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Abstract

In this paper we study the multidimensional time fractional diffusion-wave equation where the time
fractional derivative is in the Caputo sense with order 8 €]0,2]. Applying operational techniques via Fourier
and Mellin transforms we obtain an integral representation of the fundamental solution (FS) of the time
fractional diffusion-wave operator. Series representations of the F'S are explicitly obtained for any dimension.
From these we derive the FS for the time fractional parabolic Dirac operator in the form of integral and
series representation. Fractional moments of arbitrary order v > 0 are also computed. To illustrate our
results we present and discuss some plots of the FS for some particular values of the dimension and of the
fractional parameter.
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1 Introduction

Fractional diffusion-wave equations are obtained from the standard diffusion and wave equations by replacing
time and/or space derivatives by a fractional derivative of order § €]0,2], for example, Riemann-Liouville,
Weyl, Caputo, Riesz, or Riesz-Feller, just to mention some of the most used types of fractional derivatives. The
introduction of fractional derivatives allows to represent the physical reality more accurately by introducing a
memory mechanism in the process (see [2]). These equations represent anomalous diffusion (0 < 8 < 1) or
anomalous wave propagation (1 < § < 2) and have been studied over the last years by several authors. Just to
clarify, an anomalous diffusion propagation process corresponds to a propagation process that does not follow
Gaussian statistics on long time intervals.

In the one dimensional case, solutions of time and/or space fractional diffusion-wave equations have been
constructed and studied comprehensively in several papers (see, for example, [7, 19,20, 23, 25-27, 30, 34] and
the references therein indicated). The fundamental solution (FS) of the time fractional diffusion-wave equation
represents a slow diffusion process for 0 < # < 1 whereas for 1 < 8 < 2 it represents a wave diffusion faster
than the Gaussian diffusion. This gives a unification of diffusion and wave propagation phenomena. One of the
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first works in this direction was made by Wyss in [34]. Here the author obtained the FS of the one dimensional
time fractional diffusion equation in the form of Fox H-functions. In [7] the author studied independently the
fractional diffusion-wave equation, obtaining not only a representation for the FS but also additional properties
of it. In [27] the F'S for the Cauchy and Signalling problems associated to the time fractional diffusion-wave
equation were expressed in terms of entire functions of Wright type. In [25] it was showed that the FS obtained
in [27] can be interpreted as a spatial probability density function evolving in time with similarity properties.
In [19,20,23,26] the authors studied and obtained the FS for more general equations where both space and time
derivatives are fractional.

For the multidimensional case there are some works in this direction (see e.g. [11,12,18,30]). In [30] a closed
form of the FS in terms of Fox H-functions was obtained and some of their properties were studied. In [11,12,18]
multidimensional time-fractional and space-time fractional diffusion-wave equations were investigated. However,
in these works a generic series representation for the FS in an arbitrary dimension was not obtained. In [11,12]
there are only integral representations for the FS and in [18] series representations were obtained up to dimension
3 for the neutral fractional wave equation. Furthermore, a representation of the FS in the form of an absolute
convergent series enables us to handle these functions in an easier way and to apply them in approximations.

In this paper we obtain explicitly integral and series representations for the F'S of the diffusion-wave equation,
for an arbitrary dimension. The computations are much more involved and the series representations obtained
depend on the parity of the dimension. In connection with the time fractional diffusion-wave operator we also
with a fractional derivative of order 8 €]0,2] in time, written using a Witt basis. This operator factorizes the
time fractional diffusion-wave operator. Hence, its solutions can be seen as a refinement of the solutions of the
time fractional diffusion-wave operator. We also obtain the FS of the time fractional parabolic Dirac operator
for an arbitrary dimension. This opens new possibilities for the development of a fractional function theory
for this operator in the context of Clifford analysis and the study, e.g., of the fractional Schrodinger equation.
For the integer case 8 = 1 the parabolic Dirac operator was proposed in [4] using a Clifford algebra approach
to study the time-dependent Navier-Stokes equation. This allowed a successful adaptation of already existent
techniques in elliptic function theory (see [10]) to non-stationary problems in time-varying domains (see for
example [3,17,33]). The geometric nature of Clifford algebras allows the resolution of PDEs using the geometric
properties of the domain where the differential operator acts (see [4]). Connections between Clifford analysis
and fractional calculus were recently established in [6,14,32] in the study of the stationary fractional Dirac
operator.

The structure of the papers reads as follows: in the preliminaries section we recall some basic concepts about
Clifford analysis, Witt basis, fractional calculus, special functions and integral transforms. In Sections 3 and 4
we construct integral and series representations for the FS of the time fractional diffusion-wave operator and
the time fractional parabolic Dirac operator in R™ x R¥, respectively. These representations depend on the
parity of the space dimension. The particular cases of 5 = 0,1, 2 are discussed in Section 5. Fractional moments
of arbitrary order v > 0 are computed in Section 6 for the FS of the time fractional diffusion-wave operator.
Finally, in Sections 7 and 8 we present and discuss some plots of the F'S obtained in Sections 3 and 4.

2 Preliminaries

2.1 Clifford analysis

We consider the n-dimensional vector space R™ endowed with an orthonormal basis {e1,- - , ey }. The universal

real Clifford algebra C¥y ,, is defined as the 2"-dimensional associative algebra which obeys the multiplication
rule

eiej+eje; =—20;5, i4,j=1,...,n. (1)

A vector space basis for Cly,, is generated by the elements e = 1 and eq = ep, ---ep,, where A =

{h1,...;hxg} C M ={1,...,n}, for 1 < h; <--- < h < n. Each element 2 € Cl, can be represented by
x =) xae4, with x4 € R. The Clifford conjugation is defined by T = )" , x4€4, where €4 =€, - - -€5,, and
€; = —ej, for j =1,...,n, and €y = eg = 1. We introduce the complexified Clifford algebra C,, as the tensor



product

( \
Cpi=C® Clon = {wZZwAeA, wa GC,ACM},
A

where the imaginary unit ¢ of C commutes with the basis elements, i.e., ie; = e;i for all j = 1,...,n. To avoid
ambiguities with the Clifford conjugation, we denote the complex conjugation by f, in the sense that for a
complex scalar wyq = a4 +iby we have that wﬁl = a4 —iba. The complex conjugation can be extended linearly
to whole of the Clifford algebra and leaves the elements e; invariant, i.e., eg. =e¢; forall j =1,...,n. We also
have a pseudonorm on C,, defined by |w| := )" , [wa| where w = " , waea. Notice also that for a,b € C,, we
only have |ab| < 2"|al[b].

A C,-valued function defined on an open set U C R™ has the representation f = )" , faea with C-valued
components f4. Properties such as continuity and differentiability need to be understood componentwise. Next,
we introduce the Euclidean Dirac operator D, = Z:':l €;0z,, which factorizes the n-dimensional Euclidean
Laplacian, i.e., D2 = —A = — %" 92 . A Clifford valued C'-function f is called left-monogenic if it satisfies
D, f=0o0nU (resp. right-monogenic if it satisfies fD, =0 on U).

In order to define the parabolic Dirac operator we need to introduce a Witt basis. We start considering the
embedding of R™ into R"™ and two new elements e and e_ such that 3 = +1, % = —1,and eye_ = —e_ey.
Moreover, e4 and e_ anticommute with all the basis elements e;, i = 1,...,n. Hence, {e1,...,en, €4, e_} spans
R™*tH1 With the elements ey and e_ we construct two nilpotent elements f and fi given by

f=S " and FT:—6++6_.
' 2 ' 2
These elements satisfy the following relations
1> =@G"=0,  §i+if=1 Jetef=fletefl =0,5=1....n (2)

The extended basis {eq,...,en,f, fT} allow us to define the parabolic Dirac operator as D, ; := Dy + f0: + fT,
where D, stands for the Dirac operator in R". The operator D, acts on C,-valued functions defined on
time dependent domains Q x I C R™ x R™, i.e., functions in the variables (z1,®s,...,Zn,t) where z; € R for
i=1,...,n, and t € R*. For the sake of readability, we abbreviate the space-time tuple (x1,x2,...,Tn,t)
simply by (z,t), assigning « = x1e1 + --- + zpe,. For additional details on Clifford analysis, we refer the
interested reader for instance to [4,5,10, 33].

2.2 Integral and Integro/differential operators and special functions
2.2.1 Integral and integro/differential operators

For a locally integrable function f on R™, the multidimensional Fourier transform of f is the function defined
by the integral

(FH0) = Fik) = [ e f@) da. Q
where z, k € R™ and k - x denotes the usual inner product in R™. For a differential operator 8511”—1:# of order
o =|a|:=aq + ...+ a, we have the following relation between differentiation and the Fourier transform (3):

S = ) " ),
where £ := k(" - ...+ k%". In particular, for the Laplace operator A = Y7 | (?TZ we have
Af(r) = () (5] + ...+ K7) f(w) = =|s]* F(r). (4)

Another integral transform that we use in this work is the Mellin transform. For f locally integrable on 0, co]
it is defined by

+oo
M{f}(s) = / 2 f(@) do, s =+, (5)



and the inverse Mellin transform is given by
‘Y—Hoo
fl@) = M7 f(s)H / Sds, t>0, v=Re(s). (6)
Jy—

The condition for the existence of (6) is that —p < v < —¢ (called the fundamental strip), where p, ¢, are the
order of f at the origin and oo, respectively. The integration in (6) is performed along the imaginary axis and
the result does not depend on the choice of v inside the fundamental strip. For more information about this
transform and its properties, see e.g. [28]. The Mellin convolution between two functions is defined by

xT

G @= [ 7(2) o 2. )

u

and satisfies the Mellin convolution Theorem (see formula (8.4.1.2) in [28])
MAfxm g} (s) = M{f}(s) M{g}(s). (8)

Finally, we recall the definition of the Caputo fractional derivative €9/ of order 8 > 0 (see [15])

1 M (w)
1) () = / d —[Bl+1, t>0 9
('5) 0= tor—p | owp o m=lTL >0, ©)
where [3] means the integer part of 3. For § = n € N, the Caputo fractional derivative coincides with the
standard derivative of order n. Of importance use in this paper is the Caputo fractional derivative of the power
function which is given by

I'(k+1) (kB
Pth =S TA+k—pB) .
0, n—1l<pB<n, k<n—-1, keR

, n—1<fB<n, k>n—-1, keR

2.2.2 Special Functions

In this subsection we present some special functions used in this paper and some of their properties. We start
with the Gamma function (see [1]), which is defined by the following integral

[roo
I'(z) = /0 t* et dt, Re(z) > 0,

and satisfies the following equalities:

I'(z+n)=(2), I'(2), neNy (11)
(=D)" I'(z)
I'(z—n)= 12
(z—n) T n € Ny (12)
. 1\ 21722 /7 I(22) 3
*2) e 1)
T
I'(z) T'(-2) = 14
(2) T(==) z sin(7z) (14)
o ul (15)
\2 ) ~ cos(mz) I' (2 +2)°
For the poles of the Gamma function we have the following relation
1)k
ress—_pI'(s) = (1) , keZg. (16)

k!

One important special function in fractional calculus is the one-parametric Mittag-Leffler function E, (see [8]),
which is defined in terms of the power series by

oo Zn
fu— —_— . 1
nEZOF(an+1), aeC, zeC (17)



In particular, for o« € R it is an entire function. For some particular values of o we obtain some elementary

functions:
1
Ey(+2) = et Eo(—2%) = cos(2), Es(2?) = cosh(z), Ey(+2) = , 2zl < 1.
1Fz
For 0 < o < 2,p€Z*, and § € |22, min{r, ma}| we have the following asymptotic formula
P -
_1—
—;m‘FO(M ), |z| = 400, 0 <|arg(z)| <. (18)
The Mellin transform of E,, is given by (see formula (8.4.51.7) in [28] with p =1 and p = 1)
I(s) T'(1—s)
E — ;) = — 2 5 1. ]-
M{E.(—2)}(s) T —as) O<a<2, 0<R(s)< (19)

Another special function with an important role in fractional calcuius is the Wright function W, g (see [9])
which is defined as the convergent series

o0 n
z
Wa = - -1, R.
#(2) Z I(an + B) n! «- be
n=0
For some particular values of o and 8 we get some elementary functions:

z 22 22 -2 22
W—%,O(_Z) = m exp <—Z> , W_%V_%(—Z) = m exp <—Z> y (20)

1 22 (22 —6)z 22
W_%’%(—Z) = ﬁ exXp <—Z> , W_%’_l(—z) = W exp <—Z> . (21)

R - o L N N I AP LA .
Ju(Z) T oo a5 =13 Lo+l | = (£2)
\b—'_l/—'_l) i \N&/ \N&L/ \ “G4 /

The Mellin transform of the Bessel function is given by (see formula (8.4.19.2) in [28])

M {Jy <%> } (s) = % —g <R(s) < 7. (23)

The FS obtained in this paper can be represented in terms of Fox H-functions and Fox-Wright functions. The

AN

Fox H-function H,"." is defined via a Mellin-Barnes type integral in the form (see [16])
(a1, a1),...,(ap, I'(b; + PPl —a; — s
v ) — / Bis) 1y T — ai — cus) 275 ds, (24)
2mi Hl ntl

Hm,n 2
p”l (b1, B1)s- - (bas Ba) %+%>Hkmﬂﬂ—w—m@

where a;,b; € C, and «;,3; € RT, for i = 1,...,p and j = 1,...,q, and £ is a suitable contour in the

complex plane separating the poles of the two factors in the numerator (see [16]). The Fox-Wright function is a
generalization of the generalized hypergeometric function ,F; based on the idea of E. Wright (1953) (see [31])

(a1, a1),.. '?(ap’ ap Z I'(a1 +an)- F(ap +C¥pn) z" (25)
pEq PR
(b1, B1)s--s (bg, By) Dby + frn) - Tlbg + fgn) it
where z € C, a;,b; € C, and o, 3 € R, fori=1,...,p,j=1,...,q (see [24]).

3 Multidimensional time fractional diffusion-wave equation

3.1 Problem formulation
In this paper, we consider the multidimensional time fractional diffusion-wave equation

(Caf—CQA) u(z,t) = 0, zE€R", tcRY, cecRY, 0<B<2 (26)



where 97 is the Caputo time fractional derivative of order 3 €]0,2] defined by (see [15]):

1 ! -8 8u
F(l—ﬂ)/o(t_w) %(fﬂ,w)dw, 0<B<1

(Cﬁtﬁu) (z,t) = (27)

t 82
ﬁ/o (t —w)t=? 8—1;;(:17,11)) dw, 1<p<2

Equation (26) interpolates between the Helmholtz equation (when 3 tends to zero), the heat equation (when
B = 1) and the wave equation (when 5 = 2). Here we want to study the behaviour and properties of the first
FS (Green function) G2 of equation (26), i.e., its solution that satisfies the initial conditions

s ou
u(z,0) = H 0(x4) and a(m, 0) =0, (28)

i=1
where € R™, and § is the delta Dirac function. We remark that the second initial condition is necessary for
the case when 1 < 5 < 2.

3.2 Fundamental solution of the time fractional diffusion-wave equation

Applying the multidimensional Fourier transform (3) to the equation (26) and the initial conditions (28), we
get the following initial-value problem in Fourier domain

(Caf +c? |n|2> @ﬁ(n, t)=0

U ot
The unique solution of the problem (29) is given in terms of the Mittag-Leffler function by (see [22])

GP(k,t) = Eg (—?|x[%7). (30)

Taking into account the asymptotic formula (18) we conclude that (’?\fz belongs to the functional space Lq(R™)
with respect to x for 0 < 8 < 2 and p > n + 1. Hence, we can apply the inverse Fourier transform and get the
following integral representation of G%

L
(2m)"

Taking into account the following formula presented in [29]:

GB(z,t) = / e B (—c|k[*t?) dk, x € R, t>0. (31)

1

[ Lo
e . kD) dr =
R’Il

ot
(2m)n E

W/o Oo(p(r) 7% Ja_y(r]z|) dr, (32)

and the fact that Eg (—02|/1|2t6) is a radial function in &, (31) can be rewritten as

=% [T,
Gi(z,t) = |(2|7r)% /0 7% Eg (—7%t%) Ja_1 (r]a]) dr. (33)

Taking into account the relation (22) we get another integral representation of (31):

2 +oo 21,02

GP(x,t) = — / ™ By (—*72%tP) Win (—ﬂ\ dr. (34)
“Am)z Jo ) ’ N

To compute explicitly the integral (34) we are going to use the Mellin transform. First, we rewrite (33) as a

Mellin convolution (7). In fact, considering the functions

1 [

. ) 1 1\
g(1) = Eg (—c°7°t") and f(r) = (2m)% |27 7311 Jra \;)




1
its Mellin convolution at the point — gives

||

(f*rm9) (L\ = /+00 f (L\ g(T) r
\lz|/ Jo \7|z| ) T

+oo 241 Z4+1
T2 x|z 2 2,8\ dT
———— Jo_q (7|x|) Eg(—cT°t") —
/0 onE o 1 (7lz]) Ep ( ) -

= GB(z,1).

By the following relation (see (8.4.1.7) in [28])

( /71\)
M flL=1%(s) =M{f}—s), (35)
U \z/)

and the Mellin convolution Theorem (8) we have that

miczy e = m{wo (o)}
= M{f}(~s) M{g}(~s),
which is equivalent to
M{GI} (=) = M{f} (s) M{g} (s). (36)

Using now the definition of the Mellin transform (5) and the formulas (19) and (23) we get

r(252) NORETIN
T2 |zfm 25 T (4 2(c2th)3 I‘( _ %)

M{f} (5) = )’ M{g} (s) =

3
Finally, using the inverse Mellin transform (6) applied to (36) we obtain the representation of G as a Mellin-

L) (2“7) ds (37)

—i00 ]_“‘( -5

Barnes integral and, consequently, as a Fox H-function:

1 1 (-3
Glz,t) = —— =— 2
n(@1) 277 |z|” 2m'/7 1

— 38
213 |z|n (38)

To compute explicitly the integral (37) we need to apply the Residue Theorem. Applying general conditions of
the Mellin-Barnes integrals to (37) (see [16]) we conclude that for 0 < § < 2 the integral is convergent and the
contour of integration must be transformed to the loop £ starting and ending at infinity and encircling all

the poles of the functions I' (1 — %) and I' ("gs) in the numerator. Since the gamma function I'(s) has simple
poles at s = —n, with n € Ng, we have that T’ (1 — %) has poles at s = 2k + 2, with £ € Ng, and T’ (";S) has
poles at s = 2k + n, with k € Ng. From this it is evident that we have different types of poles accordingly with

the parity of the dimension n.

3.2.1 The case of odd dimension

Since n is odd we have two non-coincident sequences of simple poles, s = 2k+2, k € Ny, and s = 2k+n, k € Ng.
Applying the Residue Theorem for each gamma function and taking into account (16) we get the following series
representation for G¥ :

- . R , a N —2k—2 N . R , g\ —2k—m A
1 = (D D(=1-k+3) (22 (=D T(Q-k-3 2ct? |
G’g z,t) = —% 2 + .
0= F e | & " Ta-pe+1) \ Tl kZ:O W OTO-pk+2) \ Tl



Both series can be combined in one single series. For obtaining this we start by considering the change of
variables m = 2k 4+ 1 and m = 2k in the first and the second series, respectively. Hence, we get

Clat) = — io (D% D124 <|:r| >m+1

oEfar | () T8 (4 2)) \2crd
m odd
LN CDELA-F-%) (fa \"
Ze T(mY s \9:43/) |
m=0 272 2 ) .

To have the same exponent in both series we consider in the first series the change of the order of summation
m =p+n — 1 and in the second series m = p, yielding

. 1 A oy I (—2) /o1l \ P
Gz, t) = [ L/ 2 [ =)
T | A T (- ) \aerd)
p odd

2 |z| e
! ; I (57) (1 5(P+”)> <2ct5>
p=1
p odd
+o00 P p+n
(<& Tr(1-%-3%) ||
> r(5+1) F<1_/3(p+n)) 2t (39)
p=0 2
p even

Now we analyse the coefficients of the odd and the even series. For p odd, using (11) and (13) we have

(8] r(B ) - () e () - T w

Using (40) and (14) we get

(DR (C)TErEHIG) | (VTR (41)
NED) (B s 2rym o) (B p!

On the other hand, for p even, using (12

p n
r(i-5-3) T ).
= - (_1)? 7'(' . — = (;4—11 2 \/l?r (%) (42)
(B )apcos(F) T(B+3)  (B)un 2077 T()
Hence, using (42) and (11) we get
((DErQ-8-%) (D= vr2 "
EER C e

From (41) and (43) we conclude that the coefficients of the series that appear in (39) are equal up to a minus
sign in the odd series, which can be included as (—1)? for p odd and even. Hence, summing the odd and the
even series and considering the change p = 2k+2 —n in the finit sum, we get the simplified series representation
of G# given by

n—3

5 B 1 T(-1-k+2) [ J22\"
Gulet) = T e Zm Bk + )2) ( c2t5>

(=1

Z : (&) (44)
47T 62 tB =0 ptl _1 T (1 _ B(P;‘n)) pl Ct% ’



Taking into account (11) the series in (44) can be represented as a Fox-Wright function (cf. (25)):

Plos — 1 o LE-k+8) (P
ni ) 4c2 7% |x[n—2¢P kL:Z) L(1-8k+1)) k! \ Ac2tP
(0 7 (:2) o
—1)7= m ’ T
M, —— . (45)
(2 87)3 (5.8, (1-3-8) | o

3.2.2 The case of even dimension

Since now n is even we have a finite sequence of simple poles coming from I’ (1 — %) at the points s = 2k + 2,
for k = 0,1,...,%2 — 2, and an infinite sequence of double poles coming from I' (1 — £) T (Z52) at the points
s =2k +2, for k > 5 — 1. Applying the Residue Theorem we get the following series representation for GB .

-2

L - PN ., Lo L k
1 r(2-k-1) 22 \"

Gz, t) = . 2 -
W00 = TEE e TR D) B (227

03

=0
(—1)3+1 +oo¢(k+g)—,8¢(1-ﬁ(k+g))+¢(k+1)+1n(%) < 22 >k o)

(4r2th)s F(k+2) T (1-B(k+2)) & 4c%tP

where 1(z) denotes the digamma function. When S(k + %) € N we have an indetermination in the series
coefficients due to the terms S (1 - B (k + %)) and ' (1 -5 (k + %)) , although the expression is well defined
since for all yg € N the following limit exists:

i YA —Y)

R.
v T —y) ©

Nevertheless, we can remove the indetermination applying (11) with n = 1, (14), (15), and the relation ¢(1—z) =
mcot(mz) + ¥(z) for the digamma function (see [1]). After straightforward calculations we get the new series
representation given by

72 n X 2 k
Gllat) = — ) PE—k-1) (s
n A5 tP Ja|n=2 &= T(1— B(k +1)) k! 4c2tP
n o0 k
L (CDEBT (N P((k+3)) (2>
- (A— -2 +8\ % )_J'I—‘/L v n\ n/(l oo n\\ /1 a1 n\\ 11 { A2+ )
\Bretm)= et W) TP \vT o)) t g =P vT g)) ke AR U/

e S o) o o 20) ot 0 (120
8 )

(4r 2 th)s 7
) (="
T(kt2) M <402tf"> } 7)

in (47) we split the solution in two convergent series in order to facilitate future work and to make the structure

more clear. For instance, when 8 = 1 the finite sum and the second series vanishes, while the first series gives
the classical FS (cf. Section 5). Taking into account (25) we can rewrite the previous expression as

n_2

1 - _E-k-1) ol )"
B - 2 —
(@) = JaT e kzzo T(L- Ak + 1) K < 4c2tﬁ>
[ (Bn 5\ | 1
(-1)2 = w, \2P) |z|2
(4m 2 th)% (z,1), (1+2[3n76) 7 <1—,8n’ 5) 4c%t8

(_1)%+1 +

t T kzo{[zﬁ(k—i—g)—Bzﬂ(ﬁ(k—i-g))—i—d}(k—i—l)—i—ln(%)}
)

C(3 (s )) i (7 (5 + ) (L )’“}. (48)

4c2tP




We summarize the results of this section in the next theorem.

Theorem 3.1 Forn odd and 0 < 3 < 2 the FS of the time fractional diffusion-wave operator is given by

n—3
1 . I(-1-k+2) ( |w|2\’“
B — 2
Gn(wvt> T A2 % [pn—2¢B Z T(1 _ AL L1\ ! \  4.248
2 I;,L/I " k:(_) L \l /\J\I\/Tl}} v \ “aC U /
(_1)ﬂ;1 ‘V/”'_T % -+ / lxl \ (49)
+ / (-5) -
et S (o) v (1 2) L et

For n even and 0 < 8 < 2 the F'S of the time fractional diffusion-wave operator is given by

n_o

GPlart) — ! S LGkl (P
mOU T AR 2 & T Bk 1) K\ AP

(—1)%+ +oo¢(k+g)—5¢(1_5(k+g))+¢(k+1)+1 (%) <|x|2 >k 0

+ (4w 2 tP) % P F(k‘F%) F(l_ﬁ(k‘F?)) k!

I\

In this section we compute the FS for the time fractional parabolic Dirac operator defined by
DY, :=cDy+§ 0] +1, (51)

where D, is the Dirac operator in R™ (see Subsection 2.1), C@f is the Caputo time fractional derivative of
order 0 < 8 < 2 (see (27)), and ¢ € RT. This operator factorizes the time fractional diffusion-wave operator
—c2A+ 08,55 for Clifford valued functions f given by f = >_ , eafa, where f4 € C?(2xI), with QxI C R"xR™.
In fact, taking into account the multiplication rules (1) and (2) we have that

(p.)

(eDa+5 0 +51) (cDu+5 07 +11)
= D} —feDy 9] ' Dy +feDs O + ()9 D) 451 0+ e Do +11 D) + (1)
212 st ste CaB
= D07 +1) 9
= —AA+ P
The FS of the time fractional parabolic Dirac operator will be denoted by & and is obtained by the application
of the operator Dg’t to G2, i.e.,

3/ nB By AN . ¢ CalB ~ /=N
n(@,t) = Dy /G, t) = ¢ Dy nkx t) +§ 0y Gh(x,t) +§ Gh(a,1). (92)

Indeed, by the above factorization we have DJ &8 (z,t) = (—c2A +8))GE (x,t) = 0, which shows that &
is the F'S of wat. Thereby, applying Dfﬁt to (34), using the Leibniz rule for improper integrals and the series
representation of the Mittag-Leffler and the Wright functions, together with (10) and the relation

2

\ = k|z/f2 2, k € No,

=1

D, [lz|*] = iei 01( ixz\
i=1 \ )i

we obtain
Ohw,t) = (Dot +") Gila,)

B cx f+°O R 248) W [ 72!)"!2\ i
= — = ﬁ( ) 1,241 \— 4 ) T

( 2
2[ (2
g 27248 . T |z|
%/ 7*t7) W1,§< 1 > dr
20,12
ﬂ/ " Eg (=TtP) W a <—ﬂ> dr. (53)
2 ’ 4
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Using (22) we can write (53) in the following way:

cx oo
&h(x.t) = —W/ T3 Eg (—%tP) Jy (r|z]) dr
m)z |x|Zz Jy
2 Tooo 5 5 9
G, T ) gl b
1 e L 2 2,8
+fi W/o 72 Eg(—c*1 t[) Jo 1 (7|z|) dr. (54)

The integral representation (54) will be useful to make plots of the components of & in Section 8. It is possible
to write the components of & as Fox H-functions. For doing that we apply the operator Dfﬁt to (37) and we

obtain:
[ I(Ol) (1-%,3),(-n,1) ]
B y9) 2192) 9
@2($,t) = EC—Z'Z H?}’QZ 2ctz
272 |a:|n+ ’ |x| (1_71 1\ {n é\
1) (1-n1),{0,5)
1 1
! Hﬁzl— ooz | (03) . (1-58.3) ]
4 :
P orE o T2 [ 2] ‘ (5.9) J
)2
1 1
ISR PRI
orE |z|n 2! |z] 0.2
12

In order to get a series representation for &2 we apply Dfﬁt to (49) and (50). The following formula concerning

N - . o
the Dirac operator 1s necessary to compute &) :

r , B

428\

‘)Ic_i

D, |Lln< 5 ) ixi-J = Zei [—2@ |z|2k—2 —Hn( 5 )2/’@':51 iwizk_ﬂ
] P ||
4c21P8
= 2?2y <k1n< |;|2 > - (55)

From (55) we easily conclude that

2,403 2403
D, [(c +In <4|‘;—|t2>> |x|2k] = 2z |z|?F2 <k <0 +1In <4|;_|t2>> _ 1) , CER. (56)

Concerning the Caputo fractional derivative we use the symbolic calculus software Mathematica. When 0 <
B <1 we obtain

CoP [(C +1In <4|%|2ﬁ>> t‘B(’”%)}
_ B n n n
- tﬁ(H%fl)(lF 0 _(";*(k?i)% i [+ 8ot (pr (k+5)) —8H (-8 (k+35+1))

+BH<—1+B<I<:+%)) +ln (%)] (57)
-8 o n 248
_ tﬁ(m%fl)(lF ; —(kﬁtkz—?—)%‘Fl)) x {04-61!)(1—6(!@4-5)) ~pe(1-8(k+5+1))+ <4|Z;_|t2>]

(58)

with C € R. In (57) H denotes the generalized Harmonic number. To obtain (58) we used the identities
H(z) = ¢(2 +1) + v and ¢(1 — z) = wcot(nz) + ¥(z), where « is the Euler-Mascheroni constant. When

11



1 < B < 2 we obtain

el (em(52) e

L5k +3) 1 5 L
ﬁ@%+ﬂra—ﬁﬁi%+4hxlc_k+%_1+ﬂ@+%)_ﬁHCﬁ(h+2+0)

+,8H(—2—5(k+g))+1n<%>], CeR (59)

1
By using the identity H(—1+ z) = H(z) — — twice we get
z

n n 153 1
H(-2-8(k+2))=pH(-p(k+3))+ + . 60

8 5 (ke 5)) =08 (-8 (4 5)+ e Y (60)

Therefore, considering (60) and applying the identity H(z) = ¢(z + 1) + v we can conclude that when 1 <
B < 2 the expression (59) is equal to (58). Finally, applying (10), (56), and (58) to (49) and (50), and after

straightforward computations we get the following result.

Theorem 4.1 Forn odd and 0 < 8 < 2 the FS of the time fractional parabolic Dirac operator is given by

n-3
®l(et) = N N ¢t ) B AR
i Ben® o 07 &4 T Bk + D)K \ 427 )
LT VRe ! (LY
( pLB (pTH)% P(l— —[3(p+2n+1)) p! \ ctz/

L ( 1 & T(1-k+2) (_ |a:|2>k
\4(’27'{'2 |z|n—2 128 F(l—@(k—!—?)) kU 4P

\

—1 . 1 z| \?
+ —_—
248 6 Z £
(Arc2th)s ¢t = %)ngl r(l_W)p! ctz

n—3
= 1 n 2 \Fk
P B B (S T AT
' \\402777' |z|n—2¢5 kL_BI‘(l—,B(k—!-l)) K\ 4c?tP)
StV ! (-2) p\ o
+
218\ Py
O T 25 ) T (1 20) g \erf) )
Forn even and 0 < 8 < 2 the FS of the time fractional parabolic Dirac operator is given by
k) 2 \"
& (z,t) = -
n(@1) 207r2t/3|a7|" Z 6k+1)) k! < A2 1P
) \m1 . -It-.gol/.r,./.fl LY R (1 _ R(1 .Q\\|n//1/.|1\|1ﬂ/402tﬁ\]_1 P
(—1)3H2cy XRF W+ - Lo -0Wwtg))tvlv+t+m{TE )|~ /|22
+ = = - —
(Ar 2 1P)E [aff & T(k+2) T (1—B(k+2)) K \ 227 )

o e O A

+ 423 |z|n—2 ¢28 = (1 Bk +2)) k! <_4c2tﬁ
it (k3 B (=B (k+3+1)) +ok+1) +In(BE8) ek
(Ar 2 tP)% 1P Pk+3)T(1-B(k+5+1)) k! <4c2tﬁ>

k=0

| 1 L(5-k-1) o2 \*
M P |z|n—2 8 Z I'(1—B(k+1)) k! <_4c2t5>

(—1)%+! +oo¢(k+g)—5¢(1—6(k+g))+¢(k+1)+m(W) 2 \*
(i 273 THT5) T pGTg) A (32m) ) o

k=0
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Remark 4.2 For some rational values of 8 the series coefficients in (62) have an indetermination due to the
terms By (1 - (k+ %)) and T’ (1 - B (k—i— %)) in the first and the third series, while in the second series
the indetermination is due to the terms S (1 —B(k+2+41)) and I' (1 — B (k+ % +1)). To remove these
indeterminations we can proceed as was done in Subsection 3.2.2 applying (11) with n =1, (14), (15), and the
relation (1 — z) = wcot(wz) + ¥(2) for the digamma function.

5 Particular cases of

In this section we present the F'S for the time fractional diffusion-wave operator and the time fractional parabolic
Dirac operator for the special cases 8 =0, 1, 2.

5.1 Caseof =10
For 3 = 0 the time fractional diffusion-wave operator simplifies to the Helmholtz operator —c?A + I and the
FS reduces in the even and odd cases to

[\ 7F ( ||

1 /L K
@E\e) Fi\e

where K, is the modified Bessel function of second kind with parameter v. We would like to remark that (63)

GO (x,t) = ) (63)

is a radial eigenfunction of the operator c?A. In the case of the time fractional parabolic Dirac operator, when
B = 0 it simplifies to the operator ¢ D, + fI + I, and the FS reduces in the even and odd cases to

5.2 Caseof g=1

For f = 1 the time fractional diffusion-wave operator reduces to the Heat operator —c?A + 8, and the FS
reduces in the even and odd cases to the classical F'S given by

1 _ 1 |
Gnlet) = rant P\ "1

In the case of the time fractional parabolic Dirac operator, when 3 = 1 it simplifies to the operator ¢ D,+f 9;+f'
and the FS reduces in the even and odd cases to

1 |z|? x 2|2 n
T, 4 — _ = —_ = 1 4
®nl@:1) (4rc?t)% <P < 4c2t> < 21 j <4c2t2 2t f (64)

which is in accordance with the FS considered in [33] with ¢ = 1.

5.3 Case of =2

For 8 = 2 the time fractional diffusion-wave operator simplifies to the wave operator —c?A + 92, and the FS

reduces in the even case to
(CDEL(Y) ()
2 (ntl 2 2
G, t) = H—Q (1 ‘)m) : (65)

(ctyr \ 2y

We would like to remark that (65) coincides up to a function in the kernel of the wave operator to the classical
FS of the wave operator. For n odd it is known that the F'S of the wave operator contains delta functions and
derivatives of delta functions, these last appearing only for n > 5 (for more details see [13]). For instance, we
have the following limits in distributional sense

Jim G(at) = 3(6<|x| —et)+ 8 (a] + ct))
lianiGg(x,t) = || | —ct) — 6 (|z| + ct)) (66)
i GE(w.) :m@w—ct)—aw+ct>+|w| & (jal — ct) — [o] & (2| + b))
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In the case of the time fractional parabolic Dirac operator, when 3 = 2 it simplifies to the operator ¢ D, +f 03 +f'
and the FS reduces when n is even to

) N s ) 5 nt3 ) \n soaN 5 ) 5 —
1)z ' (&) 22 x|? 2 -1)z ' (%= 6]z x|? 2
& (@.t) = — n+(12) 1_% +f()"+# 2n + |2|2 1"2'2
(2m)= tnt2 ct ot gnt2 2t 2t
~_1)5 1 (ntl 2\ —
COETEE) (kP
I e L N G

For n odd the FS of the time fractional parabolic Dirac operator contains delta functions and derivatives of

+ 1
delta functions.

6 Fractional Moments

In this section we compute the fractional moments of order v > 0 associated to G2. It is well known that the
Mellin transform (5) can be interpreted as the fractional moment of order s — 1 of the function f (see [18,19]).
Therefore, we can calculate the moments of order v > 0 of G//. From the definition of the Mellin transform we

have that

“+oo
MP(t) = / G (r,t) dr
0

“+oo
= J/ Py =L GB (g t) dr
0

= M{" G t)} (v —n+1).

Taking into account (36) and the integral representation (37) we obtain:

(4c’t?)2 T (14 %) T (%)
27 1 (1+ %)

MO GE(r ) (y—n+1) =

s=y—n+1
2,8\ =ntl o 3 y—n oyl
(4c v O 1 {—57)

Therefore, the fractional moments are given for 0 < <2, v > 0, and n € N by
y=nti 34y— 1
(129 1 (B 1 (3t)
278 I (14 2o

M7 () =

We present in the following table the expression of the moments for some particular values of n and +.
From the expression (67) there are two special cases that we analyse now:

e When v =n — 1, with n € N, the moment is independent of the time variable, and it is given by

M,B,n—l(ﬂ _ I (%)
=Ttn \v/ F
272
e When v = n — 2k — 3, with n > 2k + 3 and k € Ny, the moment becomes infinite, for all 5 €]0,2[\{1}.
For example, when k = 0 and n = 4 the moment M4 is infinite for all 8 €]0,2[\{1}.

We would like to remark that in the case of n = 1 the moments were calculated only for positive values of
. The true moments of the FS should be calculated over the whole real line. However, in that case it is not
possible to compute the fractional moments for every order v > 0 since the power function r” is not always well
defined. Nevertheless, two cases are of special importante: the odd integer moments (7 = 2k+ 1, k € N) vanish,
while the even integer moments are given by

3,2k [T ok 8 [T ok 8
M (t) = / r G (r,t) dr = 2/ ¥ G (r,t) dr
—o00 0

(At T (1+k) T (k+3)  D(1+2k) (2tF)*
v T (1+ Bk) - D (L+Bk)
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n=1 n=2 n=3 neN
v=1 _et? 1 1 (4 t9)=" I (2 - 2)
(mean value) | 21" (1+§) 2m arct? T (1-4) | 2r% 1 (14251
y=2 2t cts 1 (42 1%)%3" T (552)
(variance) | T+A) 1 ar(145) o 4n*5 1 (14 280)
y=3 3(c2th)3 262 1P ct? (42 9)*3* T (852)
(3rd moment) r (1 + %) T I(1+5) T (1 + g) 215 T (1 1 ,3(42—n)>

Table 1: Particular moments of GZ.

These moments agree with the ones calculated in [26] when ¢ = 1. For the case of the time fractional parabolic
Dirac operator it is also possible to compute the fractional moments of 63. However, due to the extension of
the formulas we do not present them here.

~
Q
2

In this section we present and discuss some plots of G2, for ¢ = 1, n = 1,2, 3, 4, and some values of the fractional
parameter (. For the one-dimensional case we use the series representation of G’f since the FS reduces to a
Wright function and we can use the algorithm developed by Luchko in [21] to numerically evaluate the Wright
function with a good accuracy. For n = 2, 3,4 we use the integral representation (33) to make the plots since the
series for theses cases doesn’t involve exclusively Wright functions. Moreover, the integral representation (33)
allow us to evaluate the F'S with a better accuracy. For using the series representation it would be necessary
to perform an analysis of its asymptotic behaviour, similarly to the study made for the one-dimensional case
(see [21]).

7.1 Casen=1

For n =1, the F'S can be written as a Wright function (see [25]). In fact, putting n = 1 in (49) we obtain

+oo p
6iat) = oo Y e (1)
(4c2t8)3 =T (1 _ [3(1)2-1-1)) pl \ ct?,

Since the variable X = |z|/ (c t#/ 2) acts as a similarity variable we show in Figure 1 the graphical representation

of the reduced Green function U(x) = G/f (z,1), for ¢ = 1 and some values of the fractional parameter 5. In
Figure 2 we show some plots of G’? for some fixed values of § and t.

05 0.6
i
0.4 0.5
03 /‘\ 0.4
0.3
0.2
/ \-x 0.2
0.1 V4 QA 0.1
o ) 0 7/ S
5-4-32-1012234F5 54321012345

X

Figure 1: Plots of G’f(:c, 1) forc=1, 8=0,0.25, 0.5, 0.75, 1 (left), and g =1, 1.25, 1.5, 1.75 (right).
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Figure 2: Plots of Gf forc =1, p =0.2,0.5,0.75, 0.9
line, from left to right), and ¢t = 0.2,0.4,0.6,0.8.

The plots obtained are similar to those presented in [26]. It is known that Gf is a probability density function
corresponding to a slow diffusion in the case 0 < 5 < 1 and a fast diffusion when 1 < 8 < 2 (see [26]). In the slow
diffusion case the F'S attains its maximum value at x = 0, its first derivative is discontinuous in this point, and it
exhibits exponential slow decay similar to the Gaussian (case of § = 1). In the fast diffusion case the F'S attains
two symmetric maxima that move apart from the origin with time and the fractional parameter (§, exhibiting
exponential decay faster than the Gaussian. For more details about the analysis of the one dimensional case
see [19,25, 26].

7.2 Casen=2

Considering n = 2 in (50) the FS simplifies to

N
)

5 1 +o0 92
) = o

b L+ ™/ 1)
/ L{nNT1)

TC

A
an C

M~

/ 2> /
P ey |
LT AT AT
LZAZ A RS
S e 2% o .
< ~ 1

%\ / 3L

2R

<< AT ART A s LA AR AT ATIATS A | . 7 AT AT AT ISTS |
o S A o it L oS o e | — LFPT TR,
SR ILILIIITING 05 i r it 0 A N e i /1.0
NI © ST 08 o PN ST 08
L 0.0k {f;?’" 6 b’ R N 6
L7 8 LA -
s t KL
! AL
.y, LA LAY
15 L2 1 5 LY 15
Il 20 I« 20 x| 20

Figure 3: Plots of Gg for c =1, 8 = 0.2, 0.5, 0.75, 0.9 (1st line, from left to right), and g = 1.0, 1.2, 1.5, 1.7
(2nd line, from left to right), with |z| € [0.1,2] and ¢ € [0.1, 1].
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From the plots we observe that for 8 €]0,1[ the FS represents a slow diffusion process both in space
and time. The decay is more pronounced in space than in time due to the term |x|? that appears in the
series representation of the FS. For 8 €]1,2[ the FS represents a fast diffusion process and its behaviour can be
interpreted as propagation of damped waves whose amplitude decreases with time. For 5 = 1 the plot represents
the classical solution of the heat equation. In the limit case § — 27, Gg reduces to the F'S of the wave equation,

which has support for |z| < t, accordingly to (65).

7.3 Casen=3
For n = 3 we obtain from (49) the following expression:
1 1 I 1 [zl

42 |2[tPT(1 - B)  4r(c2tB)3 pzzg r (1 _ _ﬂ<p2+3>) (p+1)! k_ctg) ‘ (68)

G5 (x,1)

Making the change of variable p = k — 1 and joining the terms we can write Gg as a Wright function:

+oo k
. TR S ! <_ﬂ>
A |z|tPT(1—B) 4w |2 ¢F = p (1 _ ﬁ(k2+2)> El cts

G4 (w,t)

+oo k
o L —m ()
A |a|tP = p (1 _ 5(’“;2)) k! cts

1 o
S S LI 69
e Wt () o

In Figure 4 we show some plots of Gg for ¢ = 1, and some fixed values of 5 and ¢.

s —~— s — e ~
s /] 7 & /] /
N O < ‘
X2 / / QR | 7 [
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. SRR T LA I AT AT LS Y (X ARG, LIRS RSIAZTTT A2 RAZRTISIFLTIT
‘0’0":’:’:'\‘:*?":::':'.:'7"‘;’: 0g 0° \&Q":’i":*’:’:i’:::si::? 08 08 \}:#;::f#:#':?}':':#}’.:‘.":;? 08 08 o,s
L7 AT L7 V44 V24 2y
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Figure 4: Plots of Gg for c =1, 8 = 0.2, 0.5, 0.75, 0.9 (1st line, from left to right), and g = 1.0, 1.2, 1.5, 1.7
(2nd line, from left to right), with |z| € [0.1,2] and ¢ € [0.1, 1].

For the three dimensional case we observe similar behaviours of slow and fast diffusion of the FS as in the
case n = 2, but for 1 < g < 2 the solutions are no longer non-negative. Moreover, the range of values of
Gg increases. There is a difference from the case n = 2, since in the limit case § — 27, the FS of the wave
equation has support only for |z| = ¢, accordingly to (66). This difference can be observed between even and
odd dimensions.

7.4 Casen=414

In Figure 5 we show some plots of fo for some fixed values of 8 and ¢t. Although the range of values assumed
by Gf increases we can observe the same behaviours of the F'S previously described for n = 2 and n = 3.
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Figure 5: Plots of Gf for c =1, 8 = 0.2, 0.5, 0.75, 0.9 (1st line, from left to right), and g = 1.0, 1.2, 1.5, 1.7
(2nd line, from left to right), with |z| € [0.1,2] and ¢ € [0.1,1].

8 Graphical representations of &/

In this section we present and discuss some plots of &2, for ¢ = 1, n = 1,2 and some values of the fractional
parameter 8. By the same reasons as in the case of GQ we use the series representation in the one-dimensional
case and for n = 2 we use the integral representation (54) to make the plots. We represent only the vectorial
and f—components since the jT—component coincides with G2,

81 Casen=1
Considering n = 1 in (61) we obtain the following expression:

. 2| | o\ .1 2|
———— W s, |l —= |+ — W 5, 38 | — +f1 —W 5, —
2ctP || BRI f2015% 2177 cts I 2ts 21 cts

&2 (z,t) =

[

In Figure 6 we show the plots of the real part of the reduced Green function f (z,1) for some values of the
fractional parameter . In Figure 7 we show some plots of the real part of Qi’f for different values of 8 and t.

0.5 1 !
0.4 0.8 f
0.3 0.6
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5 -4-3-2-1012 3 425 5 4321012 3 45
x X

Figure 6: Plots of the real part of Qif(m, 1) forc =1, 8 =0,0.25,0.5, 0.75, 1 (left), and g =1, 1.25, 1.5, 1.75
(right).
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Figure 7: Plots of the real part of ij for c = 1, B = 0.2, 0.5, 0.75, 0.9 (Ist line, from left to right), 8 =
1.0, 1.2, 1.5, 1.7 (2nd line, from left to right), and ¢t = 0.2,0.4,0.6,0.8.

From the plots of Figures 6 and 7 we see that the real component its an odd function and is discontinuous
at © = 0. In the range of 8 €]0,1[ we observe two different behaviours: initially the function behaves like
the hyperbola curve and then the curve starts to have extrema points, which its absolute values decrease with
time. When S = 1 we have a odd continuous function that corresponds to the real component in (64). For
B €]1,2[ we observe again a discontinuity at x = 0 and the function starts to have more extrema points and the
function shrinks horizontally when 8 — 27. This behaviour is in accordance to the expected wave propagation
phenomena.

In Figure 8 we show the plots of the f—component of the reduced Green function ij (z,1) for some values
of the fractional parameter §. In Figure 9 we show some plots of f—component of 05[13 for different values of g
and t.
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Figure 8: Plots of the f—component of Q‘S?(m, 1) fore=1,5=0,0.25, 0.5, 0.75, 1 (left), and g = 1.25, 1.5, 1.75
(right).
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Figure 9: Plots of the j—component of ij for c = 1, 8 = 0.2, 0.5, 0.75, 0.9 (Ist line, from left to right),
B =1.0,1.2,1.5, 1.7 (2nd line, from left to right), and ¢ = 0.2,0.4,0.6,0.8.
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From the plots of Figures 8 and 9 we observe that the function is even and has different behaviours. Initially,
for small values of 3 the function has only one maxima at x = 0 and as far as we approach § = 1 the function
has two symmetric maximum points and one minimum point at z = 0. When § = 1 the plot corresponds to
f—component of &} (see (64)). For  €]1,2[ the function starts to increase the number of extrema points,
passing to two symmetric maximum points, and two symmetric minimum points, and a local maximum at
x = 0. Again, the function shrinks horizontally when S — 27, which is in accordance to the expected wave

propagation phenomena.

8.2 Casen=2

In Figures 10 and 11 we show the plots of the vectorial part and the f—component of 6g for different values of
[ and t.
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Figure 10: Plots of the vectorial part of (’55 forc=1, 8 =0.2,0.5,0.75, 0.9 (1st line, from left to right), and
B =1.0,1.2, 1.5, 1.7 (2nd line, from left to right), with z1 € [0.1,2], z2 = 0, and ¢ € [0.1, 1].
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Figure 11: Plots of the j—component of @Q’ forc=1,5=0.2

, 0.5, 0.75, 0.9 (1st line, from left to right), and
B =1.0,1.2, 1.5, 1.7 (2nd line, from left to right), with |z| € [0.1,

0.
2] and ¢ € [0.1,1].

The plots presented in Figures 10 and 11 show that @{f has a similar behaviour as described in the one
dimensional case for &%. The main difference is the increase of the range os the values of each component of
the FS. Similar plots can be obtained for n > 2.
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