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resumo 
 
 

Streptococcus pneumoniae é uma bactéria patogénica que coloniza a 
nasofaringe humana. S. pneumoniae é responsável por causar doenças, tanto 
invasivas como não invasivas como: otite, pneumonia, meningite e sepsis, 
continuando a ser uma das principais causas de doenças infecciosas a nível 
mundial. Devido a semelhanças com espécies que lhe são estreitamente 
relacionadas, e que compartilham o mesmo nicho ecológico, pode ser um 
desafio identificar corretamente S. pneumoniae aplicando apenas técnicas não 
dependentes do passo de cultura bacteriana como a técnica de PCR em 
tempo real (qPCR). Em 2007, um método molecular para identificação de       
S. pneumoniae baseado num qPCR e tendo como alvo o gene da autolisina 
principal (lytA) de S. pneumoniae foi proposto por Carvalho e seus 
colaboradores. Desde então, este tem sido usado de uma forma sistemática 
por vários grupos. Em 2013, foi proposto por Trzcinszki e seus colaboradores o 
uso da lipoproteína ABC transportadora de ferro PiaA como alvo num qPCR. O 
piaA  qPCR foi usado em paralelo com o lytA qPCR. Contudo, a presença de 
genes homólogos de lytA foi descrita em espécies filogeneticamente próximas, 
como S. pseudopneumoniae e S. mitis, e a presença do gene piaA não é 
ubíquo entre S. pneumoniae. O gene da proteína hyaluronato lyase (hylA) é 
descrito como sendo ubíquo a todas as estirpes de S. Pneumoniae. Este gene 
ainda não foi usado até ao momento como alvo para a identificação de             
S. pneumoniae. Assim o objectivo do nosso estudo foi a avaliação da 
especificidade, sensibilidade, valor positivo preditivo (VPP) e valor negativo 
preditivo (VNP) do método lytA e piaA qPCR; construção de hylA qPCR 
avaliando os mesmos parâmetros acima referidos; analise dos ensaios de uma 
forma independente e em conjunto, para poder retirar conclusões sobre qual o 
melhor  gene alvo, ou alvos, a usar na identificação de S. pneumoniae. Foram 
testadas um total de 278 estirpes anteriormente caracterizadas: 61                  
S. pseudopneumoniae, 37 estirpes do grupo Viridans, 30 estirpes referência de 
outras espécies de Streptococcus e 150 estirpes de S. pneumoniae. A coleção 
usada incluía tanto estirpes obtidas em colonização como estirpes obtidas em 
doença. Através do método Multilocus sequence analysis (MLSA) verificámos 
que estirpes de S. pseudopneumoniae podem ser incorretamente identificadas 
como S. pneumoniae quando é utilizado o lytA qPCR. Ainda assim, os 
resultados mostraram que como alvo único, o gene lytA apresenta a melhor 
combinação de valores de especificidade, a sensibilidade, VPP e VNP sendo, 
respetivamente, 98.5%, 100.0%, 98.7% e 100.0%. A combinação de genes 
com a melhor combinação de valores de especificidade, sensibilidade, VPP e 
VNP foi lytA e piaA, com 100.0%, 93.3%, 97.9% e 92.6%, respetivamente. De 
realçar que pelo método MLSA verificámos que estirpes de                              
S. pseudopneumoniae podem ser incorretamente identificadas como               
S. pneumoniae e algumas estirpes capsuladas (23F, 6B e 11A) e                 
não-capsuladas de S. pneumoniae não são identificadas quando usada esta 
combinação de genes. O gene hylA como alvo único apresentou o valor de 
PPV mais baixo, todavia identificou corretamente todos os S. pneumoniae. 
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abstract 
 

Streptococcus pneumoniae is a human pathobiont that colonizes the 
nasopharynx. S. pneumoniae is responsible for causing non-invasive and 
invasive disease such as otitis, pneumonia, meningitis, and sepsis, being a 
leading cause of infectious diseases worldwide. Due to similarities with closely 
related species sharing the same niche, it may be a challenge to correctly 
distinguish S. pneumoniae from its relatives when using only non-culture based 
methods such as real time PCR (qPCR). In 2007, a molecular method targeting 
the major autolysin (lytA) of S. pneumoniae by a qPCR assay was proposed by 
Carvalho and collaborators to identify pneumococcus. Since then, this method 
has been widely used worldwide. In 2013, the gene encoding for the ABC iron 
transporter lipoprotein PiaA, was proposed by Trzcinzki and collaborators to be 
used in parallel with the lytA qPCR assay. However, the presence of lytA gene 
homologues has been described in closely related species such as                  
S. pseudopneumoniae and S. mitis and the presence of piaA gene is not 
ubiquitous between S. pneumoniae. The hyaluronate lyase gene (hylA) has 
been described to be ubiquitous in S. pneumoniae. This gene has not been 
used so far as a target for the identification of S. pneumoniae. The aims of our 
study were to evaluate the specificity, sensitivity, positive predicted value (PPV) 
and negative predicted value (NPV) of the lytA and piaA qPCR methods; 
design and implement a new assay targeting the hylA gene and evaluate the 
same parameters above described; analyze the assays independently and the 
possible combinations to access what is the best approach using qPCR to 
identify S. pneumoniae. A total of 278 previously characterized strains were 
tested: 61 S. pseudopneumoniae, 37 Viridans group strains, 30 type strains 
from other streptococcal species and 150 S. pneumoniae strains. The 
collection included both carriage and disease isolates. By Mulilocus Sequence 
Analysis (MLSA) we confirmed that strains of S. pseudopneumoniae could be 
misidentified as S. pneumoniae when lytA qPCR assay is used. The results 
showed that as a single target, lytA had the best combination of specificity, 
sensitivity, PPV and NPV being, 98.5%, 100.0%, 98.7% and 100.0% 
respectively. The combination of targets with the best values of specificity, 
sensibility, PPV and NPV were lytA and piaA, with 100.0%, 93.3%, 97.9% and 
92.6%, respectively. Nonetheless by MLSA we confirmed that strains of                       
S. pseudopneumoniae could be misidentified as S. pneumoniae and some 
capsulated (23F, 6B and 11A) and non-capsulated S. pneumoniae were not 
Identified using this assay. The hylA gene as a single target had the lowest 
PPV. Nonetheless it was capable to correctly identify all S. pneumoniae. 
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1.1 Streptococcus pneumoniae characterization 

S. pneumoniae is a capsulated Gram-positive bacterium that can form 

diplococcus or shorter or longer chains of lancet-shaped cocci (Figure 1). The size 

of the chains is variable between 0.5 and 2μm. This bacterium is characterized by 

lacking the enzyme catalase, which cleaves hydrogen peroxide, and so is 

classified as catalase negative. This bacterium is also facultative anaerobic (1). 

 
 

 

Figure 1. S. pneumoniae view by optical microscope with Gram-positive coloration. 

When grown in laboratory conditions, it is a demanding and hard to please 

bacterium. The medium of growth needs to be supplemented, normally with sheep 

or horse blood for solid media and serum for liquid media. The optimal pH level is 

between 7 and 8, the optimal temperature is 37 °C and the atmosphere should be 

enriched with 5% of CO2 (1). This bacterium, when grown in a medium 

supplemented with blood, has the ability to partially degrade blood cells, 

generating α-hemolysis (2). 
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1.2 S. pneumoniae epidemiology 

S. pneumoniae is described as a frequent but transient commensal of the 

upper respiratory tract of humans, most precisely of the nasopharynx and 

oropharynx (Figure 2). Although described as a commensal microorganism it is 

also responsible for causing non-invasive and invasive disease remaining a 

leading cause of infections worldwide (3, 4). Carriage of S. pneumoniae in the 

upper respiratory tract is considered a prerequisite for the acquisition of 

pneumococcal disease (4). S. pneumoniae carriage is believed to be important for 

transmission of this pathobiont within the community, which explains why in 

crowding places, such as day-care centers and retirement homes the spread of 

pneumococcal strains increases (5, 6). Young children have the highest incidence 

of S. pneumoniae colonization; therefore it implies that this group is very important 

for dissemination of pneumococcal strains within the community (7). 

 

Figure 2. Representation of the ecological niches of S. pneumoniae: nasopharynx and 
oropharynx. (Adapted from Seeley and collaborators (8)) 

The rates of pneumococcal disease are disproportionally distributed among 

the human cycle of life. The two age groups with higher rates of pneumococcal 

disease are located at extremes: the young children (less than five years of age) 

and the elderly (over 60 years of age) (9, 10). However, apart from age there are 

other risk factors that can lead to S. pneumoniae infection: immunocompromised 
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patients, those with chronic diseases, HIV infection, cochlear implants, 

cerebrospinal fluid leak or smoking (11, 12).  

In 2013 S. pneumoniae was responsible for 14.9% of the deaths that 

occurred in children below five years of age worldwide. Most of these cases were 

children who lived in developing countries and were below the age of 1 year (13). 

Currently the strategy to prevent pneumococcal disease focus in the 

vaccination of the risk groups (10). To access the impact of vaccination and to 

apply the correct treatment in case of disease, the correct identification of            

S. pneumoniae is needed. The gold standard methods for the identification of live 

S. pneumoniae are conventional culture methods applied to a nasopharyngeal 

swab, which are the bile solubility and optochin test (14). However, non-culture 

dependent methods have improved sensitivity on the detection of S. pneumoniae 

(15, 16). Some of these methods are based in the identification of virulence 

factors, or on characteristics of these virulence factors such as particular DNA 

sequences (17-19). 

 

 1.3 S. pneumoniae virulence factors 

An important virulence factor of S. pneumoniae is the polysaccharide 

capsule. There are more than 95 different serotypes with unique capsular 

polysaccharide structures (20). In fact, the capsule is extremely important for the 

survival of S. pneumoniae in the bloodstream (21-24).  

A pneumococcal cell wall underlies the capsule, which consists of three 

major components, the lipoteichoic acid, the teichoic acid and the peptidoglycan. 

The teichoic acid has an important role in anchoring some of the surface proteins, 

which have a crucial role in colonization and inflammation (25). Between them are 

pneumolysin (Ply), autolysin (LytA), pneumococcal surface adhesin A (PsaA), 

Hyaluronate lyase (HylA) and ABC transporter lipoprotein (PiaA) that have been 

described as virulence factors of S. pneumoniae, having an important role in 
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colonization and in causing disease (26-31). Therefore, some of the genes 

encoding these proteins have been used to detect S. pneumoniae (18, 19). 

A description of virulence factors of interest for the present work will follow.  

1.3.1 LytA 

LytA is the major autolysin of S. pneumoniae and is considered a major 

virulence factor of S. pneumoniae (27). It is a N-acetylmuramoyl-L-alanine 

amidase, responsible for the lytic activity of the S. pneumoniae (32). The in vivo 

function of this protein can be quite vast. Studies have shown that this protein 

presents an important role in releasing other virulence factors, such as Ply, being 

involved in S. pneumoniae pathogenesis. It can also release other proteins that 

will interact with the host and interfere in immune response (25, 33, 34). Another 

function of this protein is related with the ability of lysing other non-competent      

S. pneumoniae. This leads to a higher genetic diversity by increase the number of 

the competent S. pneumoniae, and therefore, increase the probability of 

exchanging DNA between S. pneumoniae and the assimilation of exogenous DNA 

(35).  

Several studies have shown that attenuation of the LytA activity causes a 

decrease in virulence and, therefore a decrease in disease, caused by                 

S. pneumoniae (27, 34).  

This protein is encoded by the gene lytA that has been described to be 

present in the core genome of S. pneumoniae, being used for the identification of 

S. pneumoniae (36). However a few studies suggest that a homologous of this 

gene can be found in other Streptococcal species (36-38). 

 

1.3.2 PiaA 

PiaA is a lipoprotein that makes up one part of the two components of the            

S. pneumoniae iron uptake transport system and it is thought to be present on the 

http://pt.pons.com/tradu%C3%A7%C3%A3o/ingl%C3%AAs-portugu%C3%AAs/the
http://pt.pons.com/tradu%C3%A7%C3%A3o/ingl%C3%AAs-portugu%C3%AAs/probability
http://pt.pons.com/tradu%C3%A7%C3%A3o/ingl%C3%AAs-portugu%C3%AAs/of
http://pt.pons.com/tradu%C3%A7%C3%A3o/ingl%C3%AAs-portugu%C3%AAs/DNA
http://pt.pons.com/tradu%C3%A7%C3%A3o/ingl%C3%AAs-portugu%C3%AAs/etween
http://pt.pons.com/tradu%C3%A7%C3%A3o/ingl%C3%AAs-portugu%C3%AAs/of
http://pt.pons.com/tradu%C3%A7%C3%A3o/ingl%C3%AAs-portugu%C3%AAs/DNA
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bacterium cell surface (39, 40). The role of this protein is related to S. pneumoniae 

iron acquisition, being essential to the full virulence of S. pneumoniae. However, 

the mechanism by which S. pneumoniae acquires iron is not fully understood. 

Brown and collaborators have shown the importance of this protein for the full 

virulence of S. pneumoniae (28). 

PiaA is encoded by piaA gene. This gene has been described to be absent 

in other Streptococcus species and present only in S. pneumoniae. However 

Whalan and collaborators have shown that some non-capsulated S. pneumoniae 

strains lack the piaA gene (41). 

 

1.3.3 HylA  

Boulonois and collaborators have shown that HylA, encoded by the hylA 

gene, is present in the majority of pneumococcal isolates recovered from clinical 

samples (42). The function of this protein is promoting the degradation of the 

hyaluronic acid (HA), which is a major component of the human connective tissue 

(43, 44). The degradation of the HA brings advantages to the colonization and the 

subsequent infection, promoting the virulence of S. pneumoniae (27, 29). 

However, studies performed with other bacterial species have shown that a 

functional HylA is not essential to cause disease (45, 46). 

 

1.4 S. pneumoniae closely related species 

The differentiation between S. pneumoniae, S. pseudopneumoniae, S. mitis 

and other closed related species can be difficult, since they are clustered in the 

same group, the Mitis group of Viridans Streptococci. The bacteria of this group 

are very promiscuous and the DNA can be shared between them (47, 48).  A 

correct identification of this bacterium is extremely important in clinical diagnosis 

and in surveillance studies. However, due to the possibility of genetic exchanges 
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between these species, correct identification remains a challenge to 

microbiologists and taxonomists (2). 

  Closely related species of S. pneumoniae and the methodologies for the 

identification of S. pneumoniae relevant to this study will be described in the next 

sections.  

 

 

Figure 3. Multilocus Sequence Analysis (MLSA) phylogenetic based tree. (Adapted from 
Rolo and collaborators (49)) 

This MLSA phylogenetic based tree shows how S. pneumoniae, S. pseudopneumoniae and          

S. mitis are so closely related. The analysis was based on the concatenated sequences of six 

housekeeping genes: aroE, gdh, gki, recP, spi and xpt. 

 
 

1.4.1 S. pseudopneumoniae  

S. pseudopneumoniae is a recently described member of the Mitis group of 

Viridans Streptococci, which has some phenotypic and genetic characteristics 

identical to S. pneumoniae, S. mitis and S. oralis, but the average aminoacid 
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identity (AAI) between them is lower than 95%, and therefore has been considered 

a new species (50, 51). 

 S. pseudopneumoniae is catalase negative and with the shape of cocci. 

This bacterium differs from S. pneumoniae by being optochin resistant in the 

presence of 5% CO2, and is bile insoluble. Another characteristic is the lack of a 

capsule, conferring a negative result for a biochemical reaction based on the use 

of a specific antibody targeting the capsule, named the Quellung reaction (50). 

These strains are known to cause infections in patients who have a chronic 

obstructive pulmonary disease or exacerbation of chronic obstructive pulmonary 

disease (52). 

 

1.4.2 S. mitis  

S. mitis belongs to the Mitis group of Viridans streptococci, is catalase 

negative and with the shape of cocci. The cocci are arranged in chains. This 

bacterium differs from S. pneumoniae by being resistant to optochin, and like       

S. pseudopneumoniae, bile insoluble and have a negative result when submitted 

to the Quellung reaction (53). This bacterium is responsible for infections such as 

bacterial endocarditis (54). 

 

1.4.3 Other Viridans group isolates  

“S. pneumoniae – like” isolates belong to the Viridans group. These are 

isolates that are identified as putative S. pneumoniae. However, the result of at 

least one of the standard methods commonly used (optochin sensibility, bile 

solubility and Quellung reaction) in the identification of S. pneumoniae is divergent 

in these strains (17, 36). Sometimes species assignment of this isolates is 

extremely difficult (51, 55). 
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The origin of these bacteria has been studied and several hypotheses have 

been proposed. The members of the Viridans group are naturally competent for 

genetic transformation, and for this reason, they can incorporate exogenous DNA 

into their genome. Some studies refer to the fact that strains evolved from a 

common pathogenic ancestral by reduction of the genome, losing some virulence 

factors (56). This hypothesis is supported by the fact that S. mitis, S. oralis and S. 
pneumoniae share virulence factors (37). 

Another hypothesis is related to Horizontal Gene Transfer (HGT) between 

species that share the same niche, which attenuates the difference between the 

species (50). In a recent study, Denapaite and collaborators have shown that HGT 

between S. mitis and S. pneumoniae occurs supporting this hypothesis (37). 

1.5 S. pneumoniae identification methods 

The traditional methods for S. pneumoniae identification are divided into 

two classes: the phenotypic-based methods and the genotypic-based methods. 

Some of the methods that are important for the goals of this study will be 

described in the following sections. 

 

1.5.1 Phenotypic-based methods 

The phenotypic based methods are always culture dependent. This can 

lead to an under estimation of the rate of S. pneumoniae in the sample, due to the 

low sensitivity when compared with molecular methods (57). 

Characteristics and limitations of the standard methods based on 

phenotypic characteristics in the identification of S. pneumoniae will be described 

next.  
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1.5.1.1 Optochin sensibility 

Optochin is used in order to establish a differentiation between                   

S. pneumoniae and other alpha-hemolytic streptococci. In this procedure optochin 

(ethylhydrocupreine hydrochloride) is used to test the fragility of the organism cell 

membrane (58).   

In fact, S. pneumoniae is sensitive to this particular chemical compound 

when incubated in a 5% CO2 atmosphere, while other alpha-hemolytic Viridans 

group bacteria like S. mitis and S. pseudopneumoniae are resistant to it. However, 

some pneumococci have been described as optochin resistant when incubated 

with the same conditions (36, 50, 55, 59-61). 

S. pseudopneumoniae is characterized for being optochin resistant at 5% 

CO2 and susceptible in normal atmosphere conditions (50). However more 

recently Rolo and collaborators have shown variations in this pattern (51).  

These facts may create some difficulties in the distinction of S. pneumoniae 

from other closely related species, when only this method is applied. 

 

1.5.1.2 Bile solubility 

Bile solubility is considered by some researchers as one of the best 

methods to distinguish S. pneumoniae from the closely related species with a high 

sensitivity and a high specificity. S. pneumoniae is “soluble” (occurs the lyse o the 

cell) when submitted to a concentration of 2% of bile salts (62). 

This method is based on the activity of the pneumococcal autolysins, such 

as LytA, promoted by bile salts (62). However, point mutations on the lytA gene 

can lead to a non-functional LytA protein. As a result, these strains have a different 

pattern, with no solubility when submitted to this phenotypic test (63). In addition, 

some members of Viridans group have been described as bile soluble (17). 
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1.5.1.3 The Quellung reaction 

The Quellung reaction is the most common standard method for 

pneumococcal capsular serotyping, which involves testing a pneumococcal cell 

suspension in which specific antisera is used directly against the capsular 

polysaccharide (64). Nonetheless, not all pneumococcal strains are correctly 

identified by this method. Non-capsulated pneumococcal strains lack the capsule 

and therefore, this reaction will always be negative. Nonetheless,                      

non-pneumococcal isolates with positive agglutination when polyvalent antiserum 

(omniserum) is used have been reported (65).  

 

1.5.2 Genotypic-based methods 

Several targets and methods were proposed to distinguish S. pneumoniae 

from the other closely related species. Genes encoding for LytA, PsaA and Ply 

described as being ubiquitous in S. pneumoniae were proposed for the 

identification and differentiation between S. pneumoniae and the related species 

(36, 66). However, homologous genes from the ones encoding these proteins 

were found in S. pneumoniae closely related species (38, 67). 

Characteristics, advantages and limitations of standard molecular methods 

commonly used in routine laboratory identification of S. pneumoniae will be 

described next. 

 

1.5.2.1 Multilocus Sequence Analysis for Viridans group (MLSA) 

MultiLocus Sequence analysis has been used to establish relationships 

between species that are closely related or belong to the same genus. In some 

cases is used to infer if there is a new species, and therefore, a phylogenetic 

position of a new species can be established (68, 69).  
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Hoshino and collaborators using a concatenation of four housekeeping 

genes sequences (D-alanine:Dalanine ligase (ddl), glutamate dehydrogenase 

(gdh), RNA polymerase beta subunit (rpoB) and Superoxide dismutase (sodA)) 

first described the Viridans Group MLSA method. This method was developed to 

cluster and identify non-hemolytic streptococci (70). However, only the distant 

species were well resolved wile a poor resolution was obtained for close related 

species like S. pseudopneumoniae and S. mitis (69). Latter Bishop and 

collaborators developed a new scheme based on the concatenation of seven 

house-keeping sequences: Methionine aminopeptidase (map), Pyruvate formate 

lyase (pfl), Inorganic pyrophosphatase (ppaC), Pyruvate kinase (pyk), RNA 

polymerase beta subunit (rpoB), Superoxide dismutase (sodA) and elongation 

factor Tu (tuf). This scheme was able to well resolve all the species within the 

Viridans group. This method relies on comparison of the concatenated sequences 

in a web site (www.emlsa.net) and online database with concatenated sequences 

from species of Viridans group that were created for the propose (69).  

There is enormous advantage by using this method to cluster strains, since 

it could be done by assessing an online database, and the strain is clustered 

almost immediately (69). Nonetheless, the web site is not always available and 

therefore this could be a disadvantage. Also only culturable strains can be 

submitted to this method witch results in a decrease of sensitivity (57). In addition 

is a laborious and expensive method for routine diagnosis (68).  
 

1.5.2.2 Restriction Fragment Length Polymorphism (RFLP) 

RFLP is a technique that allows the recognition of polymorphic sites in the 

DNA of a certain gene or organism by the use of restriction enzymes (71). These 

enzymes recognize a certain sequence and cut the sequence before, after or on 

the recognition site depending on the type of restriction enzyme used (72). The 

result is a pattern based on the size of the DNA fragments (71).  

Lull and collaborators applied this method to distinguish S. pneumoniae, 

witch harbour a typical lytA, from the “S. pneumoniae - like” strains, that harbour 

http://www.emlsa.net/
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an atypical lytA (17). However, one S. pseudopneumoniae strain harbouring both 

typical and an atypical lytA has also been described, leading to misidentification 

between S. pseudopneumoniae and S. pneumoniae (38). 

 

1.5.2.3 Real time PCR (qPCR) 

The qPCR differs from the conventional PCR by the use of a labelled probe 

with a fluorophore, allowing the quantification of the target sequence and the 

analysis of the results without the need of a conventional electrophoresis (73). 

Another difference relies in the amount of DNA template necessary to amplify the 

product, which is considerably lower when compared to a conventional PCR (74).   

Until today several target genes for identification of S. pneumoniae have 

been proposed. The gene lytA and a conjugation of lytA and piaA genes were 

employed, in order to avoid false positive results (18, 19). 

When qPCR is used for organism identification, there is a need of a highly 

specific and sensitive probe to avoid the misidentification of bacterium (73). The 

lack of a highly specific and sensitive probe is the weakness of this assay.  
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In recent years, identification of S. pneumoniae by qPCR using specific 

genes has been increasingly used in cultures and clinical samples (19, 75, 76). In 

2007, Carvalho and collaborators described a qPCR targeting lytA gene (18). 

More recently, Trzcinszki and collaborators described a qPCR targeting the piaA 

gene to be used in parallel with the lytA, in order to increase the specificity of the 

assay (19).  

The gene hylA has been described as ubiquitous in S. pneumoniae strains 

and absent in closely related species, such as S. pseudopneumoniae and S. mitis, 

nonetheless is was detected in one S. oralis strain (37, 38, 77). This gene has not 

been tested as a target to identify S. pneumoniae. 

In this thesis we aimed to test and validate in an extensive collection of 

isolates the sensitivity, specificity, positive and negative predicted values of the 

qPCR assays targeting lytA and piaA genes; design and implement a qPCR 

targeting hylA gene, and test its sensitivity, specificity, positive and negative 

predicted values; analyze the assays independently and the possible combinations 

of the three targets to identify what is the best approach using qPCR method to 

identify S. pneumoniae. 
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3.1 Study collection 

A total of 278 isolates were used in this study (Table 1). To test the 

sensitivity and the specificity of the qPCR assay for genes lytA, piaA, and hylA a 

pneumococcal collection and a non-pneumococcal collection were used, 

respectively. As positive control TIGR4 pneumococcal strain was used and as a 

negative control the S. pseudopneumoniae strain ATCC BAA - 960 was used. 

 
Table 1. Collection of isolates used in this study. 

Species Number 
isolates 

Carriage/ 
disease Year Source Country 

of origin 

S. pneumoniae  150 Carriage 
2001, 

2006 and 
2007 

DCC Portugal 

S. pseudopneumoniae 61 Disease 1991 to 
2009 Hospital Spain 

Streptococcus of Viridans group 37 
Carriage 

and 
disease 

1991 to 
2009 

DCC and 
hospital 

Portugal 
and 

Spain 

Type strains of Streptococcus 
species 30 NA NA NA NA 

DCC – Day care center; NA – Not available; Type strains of Streptococcus species: S. gordonii 
(DSM20568, DSM6777), S. infantis (DSM12492), S. parasanguinis (DSM6778), S. peroris       

(DSM 12493), S. sanguinis (DSM20567), S. cinensis (DSM14990), S. vestibularis (DSM5636),     

S. oralis (DSM20379, DSM20395), S. cristatus (DSM8249), S. pseudopneumoniae                 

(ATCC BAA – 960, PT5479, IS7943), S. equinus (NCTC10389), S. intermedius (NCTC11324),      

S. constellatus (NCTC11325), S. bovis (DSM20480), S. agalactiae (DSMZ6784, DSM2134),         
S. anginosus (DSMZ20563), S. canis (DSM 20715), S. dysgalactiae ssp. dysgalactiae 

(DSMZ20662), S. dysgalactiae ssp. equisimilis (DSMZ6176), S. equi ssp. zooepidemicus 

(DSMZ20727), S. mutans (DSM20523), S. pyogenes (DSM 20565), S. salivarius (DSM20560), 

Streptococcus spp (S. viridans III and IV) and S. pneumoniae (TIGR4). 

 

3.2 Growth conditions 

A volume of 50 μl from each isolate, frozen in Mueller-Hinton broth with 15% of 

glycerol, was grown in Trypticase soy agar plates supplemented with 5% of 
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defibrinated sheep blood. Plates were incubated overnight at 37 °C with a 5% CO2 

atmosphere (78). 

 

3.3 Genomic DNA extraction 

Genomic DNA extraction was performed using the DNeasy Blood &Tissue 

Kit (Qiagen) according to a modified protocol:  bacterium were collected with a 

loop and added to a microcentrifuge tube containing 172.8 μl of Tris.Cl pH 8 20 

mM, sodium EDTA 2 mM, and 1.2% Triton X-100. After a pulsed vortex 7.2 μl of 1 

mg/ml lysozyme was added to the previous solution and vortexed for 15 sec. 

Samples were incubated in a water bath for 60 min at 37 °C. A volume of 3 μl of 

RNAse 10 mg/ml was added to the samples and incubated for 5 min at room 

temperature. A volume of 25 μl of proteinase K was added to the solution and a 

series of pulsed vortexes was performed during 15 sec. Samples were incubated 

for 30 min at 56 °C. A volume of 200 μl of ethanol with a concentration of 99% 

stored at -20 °C was added to the solution and a series of pulsed vortexes was 

performed for 15 sec. The solution was transferred to a set comprising one 

spinning column and one collector tube and centrifuged at 8000 rpm for 1 min. The 

collector tube was discarded and the spinning column placed in a new collector 

tube. A volume of 500 μl of AW1 kit solution was added to the spinning column 

and incubated for 1 min at room temperature. The set was centrifuged at 8000 rpm 

for 1 min. The collector tube was discarded, and the same procedure was 

performed for AW2 kit solution with the exception of the centrifugation step, that 

was performed at 14000 rpm for 4 min. Next the collector tube was discarded and 

the DNA was eluted twice in 100 μl of the elution buffer (AE) to a 1.5 ml 

microcentrifuge tube. The first elution of DNA was stored at 4 °C and the second 

elution was stored at -20 °C. The concentration and quality of the DNA was 

measured using NanoDrop 1000 (Thermo scientific).  
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3.4 Real time PCR (qPCR) 

Three qPCR assays were performed for the three genes under study: lytA, 

piaA and hylA. The primers and the probes used on the assays are in 

Supplementary Table 1 in the appendix. 

Detection of lytA was performed as described by Carvalho and collaborators (18).  

Detection of piaA was performed as described by Trzcinski (19) using 

primers and probe described by Walan and collaborators (41).   

Detection of hylA gene was performed using primers and probe designed in 

this study. The primers were constructed based on the published sequence of the 

hylA gene (SP_0314) of S. pneumoniae TIGR4 strain (GenBank accession 

number: NC_003028.3). This sequence was considered the reference sequence. 

The reference sequence of hylA gene was blasted against the NCBI database. TIB 

MOLBIOL Syntheselabor GmbH constructed the primers and probe. To label the 

probe we chose Cy5. 

The qPCR assays were carried out with a final reaction volume of 25 μl 

containing FastStart universal Probe Master, primer forward, primer reverse, 

probe, miliQ water and 2.5 μl of DNA sample per reaction. The final concentration 

of the primers was 0.15 μM and of the probe 0.075 μM. A non-template control 

(blank), a positive control (S. pneumoniae TIGR4) and a negative control             

(S. pseudopneumoniae ATCC BAA - 960) were used in all assays. Preparation of 

all reagents, master mix and sample distribution was performed in a biological 

safety cabinet class II. 

The amplification reaction was carried out in CFX96™ Real time System 

(Bio-Rad) using the following cycling parameters: 1 cycle at 50 °C for 2 min, 1 

cycle at 95 °C for 10 min, 45 cycles at 95 °C for 15 sec plus annealing temperature 

of the primer (60 °C for lytA and piaA gene; 55 °C for hylA gene) for 1 min. 

To determine if an isolate was positive or negative for the gene tested a 

cycle threshold was defined. All isolates with a CT value below 35 were considered 
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positive. For CT values equal or higher than 35 isolates were considered negative. 

All 98 non-pneumococcal isolates with a positive amplification were retested a 

second time in a different day. The 30 type strains of other Streptoccocus species 

and the pneumococcal isolates were tested twice in two different days. If the 

results were not concordant the isolates were retested a third time. 

To determine the minimum DNA concentration to be used in the assays, the 

sensitivity of the qPCR was calculated based on Burn and collaborators and Kim 

and collaborators under the assumption that: (i) the size of the genome of the 

tested isolates was equal to the size of the R6 S. pneumoniae strain, i. e, 

2,400,000 bp; 1 pg contains 0.97x109 bp; (iii) at least 22 copies of the genome are 

needed to have DNA amplification (74, 79). According to these assumptions the 

minimum DNA concentration to be used needs to be higher than 5.4x10-5 ng/μl. 

We set a maximum DNA concentration of 0.2 ng/μl for all isolates based on 

the CFX96™ Real time System manufacturer information in order to avoid false 

positives. A dilution was performed in order to obtain a concentration of 0.2 ng/μl 

for isolates with higher DNA concentration.  

 

 3.5 MLSA for Viridans group 

The amplification by PCR of internal fragments of seven housekeeping 

genes (Methionine aminopeptidase (map), Pyruvate formate lyase (pfl), Inorganic 

pyrophosphatase (ppaC), Pyruvate kinase (pyk), RNA polymerase beta subunit 

(rpoB), Superoxide dismutase (sodA) and elongation factor Tu (tuf)) was 

performed as previously described using primers indicated in Supplementary 

Table 2 in the Appendix (69). The sodA reverse primer used was modified in this 

study. 

PCR reactions for MLSA were carried out in a total volume of 50 μl, 

containing: GoTaq at a final concentration of 0.02 U/μ; buffer Go Taq at a final 

concentration of 1 x; MgCl2 at a final concentration of 5 mM; dNTPs at a final 

concentration of 0.08 mM each; primer forward and reverse at a final 
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concentration of 0.4 μM each, and MiliQ water. The thermal cycling reaction 

conditions were an initial denaturation at 94 °C for 4 min; 30 cycles of denaturation 

at 95 °C for 30 sec, annealing temperature 50 °C for 30 sec, and extension at 72 

°C for 45 sec; final extension at 72 °C for 10 min. The annealing temperature is 

indicated in Supplementary Table 2 in the Appendix (69).  

Sequencing was performed at Macrogen, Inc. The sequences were 

compared with a template sequence of each gene downloaded from 

www.emlsa.net, using the DNAStar to ensure that they have the same length as 

the template (trimming). 

A concatenated sequence with all of the seven sequences from the 

housekeeping genes from each isolate was performed using the program EditSeq 

from the DNAStar software. 

To perform the MLSA the concatenated sequences were align by the 

ClustalW method with the concatenated sequences from other well resolved 

strains belonging to the Viridans group, that were downloaded from the website 

www.emlsa.net. To perform the alignment the software MEGA 6 was used. The 

alignment was save in a MEGA Format. The phylogenetic tree was constructed 

based on the performed alignment. The minimum evolution parameter was used in 

the construction of the phylogenetic tree. 
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To assess what would be the best method for the identification of                

S. pneumoniae, the specificity and the sensitivity of the qPCR assays targeting the 

lytA, piaA and hylA genes were assessed using a collection of pure cultures of    

S. pneumoniae (expected to have all these genes) and non-pneumococcal strains 

from closely related species (expected to lack all these genes). The specificity was 

tested using 128 isolates from closely related species such as                              

S. pseudopneumoniae, Viridans group isolates and type strains of Streptococcus 

species. The sensitivity was tested using 150 S. pneumoniae strains of diverse 

serotypes and genotypes (Table 1 and Supplementary Table 4). When 

unexpected results were obtained, confirmatory tests were performed as 

described in Figure 4. 

 

4.1 Specificity and sensitivity of lytA qPCR assay 

Of the 128 non-pneumococcal isolates used to test the specificity of the lytA 

qPCR assay, 126 were negative and two were positive (Figure 5A) with a CT 

average of 23 and 33. The positive isolates were 8615 and 9111, respectively 

(Table 2 and Figure 5A). The positive isolates were identified as                              

S. pseudopneumoniae by Rolo and collaborators (Table 2) (51). Using this 

collection, the specificity of the lytA qPCR assay was 98.5%. 

A confirmation at species level of the positive strains 8615 and 9111 was 

performed using MLSA scheme. The result was concordant; the 8615 and 9111 

isolates were identified as S. pseudopneumoniae (Table 2 and Figure 6). 

Concerning the sensitivity of the lytA qPCR assay, all 150 pneumococcal 

isolates tested were positive as expected (Figure 5B). Using this collection, the 

sensitivity of the lytA qPCR assay was therefore 100.0%. 
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Figure 4. Flowshart of the methodology used during the study.  
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 Non-pneumococcal collection Pneumococcal collection 
 A B 
lytA 

  
 C D 
piaA 

  
 E F 
hylA 

  
 

Figure 5. Specificity and sensitivity of the lytA, piaA, and hylA qPCR assays. 

CT value for the non-pneumococal (A, C, and E) and pneumococal (B, D and F) isolates for genes 

lytA (A and B) piaA (C and D) and hylA (E and F) are represented. The doted line represents the 

defined CT threshold (CT = 35) used to classify samples as positive or negative for a given assay. 

All isolates below the black doted line are positive and all isolates above the grey line are negative. 

With the number 1 are represented the isolate DCC1365, DCC635 and DCC646. The number 2 

represents isolates PT1718, PT1804b and PT2293b.  
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Figure 6. Phylogenetic position of the strains with atypical result based on a Multilocus 
Sequence Analysis for Viridans group.  

In this figure a phylogenetic tree of the species of Viridans group is represented. This tree was 

performed by using the MLSA Viridans group scheme and a database of isolates available on 

www.eMLSA.net. The isolates with atypical results on the qPCR are represented by the coloured 

squares. With this analysis we were able to obtain a correct identification of all isolates tested at 

the species level in order to discuss the atypical results. 
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Table 2. Characterization of the strains with atypical results in this study. 

Strain Species Carriage/ 
disease 

Child/
adult 

qPCR 
results MLSA Result 

            

8615 S. pseudopneumoniae Disease Adult lytA+ hylA+  S. pseudopneumoniae 

9111 S. pseudopneumoniae Disease Adult lytA+ S. pseudopneumoniae 

939 S. pseudopneumoniae Disease Adult piaA+ S. pseudopneumoniae 

6760 Viridans group Disease Adult hylA+ S. mitis 

7693 Viridans group Disease Adult hylA+ S. mitis 

8447 Viridans group Disease Adult hylA+ S. mitis 

8592 Viridans group Disease Adult hylA+ S. mitis 

8692 Viridans group Disease Adult hylA+ S. mitis 

PT5346b Viridans group Carriage Child hylA+ S. mitis 

PT5590a Viridans group Carriage Child hylA+ S. mitis 

PT5798b Viridans group Carriage Child hylA+ S. mitis 

DSM20066 S. oralis − − hylA+ S. oralis 

DSM20379 S. oralis − − hylA+ S. oralis 

Bold – invasive strain; + positive; - negative; - No data. 
 
 

4.2 Specificity and sensitivity of piaA qPCR assay 

Of the 128 non-pneumococcal isolates used to test the specificity of the 

piaA qPCR assay, 127 were negative and one isolate was positive, 939 (Table 2 

and Figure 5C). The positive isolate was S. pseudopneumoniae (Table 2 and 

Supplementary table 4). However, this strain was not the same as the ones that 

were positive for lytA gene (Table 2). Using this collection, the specificity of the 

piaA qPCR assay was 99.2%. 
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A confirmation at species level of the positive strain was performed using 

the Viridans group MLSA scheme. The result was concordant and therefore, the 

isolate was identified as S. pseudopneumoniae (Table 2 and Figure 6). 

Regarding the sensitivity of the piaA qPCR assay, 140 out of 150 

pneumococcal isolates were positive and the remaining ten isolates were negative 

(Figure 5D). Among the ten negative isolates, six were non-capsulated 

pneumococcal strains, two were of capsular type 23F, one was of capsular type 

11A and one was a PMEN strain with capsular type 6B. Overall, the sensitivity of 

the piaA qPCR assay was 93.3%. 

 

4.3 hylA qPCR assay 

4.3.1 Design of hylA primers and probe 

S. pneumoniae TIGR4 strain was used as a reference for the design of the 

primers and probe to be used in a hylA qPCR assay (TIGR4 annotation for hylA: 

SP_0314). A BLAST analysis of the TIGR4 hylA sequence was performed against 

the NCBI database. A total of 62 matches were found: from these 23 had a 

sequence homology of 100% between them, and therefore, we only used one 

representative sequence. In total, 34 sequences belonging to S. pneumoniae 

strains with an identity of 100%, including TIGR4 S. pneumoniae strain, and six 

sequences belonging to other three Streptococcus species (two S. intermedius 

strains, three S. constellatus strains and one S. anginosus strain) with a sequence 

identity of less than 76% were used. 

In order to analyse the differences between the sequences, a BLAST 

analysis was performed between the 33 pneumococcal sequences and the other 

six sequences belonging to the Streptococcus genera with the reference sequence 

from the TIGR4 strain. A region of the gene was found to be highly conserved 

among the pneumococcal strains. On the other hand, this region was poorly 

conserved among the other three species. This region was 146 bp long and was 

located closer to the 5’ end of the gene (Figure 7). 
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                 A                                                                                                                                       B 

 

Figure 7. Sequence blast of the hylA gene sequence from TIGR4 S. pneumoniae strain (annotated as SP_0314 hyaluronate lyase) with     other hylA 
gene sequence of 33 S. pneumoniae strains and six other Streptococcus species. 
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Figure 7. Sequence blast of the hylA gene sequence from TIGR4 S. pneumoniae strain (annotated as SP_0314 hyaluronate lyase) with     other hylA 
gene sequence of 33 S. pneumoniae strains and six other Streptococcus species. (Cont.)  

A – Locus Tag; B – Sequence of the strains blasted; 1- S. pneumoniae sequences; 2- S. constellatus sequences; 3- S. anginosus sequence; 4- S. intermedius 
sequences; Red rectangle is the chosen sequence as target for construction of primers and probe to be used in the qPCR; Yellow - non-consensus between 

the sequences; Brown box – primer forward; Black box – probe; blue box – primer reverse. The alignment was performed with MegAlign from DNAStar.



RESULTS 

Revisiting molecular diagnostics of Streptococcus pneumoniae  37 

Having chosen the target sequence, two sets of primers and one probe 

were designed by TIB MOLBIOL Syntheselabor GmbH  (Supplementary Table 3 in 

the appendix section). Both sets of primers were tested with two pneumococcal 

strains (TIGR4 and D39) as positive controls and one S. mitis strain (DSM12643) 

as a negative control. Three different annealing temperatures were tested: 60°C, 

58°C and 55°C. The primers hylA-1F and hylA-1R were the best set of primers 

(Table 3), which yield a PCR product of 169 bp with the annealing temperature of 

55°C. 

Table 3. CT values for hylA qPCR optimization for three different temperatures: 55°C, 58°C 
and 60°C.  

Strain  Annealing temperature Primers  CT 

D39 55 °C 
hylA_1F + hylA_1R 13.9 
hylA_2F + hylA_2R 15.7 

TIGR4 55 °C 
hylA_1F + hylA_1R 22.9 
hylA_2F + hylA_2R 23.6 

DSM12643 55 °C 
hylA_1F + hylA_1R <45 
hylA_2F + hylA_2R 40.2 

D39 60 °C 
hylA_1F + hylA_1R 25.1 
hylA_2F + hylA_2R 13.8 

TIGR4 60 °C 
hylA_1F + hylA_1R 32.1 
hylA_2F + hylA_2R 22.2 

DSM12643 60 °C 
hylA_1F + hylA_1R <45 
hylA_2F + hylA_2R 37.2 

D39 58 °C 
hylA_1F + hylA_1R 16.1 
hylA_2F + hylA_2R <45 

TIGR4 58 °C 
hylA_1F + hylA_1R 23.6 
hylA_2F + hylA_2R 22.1 

DSM12643 58 °C 
hylA_1F + hylA_1R 43.8 
hylA_2F + hylA_2R 36.2 

The primers and temperatures were tested in two different S. pneumoniae strains, D39 and TIGR4 

and in one S. mitis strain, DSM12643; hylA_1F + hylA_1R – first set of primers; hylA_2F + hylA_2R 

– second set of primers. 
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4.3.2 Specificity and sensitivity of hylA qPCR assay  

Of the 128 non-pneumococcal isolates used to test the specificity of the 

hylA qPCR assay, 117 were negative and eleven were positive, DSM20066, 

DSM20379, 6760, 7693, 8447, 8592, 8615, 8692, PT5346b, PT5590a and 

PT5798b. (Table 2 and Figure 5E). From these positive isolates eight (6760, 7693, 

8447, 8592, 8692, PT5346b, PT5590a and PT5798b) were from Viridans group 

isolates, two S. oralis strains (DSM20066 and DSM20379) and one was classified 

as S. pseudopneumoniae (8515) by Rolo and collaborators (51). Using this 

collection, the specificity of the hylA qPCR assay was 92.0%. 

A confirmation at species level of the positives strains was performed using 

the MLSA scheme. The result was concordant and therefore, the eight isolates 

were identified as S. mitis, one as S. pseudopneumoniae and two as S. oralis 
(Table 2 and Figure 6). 

Regarding the sensitivity of the hylA qPCR assay, 150 out of 150 

pneumococcal isolates were positive therefore the sensitivity of the hylA qPCR 

assay was 100.0% (Figure 5F). 
 

4.4 Combined specificity and sensitivity of the lytA, piaA and hylA qPCR 
assays 

The combined analysis was performed in order to compare and access 

what would be the best target or targets to correctly identify S. pneumoniae. For a 

non-pneumococcal isolate to be considered positive (identified as S. pneumoniae) 

the qPCR result had to be positive for all the genes in the combination, on the 

other hand if one isolate was positive just for one of the genes the isolate was not 

considered to be S. pneumoniae. A pneumococcal isolate was considered 

negative (identified as non-S. pneumoniae) when the qPCR result was negative 

for at least one of the genes in the combination. 
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Table 4. Specificity and sensitivity for the genes tested. 

Target genes Specificity  Sensitivity  

lytA 98.5% (126/128) 100.0% (150/150) 
piaA 99.2% (127/128) 93.3% (140/150) 
hylA 92.0% (117/128) 100.0% (150/150) 
lytA piaA  100.0% (128/128)   93.3% (140/150) 
lytA hylA 99.2% (127/128) 100.0% (150/150) 
piaA hylA  100.0% (128/128)   93.3% (140/150)  
lytA piaA hylA  100.0% (128/128)   93.3% (140/150) 
   

Despite the fact that two non-pneumococcal isolates were positive for the 

lytA gene and one was positive for the piaA gene (Table 4 and Table 5) none of 

these isolates were positive for both genes. Therefore, the specificity of the 

combined assay was 100.0% (Table 4). Despite the fact that all isolates were 

correctly identified in the lytA qPCR assay, in the piaA qPCR assay ten 

pneumococci (6 non-typeable strains, two 23F strain, one 6B strain and one 11A) 

isolates were negative (Table 5). Therefore the sensitivity for the combined assay 

was 93.3% (Table 4) 

Table 5. Results for the combination of the three qPCR assays targeting the genes lytA, 
piaA and hylA. 

  S. pneumoniae S. pseudopneumoniae Viridans 
group strains 

Type strains of 
Streptococcus 
species (does 

not include        
S. pneumoniae) 

lytA+ piaA+ hylA+  140 0 0 0 

lytA- piaA- hylA- 0 58 29 28 

lytA+ piaA- hylA- 0 1 0 0 

lytA+ piaA- hylA+ 10 1 0 0 

lytA- piaA+ hylA- 0 1 0 0 

lytA- piaA- hylA+ 0 0 8 2 

Total 150 61 37 30 

The data in the table corresponds to absolute numbers. 
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When the lytA and hylA qPCR assays were combined, the specificity was 

99.2% (Table 4). Between the positive non-pneumococcal isolates, one was 

common for both genes, 8615 being positive for the lytA and hylA genes. The 

sensitivity for this combined assay was 100.0% (Table 4). Here the hylA lytA 

qPCR were able to detect all of 150 pneumococcal isolates.  

Regarding the combination between the hylA and piaA qPCR assays, the 

value of the specificity of these combined assays is 100.0% (Table 4). The 

sensitivity for this combination is 93.3% (Table 4). From the 150 isolates tested ten 

were negative for piaA gene and none for hylA gene (Table 5).  

With the combination between the three assays lytA, piaA and hylA qPCR, 

14 out of 128 isolates were positive for, at least, one of the three genes in 

combination. One isolate was positive for the lytA and hylA genes but not for the 

piaA gene. Therefore, the combined specificity of these three assays is 100.0% 

(Table 4). The sensitivity for these combined assays was 93.3% (Table 4). In this 

case, all isolates are positive for the lytA and hylA qPCR but ten isolates are 

negative for the piaA qPCR (Table 5).  

Overall, with the analyses of these results the method that combines the 

best value of specificity and sensitivity is the combination between the lytA and 

hylA qPCR assay with a specificity of 99.2% and a sensitivity of 100.0% (Table 4). 

Nonetheless it is necessary to take in account the PPV and NPV. The combination 

of the three tested genes has worst sensitivity results. The specificity value was 

100.0% but the sensitivity value was lower, 93.3% (Table 4).  
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4.5 Positive predicted value (PPV) and negative predicted value (NPV) 

In order to describe the performance of these identification tests the positive 

predicted value (PPV) and the negative predicted value (NPV) were calculated for 

each assay and for the combination of assays. 

The PPV is important to know the proportion of true positive results of the 

methodology in test, while the NPV gives the proportion of true negative results 

(Figure 8). 

 

 

Figure 8. Informative figure that explains the calculation of the positive predicted value and 
the negative predicted value (adapted from http://sphweb.bumc.bu.edu). 
 

Using the data from the qPCR results (Table 4) for the lytA, piaA and hylA 

qPCR assays, the PPV is 98.7%, 99.3% and 93.1%, respectively (Table 6 and 

Supplementary Figure 1). The qPCR assay with the highest probability to have a 

positive amplification and be S. pneumoniae is the piaA qPCR. However for the 

NPV the assay with the highest value is the lytA and hylA qPCR, with a value of 

100.0%. The value for piaA qPCR is 92.7% (Table 6). The qPCR assays with the 

highest probability to be negative when the isolate is not S. pneumoniae were the 

lytA and hylA qPCR. 
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When we combined the assays lytA piaA qPCR; lytA hylA qPCR; piaA hylA 

qPCR and lytA hylA piaA qPCR the values for the PPV were: 97.9%, 93.1%, 

92.1% and 92.1%, respectively. The values for the NPV were: 92.6%, 100.0%, 

92.1% and 92.1%, respectively. 

Regarding the PPV and NPV as a single target the lytA qPCR have the best 

values. When we analyse the combined assays the lytA piaA qPCR have the best 

rates of PPV and NPV.  

 
Table 6. PPV and NPV for the single and combined assays.  

Target genes PPV NPV 

lytA 98.7% 100.0% 
piaA 99.3% 93.4% 
hylA 93.1% 100.0% 
lytA piaA 97.9% 92.6% 
lytA hylA 93.1% 100.0% 
piaA hylA 92.1% 92.1% 
lytA piaA hylA 92.1% 92.1% 
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Several studies based on a molecular approach that is always dependent of 

a bacterial culture step have been proposed in the past years. Lull and 

collaborators proposed a lytA RFLP to distinguish S. pneumoniae from the closely 

related species (17). The differentiation was based on specific signatures on the 

lytA present in S. pneumoniae that are different from the lytA found in the 

“pneumococcus – like” strains. Nonetheless, more recently, the presence of a 

homologous of the lytA with typical signature has been described in a                    

S. pseudopneumoniae strain (38). This finding is important for the sensitivity of this 

technic and the possible increase of the rate of the false positives. Other targets 

such as ply and psaA were proposed for the identification of S. pneumoniae (36, 

66). However, with only a specificity of 50% for the ply gene and the presence of 

homologous genes in the close relatives turn these two genes in not very good 

targets for the identification of S. pneumoniae (38, 67). The 16S RNA has been 

proposed as a good target in the identification of S. pneumoniae. However the 

similarity of the 16S RNA gene sequences between the close relatives is 99%, 

which is a problem to distinguish between species (80). More recently, Sholz and 

collaborators (81) described the presence of a highly conserved single nucleotide 

polymorphism in the 16S RNA gene sequence that enables the distinction of 

pneumococcal strains from other species of the Viridans group. Using sequence 

comparison, or a RFLP technic the authors managed to distinguish almost all       

S. pneumoniae from its relatives. However, this technic as a clinical tool, is time 

consuming and laborious. The Viridans group MLSA scheme proposed by Bishop 

and collaborators is a good alternative in clustering at species level a group of 

isolates (69). However, as a clinical tool it is also laborious, time consuming and 

expensive (68).  

These strategies have a common down side when compared to qPCR. All 

rely on a first step that is the growth of the bacterium based on culture methods. 

Therefore there is a decrease in the sensitivity when compared to qPCR. The 

qPCR technique is able to amplify DNA of non-viable bacteria, increasing the 

sensitivity (57).  
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The main aim of this study was to test the best target or targets using qPCR 

technic for correct identification of S. pneumoniae. The genes tested were: lytA, as 

described by Carvalho and collaborators (18); piaA, as described by Trzcinski and 

collaborators (19) and hylA, tested for the first time in this study.  

To accomplish these aims we used a previously well-characterized 

collection of isolates (Table 1 and Supplementary Table 4) (51, 55, 82). 

In this study we were able to gain insights in to the specificity, sensitivity, 

PPV and NVP of the three tested genes as targets in a qPCR assay.  

In 2007 Carvalho and collaborators described a lytA qPCR assay for 

identification of S. pneumoniae (18). Nonetheless, the presence of a homologous 

lytA gene has been described in species of the Viridans group,                            

(S. pseudopneumoniae and S. mitis) (36-38). In our study we increased the 

number of isolates of S. pneumoniae closely related species, in particular                

S. pseudopneumoniae (44 more isolates, 61 in total), and the specificity and PPV 

were lower than that obtained by Carvalho and collaborators (18), however the 

sensitivity and NPV were the same, 100.0% (Table 4 and Table 6). The two                              

S. pseudopneumoniae misidentified as S. pneumoniae was an unexpectable 

result. These two strains, 8615 and 9111 were confirmed at species level using 

the MLSA Viridans streptococci (Figure 6). However, the presence of lytA gene 

has been described in this species (38). Of interest, the S. pseudopneumoniae 

strain described by Shahinas and collaborators (38) to harbor an atypical and a 

typical lytA gene was tested in our study and we obtained no amplification using 

the qPCR described by Carvalho and collaborators for this strain. Nonetheless if 

the probe used on the qPCR assay is designed to be specific for S. pneumoniae 

no amplification should occur for other species. This result suggests that the probe 

and the primers are not totally specific for S. pneumoniae, probably interacting 

with lytA homologues different from those described by Shahinas and 

collaborators, or more remotely, with other part of the genome of these strains. 

Other hypothesis relies on the fact that the majority of the bacteria of Viridans 

group is competent, which means that they can acquire exogenous DNA from 
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species that share the same ecological niche (83, 84). HGT between 

pneumococcal strains and S. pseudopneumoniae has been observed (83-86). 

Since, the non-pneumococcal strains with positive amplification for lytA were 

collected from sick patients, they are virulent and capable to cause disease, and 

therefore the acquisition of a functional lytA gene could be seen as an advantage. 

In this study we focused our attention in a target recently used in qPCR, the 

piaA gene used by Trzcinszki and collaborators (19). The piaA gene has been 

used as a second target when performing the lytA qPCR assay to decrease the 

number of false positives (19). 

The piaA gene was described to be present only in S. pneumoniae and 

absent in the closely related species (41). However, its presence is not ubiquitous 

in S. pneumoniae, since it is commonly absent in non-typeable pneumococcal 

strains (41). The specificity and the sensitivity of this gene were not tested until 

this study. Here we tested for the first time the specificity, sensitivity, PPV and 

NPV of the piaA gene used as a single target.  

The value obtained for the specificity and the PPV of the piaA qPCR assay 

was higher than that obtained for the lytA qPCR assay (Table 4 and Table 6). 

However this assay had a lower sensitivity value and NPV than the lytA qPCR 

assay (Table 4 and Table 6). With piaA qPCR assay S. pseudopneumoniae can 

be positively identified as S. pneumoniae (Table 5 and Figure 6). The piaA qPCR 

assay showed a lower value of sensitivity and NPV when compared with the lytA 
qPCR assay (Table 4 and Table 6). We expected a lower sensitivity since the 

absence of piaA gene in non-typeable pneumococcal strains has been described 

(41). However, we detected S. pneumoniae capsulated strains that were negative 

for piaA qPCR assay (Supplementary Table 4). Such results are not concordant to 

what has been described so far (41). The presence of a piaA homologue gene 

acquired by HGT could be a possible explanation for the non-pneumococcal 

positive strain (Table 2). Also, the acquisition of piaA gene could be seen as an 

advantage for the bacteria to survive in iron depletion. However, the lack of piaA 

gene in S. pneumoniae capsulated strains could not be seen as advantageous in 
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colonization and virulence of the S. pneumoniae capsulated strains since studies 

have shown the importance of a functional piaA in the virulence of S. pneumoniae 

(28, 87, 88). In addition piaA gene is highly conserved at sequence and protein 

level among S. pneumoniae strains (41). Until this study, the presence of the piaA 

gene has not been described in any species of the Viridans group besides            

S. pneumoniae (41). In addition for the first time we did not detect the piaA gene in 

S. pneumoniae capsular strains. However, confirmatory tests need to be 

performed.  

After the evaluation of the specificity and the sensitivity of the piaA gene, 

we decided to target a new gene. Since the hylA gene encodes for a protein that is 

considered by some authors a virulence factor (27, 89), and it has been described 

to be present in S. pneumoniae and absent in the closely related species in the 

Viridans group (46, 77) a qPCR assay was designed to target the hylA gene. 

When compared with the lytA and piaA qPCR assays the specificity and PPV for 

hylA qPCR was lower (Table 4 and Table 6). A confirmation at species level was 

performed using the MLSA Viridans group scheme for all non-pneumococcal 

positive isolates, and misidentifications between S. oralis, S. pseudopneumoniae 
and strains from Viridans group occur when using the hylA qPCR (Figure 6). When 

the alignment of hylA gene from the type strain TIGR4 was performed with the 

NCBI database, no match was found for S. oralis, S. mitis and                              

S. pseudopneumoniae species (Figure 7). Therefore we did not expect any 

amplification for strains belonging to these species. Nonetheless, the comparison 

of a sequence with only a database with a limited number of strains available is a 

limitation and could be seen as a disadvantage for this study design. Furthermore, 

previous studies showing the specificity of hylA gene used genome comparison 

and only used a low number of isolates (37, 38). Our results indicate that the 

primers and probe here designed are not specific for S. pneumoniae interacting 

with a possible homologous of the hylA gene. This hypothesis can be supported 

by the acquisition of a hylA homologous gene by HGT since the presence of a 

functional hylA gene brings advantages in the colonization and in the ability to 

cause infection, promoting the virulence of the bacterium by the release or 

activation of other virulence factors (27, 89).  
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The hylA qPCR assay was capable to correctly identify all the                     

S. pneumoniae in the collection with equal values of sensitivity and NPV than 

those obtained with the lytA qPCR assay.  

The lytA gene as a single target has been used worldwide in qPCR assays. 

However, in 2013, Trzcinski and collaborators used a second target, piaA, in order 

to decrease the number of false positives (19). In this study we evaluated four 

parameters: sensitivity, specificity, PPV and NPV. The PPV will give the rate of 

false positives and therefore in diagnostic tests is the most relevant (90). 

According to this we have shown that as a single target the lytA qPCR assay 

described by Carvalho and collaborators remains the best choice (Table 4 and 

Table 6). Nonetheless the best combination of targets in a qPCR assay remains 

the combination used by Trzcinski and collaborators. Despite the fact that the lytA 
hylA qPCR have the best values of specificity and sensitivity, the PPV and NPV 

values were worse when compared to lytA piaA qPCR (Table 4 and Table 6). No 

doubt that with the use of two targets the specificity of the assay increases, 

however in this study we have shown that the PPV decreases with the use of two 

targets proposed by Trzcinski and collaborators.  

In this study we evaluated the use of different CT (Cycle threshold) values 

used in the qPCR studies. We propose a standard value in order to compare the 

results of the studies that use the qPCR assay for the identification of the                       

S. pneumoniae. Carvalho and collaborators and Trzcinski and collaborators used 

for positive identification CT<35 (18, 19). Later, Wyllie and collaborators used as 

cut off a CT<40 (75). When the results of this study are compared using these two 

different CT the best approach seems to use CT<35 as a cut off (Supplementary 

Table 5). This is supported by the amplification values, obtained for the                 

S. pneumoniae strains that were always lower than 33 (Supplementary Table 4). 

Therefore we propose the use of a CT<35 as standard for all qPCR in the 

identification of S. pneumoniae. 



 

 50 



 

 51 

 

 

 

 

 

 

 

 

6. CONCLUSIONS



 

 52 



CONCLUSIONS 

Revisiting molecular diagnostics of Streptococcus pneumoniae 53 

The main goals of this study were to evaluate the specificity, sensitivity, 

PPV and NPV of the lytA, piaA and hylA genes as targets in a qPCR, and infer 

what is the better target or, combination of targets, to correctly identify                    

S. pneumoniae.  

With this study we showed that as a single target, the lytA gene seems to 

be the best target. Nonetheless, S. pseudopneumoniae strains could be identified 

as S. pneumoniae based on qPCR for lytA. Still, all S. pneumoniae strains were 

correctly identified using lytA as a single target.  

When two targets are used, the best combination seems to be the lytA piaA 
qPCRs. However, S. pseudopneumoniae strains could be identified as                  

S. pneumoniae. In addition, some S. pneumoniae isolates were not identified by 

this combination of targets, since negative results for S. pneumoniae isolates 

using piaA gene were obtained.  

This study showed that the use of the hylA gene as a single target or in 

combination with other targets is not a good solution for the identification of           

S. pneumoniae. 

Here we proposed the use of a standard CT cut-off value of 35 to be used in 

future studies relying on qPCR for the identification of S. pneumoniae. 

This study was important to gain insights in to the sensitivity, specificity, 

PPV and NPV of the qPCR assays currently used by the scientific community in 

the identification of S. pneumoniae. 
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In this study, a large collection of strains was used to evaluate which qPCR 

lytA, piaA or hylA assay would best identify S. pneumoniae. Misidentifications, 

although rare, were found to occur. Therefore, the focus of future work could be 

the search for a novel species-specific target that would provide better qPCR 

results. 

There are other topics that I would like to have an answer for. I would like to 

be able to explain the detection of false negatives for the hylA gene, false positives 

for the piaA gene and false positives for the lytA gene. In these cases, besides 

sequencing the complete genes and comparing with reference sequences, one of 

the options that I would like to study would be the protein activity of HylA, PiaA and 

LytA, in these isolates, to access if other proteins, with possible differences in the 

sequence, have the normal activity or a lower/higher activity, influencing the ability 

of the bacterium to colonize and cause disease. In fact, the answer to these topics 

could be an approach in a possible future research study. 
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9.1 Supplemental data 

 
Supplementary Table 1. Sequences of primers and probes used for the qPCR assays. 

Gene Primers and probes sequence Ref. 

lytA 
lytA_F: 5’ – ACGCAATCTAGCAGATGAAGCA - 3’ 

18 lytA_R: 5’ – TCGTGCGTTTTAATTCCAGCT - 3’  
lytA_P:5’ 6FAM-TGCCGAAAACGCXTTGATACAGGGAG – PH - 3’  

piaA 

piaA_F: 5’-CATTGGTGGCTTAGTAAGTGCAA - 3’ 

19 piaA_R: 5’- TACTAACACAAGTTCCTGATAAGGCAAGT - 3’ 

piaA_P: 5’- ROX-TGTAAGCGGAAAAGCAGGCCTTACCC – BBQ - 3’ 

hylA 
hylA_F: 5’-CCAAATTAAACCAGGAATTGGA-3’ 

This study hylA_R: 5’- CTCCAATTTCCGATAAGTGGCA-3.  
hylA_P: 5’ Cy5 – TCAAGTCAGGCGGACCGCA – BBQ - 3’ 

 
 
 
Supplementary Table 2. Primers and respective sequence used on the amplification of the 
eight housekeeping genes in the MLSA method. 

Primer Sequence 
Annealing 

temperatures 
(°C) 

Ref 

map-up 5' - GCWGACTCWTGTTGGGCWTATGC - 3' 
55 (69) 

map-dn 5' - TTARTAAGTTCYTTCTTCDCCTTG - 3' (69) 
pfl-up 5' - AACGTTGCTTACTCTAAACAAACTGG - 3' 

55 (69) 
pfl-dn 5' - ACTTCRTGGAAGACACGTTGWGTC - 3' (69) 
ppaC-up 5' - GACCAYAATGAATTYCARCAATC - 3' 

50 (69) 
ppaC-dn 5' - TGAGGNACMACTTGTTTSTTACG - 3' (69) 
pyk-up 5' - GCGGTWGAAWTCCGTGGTG - 3' 

50 (69) 
pyk-dn 5' - GCAAGWGCTGGGAAAGGAAT - 3' (69) 
rpoB-up 5' - AARYTIGGMCCTGAAGAAAT - 3' 

50 (69) 
rpoB-dn 5' - TGIARTTTRTCATCAACCATGTG - 3' (69) 
sodA-up 5' - TRCAYCATGAYAARCACCAT - 3' 

50 (69)  
sodA-dn 5' - ARRTARTAMGCRTGYTCCCARACRTC - 3' study 
tuf-up 5' - GTTGAAATGGAAATCCGTGACC - 3' 

55 (69) 
tuf-dn 5' - GTTGAAGAATGGAGTGTGACG - 3' (69) 
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Supplementary Table 3. Primers and probe initially designed for the hylA qPCR. 

Gene Primers and probes sequence 

hylA 

hylA_1F:5’ – CCAAATTAAACCAGGAATTGGA - 3’ 

hylA_1R:5’ – CTCCAATTTCCGATAAGTGGCA – 3’.  

hylA_2F:5’ – ATTGGAAGGAAAGGTAGCTGAT - 3’ 

hylA_2R:5’ – AGACGTTTAGACTGACGGTGA – 3’.  

hylA_P :5’ Cy5 – TCAAGTCAGGCGGACCGCA - BBQ 3’ 

The primers and the probe used in the hylA qPCR are indicated in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX 

Revisiting molecular diagnostics of Streptococcus pneumoniae 75 

Supplementary Table 4. Study collection – characterization. 

Strain Species Ser. 
Average 

CT for 
lytA 

Average 
CT for 
piaA 

Average 
CT for 
hylA 

R 

37 S. pseudopneumoniae - NA NA NA (51) 
281 S. pseudopneumoniae - NA NA NA  (51) 
337 S. pseudopneumoniae - NA NA NA  (51) 
531 S. pseudopneumoniae - NA NA NA  (51) 
603 S. pseudopneumoniae - NA NA NA  (51) 
939 S. pseudopneumoniae - 39 26 NA  (51) 
1137 S. pseudopneumoniae - NA NA NA  (51) 
1173 S. pseudopneumoniae - NA NA NA  (51) 
1304 S. pseudopneumoniae - NA NA NA  (51) 
1324 S. pseudopneumoniae - NA NA NA  (51) 
1544 S. pseudopneumoniae - NA NA NA  (51) 
1752 S. pseudopneumoniae - NA NA NA  (51) 
1848 S. pseudopneumoniae - NA NA NA  (51) 
1850 S. pseudopneumoniae - NA NA NA  (51) 
1927 S. pseudopneumoniae - NA NA NA  (51) 
2161 S. pseudopneumoniae - NA NA NA  (51) 
2353 S. pseudopneumoniae - 39 NA NA  (51) 
2504 S. pseudopneumoniae - NA NA NA  (51) 
2522 S. pseudopneumoniae - NA NA NA  (51) 
2565 S. pseudopneumoniae - NA NA NA  (51) 
2581 S. pseudopneumoniae - NA NA NA  (51) 
2597 S. pseudopneumoniae - NA NA NA  (51) 
2609 S. pseudopneumoniae - NA NA NA  (51) 
2615 S. pseudopneumoniae - NA NA NA  (51) 
2621 S. pseudopneumoniae - NA NA NA  (51) 
3075 S. pseudopneumoniae - NA NA NA  (51) 
3194 S. pseudopneumoniae - NA NA NA  (51) 
3205 S. pseudopneumoniae - NA NA NA  (51) 
3473 S. pseudopneumoniae - NA NA NA  (51) 
3738 S. pseudopneumoniae - NA NA NA  (51) 
4526 S. pseudopneumoniae - NA NA NA  (51) 
6265 S. pseudopneumoniae - NA NA NA  (51) 
6338 S. pseudopneumoniae - NA NA NA  (51) 
6339 S. pseudopneumoniae - NA NA NA  (51) 
6408 S. pseudopneumoniae - NA NA NA  (51) 
6486 S. pseudopneumoniae - NA NA NA  (51) 
6669 S. pseudopneumoniae - NA NA NA  (51) 

 
Ser.- Serotype; R – Reference; NA- No amplification; Bold – Invasive strain. 
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Supplementary Table 4. Study collection – characterization (Cont.). 

Strain Species Ser. 
Average 

CT for 
lytA 

Average 
CT for 
piaA 

Average 
CT for 
hylA 

R 

6744 S. pseudopneumoniae - NA NA NA  (51) 
6787 S. pseudopneumoniae - NA NA NA  (51) 
7253 S. pseudopneumoniae - NA NA NA  (51) 
7327 S. pseudopneumoniae - NA NA NA  (51) 
7332 S. pseudopneumoniae - NA NA NA  (51) 
7842 S. pseudopneumoniae - NA NA NA  (51) 
7943 S. pseudopneumoniae - NA NA NA  (51) 
8615 S. pseudopneumoniae - 23 NA 24  (51) 
8646 S. pseudopneumoniae - NA NA NA  (51) 
8937 S. pseudopneumoniae - NA NA NA  (51) 
8971 S. pseudopneumoniae - NA NA NA  (51) 
9012 S. pseudopneumoniae - NA NA NA  (51) 
9013 S. pseudopneumoniae - NA NA NA  (51) 
9015 S. pseudopneumoniae - NA NA NA  (51) 
9096 S. pseudopneumoniae - NA NA NA  (51) 
9111 S. pseudopneumoniae - 33 NA 35  (51) 
9230 S. pseudopneumoniae - NA NA NA  (51) 
9275 S. pseudopneumoniae - NA NA NA  (51) 
9545 S. pseudopneumoniae - NA NA NA  (51) 
9731 S. pseudopneumoniae - NA NA NA  (51) 
9781 S. pseudopneumoniae - NA NA NA  (51) 
9786 S. pseudopneumoniae - 37 NA NA  (51) 
1964 Viridans group - NA NA NA  (51) 
6147 Viridans group - NA NA NA  (51) 
6760 Viridans group - NA NA 25  (51) 
7728 Viridans group - NA NA NA  (51) 
7755 Viridans group - NA NA NA  (51) 
8271 Viridans group - NA NA 39  (51) 
8277 Viridans group - NA NA NA  (51) 
8447 Viridans group - NA NA 25  (51) 
8592 Viridans group - NA NA 21  (51) 
8692 Viridans group - NA NA 23  (51) 
8943 Viridans group - NA NA NA  (51) 
9279 Viridans group - NA NA 39  (51) 
8482 Viridans group - NA NA 37  (51) 
7693 Viridans group - NA NA 35  (51) 

PT5274 Viridans group - NA NA NA  (55) 
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Supplementary Table 4. Study collection – characterization (Cont.). 

Strain Species Ser. 
Average 

CT for 
lytA 

Average 
CT for 
piaA 

Average 
CT for 
hylA 

R 

PT5283 Viridans group - NA NA NA (55) 
PT5295b Viridans group - 39 NA NA (55) 
PT5346b Viridans group - NA NA 25 (55) 
PT5525b Viridans group - NA NA NA (55) 
PT5525c Viridans group - NA NA NA (55) 
PT5532 Viridans group - NA NA NA (55) 

PT5534b Viridans group - NA NA NA (55) 
PT5557b Viridans group - 38 NA NA (55) 
PT5590a Viridans group - NA NA 25 (55) 
PT5590b Viridans group - NA NA NA (55) 
PT5645a Viridans group - NA NA NA (55) 
PT5645b Viridans group - NA NA NA (55) 
PT5714 Viridans group - NA NA NA (55) 
PT5729 Viridans group - NA NA NA (55) 

PT5736b Viridans group - NA NA NA (55) 
PT5779 Viridans group - 40 NA NA (55) 

PT5787b Viridans group - NA NA NA (55) 
PT5790b Viridans group - NA NA NA (55) 
PT5793b Viridans group - NA NA NA (55) 
PT5794b Viridans group - NA NA NA (55) 
PT5796b Viridans group - NA NA NA (55) 
PT5798b Viridans group - NA NA 33 (55) 
PT5804 Viridans group - NA NA NA (55) 

DSM20480  S. bovis - NA NA NA (82) 
DSM20066  S. oralis - NA NA NA (82) 
DSMZ6784  S. agalactiae - NA NA NA (82) 
DSMZ20563  S. anginosus - NA NA NA (82) 
DSM20715  S. canis - 39 NA NA (82) 

DSMZ20662  S. dysgalactiae sub. disgalactiae - NA NA NA (82) 
DSMZ6176  S. dysgalactiae sub. equisimilis - NA NA NA (82) 
DSMZ20727 S. equi sub. zooepidemicus - NA NA NA (82) 
DSM20568  S. gordini - NA NA NA (82) 
DSM6777  S. gordini - NA NA NA (82) 
DSM12492  S. infantis - NA NA NA (82) 
DSM12643  S. mitis - NA NA NA (82) 
DSM20523  S. mutans - NA NA NA (82) 
DSM20627 S. oralis - NA NA NA (82) 
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Supplementary Table 4. Study collection – characterization (Cont.). 

Strain Species Ser. 
Average 

CT for 
lytA 

Average 
CT for 
piaA 

Average 
CT for 
hylA 

R 

DSM6778  S. parasanguinis - NA NA NA (82) 
DSM12493  S. peroris - NA NA NA (82) 
DSM20565  S. pyogenes - NA NA NA (82) 
DSM20560  S. salivarius - NA NA NA (82) 
DSM20567  S. sanguinis - NA NA NA (82) 
DSM14990  S. sinensis - NA NA NA (82) 
DSM5636  S. vestibularis - NA NA NA (82) 

DSM20379 S. oralis (S. viridans I) - NA NA NA (82) 
DSM20395  S. oralis (S. viridans II)  - NA NA NA (82) 
DSM20392  Strep. spp (S. viridans III) - NA NA NA (82) 
DSM20377  Strep. spp (S. viridans IV) - NA NA NA (82) 
DSM8249  S. cristatus - NA NA NA (82) 

NCTC10389 S. equinis - NA NA NA (82) 
NCTC11324 S. intermedius - NA NA NA (82) 
NCTC11325 S. constelatus - NA NA NA (82) 

IS7943  S. pseudopneumoniae - NA NA NA (38) 
PT5479  S. pseudopneumoniae - NA NA NA (82) 

DCC 1365 S. pneumoniae 23F 21 37 24 (82) 
DCC 635 S. pneumoniae NT  23 NA 23 (82) 
DCC 646 S. pneumoniae 23F 23 NA 24 (82) 
PT1214 S. pneumoniae 4 21 21 21 (82) 
PT1263 S. pneumoniae 3 22 23 23 (82) 
PT1265 S. pneumoniae 19F 22 24 22 (82) 
PT1274 S. pneumoniae 31 22 26 25 (82) 
PT1283 S. pneumoniae 23F 20 22 20 (82) 
PT1314 S. pneumoniae 35F 23 27 24 (82) 
PT1333 S. pneumoniae 18A 21 23 22 (82) 
PT1348 S. pneumoniae 18C 19 23 21 (82) 
PT1493 S. pneumoniae NT  20 24 22 (82) 
PT1550 S. pneumoniae 15F 21 25 22 (82) 
PT1581 S. pneumoniae 31 21 23 22 (82) 
PT1592 S. pneumoniae 23F 22 23 22 (82) 
PT1683 S. pneumoniae NT  21 22 21 (82) 
PT1718 S. pneumoniae NT  22 NA 25 (82) 
PT1721 S. pneumoniae 24F 21 21 21 (82) 
PT1730 S. pneumoniae 15A 22 24 22 (82) 
PT1804b S. pneumoniae NT  22 NA 23 (82) 
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Supplementary Table 4. Study collection – characterization (Cont.). 

Strain Species Ser. 
Average 

CT for 
lytA 

Average 
CT for 
piaA 

Average 
CT for 
hylA 

R 

PT1809 S. pneumoniae 19F 21 24 23 (82) 
PT2111 S. pneumoniae 15B 20 24 21 (82) 
PT2293b S. pneumoniae NT  21 NA 22 (82) 
PT2398 S. pneumoniae 35F 21 23 25 (82) 
PT2436 S. pneumoniae 19A 21 24 22 (82) 
PT2445a S. pneumoniae 11A  19 21 20 (82) 
PT2537 S. pneumoniae 4 20 22 21 (82) 
PT2548 S. pneumoniae 15C 21 22 22 (82) 
PT2593 S. pneumoniae 15F 21 22 22 (82) 
PT2605 S. pneumoniae 18A 21 26 24 (82) 
PT2655 S. pneumoniae 33F 20 21 23 (82) 
PT2808 S. pneumoniae 19A 21 21 21 (82) 
PT2942 S. pneumoniae 24F 21 21 21 (82) 
PT3104 S. pneumoniae 6B 20 25 23 (82) 
PT3201 S. pneumoniae NT  21 26 24 (82) 
PT3341 S. pneumoniae 34 20 21 20 (82) 
PT3354 S. pneumoniae 7F 21 22 20 (82) 
PT3400 S. pneumoniae 9N 19 25 21 (82) 
PT3491 S. pneumoniae 35F 20 20 26 (82) 
PT3501 S. pneumoniae 37 20 24 21 (82) 
PT3625a S. pneumoniae 38 21 22 24 (82) 
PT3625B S. pneumoniae 7A 23 26 25 (82) 
PT3626 S. pneumoniae 14 21 23 23 (82) 
PT3700 S. pneumoniae 10 20 22 21 (82) 
PT3919 S. pneumoniae 6B 22 24 22 (82) 
PT4014 S. pneumoniae NT  20 26 23 (82) 
PT4071 S. pneumoniae 22F 21 23 21 (82) 
PT4076 S. pneumoniae 3 21 21 22 (82) 
PT4140 S. pneumoniae 9V 20 22 24 (82) 
PT4188 S. pneumoniae 18C 21 21 21 (82) 
PT4216 S. pneumoniae 7F 21 23 21 (82) 
PT4217 S. pneumoniae 8 19 23 22 (82) 
PT4222 S. pneumoniae NT  20 26 22 (82) 
PT4232 S. pneumoniae 16F 20 24 22 (82) 
PT4264 S. pneumoniae 39 20 26 23 (82) 
PT4272 S. pneumoniae 15B 19 20 19 (82) 
PT4400a S. pneumoniae 23F 19 21 19 (82) 
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Supplementary Table 4. Study collection – characterization (Cont.). 

Strain Species Ser. 
Average 

CT for 
lytA 

Average 
CT for 
piaA 

Average 
CT for 
hylA 

R 

PT4481b S. pneumoniae 35F 20 21 21 (82) 
PT449 S. pneumoniae 6A 21 22 22 (82) 
PT450 S. pneumoniae 10A 20 22 22 (82) 
PT460 S. pneumoniae 29 20 24 24 (82) 

PT4678b S. pneumoniae 23F 24 25 24 (82) 
PT4733 S. pneumoniae 29 20 25 23 (82) 
PT4737 S. pneumoniae 10 22 24 24 (82) 
PT476 S. pneumoniae 11A 20 21 20 (82) 

PT4912 S. pneumoniae 38 21 22 21 (82) 
PT4928 S. pneumoniae 11A 18 21 19 (82) 
PT4973 S. pneumoniae 9A 23 30 28 (82) 
PT500 S. pneumoniae 3 23 26 25 (82) 

PT5021 S. pneumoniae 23A 23 26 25 (82) 
PT5037 S. pneumoniae 1 20 22 21 (82) 

PT5052B S. pneumoniae 18F 20 25 23 (82) 
PT5066 S. pneumoniae 42 21 22 27 (82) 

PT5082B S. pneumoniae 18F 21 25 22 (82) 
PT5137 S. pneumoniae 20 21 22 23 (82) 
PT5161a S. pneumoniae 14 21 21 21 (82) 
PT5161b S. pneumoniae 3 24 24 24 (82) 
PT526b S. pneumoniae 11A 23 39 23 (82) 
PT829 S. pneumoniae 23B 21 22 23 (82) 
PT952 S. pneumoniae 14 21 21 22 (82) 
WL 10 S. pneumoniae 9V 21 25 23 (82) 

WL 1018 S. pneumoniae 1 21 21 22 (82) 
WL 1055 S. pneumoniae 10A 19 21 22 (82) 
WL 1059 S. pneumoniae 15A 21 21 22 (82) 
WL 1084 S. pneumoniae NT  21 37 22 (82) 
WL 1185 S. pneumoniae 37 21 22 24 (82) 
WL 1200 S. pneumoniae 24B 21 21 21 (82) 
WL 1202 S. pneumoniae 19F  21 24 22 (82) 
WL 1215 S. pneumoniae 42 20 25 25 (82) 

WL 1223a S. pneumoniae 19F 23 28 26 (82) 
WL 1259 S. pneumoniae 33B 19 21 20 (82) 
WL 1281 S. pneumoniae 15C 20 21 20 (82) 
WL 1357 S. pneumoniae 9N 20 21 21 (82) 
WL 1375 S. pneumoniae 19F 20 20 22 (82) 
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Supplementary Table 4. Study collection – characterization (Cont.). 

Strain Species Ser. 
Average 

CT for 
lytA 

Average 
CT for 
piaA 

Average 
CT for 
hylA 

R 

WL 1387 S. pneumoniae 21 20 21 22 (82) 
WL 1402 S. pneumoniae 34 20 24 22 (82) 
WL 1471 S. pneumoniae 38 20 22 20 (82) 
WL 1472 S. pneumoniae 14 21 21 22 (82) 
WL 1498 S. pneumoniae 9A 21 21 21 (82) 
WL 1514 S. pneumoniae NT  23 NA 23 (82) 
WL 1542 S. pneumoniae 16F 21 21 20 (82) 
WL 183 S. pneumoniae 23A 20 21 20 (82) 
WL 186 S. pneumoniae 17 20 23 21 (82) 
WL 22 S. pneumoniae 17 21 22 22 (82) 

WL 235 S. pneumoniae 38 19 22 21 (82) 
WL 253.1 S. pneumoniae 16F 21 21 21 (82) 
WL 308 S. pneumoniae 18B 21 21 20 (82) 
WL 386 S. pneumoniae 33F 21 22 22 (82) 
WL 480 S. pneumoniae 38 21 23 22 (82) 
WL 399 S. pneumoniae 23B 20 23 21 (82) 
WL 413 S. pneumoniae 38 22 26 24 (82) 
WL 418 S. pneumoniae 18B 21 23 21 (82) 
WL 555 S. pneumoniae 11A 20 23 21 (82) 

WL 560.1 S. pneumoniae 16F 20 23 21 (82) 
WL 586 S. pneumoniae 12B 19 22 21 (82) 
WL 594 S. pneumoniae 12A 20 22 20 (82) 
WL 70 S. pneumoniae 6A 20 22 20 (82) 

WL 737 S. pneumoniae 12F 20 22 21 (82) 
WL 746 S. pneumoniae 9L 20 21 22 (82) 
WL 762 S. pneumoniae 9L 19 22 20 (82) 
WL 777 S. pneumoniae 12F 19 21 20 (82) 
WL 86.1 S. pneumoniae 21 20 22 21 (82) 
WL 920 S. pneumoniae 22F 18 21 19 (82) 

 Spain23F S. pneumoniae 23F 21 22 23 (82) 
 Spain6B S. pneumoniae 6B 21 24 22 (82) 
 Spain9V S. pneumoniae 9V 20 22 21 (82) 

PMEN1 Spain23F S. pneumoniae 23F 21 22 23 (82) 
PMEN2 Spain6B S. pneumoniae 6B 21 24 22 (82) 
PMEN3 Spain9V S. pneumoniae 9V 20 22 21 (82) 

PMEN4 Tennessee23F S. pneumoniae 23F 21 21 23 (82) 
PMEN5 Spain14 S. pneumoniae 14 21 25 23 (82) 
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Supplementary Table 4. Study collection – characterization (Cont.). 

Strain Species Ser. 
Average 

CT for 
lytA 

Average 
CT for 
piaA 

Average 
CT for 
hylA 

R 

PMEN6 Hungary19A S. pneumoniae 19A 21 24 22 (82) 
PMEN7 S. Africa19A S. pneumoniae 19A 21 22 21 (82) 
PMEN8 S. Africa6B S. pneumoniae 6B 19 22 21 (82) 
PMEN9 England14 S. pneumoniae 14 20 21 22 (82) 
PMEN10 CSR14 S. pneumoniae 14 21 23 21 (82) 

PMEN11 CSR19A S. pneumoniae 19A 20 21 20 (82) 
PMEN12 Finland6B S. pneumoniae 6B 21 25 22 (82) 

PMEN13 S. Africa19A S. pneumoniae 19A 19 21 19 (82) 
PMEN14 Taiwan19F S. pneumoniae 19F 20 22 20 (82) 
PMEN15 Taiwan23F S. pneumoniae 23F 20 23 21 (82) 
PMEN16 Poland23F  S. pneumoniae 23F 22 26 23 (82) 
PMEN17 Maryland6B S. pneumoniae 6B 20 39 23 (82) 

PMEN18 Tennessee14 S. pneumoniae 14 20 23 21 (82) 
PMEN19 Colombia5 S. pneumoniae 5 21 23 21 (82) 
PMEN20 Poland6B S. pneumoniae 6B 22 23 25 (82) 

PMEN21 Portugal19F S. pneumoniae 19F 20 22 20 (82) 
PMEN22 Greece6B S. pneumoniae 6B 21 23 21 (82) 

PMEN23 N. Carolina6A S. pneumoniae 6A 20 23 21 (82) 
PMEN24 Utah35B S. pneumoniae 35B 23 25 23 (82) 

PMEN25 Sweden15A S. pneumoniae 15A 20 22 21 (82) 
PMEN26 Colombia23F S. pneumoniae 23F 22 25 24 (82) 
PMEN41 Portugal6A S. pneumoniae 6A 20 22 20 (82) 

Ser.- Serotype; R – Reference; NA- No amplification; Bold – Invasive strain. 

 
 
 
Supplementary Table 5. PPV and NPV for the single and combined assays tested with a cut 
off CT<35 and CT<40. 

Target genes PPV CT<35 PPV CT<40 NPV CT<35 NPV CT<40 

lytA 98.7% 95.5% 100.0% 100.0% 
piA 99.3% 99.3% 92.7% 95.5% 
hylA 93.1% 90.9% 100.0% 100.0% 
lytA piaA 97.9% 94.7% 92.6% 95.2% 
lytA hylA 93.1% 87.2% 100.0% 100.0% 
piaA hylA 92.1% 90.0% 92.1% 94.9% 
lytA piaA hylA 92.1% 86.2% 92.1% 94.6% 
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lytA 
  

 Pneumococal Non- 
pneumococal 

Test positive 150 2 

Test negative 0 126 
 

 

 

piaA 
  

 Pneumococal Non- 
pneumococal 

Test positive 140 1 

Test negative 10 127 
 

 

 

hylA 
  

 Pneumococal Non- 
pneumococal 

Test positive 150 11 

Test negative 0 117 
 

 

 
 

lytA piaA 
  

 Pneumococal Non- 
pneumococal 

Test positive 140 3 

Test negative 10 125 
 

 

 

lytA hylA 
  

 Pneumococal Non- 
pneumococal 

Test positive 150 13 

Test negative 0 115 
 

 

 

 
lytA piaA hylA 

 
 Pneumococal Non- 

pneumococal 

Test positive 140 12 

Test negative 10 116 
 

 
 

 
 
Supplementary Figure 1.PPV and NPV calculation for single and combined qPCR assays. 
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