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resumo 
 

 

As células estaminais mesenquimais (MSCs) são células não-hematopoéticas, 
multipotentes, capazes de se auto-renovar e de diferenciar em diferentes tipos 
celulares. As MSCs estão presentes em tecidos mesenquimais e de tecidos 
extra embrionários, tais como a matriz do cordão umbilical/Wharton’s Jelly(WJ). 
Estes últimos constituem uma boa fonte de de MSCs, sendo estas mais naive e 
tendo um maior potencial de proliferação do que as MSCs obtidas de tecidos 
adultos, como a medula óssea, tornando as MSCs da matriz do cordão 
umbilical/Wharton’s Jelly sejam mais apelativas para uso clínico.  
As MSCs possuem a capacidade de modularem tanto o sistema imune inato 
como o adquirido e os seus efeitos são vastos, afectando todas as células do 
sistema imune. Esta capacidade é bastante vantajosa para o uso terapêutico 
destas células em doenças do sistema imunitário.  
A mecanotransducção é por definição o mecanismos pelo qual as células 
convertem estímulos mecânicos em uma resposta bioquímica e com mudanças 
na sua morfologia. Apartir destas observações colocámos a hipotese de que 
mantendo MSCs in vitro em diferentes substratos poderia influencia a sua 
capacidade imunomoduladora.  
Com este trabalho, demonstrámos que ao plaquear MSCs em diferentes 
substratos de PDMS, estas mostram uma tendência para secretar quantidades 
diferentes de vários factores soluveis analisados, relativamente a MSCs 
mantidas em cultura em plataformas convencionais (placas de cultura de células 
- TCP). Para além disto, foi também observado que MSCs plaqueadas em 
substratos de PDMS aparentavam possuir uma maior capacidade 
imunomoduladora quando comparadas com MSCs mantidas em condições 
convencionais.  
Em conjunto todos os resultados obtidos sugerem que elementos relacionados 
com a mecanotransdução parecem influenciar a capacidade imunomoduladora 
de MSCs  e a sua secreção de factores solúveis. Deste modo,  estudos futuros 
poderão elucidar os mecanismos responsáveis por estas observações, de modo 
a permitir que se possa constitutuir melhores estratégias de cultura de MSCs 
para futuro uso terapêutico dirigido a doenças do sistema imunitário.  
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abstract 

 

Mesenchymal stem cells (MSCs) are non-hematopoietic multipotent stem cells 
capable to self-renew and differentiate along different cell lineages. MSCs can 
be found in adult tissues and extra embryonic tissues like the umbilical cord 
matrix/Wharton’s Jelly (WJ). The latter constitute a good source of MSCs, being 
more naïve and having a higher proliferative potential than MSCs from adult 
tissues like the bone marrow, turning them more appealing for clinical use.  
It is clear that MSCs modulate both innate and adaptive immune responses and 
its immunodulatory effects are wide, extending to T cells and dendritic cells, 
being therapeutically useful for treatment of immune system disorders.  
Mechanotransduction is by definition the mechanism by which cells transform 
mechanical signals translating that information into biochemical and 
morphological changes. Here, we hypothesize that by culturing WJ-MSCs on 
distinct substrates with different stiffness and biochemical composition, may 
influence the immunomodulatory capacity of the cells.  
Here, we showed that WJ-MSCs cultured on distinct PDMS substrates presented 
different secretory profiles from cells cultured on regular tissue culture 
polystyrene plates (TCP), showing higher secretion of several cytokines 
analysed. Moreover, it was also shown that WJ-MSCs cultured on PDMS 
substrates seems to possess higher immunomodulatory capabilities and to 
differentially regulate the functional compartments of T cells when compared to 
MSCs maintained on TCP. 
Taken together, our results suggest that elements of mechanotransduction seem 
to be influencing the immunomodulatory ability of MSCs, as well as their 
secretory profile. Thus, future strategies will be further explored to better 
understand these observation and to envisage new in vitro culture conditions for 
MSCs aiming at distinct therapeutic approaches, namely for immune-mediated 
disorders.   
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1. Introduction  
 

1.1. Mesenchymal Stem Cells  

 Mesenchymal Stem Cells (MSCs), or mesenchymal stromal cells1 are non-

hematopoietic multipotent adult stem cell, that can be found mostly in perivascular niches 

and are responsible for the homing of hematopoietic stem cells (HSCs)2,3. These cells are 

able to self-renew and differentiate in vitro in to different mesodermal cell types, such as 

osteocytes, adipocytes and chondrocytes, but also cardiomyocyte and neural-like  cells4,5,6, 

demonstrating a putative plasticity potential.  

Alexander Friedenstein and colleagues, in 1970, were the first to describe MSCs in 

the bone marrow (BM) as fibroblast-like precursors from the bone marrow7,8 and describe 

them as plastic-adherent, with a fibroblast-like morphology , high proliferative capacity in 

vitro and with the capacity to form fibroblast colony-forming units (CFU-Fs)7, 8,9. 

According to the Mesenchymal and Tissue Stem Cell Committee of the International 

Society for Cellular Therapy (ISCT) there are tree minimal criteria to define human MSCs: (i) 

to be adherent to plastic in standard culture conditions; (ii) MSCs must express Cluster of 

Differentiation (CD) 105, CD73 and CD90 and lack expression of CD34 (endothelial or 

primitive hematopoietic), CD45 (leukocytes), CD14 or CD11b (monocytes and 

macrophages), CD79a or CD19 (B cell) and human leukocyte antigen (HLA-DR or HLA class 

II) surface molecules [(unless stimulated by interferon-γ (IFN-γ)]; and (iii) must differentiate 

to osteocytes, adipocytes and chondrocytes in vitro10, 11. These criteria established by the 

ISCT have standardized human MSCs isolation but may not apply completely to other 

species, like murine.  

MSCs secrete several growth factors, extracellular matrix molecules and cytokines 

that play an important role in the regulation of angiogenesis, haematopoiesis and in 

immune and inflammatory response3,12.  
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1.2. Sources and characteristics of Mesenchymal Stem Cells  

Since mesenchymal stromal/stem cells (MSCs) were first described in 1970 in the 

bone marrow (BM), it has been proven the presence of MSCs in other tissues such as 

adipose tissue, skeletal muscle, connective tissue, dental pulp, synovium, periosteum, 

spleen, lung and extra embryonic tissues like placenta, amniotic fluid (AF), umbilical cord 

blood (UCB) and umbilical cord matrix/Wharton’s jelly (UCM/WJ)2,13,14. 

Most of the knowledge concerning MSCs comes from the BM studies, which has 

been considered as one of the main sources15. However, BM-MSCs have limitations in 

terms of cell numbers (for regenerative medicine only approximately 0.001% to 0.01% of 

the cell are useful)16,17 and decrease significantly with donors age in terms of proliferation 

and differentiation capacity2,18. Moreover, the procedure to obtain these cells is invasive 

and painful19 for the patient and can be followed by risk of infection5 , bleeding and chronic 

pain15 and due to these limitations describe above, alternative MSCs sources have been 

explored.  

 Extra-embryonic tissues are a good alternative source of MSCs because they have a 

higher proliferative potential than adult MSCs and immunoprivileged characteristics. 

Moreover, they seem to be more naive than MSCs isolated from adult mesenchymal 

tissues2 and adult MSCs may be less-responsive than extra-embryonic MSCs in clinical 

applications19. MSC from different sources express embryonic stem cell markers namely 

GATA-4, Rex-1, Nanog, SSEA-120. 

 To circumvent the limitations of BM, the umbilical cord (UC) has been used as an 

alternative source of MSCs. The procedure to collect these cells is safe, non-invasive and 

simple compared to BM aspirate2 (UC is routinely discard at birth)19 and it may be stored 

cryogenically with minimal loss of potency and subsequently thawed15 due to the high 

potential clinical applications of MSCs2,21. Umbilical Cord raises no major ethical, technical 

or legal22 issues for scientific research or clinical applications2.  

MSCs from the UC exhibit a fibroblast-like morphology and share commonly the 

typical MSC immunophenotypic markers, immunogenic and immunoregulatory 

characteristics19,23 and differentiation potential similar to BM-MSCs (Table I.1)2. Thus they 

fulfil the minimal criteria proposed by ISCT for MSCs described above. Four populations of 
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MSCs can been identified in the umbilical cord: (1) Wharton’s Jelly (WJ), (2) MSCs 

surrounding the umbilical vessels , (3) umbilical cord blood (UCB) and (4) MSCs from the 

subendothelium of umbilical vein24.   

 

Table 1.1 : Surface Markers expressed by MSCs from UC and BM (Adapted from Malgieri et al., 2010) 

 

 

1.3. Umbilical Cord Matrix/Wharton’s Jelly Mesenchymal Stem Cells  

The UC is an extra-embryonic tissue that constitutes the imperative link between 

fetus and mother during pregrancy17. This tissue contain two arteries and one vein, which 

are surrounded by gelatinous connective tissue, known as the Wharton’s Jelly (WJ)16,25, and 

is covered by amniotic epithelium. This tissue was first described in 1656 by Thomas 

Wharton and the first isolation report was in 1991 by McElreavey et al.16,26 . 

The WJ is constituted by extracellular matrix proteins, namely collagens fibres, 

proteoglycans, glycosaminoglycans (hyaluronic acid is the most abundant25) and have two 

main cellular types, fibroblast-like and myofibroblast cells2,16,17. 

MSCs from WJ (MSC-WJ) can be isolated from three regions: (1) the perivascular 

regions16, (2) intervascular regions and (3) the subamnion24. There are two methods to 

isolate MSCs from WJ , enzymatic digestion and explant culture23. In both cases primary 

populations can be successfully expanded ex vivo and further differentiated and 

characterized.  
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WJ-MSCs fit the minimal criteria for described mesenchymal stem cells and in 

addition, these cells express CD200 in greatest proportions and, differently to BM-MSCs, 

CD68 (macrophage-specific antigen) and CD1412. Furthermore, the mesenchymal features 

of WJ have been confirmed by the expression of specific markers from cytoskeletal lineage, 

such as nestin27, vimentin (express mainly in mesenchymal lineage cells12) and SMA16 and 

ESC markers such as Oct-4, SOX-2, Nanog, c-Kit and SSEA4 have also been described22,28. 

 

 

Figure 1.1: Anatomical compartments within the umbilical cord. Umbilical cord contains a vein and two 
arteries surrounded by a gelatinous connective tissue, the Wharton’s Jelly.(Adapted from Troyer et al., 2007) 
  

Fetuses express high levels of HLA-G which provides protection against maternal 

immune attack and subsequent rejection29 and induces the expansion of regulatory T cells 

(Tregs)16. WJ-MSCs exhibit higher intracellular concentrations of leukocyte antigen G6 

(HLA-G6)14,21, than BM-MSCs, which suggests a role in immune tolerance during pregnancy 

by avoiding a maternal immune response against the fetus and even inducing the 

expansion of regulatory T cells29,30. 

 

1.4. Immunomodulation by MSC  

 MSCs have multi-differentiation potential and plasticity and possess unique 

immunological properties. Regardless of the source from which MSCs are isolated from, 

they have been shown to be hypo-immunogenic and have potent immunosuppressive 

activity, both in vitro and in vivo16,31. This phenomenon has been in a focus of interest since 

2002 after Bartholomew and colleagues reported the immunosuppressive capacities of 

allogeneic MSCs and demonstration of the ability of MSCs from baboons to suppress 
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lymphocyte proliferation in a mixed culture in vitro and prevent the rejection of a skin 

allograft in vivo32,33. Furthermore, other studies have demonstrated that MSCs are 

immunosuppressive both in vitro and in vivo in other animal models and human studies33. 

Therefore, immunomodulation is considered as a promising feature of MSCs populations 

for clinical application. 

The expression of major histocompability complex (MHC) on all cells of the 

organism allows the immune systems to distinguish self from non-self. The hypo-

immunogenicity of MSCs can be attributed to the lack of MHC-Class II and co-stimulatory 

ligands (CD80,CD86, CD4014,CD40-L34, B7-DC) implicated in lymphocytes activation and 

even express low amounts of MHC-Class I23,29. Nevertheless, Western blot analysis of cell 

lysates shows that cells contain intracellular deposits of class II alloantigens - despite the 

fact that of not being detectable on the cell surface. Although they can be induced to 

express MHC-Class I and II, and Fas ligand by IFN-γ treatment35, but even in these conditions 

MSCs do not stimulate immunological response34. The expression of low levels of MHC-

Class I could be a mechanism to protect MSC from alloreactive Natural Killer (NK) cell-

mediated lysis29,36. MSCs can migrate and home to organs and tissues in response to 

cytokines, chemokines, adhesion molecules and growth factors and, therein, mediate 

immunomodulatory actions37,38. These characteristics allow the use of mismatched MSCs 

in vivo and lack of T cell response in an allogeneic mixed-lymphocyte reaction in vitro39. 

These characteristics are the most intriguing aspects of MSCs biology and offer great 

therapeutic promise in areas like tissue regeneration, treatment of immune diseases, cell 

vehicles for gene therapy and enhancement of hematopoietic stem cell engraftment7.  

MSCs immunomodulation is a process involving several steps (1) MSCs 

responsiveness to inflammation and migration to the site of injury, (2) licensing/activation 

of MSCs, (3) promotion of pathogen clearance if required and (4) modulation of 

inflammation40,41. In vitro, MSCs can be activated by biologically-active metabolites of 

activated immune cells, called “priming” or “pro-inflammatory activation”, the most well 

defined mechanism until today41 namely IFN-γ in the presence of other cytokines including 

TNF, IL-1α or IL-1β33,41, mimic an inflammatory environment. IFN- γ remains the first key 

“priming” agent for MSCs suppressor function. Beyond inflammatory cytokines other 
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factors might also be involve in “licensing” this ability of MSCs, like Toll-like receptors 

(TLRs)42,43. TLRs are a family of pattern recognition receptors that recognize conserved 

structures that recognize infection or tissue damage - by the release of molecules (e.g., 

endotoxin, lipopolysaccharide –LPS-, dsRNA and heat shock proteins)44 and promote the 

activation of immune cells45. MSC are among the cells that express in their surface TLRs, 

such as TLR-3 and TLR-411,45. TLR3 and TLR4 differentially license MSC; with TLR3 “priming” 

inducing anti-inflammatory MSCs and TLR4 “priming” inducing a pro-inflammatory 

phenotype40.  

MSCs can sense local microenvironment signals and in balance with them promote 

optimal immune response, which can be either inhibitory or stimulatory depending on 

current specific state of an organism40,46,47.  

MSCs have been shown to possess a broad spectrum of immunoregulatory 

capabilities, affecting both innate immune system (DCs, NKs, monocytes and neutrophils) 

and adaptive immune system (B and T cells)48 inhibiting proliferation, reducing immune cell 

cytokine secretion and alter immune cell subtypes23 and promoting the generation of 

Tregs3,36,49 (Figure I.2).  

In vitro, the behaviour of MSCs depend on diverse factors, such as the source of the 

MSCs, the type of immune cells present in the cell culture, the state of activation and 

differentiation of the T cells and the type of stimuli used.  

 

1.4.1. Mechanisms of Immunomodulation by MSCs 

The immunomodulatory actions of MSCs are not fully understood. Several issues 

are under debate and the literature is filled with contradicting ideas, however, most  

experimental studies support a non-specific anti-proliferative action of these cells over 

immune system cells by means of paracrine effects4,43 and/or by cell-cell contact-

dependent mechanisms, which create an immunosuppressive microenvironment 

(Fig.1.2.)3,50. Some discrepancies in the literature may be due to the use of different of 

experimental designs, distinct cells used in vitro and by the individual research groups47,51.  

The cell-cell contacts haves been less investigated than the soluble factors in 

immunosuppression. In several studies transwell systems were used showing indirectly 
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that cell-cell contact is required, since MSCs-mediated effects were diminished or 

abolished when effector and target cells were separated by a membrane5.  In 2003, Tse et 

al. reported that close proximity to MSCs was important in suppressing T cell 

responsiveness and suggested that direct contact between lymphocytes and MSCs was 

more important than soluble factors in the inducing immunosuppressive function52. A 

number of contact-dependent mechanisms have been reported in MSC 

immunomodulation, namely Fas/FasL, programmed death-1/programmed death ligand-1 

(PD-1/PD-L1), galectins51, Notch signalling, expression of the adhesion molecules vascular 

cell adhesion molecule I (VCAM-I), CD72, CD5834, intracellular adhesion molecule (ICAM-I 

and ICAM-2)34,40 and integrins (alpha1, alpha2, alpha3, alpha5, alpha6, alphav, beta2, beta3 

and beta4)34.  

The paracrine effects are caused by the release of various soluble 

immunomodulators. In vivo and in vitro, various soluble immunosuppressive factors have 

been reported to be produced constitutively by MSCs or released following cross-talk with 

target cells such as interleukin (IL)-1, IL-6, IL-8, IL-1053, tumour necrosis factor stimulated 

gene 6 protein (TSG-6)54, heme oxygenase-1 (HO-1)51, indoleamine 2,3-dioxygenase (IDO) 

in humans or nitric oxide (NO) in mice55, transforming growth factor-β (TGF-β), hepatocyte 

growth factor (HGF), vascular endothelial growth factor (VEGF)56, prostaglandin E2 (PGE-

2), platelet-derived growth factor42, matrix metalloproteinases (MMPs)39, cyclooxygenase-

1 (COX-1) and COX-246 and soluble HLA-G557,58. It is clear that none of these soluble factors 

has an exclusive role and that MSC-mediated immunoregulation is a redundant systems 

that is mediated by several molecules57. In relation to the signal transduction pathways 

involved in MSCs mediated immunoregulation, various intracellular transcription factors 

have been reported. Signal transducer and activator of transcription 3 (STAT-3) factor has 

an increased activity in MSCs and antigen presenting cells (APC) upon co-culture. 

Transcription factor STAT-5 was shown to be diminished in activated T cells in the presence 

of MSCs.  Another transcription factor, nuclear factor-kappa B (NFkB), has also been 

suggested to play a role in immunomodulation by MSCs53. 
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Figure 1.2: Schematic representation of interactions between mesenchymal stem cells (MSCs) and immune 
cells of the innate and adaptive immune system. A|MSCs supress resting NK cell proliferation, reduce their 
cytotoxic potential against target cells and cytokine production in vitro. B|MSCs inhibit differentiation of 
monocytes into mature dendritic cells (iDC) and their further maturation into mature DC (mDC), skew mature 
DCs to an immature DC state. The immature DCs are susceptible to killing by activated NK cells. The effect of 
MSCs on DCs impairs the stimulatory effect of mature DCs on resting NK cells and compromises antigen 
presentation to T cells, which cannot then undergo clonal expansion. C|MSCs inhibit proliferation and 
differentiation of B cells into plasma cells, reducing antibody formation. (Adapted from (Uccelli et al. 2008) 

 

The immune regulatory mechanisms are composed by a complex interconnected 

networks that combines cytokines, signalling pathways and micro-environment, and MSCs 

may exert their effect as several levels, as further detailed below.  

   

1.4.2. The effects of MSCs on immune cells  

1.4.2.1. MSCs and T Cells  

 T lymphocytes (T cells) recognize antigens and are essential for the adaptive 

immune system, being involved in the maintenance of self-tolerance, activation of other 

lymphocytes, lysis of infected cells and interaction with cells of the innate immune 

system59. T cells are divided into two main lineages, CD4+ T helper (Th) cells that modulate 

the other immune cells and CD8+ cytotoxic T cells (CTLs) that induce death of target cells, 

both of which can be subgrouped into different effector subsets (naïve, central memory, 

effector memory and effector cells)60,61. Currently, an increasing number of studies have 

reported the inhibitory effect of MSCs over immune cells, the majority of which are focused 

on T cell but less is described concerning the effect of MSCs over distinct T cell functional 
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compartments. Data is scarce and there are some contradictory results regarding the 

influence of MSCs on the naïve-effector T cell differentiation process62. This contradictory 

data may be due to different experimental approaches.  

 The immunosuppressive effect exerted by MSCs over T cells comprises inhibition of 

T cells in terms of proliferation, activation, differentiation into effector cells and effector 

function, and by altering their cytokine profile and impairing the cytolytic activity of CD8+ 

cells62  caused by MSC-released soluble factors and cell-cell contact. This suppression may 

occur directly, or indirectly via immunomodulatory effects on antigen-presenting cells 

(APC) such as DCs, resulting in altered cytokine expression and impaired antigen 

presentation63.  

 T cells proliferation stimulated by mitogens or allogeneic cells57 is inhibit by MSCs 

by preventing their entry into the S phase of cell cycle by arresting irreversibly the G0/G1 

phase through the inhibition of cyclin D2 expression59,60, which results in the induction of 

T cell anergy61,64,65. Anergic T cells are characterized by a lack of cytokine production and 

proliferation in response to antigenic stimulation, as a result of insufficient co-stimulation 

by CD40, B7-1 and B7-2, molecules that MSC lack38,50. This anti-proliferative effect is 

associated with the survival of T cells in a state of quiescence that can be partially reversed 

by IL-2 stimulation57,60.  

 Along with the inhibitory action over T cells, there is also a decreased expression of 

the cytokine IFN-γ, TNF-α and IL-2 both in vivo and in vitro60,62,64. It has also been reported 

an increased production of IL-10 and IL-4 by Th2 cells, which indicates a shift in T cells 

phenotype, from a pro-inflammatory (IFN-γ production) state to an anti-

inflammatory/tolerant state (IL-4 production)57 and promote the generation of Tregs42,61. 

The decreased expression of this cytokines inhibit the differentiation of naïve CD8+ T cells 

into cytotoxic effector cells20. MSCs supress the cytotoxicity of CD8+ if added at the 

beginning of the mixed lymphocyte culture (MLC) but when added in the cytotoxic stage 

the cytotoxicity is not affected66. Therefore, when CD8+ T cells are activated, MSCs are not 

effective in their immunosuppressive action.  

The decrease expression of these cytokines varies within the different T cell 

compartments, showing distinct inhibitory patterns. The inhibition of IFN-γ in naïve T cells 
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is reported to be only among CD8+ T cells and no inhibitory effect is detected over naïve 

CD4+ T cells. Besides, in the central memory (CM), effector memory (EM) and effector 

compartment a more pronounced effect was observed. Concerning the inhibition of TNF-

α, CM and effector CD4+ T cells and EM CD8+ T cells were the functional compartments with 

a higher decrease of expression of this cytokine. The inhibition of IL-2 is more pronounced 

among CM, EM and effector CD4+ T cells and CM CD8+ T cells35,62,67.  

 The mechanisms used by MSCs to suppress T cells are cell-cell contact mediated by 

expression of the cell death ligand PD-L1 and by soluble factors such as PGE2, IDO, COX1 

and 2, HGF, TGF-β, HLA-G5 and others19,48. 

 

1.4.2.1.1. Regulatory T cells  

Tregs suppress the proliferation and cytokine production of T cells, mediating 

peripheral tolerance by addressing autoreactive T cells that escape thymic deletion. This 

regulatory population, may be identify by the co-expression of CD4, CD25 and the 

transcription factor FoxP3 (CD4+CD25+FOXP3+)64.  

MSCs were shown to upregulate Tregs suggesting that MSCs constitute a suitable 

niche for Tregs, playing a role in their recruitment, regulation and maintenance of 

phenotype and function. This induction has been reported to be mediated by PGE2, TGF-

β1 and by direct cell-cell contact between MSCs and CD4+T cells51. The favoured activation 

of Tregs by MSCs may represent one of the important mechanisms of the 

immunosuppressive properties of MSCS, since Tregs have a regulatory function. MSCs 

upregulate the expansion of existing Tregs but do not stimulate the formation of new 

regulatory cell from naïve T cells68. 
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1.4.2.2. MSCs and B Cells  

 Similar to the effects on T cells, the molecular mechanisms of action of MSCs on B 

cells are related to both cell-cell contact and secretion of soluble factors69. 

MSCs suppress B-cell activation, proliferation, development into plasma cells61 and 

IgG secretion (even after stimulation of B-cells) through an arrest at the G0/G1 phase of 

the cell cycle70. 

 A study from Rasmusson et al. described that MSCs downregulate the expression of 

the chemokine receptors CXCR4, CXCR5 and CCR7B and the chemotaxis to CXCL12, CXCR4 

ligand, CXCL13 and CXCR5 ligand, revealing that MSCs affect the chemotactic properties of 

B cells significantly38,50,70. 

 

1.4.2.3. MSCs and NK Cells  

 Natural Killers (NK) cells are considered the major effector cells of the innate 

immune system. NKs are mostly involved in the destruction of tumour cells and virus-

infected cells, since they kill without MHC class I restrictions through the release of perforin 

and granzyme from cytotoxic granules71,72. MSCs express low levels of MHC class I, so the 

lethality of KN cells is substantially reduced if MSCs are primed by IFN-γ, as they would be 

in an inflammatory environment73. There are two subsets of NK cells, which are CD56dim NK 

cells (cytotoxic NK cells) and CD56bright NK cells (a subset that has the capacity to produce 

abundant cytokines after activation but has a low natural cytotoxicity)3,59. 

 MSCs can strongly inhibit the proliferation of resting NK cells and alter cytokine 

release, decreasing their capacity of secreting IFN-γ, TGF-α and IL-1073. Similarly to CD8+ T 

cells, activated NK cells cannot be suppressed by MSCs, and have the ability to kill 

allogeneic MSCs. In response to IFN-γ, activating receptors of NK cells such as NKp30, 

NK44p and NKG2D60 were downregulated when in co-culture with MSCs71, which in turn 

upregulate MHC avoiding being killed by NK cells60,72.  

 There is growing evidence that soluble factors such as IDO, PGE2, TGF-β and sHLA-

G5 are involved in this immunosuppressive effect72. 
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1.4.2.4. MSCs and DC Cells 

 Dendritic cells (DC) are derived from monocytes and are specialized, phagocytic 

professional antigen presenting cells (APC) that serve as a connection between the innate 

and adaptive immune system in mammals by helping to activate T and B cells4,72.  The life 

cycle of this APC consists of an immature stage followed by a mature stage characterized 

by high efficiency in antigen uptake and processing and later on by potent antigen 

presentation61. DCs uptake antigen and during maturation and activation up-regulate 

MHCs, increase the expression of co-stimulatory molecules and migrate to secondary 

lymphoid organs and present antigen to T cells, leading to a primary adaptive immune 

response producing cytokines that affect downstream T cell effector functions, during T cell 

priming. MSCs have been shown to affect most of these processes60,74,75. 

 MSCs are able to strongly inhibit DC generation from both monocytes and CD34+ 

cell precursors73, affecting all major stages of their life cycle, differentiation, maturation 

and activation61, leading to a reduction of the expression of co-stimulatory molecules and 

debilitating the ability to stimulate naïve T cell proliferation48,65. Additionally, DCs cultured 

with MSCs have been shown to induce indirect expansion of Tregs.  

Monocytes cultured under DC-differentiating conditions in presence of MSCs fail to 

proliferate and remain at the G0 phase of the cell cycle7,60.  

MSCs reduced DC secretion of pro-inflammatory cytokines such as IFN-γ, IL-12 and 

TNF-α70, inhibit the regulation of APC-related molecules such as HLA-DR, CD1a, CD14, 

CD40, CD80, CD83 and CD86 antigens on their surface during the maturation stage50 and 

increased IL-10 leading to the inhibition of DCs maturation and the capacity to activate 

alloreactive T cells resulting in a state of an immunologic tolerance51.  

Cell contact via surface ligands involving activation of the Notch signalling pathway51 

and soluble factors enhanced the efficiency of this supression59. IL-6, macrophage-CSF and 

PGE2 are described to be involved in MSCs-mediated immunosuppression of DC 

differentiation from monocytes73. 
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1.5. Mechanotransduction  

The extracellular environment is an essential mediator of cell survival providing 

both biochemical and mechanical stimuli that influence cell behavior76. The composition 

and mechanical properties of the extracellular matrix (ECM) are essential for cellular 

processes such as proliferation, differentiation and other cell fate decisions77,78. The 

microenvironment can influence cells by the presence of not only biochemical stimuli but 

also by mechanical and physical stimuli79,80. Cell adhesion, actin flow, retraction forces or 

gene expression are also cellular processes influenced by substrate rigidity79,81. 

Mechanotransduction is by definition the mechanism by which cells transform 

mechanical signals by mechanosensitive receptors or structures that sense and convert 

them into biochemical responses (Figure 1.3)82,83. This can occur as a result of changes in 

the cell cytoskeleton or through a series of biochemical signalling cascades78.  

Figure 1.3: Schematic showing mechanotransduction in a Cell-ECM unit. Biophysical signals in the stem cell 
niche include matrix rigidity and topography, flow shear stress, strain forces, tensile forces actin through the 
ECM, and other mechanical forces exerted by adjacent support cells. Stem cells sense these signals through 
mechanosensors such as ion channels, focal adhesions (FA), cell surface receptors, and actin cytoskeleton 
and cell-cell adhesions. (Adapted from Jaalouk et al., 2009)  
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Biophysical stimuli in the stem cells niche include matrix rigidity and topography, 

shear forces associated with fluid flow over the cell, tensile forces acting through the ECM, 

and contractile forces generated by motor protein and cytoskeleton complexes84. These 

biophysical stimuli can be sensed by stem cells through mechanosensors such as ion 

channels, cell surface receptors, focal adhesions (FA), actin cytoskeleton and cell-cell 

adhesions85. The variety of mechanosensors in stem cells suggests that they have a robust 

ability to interact with their mechanical environment. MSCs can sense the rigidity of the 

ECM through generating contractile forces through adhesion complexes that connect 

intracellular structures to ECM86.  

Engler et al., provide a new approach to direct stem cell fate, demonstrating that 

matrix elasticity is enough to direct commitment of adult stem cells toward different 

lineages78,80. In 2010, a study from Gilbert et al., showed that the regenerative capacity of 

stem cells in vivo can be strongly influenced by the mechanical properties of the substrate 

where cells were cultured in vitro87 . A recent study from Yang and colleagues, using MSCs 

cultured on hydrogels with distinct degrees of stiffness, demonstrated that stem cells have 

mechanical memory and that YAP/TAZ (transcription factor) behave as an intracellular 

mechasensor78, by exiting the nucleus when cells were kept on soft environments and 

entering the nucleus when on stiff environments.  

 

1.5.1. Mechanisms of Mechanotransduction  

A dynamic relationship exists which allows the ECM to induce signals from the 

extracellular environment inside the cell and, conversely, signalling from inside the cell that 

eventually resulting in remodelling of the ECM. This dynamics is largely mediated by 

integrin binding to ECM proteins78. Integrins are transmembrane proteins heterodimers 

composed of an α- and a β-chain, which mediate the adhesion of cells to a diversity of ECM 

proteins ligands, including fibronectin, collagen, laminin and vitronectin79. Cells sense 

extracellular stiffness using integrins to attach to the ECM and by generating traction forces 

via actomyosin contractility, hence sensing the corresponding reaction force generated by 

the environment. Currently it is known that the integrin receptor itself switches to a high-

affinity state in response to force88.  
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Mechanotransduction initiates at focal adhesions (FA), a dynamic structure that 

binds to the ECM, which is formed by coordinated recruitment of intracellular adaptor and 

catalytic proteins linked to ECM proteins through integrins (Figure 1.4 and figure 1.5)79,85.  

In response to a mechanical stimulus, many enzymes change their kinetics, like focal 

adhesion kinase (FAK), whose activity increases with mechanical stimuli79. This enzyme 

interacts with integrins and phosphorylates tyrosine residues of intracellular proteins, 

promoting their recruitment to FA. 

 

 

Figure 1.4: Focal Adhesion structure. Schematic representation of focal adhesion structure that is formed by 
integrin, talin, paxilin (Pax), vinculin (Vin), focal adhesion kinase (FAK), zynix and vasodilator-stimulated 
phosphoprotein (VASP) and the actin cytoskeleton (in purple) bond to the FA. These molecules provide a 
direct physical link to the actin cytoskeleton. Talin binds to the cytoplasmic domain of the β integrin subunit, 
thereby triggering the transition of the entire α integrin –β integrin dimer from an inactive to an active 
conformation that is capable of high affinity interactions with ECM ligands.  (Adapted from Sun et al., 2012) 

 

After FA formation initiates, cells exert force on the substrate through actomyosin 

contraction, which results in movement of actin fibers. Depending on the rigidity of the 

substrate, talin may become stretched or not. On a stiff substrate, actomyosin induces 

tension, talin becomes stretched – hence revealing further domains for the binding of 

adapter proteins - resulting in reinforcement of early FAs, though the recruitment of more 

vinculin and other FA adapter proteins79.  In case of a soft substrate, talin does not become  

stretched, since the extracellular matrix deforms in response to the force exerted by the 

cell79.  
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Figure 1.5: Schematic actin cytoskeleton – FA interaction. (Step 1) Generated forces by actin polymerization 
and myosin II-dependent contractility affect specific proteins mechanosensors in the actin-linking module 
(such as talin or vinculin), the receptor module (integrins) and co-receptors, the associated actin-polymerizing 
(zynx) and the signalling module (FAK and p130CAS). These interacting molecules form a mechanoresponsive 
network. (Step2) The effect on the actin cytoskeleton depends on the integrated response of the entire 
system to interactions with the matrix and to applied mechanical forces. (Step 3) Stimulation of signalling 
module leads to activation of guanine nucleotide-exchange factors and GTPase-activating proteins, which 
leads to activation of small G proteins (namely Rho and Rac). (Step 4) Rho affects actin polymerization and 
actomyosin contractility through cytoskeleton-regulating proteins, thereby (step 5) modulating the force 
generating machinery. (Adapted from Geiger et al., 2009)  

 

Once focal adhesion kinase (FAK) becomes activated as a result of integrin 

activation, it could lead to the activation of MAP kinase (MAPK) and phosphatidylinositol 

3-kinase (PI3K) signalling pathways, regulating diverse cellular processes, such as 

proliferation, migration and differentiation89. Beyond that, FAK can also activate the RhoA 

pathway, which is involved in actin cytoskeleton tension. When RhoA is activated, recruit 

myosin II to bind actin cytoskeleton, that will increase cytoskeleton tension leading to a 

reinforcement of FAs88. The activity of RhoA seems to be altered by stiffness, altering the 

degree of myosin activation and the cellular contractility84.  
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Figure 1.6: Proteins involved in integrin-mediated rigidity sensing. After the formation of the FA, RhoA is 
activated by FAK and recruits myosin to bind actin cytoskeleton, increasing the cytoskeleton tension and 
resulting in the focal adhesion reinforcement. (Adapted from McMurray et al., 2014) 

 

 In summary, the process of mechanotransduction is composed by several 

mechanism that permit cells to sense their physical environment and respond accordingly.  

1.5.2. ECM Stifness and Biomaterials 

Cells generally show better in vitro behaviour when cultured on materials with 

stiffness similar to that their microenvironment, so the rigidity preferences of cells 

generally reflect their native enviroments79. In the human body, the elastic modulus of 

adult mammalian tissues ranges several orders, from < 1 kilopaascal (kPa) - or 1 nN/µm2 - 

for brain to MPa (Megapascal) for bone (Figure 1.7)76,90. The stiffness of the 

microenvironment has an important consequence in cellular processes such as spreading, 

morphology and function81. Stem cells can sense and respond to alterations of the elastic 

modulus of the ECM by modulating their endogenous cytoskeleton contractility, balanced 

by resistant forces which are generated by the deformation of the ECM85. MSCs sense and 

respond to substrate rigidity by exerting traction forces upon the binding between integrins 

and integrin-specific ligands that are present on the substrate surface. The stiffness of 

biomaterials can be measured based on the force that is required to deform the matrix79. 
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Figure 1.7: Variations in tissue stiffness: tissues exhibit a range of stiffness, measured by the elastic 
(Young’s) modulus, E. (Adapted from Cox et al., 2011) 
 

In a biological context, elasticity or stiffness is often referred to as Young’s modulus 

(also known as Elastic modulus) E, that consists of the amount of force per unit area needed 

to deform the material by a given fractional amount without any permanent deformation, 

being a high elastic modulus corresponding to high stiffness and low deformability. To 

determine the elastic modulus, the force is applied perpendicular to the material’s surface, 

whereas for the shear modulus, (-G), the force is applied parallel to the surface (Figure 1.8).  

The Young’s modulus (E) can be calculated from the shear modulus,(both 

representing the amount of force per unit of area84) using the following equation : E= 2G(1+ 

v), where v is the Poisson ratio. 

In case of materials that do not change volume under stretch, like most rubber-like 

elastic materials, the Poisson ratio equals 0.5 and the elastic modulus will be three times 

its shear modulus, E=3G. The units for rigidity are force per area being the SI unit the 

Pascal79,84.  
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Figure 1.8: Rigidity moduli. Stress is the amount of force that is applied per area (F/A) and the strain is the 
displacement in the direction of applied force relative to initial length (Δx/L or ΔL/L). Elastic and shear moduli 
are the ratio of stress over strain, the difference is in the direction of the applied force. (Adapted from Moore 
et al., 2010) 
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2. Aims  
 

The aim of this thesis is to understand if elements related to mechanotransduction 

influence immunomodulation induced by MSCs. Namely, we were interested to elucidate 

if MSCs derived from different substrates with distinct mechanical and biochemical 

properties possess different immunosuppressive capabilities and wether their action varies 

with the immune cell type.  

Any positive modulation of the immunomodulation capacity by MSCs from different 

substrates would represent an important contribution to the field.  
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3. Materials and Methods  

 

3.1. Isolation and culture of mesenchymal stem cells (MSCs) from human 

Wharton’s Jelly (WJ)  

 All the procedures concerning cell culture and manipulation of umbilical cord were 

performed under aseptic conditions using a class II vertical laminar airflow cabinet 

(HeraSafe HS-18, Heraeus).   

 Fresh human umbilical cord were obtained after birth, provided by Crioestaminal 

S.A and stored in a sterile 50mL conical tube (VWR International) for 12 to 48 hours before 

tissue processing (as described27. In detail, each umbilical cord was cut into sections about 

5cm long and then washed 2 or 3 times with sterile phosphate buffered saline (PBS, Life 

Technologies), to remove the blood. Subsequently, the vein and arteries were removed to 

avoid endothelial cell contamination and the Wharton’s jelly (WJ) was cut into fragments 

of 2-5mm with the help of a scalpel and forceps. Groups of 15 to 30 fragments were 

transferred to 21cm2 tissue culture plates (TCP, Corning-Costar) or to 21cm2 dishes with 

collagen-I (Merck) and Fibronectin (Merck) functionalized PDMS substrates and left to dry 

(30 minutes for TCP and 1 hour for the PDMS substrates) to promote the attachment of the 

fragments to the plastic or PDMS. Then, the MSC proliferation medium [Alpha-MEM (Life 

Technologies) supplemented with 10% volume/volume (v/v) MSC-qualified Fetal Bovine 

Serum (FBS, Hyclone), 10 U/ml Penicillin, 10µg/ml Streptomycin and 2,5 µg/mL 

Amphotericin B (all from Life Technologies)], pre-warmed in a 37°C water bath, was slowly 

added to the attached fragments until all the fragments were totally immersed. These 

fragments were maintained in culture for 15 to 20 days in an incubator at 37°C, in an aseptic 

environment with 5% CO2 and humidified atmosphere, until MSCs were migrating out of 

the hWJ fragments and forming well defined colonies, regularly adding the necessary 

volume medium (as needed) to keep them immersed. The cells that migrated out of hWJ 

were detached from the plastic and gel surface after removing the fragments and washing 

cells with PBS), using Trypsin (500µg/ml) – EDTA (200 µg/ml) solution (Life Technologies) 

during 5 minutes, at 37°C. The trypsin was inactivated with α-MEM with 10% (v/v) FBS (Life 



30 | C h a p t e r  3  –  M a t e r i a l s  a n d  m e t h o d s  

 

 

Technologies) and then cells were re-suspended using a 5 ml serological pipette (Corning-

costar) for complete cell dissociation. Next, cells were centrifuged (290 x g 5 min), the pellet 

was re-suspended in MSC proliferation medium using a serological pipette in MSC 

proliferation medium, counted and plated in new TCP and PDMS dishes. For the passaging 

procedure cells were washed twice with PBS and then dissociated using Trypsin-EDTA 

solution (as described above) when reached around 70-80% of confluence. Cells were 

passaged until a maximum of passage 8 (P8). 

 MSC identify was confirmed by immunophenotype characterization and colony-

forming unit-fibroblast as described by Dominici et al.10.  

3.1.1. Cryopreservation of MSCs  

When cells reached around 80-90% of confluence were dissociated using Trypsin-

EDTA solution, then re-suspended with MSC proliferation medium and collected to a 

conical tube for centrifugation (290 x g, 5min). The supernatant was removed and the pellet 

was re-suspended in 1mL of freezing medium, constituted by FBS (Life Technologies) with 

10% (v/v) cell-culture tested DMSO (Sigma) and transferred into a cryopreservation vial 

(Nunc). The vial was frozen at -80°C overnight in an isopropanol-based cryo-cooler (VWR), 

to promote a gradual freezing (-1°C/min) and then transferred into a nitrogen cryotank, 

correctly identified with the cell type, passage number, corresponding thawing culture 

area, substrate type and freezing date.  

3.1.2. Proliferation kinetics of MSCs 

MSC isolated from WJ were continuously cultured from P2 to P8 and counted once 

they reached 70-80% confluence at each passage. The population doubling (PD) rate was 

determined ate each passage using the following equation91: 

 

𝑋 =
𝑙𝑜𝑔10 (𝑁𝐻)−𝑙𝑜𝑔10 (𝑁1)

𝑙𝑜𝑔10 (2)
          Equation 3.1 

 

NH represents the harvested cell number and N1 the plated cell number. The PD for 

each passage was calculated and added to the PD of the previous passage to generate data 
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for cumulative population doubling (CPD). The generation time (GT) (average time between 

two cells doublings) was also calculated, using the following equation91:  

 

𝑋 =  
𝑙𝑜𝑔10 (2) × ∆𝑡 

𝑙𝑜𝑔10 (𝑁𝐻)−𝑙𝑜𝑔10 (𝑁1)
      Equation 3.2  

 

The total number of cells (TNC) designates the theoretical number of cells that could 

be obtained if no cells were discarded between each passage. The TNC was determined at 

each passage by cumulative counting of the cells using the following formula: 

 

          𝑋 =  
𝑁𝐻 ×𝐵

𝑁1
                        Equation 3.3 

 

B represents the total number of cells of the previous passage. The TNC designates 

the theoretical number of cells that could be obtained if no cells were discarded between 

passages.  

3.1.3. Colony-forming unit-fibroblasts assay  

 The colony-forming unit-fibroblast (CFU-F) assay was determined at P2 and P8. Cells 

were seeded at 10 cells/cm2 on 55cm2 tissue culture plates in MSC proliferation medium 

and cultured for 15 days, one third of the medium was replaced twice a week. Then, cells 

were fixed with 4% PFA for 20 minutes at RT and stained with Giemsa solution (Sigma). 

Individual colonies were counted manually.   

3.1.4. Immunophenotypic study of hWJ-MSCs 

 The immunophenotypic characterization of MSCs was performed in collaboration 

with Centro Hospitalar da Universidade de Coimbra – Unidade de Gestão Operacional de 

Citometria and prior to co-cultures experiments. Cells were detached with Accutase® 

(LifeTechnologies), washed with PBS and the cell pellet was stained with monoclonal 

antibody (mAb) for surface protein antigens and, after an incubation period of 10 minutes 

in the dark at room temperature (RT), washed with PBS. Then, cells were ressuspended in 

250 µL of PBS and immediately acquired in a FACSCanto II (BD) flow cytometer. The mAb 
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used were conjugated with the following fluorochromes: fluorescein isothiocyanate (FITC), 

allophycocyanin (APC), phycoerythrin (PE), phycoerythrin-cyanine 7 (PECy7), krome orange 

(KO) and phycoerythrin-cyanine 5 (PerCPCy 5.5). The following monoclonal antibodies were 

used for the labelling: CD105 FITC (clone 2H6F11, Immunostep), CD90 APC (clone 5E10, BD 

Pharminogen), CD73 PE (clone AD2, BD Pharminogen), CD13 PECy7 (clone Immu103.44, 

Beckman Coulter), CD45 KO (clone J.33, Beckman Coulter) and CD34 PerCPCy 5.5 (clone 

581, BD Biosciences).  

3.2. Preparation and Functionalization of Polydimethylsiloxane (PDMS) for cell 

culture  

3.2.1. Preparation of PDMS  

 Polydimethylsiloxane (PDMS) is a biocompatible and nontoxic silicone elastomer. 

The elastic properties of this material can be easily tuned by changing the based/curing 

agent ratio to cover a wide range of physiologically-relevant elastic modulus for moduli for 

mechanobiological studies. 

PDMS monomer (Sylgard 184 Silicone Elastomer Kit, Dow Corning) was 

homogeneously mixed with its curing agent in the volume ratio of 10:1 and 40:1 (hereafter 

referred to as 1:10 and 1:40 PDMS substrates) followed by casting onto a polystyrene dish. 

This kit is a heat curable PDMS supplied as a two-part kit consisting of pre-polymer (base) 

and cross-linker (curing agent) components. The mixture was then degassed during 1 hour 

to remove all of the air bubbles and cured at 70°C for 4 hours in a heating incubator 

(Binder).  The substrate with 1:10 volume ratio has a stiffness around 1000 kPa and 1:40 

was a stiffness approximately around 80 kPa – the stiffness of TCP is around 1 gigapascal 

(GPa) 92 . 
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3.2.2. Treatment of Polydimethylsiloxane (PDMS) substrates for cell 
culture  

 PDMS is hydrophobic and provides extremely low adhesiveness to cells, making it 

necessary to chemically treat it in order to turn it more hydrophilic and to subsequently 

allow the covalent binding of ECM proteins (providing a stable bond between the substrate 

and the protein) providing an adequate environment for mammalian cell culture. 

For the hydrophilic treatment and functionalization the surface of PDMS substrates, 

the 1:10 substrates were detached from the casting dish and reversed in order to treat the 

smoother side (bottom part) of the substrate. The reason for this procedure was to avoid 

the roughness of the “upper side” of the substrate, which interfered with the cell culture, 

as also described in the literature93. In case of the 1:40 substrates, these were not detached 

and were treated in the casting dish, since the surface roughness of these PDMS substrates 

seemed to be lower and did not cause problems during MSC cell culture. The procedure for 

treatment of PDMS is summarized in Figure 3.193.  

 The hydrophilic treatment of PDMS was performed using a solution constituted by 

miliQ Water (H2O mQ)/ hydrochloric acid (HCl, Fluka)/hydrogen peroxide (H2O2, Sigma) in 

a volumetric proportion of (5:1:1) for the 1:40substrate and (3:1:1) for the 1:10 substrate. 

The solutions were prepared fresh and added to the PDMS surfaces, allowing the reaction 

to occur during 5minutes at RT, creating this way silanol groups on the PDMS surface.  

A silanol is a functional group in silicon chemistry with the connectivity Si–O–H. After this 

reaction, PDMS was washed three times with H2O mQ. In order to have a chemical 

functionalization of PDMS, a solution of 10% (v/v) 3-aminopropyltrimethoxisilane (APTMS) 

in 96% (v/v) ethanol (EtOH, Merck) was added to the substrates during 30 minutes at RT, 

followed by three abundant washes with H2O mQ 10 minutes each with agitation, in order 

to remove the excess of APTMS that otherwise would avoid the reaction between PDMS-

bond APTMS and glutaraldehyde (which was added on the following step).Then, a solution 

of 3% (v/v) glutaraldehyde in PBS 1x was added to the substrates and incubated for 20 

minutes at RT. After that, substrates were washed three times with abundant H2O mQ 5 

minutes each, with agitation. The chemical functionalization of PDMS with the crosslink of 

APTMS and glutaraldehyde leave one free aldehyde group that covalently binds to ECM 

protein, and leaving the PDMS substrate functionalized. The substrates 1:10 were cut and 
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placed in new-cell culture dishes. Afterwards, the substrate-containing dishes were 

exposed to ultraviolet (UV) light during 30 minutes in PBS and washed one time with PBS.  

Finally, a solution of 2920 µg/mL Collagen Type I (Merck) was added to 1:40 substrates and 

1000 µg/mL Fibronectin (Merck) plus 2920µg/mL Collagen Type I was added to 1:10 

substrates and then incubated for 2hours and 3 hours, respectively. The ECM protein 

composition described for each PDMS substrate was optimized for each condition.  

 

Figure 3. 1 Schematics of PDMS surface chemical modification. PDMS underwent a hydrophilic treatment 
using a H2O/HCl/H2O2 solution and then, the crosslink between APTMS and glutaraldehyde allows the 
covalent binding of ECM protein to the PDMS surface. (Adapted from Kuddannaya et al., 2013) 
 

 3.2.3. Cell Culture on TCP and PDMS substrates 

 After the isolation and expansion of MSCs on tissue culture plates (TCP), cells were 

split and re-plated on dthe distinct substrates (TCP, 1:10, 1:40 PDMS substrates) at 5x103 

cells/cm2 and maintained for 5 days in culture before being harvested for co-culture 

experiments with mononuclear cells (MNCs). Culture media were changed 24 hours before 

the co-culture experiments to serum-free α-MEM (supplemented with antibiotics), to 

obtain MSCs-conditioned media (CM). The distinct CM were then centrifuged (2900 x g, 5 

mint) and collected for multiplex cytokine analysis and for experiments using MNCs in 

presence of MSCs-conditioned media. 
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3.3. Multiplex Cytokine Analysis  

In order to analyse concentration of cytokines conditioned culture medium was 

collected from MSCs after24h with medium serum free and conditioned culture medium 

after 24h in direct contact with mononuclear cells, was also collected.  

The concentration of cytokines on conditioned cell culture medium were evaluated 

using a Bio-Plex Pro 8-Plex Panel Assay (Bio-Rad, Hercules), according to the manufacturer’s 

instructions and as detailed below, using a Bio-Plex 200 system (Bio-Rad). The 8-plex panel 

evaluated the presence of the following analytes: GM-CSF, IFN-γ, IL-2, IL-4, IL-6, IL-8, IL-10 

and TNF-α. The procedure for multiplex cytokine analysis is summarized in Figure 3.293.  

Samples were, thawed on ice and homogenized using a microplate agitator (Asal 

715) and then processed as follows (according to the kit’s instructions). Samples were 

incubated at RT with agitation with the antibody-conjugated beads for 60 minutes and then 

washed three times using the kit wash buffer following vacuum aspiration. The incubation 

with detection antibodies was performed for 30 min (RT) with agitation, followed by three 

washed as before. Finally, the incubation with the antibody conjugate streptavidin-

phycoerythrin (SA-PE) was performed for 10 min (RT, with agitation), followed by three 

washes. The beads were re-suspended with assay buffer and data was acquired using a Bio-

Plex 200 system. Acquisition and analysis was performed using the software Bio-Plex 

Manager 5 (Bio-Rad). 

 

 

 

Figure 3. 2. Schematics summarizing the Bio-plex assays workflow. (Adapted from Biorad)  
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3.4. Immunophenotypic study of MSCs with Peripheral Blood Mononuclear 

Cells (MNCs) 

3.4.1. Collection and Isolation of Peripheral Blood Mononuclear Cells  

 Peripheral blood samples were obtained from a healthy donor (male, 38 years old), 

collected in heparin at the Instituto Português do Sangue e da Transplantação - Área de 

Transplantação (Portugal).  

Peripheral blood mononuclear cells (MNCs) were isolated by Histopaque (Sigma-

Aldrich) density gradient centrifugation (400 x g for 20 minutes) and then, washed in Hank’s 

Balanced Salt Solution (HBSS, Life Technologies). The MNCs pellet was re-suspended in 

RPMI 1640 with L-glutamine (Life Technologies) and antibiotic-antimycotic and then, 

counted in a hematology analyser (Coulter Ac-T diff2, Beckman Coulter) and subsequently 

plated 4x105 cells in 2 or 3 replicate wells per condition of 24 well tissue culture plates 

(Corning-costar). The cell culture and stimulation protocols are detailed below, in “Co-

culture of MSC and peripheral blood (MNC) and in vitro stimulation” section.  

3.4.2. Co-culture of MSCs and peripheral blood (MNCs) and In vitro 

stimulation  

 The co-culture of MSCs and peripheral blood (MNC) and in vitro stimulation was 

made in collaboration with Instituto Português do Sangue e da Transplantação - Área de 

Transplantação (Portugal).  

All the procedures concerning cell culture and manipulation were performed under 

sterile conditions using a class-II vertical air-flow cabinet. 

In 3 wells of 24 well tissue culture plates (Corning-costar) 4x105 MNCs were plated 

in 500 µL of RPMI 1640 (Invitrogen, Life Technologies) and 500µL of α-MEM with antibiotic-

antimycotic (Life Technologies), and in 6 others wells of tissue culture plates (Corning-

Costar) 2x105 MSCs + 4x105 MNCs (each well) were plated in a final volume of 1 mL (1:1 – 

RPMI:α-MEM) , establishing a ratio of 1:2 (MSCs:MNCs). Additionally, a parallel assay using 

MSCs-conditioned medium (CM obtained from MSCs during 24h, as detailed above) was 

also performed, adding 500 µL of CM and to the MNC cells. Cells were cultured for 20-24 

hours at 37°C, in an aseptic environment with 5% CO2 and humidified atmosphere. All 
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assays were performed using MSCs between passage P3 and P5. Control cultures consisted 

of MNCs in the absence of MSCs with or without stimulation.  

3.4.2.1. In vitro stimulation with Phorbol myristate acetate (PMA) 

plus ionomycin  

Phorbol myristate acetate (PMA) is a small organic compound that diffuses through 

the cell membrane into the cytoplasma, where it directly activates protein kinase C (PKC) 

omitting the “need” of surface receptor stimulation. Ionomycin, calcium ionophor, is used 

in addition to trigger calcium release which is needed for NFAT signalling.  

After the incubation period (detailed in material an methods section above), 50 

ng/mL PMA plus 1 µg/ml ionomycin (Sigma-Aldrich and Boehringer, respectively) were 

added to the wells with MNCs and MNCs+MSCs. Brefeldin A (10 µg/mL) from Penicillium 

brefeldiamun (Sigma-Aldrich), is a protein transport inhibitor, was added to the wells to 

prevent the secretion of de novo produced cytokines outside the cells by MNCs, blocking 

the transport processes during cell activation leading to accumulation of most cytokines at 

the Golgi complex/Endoplasmatic reticulum. Then, proceeded to an incubation at 37°C, in 

an aseptic environment with 5% CO2 and humidified atmosphere, for 4 hours. These 

samples were used to study cytokine expression on T cells compartments (naïve, central 

memory, effector memory and effector cells) by flow cytometry.  

3.4.2.2. In vitro stimulation with Lipopolysaccharide (LPS) plus 

interferon- gamma (IFN-γ) 

 Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-

negative bacteria and is one of the most potent stimuli for monocytes.  

After the incubation period, 100 ng/ml lipopolysaccharide (LPS) plus 100 U/mL IFN-

γ were added to the wells with MNCs and MNCs+MSCs. Brefeldin A (10 µg/mL) from 

Penicillium brefeldiamun (Sigma-Aldrich) was added to the wells to prevent the secretion 

of de novo produced cytokines outside the cells. Then, the samples were incubated at 37°C, 

in an aseptic environment with 5% CO2 and humidified atmosphere, for 6 hours. These 

samples were used to study cytokine expression on monocytes by flow cytometry. 
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3.4.3. Immunophenotypic analysis of MNCs 

 After the incubation period for in vitro stimulation, the content of each well under 

different experimental condition was transferred to a 12x75mm polysterene cytometer 

tube, centrifuged (540 x g for 5 minutes). Immunophenotypic study of peripheral blood T 

cells and monocytes was perfomed using 8-color mAb combinations, as detailed in Table 

3.1. Cell pellet were stained with mAB for surface proteins antigens. For intracellular 

staining, Intraprep Permeabilization Reagent (Beckamn Coulter) was used, according to the 

manufacter’s instructions and in parallel with the mAb, for T cells IL-2 and TNF-α (tube 1), 

and for monocytes TNF-α (tube 2). After washing twice with PBS, the cell pellet was 

resuspended in 250µL of PBS and immediately acquired.  

Table 3. 1. Panel of mAb reagents (with clones and commercial sources) used for the immunophenotypic 
characterization  

T

u

b

e 

Fluorochromes 

PacB KO FITC PE PerCPCy 

5.5 or 

PECy5 

PECy7 APC APCH7 V500 

1 CD3 

UCHT1 

BD Pharmingen 

- IL-2 

MQ1-17H12 

BD 

Pharmingen 

TNF-α 

Mab11 

BD 

Pharmingen 

 

CD27 

1A4CD27 

Beckman 

Coulter 

CD56 

N901 

Beckman 

Coulter 

CD45RA 

HI100 

BD Pharmingen 

CD4 

SK3 

BD 

Bioscience

s 

CD8 

RPA-T8 

BD 

Horizon 

2 HLA-DR 

L243 

BD Pharmingen 

CD45 

J.33 

Beckman 

Coulter 

CD35 

E11 

BD 

Parmingen 

TNF- α 

Mab11 

BD 

Pharmingen 

CD11C 

B-ly6 

BD Biosciences 

CD33 

D3HL60.25

1 

Beckman 

Coulter 

IREM-2 

UP-H2 

Immunostep 

CD14 

MφP9 

BD 

Bioscience

s 

 
-  

 

Abbreviations:  mAb, monoclonal antibody; PacB, pacific blue; KO, krome orange; FITC, fluorescein 
isothiocyanate; PE, phycoerythrin, PerCPCy 5.5, peridin chrophyll protein cyanine 5.5; PECy5, 
phycoerythrin-cyanine 5 ; PECy7, phycoerythrin-cyanine 7; APC, allophycocyanin; APCH7, 
allophycocyanin-hilite 7. Comercial sources: BD Pharmingen (San Diego,CA,USA); BD Bioscience 
(Becton Dickinson Biosciences, San Jose, CA,USA); Beckman Coulter (Miami, FL, USA). 
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3.5. Data Acquisition and analysis  

Data acquisition were perfomed in a FACsCAnto™II (BD) flow cytometer equipped 

with the FACSDiva software (v6.1.2; BD) at Centro Hospital da Universidade de Coimbra – 

Unidade de Gestão Operacional de Citometria. For the immunophenotypic studies, the 

whole sample from each tube was acquired and stored. For data analysis, the Infinicyt 

(version 1.7) software (Cytognos SL, Salamanca, Spain) was used.  

3.6. Statistical analysis  

Statistical analysis was performed using the Graph Pad Prism 6 software.  Kruskal-

Wallis test followed by Dunn’s multiple comparison test was performed when data was not 

normal (non-parametric analysis). When appropriate t-test was used, to assess the 

normality of the data, Shapiro-Wilk’s test was performed. Values represent mean ± SEM 

and statistically significant differences were considered when p value was lower than 0.05. 
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4. Results  

4.1. Isolation and of mesenchymal stem cells (MSCs) from the Wharton’s jelly 

(WJ) 

 In the first part of this work, the objective was to isolate mesenchymal stem cells 

(MSCs) from the WJ in polydimethylsiloxane (PDMS) substrates polymerized on cell culture 

dishes with different formulations and in tissue culture plates made of polystyrene (TCP). 

Human MSCs were isolated from, as described in the Materials and methods section 3.1. 

At the end of 10-15 days in culture, several WJ fragments were still attached to the culture 

dishes and showed cells migrating from the tissue. After cells migration from the tissue, 

formed colonies of cells displaying an MSC-like phenotype, with spindle-shaped 

morphology and could be identify by phase-contrast microscopy (Fig.4.1).  

 

 

Figure 4. 1. MSCs like cells migrating from Wharton’s jelly fragments in proliferation medium, passage 
0. A) Isolation in tissue culture plates (TCPs); B) Isolation in 1:10 PDMS platform; C) Isolation in 1:40 PDMS 
platform  

A B 

C 
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Despite the fact that isolation in PDMS was successful, there were some difficulties 

to proliferate the cells in the different substrates, further optimization is needed. Put that, 

for the aim of this project, WJ-MSCs were isolated in TCP, proliferate and then, plated at 

the different substrates 5 days, as described in materials and methods section 3.2.4.  

4.2. Proliferation kinetics  

 A proliferation kinetics study was made with the purpose of characterizing the 

proliferation and evaluate the expansion capacity of isolated MSCs, since MSCs are cells 

with a higher proliferative capacity9. Cells were isolated from 4 distinct human Wharton’s 

jelly samples (UC#819, UC#841, UC#874 and UC#875). The population doubling (PD) and 

cumulative population doubling (CPD), generation time (GT) and total number of cells (TNC) 

of 4 independent samples were calculated from passages 2 to 8, as described in materials 

and methods section 3.1.3. 

As shown in figure 4.2, after 8 passages, the MSCs analysed had doubled their 

population by 18.77 ± 1.77 times (Fig.4.2-B), during which the observed mean generation 

time (GT) was between 1.02 ± 1.46 and 1.66 ± 0.48 days and no statistically significant 

differences were found in GT from passages 2 to 8 (Figure 4.2-C), as previously seen27. The 

total number of cells obtained (if no cells had been discarded until that point) during these 

passages was 2.17 x 1012 ± 1.25 x1012 cells (Fig.3.2- D).  Hence, the MSCs isolated show high 

proliferative capacity, maintaining a short generation time from passages 2 to 8. 
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Figure 4. 2. Proliferation kinetics study of Wharton’s Jelly-mesenchymal stem cells (WJ-MSCs) in vitro. From 
passage 2 (P2) onwards (inclusively), cells were plated at a fixed density of 4000 cells/cm2, allowed to 
proliferate until 70-80% confluence and re-plated the same way. (A) The population doubling (PD) was 
determined using the formula X= [log10 (NH)-log10 (N1)/log10 (2). (B) Cumulative population doubling (CPD) 
was determined by adding the calculated PD to the PD levels of the previous passage. (C) The generation of 
time (GT) was calculated at passages 2 to 8, using the formula X= (log2 x Δt/ log10 (NH)-logq10 (N1). (D) The 
total number of cells (TNC) was determined at each passage (P1-P8) by cumulative counting the cells once 
they reached confluence of 70-80%. For each assay, 4 independent samples were used. Bars represent mean 
± SEM.  
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4.3. Colony forming unit-fibroblasts (CFU-F) capacity  

 One of these cells’ characteristics have is the ability to form colonies, when seeded 

at low density to eliminate cell-cell interactions. In order to assess this ability, cells were 

seeded at a very low density, 10 cell/cm2, at passages 2 and 8 and cultured for 15 days, as 

described in the materials and methods section 3.1.4. 

 

Figure 4. 3. CFU-F capacity of WJ-MSCs. The CFU-F capacity was determined by counting manually the 
number of colonies formed after 15 days in culture at low density of cells (10 cells/cm2) obtained at passages 
2 and 8. Results are representative of 4 independent samples. No significant differences were found 
performing two-tailed Mann-Whitney test. Bars represent mean ± SEM. 

 

As shown in figure 4.3, the four samples have great ability of forming colonies at 

passages 2 and 8 (45 ± 6.96 and 28 ± 3.43). In all samples the CFU-F capacity decreases at 

passage 8, although no statistically significant differences were found. 

4.4. Immunophenotypic characterization of WJ-MSCs  

 In order to determine if the cells isolated from Wharton’s jelly were bona fide MSCs, 

the expression of cell surface antigen was evaluated on 4 independent samples before the 

co-culture assay. The cells were cultured until subconfluency, dissociated using accutase 

and labelled with antibodies against cell surface markers typically used for the 

characterization of MSCs and analysed by flow cytometry (Table 4.1).  
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Table 4. 1. Summary of the flow cytometry analysis of WJ-MSCs 

Positive markers Negative markers 

CD13 CD34 

CD73 CD45 

CD90 

CD105 

 

Flow cytometry analysis showed that the cells isolated from WJ were positive for 

CD13, CD73, CD90 and CD105 (Fig 4.4). In contrast, the cells did not expressed CD34 

(hematopoietic lineage marker) and CD45 (leukocyte marker) (Fig.4.4). This analysis (Table 

4.1 and Fig.4.4) show that this phenotypic profile was consistent with the MSC phenotype 

previously described10,27. CD105 marker it’s not strongly positive due to the chosen 

fluorochrome, a different one should have been used, for example CD105 PE.  

 

Figure 4. 4. Illustrative immunophenotypic characterization of hWJ-MSCs. Cells were dissociated using 
accutase, labelled with antibodies against the indicated antigens and analysed by flow cytometry. Cells were 
positive for CD13 (A), CD73 (B), CD90 (C) and CD105 (D) and negative for CD34 (E) and CD45 (F) (blue lines) 
when compared with unlabelled MSCs (green lines), as depicted in the histograms. Histograms were obtained 
from one sample at passage 3 and are representative of 4 independent samples at P3. 

 

The cells obtained from the hWJ behave as MSCs, in other words, they are adherent 

to plastic, have high proliferative potential and CFU-F capacity, and typical 

immunophenotype signature of MSCs.    
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4.5. Multiplex cytokine analysis  

 MSCs produce a myriad of cytokines and in order to assess the impact of substrate 

stiffness on the secretory prolife of MSCs, conditioned culture medium was collected and 

assayed for a 8-plex panel evaluating the presence of the following analytes: GM-CSF, IFN-

γ, IL-2, IL-4, IL-6, IL-8, IL-10 and TNF-α.  The conditioned culture medium from co-culture of 

MSCs with MNCs after 24h in direct contact was also assayed for this same 8-plex panel.  

 As shown in figure 4.5 and 4.6, WJ-MSCs differentially secrete soluble factors in 

response to matrix compliance. It notable that MSCs isolated from hWJ secrete in high 

concentration IL-6 and IL-8 (as described in the literature94,95) and at a very low 

concentration IL-10 (which is also described in the literature that it is secreted by MSCs)53,64. 

MSCs showed a tendency to secret higher concentrations of IL-2, IL-4, IL-6 and IL-8 when 

cultured on 1:40 PDMS and 1:10 PDMS substrate than when maintained on standard tissue 

culture plate (TCP). Statistically significance differences were found for IL-2, IL-4 and IL-6 in 

cells cultured on 1:40 PDMS substrates when compared with TCP (but not between 1.10 

PDMS and TCP conditions) – Figure 4.5. Despite the fact that it is described that MSCs do 

not secrete IL-2 or IL-4, they could be detected at a very low concentration using a BioPlex 

assay, which is particularly sensitive (pg/ml range). 

 To rule out any putative effect caused by a possibly distinct number of cells that 

could be contributing to the overall cytokine secretion due to eventually distinct 

proliferation rates on the distinct substrates, cytokine concentration was normalized to the 

final number of cells present in each condition, and the results obtained (Figure 4.6) were 

similar to the raw data, except that for IL-6 the p value when comparing 1.40 PDMS with 

TCP was equal to 0.05 and not lower (as for the raw values – Figure 4.5) 
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Figure 4. 5.  Cytokines produced by Mesenchymal stem cells (MSCs) cultured on different substrates. Cells 
were plated (5 x 104 cells/cm2) on respective substrates and medium was conditioned for 24h, and then 
collected and analyzed. (A) Concentration of cytokines secreted by MSC. (B) Fold change of concentration 
compared to concentration of TCP. Bars represent mean ± SEM. Results are representative of 4 independent 
samples for TCP and 1:40 PDMS and 3 independent samples for 1:10 PDMS. Statistically analysis was 
performed by Kruskal-Wallis one way ANOVA followed by Dunn’s Multiple Comparison test (*< P 0.05). MSC, 
mesenchymal stem cells; IL, interleukin; TNF-α, tumor necrosis factor-α; IFN-γ, interferon γ; TCP, tissue 
culture plate.  
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Figure 4. 6. Cytokines produced by Mesenchymal stem cells (MSCs) cultured on different substrates. Cells 
were plated (5 x 104 cells/cm2) on respective substrates and medium was conditioned for 24h, and then 
collected and analysed. The amount of culture medium assayed was normalized to final cell number. (A) 
Concentration of cytokines secreted by MSC. (B) Fold change of concentration per million of cells compared 
to concentration per million of cells from TCP. Bars represent mean ± SEM. Results are representative of 4 
independent experiments for TCP and 1:40 PDMS and 3 independent experiments for 1:10 PDMS. Statistically 
analysis was performed by Kruskal-Wallis one way ANOVA followed by Dunn’s Multiple Comparison test (* P 
<0.05). MSC, mesenchymal stem cells; IL, interleukin; TNF-α, tumor necrosis factor-α; IFN-γ, interferon γ; TCP, 
tissue culture plates.  
 

 

Since 1:40 PDMS substrate revealed more differences in the cytokines secreted than 

1:10 PDMS substrate, only 1:40 PDMS was analysed in co-cultured with MNCs during 24h 

without any in vitro stimulation, as described above in materials and methods section 3.3. 
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Figure 4. 7. Cytokines produced in co-cultured of mesenchymal stem cells (MSCs) with peripheral blood 
(MNCs). MSC previously cultured on different substrates (TCP or 1:40 PDMS, as indicated) were co-cultured 
with MNCs during 24h in direct contact without any stimulation in vitro. After 24h in co-cultured, conditioned 
culture medium was collected and analysed. (A) Cytokines produced after 24h in direct contact. (B) Fold 
change of cytokine concentration compared to concentration of control (TCP). Results are representative of 
3 independent experiments. Statistically analysis was performed by t-test (* P < 0.05). MSC, mesenchymal 
stem cells; IL, interleukin; GM-CSF. Granulocyte macrophage- colony stimulator factor; TNF-α, tumour 
necrosis factor-α; IFN-γ, interferon γ; TCP, tissue culture plate standard. 
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 MNCs were co-cultured with MSCs in the absence of activating stimuli. It could be 

observed that when MSCs had been previously maintained on 1:40 PDMS substrates, there 

was a significant increase of IL-4 and IL-8 secretion when compared to the condition in 

which MSCs had been cultured on TCP (both in case of raw data – Figure 4.7-A – or fold 

change relative to control – Figure 4.7-B). A similar tendency was observed for GM-CSF and 

IL-10 secretion, although in this case no statistically differences were found (Figure 4.7). 

When data was normalized to the number of cells, the same was observed (Figure 4.8). This 

normalization according to total cell number allowed comparing the secretory profile of 

MNCs alone with ttat of MNCs in co-culture with MSCs obtained from TCP or 1:40 PDMS 

substrates, as represented in Figure 4.9.  

 As shown in figure 4.9, comparing with MNCs alone when MNCs were co-cultured 

with WJ-MSCs a notable increased in all cytokine under analysis (except for TNF-α), 

Statistically significant differences were observed for the concentration of IL-2, IL-4, IL-10 

and IFN-γ present in the conditioned medium when WJ-MSCs were previously cultured on 

1:40 PDMS (but not TCP) and then co-cultured with MNCs, when compared with MNCs 

alone. These results suggest that the cytokine context of MNCs alone or in co-culture with 

MSCs, especially with MSCs previously cultured on 1:40 PDMS substrates is significantly 

different.  
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Figure 4. 8. Cytokines produced in co-culture of mesenchymal stem cells (MSCs) with peripheral blood 
(MNCs). MSC previously cultured on different substrates (TCP or 1:40 PDMS, as indicated) were co-cultured 
with MNCs during 24h in direct contact (without any stimulation in vitro). After 24h in co-cultured, 
conditioned culture medium was collected and analysed. The amount of culture medium assayed was 
normalized to the sum of cell number of MNCs and MSCs plated. (A) Cytokines produced after 24h in direct 
contact. (B) Fold change of cytokine concentration per million of cells compared to concentration from TCP. 
Results are representative of 3 independent experiments. Statistically analysis was performed by t-test (* P< 
0.05).MSC, mesenchymal stem cells; MNCs, Mononuclear cells; IL, interleukin; GM-CSF. Granulocyte 
macrophage- colony stimulator factor; TNF-α, tumour necrosis factor-α; IFN-γ, interferon γ; TCP, tissue 
culture plate. 
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Figure 4. 9. Cytokines expressed in peripheral blood (MNCs) and in co-culture of mesenchymal stem cells 
(MSCs) with MNCs. MNCs were culture 24h alone without any stimulation in vitro and MSC previously 
cultured from different substrates (TCP or 1:40 PDMS , as previously indicated) were co-cultured with MNCs 
during 24h in direct contact without any stimulation in vitro. After 24h, both conditioned culture medium was 
collected and analysed. The amount of culture medium assayed was normalized to the sum of cell number of 
MNCs and MSCs plated. Results are representative of 4 independent experiments to MNCs and 3 
independent experiments to MSC in co-cultured with MNCs. Statistically analysis was performed by Kruskal-
Wallis one way ANOVA followed by Dunn’s Multiple Comparison test (* P <0,05; ** P < 0,001). MSC, 
mesenchymal stem cells; MNCs, Mononuclear cells; IL, interleukin; GM-CSF. Granulocyte macrophage- colony 
stimulator factor; TNF-α, tumor necrosis factor-α; IFN-γ, interferon γ; TCP, tissue culture plate. 
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4.6. Co-culture of peripheral blood MNCsand MSCs and in vitro with Phorbol 

myristate acetate (PMA) plus ionomycin 

 To the best of our knowledge, no study to date investigated and compared the 

influence of MSC cultured on different substrates over the peripheral blood T cells 

subpopulations. Several studies have demonstrated that MSCs have immunoregulatory 

effects on T cells (although few studies have studied the different T cell compartment) and 

in order to better understand how MSC cultured on different substrates regulate the 

immune function of the different T cell compartments [naïve, central memory (CM), 

effector memory (EM) and effector cells]. To investigate that, PMA+ ionomycin-stimulated 

MNCs were cultured in absence or presence of MSCs previously cultured on the different 

substrates (TCP, 1:10 PDMS or 1:40 PDMS). The control consisted on stimulated MNCs 

alone and stimulated MNCs + MSCs cultured on tissue culture plates (TCP). In order to 

identify the four abovementioned compartments among CD4+ and CD8+ T cells, 8-color 

mAb combinations was used (described in materials and methods 3.3.3 section) to 

analysed the protein expression of IL-2 and TNF-α within each cell compartment. The 

results obtained are preliminary, consisting of a limited number of independent 

experiments and for that reason, the interpretation of the results will also be based on the 

tendencies observed so far, with no possible statistical analysis.  

 The functional compartments of CD4+ and CD8+ T cells (imunophenotypically 

characterized as CD3+CD4+CD8- and CD3+CD4-CD8+, respectively) were identified according 

to their differential expression of CD45RA and CD27, as follows: naïve T cells were 

characterized by CD45RA+ CD27+ expression, CM T cells by CD45RA- CD27+, EM and effector 

T cells by CD45RA- CD27- and CD45RA+ CD27-, respectively.  

 As shown in figure 4.10 and 4.11, the presence of WJ-MSCs decrease the 

percentage of both CD4+ and CD8+ T cells expressing IL-2 or TNF-α (after stimulation of the 

MNCs with PMA + ionomycin) in the distinct compartments analysed.  The co-cultures of 

MNCs with WJ-MSCs derived from distinct substrates led to different levels of decreased 

percentage of both CD4+ and CD8+ T cells expressing IL-2 (Figure 4.10), but not in case of 

TNF-α (Figure 4.11), in which the MSCs obtained from distinct substrate appear to produce 

the same inhibitory effect. In detail, MSCs previously cultured on 1:10 or 1:40 PDMS 
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substrates seems to have a higher inhibitory effect over the percentage of IL-2 expressing 

CD4+ or CD8+ cells than MSCs cultured on TCPs (Figure 4.10). As shown in figure 4.10, WJ-

MSCs derived from both PDMS substrate (1:10 or 1:40) seem to decrease more the 

percentage of CD4+ T cells expressing IL-2 in all compartments – showing a higher tendency 

for immunosuppression, namely in case 1:40 PDMS - except for the naïve functional 

compartment, where the results are comparable with WJ-MSCs derived from TCP. 

Regarding CD8+ T cells, WJ-MSCs derived from the PDMS substrates decreased the 

percentage of cells expressing IL-2 in the naïve, central memory, effector memory and 

effector functional to a greater extent than MSCs cultured from TCP (Figure 4.11). In the 

effector functional compartment CD4+ T cells there was no detection of IL-2 or TNF-α 

positive cells, and for that reason, that functional compartment is not represented (Figure 

4.10).  

Concerning TNF-α, figure 4. 11 showed that the presence of WJ-MSCS decreased 

the percentage of cells expressing this cytokines in all functional compartments in both 

CD4+ and CD8+ T cells.Comparing the effect of MSCs obtained from the distinct susbtrates, 

all seem to present similar immunosuppression in all compartments and in  CD4+ and CD8+. 

In order to evaluate the soluble factors (alone) secreted by WJ-MSCs influence 

MNCs, the latter were culture and then stimulated in the presence of MSC-conditioned 

medium (as described in materials and methods section 3.4.2). As shown in figure 4.12 no 

effect seems to have to occured in the percentage of IL-2 producing in CD4+, although a 

slight decrease was observed in the amount of protein per cell (measured by mean 

fluorescence of intensity - MFI) except for the naïve functional compartment.  Concerning 

the percentage of IL-2 producing in CD8+ T cells there is no decrease observed in any 

functional compartment. Only in the amount of protein produced per cells (refelected by 

IL-2 MFI) a decrease was observed in all compartments except for effector CD8+ T cells.  

Concerning the percentage of TNF-α, producing cells, a slight decreasedwas observed in all 

the functional compartment, except for naïve compartment of both CD4+ and CD8+ T cells, 

with the same trend in terms of amount protein per cells (MFI-) – Figure 4.13.  
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 Figure 4. 10. Percentage of CD4+ and CD8+ T cells expressing Interleukin-2 (IL-2) determined by flow 
cytometry. MNCs were stimulated with PMA and ionomycin (MNCs + PMA + ionomycin) in the absence or 
presence of WJ-MSCs derived from different substrates, as indicated. The upper panels show the percentage 
of CD4+ and CD8+ T cells, producing IL-2, distributed among their functional compartments. The middle panels 
depicts the mean fluorescence intensity (MFI) of the signal, correlating with the amount of IL-2 expressed per 
cell. The lower panel represents the percentage of inhibition induced by WJ-MSCs on the distinct functional 
compartment of CD4+ and CD8+ T cell expressing IL-2. Results are representative of 2 independent 
experiments for TCP and 1:40 PDMS and 1 independent experiment for 1:10 PDMS. Bars represent mean ± 
SEM. CM, central memory; EM, effector memory; N.D., not determined) 
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Figure 4. 11. Percentage of CD4+ and CD8+ T cells expressing Tumour necrosis factor- alpha (TNF-α) 
determined by flow cytometry. MNCs were stimulated with PMA and ionomycin (MNCs + PMA + ionomycin) 
in the absence or presence of WJ-MSCs derived from different substrates, as indicated. The upper panels 
show the percentage of CD4+ and CD8+ T cells, producing TNF-α, distributed among their functional 
compartments. The middle panels depicts the mean fluorescence intensity (MFI) of the signal, correlating 
with the amount of TNF-α expressed per cell. The lower panel represents the percentage of inhibition induced 
by WJ-MSCs on the distinct functional compartment of CD4+ and CD8+ T cell expressing TNF-α. Results are 
representative of 2 independent experiment for TCP and 1:40 PDMS and 1 independent experiment for 1:10 
PDMS. Bars represent mean ± SEM. CM, central memory; EM, effector memory; N.D., not determined  
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Figure 4. 12. Percentage of CD4+ and CD8+ T cells expressing Interleukin-2 (IL-2) determined by flow 
cytometry. MNCs were stimulated with PMA and ionomycin (MNCs + PMA + ionomycin) in the absence or 
presence of MSC-conditioned medium derived from different substrates, as indicated. The upper panels show 
the percentage of CD4+ and CD8+ T cells, producing IL-2, distributed among their functional compartments. 
The middle panels depicts the mean fluorescence intensity (MFI) of the signal, correlating with the amount 
of IL-2 expressed per cell. The lower panel represents the percentage of inhibition induced by MSC-
conditioned medium on the distinct functional compartment of CD4+ and CD8+ T cell expressing IL-2. Results 
are representative of 2 independent experiments. Bars represent mean ± SEM. CM, central memory; EM, 
effector memory;  
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Figure 4. 13. Percentage of CD4+ and CD8+ T cells expressing Tumor necrosis factor-alpha (TNF-α) 
determined by flow cytometry. MNCs were stimulated with PMA and ionomycin (MNCs + PMA + ionomycin) 
in the absence or presence of MSC-conditioned medium derived from different substrates, as indicated. The 
upper panels show the percentage of CD4+ and CD8+ T cells, producing TNF-α, distributed among their 
functional compartments. The middle panels depicts the mean fluorescence intensity (MFI) of the signal, 
correlating with the amount of TNF-α expressed per cell. The lower panel represents the percentage of 
inhibition induced by MSC-conditioned medium on the distinct functional compartment of CD4+ and CD8+ T 
cell expressing TNF-α. Results are representative of 2 independent experiments. Bars represent mean ± SEM. 
CM, central memory; EM, effector memory;  
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4.7. Co-culture of peripheral blood MNCs and MSC in vitro with LPS plus IFN-γ 

To the best of our knowledge, no study to date investigated and compared the 

influence of MSC cultured on different substrates over the peripheral blood monocytes 

population.  In order to better understand if MSC cultured on distinct substrates regulated 

the immune function of monocytes, LPS+IFN-γ-stimulated MNCs were cultured in absence 

or presence of WJ-MSCs cultured on the distinct substrates (TCP, 1:10 and 1:40 PDMS). The 

control consisted of stimulated MNCs alone and stimulated MNCs + MSCs previously 

cultured on tissue culture plated (TCP). An 8-color mAb combinations was used (described 

in materials and methods 3.3.3 section) to analyse the percentage of TNF-α cells. The 

results obtained are preliminary, consisting of a limited number of independent 

experiments and for that reason, the interpretation of the results will also be based on the 

tendencies observed so far, with no possible statistical analysis. 

Figure 4. 14. Production of TNF-α by stimulated monocytes with LPS plus IFN-γ, under the following 
conditions: MSCs derived from different substrates co-cultured with MNCs and in vitro stimulation (A) 
Percentage of cells producing TNF-α for activated monocyte with LPS plus IFN-γ. (B) Amount of protein 
expressed per cell, measured as mean fluorescence intensity (MFI) for activated monocyte with LPS plus IFN-
γ. Results are representative of 3 independent experiments for TCP and 1:40 PDMS substrates and two 
independent experiments for 1:10 PDMS substrates. No significant differences were found performing 
Kruskal-Wallis one way ANOVA followed by Dunn’s Multiple Comparison test (compared with TCP). Bars 
represent mean ± SEM. 
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As shown in figure 4.14, the WJ-MSCs derived from TCP co-cultured with MNCs with 

in vitro stimulation with LPS + IFN-γ showed a very slight decrease in percentage of cells 

producing TNF-α (74.4 ± 10.2) comparing with the PDMS substrates - 1:10 PDMS (59.4 ± 

39.4) and 1:40 PDMS (58.1 ± 17.5).  

 Observing the figure 4.15 that corresponds to monocytes cultured and 

stimulated in presence of MSCs-conditioned medium, the CM obtained from TCP –derived 

MSCs showed less percentage of cells producing TNF-α (50.2 ± 47.1) compared with the 

1:10 PDMS and 1:40 PDMS, (77.7 ± 11.7) and (59.5 ± 25.7), respectively. Observing figure 

4.16, monocytes cultured and stimulated in presence of MSCs-conditioned medium appear 

to not have any differences in the producing of TNF-α. 

 

Figure 4. 15. Production of TNF-α by monocytes stimulated with LPS plus IFN-γ, under the following 
conditions: MSC-conditioned medium derived from different substrates co-cultured with MNCs and in vitro 
stimulation (A) Percentage of cells producing TNF-α for activated monocyte with LPS plus IFN-γ. (B) Amount 
of protein expressed per cell, measured as mean fluorescence intensity (MFI) for activated monocyte with 
LPS plus IFN-γ. Results are representative of 3 independent experiments for 1:40 PDMS MSC-conditioned 
medium and 2 independent experiments for TCP MSC-conditioned medium and 1:10 PDMS MSC-conditioned 
medium. Bars represent mean ± SEM. 
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Figure 4. 16. Production of TNF-α by monocytes stimulated with LPS plus IFN-γ co-culture with MSCs 
derived from different substrates and the respective MSCs-conditioned medium. Percentage of cells 
producing TNF-α. Results are representative of 3 independent experiments for TCP and 1:40 PDMS substrates 
and 2 independent experiments for 1:10 PDMS substrates and 3 independent experiments for 1:40 PDMS 
MSC-conditioned medium substrates and 2 independent experiments for TCP MSC-conditioned medium and 
1:10 PDMS MSC-conditioned medium. Bars represent mean ± SEM. CM, Conditioned medium.  
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5. Discussion    
 

Human Wharton’s Jelly  mesenchymal stem cells (hWJs-MSCs)  were isolated with 

100% efficiency and  the cells exhibited low generation time and proliferated readily up to 

at least 8 passages – P8 (Figure  4.2 A-D), reaching a total number of cells over  1x109   at 

P5. This number of passages could be further lowered to reach this number of cells, which 

is well above what is commonly considered to be therapeutic dose - of at least 2 x 106 

MSCs/kg of body weight for infusion - by increasing the amount of Wharton’s Jelly 

fragments, since only a small part of each umbilical cord sample was processed and used. 

In terms of clinical applications, it is not possible to use of MSCs without previous ex vivo 

expansion, in order to achieve the necessary therapeutic dose42,91. Notably, the generation 

time did not increase significantly when cells reach P8, corresponding about 22 cumulative 

population doublings (Figure 4.2- A and C), which indicate that the WJs-MSCs isolated did 

not reach senescence until this number of duplications,  in agreement with literature that  

revealed  that  WJ-MSCs could be kept in proliferative conditions in vitro until 

approximately 33 cumulative population doublings (33.7 ± 2.1)96 before entering 

replicative senescence. The cells demonstrated also to be able to form colonies with similar 

frequency with no statistically significant differences at passages 2 and 8 (Figure 4.3), which 

indicates that the cells were proliferative, maintaining stemness for at least 8 passages.  

The efficiency of CFU-F of these cells at P2 and P8 was 45 ± 6.96 and 28 ± 3.43 respectively, 

which is consistent with the efficiency described in the literature by Hou et al. for these 

cells, 35.2 ± 2.69.   

The immunophenotypic  characterization of WJ-MSCs , together with  proliferation 

kinetics, added to the fact that cells were adherent to plastic, displayed fibroblast-like 

morphology and presented CFU-F capacity , validated their genuine MSC identity. The 

immunophenotype  analysis showed that the cells were positive for CD13, CD73, CD90 and 

CD105 (Figure 4.4 A - D) and lacked of expression of CD34 and CD45 (Figures 4.4 E ,F) as 

expected10.     

MSCs secrete several soluble factors, such as cytokines, growth factors and 

extracellular matrix molecules that play and important role in the regulation of 
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haematopoiesis and in immune and inflammatory response. These soluble factors have 

been proposed as one of the key of MSCs’ therapeutic versatility94,97. The results obtained 

by multiplex cytokine analysis revealed a tendency in both conditions analyzed - WJ-MSCs 

alone and WJ-MSCs co-cultured with MNCs cells without any stimulation in vitro - showing 

that WJ-MSCs cultured on 1:40 PDMS substrates had higher secretion of cytokines than 

those maintained on tissue culture plates (TCP).  WJ-MSCs secretory profile demonstrated 

significant higher secretion for IL-2, IL-4 and IL-6 comparing with TCP (Fig.4.5 and 4.6). The 

secretion of IL-6 and IL-8 observed, corroborates with previous studies reporting  this 

feature53,94. IL-8 is associated with innate immune responses during which it induces 

chemotaxis and IL-6 is a multifunctional cytokine that plays a central role in host defense 

due to its wide range of immune and hematopoietic activities. IL-4 and IL-2 secretion by 

MSCs were significant higher in WJ-MSCs cultured on 1:40 PDMS comparing with TCP. To 

our best knowledge, this observation has not yet been described in the literature, which 

might be due to the sensitive analysis performed which allows detection of these cytokines. 

Furthermore, to confirm IL-4 secretion by WJ-MSCs an mRNA expression analysis could be 

done.  IL-4 has an important role in regulating antibody production, haematopoiesis and 

inflammation, and the development of effector T-cell response.  

 When WJ-MSCs cultured on different substrates were co-cultured with MNCs a 

tendency was observed, WJ-MSCs previously cultured from 1:40 PDMS substrates co-

cultured with MNCs showed a tendency for increased secretion of several cytokines, in 

particularly a significant increase for IL-4 and IL-8 (Fig.4.7 and 4.8) when compared with co-

cultures of MNCs with MSCs kept on TCP.  

Additionally, as shown in figure 4.9, by comparing the concentration of cytokines 

secreted (normalized to the total number of cells), between MNCs alone and MNCs in co-

culture with WJ-MSCs, there was notable increase of all cytokines under analysis, with the 

exception for TNF-α. Statistically significant differences were observed for the 

concentration of IL-2, IL-4, IL-10 and IFN-γ present in the co-culture medium when WJ-MSCs 

were previously cultured on 1:40 PDMS (but not TCP) when compared with MNCs alone 

(Figure 4.9). These results suggest that the cytokine context of MNCs alone or in co-culture 

with MSCs previously cultured on 1:40 PDMS substrates is significantly different. Although 
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these experiments did not allow to identify subpopulations of cells (MSCs or MNCs) 

responsible for these differences, we may speculate (based on existing literature) that the 

increase observed might be due to the presence of MNCs that could be enhancing the 

secretion of the cytokines analysed.   

MSCs have an immunomodulatory capability and low immunogenicity which make 

them attractive for the clinical applications, namely for immune system disorders 

candidates for MSCs cell therapy like of Graft versus host disease, autoimmune disorders, 

among others. These pathologies are heterogeneous in what concerns to the distribution 

of T cells among their functional compartments. MSCs are able to inhibit T and B cells and 

natural killer (NK) cells, induce of regulatory T cells and inhibition of antigen presenting 

cells. MSCs immunomodulation seems to be mediated by the secretion of soluble factors 

and direct contact, creating an immunosuppressive microenvironment.  

CD4+ and CD8+ T cells have different functional compartments naturally occurring in 

the peripheral blood of healthy individuals. The central memory preferentially mounts 

recall responses to antigens. Even though these cells lack immediate effector functions, 

they rapidly proliferate and differentiate into effector T cells. Effector memory cells 

provides immediate protection upon antigen challenge through the rapid production of 

effector cytokines. The functional compartments were identified within CD4+ and CD8+ T 

cells populations by flow cytometry, based on their differential expression of CD45RA and 

CD27 and the production of pro-inflammatory cytokines - IL-2 and TNF-α - was evaluated 

within each cell functional compartment.  

Our preliminary results showed that, in co-culture with MNCs (stimulated with PMA 

+ ionomycin), WJ-MSCs induce a generalized decrease of the percentage of CD4+ and CD8+ 

T cells expressing IL-2 and TNF-α (Figure 4.10). These observations are in agreement with 

previous studies reporting that MSCs have immunosuppressive abilities and induce a  

decrease of the percentage of T cells producing these cytokines  in vitro experiments and 

in vivo (at the mRNA level)35,98. Analysing within each T cell functional compartment, it 

seems that WJ-MSCs previously cultured on distinct substrates induce different levels of T 

cell inhibition. MSCs obtained from PDMS substrates and then co-cultured with MNCs 

revealed a higher tendency to downregulate the percentage of IL-2 expressing CD4+ and 
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CD8+ T cells in all functional compartments as compared with MSCs cultured on TCP, except 

for naïve functional compartment CD4+ T cells compared with TCP. This decrease is more 

pronounced among CD4+ T cells, where the effect was the same (Figure 4.10). This decrease 

was also more pronounced among CD4+ than CD8+ cells (Fig.4.10).  WJ-MSCs cultured on 

1:40 PDMS, showed a 97% percentage of inhibition in CM and EM memory CD4+ T cells.   

Concerning TNF-α expressing T cells, WJ-MSCs induced a decrease of the 

percentage of CD4+ and CD8+ T cells expressing this cytokine in all functional compartments 

of both cell types (figure 4.11). In contrast with what was observed for IL-2, MSCs obtained 

from TCP or PDMS substrates seem to produce a similar immunosuppressive effect in terms 

of TNF-α expression. These observations suggest that distinct mechanism may govern the 

modulation of IL-2 and TNF-α positive T cells by MSCs. Overall, our results suggest that 

MSCs pre-cultured on 1:10 or 1:40 PDMS present an increased immunosuppressive ability 

towards CD4+ and CD8+ T cells, which is a novel and important observation in the field. 

Further studies must be performed in order to validate these results and eventually assess 

the relevance of these observations using an in vivo model.  

Several in vitro studies have shown that the immunosuppressive effect of MSCs is 

sustained in  trans-well systems, suggesting that soluble factors are responsible for such 

inhibition, while others studies claimed that a direct cell contact  is required, which may be 

due to the use of different systems  by the individual research groups35,99. In our 

experimental setup, the preliminary results obtained from WJ-MSCs conditioned medium 

from different substrates co-cultured with MNC (stimulated with PMA + ionomycin) did not 

showed a decrease in the percentage of IL-2 produced by CD4+ and CD8+ T cells (Figure 

4.12). Concerning to TNF-α, a very slight decreased was observed in all the functional 

compartments (except for naïve compartment) of both CD4+ and CD8+ T cells in terms of 

percentage and amount of protein (MFI) per cells (Figure 4.13). These preliminary results 

could indicated that a cell-cell contact is important and needed for MSCs 

immunosuppression, since the conditioned medium seemed to induce only a partial 

suppression of T cells as observed by a decreased expression of TNF-α, but not IL-2. Further 

experiments need to be done to elucidate this aspect, namely by performing assays directly 

comparing the effect between MSC-conditioned medium – in which there was no 
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communication between MSCs and MNCs – and the trans-well system setup, in which 

soluble factors are allowed to pass and establish communication between the distinct cell 

types. In future studies will also be interesting to evaluate mRNA expression in MSCs and 

purified CD4+ and CD8+ T cells.  

The preliminary results obtained with WJ-MSCs cultured on distinct substrates and 

then co-cultured with MNCS in vitro stimulated with LPS + IFN-γ did not revealed 

differences concerning the producing of TNF-α when comparing between WJ-MSCs 

obtained from different substrates (Figure 4.14 and 4.16). The same was observed when 

using only conditioned medium obtained from MSCs cultured on the distinct substrates 

(Figures 4.15 and 4.16).   

Taking together, the results obtained in this study suggest that elements related to 

mechanotransduction – namely substrate stiffness and ECM-protein composition – seem 

to influence the profile of cytokines secreted by WJ-MSCs, as well as their 

immunomodulatory ability towards CD4+ and CD8+ T cells.  
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6. Conclusion 
 

 Our results reveals that secretory profile of WJ-MSCs cultured on distinct substrates 

-  which include differences at the level of stiffness and ECM-protein composition – is 

modulated by those biophysical and biochemical elements, leading to a differential 

expression profile of distinct cytokines. This might have important implications in what 

concerns the therapeutic efficacy and therapeutic targets of MSCs as an emerging cell 

therapy. Our preliminary results also indicate that WJ-MSCs cultured on distinct substrates 

seems to possess different inhibitory patterns towards T cells, among the several T cell 

functional compartments, which may impact the outcome of MSCs cellular therapy. 

Overall, our results suggest that the protocols used for MSC expansion may be tuned 

according to the desired therapeutic application, both at the level of the secretory profile 

and immunomodulatory approaches. Understanding the impact of micro-environmental 

cues on WJ-MSCs, such as substrate stiffness and ECM protein composition, is therefore 

important to maximise their therapeutic effects.  
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