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Bifásicos (SAB), Líquidos Iónicos (LIs)  

Resumo 

 

 

A teobromina é um alcaloide utilizado no tratamento de 

aterosclerose, hipertensão, angina, entre outros. Dada a sua 

importância medicinal, o principal objetivo deste trabalho 

consistiu no desenvolvimento de uma técnica eficiente e 

sustentável para extrair teobromina das sementes de cacau. 

Visando o desenvolvimento de uma técnica de purificação para 

o extrato obtido a partir do cacau, primeiramente estudaram-se 

sistemas aquosos bifásicos (SABs) constituídos por líquidos 

iónicos (LIs) para inferir sobre os sistemas mais promissores. 

Foram utilizados LIs à base do catião colínio, catião não tóxico 

e biocompatível, em conjunto com 2 polímeros (PPG 400 e 

PEG 400) e um sal inorgânico (K3PO4) para a formação de 

SABs. Determinaram-se os diagramas de fase, à temperatura de 

298 K e à pressão atmosférica, assim como as eficiências de 

extração destes sistemas para a teobromina. Os resultados 

obtidos indicam que o K3PO4 apresenta uma maior capacidade 

de induzir a formação de SABs do que o PPG 400 e o PEG 400. 

Os SABs constituídos por K3PO4 também demonstraram ter um 

grande potencial para a extração da teobromina, com eficiências 

de extração entre 96,4 e 99,9 %.  

Tendo por base os LIs mais promissores para a etapa de 

purificação, estes foram posteriormente utilizados em solução 

aquosa para a extração de teobromina a partir das sementes de 

cacau, tendo sido obtidos valores de extração de teobromina 

entre 4,5 e 6,5 (m/m) %. Por fim, procedeu-se à utilização de 

SABs como método de purificação a partir da solução aquosa 

contendo o extrato, e obtiveram-se valores de eficiências de 

extração entre 96,7 e 99,0 %. 
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Abstract 

 

Theobromine is an alkaloid present in cocoa and it is used in the 

treatment of atherosclerosis, hypertension, angina, among 

others. Due to its importance, the aim of this work consists on 

the development of an efficient and sustainable technology for 

the extraction of theobromine from cocoa beans. 

For the development of a purification technique for 

theobromine extracted from cocoa, aqueous biphasic systems 

(ABS) composed of ionic liquids (ILs) were initially studied to 

infer on the most promising systems. Cholinium-based ILs, 

based on a non-toxic and biocompatible cation, were used 

combined with two polymers (PPG 400 and PEG 400) and an 

inorganic salt (K3PO4). The respective phase diagrams at 298 K 

and atmospheric pressure were determined, as well as their 

extraction efficiencies for theobromine. The results obtained 

indicate that K3PO4 has a greater ability to induce the formation 

of ABS compared to PEG 400 and PPG 400. ABS consisting of 

K3PO4 also have a high potential for the extraction of 

theobromine, with extraction efficiencies ranging between 96.4 

and 99.9 %. 

Based on the most promising ILs for the purification step, they 

were further used in aqueous solution to extract theobromine 

from cocoa beans, with extraction yields ranging between 4.5% 

and 6.5 wt%.  

Finally, ABS were applied to the aqueous solutions containing 

theobromine from the cocoa extract, with extraction efficiencies 

ranging between 96.7 and 99.0%. 
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1.1. Scope and Objectives 

This work addresses the extraction of theobromine from cocoa beans and further 

purification using ionic-liquid-based processes. Traditional extraction techniques of small 

added-value molecules, such as alkaloids from plant matrices, still depend on the use of 

non-environmentally friendly solvents [1]. Environmental and human health concerns 

associated with the use of volatile solvents, like dichloromethane, hexane, petroleum ether 

and ethyl acetate, which tend to be toxic and non-biodegradable, and that depending on the 

process conditions may leave traces behind, have been pushing forward the development 

of “greener” techniques, by the use of more effective extraction schemes and less toxic 

solvents [2–5]. 

The aim of this work is to develop efficient and sustainable technologies for the 

extraction of theobromine from cocoa beans. For that purpose, the initial part of this study 

addresses the extraction of commercial theobromine from aqueous solutions using aqueous 

biphasic systems (ABS) formed by cholinium-based ionic liquids (ILs) to infer on their 

potential as purification strategies. To this end, several ternary systems composed of 

cholinium-based ILs, water and a number of salting-out agents were evaluated. Further, 

aqueous solutions of promising ILs identified in the previous study (those that allow high 

extraction efficiencies) were applied in the extraction of theobromine from cocoa beans. 

The effect of the biomass pre-treatment was also addressed. 

The main idea behind this thesis is presented in the flowchart shown in Figure 1.1. 

Although several aspects were not explored in this work due to its limited timeframe, 

fundamental steps were here carried out ensuring the success of the envisaged extraction 

scheme for theobromine from cocoa beans. 
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Figure 1.1. Flowchart for the extraction and purification of theobromine from cocoa beans. 

 

1.2. Alkaloids  

Alkaloids are substances that have a low molecular weight and are constituted by 

nitrogen, oxygen, hydrogen and carbon. They contain one or more nitrogen atoms as 

primary, secondary or tertiary amines, which are responsible for the basicity of alkaloids, 

and their name derives from the word “alkaline”. However, this basicity may vary 

depending on the chemical structure of the molecule and presence of other functional 

groups [6]. There are more than 27,000 different alkaloid structures, where about 78% are 

found in plants and the remaining 22% in animals and microorganisms [6].  

 

1.2.1. Biological Chemistry  

Amino acids are usually involved in the biological synthetic path of alkaloids. 

Although the carbon skeleton of these amino acids is kept in the alkaloid structure, the 

carboxylic acid carbon is lost during decarboxylation [6]. Ornithine, lysine, tyrosine, 

R
ec

y
cl

a
b

il
it

y
a

n
d

R
eu

sa
b

il
it

y

Solid Liquid
Mixture

Biomass
Recovery

Theobromine in the Ionic
Liquid Aqueous Solution

Biorefinery
Approaches

Aqueous Biphasic System
(purification)

Recovery of
Theobromine from
the Aqueous Phase

Ionic Liquid
Aqueous Solution

Filtration

+
Cocoa
Beans

Ionic
Liquid + 

water



 

5 

 

tryptophan and histidine are amino acids that are usually involved in the formation of 

alkaloids. The nitrogen atoms in a large number of alkaloids are obtained via 

transamination reactions, only incorporating one nitrogen from amino acid, while the rest 

of the molecule may be derived from acetate or shikimate [6]. Other alkaloids are 

generated from terpenoids or steroids, being designated as pseudoalkaloids [6]. 

Theobromine, caffeine and theophylline are purine alkaloids or pseudoalkaloids, 

secondary metabolites derived from xanthine (purine nucleotide) by methylation and they 

may co-occur in a given plant [7]. The position and the number of methyl substitutions on 

the xanthine ring determine differences between the main food methylxanthines: 

theobromine (3,7-dimethylxanthine) and theophylline (1,3-dimethylxanthine), both 

dimethylxanthines; and caffeine (1,3,7-trimethylxanthine), a trimethylxanthine [7]. These 

pseudoalkaloids are based on a purine ring that undergoes various reactions and gathering 

small components of primary metabolism. Initially, a glycine is incorporated, and the 

remaining carbon atoms are obtained by addition of formate and bicarbonate. Two nitrogen 

atoms are obtained by glutamine and a third by aspartic acid. Thereafter, the synthesis of 

adenosine 5-monophosphate (AMP) and guanosine 5-monophosphate (GMP) by inosine 5-

monophosphate (IMP) and xanthosine 5-monophosphate (XMP) occurs. Then, 7-

methylxanthosine is synthesized by methylation and loss of phosphate occurs. Through 

methylation reactions, the nitrogen atom forms theobromine and then caffeine. 

Theophylline is formed by a different sequence of methylation reactions, but may also be 

obtained by demethylation of caffeine [6]. These reactions occur in the metabolism of 

plants, such as coffee, cocoa and tea, and are represented in Figure 1.2. These 

methylxanthines have important pharmacological properties being currently used as 

therapeutic agents. They have stimulating effects on central nervous, respiratory, and 

cardiovascular systems, among others [8]. 
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Figure 1.2. Chemistry reactions to form methylxanthines. E1: IMP dehydrogenase, E2: 5’-

nucleotidase, E3: xanthosine 7-N-methyltransferase, E4: 7-methylxanthosine nucleosidase, E5: 

theobromine synthase, E6: caffeine synthase, SAM: S-Adenosyl methionine [6]. 

 

1.2.2. Pharmacologic Effects 

Caffeine is the methylxanthine most consumed worldwide and has beneficial effects 

on the endocrine, renal and respiratory systems [9], as well as in Alzheimer's and 

Parkinson's diseases [9]. However, an excessive consumption has also been associated with 

adverse effects such as restlessness, hypertension, or insomnia [10]. Nevertheless, Wu et 

al. [11] showed that an increased intake of caffeine and caffeinated coffee is associated 

with a decreased risk of cutaneous malignant melanoma. Also, Schmidt et al. [12] 
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disclosed that infants treated with caffeine showed no impairment in neurological 

development, compared with other children treated with placebo, reducing the risk of 

apnea. Treatment with caffeine and theophylline also reduce incidence of cerebral palsy 

and altered adenosinergic neuromodulation of the respiratory system [12]. 

Theophylline is the methylxanthine that has the major diuretic and bronchodilator 

effects [12]. However, an excessive intake may cause tachycardia, convulsions and 

gastrointestinal distress [13].   

Theobromine has similar effects to caffeine but does not cause hypertension [14], and 

has relaxing effects [8]. Theobromine has many therapeutic applications, namely in the 

central nervous, gastrointestinal, respiratory and renal systems [15], acting as a diuretic 

[16], muscle relaxant, coronary stimulant and vasodilator [17]. Moreover, it has been used 

in the treatment of arteriosclerosis [17], angina and hypertension [17]. Recently, several 

studies have demonstrated the benefits of cocoa consumption in the prevention of 

gestational hypertension [18,19]. However, theobromine has also been showed to be toxic 

to some mammals, including pets, like dogs [17], indicating that its action mechanisms in 

humans may differ from those observed in other mammals. These controversial facts led to 

the development of several clinical studies that showed that theobromine is not toxic to 

humans [20,21]. In addition, Berends et al. [22]  demonstrated that there are beneficial 

cardio-metabolic effects after cocoa consumption, due to the presence of theobromine, by 

improving arterial pressure, lipoprotein and insulin resistance and biomarkers levels. 

 

1.2.3. Alkaloids in Biomass 

Caffeine, a methylxanthine found in various drinks such as coffee, cola and guaraná, is 

largely consumed worldwide due to its benefits to the central nervous system, causing 

wellness sensations [23]. Although caffeine is mostly present in coffee beans, cocoa also 

contains this methylxanthine, but in small quantities that are not significant to activate 

neural mechanisms. Cocoa also contains another methylxanthine, theobromine, a bitter 

tasting substance that contributes to the characteristic cocoa flavour and has beneficial 

effects on human health [23]. 

Cocoa (Theobroma cacao L.) belongs to the Malvaceae family, present in tropical 

forests of South and Central America [24]. Originated more than 3,000 years ago, it was 

used for nutritional and medicinal purposes by Mayan and Aztec civilizations [25]. For 
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Mayans, the cocoa bean symbolized fertility and life and, according to legend, was the 

“food of gods”; for Aztecs, it was used for the treatment of at least 150 diseases [26]. In 

Europe, during the 17th and 18th centuries, cocoa was used to treat colds, digestive 

problems, infertility, mental illness, and was also used as an antidepressant [25,27]. 

Cocoa has a high nutritional value, as it mainly consists of lipids (circa 50%), 

carbohydrates and proteins [24]. Proteins, such as arginine, glutamine, leucine, albumin 

and globulin represent 10-15% of the cocoa seeds weight. It also contains a large number 

of biologically active compounds essential for various activities of the human body, 

namely enzymes, vitamins, oils, sterols, phospholipids, dietary fibers, methylxanthines 

(caffeine and theobromine), polyphenolic compounds, including flavonoids [28], and 

minerals, such as potassium, magnesium, copper, iron and phosphorus [26]. Nevertheless, 

it should be pointed out that although cocoa contains a lot of beneficial components, during 

grain processing (roasting, fermentation and drying), the content of these bioactive 

components may change [29].  

Figure 1.3. depicts the macroscopic aspect of cocoa beans. 

 

 

Figure 1.3. Cocoa beans used in this work. 

 

Many studies have shown that, due to the large amount of flavonoids in cocoa, this 

biomass displays a high antioxidant capacity when compared to other phytochemical-rich 

natural sources [30–33]. Accordingly, more recently, cocoa has been used in the 

prevention of cardiovascular diseases [34], reduction of inflammatory processes and 

oxidative stress [32,35], insulin resistance thus reducing the risk of diabetes [36,37], and 

obesity [38]. In addition, caffeine and theobromine present in the cocoa stimulate the 

central nervous system and display diuretic activity [24]. 
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1.2.4. Extraction of Alkaloids from Biomass 

Due to the high value of alkaloids as natural bioactive compounds, the search on novel 

nontoxic solvents, as well as on new technologies for the efficient extraction of these 

compounds from plant matrices and biomass, is crucial for their market availability and 

quality. Conventional techniques used in the extraction of these valuable compounds are 

solid-liquid extraction followed by liquid-liquid extraction for purification purposes [39–

41].  In both cases, the most used solvents are chloroform, petroleum ether, hexane and 

ethyl acetate [2–5], that are volatile and toxic, and may leave traces behind, hindering 

therefore the benefits of having a natural compound for human consumption. Since it is 

highly relevant to reduce the toxicity of solvents commonly used in the extraction of 

natural compounds, alternative solvents have been intensively researched, where water 

comes at the top of the list [42]. In fact, the development of novel extraction techniques 

using water as the main solvent followed by liquid-liquid extraction for purification 

approaches has been object of particular attention [43]. In the same line, the use of ionic 

liquids and their aqueous solutions for the extraction of value-added compounds from 

biomass, followed by the formation of aqueous biphasic systems for their recovery and 

purification, has been investigated in the past few years [43]. 

 

1.3. Aqueous Biphasic Systems (ABS) 

In 1958, Albertsson [44] reported novel liquid-liquid two-phase systems, consisting of 

two aqueous phases enriched in different solutes, as an alternative to conventional 

extraction and purification techniques carried out with volatile organic compounds. It is 

well known that the use of these solvents presents several disadvantages, such as their high 

volatility and toxicity, carcinogenic properties and high flammability [1]. These new 

systems, the so-called aqueous biphasic systems (ABS), are composed of water and two 

water soluble solutes, which at certain concentrations form two immiscible phases. 

Typically, ABS are formed by mixtures of polymer-polymer, polymer-salt or salt-salt [45]. 

These systems present significant advantages, such as simplicity and technological low 

cost combined with the ability to provide high yields and purification factors, and allow a 

good selectivity [1,46]. ABS are also a mild environment for biologically active 

compounds due to their aqueous-rich environment [1,47]. Through their constituent’s 

choice, it is possible to obtain the solute of interest in one phase and the contaminants in 
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the opposite one, allowing the purification of targeted species, as demonstrated by 

Martínez-Aragón et al. [1] using cytochrome c, myoglobin, human serum albumin and 

immunoglobulin G; Pérez et al. [48] using trypsin; and Ribeiro et al. [49] using saponins 

and polyphenols. The easiness in scale-up is one of the main advantages of these systems; 

in fact, ABS are used for proteins purification at an industrial scale [47]. 

In ABS, two components are dissolved in water and, above given concentrations, the 

system separates into two coexisting phases, as seen in Figure 1.4., where one phase is rich 

in one of the components and the other phase is rich in the second component. The solute 

of interest migrates throughout the two coexisting phases according to their affinity and 

properties of the system  until the equilibrium is reached [50]. 

 

 

Figure 1.4. IL-based ABS (a dye was added for a better perception of the two phases in 

equilibrium). 

 

ABS for extraction purposes can only be used after the knowledge of their phase 

equilibria data, i.e., the minimum amount of phase-forming components required to form 

two-phase systems. The characterization of ABS includes the determination of their phase 

diagrams, namely, the binodal curve and the respective tie-lines (TLs), at a given 

temperature. Care with other experimental variables should also be taken into account 

since, for example, the use of certain inorganic salts may lead to specific pH conditions 

[51]. As shown in Figure 1.5., the binodal curve separates the monophasic region from the 

biphasic region, where all points with composition below the phase curve (ABCD) are in 

the monophasic region, while those above the line are in the biphasic region. A starting 

mixture composition (M) undergoes phase separation forming two coexisting phases, 

whose composition is given by the points B and D, the end points (nodes) of a tie-line [45]. 

The phase diagram of a ternary mixture can be represented in an orthogonal graphical 

representation, in which the vertical axis represents the less dense compound, in higher 
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quantity in the top phase, while the horizontal axis represents the densest compound that is 

mostly enriched in the lower phase [45]. The tie-line length (TLL) is often used to express 

the effect of the coexisting phases composition on the partitioned compound [45]. 

 

 

Figure 1.5. Orthogonal representation of a phase diagram (ABS). Adapted from Freire et al. [45]. 

 

1.4. Ionic Liquids (ILs) 

Ionic liquids (ILs) were found occasionally in 1914, during the First World War, by 

Paul Walden, when he was testing new explosives [52]. Ethylammonium nitrate was the 

first synthesized ionic liquid, with a melting point of 285 K [53]. Some years later, in 1948, 

after the Second World War, mixtures of aluminium chloride and 1-ethylpyridinium 

bromide were developed for the electrodeposition of aluminium [54], which can be 

considered the first application of ILs. However, only in the past 30 years, research on 

applications and properties of ionic liquids has been more intensive, as shown in Figure 

1.6. [55].  
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Figure 1.6. Number of published articles, per year, comprising ILs [55]. 

 

The ionic nature of ILs is responsible for some of the interesting and characteristic 

properties of ILs, including a high thermal stability and ionic conductivity, negligible 

vapour pressure, non-flammability and high solvation capacity for various compounds, 

such as organic, inorganic and organometallic compounds [56]. Indeed, some of these 

properties have determined their high potential to be exploited as "green solvents" and, 

consequently, ILs became good candidates to replace volatile organic compounds (VOCs). 

However, properties such as biodegradability and toxicity need also to be evaluated so that 

ILs can be classified as "green solvents". In order words, the fact of having negligible 

vapour pressure and consequently reducing the risk of air pollution, is not sufficient to 

ensure that these compounds are indeed "green" [57].  

ILs usually consist of a large organic cation and a somewhat smaller organic or 

inorganic anion, which enables their liquid state at room temperature or at temperatures 

below 373 K [58]. Since there is a smaller number of cations than of anions, ILs are 

usually  grouped according to the family of the cation, being the most important the 

pyrrolidinium, imidazolium, piperidinium, pyridinium, phosphonium and ammonium 

cations (Figure 1.7.).  
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Figure 1.7. Chemical structure of IL cations: (i) pyrrolidinium, (ii) imidazolium, (iii) piperidinium, 

(iv) pyridinium, (v) ammonium and (vi) phosphonium. 

 

Examples of anions of ILs are acetate, tosylate, dicyanamide, thiocyanate, 

methylsulfate, triflate, chloride, tetrafluoroborate, hexafluorophosphate, 

bis(trifluoromethylsulfonyl)imide, among others (Figure 1.8.). 

 

 

Figure 1.8. Chemical structure of IL anions: (i) acetate, (ii) tosylate, (iii) dicyanamide, (iv) 

thiocyanate, (v) methylsulfate, (vi) triflate, (vii) tetrafluoroborate, (viii) hexafluorophosphate and 

(ix) bis(trifluoromethylsulfonyl)imide. 

i. ii. iii.

iv. v. vi.

i. ii. iii.

iv. v. vi.

vii. viii. ix.
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In general, non-aromatic ILs, such as those based on pyrrolidinium- and piperidinium, 

are more benign than compounds based on aromatic (imidazolium and pyridinium) cations 

[58]. Both anion and cation influence ILs’ properties, such as water and organic solvents 

miscibility, thermal stability, viscosity, surface tension and density [59]. This is one of the 

reasons why these solvents are called tuneable solvents, since there is the possibility of fine 

tuning their properties by the judicious choice and combination of one specific cation with 

one specific anion. Due to their versatility, ILs have been studied for the most diverse 

applications, such as in inorganic synthesis [60], catalysis [61], polymerization [62], 

chemical or enzymatic reactions [63,64], biofuels [65], extraction of metal ions [66], in the 

extraction of (bio)molecules [67,68], in chromatographic separations [69], among others. 

Rogers and co-workers [70] pioneered the use of ILs in the implementation of ABS, by 

mixing ILs with aqueous solutions of inorganic salts. The use of ABS containing ILs is 

more advantageous than the use of ABS containing conventional polymer, due to their low 

viscosity, which affords a fast and clear phase separation, and due to their higher extraction 

performance [71]. The successful application of IL-based ABS in the extraction of a large 

variety of solutes, such as proteins [72], heavy metal ions [66], small organic molecules 

[73], antibiotics [74] and antioxidants [75] has already been demonstrated. One of the main 

advantages of using ILs in the formation of ABS consists on the ability to manipulate the 

ABS phases polarities and affinities [45] through the use of the built knowledge on how 

the ILs structure is linked to their properties, thus allowing high extraction efficiencies and 

purities to be attained. In general, it is important to previously know the physicochemical 

and biological properties of ILs so that the efficiency and benign nature of ABS can be 

evaluated [76]. 

The interest in ABS formed by ILs has significantly increased in the past few years, as 

seen in Figure 1.9. [55]. In particular, IL-based ABS have been used in the 

extraction/purification of compounds found in natural sources, e.g., vanillin [77], gallic, 

vanillic and syringic acids [75], and nicotine, theobromine, theophylline and caffeine [78]. 

More recently, Keremedchieva et al. [79] extracted glaucine from Glaucium flavum Cr. 

and applied ABS for purification purposes. 
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Figure 1.9. Number of published manuscripts per year on ABS with ILs [55]. 
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2. Phase diagrams for ABS 

containing Cholinium-based 

ILs  
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2.1. Introduction 

In recent years, there have been major innovations in IL-based ABS through the use of 

either novel ILs or new phase splitting promoters [45]. Great improvements in the 

development of sustainable and biocompatible ILs have been pushing the field to the so-

called bio-ionic liquids which are fully composed of natural compounds, such as vitamins, 

amino acids and naturally occurring acids, among others [80,81]. A new sub-family of 

ammonium ILs has been developing at a fast pace through the use of ILs based on the 

cholinium cation. Cholinium chloride ([Ch]Cl), usually called choline, is used as an 

essential nutrient and it is  known to be biodegradable, non-toxic and easy to produce [81]. 

Cholinium-based ILs have shown low toxicity and good biodegradability [50]. Therefore, 

the combination of the cholinium cation with anions derived from natural nontoxic 

compounds provides a suitable environmental-friendly and non-toxic pathway to develop 

new extraction schemes.  

Although a large number of IL-based ABS have been reported in the literature, most of 

these studies refer to imidazolium-based ILs combined with inorganic salts [45]. Aiming at 

finding more benign alternatives to the salting-out agents, amino acids [82], carbohydrates 

[76,83] and polymers [84–88] have been considered as phase-forming components of IL-

based ABS. Due to their biodegradable and non-toxic nature, the use of these compounds 

is highly advantageous. Although polymers, such as polyethylene glycol (PEG) or 

polypropylene glycol (PPG), have been used to form cholinium-based ABS [84–88], amino 

acids and carbohydrates have never been used due to their weak salting-out ability. Indeed, 

recently, it was demonstrated that cholinium-based ILs do not undergo phase splitting in 

presence of aqueous solutions of carbohydrates [83]. On the other hand, it has been shown 

that the combined use of cholinium-based ILs with PEG to create ABS yields 

unconventional phase splitting mechanisms that can be used to tune the extraction 

efficiencies of a given solute [87,89].   

In this work, the ability of cholinium-based ILs to form ABS combined with dextran, 

maltodextrin, polyvinylpyrrolidone, PPG 400, PEG 400 and K3PO4 was evaluated followed 

by the assessment of their ability to extract theobromine from aqueous solutions. 
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2.2. Experimental Section 

2.2.1. Materials 

The ILs studied in this work were (2-hydroxyethyl)trimethylammonium propanoate, 

[Ch][Pro]; (2-hydroxyethyl)trimethylammonium butanoate [Ch][But]; (2-

hydroxyethyl)trimethylammonium pentanoate, [Ch][Pent]; (2-

hydroxyethyl)trimethylammonium hexanoate, [Ch][Hex]; (2-

hydroxyethyl)trimethylammonium nonanoate, [Ch][Non]; (2-

hydroxyethyl)trimethylammonium adipate (1:1), [Ch][Adi1:1]; (2-

hydroxyethyl)trimethylammonium adipate (1:2), [Ch][Adi1:2]; (2-

hydroxyethyl)trimethylammonium azelate, [Ch][Aze]; (2-

hydroxyethyl)trimethylammonium perfluoroheptanoate, [Ch][PFHept]; (2-

hydroxyethyl)trimethylammonium perfluoroctanoate, [Ch][PFOct]; (2-

hydroxyethyl)trimethylammonium perfluorobutanoate, [Ch][PFBut]; and (2-

hydroxyethyl)trimethylammonium trifluoroacetate, [Ch][TFAc]. These ILs were 

synthesized and kindly provided by ITQB, Instituto de Tecnologia Química e Biológica 

António Xavier, New University of Lisbon. In addition to these ILs, the following were 

also used, namely, (2-hydroxyethyl)trimethylammonium acetate, [Ch][Ac] (purity > 98 wt 

%) and (2-hydroxyethyl)trimethylammonium dihydrogen phosphate, [Ch][DHph] (purity > 

98 wt %), both purchased from Iolitec. The ILs (2-hydroxyethyl)trimethylammonium 

chloride, [Ch]Cl (purity > 99 wt %); (2-hydroxyethyl)trimethylammonium bitartrate, 

[Ch][Bit] (purity of 100 wt %); (2-hydroxyethyl)trimethylammonium bicarbonate, 

[Ch][Bic] (purity ~ 80 wt %); and (2-hydroxyethyl)trimethylammonium dihydrogen citrate, 

[Ch][DHcit] (purity ≥ 98 wt %), were also used and all were acquired from Sigma–Aldrich. 

The chemical structures of the investigated ILs are depicted in Figure 2.1. It should be 

pointed out that all ILs comprise the common (2-hydroxyethyl)trimethylammonium cation. 

The purity of all ILs was checked by 1H and 13C NMR. Furthermore and to know the 

amount of water before the determination of the ternary systems, the water content of each 

IL was determined by Karl Fischer titration using a Metrohm 831 Karl Fischer coulometer. 

The water contents ranged between 0.2 and 20 wt%. The reagent employed was 

Hydranal® - Coulomat AG from Riedel-de Haën.  
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Figure 2.1. Chemical structures of the ions of the ILs investigated: (i.) [Ch]+, (ii.) [Pro]-, (iii.)  

[But]-, (iv.) [Pent]-, (v.) [Hex]-, (vi.) [Hept]-, (vii.) [Oct]-, (viii.) [Non]-, (ix.) [Adi]-, (x.) [Aze]-, (xi.) 

[PFHept]-, (xii.) [PFOct]-, (xiii.) [PFBut]-, (xiv.) [TFAc]-, (xv.) [Ac]-, (xvi.) [DHph]-, (xvii.) Cl-, 

(xviii.) [Bit]-, (xix.) [Bic]- and (xx.) [DHcit]-. 
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The salting-out species investigated were two dextrans (C6H10O5)n of different average 

molecular weights, 40,000 g.mol-1 (40 kDa) and 100,000 g.mol-1 (100 kDa);  two 

maltodextrins of different dextrose equivalents, namely 13.0-17.0 and 16.5-19.5; 

polyvinylpyrrolidone (PVP) with molecular weights 29,000 g.mol-1 (29 kDa) and 40,000 

g.mol-1 (40 kDa); polypropylene glycol 400 g.mol-1 (PPG 400); and inorganic salt 

potassium phosphate tribasic, K3PO4 (purity ≥ 98.0 wt %), all acquired from Sigma–

Aldrich. Polyethylene glycol 40 0g.mol-1 (PEG 400), from Fluka, was also used. The 

chemical structure of the salting-out species are presented in Figure 2.2. 

 

 

Figure 2.2. Chemical structures of the salting-out species investigated: (i.) Dextran, (ii.) 

Maltodextrin, (iii.) PVP; (iv.) PPG, (v.) PEG and (vi.) K3PO4. 

 

Ultra-pure water, double distilled, passed by a reverse osmosis system and further 

treated with a Milli-Q plus 185 water purification equipment was used. 
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2.2.2. Experimental Procedure 

The capacity of aqueous solutions of cholinium-based ILs to undergo phase splitting 

with several salting-out species was initially tested. The following ABS were tested using 

polysaccharides and PVP:  Dextran 40 kDa with [Ch][PFOct]; Dextran 100 kDa with 

[Ch][Non], [Ch][Adi1:1], [Ch][Adi1:2], [Ch][Aze], [Ch][PFHept], [Ch][PFOct], 

[Ch][PFBut] and [Ch][TFAc]; Maltodextrin (13.0-17.0) with [Ch][Adi1:1], [Ch][Adi1:2] and 

[Ch][Aze]; Maltodextrin (16.5-19.5) with [Ch][Non] and [Ch][Adi1:1]; PVP 29 kDa with 

[Ch][Adi1:1], [Ch][Adi1:2] and [Ch][Aze]; and PVP 40 kDa with [Ch][Non]. However, no 

ABS formation could be observed in these systems.  

Consequently, other salting-out compounds were selected, namely PPG 400, PEG 400 

and K3PO4 and the following ABS were considered: PPG 400 with [Ch][Aze], 

[Ch][Adi1:1], [Ch][Adi1:2], [Ch][PFBut], [Ch][PFHept], [Ch][PFOct], [Ch][TFAc], 

[Ch][DHcit], [Ch][DHph], [Ch]Cl, [Ch][Bit], [Ch][Bic], [Ch][Ac] and [Ch][Non]; PEG 

400 with [Ch][Aze], [Ch][Adi1:1], [Ch][Adi1:2], [Ch][PFOct], [Ch][DHcit], [Ch][DHph], 

[Ch]Cl, [Ch][Bit], [Ch][Bic], [Ch][Ac] and [Ch][Non]; and K3PO4 with [Ch][Adi1:1], 

[Ch][Adi1:2], [Ch][DHcit], [Ch][DHph], [Ch]Cl, [Ch][Bit], [Ch][Bic], [Ch][Ac], [Ch][Pro], 

[Ch][But], [Ch][Pent], [Ch][Hex] and [Ch][Non]. No ABS formation could be observed in 

the systems consisting of PPG 400 with [Ch][PFBut], [Ch][PFHept], [Ch][PFOct] and 

[Ch][Non]; PEG 400 with [Ch][Aze], [Ch][Adi1:1], [Ch][Adi1:2], [Ch][PFOct] and 

[Ch][Non]; and K3PO4 with [Ch][Adi1:1], [Ch][DHcit], [Ch][DHph], [Ch][Bit] and 

[Ch][Bic]. The phase diagrams of some of the proposed systems, namely PPG 400 with 

[Ch]Cl, [Ch][DHcit], [Ch][DHph] and [Ch][Bit]; PEG 400 with [Ch][Ac], [Ch][DHcit], 

[Ch][DHph], [Ch]Cl, [Ch][Bit] and [Ch][Bic]; and K3PO4 with [Ch]Cl, are already 

published in the open literature [84,90,91]. 

The binodal curves were determined at 298 K and atmospheric pressure through the 

cloud point titration method [92]. The cloud point titration method consists on the drop 

wise addition of the IL aqueous solutions to the salting-out species aqueous solution, or 

vice-versa, under constant stirring until the cloud point (biphasic region) is observed, 

followed by the addition of water, drop wise, until a clear solution (monophasic region) is 

obtained, as shown in Figure 2.3. 
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Figure 2.3. Schematic representation of the cloud point titration method. 

 

ILs aqueous solutions were prepared with concentrations ranging from 50 wt% for 

[Ch][Non] to 80 wt% for [Ch][Bic]. As to salting-out species, PEG 400 and PPG 400 were 

used in their pure form, whereas solutions of K3PO4 with concentrations ranging from 40 

wt% and 55 wt% were used. 

All the solutions were prepared using an analytical balance, Mettler Toledo Excellence 

XS205 DualRange (±10-4 g), while the solutions were homogenized using a vortex 

VWRTM International, VV3. 

The experimental data expressed in percentage weight fraction were fitted using the 

correlation originally proposed by Merchuk et al. [93], described according to equation 

2.1., 

 

[IL]=Aexp[(B[SO]0.5) - (C[SO]3)]                                                                       (eq 2.1.) 

 

where [IL] and [SO] are the weight fraction percentages of ionic liquid and salting-out 

species, respectively, and the coefficients A, B and C are the parameters obtained through 

regression of the experimental data. 

Tie-lines (TLs) were obtained by determining the amount of each component in each 

coexisting phase. For the determination of TLs, the following system of 4 equations 

(equation 2.2. to 2.5.) was used, and the values of the top and bottom phase concentrations 

([IL]IL, [SO]IL, [IL]SO, [SO]SO) [93] estimated according to: 
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[IL]
IL

=Aexp[(B[SO]
IL
0.5)-(C[SO]

IL
3 )]                                                                   (eq 2.2.)

  

[IL]
SO

=Aexp[(B[SO]
IL
0.5)-(C[SO]

SO
3 )]                                                                  (eq 2.3.) 

 

[IL]
IL

=
[IL]M

α
– (

1-α

α
) [IL]

SO
                                                                                      (eq 2.4.) 

 

[SO]
IL

= 
[SO]M

α
– (

1-α

α
) [SO]

SO
                                                                                 (eq 2.5.) 

 

where [IL]IL and [IL]SO are the IL weight fraction in the IL-rich phase and salting-out 

species-rich phase, respectively, [SO]IL and [SO]SO are the salting-out species weight 

fraction in the IL-rich phase and salting-out-species-rich phase, respectively, and α is the 

ratio between the weight of the top phase and the total weight of both phases. The solution 

of this system provides the mass fraction percentages of IL and salting-out species in top 

and bottom salt-rich phases, allowing the representation of TLs. 

The Tie-Line Length (TLL) is usually calculated using equation 2.6., 

 

TLL=√([SO]IL-[SO]SO)
2
+([IL]IL-[IL]SO)

2
                                                         (eq 2.6.) 

 

This parameter is usually linked to separation efficiencies since the largest the TLL the 

greatest the difference between the compositions of the two phases in equilibrium, and 

thus, the easy it is to separate a given solute between the two phases. 

 

2.3. Results and Discussion 

The ability to form ABS with three salting-out agents, namely PPG 400, PEG 400 and 

K3PO4, and cholinium-based ILs, namely [Ch][Ac], [Ch][Pro], [Ch][But], [Ch][Pent], 

[Ch][Hex], [Ch][Non], [Ch][Adi1:1], [Ch][Adi1:2], [Ch][Aze], [Ch][PFBut], [Ch][PFHept], 

[Ch][PFOct], [Ch][TFAc], [Ch][DHcit], [Ch][DHph], [Ch]Cl, [Ch][Bit] and [Ch][Bic], 

was here evaluated. TLs and binodal curves were determined at 298 K and atmospheric 

pressure. New phase diagrams are here presented for PPG 400 with [Ch][Adi1:1], 

[Ch][Adi1:2], [Ch][Aze], [Ch][Ac] and [Ch][TFAc]; and K3PO4 with [Ch][Adi1:2], 



 

26 

 

[Ch][Ac], [Ch][Pro], [Ch][But], [Ch][Pent], [Ch][Hex] and [Ch][Non], while the phase 

diagrams corresponding to PPG 400 with [Ch][DHph], [Ch]Cl, [Ch][Bit] and [Ch][DHcit]; 

PEG 400 with [Ch][DHph], [Ch][Bic], [Ch][Ac], [Ch][Bit], [Ch]Cl and[Ch][DHcit]; and 

K3PO4 with [Ch]Cl were taken from the literature [84,90,91]. 

Initially, the formation of ABS consisting on PPG 400 or PEG 400 combined with 

cholinium-based ILs that have perfluorinated anions, namely [Ch][TFAc], [Ch][PFBut], 

[Ch][PFHept] and [Ch][PFOct], was addressed. However, no turbidity was observed for 

any of the systems, with the exception of [Ch][TFAc] + PPG 400. This may be related to 

the nature of the IL and/or their relative affinity for water and possible interactions 

between the IL and PEG/PPG. Usually in PEG and PPG containing systems, the ILs can be 

the salting-out agents since they have higher affinity for water than PEG or PPG [86,88]. In 

this case, and despite the more hydrophilic nature of the cholinium family of ILs, the long 

alkyl perfluroalkyl chains of the anion probably contribute to a somewhat less hydrophilic 

IL and thus to their non-ability to create ABS with both polymers.  

The next step in this work, and since the previous systems did not form ABS, consisted 

on the evaluation of the phase forming ability of systems composed of PPG 400 or PEG 

400 and [Ch][Ac], [Ch][Non], [Ch][Adi1:1], [Ch][Adi1:2], [Ch][Aze], [Ch][DHcit], 

[Ch][DHph], [Ch]Cl, [Ch][Bit], [Ch][Bic]. Since ABS data for PPG 400 with [Ch][DHph], 

[Ch][DHcit], [Ch]Cl and [Ch][Bit]; and PEG 400 with [Ch][Ac], [Ch][DHcit], 

[Ch][DHph], [Ch]Cl, [Ch][Bit], [Ch][Bic] are available in the literature [84,90], the phase 

diagrams for these systems were not determined in this work. The formation of two phases 

was not observed in the case of PEG 400 with [Ch][Aze], [Ch][Adi1:1], [Ch][Adi1:2] and 

[Ch][Non]; and PPG 400 with [Ch][Non] .   

The phase diagrams measured in this work with PPG 400 and PEG 400 are shown in 

Figures 2.4. and 2.5., respectively. The ternary phase diagrams that were previously 

reported with PPG 400 and PEG 400  and cholinium-based ILs [84,90] are also included 

for comparison purposes. The experimental data of the systems composition in weight 

fraction are available in Appendix A (Tables A.1.1 to A.2.3) and in molality in Appendix B 

(Figures B.1.1. to B.1.3.).  

In all studied ABS, the upper phase corresponds to the PPG 400/PEG 400-rich aqueous 

phase, while the lower phase corresponds to the IL-rich aqueous phase. 
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Figure 2.4. Ternary phase diagrams for systems composed of IL + PPG 400 + water, at 298 K and 

atmospheric pressure: () [Ch][DHph] [90], () [Ch][Ac], (▲) [Ch]Cl [90], () [Ch][Bit] [90], 

(●) [Ch][Bic], () [Ch][DHcit] [90],  (▲) [Ch][Adi1:1], (●) [Ch][Adi1:2], () [Ch][Aze], and () 

[Ch][TFAc]. 

 

For the phase diagrams with PEG 400, although all the results were taken from the 

literature, they are shown in Figure 2.5. since the knowledge of these phase diagrams is 

important for the following sections.  

 

  

Figure 2.5. Ternary phase diagrams for systems composed of IL + PEG 400 + water, at 298 K and 

atmospheric pressure: () [Ch][DHph] [84], () [Ch][Bic] [84], (▲) [Ch][Ac] [84], (●) [Ch][Bit] 

[84], () [Ch]Cl [84], and () [Ch][DHcit] [84]. 
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Since the cholinium cation is common to all ILs used in this work, the obtained results 

reflect the effect of the IL anion in the formation of ABS with PPG 400 and PEG 400. 

Ternary phase diagrams presenting larger monophasic regions indicate that a larger amount 

of IL and/or PPG 400 and PEG 400 needs to be added to form an ABS and are thus not 

very useful for extraction purposes due to the large amount of IL and salting-out agent 

required. 

According to the binodal curves determined in this study and depicted in Figure 2.4., 

and for a common IL composition of 10 wt%, the ability of the studied ionic liquids to 

form ABS with PPG 400 is the following: [Ch][DHph] > [Ch][Ac] > [Ch][Bic] > [Ch]Cl > 

[Ch][Bit] > [Ch][DHcit] ≈ [Ch][Adi1:1] ≈ [Ch][Adi1:2] > [Ch][Aze] > [Ch][TFAc]. For 

ABS containing PEG 400, depicted in Figure 2.5., considering the IL at 50 wt%, the order 

of ABS-forming ability is: [Ch][DHph] > [Ch][Bic] > [Ch][Ac] ≈ [Ch][Bit] > [Ch]Cl > 

[Ch][DHcit]. With both polymers, it can be observed that ILs with anions derived from 

carboxylic acids with shorter alkyl side chains have higher affinity for water and have 

more facility to induce the formation of a second liquid phase. In general, [Ch][DHph] is 

the IL that has a higher capacity to promote ABS, being in accordance with the large polar 

surface of the anion [45]. As observed previously with ABS formed by PEG 400 [84], also 

with PPG 400, [Ch][DHcit] has a low ability to create ABS. One explanation for this fact 

may be the self-aggregation of the citrate anion as a result of the intermolecular hydrogen-

bonding between the hydroxyl hydrogen atoms and one of the oxygens of the central 

carboxylic group [94]. 

Finally, the ability of cholinium-based ILs, namely [Ch][Adi1:1], [Ch][Adi1:2], 

[Ch][DHcit], [Ch][DHph], [Ch][Bit], [Ch][Bic], [Ch][Ac], [Ch][Pro], [Ch][But], 

[Ch][Pent], [Ch][Hex] and [Ch][Non] to form ABS with K3PO4 salt (a strong salting-out 

agent [95–97]) was evaluated. However, the formation of cholinium-based ABS with 

K3PO4 was not observed for the systems containing [Ch][Adi1:1], [Ch][DHph], 

[Ch][DHcit], [Ch][Bit] and [Ch][Bic]. In Figure 2.6., the phase diagrams of the remaining 

cholinium-based ILs able to form ABS with K3PO4 are represented. 
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Figure 2.6. Ternary phase diagrams for systems composed of IL + K3PO4 + water, at 298 K and 

atmospheric pressure: () [Ch][Adi1:2], (▲) [Ch]Cl [91], () [Ch][Ac],  (●) [Ch][Pro], (▲) 

[Ch][But], (●) [Ch][Pent], () [Ch][Hex] and () [Ch][Non]. 

 

According to the binodal curves shown in Figure 2.6, with 20 wt% of K3PO4, the 

ability of ILs to form ABS with K3PO4 follows the order: [Ch][But] > [Ch][Hex] > 

[Ch][Pro] > [Ch][Pent] ≈ [Ch][Non] ≈ [Ch][Adi1:2] > [Ch][Ac] > [Ch]Cl. This order shows 

that there is a very small difference between the phase equilibria data of  [Ch][Pro] ≈ 

[Ch][But] ≈ [Ch][Pent] ≈ [Ch][Hex] indicating, as shown by Patinha et al. [98], that the 

influence of the alkyl chain length at the anion is less pronounced than that of the cation.   

The experimental data were correlated using the relationship proposed by Merchuk et 

al. [93] described in the previous section (eq 2.1. to eq 2.5.). Regression parameters and 

corresponding standard deviations (σ) as well as the respective correlation coefficients are 

shown in Table A.3.1., in Appendix A. In general, good correlations were obtained. The 

values of the composition of the phases in equilibrium together with their respective 

lengths (TLL) are shown in Table C.1.1., in Appendix C, as well as the initial composition 

of each system. Examples of TLs obtained are shown in Appendix B, in Figures B.2.1 to 

B.2.3. 

Regarding the evaluation of the investigated systems for the extraction of theobromine, 

the same initial mixture composition (30 wt% of IL and 30 wt% of salting-out species) was 

used for all systems in the following section, with the exception of the ABS formed by 

[Ch][Bic] + PPG 400 (24 wt% of IL and 30 wt% of salting-out species), [Ch]Cl + K3PO4 
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(20 wt % of IL and 30 wt % of salt) and [Ch][DHph]+ PEG 400 (33 wt % of IL and 33 wt 

% of polymer). 
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3. Extraction of 

Theobromine using IL-

based ABS 
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3.1. Introduction 

ABS were first proposed by Albertsson [44] as systems composed of water and two 

solutes, such as polyethylene glycol (PEG) and potassium phosphate [99]. More recently, 

ABS formed by ionic liquids (ILs) and salts were proposed [100,101]. These systems 

present significant advantages, such as simplicity, low cost, and the ability to provide high 

yields and purification factors. Through their constituent’s choice, it is possible to obtain 

the biomolecule of interest in one phase and the contaminants in the opposite one, thus 

allowing the purification of target species [1]. In this Chapter, IL-based ABS were 

investigated in order to extract commercial theobromine for one of the phases aiming at 

inferring on their capacity as purification strategies without losses of the alkaloid for the 

opposite phase. In fact, several works already exist in the literature supporting the high 

performance of IL-based ABS to extract and purify small molecules derived from natural 

sources [49,51]. 

Table 3.1. depicts some thermophysical properties of theobromine at 298.15 K 

[102,103], while Figure 3.1 shows its chemical structure. 

 

Table 3.1. Thermophysical properties of theobromine [102,103].  

Molar mass 

(g.mol-1) 

Density 

(g.cm-3) 

Melting point 

(K) 

Solubility in water 

(g.dm-3) 
pKa Log Kow 

180.16 1.50 630.15 <1 9.90 -0.78 

 

The theobromine content in food products (mg/g product) is quite variable as it can be 

seen from the following examples: a dark chocolate has 4.42-7.56, milk chocolate has 

1.88-1.90, cocoa powder has 18.90-26.00, tea has 3.00-9.00, coffee (filter/percolated) has 

0.04, and instant coffee has 0.06-0.31 [17,104]. 
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Figure 3.1. Chemical structure of theobromine. 

 

The theobromine absorption in the human digestive tract is slower compared with 

caffeine, taking about 2.5 hours, while caffeine takes only 0.5 h [105]. Their metabolism 

occurs by demethylation of the cytochrome P450 enzyme (CP450), being divided into 3-

methylxanthine and 7-methylxanthine. Subsequently, 7-methylxanthine is metabolized to 

7-methyluric acid by xanthine oxidase [106]. The main mechanism of action of 

theobromine is the inhibition of phosphodiesterases and the adenosine receptors blockade 

[23,107]. Accordingly, theobromine can be considered as a safe and natural alternative for 

the treatment of certain human diseases and it is used as a lead compound for the 

development of new drugs [23,107]. 

 

3.2. Experimental Section 

3.2.1 Materials 

The ILs and salting-out species used in the extraction of commercial theobromine 

employing ABS were described in Chapter 2, in the Experimental Section. The chemical 

structures of the investigated ILs and salting-out species are depicted in Chapter 2, in 

Figures 2.1. and Figure 2.2., respectively. Commercial theobromine was acquired from 

Sigma-Aldrich, with purity ≥ 99 wt %. Ultra-pure water, double distilled, passed by a 

reverse osmosis system and further treated with a Milli-Q plus 185 water purification 

equipment was used. 
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3.2.2. Experimental Procedure 

After the determination of the phase diagrams and respective TLs, in almost all 

systems a ternary mixture with a common composition (30 wt % of salting-out species, 30 

wt % of IL and 40 wt % of an aqueous solution containing theobromine) within the 

biphasic region was prepared, with a total weight of 1 g. Only in three systems, different 

compositions of the initial mixture were used, namely for the ABS formed by [Ch][Bic] 

and PPG 400 (24 wt % of IL and 30 wt % of salt), [Ch]Cl and K3PO4 (20 wt % of IL and 

30 wt % of salt) and [Ch][DHph] and PEG 400 (33 wt % of IL and 33 wt % of polymer). A 

theobromine solution with a concentration of circa 0.2 g.L-1 was used for the evaluation of 

the ABS extraction efficiencies. All mixtures were prepared using an analytical balance, 

Mettler Toledo Excellence XS205 DualRange (±10-4 g). 

The initial mixture was vigorously stirred, and then centrifuged for 30 min at 12000 

rpm and at 298 K to assure the complete separation of the two aqueous phases. After a 

careful separation of both phases, the quantification of theobromine in the two phases was 

carried by UV-spectroscopy, using a Sinergy|HTmicroplate reader, BioTek, at 273 nm, 

being the maximum observed in this work and in close agreement with literature [2]. At 

least two individual experiments were performed for each ABS in order to determine the 

average of the percentage extraction efficiency of theobromine (% EETB), as well as the 

respective standard deviations. The interference of the salting-out species and ILs with the 

quantification method was also ascertained and blank control samples were always used. 

The % EETB is defined as the percentage ratio between the amount of theobromine in 

the IL-rich aqueous phase to that in the total mixture, and is defined according to equation 

3.1. 

 

% EETB=
ConcTB

IL
×wIL

(ConcTB
IL

×wIL)+ (ConcTB
SO

×wSO)
  100                                                           (eq 3.1.) 

 

where wILand wSO are the weight of the IL-rich phase and of the salting-out-rich-phase, 

respectively, and  ConcTB
IL

 and ConcTB
SO

 are the concentration of theobromine (TB) in the IL-

rich and in the salting-out-rich aqueous phases, respectively [93]. 
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3.3. Results and Discussion 

In the investigated cholinium-based ABS, when PPG 400 and PEG 400 are used, the 

polymer-rich aqueous phase corresponds to the top phase, while the bottom phase is the IL 

rich-phase. On the other hand, when K3PO4 is used, the salt-rich aqueous phase 

corresponds to the bottom phase while the top phase is the IL-rich phase. 

The detailed results obtained for the extraction efficiencies of theobromine (% EETB) 

are depicted in Figure 3.2. and are presented in Table D.1., in Appendix D. 

 

 

Figure 3.2. Extraction efficiencies for theobromine of the ABS composed of cholinium-based ILs 

+ PPG 400/PEG 400/K3PO4 + H2O at 298 K. 

 

It should be noted that some ABS are not suitable to be used as extraction systems 

because they have a large monophasic region, and therefore, high amounts of IL and PEG 

are necessary while making these systems very viscous. These ABS are [Ch][TFAc] + PPG 

400, [Ch][DHcit] + PEG 400, [Ch]Cl + PEG 400, [Ch][Bit] + PEG 400, [Ch][Bic] + PEG 

400, and [Ch][Ac] + PEG 400. In the case of [Ch][Non] + K3PO4 precipitation occurred at 

the common mixture composition preventing thus its use as extraction system. To 
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overcome this problem, other mixture compositions with lower amounts of salt and IL 

should be investigated in the near future. 

From Figure 3.2, it can be observed that when PPG is used, theobromine extraction 

efficiencies range between 23.12 and 85.36%. Only one ABS containing PEG 400 was 

used for the extraction of theobromine, namely the ABS composed [Ch][DHph] + PEG 

400, which leads to an extraction efficiency of 52.65 %, indicating that theobromine 

partites almost equally between the two phases. This migration pattern could be a 

consequence of the salting-out effect of the cholinium-based IL over theobromine which 

forces its migration partly toward the PEG 400-rich phase [87]. On the other hand, when 

K3PO4 is used, a strong salting-out agent, theobromine preferentially migrates to the IL-

rich phase with extraction efficiencies ranging between 96.56 and 99.67 %. 

When PPG 400 is used as the salting-out species, the theobromine extraction 

efficiencies for the IL-rich phase increase in the order: [Ch][Bic] < [Ch][DHph] < 

[Ch][Adi1:2] < [Ch][Ac] < [Ch]Cl < [Ch][Adi1:1] < [Ch][Bit] < [Ch][DHcit] < [Ch][Aze]. 

When K3PO4 is used as the salting-out species, a different order for the theobromine 

extraction efficiencies was observed: [Ch][Hex] < [Ch][Ac] < [Ch]Cl < [Ch][Pro] < 

[Ch][Pent] < [Ch][Adi1:2] < [Ch][But]. This difference in the extraction efficiencies is a 

reflexion not only of the salting-out capacity of each one of the salting-out compounds 

used, but also a result of the complex and diverse interactions occurring between the solute 

molecule and the other compounds present in solution [90]. 

During the partitioning of theobromine in ABS, several interactions between IL, 

K3PO4, polymers, theobromine and water occur. Hydrogen bonds, π-π interactions, 

electrostatic interactions are examples of these interactions [108]. The use of K3PO4 for 

theobromine extraction causes it’s almost complete migration to the IL-rich phase, which 

can probably be attributed to the great salting-out capacity of the PO4
3- anion. The pH of 

the aqueous phases is another parameter that should be considered. The K3PO4 inorganic 

salt affords aqueous phases with an alkaline pH. For IL-K3PO4–based ABS the pH values 

of the phases are around 13 [109]. The effect of the pH in the partitioning of a biomolecule 

in IL-K3PO4-based ABS was studied by Cláudio et al. [109] and the authors concluded that 

non-charged molecules have preferential affinity for the IL-rich phase (more hydrophobic 

phase). Although, in this work, and according to the theobromine pKa (9.90) [102], this 

molecule is charged in the K3PO4-containing systems and it still migrates to the IL-rich 
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phase instead of going to the salt-rich phase. This fact was already observed in previous 

studies and is a result of the strong salting-out ability of the inorganic salt [110]. 

After the extraction of commercial theobromine through ABS consisting of ILs and 

polymer/salt, and which allowed to infer on the best ILs to be used as extraction solvents 

aiming at developing an extraction-purification integrated strategy, in the next chapter, 

cocoa beans were used as the source of theobromine. For this purpose, solid-liquid 

extractions from cocoa were carried out with aqueous solutions of different ILs, namely 

[Ch][Adi1:1], [Ch][Adi1:2], [Ch][DHcit], [Ch][DHph], [Ch]Cl, [Ch][Bit], [Ch][Bic], 

[Ch][Ac], [Ch][Pro], [Ch][But], [Ch][Pent] and [Ch][Hex]. Further, these aqueous 

solutions were recovered and used to create ABS to infer on the theobromine migration 

pattern. 

  



 

39 

 

 

4. Extraction and 

Purification of 

Theobromine from Biomass 
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4.1. Introduction 

The first step in the extraction of compounds from plant matrices or biomass consists 

on solid-liquid extractions, so that a plant extract can be obtained. The plant extract is then 

purified in order to obtain other extracts enriched in one or more components or even on 

the pure compounds [111]. ABS can be used in the purification step through migration of a 

given compound between two aqueous phases [45,112]. The use of ILs in ABS allows the 

purification of a wide range of (bio)molecules [45] since the choice of ILs makes possible 

to adapt the polarity of the two phases [91]. 

ILs were already used to extract natural compounds from biomass through solid-liquid 

extractions [43]. For instance, Cláudio et al. [113] extracted caffeine, an alkaloid, from 

Paullinia cupana, Chowdhury et al. [114] extracted catechin, a flavonoid, and ellagic acid, 

a phenolic acid, from Acacia catechu and Terminalia chebula, Bica et al. [115] extracted 

limonene, a terpenoid, from orange peels and Usuki et al. [116] extracted shikimic acid, an 

aromatic compound, from Ginkgo biloba. Nevertheless, no studies on the extraction of 

theobromine from natural sources using ILs were found in the open literature. More 

conventional solvents have however been reported. Li et al. [2]  and González-Nuñez et al. 

[4] used chloroform, while Esmelindro et al. [117] demonstrated the use of supercritical 

carbon dioxide for the extraction of theobromine from cocoa. 

 

4.2. Experimental Section 

4.2.1 Materials 

The ILs used in the solid-liquid extraction of theobromine from cocoa beans were 

[Ch][Ac], [Ch][Pro], [Ch][But], [Ch][Pent], [Ch][Hex], [Ch][Adi1:1], [Ch][Adi1:2], 

[Ch][Bit], [Ch][Bic], [Ch][DHph] and [Ch][DHcit]. All ILs investigated were previously 

described in Chapter 2, in the Experimental Section. The salting-out species used was 

K3PO4, also described in Chapter 2, as well as the commercial theobromine. 

Cocoa beans were purchased at a local market in Brazil. It is a 100% organic product 

from Nutrigold. Ethanol absolute anhydrous was obtained from Carlo Erba Reagents, and 

dichloromethane was from VWR Chemicals. Ultra-pure water, double distilled, passed by 

a reverse osmosis system and further treated with a Milli-Q plus 185 water purification 

equipment was used. 
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4.2.2. Experimental Procedure 

As a first step, cocoa beans were peeled and the bean and the peel fractions were both 

grinded, separately, with a commercial coffee grinder. The biomass samples were further 

dried at 333 K for ∼2 days. The average water content of these samples is 3.04 wt%. 

Specific amounts of cocoa grounded beans (1 % w/w) were added to three different 

types of solvents, namely pure water, pure ethanol and mixtures of water + ILs (at 1.5 M). 

With [Ch][Bic] an IL solution at 1.2 M was used. The extractions were carried out in a 

commercial Carousel Radleys TECH equipment, maintaining the temperature around 343 

K, and a constant stirring speed of 250 rpm, during 1h. These conditions were chosen 

based on a previous work concerning the extraction of caffeine from guaraná beans [113]. 

After the extraction period, the mixtures were filtered using a 0.45 μm cellulose membrane, 

and then, the obtained liquid solution was diluted in pure water in order to be quantified 

through UV-spectroscopy, using a Shimadzu UV-1800, Pharma-Spec Spectrometer, at a 

wavelength of 273 nm, using a calibration curve previously established for theobromine, 

presented in Figure B.2.2 in Appendix B. Two replicates were prepared for each ionic 

liquid. 

The extracted weight percentage of theobromine or extraction yield of theobromine 

from the dried beans was calculated according to equation 4.1.: 

 

% TB= 
[TB]×Vsolvent

wcocoa
× 100                                                                                            (eq 4.1.) 

 

where [TB] is the theobromine concentration (g.L-1), determined through the calibration 

curve, Vsolvent is the solvent volume (L) and wcocoa is the mass of the cocoa ground beans 

used (g). 

In order to assess the effect of other compounds present in cocoa, especially lipids, a 

biomass pre-treatment may be required. Therefore, 2 g of grounded cocoa was treated with 

25 mL of petroleum ether according to literature [3]. The mixture was vigorously stirred in 

a vortex and centrifuged at 2000 rpm for 10 minutes. Afterwards, petroleum ether was 

decanted and a second washing step was performed with fresh solvent. Then, the residue 

was dried at 298 K overnight. Subsequently, the sample was used in the same way, as the 

untreated sample, in order to determine the theobromine extraction yield. In Figure 4.1. the 

aspect of untreated and treated grinded cocoa beans is depicted. 
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Figure 4.1. A – untreated grinded cocoa beans and B – treated grinded cocoa beans. 

 

Aiming at comparing the performance of the IL aqueous solutions with more 

traditional solvents and techniques, Soxhlet extractions were also carried out using the 

same biomass sample. Two Soxhlet extractions were performed for 7 h, using 

approximately 10 g of untreated cocoa and the solvents dichloromethane and ethanol (250 

mL of each). During the extraction, samples of 1 mL were taken after 15, 30, 45, 60, 120, 

180, 240, 300, 360 and 420 minutes and theobromine was quantified through UV-

spectroscopy at a wavelength of 273 nm, using calibration curves previously established 

for theobromine in solutions with dichloromethane and ethanol, and that are presented in 

Figures B.2.3 and B.2.4 in Appendix B. Subsequently, the dichloromethane solvent was 

evaporated on a rotary evaporator under vacuum at a temperature of 303 K. At the end, the 

resulting extract was injected and analysed by gas chromatography–mass spectrometry 

(GC-MS) to identify the main constituents of the samples of cocoa.  

For the GC-MS analysis, nearly 10 mg of the extract was treated with 250 μL of 

internal standard (24.22 mg of tetracosane in 10 mL of pyridine), 250 μL of N,O-

bis(trimethylsilyl)-trifluoracetamide and 50 μL of chlorotrimethylsilane. GC-MS analyses 

were performed on a Trace Gas Chromatograph 2000 Series equipped with a Thermo 

Scientific DSQ II mass spectrometer, using helium as carrier gas (35 cm s-1), equipped 

with a DB-1 J&W capillary column (30 m × 0.32 mm i.d., 0.25 μm film thickness). The 

chromatographic conditions were as follows: initial temperature 353 K for 5 min; 

temperature rate 277 K min-1 up to 533 K and 275 K min-1 till the final temperature of 558 

K, which was maintained for 20 minutes; injector temperature 523 K; transfer-line 

temperature 563 K; split ratio 1:50. The MS was operated in electron impact mode with an 
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electron impact energy of 70 eV, and data were collected at a 1 scan s-1 rate, over a range 

of m/z 33-700. The ion source was maintained at 523 K. 

For the theobromine purification approach using ABS, and after the extraction 

procedure, K3PO4 was added in specific amounts to the filtered IL aqueous solutions 

containing the soluble components. Previous calculations were made to ensure that the 

mixture point fits within the biphasic region according to the phase diagrams described in 

Chapter 2. The detailed mixture points and compositions are described in Appendix D, 

Table D.7. The mixture was vigorously stirred, and then centrifuged for 1h at 3500 rpm 

and at 298 K, to assure complete separation of the two aqueous phases. Figure 4.2. depicts 

an example of the ABS formed with the IL aqueous solutions containing the extract. After 

a careful separation of both phases, these were diluted in ultra-pure water in order to 

quantify theobromine by UV-spectroscopy, using a Shimadzu UV-1800, Pharma-Spec 

Spectrometer, at a wavelength of 273 nm, using a calibration curve previously established 

for theobromine. Two replicates were prepared for each ionic liquid. 

 

 

Figure 4.2. ABS formed with the IL aqueous solution containing the cocoa extract and K3PO4. 

 

Scanning electron microscopy (SEM) was applied to the untreated and treated with 

petroleum ether cocoa samples and also to the cocoa samples after the solid-liquid 

extraction carried out with [Ch][Ac]. SEM pictures were used to evaluate the morphology 

of the cocoa particles before and after extraction, and were acquired using a Hitachi SU-70 

microscope with a 15 kV acceleration voltage. 
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4.3. Results and Discussion 

Initially, the theobromine extraction yield from the peel and core of cocoa beans was 

quantified. For this purpose, extractions with [Ch]Cl and [Ch][Ac] (1.5 M) aqueous 

solutions were performed. The results obtained are shown in Figure 4.3., and in Table D.2., 

in Appendix D. 

 

 

Figure 4.3. Weight percentage of theobromine extracted from cocoa peel  and cocoa core  using 

IL aqueous solutions (1.5 M) at 343 K. 

 

From the data shown in Figure 4.3., it can be concluded that the extraction yield of 

theobromine is higher when using the cocoa beans core. Due to its higher content in the 

target alkaloid, as well as on the higher amount of available biomass, only the cocoa beans 

core was used in the following experiments. 

The ability of several ILs aqueous solutions to extract theobromine from cocoa was 

also compared with soxhlet extractions with dichloromethane and ethanol. Moreover, and 

also for comparison purposes, water and ethanol were used as main solvents at the same 

conditions used for the extractions carried out with IL aqueous solutions.  

In Figures 4.4. and 4.5. are presented the results obtained for the weight percentage of 

theobromine extracted (%TB) from cocoa beans, over time (minutes), using Soxhlet 

extraction, with the solvents ethanol and dichloromethane, respectively. The values are 

listed in Table D.3. and D.4., respectively, in Appendix D. 
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Figure 4.4. Weight percentage of theobromine extracted from cocoa beans, over time, using 

ethanol as solvent in a Soxhlet extraction. 

 

 

Figure 4.5. Weight percentage of theobromine extracted from cocoa beans, over time, using 

dichloromethane as solvent in a Soxhlet extraction. 

 

Nowadays, there are various techniques for theobromine extraction from cocoa. The 

most common are extraction with supercritical carbon dioxide [117,118], conventional 

methods that use water and ethanol as solvents [119] and organic solvents such as 
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chloroform [2] and dichloromethane [120]. However, extractions performed with these 

solvents require many hours, and result in low extraction yields. Furthermore, VOCs are 

highly flammable and toxic, and hazardous for humans and the environment. In fact, the 

maximum extraction yield of theobromine obtained in this work with conventional solvents 

was 3.46 wt% (with ethanol).  

The results obtained using ILs aqueous solutions (1.2 M for [Ch][Bic] and 1.5 M for 

the remaining ILs) are depicted in Figure 4.6, and presented in Table D.5., in Appendix D. 

  

 

Figure 4.6. Weight percentage of theobromine extracted from cocoa core beans using different 

solvents: H2O, ethanol and ILs aqueous solutions (1.2 M for [Ch][Bic] and 1.5 M for the remaining 

ILs) at 343 K. 

 

For the solid-liquid extractions carried out at 343 K, it can be observed that the 

aqueous solutions of ILs are better extraction solvents than pure water and pure ethanol 

since the extraction yields are much higher than those obtained with the two molecular 

solvents. Extraction yields of theobromine from cocoa core beans obtained with IL 

aqueous solutions range between 4.48 and 6.48 % and increase in the order: Ethanol < H2O 
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< [Ch]Cl < [Ch][Ac] < [Ch][DHph] < [Ch][Bic] < [Ch][Pro] < [Ch][Adi1:1] < [Ch][Adi1:2] 

< [Ch][DHcit] < [Ch][Bit] < [Ch][But] < [Ch][Pent] < [Ch][Hex]. 

Analysing the results obtained, aqueous solutions of [Ch]Cl have the lowest 

performance for extracting theobromine from cocoa core beans. Moreover, an increase on 

the extraction yield was observed with ILs with longer alkyl side chains at the anion 

([Ch][Ac] < [Ch][Pro] < [Ch][But] < [Ch][Pent] < [Ch][Hex]). In this sense, more 

hydrophobic ILs, i.e., with longer alkyl side chains, are more able to extract theobromine 

from biomass. In the same line, [Ch][DHph], one of the strongest ABS promoter and thus a 

highly hydrophilic IL, is amongst the worst candidates to extract theobromine from 

biomass.  

In order to evaluate the influence of other compounds present in cocoa core beans 

though the IL aqueous solutions extraction ability, biomass was also previously treated 

with petroleum ether, and then new extractions were performed with some ILs, namely 

[Ch]Cl, [Ch][Ac], [Ch][But] and [Ch][Hex]. Figure 4.7. shows the comparison of the 

results obtained for the weight percentage of theobromine extracted (% TB) from treated 

and untreated cocoa core beans, using the procedures described before. Detailed data are 

presented in Table D.6., in Appendix D. 

 

Figure 4.7. Mass percentage of theobromine extracted from treated  and untreated  cocoa core 

beans, using different solutions of ILs (1.5 M) at 343 K. 
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Evaluating the obtained results, it seems clear that after the biomass treatment the 

extraction yields of theobromine more than duplicates with some of the ILs used, obtaining 

values between 9.46 and 11.44 %, from [Ch]Cl to [Ch][Hex], respectively. In this sense, 

the previous removal with petroleum ether of other compounds such as oils, sterols and 

phospholipids is favourable for the subsequent extraction of theobromine from cocoa core 

beans. Nevertheless, it should be pointed out that one additional step is required and which 

makes use of an organic molecular solvent. 

According to the literature, values of extracted theobromine from cocoa varied 

between 0.1 and 3.7 % [2–4,121], and for which our values fit within when considering the 

extractions carried out with ethanol and water. However, according to our results, IL 

aqueous solutions are highly promising solvents for the extraction of alkaloids from 

biomass, and being in accordance with the high extraction yields of caffeine from guaraná 

beans previously reported by Cláudio et al. [113]. 

After the extraction of theobromine from cocoa core beans through solid-liquid 

extraction using IL aqueous solutions, these were then used to create ABS with K3PO4 

envisaging the theobromine purification. In Figure 4.8. are presented the extraction 

efficiencies for the IL-rich phase using the aqueous solutions of ILs containing the extract 

and those obtained with commercial theobromine. The values are presented in Table D.8., 

in Appendix D. 
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Figure 4.8. Extraction efficiencies for theobromine of the ABS composed of cholinium-based ILs 

+ K3PO4 + H2O at 298 K using commercial   and the aqueous solution containing the cocoa core 

extract . 

 

Analysing Figure 4.8., it can be concluded that, in most situations, the extraction of 

theobromine for the IL-rich phase is more favourable with the aqueous solution containing 

the cocoa core extract, with the exception of [Ch][Hex] and [Ch][Adi1:2]. Therefore, the 

presence of other contaminants at the aqueous phase seems to be favourable to induce the 

migration of the alkaloid for the IL-rich phase. This trend was previously observed with the 

extraction of alkaloids and endocrine disruptors for the IL-rich phase that suffered an 

enhancement in presence of more complex media [110,122]. 

In Figure 4.10 are presented the UV spectra of theobromine in different solutions: 

aqueous solution of commercial theobromine, aqueous solution of [Ch][Ac] with 

commercial theobromine, aqueous solution of [Ch][Ac] with theobromine extracted from 

treated cocoa core beans and aqueous solutions of the IL-phase and K3PO4-rich phases 

after the extraction with [Ch][Ac]. 
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Figure 4.9. Spectra of the diluted aqueous solutions of commercial theobromine (―), [Ch][Ac] 

with commercial theobromine (―), [Ch][Ac] with treated cocoa core beans after extraction (―) 

and IL (―) and K3PO4 phases (―) after an extraction with [Ch][Ac]. 

 

From Figure 4.9. it is safe to admit that theobromine is present in all solutions, i.e., 

theobromine presents a maximum of absorbance at a wavelength of 273 nm, and all spectra 

have a peak around 273 nm. Deviations may be caused by other molecules in solution that 

are being extracted together with theobromine from cocoa. 

To evaluate the effect of cocoa core beans washing with petroleum ether, as well as the 

use of IL aqueous solutions to extract theobromine, SEM was used to obtain images of 

cocoa samples. In Figure 4.10. SEM pictures of fresh cocoa and after washing with 

petroleum ether are presented. In Figure 4.11. are presented the SEM pictures of cocoa 

core and washed cocoa core beans after extraction with [Ch][Ac] aqueous solutions.  
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Figure 4.10. SEM images of the cocoa core samples: untreated (A) and treated (B) with petroleum 

ether. 

 

 

Figure 4.11. SEM images of the cocoa core samples, untreated (C) and treated with petroleum 

ether (D) after extraction with an aqueous solution of [Ch][Ac]. 

 

The cocoa core washing with petroleum shows that the cell walls suffer some 

morphological effects and the surface appears as less homogenous which can be a result of 

the lipids removal. However, in both samples, after the extraction step carried out with 

aqueous solutions of ILs, it is found that the cell structures are much more affected and 

appear as more disrupted, which can explain the high extraction of theobromine obtained 

using IL aqueous solutions. This rupture seems to allow the access of the IL aqueous 

solutions to the target alkaloid favouring thus its extraction and is in agreement with 

previous discussions found in the literature [113]. 

In order to evaluate the purification factor achievable with ABS, back-extractions from 

each aqueous phase with dichloromethane were performed and submitted to GC-MS 
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aiming at identifying all compounds present in each phase. However, some difficulties 

were found since major contaminants have been found even with the injection of standards. 

An example of a GC-MS spectrum in shown in Appendix B in Figure B.4.1. , and where 

cyclosiloxanes appear in high quantity. Due to a limited timeframe, no further discussions 

can be made regarding the purification factors achievable with ABS. In this context, it is of 

high importance to carry out in the near future new GC-MS and MS-HPLC experiments to 

infer on the composition of each phase. However, it is safe to admit that no significant 

losses of the alkaloid occur when using an aqueous solution containing the cocoa core 

extract. 
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5. Final Remarks   
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5.1. Conclusions and Future Work 

This work demonstrates that aqueous solutions of ILs are outstanding solvents for 

the extraction of alkaloids from biomass and that it is possible to use an integrated 

process using these aqueous solutions in the formation of ABS for further purification 

of the target compounds. 

As an initial study, and in order to infer on the best ILs to be used in the extraction 

of theobromine from cocoa, the ability of some ILs with PPG 400, PEG 400 and K3PO4 

to form aqueous biphasic systems and to extract cocoa from an aqueous solution was 

evaluated. Extraction efficiency values ranging between 96.41 – 99.86% were obtained 

in a single-step using ABS formed with K3PO4 (the strongest salting-out agent 

evaluated). The extractions in which PPG 400 and PEG 400 were used in the 

formulation of ABS led to lower extraction efficiencies, ranging between 23.12 and 

85.36%. 

After the selection of the best ILs and the best salting-out agent to create ABS, 

solid-liquid extractions of theobromine from cocoa were carried out using aqueous 

solutions of ILs. Extraction yields ranging between 4.48 – 6.48 wt% were obtained with 

non-treated samples of cocoa core beans. However, if a previous washing step with 

ether petroleum is performed extraction yields up to 11.74 % can be obtained. 

As a final step, the aqueous solutions containing the extract were used to create 

ABS with K3PO4 to infer on their capability to act as purification strategies. Values 

between 96.7% – 99.0% of theobromine extraction efficiencies were obtained. As with 

commercial theobromine, theobromine extracted from cocoa also preferentially 

migrates for the IL-rich phase with no significant losses of the alkaloid for the opposite 

phase. However, due to some problems found in the GC-MS it is not possible to infer 

on the purification level of theobromine at this stage. As future work, it is essential to 

continue these studies and to characterize each aqueous phase, i.e., to identify the major 

components extracted from cocoa and how they partition between the coexisting phases. 

Since high extraction yields have been obtained with aqueous solutions of ILs, the next 

step, and aiming at reducing the process overall cost, should consist on applying a 

factorial planning in order to decrease the amount of IL, time of extraction and 

temperature required. Furthermore, new SEM images, in particular after the extractions 

carried out with water and ethanol, should be acquired to confirm the effect of ILs on 

the disruption of biomass the cell walls.  
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A.1. Experimental binodal data for systems composed of IL + 

PPG 400 + H2O 

 

Table A.1.1. Experimental weight fraction data for the system composed of [Ch][Adi1:1] (1) + 

PPG 400 (2) + H2O (3) at 298 K and at atmospheric pressure.  

[Ch][Adi1:1] 

Mw = 249.304 g.mol-1 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

4.5300 61.0913 13.9080 33.7912 24.6290 18.9032 

5.0044 58.0734 14.8916 31.3119 25.3257 18.3518 

5.6903 56.4836 15.2081 30.2515 25.8906 17.8053 

6.3201 54.9785 15.4243 29.7704 26.5790 17.1522 

6.9640 53.3988 16.5309 27.9365 27.5083 16.4784 

7.4319 51.5448 16.7245 27.6449 28.3398 15.8409 

7.9609 49.9506 17.8404 25.5742 28.7632 15.2227 

8.7841 47.4915 18.4961 25.1030 30.0955 14.2621 

9.0908 45.9086 18.9001 24.4044 31.0926 13.1541 

9.3073 44.9453 20.0684 23.3612 32.4743 12.4090 

11.1121 40.2196 20.6488 22.9065 33.3056 11.6408 

11.4560 39.3753 21.3085 22.2751 34.6014 10.9259 

11.9840 38.5202 22.0769 21.5345 35.6496 10.2936 

12.2585 37.6705 22.6517 20.9118 37.1268 9.3714 

12.8629 36.1342 23.3654 20.1402   

13.2479 35.0798 24.0675 19.4846   
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Table A.1.2. Experimental weight fraction data for the system composed of [Ch][Adi1:2] (1) + 

PPG 400 (2) + H2O (3) at 298 K and at atmospheric pressure.  

[Ch][Adi1:2] 

Mw = 352.467 g.mol-1 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

5.5367 59.0483 15.7669 30.0868 24.1585 18.7605 

5.5954 57.1420 15.8001 29.2477 24.7103 18.2507 

6.0384 55.5837 16.1834 29.2022 25.3525 17.7324 

6.0953 54.0617 16.3215 28.4045 25.9378 17.1736 

6.8078 52.4758 16.7163 28.4003 26.5980 16.6601 

7.3937 50.7674 17.2402 27.4688 27.3677 15.9623 

8.0363 48.9924 17.2469 26.8382 28.1722 15.3051 

8.5661 47.1405 17.5521 26.7520 28.7162 14.8652 

8.8843 46.0328 17.8892 25.9217 29.4508 14.4190 

9.7296 44.3122 18.2380 25.9204 30.2175 13.8406 

10.0953 42.9045 18.8079 25.1320 31.2852 13.2830 

10.5993 41.8683 18.9360 24.3719 31.8930 12.7317 

11.0757 40.6274 19.2634 24.1639 32.6489 12.2627 

11.3851 39.4966 19.8831 23.4721 33.6474 11.6415 

11.6797 38.3773 20.2166 22.8629 34.7566 11.0578 

12.3996 37.1424 21.3165 21.4013 35.7193 10.5022 

13.0195 35.2466 21.7981 20.7103 36.8187 9.9957 

13.2257 34.1456 22.5880 20.1349 38.5280 9.3121 

15.1365 31.1947 23.2669 19.5493   

15.2788 30.1860 23.7256 19.3675   
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Table A.1.3. Experimental weight fraction data for the system composed of [Ch][Ac] (1) + PPG 

400 (2) + H2O (3) at 298 K and at atmospheric pressure.  

[Ch][Ac] 

Mw = 163.215 g.mol-1 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

3.4066 55.7831 6.6189 34.5467 13.4190 16.9031 

3.4596 52.9536 6.8769 33.1032 13.9096 16.2305 

3.7154 51.5615 7.2401 31.6511 14.3114 15.6218 

3.9604 49.7641 7.6720 30.2367 14.6948 14.8571 

4.3015 48.2616 8.1037 28.0878 15.1559 14.3010 

4.3917 47.8903 8.4800 27.1783 15.5514 13.7077 

4.5606 46.3810 8.8768 26.0765 15.9412 13.2304 

5.1050 42.5526 9.1659 25.4088 16.5243 12.4389 

5.2416 41.8762 9.4569 24.5812 17.0446 11.9445 

5.4245 41.0603 10.1734 22.6225 17.4993 11.4266 

5.5687 39.6487 10.5665 21.6978 17.8906 10.9146 

5.7459 39.3178 11.0677 20.8927 18.5834 10.3381 

5.8224 38.2841 12.0095 19.6433 18.9699 9.8704 

6.0761 37.5968 12.4874 18.6047 19.6289 9.2923 

6.1428 37.1213 13.0343 17.6524 20.1999 8.7906 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

78 

 

Table A.1.4. Experimental weight fraction data for the system composed of IL (1) + PPG 400 

(2) + H2O (3) at 298 K and at atmospheric pressure.  

[Ch][TFAc] [Ch][Aze] [Ch][Bic] 

Mw = 217.186 g.mol-1 Mw = 291.384 g.mol-1 Mw = 165.188 g.mol-1 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

35.6245 51.4103 4.2279 68.0676 4.2456 52.7430 

36.4494 50.0223 4.4496 66.1979 4.4920 48.3261 

37.4572 48.4390 5.1927 64.3500 4.9431 45.7506 

38.5763 46.8659 6.0444 62.4086 5.2750 43.3155 

39.3427 45.7386 6.6839 60.5809 5.5025 41.6341 

40.2709 44.3276 7.2253 58.7817 5.9179 39.6721 

41.1668 43.0212 8.5470 56.5891 6.2863 37.8280 

42.0435 41.7310 9.6566 54.1438 6.8245 35.5047 

42.5005 40.9223 10.6983 51.8157 7.2905 33.0420 

43.2088 39.1138 11.4752 49.9430 8.1088 30.2211 

44.1843 38.0301 12.5038 48.2356 9.1835 27.5780 

44.7196 37.2720 13.3324 46.4133 9.8643 24.8044 

45.4031 36.4514 13.5929 45.4829 10.8807 22.6975 

45.8342 35.7216 14.4180 44.2036 12.4376 19.7879 

46.3209 34.9950 15.1461 42.8043 16.2930 13.4993 

46.8561 33.7425 15.8474 41.8808 17.8945 11.9966 

47.2024 33.1043 16.1912 41.1117 18.6121 10.8153 

47.6980 32.4179 17.6681 38.9243 19.4359 10.0134 

48.3563 31.6016 18.3956 38.0151 19.9013 9.2066 

49.0745 30.7552 19.3834 36.9295   

49.6085 30.0169 21.3659 33.7126   

49.9677 29.4772 22.1096 32.8607   

50.0460 29.2100 22.9113 31.8652   

50.4758 28.2846 23.5738 31.2213   

50.8180 27.8264 24.0643 30.6335   

51.2006 27.3022 24.7373 29.9475   

51.5025 26.8607 25.6548 29.1197   

51.7971 26.4741 28.6229 27.0479   

52.0173 26.1822 31.5048 25.2513   

52.3423 25.7490 33.8974 23.5149   

52.5108 25.4056 36.9457 21.3654   

52.7876 24.9796 40.3280 19.4490   

53.2449 24.3331 43.8732 17.3343   

53.7579 23.6107 47.8638 14.9606   

54.0936 23.0801 52.5298 12.6613   

54.6713 22.3890 87.2632 1.9223   

55.2905 21.6649     

56.2373 20.6133     

63.6031 11.8325     

67.2611 9.2733     

86.1111 2.7778     
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A.2. Experimental binodal data for systems composed of IL + 

K3PO4 + H2O 

 

Table A.2.1. Experimental weight fraction data for the system composed of [Ch][Ac] (1) + 

K3PO4 (2) + H2O (3) at 298 K and at atmospheric pressure.  

[Ch][Ac] 

Mw = 163.215 g.mol-1 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

34.8638 11.2389 19.2994 25.1594 12.3549 32.7929 

29.9277 15.0144 18.7136 25.9442 11.9587 33.2749 

28.6205 16.1817 17.9298 26.6952 11.5901 33.6929 

27.8545 16.7698 17.8823 26.8271 11.2952 34.0124 

26.8703 17.5930 17.4101 27.3202 10.9471 34.4191 

26.8035 17.7428 16.9460 27.7644 10.8758 34.4666 

25.3648 19.1889 16.9112 27.7713 10.7093 34.7320 

25.1743 19.2138 16.3653 28.4568 10.3818 35.1024 

24.4068 20.0696 15.8806 28.9928 9.9109 35.6930 

24.0303 20.3362 15.7724 29.0789 9.6349 35.9192 

23.4845 21.0584 15.2522 29.7007 9.3599 36.4594 

22.7842 21.5758 14.7972 30.2012 8.9301 36.9963 

22.5625 21.9151 14.3964 30.5737 8.5632 37.3544 

21.8486 22.6282 13.9686 31.0381 8.4972 37.5434 

21.7411 22.6995 13.7107 31.2068 8.1656 37.8980 

21.0001 23.6093 13.6198 31.4159 7.7593 38.4095 

20.5575 23.8454 13.2314 31.8320 7.3313 39.0029 

20.3186 24.2817 12.8507 32.2326 6.3610 40.2156 

19.6493 24.8879 12.3829 32.7842   
 

 

 

Table A.2.2. Experimental weight fraction data for the system composed of [Ch][Adi1:2] (1) + 

K3PO4 (2) + H2O (3) at 298 K and at atmospheric pressure.  

[Ch][Adi1:2] 

Mw = 163.215 g.mol-1 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

85.7981 0.7329 26.4269 17.9247 23.2967 20.2212 

48.7033 6.0768 25.4606 18.6462 22.4288 20.9514 

37.5085 10.4723 24.8430 18.9624   

27.0813 17.3823 23.8258 19.8856   
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Table A.2.3. Experimental weight fraction data for the system composed of IL (1) + K3PO4 (2) 

+ H2O (3) at 298 K and at atmospheric pressure.  

[Ch][Pro] [Ch][Pent] [Ch][Non] 

Mw = 177.242 g.mol-1 Mw = 205.295 g.mol-1 Mw = 261.401 g.mol-1 

100 w1 100 w2 100 w1 100 w2 100 w1 100 w2 

37.6192 8.6740 55.8515 12.0194 20.4237 24.5629 

34.9589 9.9581 15.1284 24.3866 20.6416 23.9797 

33.2239 11.0544 13.6967 25.0411 21.1248 23.1210 

31.4257 12.1977 13.3909 25.2599 21.9595 21.7080 

29.3268 13.7001 13.0255 25.5972 22.6189 20.5477 

27.1845 15.2684 12.4937 26.0020 23.3697 19.3537 

26.2754 15.9686 11.6112 26.8730 23.8539 18.5516 

24.6923 17.2628 9.5982 28.5589 24.2679 17.8187 

22.9893 18.6934 8.4155 29.8138 24.8819 16.8630 

20.6084 20.7979 7.2804 30.8600 25.3728 16.0860 

14.4079 26.4577 4.7857 33.7142 25.7778 15.4084 

    26.3541 14.5361 

    27.1589 13.3391 

    27.6514 12.6279 

    28.1551 11.9219 

    28.5165 11.4070 

    28.8291 10.9313 

    29.3322 10.2829 

    29.7303 9.7540 

    30.1885 9.1803 

    30.6100 8.6597 

    30.9893 8.1888 

    31.3834 7.7308 

    31.7130 7.3374 

    32.1191 6.8803 

    32.5340 6.4344 

    33.0467 5.9197 

    33.5052 5.4706 

    33.8426 5.1371 

    34.1983 4.8095 

    37.5352 3.0857 
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A.3. Correlation parameters 

Table A.3.1. Correlation parameters for the fitting using equation 2.1.[93]. 

Salting-out Ionic Liquid A ± σ B ± σ 10-5 (C ± σ) R2 

PPG 400 [Ch][Adi1:1] 141.84 ± 3.39 -0.380 ± 0.008 0.86 ± 0.12 0.9961 

PPG 400 [Ch][Adi1:2] 152.44 ± 2.53 -0.405 ± 0.005 0.65 ± 0.07 0.9979 

PPG 400 [Ch][TFAc] 112.02 ± 11.64 -0.085 ±0.019 0.60 ± 0.02 0.9991 

PPG 400 [Ch][Aze] 117.97 ± 1.76 -0.260 ± 0.005 0.27 ± 0.03 0.9971 

PPG 400 [Ch][Ac] 178.18 ± 3.13 -0.635 ±0.008 1.67 ± 0.42 0.9989 

PPG 400 [Ch][DHcit] 342.60 ± 13.21 -0.616 ± 0.010 0.25 ± 0.88 0.9991 

PPG 400 [Ch][DHph] 215.03 ± 5.16 -0.816 ± 0.011 1.00 ± 0.85 0.9989 

PPG 400 [Ch][Bit] 205.79 ± 12.83 -0.566 ± 0.022 1.00 ± 0.45 0.9962 

PPG 400 [Ch]Cl  201.60 ± 31.85 -0.615 ± 0.057 0.01 ± 1.81 0.9902 

PPG 400 [Ch][Bic] 195.96 ± 7.96 -0,653 ± 0,017 1.12 ± 0.75 0.9983 

PEG 400 [Ch][Ac] 48.18 ± 17.35 0.049 ± 0.065 0.76 ± 0.07 0.9993 

PEG 400 [Ch][DHcit] 125.32 ± 1.86 -0.138 ± 0.003 0.21 ± 0.01 0.9998 

PEG 400 [Ch][DHpho] 94.94 ± 1.29 -0.162 ± 0.004 1.24 ± 0.02 0.9996 

PEG 400 [Ch][Bit] 107.80 ± 1.85 -0.145 ± 0.004 0.29 ± 0.01 0.9996 

PEG 400 [Ch]Cl 133.20 ± 2.05 -0.134 ± 0.003 0.38 ± 0.01 0.9999 

PEG 400 [Ch][Bic] 130.69 ± 2.33 -0.164 ± 0.004 0.54 ± 0.02 0.9995 

K3PO4 [Ch][Adi1:2] 115.24 ± 0.70 -0.346 ± 0.004 0.40 ± 0.18 0.9998 

K3PO4 [Ch]Cl 66.07 ± 0.46 -0.191 ± 0.002 1.67 ± 0.03 0.9995 

K3PO4 [Ch][Ac] 101.76 ± 1.35 -0.254 ± 0.004 1.92 ± 0.04 0.9993 

K3PO4 [Ch][Pro] 48.45 ± 0.31 -0.155 ± 0.002 0.67 ± 0.06 0.9989 

K3PO4 [Ch][But] 84.60 ± 1.47 -0.273 ± 0.006 1.95 ± 0.09 0.9998 

K3PO4 [Ch][Pent] 86.21 ± 1.09 -0.292 ± 0.005 2.29 ± 0.11 0.9994 

K3PO4 [Ch][Hex] 745.41 ± 55.44 -0.738 ± 0.022 1.82 ± 0.21 0.9998 

K3PO4 [Ch][Non] 93.55 ± 0.83 -0.281 ± 0.003 3.26 ± 0.03 0.9999 
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B.1. Ternary phase diagrams in molality 

 

Figure B.1.1. Ternary phase diagrams for systems composed of IL + PPG 400 + water, at 298 K 

and atmospheric pressure: () [Ch][DHph], () [Ch][Ac], (▲) [Ch]Cl, () [Ch][Bit], (●) 

[Ch][Bic], () [Ch][DHcit],  (▲) [Ch][Adi](1:1), (●)[Ch][Adi](1:1), () [Ch][Aze], () 

[Ch][TFAc]. 

 

 

Figure B.1.2. Ternary phase diagrams for systems composed of IL + PEG 400 + water, at 298 

K and atmospheric pressure: () [Ch][DHph], () [Ch][Bic], (▲) [Ch][Ac], (●) [Ch][Bit], () 

[Ch]Cl, () [Ch][DHcit]. 
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Figure B.1.3. Ternary phase diagrams for systems composed of IL + K3PO4 + water, at 298 K 

and atmospheric pressure: () [Ch][Adi1:2], (▲) [Ch]Cl, () [Ch][Ac],  (●) [Ch][Pro], (▲) 

[Ch][But], (●) [Ch][Pent], () [Ch][Hex] and () [Ch][Non]. 

 

 

B.2. Examples of TLs obtained 

 

Figure B.2.1. Phase diagram for [Ch][Adi1:1] + PPG 400 + H2O. Binodal equilibrium data (); 

TL data (); correlation using equation 2.1. (―). 
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Figure B.2.2. Phase diagram for [Ch][Aze] + PPG 400 + H2O. Binodal equilibrium data (▲); 

TL data (); correlation using equation 2.1. (―). 

 

 

 

 

Figure B.2.3. Phase diagram for [Ch][But] + K3PO4 + H2O. Binodal equilibrium data (●); TL 

data (); correlation using equation 2.1. (―). 
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B.3. Calibration curves 

 

Figure B.3.1. Theobromine calibration curve with water as solvent using the UV-microplate 

reader, with maximum of absorbance at a wavelength of 273 nm. 

 

 

 

Figure B.3.2. Theobromine calibration curve with water as solvent using the UV-

Spectrometer, with maximum of absorbance at a wavelength of 273 nm. 
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Figure B.3.3. Theobromine calibration curve with ethanol as solvent using the UV-

Spectrometer, with maximum of absorbance at a wavelength of 273 nm. 

 

 

Figure B.3.4. Theobromine calibration curve with dichloromethane as solvent using the UV-

Spectrometer, with maximum of absorbance at a wavelength of 273 nm. 
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B.4. GC-MS spectrum 

 

Figure B.4.1. GC-MS spectrum of treated cocoa after extraction with [Ch][Ac]. 
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Appendix C – Weight 

fraction percentage (wt %) of 

ABS   
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C.1. Weight fraction percentage (wt %) of ABS composed of 

IL + salting-out species + H2O 

 

Table C.1.1 Weight fraction percentage (wt %) of each compound at the coexisting phases of 

the ABS investigated and respective TLL. 

Salting-out Ionic Liquid [IL]IL [IL]SO [IL]M [SO]M [SO]IL [SO]SO TLL 

PPG 400 [Ch][Adi1:1] 
5.94 82.92 29.98 30.16 42.96 2.00 87.19 

6.51 86.21 29.95 29.98 41.76 1.72 89.20 

PPG 400 [Ch][Adi1:2] 
6.58 81.83 29.82 30.04 42.45 2.26 85.30 

6.44 80.37 29.92 29.96 42.79 2.40 84.25 

PPG 400 [Ch][Aze] 
21.19 58.06 30.09 29.91 37.06 7.44 47.29 

21.31 56.44 29.79 29.93 36.89 8.03 45.47 

PPG 400 [Ch][Ac] 
0.85 100.51 30.02 29.92 41.97 0.81 107.83 

0.84 99.98 29.86 29.95 42.01 0.83 107.36 

PPG 400 [Ch][DHcit] 
6.96 90.24 29.93 30.00 39.64 4.68 90.32 

6.43 82.73 30.09 30.09 41.23 5.31 84.33 

PPG 400 [Ch][DHph] 
0.42 93.65 29.81 30.36 43.86 1.04 102.59 

0.44 91.46 29.67 29.81 43.40 1.10 100.37 

PPG 400 [Ch][Bit] 
2.09 85.52 29.72 30.11 43.83 2.40 93.15 

2.68 100.42 29.90 30.22 41.27 1.60 105.48 

PPG 400 [Ch]Cl 
3.57 89.17 30.20 30.07 42.85 1.76 94.94 

3.62 88.57 30.10 29.89 42.61 1.79 94.25 

PPG 400 [Ch][Bic] 
1.15 75.65 23.98 30.26 42.68 2.13 84.82 

1.19 75.78 24.15 30.00 42.41 2.12 84.78 

PEG 400 [Ch][DHph] 
2.37 68.38 33.16 32.94 58.18 4.07 85.36 

2.45 68.80 32.94 33.12 57.95 3.92 85.56 

K3PO4 [Ch][Adi1:2] 
56.05 4.45 29.79 30.38 4.34 55.52 72.68 

55.45 4.49 29.92 29.97 4.47 55.36 72.02 

K3PO4 [Ch]Cl 
46.77 4.57 20.47 29.79 9.05 42.33 53.75 

45.97 4.50 20.31 29.86 9.42 42.45 53.02 

K3PO4 [Ch][Ac] 
0.58 60.72 29.85 29.95 58.18 0.20 83.54 

0.52 60.52 29.74 30.22 58.70 0.21 83.79 

K3PO4 [Ch][Pro] 
59.11 0.18 30.17 29.96 1.73 59.22 82.32 

60.19 0.16 31.03 29.86 1.56 59.83 83.66 

K3PO4 [Ch][But] 
0.13 61.26 29.78 30.19 57.35 1.36 82.90 

0.09 60.19 29.85 30.42 58.78 1.51 83.02 

K3PO4 [Ch][Pent] 
62.96 0.73 30.04 29.99 10.99 46.90 71.85 

62.17 0.69 30.18 29.90 11.10 47.24 71.32 

K3PO4 [Ch][Hex] 
66.13 0.08 30.08 29.99 1.53 53.69 84.16 

66.79 0.09 29.98 30.02 1.44 53.22 84.44 

 

  



 

94 

 

  



 

95 
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Table D.1. % EETB for the IL-rich phase, and respective standard deviation (σ), for commercial 

theobromine, using the ABS composed of IL + PPG 400/PEG 400/K3PO4 + H2O at 298 K. 

Salting-out IL % EETB ± σ TLL 

PPG 400 [Ch][DHph] 43.57 ± 0.86 102.59 

PPG 400 [Ch][DHcit] 73.72 ± 1.26 90.32 

PPG 400 [Ch][Bic] 23.12 ± 0.75 98.00 

PPG 400 [Ch][Bit] 69.71 ± 2.17 93.15 

PPG 400 [Ch]Cl 66.38 ± 0.58 94.94 

PPG 400 [Ch][Ac] 60.70 ± 2.46 107.83 

PPG 400 [Ch][Adi 1:1] 69.23 ± 2.17 87.19 

PPG 400 [Ch][Adi 1:2] 56.55 ± 0.75 85.30 

PPG 400 [Ch][Aze] 85.36 ± 1.73 47.29 

PEG 400 [Ch][DHph] 52.65 ± 1.71 85.36 

K3PO4 [Ch]Cl 97.45 ± 0.92 53.75 

K3PO4 [Ch][Ac] 96.56 ± 1.79 83.54 

K3PO4 [Ch][Pro] 98.52 ± 1.31 82.32 

K3PO4 [Ch][But] 99.86 ± 0.18 82.90 

K3PO4 [Ch][Pent] 99.23 ± 1.17 71.85 

K3PO4 [Ch][Hex] 96.41 ± 1.33 84.16 

K3PO4 [Ch][Adi 1:2] 99.67 ± 0.31 72.68 

 

 

Table D.2. % TB, and respective standard deviation (σ), from cocoa peels and cocoa core, using 

different solutions of ILs (1.5 M), in a solid-liquid extraction, at 343 K. 

Solvent % TB (peel) % TB (core) 

[Ch]Cl 1.72 ± 0.19 4.48 ± 0.18 

[Ch][Ac] 2.45 ± 0.60 5.52 ± 0.60 

 

 

Table D.3.  % TB from cocoa beans, over time, using ethanol as solvent in a Soxhlet extraction. 

Time (minutes) % TB Time (minutes) % TB 

15 1.06 180 3.19 

30 1.66 240 3.23 

45 2.08 300 3.46 

60 2.38 360 3.35 

120 3.02 420 3.32 
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Table D.4. % TB from cocoa beans, over time, using dichloromethane as solvent in a Soxhlet 

extraction. 

Time (minutes) % TB 

15 .0.00 

30 0.00. 

45 0.00. 

60 0.05 

120 0.19 

180 0.26 

240 0.34 

360 0.32 

420 0.38 

 

 

 

 

 

Table D.5. % TB, and respective standard deviation (σ), from cocoa beans using different 

solvents at 343 K: ILs + H2O (1.2 M to [Ch][Bic] and 1.5 M for the remaining ILs), H2O and 

ethanol. 

Solvent % TB ± σ 

[Ch][DHph] 5.35 ± 0.03 

[Ch][DHcit] 5.85 ± 0.03 

[Ch][Bic] 5.50 ± 0.03 

[Ch][Bit] 5.93 ± 0.02 

[Ch]Cl 4.48 ± 0.18 

[Ch][Ac] 5.32 ± 0.08 

[Ch][Pro] 5.51 ± 0.18 

[Ch][But] 5.95 ± 0.15 

[Ch][Pent] 6.06 ± 0.18 

[Ch][Hex] 6.48 ± 0.08 

[Ch][Adi 1:1] 5.79 ± 0.06 

[Ch][Adi 1:2] 5.79 ± 0.04 

H2O 3.46 ± 0.05 

Ethanol 2.16 ± 0.08 
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Table D.6. % TB, and respective standard deviation (σ), from treated and untreated biomass, 

using different solutions of ILs (1.5 M) at 343 K. 

Solvent % TB (treated) % TB (untreated) 

[Ch]Cl 9.46 ± 0.33 4.48 ± 0.18 

[Ch][Ac] 10.01 ± 0.18 5.32 ± 0.08 

[Ch][But] 10.83 ± 1.05 5.95 ± 0.15 

[Ch][Hex] 11.74 ± 0.37 6.48 ± 0.08 

 

 

Table D.7. Mixture points 

IL IL (wt %) K3PO4 (wt %) 

[Ch]Cl 14 33 

[Ch][Ac] 17 31 

[Ch][Pro] 13 31 

[Ch][But] 22 27 

[Ch][Pent] 16 26 

[Ch][Hex] 24 27 

[Ch][Adi1:2] 26 27 

 

 

Table D.8. Theobromine extraction efficiencies and respective standard deviation (σ) with 

commercial theobromine and with theobromine extracted from biomass. 

 

Ionic Liquid 

%EETB 

Commercial 

Theobromine 
Biomass 

[Ch]Cl 84.90 ± 0.77 97.72 ± 0.19 

[Ch][Ac] 86.70 ± 0.00 98.48 ± 0.39 

[Ch][Pro] 81.34 ± 0.80 98.93 ± 0.06 

[Ch][But] 93.73 ± 0.61 98.89 ± 0.02 

[Ch][Pent] 86.37 ± 0.53 99.04 ± 0.27 

[Ch][Hex] 97.94 ± 0.39 96.71 ± 0.20 

[Ch][Adi1:2] 100.00 ± 0.00 98.04 ± 0.07 

 


