml that contain the intrinsic

and extrinsic coefficients of the camera, that resulted from the process of camera calibration

and that are needed for the triangulation process.

Other optional arguments that can be used are:

-h (help)

-nodisp (do not show image)

-server (accept connections from a client)

-debug (shows visual debug information on the image)

-v (verbose)

-port # (port number when in server mode)

-load "fileToLoad" (load a video file)

-save "fileToSave" (save a video file)

-loop (play video file in loop mode)

-bayer (acquire images in the bayer format)

-rgb (acquire images in RGB format; used by default)

-fs (full size display)

-ball # (the color of the object of interest: 1 - orange 2 - yellow 3 - magenta

4 - cyan 5 - blue; if nothing is specified, orange is considered by default)

-cam # (camera type: 0 - Ethernet, 1 - USB, 2 - Firewire)

-ncf "newConfigFileName" (create a default configuration file for the type

of camera chosen)

-step1 # (inter-scan line sparsity)

-step2 # (intra-scan line sparsity)

-p "polynomialFile" (load a file that contains the coefficients

of the size-distance function of the object of interest)

-v (verbose mode)

-tv (time verbose mode)

When the vision software runs in display and debug mode (./frontVision -debug), the

following keys can be used:

129

1 - display the original image

2 - display the "index" image (grayscale)

3 - display the color segmented image (RGB)

4 - display the "reality of the robot" image (RGB)

p - pause image

f - freeze image

g - every hit on the g key displays only a frame.

a - start the colormetric auto-calibration of the camera

d - display debug information on the original image

s - save the current image to the disk

u - update the configuration file

h - display the help information on the original image

q - quit.

D.3 Kinect-based Vision System

The command for running the software of the Kinect-based vision system is:

./kinectVision -cf configFileName,

where configF ileName represents the name of the configuration file to be used. The soft-

ware expects the following file ../config/KinectOnBoard.xml that contains the calibration

parameters of the Kinect camera.

Other optional arguments that can be used are:

-h (help)

-nodisp (do not show image)

-server (accept connections a client)

-debug (shows visual debug information on the image)

-v (verbose)

-port # (port number when in server mode)

-load "fileToLoad" (load a video file)

-save "fileToSave" (save a video file)

-loop (play video file in loop mode)

-ball # (the color of the object of interest: 1 - orange 2 - yellow 3 - magenta

130

4 - cyan 5 - blue; if nothing is specified, orange is considered by default)

-ncf "newConfigFileName" (create a default configuration file)

-step1 # (inter-scan line sparsity)

-step2 # (intra-scan line sparsity)

-p "polynomialFile" (load a file that contains the coefficients

of the size-distance function of the object of interest)

-v (verbose mode)

-tv (time verbose mode)

When the vision software runs in display and debug mode (./kinectVision -debug), the

following keys can be used:

1 - show the original image

2 - show the "index" image (grayscale)

3 - show the color segmented image (RGB)

4 - show the "reality of the robot" image (RGB)

p - pause image

f - freeze image

g - every hit on the g key displays only a frame

d - display debug information on the original image

s - save the current image to the disk

u - update the configuration file

h - display the help information on the original image

q - quit

D.4 calibVision Tool

When any of the previous vision systems work in server mode, a remote client called

calibVision can connect to this server with two different purposes:

• Remote color calibration;

• Receive information in real time about what a robot is seeing.

calibVision can be run as follows:

./calibVision -addr # -port $

131

where # represents the IP address of the server and $ the port number.

Other command line arguments that can be used:

-h (help)

-mask # (filename with a mask)

The following key interactions are supported:

i - request an image from the server

c - request the color ranges from the server

m - receive the mask from the server

x - receive the camera settings from the server

y - the trackbars and HSV histogram pop up

C - send the color ranges to the server

M - send the mask to the server

X - send the camera settings to the server

a - start the auto-calibration of the camera settings on the server side

e - manual calibration of the camera settings using sliders

h - opens the help menu in a different window

q - quit

132

Bibliography

[1] Shannon Fenn, Alexandre Mendes, and David Budden. Addressing the non-functional

requirements of computer vision systems: A case study. CoRR, abs/1410.8623, 2014.

[2] Claudia Gönner, Martin Rous, and Karl F. Kraiss. Real-Time Adaptive Colour Segmen-

tation for the RoboCup Middle Size League. In Proceedings of RoboCup 2004: Robot

Soccer World Cup VIII, volume 3276, pages 402–409, Lisbon, Portugal, June 2005.

[3] Matthias Jngel, Jan Hoffmann, and Martin Ltzsch. A real-time auto-adjusting vision

system for robotic soccer. In Daniel Polani, Andrea Bonarini, Brett Browning, and

Kazuo Yoshida, editors, 7th International Workshop on RoboCup 2003 (Robot World

Cup Soccer Games and Conferences), volume 3020, pages 214–225. Springer, 2004.

[4] Yasutake Takahashi, Walter Nowak, Thomas Wisspeintner, Yasutake Takahashi, Walter

Nowak, and Thomas Wisspeintner. Adaptive Recognition of Color-Coded Objects in

Indoor and Outdoor Environments RoboCup 2007: Robot Soccer World Cup XI. In

Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, Frank Dellaert, Ubbo Visser, Fernando

Ribeiro, Takeshi Ohashi, and Frank Dellaert, editors, RoboCup 2007: Robot Soccer World

Cup XI, volume 5001 of Lecture Notes in Computer Science, chapter 6, pages 65–76.

Springer Berlin / Heidelberg, 2008.

[5] Patricio Loncomilla and Javier Ruiz del Solar. Robust object recognition using wide

baseline matching for robocup applications. In Ubbo Visser, Fernando Ribeiro, Takeshi

Ohashi, and Frank Dellaert, editors, RoboCup, volume 5001 of Lecture Notes in Computer

Science. Springer, 2007.

[6] H. Lu, H. Zhang, and Z. Zheng. Arbitrary ball recognition based on omni-directional

vision for soccer robots. In Proc. of RoboCup 2008, 2008.

[7] E. R. Davies. Machine Vision - Theory, Algorithms, Practicalities. Elsevier, 3 edition,

2005.

[8] King Sun Fu, R. C. Gonzalez, and C. S. G. Lee, editors. Robotics: Control, Sensing,

Vision, and Intelligence. McGraw-Hill, Inc., New York, NY, USA, 1987.

133

[9] A. J. R. Neves, G. Corrente, and A. J. Pinho. An omnidirectional vision system for

soccer robots. In Proc. of the EPIA 2007, volume 4874 of Lecture Notes in Artificial

Inteligence, pages 499–507. Springer, 2007.

[10] USA DEPARTMENT OF DEFENSE. Technology readiness assessment (tra) guidance,

2011.

[11] Aldebaran Robotics official website. http://www.aldebaran-robotics.com, 2014. Last

visited - September, 2014.

[12] Z. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso. SSL-Vision: The Shared

Vision System for the RoboCup Small Size League. RoboCup 2011, Istanbul, Turkey,

2011.

[13] A. J. R Neves, L. P. Reis, and A. Sousa. Real-time vision in the robocup - robotic

soccer international competitions. In Proc. of the ECCOMAS Thematic Conference on

Computational Vision and Medical Image Processing, VIPImage 2009, October 2009.

[14] Antonio J. R. Neves, Armando J. Pinho, Daniel A. Martins, and Bernardo Cunha. An

efficient omnidirectional vision system for soccer robots: from calibration to object de-

tection. Mechatronics, 21(2):399–410, mar 2011.

[15] CMVision. http://www.cs.cmu.edu/~jbruce/cmvision/, 2014. Last visited - Septem-

ber, 2014.

[16] Adaptive Vision. https://www.adaptive-vision.com/en/home/, 2014. Last visited -

September, 2014.

[17] CCV. http://libccv.org/, 2014. Last visited - September, 2014.

[18] Roborealm. http://www.roborealm.com/index.php, 2014. Last visited - September,

2014.

[19] Brett Browning and Manuela M. Veloso. Real-time, adaptive color-based robot vision.

In IROS, pages 3871–3876. IEEE, 2005.

[20] Thomas Bayes. An essay towards solving a problem in the doctrine of chances. by the

late rev. mr. bayes, f. r. s. communicated by mr. price, in a letter to john canton, m. a.

and f. r. s. Philosophical Transactions of the Royal Society, 53:370–418, 1763.

[21] Paul Hough. Methods and means for recognizing complex patterns. 1962.

[22] R.O. Duda and P.E. Hart. Use of the hough transformation to detect lines and curves

in pictures. Technical Report 36, AI Center, SRI International, Apr 1971. SRI Project

8259 Comm. ACM, Vol 15, No. 1.

134

http://www.aldebaran-robotics.com
http://www.cs.cmu.edu/~jbruce/cmvision/
https://www.adaptive-vision.com/en/home/
http://libccv.org/
http://www.roborealm.com/index.php

[23] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes. In M. A.

Fischler and O. Firschein, editors, Readings in Computer Vision: Issues, Problems, Prin-

ciples, and Paradigms, pages 714–725. Kaufmann, Los Altos, CA., 1987.

[24] Ketill Gunnarsson, Fabian Wiesel, and Ral Rojas. The color and the shape: Automatic

on-line color calibration for autonomous robots. In Ansgar Bredenfeld, Adam Jacoff,

Itsuki Noda, and Yasutake Takahashi, editors, RoboCup, volume 4020 of Lecture Notes

in Computer Science, pages 347–358. Springer, 2005.

[25] Stan Z. Li. Markov Random Field Modeling in Image Analysis. Springer Publishing

Company, Incorporated, 3rd edition, 2009.

[26] H. Lu, Z. Zheng, F. Liu, and X. Wang. A robust object recognition method for soccer

robots. In Proc. of the 7th World Congress on Intelligent Control and Automation,

Chongqing, China, June 2008.

[27] Juan Fasola and Manuela M. Veloso. Real-time object detection using segmented and

grayscale images. In ICRA, pages 4088–4093. IEEE, 2006.

[28] Mansour Jamzad, Abbas Hadjkhodabakhshi, and Vahab Mirrokni. Object detection and

localization using omnidirectional vision in the robocup environment. Scientia Iranica,

14(6):599611, 2007.

[29] Francisco Martin and Manuela Veloso. Effective real-time visual object detection.

Progress in Artificial Intelligence, 1(4):259–265, 2012.

[30] Ricardo Dodds, Luca Iocchi, Pablo Guerrero, and Javier Ruiz-del Solar. Benchmarks for

robotic soccer vision. In Thomas Rfer, N.Michael Mayer, Jesus Savage, and Uluc Saranl,

editors, RoboCup 2011: Robot Soccer World Cup XV, volume 7416 of Lecture Notes in

Computer Science, pages 427–439. Springer Berlin Heidelberg, 2012.

[31] OpenCV. http://docs.opencv.org, 2014. Last visited - September, 2014.

[32] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-Wesley

Longman Publishing Co., 2 edition, 2001.

[33] G.D. Hastings and A. Rubin. Colour spaces - a review of historic and modern colour

models. The South African Optometrist, 71:133–143, 2012.

[34] G.W. Meyer and D.P. Greenberg. Perceptual color spaces for computer graphics. Com-

puter Graphics, 14:254–261, 2012.

[35] George H. Joblove and Donald Greenberg. Color spaces for computer graphics. In Pro-

ceedings of the 5th annual conference on Computer Graphics and Interactive Techniques,

pages 20–25, 1978.

135

http://docs.opencv.org

[36] T. Acharya and A. Ray. Image Processing: Principles and Applications. Wiley New

York, 2005.

[37] B.E. Bayer. Color imaging array, July 20 1976. US Patent 3,971,065.

[38] Gary Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly, first edition, September

2008.

[39] M. Tkalcic and J. F. Tasic. Color spaces - perceptual, historical and application back-

ground. The IEEE Region 8 EUROCON 2003, 1:304–308, 2003.

[40] P. Heinemann, F. Sehnke, Felix S., and A. Zell. Towards a calibration-free robot: The

act algorithm for automatic online color training. pages 363–370, 2007.

[41] Yasutake Takahashi, Walter Nowak, and Thomas Wisspeintner. Adaptive recognition of

color-coded objects in indoor and outdoor environments. In RoboCup 2007: Robot Soccer

World Cup XI, Lecture Notes in Artificial Intelligence. Springer, 2007.

[42] G. Krawczyk, M. Goesele, and H Seidel. Photometric calibration of high dynamic

range cameras. Research Report MPI-I-2005-4-005, Max-Planck-Institut für Informatik,

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, April 2005.

[43] M. V. Shirvaikar. An optimal measure for camera focus and exposure. In Proc. of the

IEEE Southeastern Symposium on System Theory, Atlanta, USA, March 2004.

[44] Navid Nourani-Vatani and Jonathan Roberts. Automatic camera exposure control. In

Proc. of the 2007 Australasian Conference on Robotics and Automation, Brisbane, Aus-

tralia, December 2007.

[45] K. J. AAström and T. Hägglund. PID Controllers: Theory, Design, and Tuning. Instru-

ment Society of America, Research Triangle Park, NC, 2 edition, 1995.

[46] Gerd Mayer, Hans Utz, and Gerhard K. Kraetzschmar. Playing robot soccer under

natural light: A case study. In In 7th International Workshop on RoboCup 2003 (Robot

World Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelligence,

pages 238–249. Springer, 2004.

[47] B. Cunha, J. L. Azevedo, N. Lau, and L. Almeida. Obtaining the inverse distance map

from a non-svp hyperbolic catadioptric robotic vision system. In Proc. of the RoboCup

2007, Atlanta, USA, 2007.

[48] Zhengyou Zhang. Flexible camera calibration by viewing a plane from unknown orien-

tations. In in ICCV, pages 666–673, 1999.

[49] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach. Prentice

Hall, 1 edition, August 2002.

136

[50] Paul Beardsley, David Murray, and Andrew Zisserman. Camera calibration using mul-

tiple images. In G. Sandini, editor, Computer Vision ECCV’92, volume 588 of Lecture

Notes in Computer Science, pages 312–320. Springer Berlin Heidelberg, 1992.

[51] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Trans. Pattern

Anal. Mach. Intell., 22(11):1330–1334, November 2000.

[52] Adrian Kaehler and Bradski Gary. Learning OpenCV. O’Reilly Media, 2013.

[53] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems

Journal, 4(1):25–30, 1965.

[54] Jack Bresenham. A linear algorithm for incremental digital display of circular arcs.

Commun. ACM, 20(2):100–106, 1977.

[55] Junichi Nakamura. Image Sensors and Signal Processing for Digital Still Cameras. CRC

Press, Inc., Boca Raton, FL, USA, 2005.

[56] Ron Kimmel. Demosaicing: image reconstruction from color ccd samples. IEEE Trans-

actions on Image Processing, 1999.

[57] Henrique S. Malvar, Li wei He, and Ross Cutler. High-quality linear interpolation for

demosaicing of bayer-patterned color images. In Proceedings of the IEEE International

Conference on Speech, Acoustics, and Signal Processing, 2004.

[58] E. Chang, S. Cheung, and D. Y. Pan. Color filter array recovery using a threshold-based

variable number of gradients. In Proceedings of SPIE, volume 3650, page 36, 1999.

[59] Lanlan Chang and Yap-Peng Tan. Hybrid color filter array demosaicking for effective

artifact suppression. J. Electronic Imaging, 15(1):013003, 2006.

[60] Keigo Hirakawa, Student Member, and Thomas W. Parks. Adaptive homogeneity-

directed demosaicing algorithm. IEEE Trans. Image Processing, 14:360–369, 2005.

[61] A. Neves, J. Azevedo, N. Lau B. Cunha, J. Silva, F. Santos, G. Corrente, D. A. Martins,

N. Figueiredo, A. Pereira, L. Almeida, L. S. Lopes, and P. Pedreiras. CAMBADA soccer

team: from robot architecture to multiagent coordination, chapter 2. I-Tech Education

and Publishing, Vienna, Austria, In Vladan Papic (Ed.), Robot Soccer, 2010.

[62] IDS. https://en.ids-imaging.com, 2014. Last visited - September, 2014.

[63] Paulo Dias, Joo Silva, Rafael Castro, and Antonio J. R. Neves. Detection of aerial balls

using a Kinect sensor. In RoboCup 2014 Symposium, Joao Pessoa, Brazil, July 25 2014.

[64] A. Trifan, A. J. R. Neves, B. Cunha, and N. Lau. A modular real-time vision system for

humanoid robots. In Proceedings of SPIE IS&T Electronic Imaging 2012, January 2012.

137

https://en.ids-imaging.com

[65] A. Trifan, A. J. R. Neves, B. Cunha, and N. Lau. A color-coded real-time vision system

for a nao humanoid robot. In Procedings of the 17th Portuguese Conference on Pattern

Recognition, RecPad 2011, October 2011.

[66] J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(6), November 1986.

[67] Jos B.T.M. Roerdink and Arnold Meijster. The watershed transform: Definitions, algo-

rithms and parallelization strategies. Fundam. Inf., 41(1,2):187–228, April 2000.

[68] A. Trifan, A. J. R. Neves, B. Cunha, and J. L. Azevedo. Uavision: a modular time-

constrained library for soccer robots. In Proc. of RoboCup 2014, 2014.

[69] Antonio J. R. Neves, Alina Trifan, and Bernardo Cunha. Self-calibration of colormetric

parameters in vision systems for autonomous soccer robots. In Sven Behnke, Manuela M.

Veloso, Arnaud Visser, and Rong Xiong, editors, RoboCup 2013: Robot Soccer World Cup

XVII, volume 8371 of Lecture Notes in Computer Science, pages 183–194. Springer, 2014.

[70] M. Petrou and P. Bosdogianni. Image Processing the Fundamentals. Wiley, 2004.

[71] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. Computer

Vision and Image Understanding (CVIU), 110(4):346–359, 2008.

[72] D. G. Lowe. Object recognition from local scale-invariant features. In Proc. of the

International Conference on Computer Vision, September 1999.

[73] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1995.

[74] Microsoft Kinect official website. http://www.microsoft.com/en-us/

kinectforwindows/, 2014. Last visited - September, 2014.

[75] UAVision. http://sweet.ua.pt/an/uavision/, 2015. Last visited - November 2015.

138

http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
http://sweet.ua.pt/an/uavision/

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	CAMBADA Robotic Soccer Team

	Research Goals and Achievements
	Scientific Contributions
	Software Releases
	Scientific Publications

	Thesis Structure

	Vision Systems in Autonomous Mobile Robots
	The RoboCup Initiative
	The Middle Size League
	Vision Systems in Autonomous Mobile Robots

	Vision System Calibration
	Color Spaces
	Conversions Between Color Spaces

	Color Classification Under Different Color Spaces
	Colormetric Calibration of a Digital Camera
	Colormetric Parameters of a Camera
	Proposed Algorithm
	Experimental Results

	Calibration of Intrinsic and Extrinsic Camera Parameters
	Pinhole Camera Model

	Colored Object Detection
	Scan Lines
	Look-Up Tables
	Color Classification LUT
	Image Conversion LUT

	Run Length Encoding
	Colored Blobs

	Applications
	Omni-directional Vision System
	Perspective Vision System
	Kinect-based Vision System
	Color Filtering Using Depth Information

	Performance Evaluation
	Colored Object Detection Performance Evaluation
	Scan Lines Performance Evaluation
	Performance Evaluation on Different Image Resolutions

	Delay Measurements between Perception and Action
	Measuring Setup
	Delay Measurements
	Detection Performance on Raw Images

	Tools
	colorSpaces Tool
	calibVision Tool
	GUICalib Tool

	Conclusions and Future Work
	Conclusions and Discussion
	Future Work
	Acknowledgements

	UAVision Library
	Image Acquisition Module
	Camera Calibration Module
	Color-coded Object Segmentation Module
	TCP Communications Module

	Structure of the Configuration File
	Color Classification Questionnaire
	Software Arguments
	Omni-directional Vision System
	Perspective Vision System
	Kinect-based Vision System
	calibVision Tool

	Bibliography

