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todas as cŕıticas construtivas e por toda a ajuda prestada que se revelou
fundamental na realização desta dissertação.

Ao Instituto de Telecomunicações de Aveiro pelo espaço e materiais disponi-
bilizados, sem os quais seria imposśıvel a realização deste trabalho.
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Resumo Ao longo dos últimos anos o número de utilizadores de redes sem fios tem
aumentado. Até ao momento, a tecnologia RF (Radio Frequência) do-
minado este segmento. No entanto, a saturação nessa região do espectro
eletromagnético exige tecnologias alternativas para redes sem fios

Recentemente, com o crecimento do mercado da iluminação LED (D́ıodo
Emissor de Luz), as Comunicações por Luz Viśıvel têm atráıdo as atenções
dos investigadores. Em primeiro lugar, é uma fonte de luz eficiente para
aplicações de iluminação. Em segundo lugar, o LED é um dispositivo que é
facilmente modulado e com grande largura de banda. Por último, permite
combinar iluminação e comunicação no mesmo dispositivo, ou seja, permite
a implementação de sistemas de comunicação sem fios altamente eficientes.

Um dos aspetos mais importantes num sistema de comunicação é a sua fia-
bilidade quando sujeitos a canais com rúıdo. Nestes cenários, a informação
recebida pode vir afetada de erros. Para garantir o correto funcionamento
do sistema, é muito comum o uso de um codificador de canal. A sua função
é codificar a informação a ser enviada para melhorar a performance do sis-
tema. O uso de Códigos de Correção de Erros é muito frequente permitindo
anexar informação redundante aos dados originais. No recetor, a informação
redundante é usada para recuperar posśıveis erros na transmissão.

Esta dissertação apresenta os passos da implementaç ão de um Codifi-
cador de Canal para VLC. Foram consideradas várias técnicas tais como
os códigos Reed-Solomon e os códigos Convolucionais, Interleaving (Bloco
e Convolucional), CRC e Puncturing. Foi efetuada uma análise das carac-
teŕısticas de cada técnica a fim de avaliar quais as mais apropriadas para
o cenário em questão. Numa primeira fase, vários modelos foram imple-
mentados em Simulink a fim de simular o comportamento dos mesmos em
diferentes cenários. Mais tarde os modelos foram implementados e simu-
lados em blocos de hardware. Para obter resultados de uma forma mais
rápida, foram elaborados modelos de co-simulação em hardware. No final,
diferentes técnicas foram combinadas para criar um Codificador de Canal
capaz de detetar e corrigir errors aleatórios e em rajada, graças ao uso
de códigos Reed-Solomon em conjunto com técnicas de Interleaving. Adi-
cionalmente, usando o algoritmo CRC, após o processo de descodificação,
o sistema proposto é capaz de identificar posśıveis erros que não puderam
ser corrigidos.





Abstract Over the past few years, the number of wireless networks users has been
increasing. Until now, Radio-Frequency (RF) used to be the dominant
technology. However, the electromagnetic spectrum in these region is being
saturated, demanding for alternative wireless technologies.

Recently, with the growing market of LED lighting, the Visible Light Com-
munications has been drawing attentions from the research community.
First, it is an efficient device for illumination. Second, because of its easy
modulation and high bandwidth. Finally, it can combine illumination and
communication in the same device, in other words, it allows to implement
highly efficient wireless communication systems.

One of the most important aspects in a communication system is its relia-
bility when working in noisy channels. In these scenarios, the received data
can be affected by errors. In order to proper system working, it is usually
employed a Channel Encoder in the system. Its function is to code the data
to be transmitted in order to increase system performance. It commonly
uses ECC, which appends redundant information to the original data. At
the receiver side, the redundant information is used to recover the erroneous
data.

This dissertation presents the implementation steps of a Channel Encoder
for VLC. It was consider several techniques such as Reed-Solomon and
Convolutional codes, Block and Convolutional Interleaving, CRC and Punc-
turing. A detailed analysis of each technique characteristics was made in
order to choose the most appropriate ones. Simulink models were created in
order to simulate how different codes behave in different scenarios. Later,
the models were implemented in a FPGA and simulations were performed.
Hardware co-simulations were also implemented to faster simulation results.
At the end, different techniques were combined to create a complete Chan-
nel Encoder capable of detect and correct random and burst errors, due to
the usage of a RS(255,213) code with a Block Interleaver. Furthermore,
after the decoding process, the proposed system can identify uncorrectable
errors in the decoded data due to the CRC-32 algorithm.
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Chapter 1

Introduction

Over the last years, mobile wireless communications have been taking a prime role in
modern society. The growing demand of high rate services such as high-speed Internet access
and high-definition television are rapidly saturating the available bandwidth of actual Radio
Frequency (RF) systems. Besides the crowded spectrum issue, RF systems have their usage
regulated, usually associated to expensive licenses, and presents low data rate capabilities
and high energy consumption.

Optical Wireless Communications (OWC) use optical radiation, either Visible Light or
Infra-Red (IR), to transmit data through the free-space channel and can benefit from the
unregulated spectrum, large available bandwidth, Electromagnetic Interference (EMI) immu-
nity and improved security. With such characteristics, OWC can be an alternative to existing
RF systems where free spectrum can be a problem or the use of them is prohibited.

Currently, the illumination market is gradually adopting LED technology. The develop-
ment of High Brightness white LED makes these devices ideal for lighting systems, assuring
energy efficiency, low environmental impact and high luminous output.

Visible Light Communications (VLC) are an emerging field of OWC that exploits the
lighting systems to communicate, particularly HB white LED based ones, since these Solid-
State Devices (SSD) can be easy modulated at high frequency. VLC systems are susceptible
to noise and interference from the free-space channel and design imperfections that degrade
system performance, inducing errors in transmission. There are several techniques to mitigate
such undesirable effects.

In this dissertation, several Forward Error Correction (FEC) techniques to increase VLC
Orthogonal Frequency Division Multiplexing (OFDM) based systems performance. The anal-
ysis includes Reed-Solomon codes, Convolutional codes, Interleaving and Puncturing, that
were studied, simulated and implemented in an asynchronous architecture. The tools used
to develop this work was a Xilinx Spartan®-6 FPGA SP605 Evaluation Kit, Xilinx System
Generator®, MatLab® and Simulink®.

1.1 Motivation

Real communication systems are susceptible to noise and interferences, either from the
systems’ imperfections or from the communication channel, which can corrupt the received
data. Designing a communication system in a proper way, identifying the noise sources and
overcoming some of the imperfections, can mitigate such undesirable effects. Nonetheless, in
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real implementations there will remain some noise in the system. In addiction, the commu-
nication channel is not ideal either. Several sources of noise are added to the transmitted
signal, which can be modelled depending on its nature. However, these mathematical models
can not predict the exact behaviour of the noise, giving only a statistical model instead.

The system performance can be estimated by knowing its parameters such as the mod-
ulation scheme and the channel conditions. One of the most relevant parameters is the
Signal-to-Noise Ratio (SNR). In 1948, Shannon establish the channel capacity for a given
channel of a certain bandwidth and a known SNR. In order to reach the channel capacity,
several methods must be used together, such as information encoding, modulation schemes
and channel equalisation. Forward Error Correction are a group of techniques to improve
system performance, approaching the capacity to Shannon limit.

Currently, VLC systems are in development, achieving recently 3.4 Gb/s using an RGB
LED [1] with a technique called Wavelength Division Multiplexing (WDM). Offering such
data rates, this technology can be used in many scenarios where RF is the standard and also
in situations where RF is prohibited, not recommended or it does not work properly, such as
in airplanes and mines.

VLC applications includes indoor and outdoor scenarios, each one having its characteris-
tics. On the one hand indoor scenarios suffers from non-LOS as well as multipath interferences.
On the other hand, ambient light and channel attenuation can reduce system performance in
outdoor scenarios. The main goal of this dissertation is to evaluate which FEC techniques
can effectively reduce bit error rate in an outdoor OFDM VLC system.

1.2 Context

The work developed in this dissertation is a part of a larger project called VLCLighting,
which is a collaborative research project being developed in Instituto de Telecomunicações de
Aveiro. VLCLighting aims to develop public lighting systems with integrated communication
capabilities using VLC, delivering a demonstrator transmitting video and data by the end of
2016. The project also proposes to develop a modular system to offer a real-time test bed to
evaluate the performance of different modules, algorithms and optical front-ends.

The proposed system is composed by four distinct modules: Data Link Layer, Channel
Encoder, Modulation and optical front-ends. Data Link Layer is responsible for framing and
fragmenting the input data, assuring continuous transmission; Channel Encoder, which is
studied in detail in this document, implements FEC techniques to provide data protection to
noise and interference; The modulation block employs QPSK and DCO-OFDM; The emitter
optical front-end is an Optical Digital-to-Analog Converter (ODAC) and the receiver uses a
photodiode and a transimpedance amplifier.

1.3 Methodology

The work developed in this dissertation is divided in 4 parts: theoretical analysis, Simulink
models, System Generator models, hardware co-simulation and Asynchronous Implementa-
tion.

The theoretical analysis aims to understand several FEC techniques characteristics which
allows to decide what are the best techniques for the present scenario.
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Using Matlab Simulink tool, a series of models will be created in order to verify how the
FEC schemes work and be able to simulate them in different scenarios. The results will be
compared to the expected values in order to validate the models.

The next phase is to transport the simulink models into the System Generator environ-
ment. The main goal is to replace Simulink blocks (encoder and decoder blocks) by Xilinx
System Generator blocks.

In order to obtain simulation results faster, some of the System Generator models will be
converted into hardware co-simulation models.

The final step is to merge several FEC techniques in an asynchronous architecture and
evaluate its performance.

1.4 Dissertation Structure

This dissertation is divided in 6 Chapters. The present chapter describes the motivation
and context of this work. The following chapters are enumerated bellow:

� Chapter 2 describes the actual context and achievements of the VLC. It also presents
an introduction to FEC schemes. At the end of this chapter is given an overview of the
used tools for this work.

� Chapter 3 goes into detail on the Channel Coding topic. Why it is important to consider
a channel encoder, what are the errors that can occur in the channel, how several
FEC schemes works and what are their main characteristics are some of the questions
answered in this chapter.

� In Chapter 4 are shown the implemented model in Simulink, as well as in System
Generator. This chapter ends with an analysis which studies the best FEC scheme to
be implemented in the final implementation.

� The Chapter 5 presents the details of the Asynchronous Channel Encoder implementa-
tion as well as its performance.

� Chapter 6 shows the final discussions of this work. At the end, some future work
guidelines are presented.

1.5 Contributions

This work contributed with a paper titled ”VLCLighting - A Collaborative Research
Project on Visible Light Communication”, published in the 10th Conference on Telecommu-
nications ConfTele 2015, realized in Aveiro, Portugal [2].
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Chapter 2

Visible Light Communications

The need of communication appeared in the early civilizations. The first telecommunica-
tions systems were mainly VLC and included fire, smoke or sunlight to send messages over
great distances. In the 19th century, telecommunications systems based on electrical sig-
nals such as telegraph and telephone, required a physical wire connection between terminals.
Wireless radio systems were developed in the beginnings of 20th century by Guglielmo Mar-
coni. RF systems such as Wifi, Bluetooth, mobile phones, among others, are widely spread
in modern society. The high demand for wireless services rapidly consumes the available
RF spectrum, requiring the development of alternative solutions. In the last few decades
researchers have been focused in development of OWC technology which can present a viable
solution to some of RF drawbacks.

Visible Light Communications are a field of OWC that uses the visible part of electro-
magnetic spectrum, between 400 and 800 THz, as seen in Figure 2.1, to transmit data. This
systems makes use of the existing lighting fixtures to provide both illumination and communi-
cation which improves power efficiency. Recently, in 2011, the IEEE VLC standard (802.15.7)
was approved, provided to the engineers a solid ground to development commercial VLC sys-
tems. Despite the relevance of this work, the transmission rates are significantly lower than
the VLC capabilities. By using different modulation schemes such as OFDM instead of OOK
could provide higher transmission rates and lower error probabilities.

Figure 2.1: Visible light in electromagnetic spectrum [3]
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This chapter begins to introduce a brief history of OWC and LED, followed by the most
important achievements in VLC, giving to the reader a perspective of its context. Then,
an overview of commonly used optical sources and detectors are presented, as well as the
modulation schemes for VLC, giving emphasis to OFDM and its variants. In the sequence
of the dissertation main topic, several FEC techniques are mentioned, along with their main
characteristics. The VLCLighting system architecture is presented in the last section of this
chapter, explaining the role of each component.

2.1 Optical Wireless Communications History

One of the first Free Space Optics (FSO) communication systems dates back to 800 BC
when ancient Greeks and Romans used fire beacons for signalling. In 405 BC, during the day,
sunlight was reflected by mirrors with an instrument denominated Heliograph. Later, in 280
BC, the Lighthouse of Alexandria was built and around 150 BC the American Indians were
using smoke for communication purposes. Another application of visible light for signalling
was using semaphores in sea navigation, in 1790 [4] [5].

The first VLC technological achievement was presented by Alexander Graham Bell, called
Photophone, in Figure 2.2, achieving distances up to 200m. His system makes use of sunlight
reflected by a mirror which vibrates according to a sound pressure wave. The reflected light
was then received by a selenium photocell, inside a parabolic mirror, connected to a sound
transducer [5] [6]. Due to the crudity of materials used and the inconstancy of sunlight, this
device was never adopted [4].

Figure 2.2: Photophone [7]

The OWC would not suffers great advances until the 1960s, when Light Amplification
by Stimulated Emission of Radiation (LASER) radiation and LASER diode were invented,
followed by the development of low-loss optical fibres, in the 1970s, the optical fibre amplifier
in the 1980s and the invention of in-fibre Bragg grating in the 1990’s. These inventions are on
the basis of actual Internet Infrastructure [6]. Also in the 1960s Light Emitting Diode (LED)
was invented. These two new light sources, LASER and LED, led to new experiences such as
TV signal transmission over 48 Km using GaAs LED by MIT Lincolns Laboratory, in 1962;
voice transmission through a He-Ne LASER over 190 Km, in May 1963, and the first TV-
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over-laser demonstration in March 1963. In 1970, Nippon Electric Company (NEC) built the
first full-duplex LASER link to commercial traffic, in Japan, over 14 Km [4]. The first indoor
OWC system was proposed in 1979, by Gfeller and Bapst, and uses diffuse near-IR radiation
to interconnect a cluster of terminals located in a room to a common cluster controller [6].

In 1997 Joseph Kahn and John Barry presented their work in Wireless Infrared Commu-
nications [8] which aims to exploit IR radiation for high-speed short-range wireless communi-
cations. It describes a detailed study of the IR channel characteristics, including path losses
and multipath effects as well as several noise sources. Besides, they presented emitter and
receiver designs that maximizes the SNR. The analysis included several modulation schemes
performance such as OOK, pulse-position modulation (PPM) and subcarrier modulation.
Furthermore, it presents techniques to include multiple users in the transmission. At the end,
an experimental system using OOK is described using a translucent plastic diffuser in front
of a LD, achieving a transmission rate of 50 Mb/s. The measured error probability of this
experimental system at a distance of 4.4m is 10−7.

Although the repeated successful experiences in OWC, these systems, at the time, were
not useful for many reasons: first, existing communication systems were satisfactory for that
time; second, the development required to much resources for a reliable system; third, the
atmosphere conditions limits the usage of OWC systems, for example in the presence of fog;
fourth, some systems require a complex tracking system, which does not exists at the time
[4].

Recently, with the proliferation of solid-state lightning devices such as LEDs, particularly
white LEDs, VLC comes as a solution to some disadvantages of RF communications [6].

2.2 LED History

With the evolution of wired and RF communications, and the lack of a stable light source
easy to modulate, VLC research seams a waste of time. However, in 1920, Oleg Vladimirovich
Losev, a young and extremely talented scientist working as a technician in several Soviet radio
laboratories, observed light emission on silicon carbide (SIC) crystal rectifier diodes used in
radio receivers, when a current passed through them. In 1907, H. J. Round had already
observed the same effect, but the two discoveries have no relation. Years later, in 1927,
he writes a paper entitled ”Luminous carborundum [silicon carbide] detector and detection
with crystals” in which he established the current threshold for the onset of light emission
from the point of contact between a metal wire and a SIC crystal and recorded the emitted
spectrum. In his 16 papers, he provided a comprehensive study of LEDs and outlined their
applications. In his work, he studied the cold (non-thermal) nature of emission, the current-
voltage characteristic, the thermal dependence and the frequency response. He also explained
how the emission process works, based in Einstein quantum theory. Losev was the only
one at his time to understand the potential of LEDs for telecommunications, writing, on 31
December 1929 [9]:

“The proposed invention uses the known phenomenon of luminescence of a car-
borundum detector and consists of the use of such a detector in an optical relay
for the purpose of fast telegraphic and telephone communication, transmission of
images and other applications when a light luminescence contact point is used as
the light source connected directly to a circuit of modulated current.”

7



Although his research and vision could change the OWC, he died young with his work
unfinished. Later, in the 1950s, Infrared and Green LEDs were patented as well as SIC
visible light LEDs [10]. It was only in 1962 that the first practical LED was produced, by
Nick Holonyak Jr., emitting red light, made of GaAsP crystals. The performance of these
first LEDs was very poor, about 0.1 lumens/Watt, compared to a typical incandescent bulb,
with a performance around 15 lumens/Watt. For that reason, LEDs were primarily used as
indicators, which requires a low amount of light.

The next step occurred in 1968 with the introduction of nitrogen in the GaP crystal (used
in green LEDs) and in the GaAsP (red LEDs), in 1971. With this innovation GaAsP:N LEDs
performance increases to 1 lumens/Watt and two new colours were now available: orange and
yellow. In the early 1980s, red LEDs, due to usage of AlGaAs, achieved 2 to 10 lumens/Watt,
which enabled LEDs to compete with incandescent lights, for instance, in automotive taillights
and outdoor moving-message panels. In 1990, C. P. Kuo and his co-workers developed a new
way to produce yellow LED, made of AlInGaP, which increased the performance, comparable
to the best AlGaAs red LEDs. By varying the alloy composition, it was possible to produce
high brightness radiation from red through green.

Although the advances in LED development, this devices were not yet suitable for lightning
because of the lack of white colour. At the beginning of the 1990s, although it was possible
to make efficient red and green LEDs, the blue colour was missing, making it impossible to
produce white light. These devices have been available since the 1970s, made of SIC crystals,
however, their performance was very low, about 0.1 lumens/Watt [11]. The first blue high
bright LED was presented in the beginnings of 1990s, by Shuji Nakamura, Isamu Akasaki
and Hiroshi Amano [12]. They used GaN which, at that time, was very difficult to produce
in large quantities, and worse, create a p-type layer in this material was virtually impossible.
The three researchers was convinced this is the best material for blue LEDs and choose it
instead of zinc selenide, the one everyone claimed to be the most promising.

Figure 2.3: White LED with a phosphor layer
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Figure 2.4: Haitz’ Law [13]

After the discovery of blue LEDs, it was just needed a small step to finally produce white
light. One way to do this is just add phosphor to a blue LED: once phosphor is excited
by blue wavelengths, it emits yellow radiation (located in red and green spectrum), as seen
in Figure 2.3. The other way is to group 3 LEDs: red, green and blue. Since white LEDs
were manufactured, the applications did not stop growing: LCD-screens backlit, flashlights,
camera flash and home and public lighting, among others [12].

An overview of evolution of LED is described by Haitz’ Law, shown in Figure 2.4, which
states that LED technology increases its luminous flux by 20 times per decade and decreases
its cost per lumen by a factor of 10 per decade. This law was proposed in 1999, and presented
in 2000, and has been updated over the years, being included, in 2010, white LEDs. Although
this is a predictive law, it has been used to study possible new markets and it is often compared
to Moore’s Law [14].

2.3 Motivation

Mobile communications are taking an important role in modern society, from private to
business and safety applications. Broadband wireless services such as HDTV, computer net-
work applications, mobile phones, video conferencing, high-speed Internet access, suffered a
fast growth over the past decades, leaving radio frequency spectrum fully occupied. This has
demanded alternatives to RF communications. On the other hand, although Radio Frequency
communications provide mobility in indoor and outdoor scenarios, over small and large cov-
erage areas, there are some disadvantages, such as bandwidth regulation, security issues, high
installation costs and low data rates [4].

Visible Light Communications comes as a solution to some of the RF disadvantages [4]
[5] [15]:

� License-free bandwidth, since it is visible light, the same we use to lighting our world;

9



� Almost unlimited bandwidth, every room can use all the available spectrum which is
much larger than RF spectrum;

� High data rates due to LED high modulation capability and high available bandwidth;

� Absence of electromagnetic interference;

� Hazard free, compared to RF communications, since light is part of our nature;

� Improved security, because light cannot penetrate walls;

� Lower power consumption, either for using the same light for both communication and
illuminating purposes, or the possibility to concentrate power transmission in Line of
Sight communications.

Despite these advantages, VLC has a few drawbacks which can be obstacles to implement
it in real scenarios [4] [5] [15]:

� Higher susceptibility to noise due to atmospheric conditions, like clouds, fog, rain and
snow;

� Interferences from background light, such as sunlight radiation and traditional luminar-
ies;

� Narrow coverage;

� VLC is in an initial development state.

2.4 Actual Context

In the past fifteen years, many efforts have been made to develop VLC systems with
progressively higher data rates and reliability hand-in-hand with increasing the number of
applications for this technology.

One of the first well known projects using VLC was the OMEGA (Home Gigabit Access)
project, which started in 2006. The main goal of OMEGA was set a global standard for ultra
broadband home area networks, achieving 1Gb/s combining different existing communication
systems, such as, Power-Line Communications (PLC), RF and VLC. The project idea was to
simplify network access, making them as easy to use as an electricity socket, ending with cov-
erage problems and also reducing the required wiring. Thus, users can easily set-up an home
network to access to high-bandwidth information and communication services. The project
successful demonstrated a VLC system broadcasting four HD videos simultaneously [16].

At the same time, Intelligent transportation systems (ITS) using VLC were proposed.
Several applications in this field can be exploited: improved safety, by integrating commu-
nication capabilities in LED traffic lights or between vehicles to warning the driver about
dangerous situations, or in some cases, the vehicle could take actions to prevent an accident;
location and route informations, provided either by the road infrastructure, to locate the
vehicle in a city, or by the vehicle, to send vehicle actual location to the network (useful for
instance, in bus traffic control and scheduling); electronic tolling, discarding the currently
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used RF modules. In 2007, VIDAS (VIsible light communications for advanced Driver Assis-
tance Systems) project started in Instituto de Telecomunicações and developed a functional
traffic light with VLC demonstrator.

One of the most important steps was taken in 2011 with the approval of VLC standard,
the IEEE 802.15.7.

Fraunhofer Heinrich Hertz Institute also developed a functional plug and play VLC prod-
uct based on HB white LED. Their system is bidirectional, adapting dynamically the rate
of the transmission. It uses Discrete Multitone (DMT) modulation to achieve 500Mb/s in
ideal scenarios. It guarantees data rates up to 120Mb/s over a distance of 100m and up to
100Mb/s in non-LOS over 3m [17].

In 2008, D-Light, later renamed as pureLiFi, started to develop a VLC for high-speed
data communication using commercial LED infrastructures, presenting their first product in
2011, achieving 5Mb/s for each link in a full duplex scheme, over a range of up to three
meters. The Li-1st uses white LEDs for the downlink, providing simultaneously illumination
and communication, and IR for the uplink. Recently, in March 2015, Li-Flame was presented,
increasing the data rate to 10Mb/s for downlink and 10Mb/s for uplink, offering full mobility
and multiple user support.[18]

In a successful attempt to provide a positioning system for indoor scenarios, since current
systems such as GPS (Global Positioning System) can not work in such conditions, Philips
Lighting presented in May 2015 an indoor positioning system using VLC and LED luminaries.
Consuming only 50% the previous lighting system, the costumers of an hypermarket can be
guided directly to discounts with less than one meter of precision, using their smartphone
camera as an optical receiver [19].

an hypermarket can now guide directly the costumers to discounts,
Recently, VLC was proposed to complement RF technology in 5G-PPP, due to some VLC

desirable characteristics for 5G, such as increased spectral efficiency, improved coverage and
energy efficiency. While RF serves outdoor scenario, VLC could be a viable solution to meet
the 5G requirements[20]. In a recent White Papper from NetWorld2020 group [21], three
scenarios were identified where VLC could be a complementary technology:

� Cellular OWC where optical access points offers localized high data rate transmissions
in heterogeneous networks. In this scenario, localization services were also considered;

� Optical hotspots in indoor scenarios where VLC-over-fibre could be implemented;

� Smartphone short-range communication could provide highly directional communica-
tion giving alternatives to the present technologies, achieving higher data rates.

2.5 Optical Sources

To achieve high-speed rates in VLC first we need a light source that can be modulated
fast. For instance, traditional incandescent lamps are not suitable to high-speed commu-
nications because its light flux depends on filament temperature, which varies slowly. The
most commonly used light sources are LEDs and LASER Diodes (LD). While LEDs are used
mostly in short range applications in indoor scenarios, mainly in hybrid Line-of-sight (LOS)
or non-LOS, LD, due to their highly directivity beam profile, ideal for LOS, are used in long
distance communication. Both LEDs and LDs rely on the electronic excitation of semicon-
ductor materials for their operation. These devices do not emit thermal radiation, unlike the

11



incandescent bulbs. Other properties of both, includes small size devices, low forward voltage
and drive current and excellent brightness in visible wavelengths and the option of emission
of a single or a range of wavelengths [4]. Although LEDs and LDs have some characteristics
in common, LDs requires a more complex driver with temperature stabilization, variations in
temperature leads to changes in spectral emission and the maximum emitted power allowed is
limited due to eye safety. However, LDs can be used in higher modulation rates than LEDs,
making them suitable for high-speed data communication [15].

The table 2.1 summarizes the differences between LEDs and LDs:

Characteristic LED LD

Optical spectral width (nm) 25 - 100 10−5 - 5
Directionality Broad Narrow
Modulation Bandwidth ∼kHz to ∼MHz ∼MHz to ∼GHz
Special circuitry required None Threshold and Temperature required
Eye safety Considered eye safe May need to be rendered eye safe
Reliability High Moderate
E/O conversion efficiency 10-20% 30-70%
Cost Low Moderate to high

Table 2.1: Comparison between LED an LD characteristics

The generation of light in these solid state devices is due to the transition of an electron
in high energy state to a lower energy state. The energy difference of the two levels is released
in a radiative or non-radiative process. In the first one, the energy is released in form of light,
while in the second the energy is converted to heat.

The interaction between an electron and a photon can occur in 3 different ways: photon
transmit its energy to an electron in the filled valence band, which is excited to the conduction
band; an electron in the filled conduction band can spontaneously return to the valence band
and release a photon, in a process called spontaneous radiative recombination, which occurs
in LEDs; a photon can be used to stimulate the radiative recombination process, releasing a
second photon with same phase as the first one, that is, the two photons are coherent (this is
the principle of LASER) [4].

The frequency of the emitted or absorbed photon, f ,is related with the difference of the
two energy bands, E1 and E2, given by equation 2.1 [4]:

E = E2 − E1 = hf =
hc

λ
(2.1)

where h is the Plank’s constant, c is the speed of light in vacuum and λ is the wavelength
of the photon.

The LED is a semiconductor p-n junction device which, in presence of electronic excitation
in the form of a forward bias voltage, gives off spontaneous optical radiation, in a process
called spontaneous radiative recombination. The energy given by electronic excitation transfer
electrons in the valence band (stable state) to the conduction band (unstable state) that
spontaneously return to the stable state, emitting energy in form of photons. The emitted
radiation can be Ulta-Violet (UV), visible or IR, depending on the band-gap of semiconductor
materials [4]. Generally, the usage of longer wavelengths, typically 1330nm and 1550nm, leads
to a cheaper optical detectors and GaAs laser diodes. A planar LED structure is represented
in Figure 2.5 [15].
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In LEDs the process is fairly efficient, so the heat produced in the device is much lower
than in incandescent bulbs. Non-radiative recombination occurs when instead of a photon,
the recombined electron gives off a phonon (heat) [4]. Since LEDs are p-n junctions, the
voltage-current curve is identical to a regular p-n diode, only beginning to conduct from a
certain voltage. The relationship between radiated optical power and the current through
the device is linear. It becomes non-linear for high current values, introducing distortion, as
shown in Figure 2.6.

One important LED characteristic to consider in VLC is its bandwidth, which depends on
the injected current, the junction capacitance and the parasitic capacitance. While frequency
response increases with forward current, capacitances values are near invariable [4].

Figure 2.5: Planar LED Structure [4]

Figure 2.6: LED output power saturation at high current values [4]

2.6 Optical Detectors

The conversion of light into electrical signals is an important aspect in VLC. First of
all, it is required a photodetector with high sensitivity and fidelity, high optical to electri-
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cal conversion efficiency, large detection area, low noise, short response times, low cost and
high reliability. Naturally, many of these characteristic cannot coexist, being necessary some
compromise in the choice of a photodetector. There are three main types of devices that
convert light into an electrical signal: pin photodiodes, Avalanche Photodiode (APD)s and
Single-Photon Avalanche Diode (SPAD).

Due the widespread commercial availability, pin photodiodes and APDs are usually the
choice for OWC. Despite pin photodiodes are the simplest ones, either in their structure
and employment, those devices have less sensitivity compared to the APDs, which can be
10-15dB higher. Although systems that uses APDs are more robust to losses, they need high
bias voltages, exhibit highly non-linear current gain and sensitivity to reverse bias voltage,
which could be more vulnerable for ambient light interference. Optical detectors, as well as
optical sources, have constraints in frequency, determined by the device capacitance and the
resistance presented by the receiver. In indoor OWC, due the fact of high amount of ambient
light, large area detectors are more effective to attenuate the interference. This however,
increases the capacitance, thus requiring a trade-off between detection area and capacitance
and also the implementation of methods to decrease capacitance [15].

2.7 Optical Filters

Optical filters are commonly used in the OWC receivers to minimize the interferences from
ambient background radiation, such as sunlight or indoor illumination. The main goal is to
create a band-pass filter, allowing, only the incident radiation that transports information, to
reach the photodiode [15]. In Visible Light Communication systems based in phosphorescent
white LEDs, which as an increased response time due to radiation emitted by the phosphor
layer, an optical blue filter is usually included to convert only the blue component of the LED
emission. With such technique, the bandwidth can be enhanced to 20-25MHz. However,
in this case, only about 50% of optical power is converted to an electrical signal which can
decrease the performance of the system if none additional processing is used, such as better
modulation techniques or the introduction of Error-Correcting Codes (ECC) [22].

2.8 Modulation Schemes

2.8.1 OOK

One of the most commonly used modulation in VLC is On-Off Keying (OOK) mainly
due to its simplicity. Each bit is represented by an optical pulse in a slot time corresponding
to a bit duration, wherein the LED is turned on if the transmitted bit is one and switched
off in the opposite case, for Non-Return-to-Zero (NRZ) scheme. The alternative is to use
return-to-zero (RZ) scheme, reducing in half the bit time. This modulation is widely used
in commercial applications such as Infrared Data Association (IrDA) and Fast IR Links op-
erating below 4Mbits/s [4]. It is evident that the brightness of the light emitted decreases
about 50% comparing to a light source without communication capabilities, if the data source
contains the same number of 0’s and 1’s. Since LEDs dimming is realized by Pulse-Width
Modulation (PWM), OOK is not a suitable modulation to combine lighting and commu-
nication features [23]. Other types of modulation such as VPPM (Variable Pulse Position
Modulation) combines pulse width (dimming) with its position (at the beginning or at the
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end of the time slot depending of the transmitted bit).

2.8.2 OFDM

The VLC Channel multipath characteristic decreases the high-speed systems performance
due to the interference caused by the multiple reflections in walls and furniture, etc, or by
sudden blockage. In RF communications this problem is also an issue, OFDM is a solution
to this problem [24]. This modulation technique is adopted in communication systems such
as Digital Audio Broadcast (DAB), Digital Video Broadcast (DVB), Wireless Local Area
Network (LAN) and Digital subscriber line (xDSL) [25]. OFDM is a multi-carrier scheme
modulation that splits up a high data rate signal into a set of low rate sub-streams in par-
allel. Thus, the total bandwidth is divided into several sub-carriers, each one carrying a low
rate data stream. In the receiver, having multiple sub-carriers simplifies the channel equaliza-
tion process [26]. Another feature implemented by OFDM is a time guard interval to prevent
multipath-induced Intersymbol Interference (ISI), which is a time gap between OFDM sym-
bols, allowing the majority of multipath reflections reaching the receiver without interfering
with a new symbol. This time guard is Cyclic Prefix (CP) which preserves the orthogonality
between sub-channels [26].

The main blocks of an OFDM modulator are a bit to symbol mapping operation, inverse
Fast Fourier Transform (FFT) operation and the CP insertion [27].

For applications where multiple users can access the medium, OFDM brings an issue
related with high values of Peak-to-Average Power Ratio (PAPR), due to the superposition
of emitted signals from different users. High PAPR values requires a large linear range of
amplification in the receiver to ensure communication without distortion, increasing the power
required and compromising the system efficiency [26].

Due to imaginary values at IFFT output, this type of modulation is not directly suitable
for VLC, since LEDs needs real and positive values to directly modulate the light intensity.
To overcome the problem with imaginary values, Hermitian symmetry is imposed on the
complex symbols that are feed into IFFT block, thus guaranteeing real values at output [4].
Although this technique is useful for VLC, it doubles the subcarriers required, the first half
with data and the second half with the conjugate values of the first half, in reverse order,
reducing the bandwidth efficiency to about 50% [28].

2.8.3 DCO-OFDM

To solve the issue caused by OFDM bipolar signal in VLC, a DC-bias is introduced in
real time-domain OFDM symbols, shifting the negative values to the positive scale. This
technique is known as DC-Optical-OFDM (DCO-OFDM). The disadvantage that comes
with this modulation is a higher power consumption due to the DC component, degrading
the system efficiency [29]. However, it can be easily employed in scenarios where illumination
is required since it presents a constant mean light output value. Furthermore, the DC value
is variable making dimming a possibility in this type of modulation.

2.8.4 U-OFDM

In VLC systems which requires higher levels of efficiency than the DCO-OFDM provides,
the OFDM symbols must be converted to an unipolar signal, avoiding the use of the DC shift.
One way to achieve this is to transmit two OFDM frames wherein the first one contains only
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the positive values of the original OFDM signal, leaving the negative values with zero value,
and in the second frame the remaining values, the negative ones, are sent with their absolute
value, with positive values as zero. This modulation is called Unipolar-OFDM (U-OFDM).
Since its needed two frames to transmit one OFDM frame, U-OFDM spectral efficiency is
about a half of the spectral efficiency of DCO-OFDM.

A simple way to demodulate the U-OFDM is to subtract the second frame (negative
samples) from the first one (positive samples) and then continuing the demodulation as an
usually OFDM symbol. The subtracting process doubles the Average White Gaussian Noise
(AWGN) variance, reducing the system performance by 3dB.

An alternative to demodulate U-OFDM requires the samples of the two frames to be paired
(one from the positive and one from the negative). The receiver must be able to detect, in
each pair, which one is the sample that carries valid information, discarding the other one.
Comparing a pair of samples, the one with higher amplitude is marked as active. Discarding
the inactive sample cancels AWGN associated with it, increasing the system performance [29].

2.8.5 ACO-OFDM

Parallel to U-OFDM, Asymmetrically Clipped Optical OFDM (ACO-OFDM) is a tech-
nique to avoid the addition of the DC component, suggested by DCO-OFDM. In ACO-OFDM
the data is carried only in the odd frequency OFDM subcarriers, while the even subcarriers
have zero value. After the IFFT operation, the real signal is clipped to zero, leaving only the
real positive values. Although the clipping process generates noise, this affects only the even
frequencies, which does not contains any information. ACO-OFDM, as well as U-OFDM, has
a spectral efficiency about a half of the spectral efficiency of DCO-OFDM [29].

2.9 Forward Error Correction

2.9.1 Reed-Solomon Codes

Reed-Solomon (RS) codes are a type of FEC technique and it is probably the most widely
used codes in real communication and storage systems. They work by dividing the data
stream into blocks of K data elements and then adding w redundant elements to each block.
Therefore the code word consists in N = K + w elements, forming a codeword specified
as RS(N,K) [30]. These codes are non-binary codes, that is, they are described in terms of
symbols, which are elements of finite fields or Galois fields GF. A GF is a finite set of elements
that has defined arithmetic operations which produce also elements of the field [25].

The basic idea of RS codes is to generate, at the emitter side, a codeword which contains,
in the first field, the K data symbols to be transmitted and in the second field the w parity
symbols (Figure 2.7), obtained by computing the remainder of the division of the information
polynomial by a generator polynomial [31].

Figure 2.7: RS(N,K) codeword structure

The correction capabilities of RS codes depends on its Hamming distance, related to the
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number of redundant elements. The Hamming distance of RS codes is specified by m+ 1 and
they can detect up to w symbols in error and correct up to t = w/2 symbols.

Due to its strong error correction capability and its simple implementation, RS codes are
used in storage systems (hard disks, CD, DVD and barcodes), wireless communications, DVB,
xDSL, deep space and satellite communications [30].

2.9.2 Convolutional codes

Figure 2.8: Convolutional encoder with shift-registers

As well as RS codes, Convolutional codes are a FEC technique, also widespread in telecom-
munication systems, such as 802.11 and satellite communications. These codes differ from
block codes because the sender only transmits the parity bits, calculated from input data bit.
The rate of these codes is 1/r, where r is the number of parity bits. These codes are suitable
for channels with a random error pattern.

The encoding method uses a sliding window, with a predefined length, able to preform a
modulo 2 addition of several subsets of bits. This process generates a parity bit from each
operation. The window shifts one input bit at the time (see Figure 2.8). The size of the
window is called the code’s constraint length. As the constraint length increases, one data
bit will influence more parity bits: if one parity bit are received with errors, the data can
be recovered by other parity bits also affected by the same information. However, longer
constraint lengths increases the decoding time.

In the receiver the parity bits must be decoded to recover the original information. One
method to do this is called maximum likelihood decoding, determining the nearest valid
codeword to the parity bits received. However, for N-bit transmission, there are 2N possible
codeword, making this algorithm inefficient for large sequences [32].

A more efficient way to decoding convolutional codes is using the Trellis structure. Trellis
diagram is based on states, evolving over time for each received parity bit. The path through
Trellis diagram should decode the received data. Viterbi algorithm makes use of Trellis
structures to decode the data in the presence of errors. The key insight in Viterbi decoders
is their ability to calculate the most likelihood path, based on calculated Hamming distances
for each branch [33].

2.9.3 Turbo Codes

Convolutional Turbo codes consisting of two or more recursive systematic convolutional
encoders separated by an interleaver. The resultant codeword is composed by the parity bits,
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followed by the data bit (see Figure 2.9). These codes, developed in 1993, were the first class
of ECC that can perform close to the Shannon limit [34]. An alternative to Convolutional
Turbo codes are Block Turbo Codes. Due to their Bit Error Rate (BER) performance with
no additional power requirement, Turbo codes applications includes satellite communications,
3G wireless cellphones, DVB and WMAN [35].

Figure 2.9: Turbo code encoder [36]

2.9.4 Concatenated codes

In communication systems it is commonly used a technique that combines a inner code
and a outer code. The usage of a non-binary code for the outer code an a binary for inner
code results in a close approach to the channel capacity limit. The popular example, shown
in Figure 2.10, is the Reed-Solomon Convolutional Concatenated (RSCC), in which the RS
and the convolutional code are outer and inner codes, respectively. In this scheme, the RS is
ideal to correct burst errors and the convolutional code corrects spread errors, giving to the
system the capacity to handle two different types of errors, improving its reliability [37].

Figure 2.10: RSCC block diagram

2.9.5 Interleaving

The communication channel can generate two main types of errors: random errors and
burst error. Convolutional codes are particularly efficient to random error channels. However,
this type of channel may sometimes exhibit a burst error characteristic and lead to errors that
can not be corrected in the receiver. One way to reduce the impact of burst error is to increase
the code capability at expense of high redundancy.
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The interleaving technique comes as a solution to this problem, mixing up all the code
symbols from different codewords, spreading the burst errors into multiple codewords. There-
fore, a simple random error correcting code is sufficient to correct one symbol per codeword.
It is evident that interleaving process transforms a burst error channel into a random error
one [38].

2.9.6 Puncturing

To increase the bitrate, puncturing techniques are used with convolutional codes to delete
some bits in the code bit sequence. In the decoder, the errors introduced by puncturing
method are corrected. The advantage of using this method is that it is easy to vary the
redundancy of the code depending of the channel quality, using the same decoder [39].

2.10 System architecture

2.10.1 Overview

A typical VLC system is shown in Figure 2.11. A digital data stream is inserted in
the system input and it is processed by the Medium Access Control (MAC), where the
data is grouped in frames. The MAC is then sent to the Physical Layer to be modulated
and transmitted to the Tx front-end: the LED Matrix. The optical receiver front-end is
composed by a photodiode and a transimpedance amplifier. The Physical Layer in the receiver
demodulates the signal provided by the receiver front-end and the data is sent to the MAC
layer to decode the MAC messages, recovering the original digital signal.

Figure 2.11: VLC system architecture overview

2.10.2 Data Link Layer

The MAC layer is an interface between the Physical layer and the higher layers of the
system, adapting the data to the physical system. This layer also handles the translation
of physical addresses into addresses used by the higher layer. The main blocks of the MAC
Layer are shown in Figure 2.12.
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Figure 2.12: MAC Layer description

The block MAC Data Service provides services which can accommodate data in order
to work with frames. A frame is a structure with the original data and other parameters,
important or optional, such as frame delimiters, source and destination addresses, type of
modulation in current frame, sequence number, length of the information, etc. This block is
also responsible for adding stuff bits in order to fill all the length of payload field, if the input
data is not long enough. In this block, a simple error checksum is inserted to verify, in the
receiver, if the frame contains valid information.

There are scenarios where it is useful to have a frame to send parameters of the system,
such as modulation type, encryption, bandwidth request and channel quality indicator, to the
receiver. This frames are generated in MAC Signalling block [40] which has also the function
of generate idle frames to maintain visibility when there is no data to transmit [41]. The
signalling frames have no error checksum field.

The Link Management block controls where the receivers are connected physically. For
instance, if two LED Matrixes (and the respective Physical Layer) are connected to the MAC
block, the last one must know in which LED Matrix is connected the destination device. On
the other hand, the Connection Management block translates the address from the upper
layer to a MAC address.

If the channel is shared by multiple emitters, there must be a way to prevent two or
more transmitters from sending information at the same time, originating collisions and signal
degradation. The responsible function for avoiding collisions is the Provisioning Management,
which controls the access of the physical layer to the medium.

The collision avoidance can be implemented in the optical domain, by controlling the wave-
length of each emitter, also known as Wavelength-Division Multiple Access (WDMA), and
Space-Division Multiple Access (SDMA), in which each emitter operates in a restricted space.
In the electrical domain there are 3 main techniques to prevent collisions: Time-Division
Multiple Access (TDMA), Frequency-Division Multiple Access (FDMA) and Code-Division
Multiple Access (CDMA). TDMA reserves a slot time while FDMA reserves frequency bands,
for each emitter. Due to the simple implementation, TDMA is a viable solution for unidi-

20



rectional systems which require a high bit rate, using all the available bandwidth during the
time slot.

2.10.3 Emitter Physical Layer

The Physical Layer is responsible for the modulation of the data from the MAC Layer
and to implement FEC codes. In Figure 2.13 it is shown the Physical Layer implemented
with ACO-OFDM modulation.

Figure 2.13: VLC ACO-OFDM Emitter Physical Layer

The first step after the MAC Layer process is to implement FEC techniques. This is
made in the Channel Encoder implementing an ECC, followed by an interleaver, which is
advantageous if the ECC used is a concatenated code. After the FEC calculations, the data
bits are translated to symbols in the Modulator, which can be either QAM or QPSK.

The next process is to modulate the data symbols into OFDM. The Framing block makes
the distribution of the data subcarriers, pilot subcarriers (for synchronization and channel
estimation) and the null subcarriers. After that, Hermitian Symmetry is imposed to generate
a real value at the IFFT output. In ACO-OFDM, the even subcarriers are set to zero, as
explained before. After the IFFT operation, a CP is inserted and the signal is clipped to zero.

An alternative scheme is using DCO-OFDM modulation. The differences to the previous
scheme is that all the subcarriers are used and not only the odd ones, and at the end, instead
of clipping the signal, a DC-Bias value is added to preserve the negative values at the IFFT
output, as observed in Figure 2.14.

Figure 2.14: VLC DCO-OFDM Emitter Physical Layer
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The output to the ODAC is a binary output with N bits: the bit p switches on 2p LEDs,
where p = {0, 1, ..., N −1}. It is clear that the LED Matrix is composed by 2N1 LEDs, giving
2N levels of light intensity. Sometime it is used a technique to make the matrix symmetrical
which consists in duplicating the LEDs for each bit, thus doubling the number of LEDs
required. Thus, the output light intensity between each level doubles, reducing the SNR.

2.10.4 VLC Channel

Due to the noise induced by the VLC channel it is worth to take some time in its study. The
power losses in the channel are due to optical path loss and multipath dispersion. Depending if
the system is LOS or non-LOS, these two channel components will have different impact in the
transmission. In LOS systems, the reflections represents a minor element in the transmission
power losses, on the other hand non-LOS, in indoor communications for instance, the received
optical power is highly affected by a multipath dispersion component. The main tools to study
the behaviour of the received optical power are several propagation models to predict the path
loss.

Considering null reflections, in the LOS indoor scenario, only the path loss is taken into
account and its value depends on directivity of source beam, band-pass filter and non-imaging
concentrator gain, but also the alignment of the emitter and the receiver and the distance
between both. The path loss is inversely proportional to the square of the distance. For
a non-LOS scenario the path loss is more complex to predict since it depends on multiple
factors such as room dimensions, the reflectivity of the ceiling, walls and objects within the
room, the position and orientation of the transmitter and receiver, window size and place and
other physical matters within a room. Several models, mathematical and practical, are used
to simulate some or all these factors. One of these models was carried out by Kahn and his
team, who measure a maximum channel bandwidth of 300MHz. These tests were made for
both scenarios (LOS and non-LOS) using different receiver locations in five different rooms
and the results include impulse responses, path losses and RMS delay spreads.

One of the problems in VLC is the ambient light interference, created by the sunlight,
incandescent lamps and fluorescent lamps. The sunlight radiation is typically the strongest
source of noise, with a very wide spectral width and a maximum peak at ∼ 500nm. When
compared to the artificial light, sunlight can produce 1000 times more background current in
the photodiode. This current acts like a DC current, that gives rise to shot noise independently
of the signal. It is modelled as white noise. The artificial ambient light sources are modulated
by the mains or, in some incandescent lamps, high frequency switching signal.

The radiation emitted by the incandescent lamps has an almost perfect 100Hz sinusoidal
shape and has the maximum Power Spectral Density (PSD) at 1µm, having the energy
concentrated in the first few harmonics (up to 400Hz), thus, the high frequency component
generates almost no noise. An effective way to mitigate noise from incandescent lamps is to
use an high-pass filter. On the other hand, fluorescent lamps generates a distorted sinusoidal
wave which can have frequencies up to 20KHz and can be filtered with a 4KHz high-pass
filter without a significant system performance degradation. However, fluorescent lamps with
electronic ballasts radiation, which works at 20-40KHz, generates noise from mains frequency
and up to the megahertz range.

In outdoor VLC, the transmission channel behaves in a completely different way. In the
one hand, the noise contribution factors are from a different nature than in indoor scenarios.
On the other hand, those factors have a random component associated. There are a number
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of statistical models to describe the outdoor channel characteristics.
The optical attenuation is modelled similarly to the indoor case, but the attenuation

is higher due to the atmospheric conditions, such as fog, rain, clouds, and so forth. The
attenuation can occur due to absorption and scattering. Absorption is wavelength selective
and occurs when a photon is absorbed by a molecule and its energy is released in heat
form. This problem can be mitigated using transmission windows that are not affected by
absorption effect. Scattering is a result of the angular redistribution of the photon, with
or without wavelength modification. This phenomenon depends on the particles size in the
atmosphere (fog, clouds, rain) and also on the wavelength of the photon, λ. It can be classified
as: 1) Rayleigh scattering, if the particles are much smaller than λ; 2) Mie scattering, if the
particles are the same order of λ; 3) explained by diffraction theory (geometric optics) if the
particles are bigger than λ.

2.10.5 Receiver Physical Layer

The Physical Layer of the ACO-OFDM and DCO-OFDM receiver is shown in Figure 2.15
and Figure 2.16, respectively.

Analysing the emitter and receiver diagrams it is easy to observe that the operations in
the receiver are complementary to the operations in the emitter. The received signal from
optical front-end is converted to digital using an Analog-to-Digital Converter (ADC), properly
filtered to avoid aliasing and ambient light interference.

The ACO-OFDM demodulation includes CP remover, FFT operation, ACO-OFDM de-
mapping to extract only the non-null subcarriers, Hermitian Symmetry rejection to remove the
higher subcarriers added in the emitter, Deframing to recover the data and pilot subcarriers
and an equalization process. The equalization is made in the subcarriers based on the channel
estimation calculated with the pilot subcarriers. The DCO-OFDM process is identical but
does not have the Demapping block.

Figure 2.15: VLC ACO-OFDM Receiver Physical Layer

After the OFDM demodulation, the symbols goes through a Demodulator and then are
processed in the FEC blocks: Deinterleaving and Channel Decoder. In this blocks the errors
occurred during the transmission are detected and the ECC tries to correct the errors. The
signal are then sent to the MAC Layer to recover the information from the MAC messages.
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Figure 2.16: VLC DCO-OFDM Receiver Physical Layer

2.11 Tools and Devices for System Implementation

2.11.1 Spartan-6 FPGA SP605 Evaluation Kit

The models created in the previous section enables to simulate, with relatively small
modifications, several configurations of different FEC techniques. This study provides useful
information to decide which is the best solution to implement in the VLC system. However,
these are only simulation models and can not be integrated in a real system. In order to
implement FEC in the proposed system, the processing capabilities must be able to operate
at dozens or even hundreds of MHz. In order to develop a real-time system having such
characteristics the FEC techniques shall be implemented in hardware.

Figure 2.17: FPGA architecture [42]

A Field-Programmable Gate Array (FPGA) is a semiconductor device that can be pro-
grammed to a desired application after manufacturing. The principle of these devices are
based on a matrix of Configurable Logic Blocks (CLBs) which can be interconnected. The
CLBs common structure consists in lookup tables, flip-flops and multiplexers and can be con-
figured to implement combinatorial logic, sift registers or memory. Modern FPGAs provide
hard block that implement complex functionalities such as multipliers, RAMs, processors,
among others. These blocks have in general configurable parameters which can be useful in
many applications, providing high performance, simple integration, low power consumption
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and the silicon area required. In order to acquire/retrieve data from input/output sources,
FPGAs usually have IO Blocks which can be routed into the interconnect matrix. Other fea-
tures such as RAM (Random Access Memory) and Clock Management are also implemented
in the majority of actual devices.

The usage of FPGAs offers several advantages in the implementation process: Due to their
architecture, these devices are highly configurable, providing design flexibility that gives to the
developers the ability to add or remove features to the system; Comparing FPGAs to ASIC
(Application Specific Integrated Circuits), the first ones offers faster and simpler prototyping,
since it is only necessary to program the device in order to change system parameters while
avoiding the required high-costs in ASIC development; On the other hand, comparing these
devices to Micro-Controllers, FPGAs offers high speed signal processing and more complex
systems can be implemented in a single chip.

Nonetheless, FPGAs development is not an optimized solution. Compared to ASIC, these
devices require a larger silicon area and they have higher costs in large scale production. In
addition, the FPGA architecture requires higher power consumption in contrast to ASIC and
Micro-Controllers implementations.

Another disadvantage of FPGA system design is that the learning curve is higher due to
the associated complexity since it requires hardware implementation in opposite to Micro-
Controllers. The hardware design commonly uses HDL (Hardware Description Language) to
describe the desired hardware architecture. In complex systems, the usage of HDL can be
a challenging task. However, the FPGA companies usually have tools that can be used by
developers in order to simplify the hardware design process.

Figure 2.18: Spartan-6 FPGA SP605 Evaluation Kit

With such characteristics, the usage of an FPGA to implement the previous studied
FEC techniques is the appropriate choice, providing both processing capabilities and design
flexibility. This dissertation makes use of the Spartan-6 FPGA SP605 Evaluation Kit which
is a development board featured with a Spartan-6 XC6SLX45T-FGG484 FPGA, shown in
Figure 2.18. The SP605 provides many features such as DDR3 memory, PCI Express interface,
DVI, tri-mode Ethernet PHY, general purpose I/O and a UART, providing also the possibility
to add others external functionalities using the industry-standard FMC (FPGA Mezzanine
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Card) connector. In the VLCLighting project, the FMC connector was used to connect the
output of the modulation to the ODAC.

The tools provided by Xilinx includes design tools (Xilinx ISE design suite and Xilinx
System Generator) and debug tools (Xilinx ChipScope Pro). Xilinx ISE design suite is a
group of software tools such as Xilinx ISE Project Navigator, Xilinx Plan Ahead (XPS) and
Xilinx Doftware Development Kit (SDK). The first one enables the developers to design a
schematic of the desired logic circuit, using simple blocks such as adders, flip-flops, counters,
among others. The XPS is used to create embedded processed-based systems, specifying the
parameters of each component (processor and peripherals) as well as the interconnections
between them. The SDK is used to create the software to a previous created hardware
embedded processed-based system. The Xilinx System Generator tool makes use of Simulink
environment to build hardware models and converting them to the FPGA HDL. The debug
tool Xilinx ChipScope Pro inserts logic analyzer, system analyzer, and virtual I/O low-profile
software cores directly into the design, providing the developers to analyse the internal signals
in the FPGA.

2.11.2 Xilinx System Generator

The Xilinx System Generator integrates MatLab Simulink model design with Xilinx
FPGAs. It offers to developers the possibility to design the system in Simulink environment
using the blocks provided by Xilinx. At the end, the entire model can be synthesized without
the user concern about the details of CLBs configurations, interconnections and clocking.
Building a system model in System Generator also enables the possibility of its simulation in
Simulink environment giving the developers the opportunity to analyse the system behaviour.
Another interesting feature supported by this tool is called hardware co-simulation that com-
bines the simulation environment from System Generator and the FPGA hardware resources
to achieve faster speed in simulation process. Furthermore, a ChipScope Pro block can be
inserted in the model. This tool is a logic analyser an can be used in the model debug. The
input data of this block is obtained using the ChipScope Pro Analyser software provided by
Xilinx.

2.11.3 Asynchronous Architecture

One of the most important VLCLighting characteristic is its Asynchronous architecture,
which is shown in Figure 2.19.

Figure 2.19: Asynchronous architecture - Emitter
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The idea behind this implementation is to interconnect different blocks without the need
of clock synchronization between functional blocks. Each block has a processing unit (Proc.)
and an output buffer (FIFO). Besides, a buffer control block (Buffer Ctrl) analyse the fill
state of the buffer and a process control block (Proc. Ctrl) starts or stops the processing
unit, based on the buffers state. These control blocks are Finite State Machines (FSM).

The main block of asynchronous architecture is described in more detail in Figure 2.20.

Figure 2.20: Asynchronous architecture emitter main block

The processing unit runs its operation until one of the two events occur: the FIFO in the
current block is full or the FIFO of previous block is almost empty (AE). Each block sends its
buffer status to the following block. In the Figure 2.21 is shown the structure of asynchronous
architecture for the receiver side which is identical to the emitter.

Figure 2.21: Asynchronous architecture - Receiver

As opposed to the emitter, each block has a buffer at the input The details of the receiver
asynchronous block is shown in Figure 2.22.
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Figure 2.22: Asynchronous architecture receiver main block

Note that the receiver main block receives new data until the buffer is full and stops the
processing if there are no more data in the FIFO or if the following block has its buffer is
almost full (AF).

Using this architecture the blocks can be individual designed and tested since it is not
restricted to the clock of the system. Furthermore, it is easy to add or remove blocks to
a design without concerning the time constraints. Due to the design of each block does
not take into account the clock speed, each block can be reused in systems with different
speeds. However, this architecture has an extra complexity in each block, since it adds to the
processing unit a buffer and two FSM. The extra components increases the hardware resource
usage, particularly the FIFOs. Besides, the system presents an initial delay while the FIFOs
are being fill.

2.12 Concluding Remarks

Through this chapter several VLC aspects, since the history to the actual technologies
and recent achievements, were discussed. An overview of the FEC techniques and the system
architecture was also described. It is clear that VLC research for high-speed communications
is taking its first steps and there are many work to develop in this field.
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Chapter 3

Channel Coding

The main goal of a well-designed communication system is to deliver the information from
the emitter to the receiver without any difference from the original. Due to many reasons
such as imperfections on modulation or detection algorithms, channel noise and interference,
signal attenuation or bad signal coverage, the received data is affected by errors, leading the
engineers to find solutions to improve systems performance.

In order to reduce transmission errors, several system parameters must be chosen carefully:
signal bandwidth must meet the channel available bandwidth, modulation scheme should
be selected according to the transmission medium and channel characteristics, noise must
be filtered in the receiver, channel equalization, carrier and symbol synchronization, among
others. Even after these improvements, there are some errors remaining in the transmission.

It is evident that, to have a solid communication system, some other methods must be
used. Automatic Repeat Request (ARQ) is one of the techniques commonly used to control
errors. This method works by sending acknowledgements for each correctly received data
packet, resending it in case of the acknowledgement is not received or a timeout occurs
without a required acknowledgement. In this way, if any error occur in the transmission,
the data can be recovered in the retransmitted packet. However, ARQ needs a bidirectional
transmission which is not the case of VLCLighting architecture.

An alternative method that can be useful in unidirectional communication systems adds
redundant data to the transmission. Thus, in the receiver, this additional information is used
to detect and correct some of the errors. These techniques are usually known as FEC and
their performance depends on the used method and the error pattern.

3.1 VLC Channel Noise Sources

Considering that all the components of a VLC system were optimized (modulation, equal-
ization, symbol and carrier synchronization, etc), most of the noise present in the received
data is induced by the transmission channel. Thus, it is very important to study the noise
sources in order to better understand what types of errors could be present and hence choose
the proper FEC technique(s) to be used in the system.

As explained previously in section 2.10.4, many noise sources affects the system perfor-
mance. For public lighting VLC applications the distances between emitter and receiver can
vary from 1m to 10m and both LOS and non-LOS scenarios must be taken into account.

In the LOS scenario, the received light power varies according to the arrangement of the
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emitter and the receiver. As this system uses LEDs which intensity radiation is modelled by
a Lambertian distribution, shown in equation 3.1.

R0(Φ) =

{
m1+1
2π cosm1(Φ) for Φ ∈ [−π/2, π/2]

0 for Φ ≥ π/2
(3.1)

where m1 is the Lamberts mode number expressing directivity of the source beam, related
to the LED semiangle at half-power Φ1/2 by

m1 =
−ln 2

ln(cos Φ1/2)
(3.2)

The total loss is given by the equation 3.3.

Hlos(0) =

{
Arm1+1
2πd2

cosm1(Φ)Ts(ψ)g(ψ)cosψ for 0 ≤ ψ ≤ Ψc

0 elsewhere
(3.3)

where Ar is the active area of the receiver, ψ is the incident angle in the receiver, Ts(ψ) is
the transmission of the optical band-pass filter, g(ψ) is the gain of the non-imaging concen-
trator, d is the distance between emitter and receiver and Φ is the transmitting angle. Ψ is
the Field of View (FOV) of the detector. Figure 3.1 resumes the LOS propagation model.

Figure 3.1: LOS propagation model

The received optical power Pr, in LOS is obtained by applying the gain in 3.3 to the
transmitted power Pt.

Pr = Hlos(0)Pt (3.4)

Some scenarios, such LOS blockage, requires a non-LOS scheme. In such conditions, the
receiver must rely on reflections in the surrounding environment to receive the signal. The
path loss is considerably higher than in the previous case due to a greater distance from the
emitter and also due to the light absorption by the reflecting surfaces. Note that the received
signal is composed by multiple reflections with similar Power Spectral Density and different
delays which can cause ISI, decreasing system performance. Despite in LOS propagation
these reflections have lower magnitude when compared to the direct signal, there will be also
some (less) negative impact in the system performance.
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Figure 3.2: Normalized power/unit wavelength for optical wireless spectrum and ambient
light sources [4]

Table 3.1: International Visibility range and Attenuation coefficient in the Visible Waveband
for Various Weather conditions

Usually, in VLC outdoor systems most of the noise comes from ambient light, predomi-
nantly from the sun, as shown in Figure 3.2, but also from other light sources such as vehicles
headlights, existing public lighting systems or moonlight. The average combined power of
the ambient light induces a DC background current that giving rise to shot noise which is
independent of the signal and can be modelled as an AWGN.
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In addition to ambient light, the channel atmospheric attenuation also causes signal degra-
dation. Most common factors to atmospheric attenuation are fog, rain, clouds and snow.
Table 3.1 presents some visibility ranges and attenuation coefficients for several atmospheric
conditions.

For distances up to 10 meters, only the dense, thick and moderate fog scenarios can
cause a significant signal attenuation, around 3.15dB, 0.75dB and 0.29dB, respectively. The
remaining conditions attenuates the received optical power in less than 5%. However, it must
be noted that the number of errors in the transmission increases, even for lower attenuation
scenarios.

3.2 Error patterns

With simplicity in mind, the blocks from Modulator on, in section 2.10.3, were considered
as a Binary Symmetric Channel (BSC). This channel transmits binary symbols and the errors
that occurs in the channel have the same probability independently of the transmitted symbol
(Symmetric).

Therefore, errors induced by previously mentioned noise sources can be classified in two
groups: random errors and burst errors.

Random Errors can occur unpredictably in the channel, with a probability of error Pe.
The common source of random errors is AWGN. A model commonly used to simulate the
generation of random errors is the well known Bernoulli Distribution (equation 3.5).

f(k; p) = pk(1− p)(1−k) for k ∈ {0, 1} (3.5)

On the other hand, Burst Errors are characterized by a sequence of errors with a certain
length. There are several models that can describe this process. One of the commonly used
is called Gilbert-Elliott Model. The model considers two channel states: a good state (G),
with an error probability of 1 − k and a bad state (B) having an error probability of 1 − h.
Furthermore, the channel changes its state from good to bad with a probability of p and in
the opposite way with a probability of r. A visual representation of this model is seen in
Figure 3.3 [43].

Figure 3.3: Gilbert-Elliott Model with two states
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The stationary state probabilities πG and πB exist for 0 < p, r < 1.

πG =
r

p+ r
, πB =

p

p+ r
(3.6)

Given (3.6), the error probability resulting from this model is

Pe = (1− k)πG + (1− h)πB (3.7)

3.3 Bit Error Rate analysis

This section will present the BER estimation for communication systems using QPSK
modulation over an AWGN channel.

For this scheme, the errors at the output of the QPSK Demodulator should present a ran-
dom pattern. A closer look to VLCLighting architecture should be made in order to explain
this approach. The effect of OFDM modulation can be understood as a group of multiple
QPSK symbols since each subcarrier modulates one symbol. In addition, each subcarrier
should present the same SNR due to the usage of channel estimation and equalisation. More-
over, consecutive symbols are mapped in different subcarriers affected by different types of
noise. The output of the Demodulator should present a BER that follows closely the curve
of the AWGN channel model. The Interleaving block is a reinforcement of this approach,
changing the remaining burst errors to random errors.

The SNR is a relation between the signal power, PS , and noise power, PN , usually ex-
pressed in decibels [44].

SNR(dB) = 10log10

(
PS
PN

)
(3.8)

In digital communications is commonly used a relation between the energy per bit, Eb,
and the noise power spectral density, N0 [44]:

Eb
N0

=
W

R
× PS
PN

=
PS
ρPN

(3.9)

where W is the channel bandwidth, R is bit rate and ρ is the spectral efficiency. The error
probability of QPSK modulation through an AWGN channel is given by:

Pe = Q

(√
2
Eb
N0

)
(3.10)

Note that the error probability depends exclusively on Eb/N0. The function Q in expres-
sion 3.10 can be calculated using the formula 3.11

Q(x) =
1

2
erfc

(
x√
2

)
=

1

2
x

2√
π

∫ ∞
x

e−t
2
dt (3.11)
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3.4 Reed-Solomon Codes

Widely used in current communication and storage systems such as hard disks, CD, DVD,
barcodes, DVB, xDSL and deep space and satellite communications [30], Reed-Solomon Codes
are one of the many techniques to control undesirable transmission errors.

The first description of these codes was in June 1960, in a paper titled ”Polynomial Codes
over Certain Finite Fields” by Reed and Solomon. Later, it was proved that Reed-Solomon
codes and BCH codes are related and, in fact, they are non-binary BCH codes.

The RS codes are constructed over Galois Field (finite field). These fields have a finite
number of elements. Besides, the operations between the elements always result in an element
of the field.

Figure 3.4: RS(N,K) codeword structure

A RS(N,K) code have length N and dimension K over a GF(q), where q = pm, p = 2.
This code has minimum distance d = N−K+1 and N=q-1. In other words, is a code that has
N symbols, being K symbols formed by the data to be encoded. Each symbol is formed by
m = log2(N + 1) bits. Is easy to observe that, for the actual majority of communication and
storage systems, the RS(255,K) is the common choice, since each symbol has 8bits, making
these set of codes ideal to be integrated in systems where information is transmitted in Bytes.

Figure 3.5: Reed-Solomon encoder hardware implementation

The codeword is composed by two distinct parts, shown in Figure 3.4: the first one is
simply the data to be encoded, divided in K symbols. The second one has the redundant
N −K symbols to be used later in the decoding process, known as check symbols or parity
symbols.

The RS encoder works by dividing the information (in polynomial form) to be encoded
by the generator polynomial. The result of this operation is directly the check symbols.
Figure 3.5 represents a hardware implementation of a RS encoder, using the polynomial
division algorithm. The multiplier coefficients gn are the coefficients of the RS generator
polynomial.
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The decoding process, shown in Figure 3.6, is more complex. At the receiver, the syn-
dromes for each codeword are calculated to determine the number of errors. The error loca-
tions and error values are computed and using this information an error pattern is obtained
and subtracted to the received codeword, resulting in the most probable original sent code-
word.

Figure 3.6: Reed-Solomon decoder diagram block [45]

To use RS codes in practical applications some of their parameters must be taken into
account. In fact, the only variables are N and K, which determines the behaviour of the
code.

Given a RS(N,K) code, the code rate, R, is the proportion between the data symbols and
the total symbols in a codeword, which also represents the coding efficiency.

R =
K

N
(3.12)

RS codes are known for their good distance proprieties, satisfy the singleton bound (3.13)
with equality.

K +Dmin ≤ N + 1 (3.13)

The guaranteed correction capability is expressed in (3.14), where Dmin = N −K + 1 is
the minimum distance of the code.

t =
1

2
(Dmin − 1) =

1

2
(N −K) (3.14)

3.4.1 BER Analytical Estimation for Reed-Solomon Codes

In order to study the performance in terms of the decoded codeword error probability, it
will be used a symmetric memoryless channel, shown in Figure 3.7, which is a generalization
of the BSC previously mentioned. In this channel model, the output symbol is not affected
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by the input symbol or by the previous symbols. Taking this into account, the RS codeword
error probability is upper bounded by:

Pe ≤
N∑

i=t+1

(
N

i

)
P iM (1− P iM )N−i (3.15)

where 1−PM represents the probability of a symbol transmission without any errors. The
corresponding symbol error probability is

Pes =
1

N

N∑
i=t+1

i

(
N

i

)
P iM (1− P iM )N−i (3.16)

Figure 3.7: M-ary input, M-ary output, symmetric memoryless channel [46]

From equation 3.16, bit error probability is

Peb =
2K−1

2K − 1
Pes (3.17)

Considering a low channel error probability, an approximation in the bit error probability
should be made, resulting in Peb ≈ Pes, since it is unlikely to have more than one bit error
per symbol.

The following result assumes a system using QPSK and an AWGN channel. For a partic-
ular RS(N,K) code, PM is given by:

PM = 1−
(

1−Q
(√

2R
Eb
N0

))m
(3.18)

3.5 Convolutional Codes

Convolutional codes are different from block codes since they do not have a strict code-
word. The encoding method uses a linear finite-state shift register with length K. The input
data, in bits, is shifted in the shift register k bits at a time. The encoded information is a
sequence if n bits, which are the result of n modulo 2 additions. The parameter K is called
the constraint length and it has impact on the code performance. As in the block codes, the
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code rate is given by R = K/n and it represents how many bits the code outputs for each
input bit. The Figure 3.8 shows a generic convolutional encoder.

Figure 3.8: Convolutional Encoder [47]

There are different approaches to describe a convolutional code. One method is to establish
the function generators for each output bit. For instance, lets consider a convolutional code
with a constraint length K = 3 and R = 1/2, which mean it has 2 outputs, as seen in
Figure 3.9. Each output is described by a function generator vector.

Figure 3.9: Convolutional Encoder K=3, n=2, k=1

For this particular code, the generator vectors are:

g1 = [111] (3.19)

g2 = [101] (3.20)

For convenience, generators are usually represented in octal notation, which gives g1 = 78
and g2 = 58.

Alternative approaches are the Trellis diagram and the state machine.
The state diagram describes how the output changes, considering the actual state and the

new input bit, as shown in Figure 3.10. The construction of this diagram starts from the zero
state (all outputs have zero value) and develop the transitions between each state.
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Figure 3.10: State machine of a convolutional code K=3, n=2, k=1 [48]

The analysis of a state machine can be difficult since it could go through the same state
several times, loosing the information about previous visited states. A more detailed view for
state diagrams is the Trellis diagram. This diagrams expands state machines in time giving
the possibility to view how the states transitions evolves in time.

Figure 3.11: Trellis diagram of a convolutional code K=3, n=2, k=1 [48]

The commonly used decoding scheme uses a Viterbi decoder which computes the minimum
Hamming distance between the received codeword and all the possible codewords to find the
most probable one. The method used is called trace-back decoding which stores all the
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previous states and transitions. Branch metrics are used in order to determine which are the
most probable path, thus retrieving the most probable sequence of transmitted information.
Hamming distance is commonly used to compute the most likely transitions in each branch
of the Trellis structure.

Unlike block codes, convolutional codes does not have a fixed codeword length since it
may change depending on the input data. The Viterbi decoder sets the end of a codeword
when, starting from the zero state, the decoder enters in that state again. Furthermore, if the
zero state is not reached in a predefined number of transitions, the decoder starts to analyse
the received information. The number of maximum transitions is called the decoding depth.

The minimum distance free, dfree is given by:

dfree ≤ min l≥1
⌊

2l−1

2l − 1
(K + l − 1)n

⌋
(3.21)

where bxc denotes the largest integer contained in x. Table 3.2 shows the maximum free
distance for several constraint lengths, indicating, for each case, the generators to achieve
this.

Constraint Length
K

Generators in Octal dfree
Upper bound on

dfree

3 5 7 5 5
4 15 17 6 6
5 23 35 7 8
6 53 75 8 8
7 133 171 10 10
8 247 371 10 11
9 561 753 12 12

10 1167 1545 12 13
11 2335 3661 14 14
12 4335 5723 15 15
13 10533 17661 16 16

Table 3.2: Rate 1/2 maximum free distance code

3.5.1 BER Analytical Estimation for Convolutional Codes

The performance of convolutional codes for a BSC is approximated by:

Pb ≈ bdfree
(
2
√
p(1− p)

)dfree (3.22)

where p is the probability of a transition in the channel, dfree is the free distance of the
code and bdfree is the number of nonzero information bits associated with codewords of weight
dfree.

A more practical approach to study the performance of convolutional codes is to estimate
the coding gain over AWGN channels. This measure represents the difference between the
Eb/N0 of the uncoded and the coded system at a particular error probability. The coding
gain for a particular code depends on the code rate and on the free distance of the code. For
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a soft-decision decoder, the upper bound on the coding gain over an uncoded binary QPSK
system is:

CG ≤ 10log10(R dfree) (3.23)

Eb/No
uncoded

Rc = 1/3 Rc = 1/2

Pb (dB) K=7 K=8 K=5 K=6 K=7

10−3 6.8 4.2 4.4 3.3 3.5 3.8
10−5 9.6 5.7 5.9 4.3 4.6 5.1
10−7 11.3 6.2 6.5 4.9 5.3 5.5

Table 3.3: Coding gain for soft-decision Viterbi decoder

In the Table 3.3, are shown coding gain values for several codes with different code rates
and constraint lengths. Note that these values are for soft-decision decoder. The hard-decision
decoder coding gains are reduced by approximately 2dB. The difference between hard and soft
decision relies on the comparison method used to identify the most probable symbol, giving
an received symbol. In the first case the received symbol is compared to all possible symbols
and the most probable symbol is the one which has lower Hamming distance. The second
method uses Euclidean distance to compare the received symbol with all possible symbols.

3.6 CRC

Even with the usage of ECC some errors may remain in the decoded data. Thus, after the
decoding process, it is essential to evaluate the integrity of information. One way to do this
is by introducing a single parity check bit, which is the modulo 2 addition of all transmitted
bits. In this method, the parity bit is computed at the emitter side and in the receiver, the
transmitted parity bit is compared to a new one, computed with the received information.
It is evident that the parity bit technique can only detect errors, because it is impossible to
know where the error is in order to correct it. Is also important to note that this technique
can only detect an odd number of errors.

Figure 3.12: CRC-N codeword

A more sophisticated method is called Cyclic Redundancy Check (CRC) and it is based on
systematic cyclic codes which are well-known for their burst detection capability. This method
is equivalent to the parity bit technique, however, instead of a simple modulo 2 addition of all
transmitted bits, the information in divided by a polynomial and the reminder is appended
to the transmitted data, as shown in Figure 3.12. This operation is made according the
finite field rules. Equation 3.24 shows the polynomial division operation where M(x) is the
message to be sent, G(x) is the generator polynomial with N terms and R(x) is the remainder
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polynomial.

R(x) = M(x)xN modG(x) (3.24)

At the receiver the same operation is made, with the same polynomial, and the reminder
must be equal to the CRC sent. Other method divides both information and CRC field and
the result of the remainder must be zero, if no errors occurred in the transmission.

A CRC that has N bits, also known as CRC-N, is generated by a polynomial that has
N + 1 terms. The maximum bits that can be encoded by a CRC-N is (2N−1 − 1)−N . This
code can detect all burst error of length N or less and furthermore, it detects all burst errors
of lengths above N + 1 with a probability of 1− 2−N . The worst detection capability occurs
in the scenario of a burst error of length N + 1 where the probability of detection is given by:

Pdetection = 1− 21−N (3.25)

3.7 Interleaving

The majority of ECC improves the communication system performance for random errors.
However, some channels present burst errors as in the case of multipath scenario. The RS
and Convolutional codes, in particular the Convolutional codes with lower constraint lengths,
are designed for random error scenarios. However, they can correct some burst errors. An
upper bound for burst correction for both codes is given by:

b ≤ 1

2
(N −K) (3.26)

However, in general, burst errors are beyond these codes correction capability. To mitigate
the effect of burst errors in communication systems, it is commonly used a technique that
transforms burst errors into random errors. This method is called Interleaving and is widely
used together with codes that presents high performance in random errors.

Figure 3.13: Interleaving example

The principle behind Interleaving is simple. At the emitter, the interleaver changes the
order of the transmitted symbols, in a known pattern. When a burst error is added to the
transmission, the sequence of affected symbols are different from the original sequence. At the
receiver, the received symbols are deinterleaved, restoring the original sequence of information.
In this step, the burst error was spread along the received data while the symbols are in the
correct order. Figure 3.13 helps to visualise the Interleaving process and how it may reduce
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burst errors. Lets assume that the codewords A, B and C are block codes formed by 4 symbols
and the corection capability of these codes are 1 symbol. Even after a burst error affecting
3 symbols, all codewords can be recovered at the receiver. There are two main Interleaving
techniques: block interleaving and convolutional interleaving.

The block interleaver is commonly used for interleaving block codes and it is a matrix with
N columns and m rows. The number of columns is chosen to match the number of symbols
in a block code. Therefore, each row stores a complete codeword and the matrix is capable
of storing m codewords. While the codewords are read into the matrix row-wise, the output
information is read column-wise, as shown in Figure 3.14.

Figure 3.14: Block interleaver matrix [47]

The output result is identical to Figure 3.13, assuming N = 4 and m = 3. A burst error
of length b causes a maximum of b/m errors to occur in one or more codewords. Considering
a block code that can correct up to t symbols, using a block interleaver the total correction
capability is improved to mt symbols.

It is important to note that block interleavers adds a delay comparatively to a system
without interleavers. The latency is related to the matrix dimensions and its value is 2(m×
N)ts, which is the time to read out the matrix at the emitter side and to read in at the
receiver side, where ts is the duration of one symbol.

The Convolutional Interleaver uses B−1 shift registers with different fixed delays as shown
in Figure 3.15.

Figure 3.15: Convolutional interleaver and deinterleaver [49]
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An example of the Convolutional Interleaver output with 3 stages is represented in Fig-
ure 3.16.

Figure 3.16: Convolutional interleaving output

Since the maximum delay block has latency (B − 1)ts and each input symbol must wait
B branches to leave the shift register, the total latency introduced by this method is given
by B(B − 1)ts. This scheme is commonly used with Convolutional codes.

3.8 Puncturing

Puncturing is a technique commonly used in communication systems to increase the trans-
mission rate. The main idea behind puncturing is to remove some information after the en-
coder process. At the receiver side, the decoder knows the positions of missing data and fill
them with zeros. If the missing data is below the system error correction capability, assuming
that the channel does not inserts errors above this limit, the ECC can correct all the errors
introduced by puncturing.

This technique allows the usage of a fixed ECC which makes the implementation process
easier. However the amount of punctured information must be controlled in order to accom-
modate possible errors in the channel. In other words, if too many information is removed
and the channel presents high error probability, the decoder may not be able to recover all
the data. In order to employ this technique without compromising the system performance,
an adequate level of puncturing should be applied based on the channel error probability
status. In bi-directional systems, the receiver can inform the emitter about channel status.
However, in a broadcast system, the emitter can not retrieve the channel status. Thus, using
puncturing could lead to a system performance degradation and will not be considered in the
Channel Encoder implementation for VLCLighting system.

3.9 Concluding Remarks

In this chapter were described the analytical tools to predict different FEC techniques
behaviour. While convolutional codes have capability to correct random errors, RS codes can
correct small burst errors of size N−K. The CRC seams an interesting feature to integrate in
a system in order to provide data validation. Interleaving should avoid large burst errors by
turning burst errors into random errors. Puncturing will not be considered in models design
since the emitter has no capability of predict channel status.
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Chapter 4

System Design Considerations

In the previous chapter were established the characteristics of different types of errors
(random and busrt) as well as RS and Convolutional codes, CRC and Interleaving schemes.
In order to proper understanding how FEC techniques behave in different scenarios several
models will be discussed in this chapter.

To first study the various techniques without concerning the hardware implementation
details, was used the Matlab Simulink tool to create simple models whose results will be
compared to the theoretical expected values. Later, the models will be implemented in a
Xilinx System Generator environment and both simulations and hardware co-simulations will
be performed.

At the end of the chapter, the results will be compared to decide which FEC techniques
combination should be considered for the Channel Encoder.

4.1 Simulink Models

Before going into detail on ECC models, first it shall be created a model that can describe
a BSC. This model, represented in Figure 4.1, contains 3 main blocks: Data Generator, Error
Generator and an Additive Noise Channel.

Figure 4.1: BSC simulink model

At the output of the Data Generator block, bits are generated, one at a time, based on a
Bernoulli distribution with equal probability of zeros and ones. The block Error Generator
produces errors (ones) with a probability of Pb. The Additive Noise Channel is realized by

45



an logical XOR operation of data bits and errors, resulting in a transition of the data bit
when there is an error in the channel. The fourth block, Error Rate Calculation, compares
the transmitted and received data and computes an error rate, which must be approximately
Pb. The data and error generator blocks have a fixed sample time D1.

In Figure 4.2 it is shown the results for the BSC model. The simulated probability of
error values are from 10−6 to 10−2, with logarithmic steps, and for each value, 107 bits were
simulated. As the reader can observe, the simulated probability of error curve approaches the
expected values.

Figure 4.2: BSC Simulink model simluation results

Figure 4.3: Gilbert-Elliott simulink model, for burst error simulation
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The Gilbert-Elliott Simulink model used for burst error, previously characterized in Sec-
tion 3.2, is shown in Figure 4.3. The blocks Data Generator, Additive Noise Channel and
Error Rate Calculation remain the same from the BSC model, however the Error Generator
was replaced by a state machine, as the model suggests. The model has two channel states
with different error probabilities: the probability of error produced by Bad Channel and Good
Channel blocks are 1 − h and 1 − k, respectively. The S-R Flip-Flop switches the channel
state by driving the ”Switch” block according to the state transitions probabilities r and p.

The results for this model simulation with 107 bits are shown in Figure 4.4.

Figure 4.4: Gilbert-Elliott Simulink model simluation results

The parameter h of Gilbert-Elliott model is equal to zero, in order to provide a continuous
burst error. Since r represents the probability of a transition from bad state to good state,
the mean value of the burst length is given by 1/r. The probability of error in the good state,
1−k, was considered to be the desired error probability divided by the length of burst errors.
The last parameter, p, is computed taking into account equations 3.6 and 3.7, resulting in:

p =
r(1− k − Pe)

Pe − 1
(4.1)

The simulation result follows the expected error probability. Besides the output error
probability, it is also interesting to analyse the types of burst errors generated by the Gilbert-
Elliott model. The script used to make the statistical analysis of burst errors can be seen in
Appendix D and it is a state machine that analyses the sequence of bits generated by the
Gilbert-Elliott model. It only considers the burst errors and it computes each burst error
length in a vector.
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The result of this estimation for an input error probability of 10−3 is listed below:

� Number of burst errors: 83

� Average burst length: 113 bits

� Maximum burst length: 875 bits

� Minimum burst length: 2 bits

As expected, the average burst error length is approximately 100 bits and can be any size
around this value.

Once the channel models were established we shall now proceed to the ECC models. In
Figure 4.5 is represented the RS(255,213) simulink model in presence of random errors. This
model is based on the BSC simulink model where it was added a RS encoder and a RS
decoder. For model analysis a Channel Error Rate block was included in order to verify if the
simulated channel error rate matches the desired value.

Figure 4.5: Reed-Solomon simulink model in presence of random errors

Several modifications in the data and generator blocks were made in order to synchronize
the system and provide a frame-based simulation, which is required by RS encoder and decoder
blocks and it also improves simulation performance. The sample time in the Data Generator
remains the same but the output is now a frame of K ×m bits, where K is the number of
data symbols in the Reed-Solomon code and m is the number of bits of each symbol. Thus,
a frame will be generated every ts(K ×m), where ts is the sample time.

It is very important to note that, at the output of the RS encoder the number of bits is
higher that in the input. In fact, the output frame will have N ×m bits, for the same period
of time. Therefore, the bit generation sample time in the Error Generator must be decreased
by a factor of R, the code rate. In addition, the output frame size must match to the output
of the RS encoder which is N ×m. These configurations grants one complete error frame for
each data frame.

In the Reed-Solomon encoder and decoder blocks the code parameters must be declared:

� Codeword Length N = N (variable to be defined in MatLab script)

� Message Length K = K (variable to be defined in MatLab script)

� Specify primitive polynomial = unchecked

48



� Specify generator polynomial = rsgenpoly(N,K)

� non-Punctured code

A value for the primitive polynomial was not chosen and the default block value is defined.
This enables the model to be reused for several codes without the need of change the param-
eters. However, it must be verified if the default value is correct. Lets assume a RS(255,K).
The default polynomial is obtained from the MatLab command primpoly(ceil(log2(255+1))),
which results in the polynomial D8 + D4 + D3 + D2 + 1 or in decimal notation, 28510. Ac-
cording to [46], 1000111012 = 28510 is a binary primitive polynomial of degree 8, which is the
same as the default of MatLab.

The MatLab function rsgenpoly(N,K) returns the narrow-sense generator polynomial of
a RS(N,K) which coefficients are roots of the default primitive polynomial. Punctured codes
will not be used in the simulations. Note that, at the output of the decoder, the frame length
takes the original value.

In the Figure 4.6 are shown the results for RS codes, in particular the RS(255,K), for a
BSC. The values of K that were simulated are [165, 181, 197, 213, 229, 245].

Figure 4.6: RS(255,K) with random errors Simulink model simluation results

As the code correction capability (N −K)/2 increases, the BER at the output decreases.
For each code, there are a certain lower Eb/N0 region that it is not viable to use it.

It is crucial to validate this results by comparing them with the expected BER. In Fig-
ure 4.7 is shown the result for the RS(255,213) along with the estimated value from both
MatLab bercoding and the analytical estimation from equations 3.17 and 3.18. This last
estimation is computed in the MatLab script shown in Appendix B.
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Figure 4.7: RS(255,213) with random errors Simulink model simluation results

According to the results, the Simulink Reed-Solomon model BER value is close to the
expected value. Note that, for higher Eb/N0 values, the simulated BER deviates from the
theoretical value. This is due to the approximation which establishes that Peb ≈ Pes.

Taking into account the random RS model, as well as the burst error generation described
in 4.3, a burst error model for RS codes was also created. The combination of both models
results in a new model represented in Figure 4.8.

Figure 4.8: Reed-Solomon simulink model in presence of burst errors

In this model, the generation, coding and decoding of the information are equal to the
previous one. However, to ensure that each codeword is only affected by one burst error,
for simulation purposes, some blocks were added into the random errors generation. First of
all, a channel transition to a bad state (burst errors) can only occur one time per codeword
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(the sample time of this block is ts × R ×m ×N). The Upsample and Detect Rise Positive
guarantee a sample rate equals to the bit rate of the codeword. In order to prevent the burst
errors to always start at the beginning of the codeword, a Variable Integer Delay block along
with a Random Integer Generator controlling the delay was introduced. In this way, the step
created by the Detect Rise Positive is delayed to a random bit in the codeword, between zero
and (N ×m)− Burstlength. At any time, the burst error can be stopped with a probability
r. The following blocks shall be familiar to the reader, according to the model of burst errors
generation. The Buffer block at the output of the error generator groups N×m bits to match
the length of the codeword. An additional block To Workspace stores all the error bits for
later statistic analysis.

In the Figure 4.9 are the results for RS codes in presence of burst errors. This simulation
considers an average burst size of m× (N −K)/2 = 168 bits.

Figure 4.9: RS(255,213) with burst errors Simulink model simluation results

The statistical analysis of the burst errors for 7dB of Eb/N0 is listed below:

� Number of burst errors: 1295

� Average burst length: 172 bits

� Maximum burst length: 1088 bits

� Minimum burst length: 2 bits

As expected, the RS can not correct all errors since there are burst errors in the channel
which the length is above the code correction capability. Furthermore, the coding gain is the
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same independently of the channel error probability. An improvement to previous model is
represented in Figure 4.10.

This model introduces Block Interleavers to make the system more robust in presence of
burst errors, as explained in Section 3.7. The choice of using a Block Interleaver instead of
a Convolutional Interleaver was due to the correction characteristics of RS codes. Thus, in a
scenario that a burst error occurs in the channel, after the Deinterleaving process there will
be no real random error pattern. Instead, the burst error will appear distributed by all the
interleaved codewords, in smaller burst errors. Since RS corrects t symbols (groups of m bits)
independently of their location (randomly or sequentially distributed), burst errors affecting
t × m bits will not be a problem in the RS codeword correction process. Furthermore, if
a pure random error pattern was obtained after the Deinterleaver, RS codes could perform
worse than in the small burst error scenario.

Figure 4.10: Reed-Solomon with Block Interleaving simulink model in presence of burst errors

For instance, lets consider a RS(255,213) code, which can correct up to 21 symbols, cor-
respondent to 168 bits. If a random error of 100 bits occurs, in the worst scenario it could
corrupt up to 100 different symbols (one bit for each symbol), exceeding the code correction
capability. However, if it is a burst error, in the worst case only 14 symbols affected by errors
which is perfectly correctable by a RS(255,213) code. Therefore, a Block Interleaver performs
better together with RS codes when compared to a Convolutional Interleaver, which could
lead to a more random error pattern and degrade system performance.

Since the block Matrix Interleaver requires that the input signal have the total data to
fill the matrix, a Buffer was inserted after the RS Encoder. In this particular scheme, the
Interleaver has 10 rows, which can store 10 RS(255,K) codewords. The buffer size at the
error generator output was also updated to match the number of bits inserted in the channel.
At the receiver side, after the Matrix Deinterleaver block, a buffer was used to change the
frame size in order to match the required length for the RS Decoder. One last modification
was made in the Receive Delay parameter in the Error Rate Calculation block. The used
interleaver and deinterleaver blocks does not introduce latency, as well as the buffer in the
receiver (since it just groups N ∗m bits from a larger frame). Thus, the delay is given only by
the buffer in the emitter. Therefore, the total latency is the number of data bits per codeword
multiplied by the number of codewords stored in the buffer. The results of this model can be
seen in Figure 4.11.

This results considers a block interleaver with 10 rows, that means it mixes the information
of 10 different codewords. The graph shows a significant performance improvement when
compared to the burst errors model without an interleaver. Above 5.5dB the model did not

52



found errors. This is due to the simulation precision.

Figure 4.11: RS(255,213) + Block Interleaving with burst errors Simulink model simluation
results

The study of Convolutional codes implies also an implementation of Simulink models.
The Convolutional system model for random errors is shown in Figure 4.12.

Figure 4.12: Convolutional codes simulink model for random errors

Once again, the random error model in was used and a Convolutional Encoder and a
Viterbi Decoder were introduced in the data path to provide error correction. The figure
describes a system using a Convolutional code with constraint length K = 7 and a code rate
R = 1/2 which means that for each input bit, two parity bits are generated at output. The
code uses two generator polynomials:

g1 = 1718 = (1111001)2 (4.2)
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g1 = 1338 = (1011011)2 (4.3)

The equivalent encoder schematic for this code is shown in Figure 4.13, where each block
Z−1 is a shift register and the the sum blocks are in fact modulo 2 adders. The input signal
is x(t) and the outputs of the modulo 2 adders are y1(t) and y2(t).

Figure 4.13: Convolution Encoder for K=7, R=1/2 and Generators 1718 and 1338

Figure 4.14: Convolutional codes with random errors Simulink model simluation results

The configuration of Convolutional Encoder requires a ”Trellis Structured” which is ob-
tained by the MatLab function poly2trellis(7, [171 133]). The operation mode was configured
to Continuous mode which means that the encoder do not force its internal state to the
initial state. At the Viterbi Decoder the code was configured as in the encoder as well as the
operation mode. Since the input symbols have only two levels (0 or 1), the decision type was
set to Hard Decision. The Traceback Depth was set to 41 according to Forney’s results [46],
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which shows that values above 5.8K presents negligible error probability due to codeword
truncation in the decoder. The Error Rate Calculation receive delay is configured to be the
same as the Traceback Depth, since this parameter decides how many branches the decoder
has to store before it starts to decode the received data. The Error Generator was configured
to generate bits R times faster than the Data Generator and the output is a frame with size
1/R.

In Figure 4.14 is shown the results for Convolutional codes with K = 7 for both R = 1/2
and R = 1/3 in the presence of random errors. At 10−5 of error probability, the coding gain
for the Convolutional code with R = 1/2 is 3.1dB, which is the expected value according to
the Table 3.3 (5.1dB-2dB). The performance of convolutional codes for lower values of SNR
is worse than the performance of RS codes for the same scenario.

A burst error model for Convolutional codes is obtained by replacing the Error Generator
in the previous model by a burst error generator, resulting in the model shown in Figure 4.15.

Figure 4.15: Convolutional codes simulink model in presence of burst errors

The results for Convolutional codes for burst errors are represented in the Figure 4.16. It
can be seen that the performance in presence of burst errors is severely degraded.

As in the RS scenario, the usage of Interleaving techniques shall offer an improvement in
the system Bit Error Rate. Therefore, it shall be created a model including an Convolutional
Interleaver together with Convolutional codes. Since the Convolutional codes, as oposed to
RS codes, does not perform well in presence of burst errors, the most suitable interleaving
technique is the Convolutional Interleaver, which can spread the bits more efficiently than
the Block Interleaver.

The number of shift registers used was B = 14 in order to spread the bits in a range
larger than 4 Traceback lengths. The delay introduced by the interleaving is, as referred in
Section 3.7, B(B-1). At the output of the Viterbi decoder, this latency is B(B − 1)R, since
the duration of each bit is R times than its duration in the channel. The implemented model
is shown in Figure 4.17.

As the reader can observe in Figure 4.18, the BER curve for Convolutional codes with a
Convolutional Interleaving approaches the BER curve for this codes in presence of random
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errors. The parameters of the used Convolutional Interleaver are:

� Number of Rows of shift registers: Traceback length/2

� Register length step: 1/R

Figure 4.16: Convolutional codes with random errors Simulink model simluation results

Figure 4.17: Convolutional codes with an Convolutional Interleaver simulink model in pres-
ence of burst errors
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Figure 4.18: Convolutional codes + Convolutional Interleaving with burst errors Simulink
model simluation results

4.2 Synchronous Implementation

In this section will be described the implementation of RS codes, Convolutional codes,
Interleaving and CRC-32 models in a synchronous system. Later, these models will be con-
verted into an asynchronous architecture. The System Generator synchronous models were
derived from the previous studied Simulink models, replacing the encoder and decoder section
by blocks from the System Generator Blockset library.

Figure 4.19: System Generator random error channel model

57



As an introduction of System Generator design method, a basic BSC model, in Figure 4.19,
will be presented.

Before continuing to the model description, the System Generator token should be anal-
ysed. It makes the link between Simulink and the Xilinx software and its configurations are
shown in Figure 4.20.

Figure 4.20: System Generator Token block

In the left figure are shown the configurations regarding the model compilation. The com-
pilation parameter was set to ”Hardware co-Simulation” for the SP605 board, the Synthesis
Tool to use is the ”XST” and the Hardware Description Language was chosen to be VHDL.
In the Clocking parameters (on the right) it shall be setted a Simulink System Period. This
value makes the conversion between the FPGA sample time (20ns) and the Simulink sample
time. The System Generation token block invokes all necessary procedures to synthesise the
HDL code from the designed model.

Comparing this model to the the random error channel model in Figure 4.1, the reader
can observe that I/O blocks from the Xilinx Blockset library were added to the existing Data
Generator, Error Generator, XOR and Error Rate Calculation blocks. The blocks TX Data
In and RX Data In are the data inputs to the emitter and receiver, respectively. In both,
the parameter Output Type was set as Boolean and the Sample Period was defined to have
the same value of the input data sample time. On the other hand, the blocks TX Data Out
and RX Data Out are the FPGA data outputs. The additional Data Type Conversion blocks
converts the data type from the gateway outputs, which are in double format, to boolean in
order to maintain the data type model coherence.

In Figure 4.21 is shown the channel error probability for the model described in Figure 4.19.
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Figure 4.21: BSC System Generator simulation results

As expected, the error probability of the channel approaches the desired value.

4.2.1 Reed-Solomon codes

Taking in consideration the Simulink model of Reed-Solomon codes on an BSC in Fig-
ure 4.5, the equivalent System Generator model is shown in Figure 4.22. A brief look reveals
that the differences between them are not only in the encoder and decoder blocks. In order
to guarantee the proper functioning of the system, additional blocks must be inserted in the
model to control the main encoder and decoder blocks.

The connection colours represents different sample times: the red paths operates at the
bit generation sample rate and the green ones have a sample rate eight times slower, since
they are related to symbol rate.

The Reed-Solomon Encoder 8.0 block has three inputs: input tdata data in which is the
RS symbols input; input tvalid, which indicates if the symbol at the data in port is valid;
finally, input tlast that is used to mark the last symbol of the input block in order to generate
events at the output. The outputs of RS encoder block are: input tready indicates that the
encoder is ready to receive new symbols; output tvalid signal, which is set if the block has
valid data at the output; output tdata data out is the data output; output tlast signals the last
symbol of the last codeword; event s input tlast missing and event s input tlast unexpected
are event outputs and indicates if input tlast is not according with the expected value.

Since Reed-Solomon encoder block is a generic RS encoder, its parameters must be con-
figured. The implemented code is a RS(255,213), which is not a standard. Thus, the code
parameters are:

� Code Specification = Custom
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� Variable Number Of Check Symbols (r) = unchecked

� Variable Block Length = unchecked

� Symbol Width = 8

� Field Polynomial = 28510

� Scaling Factor (h) = 1

� Generator Start = 0

� Symbols per Block (n) = 255

� Data Symbols (k) = 213

Figure 4.22: System Generator Reed-Solomon model
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The Data Generator block produces bits at a determined rate. The Data in translates
the received data into an unsigned fixed-point one bit signal. The following block, Serial to
Parallel, takes eight serial bits and groups them in parallel bits at the output, being the first
input bit the least significant one. These parallel bits will be the input data symbols. It
is important to note that this block introduces a latency equals to the period of eight bits.
Next, it shall be generated the input tvalid signal. This is made by three blocks: a counter
that counts cyclically from zero to a predefined number (that will be further discussed) with
a period of a symbol (eight times the bit period in the Data Generator); a constant block
storing the number of the desired data symbols (K); and a relational block that sets its output
if the value of the counter has a lower value than K. To synchronize this last block output to
the symbol input in the encoder, one delay (eight input bits duration) was inserted in it. The
signal generated for input tvalid also controls a multiplexer that switches from input data to
a null symbol (eight zero bits) when all required data symbols were received by the encoder.
Since in this implementation the events are not an important aspect, input tlast is set to low.

The output of the encoder passes through a Parallel to Serial converter in order to perform
a serial bit transmission (first output bit is the least significant one). After this conversion a
gateway out (RS data out) sends the information to the Additive Noise Channel. Once again
the data type conversion to boolean is made after the gateway out. The model of the channel
is identical to the previous studied one, having an XOR to change the transmitted bits every
time that the Error Generator produces a ”one” bit. Along with the data transmission, a
synchronization bit is also transmitted in order to signal the receiver if the data at its input
is valid. This signal is delayed by one symbol period in order to compensate the latency
introduced by the Serial to Parallel block at the RS decoder input.

In the receiver side, the input data is converted from bits to symbols (eight bits). The
Reed-Solomon Decoder 8.0 has five input signals: input tvalid to provide information about
the validity of the input data; input tdata data in is the RS symbols input; input tlast signals
if the received symbol is the last one, used to generate events at output; output tready signals
the decoder if the following block is available to receive data; stat tready receives information
about the availability of the statistical processing unit in order to send statistical information
related to the decoding process to a dedicated module.

This block has several outputs divided in three categories: data output, statistical output
and event signalling.

The output tvalid provides information about the validity of output data; output tdata -
data out is the decoded RS data symbols; output tlast signals goes high when the last symbol
of the last codeword is present in the output data port. The input tready informs if the block
is available to receive new data.

The stat tvalid is set when the information at the statistical output is valid; stat tdata -
err cnt provides the number of error that were corrected in the decoded codeword; stat tdata -
err found is setted if any errors or erasures are detected in the current received codeword;
stat tdata fail is setted if, in the current codeword, the decoder was unable to recover all the
information symbols. One last remark in this last parameter is that for RS codes is possible in
many cases to detect if the error correction capability (t) was exceeded. However, some cases
are not detectable and it is required the usage of other techniques to validate the decoded
data.

The event signals have a similar behaviour as in the encoder block. An additional event
port is available, called event s ctrl tdata invalid, however it is only used when a variable
codeword length, number of check symbols or a punctured code is implemented.
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The remaining input control ports are set to high to enable the block output. Note that
input tlast can be set low or high if the event outputs will not be considered. At the output
of the decoder, a multiplexer controlled by the output tvalid port determine if the output is
the information symbols or null symbols. After that, the symbols are converted to serial bits
that constitutes the output of the receiver. The Error Rate Calculation takes the received
bits and the input bits masked by the Input valid signal in the emitter to measure the system
BER. In order to consider only the transmitted data, an additional port was enabled in this
block, Sel, that is operated by the Input valid signal. An important remark in this signal
is that its sample rate is converted to match the bit generation rate. Furthermore, the RS
decoder block must be configured with the same code parameters established in the encoder.

With regards to the counter maximum value, as a first approach, the 254 seems a reason-
able value, since the codeword has 255 symbols and the counter starts from zero. However,
it may not work for all codes due to System Generator RS blocks constraints. These blocks
are based in the LogiCORE IP Reed-Solomon Encoder and Decoder, specifically the version
8.0. The Product Guide of the LogiCORE IP Reed-Solomon Decoder 8.0 establish that the
processing delay (PD), in number of clocks, for a particular RS(N,K) code is given by:

PD = 2t2 + 9t+ 3, t =
N −K

2
(4.4)

In order to the decoder provide a continuous decoding operation, PD shall be lower or
equal to the number of codeword symbols. If this condition does not occur the decoder can
not guarantee the correct behaviour. Despite this LogiCORE possesses input buffers, if the
input codewords presents an higher rate than the core processing capabilities, eventually the
buffers fills, discarding newer codewords. The maximum throughput achieved in a continuous
operation is the clock frequency (MHz) times the number of bits per symbol, in Mb/s. If
PD > N then the maximum throughput is approximately (N/PD) × clock frequency ×
symbol length Mb/s [50]. It means that when the decoder is configured to a RS(255,213)
code, PD = 1074 and the maximum bit rate is ≈ 95Mb/s, considering a 50MHz clock
frequency. In order to avoid data loss, the counter in the emitter was configured with a
count limit of 1073. Such value, forces the RS Encoder to wait 1074 symbol periods between
consecutive codewords.

Along with processing delay, latency is also present both in the Encoder and Decoder.
In contrast with processing delay, latency only shifts the output in time, in other words, the
duration of a codeword is not changed. Xilinx specifies a latency of 2 + (numberofchannels)
for the RS Encoder 8.0. In this model, the encoder is only implemented with one channel,
presenting a latency of 3 symbol periods. For the decoder this value is not so linear and shall
be obtained in the Graphical User Interface of the Xilinx Core Generator, which is a tool
to implement LogiCORE IPs with the desired characteristics. The value obtained was 1341
symbol periods. Additionally, the Serial to Parallel blocks inserted in the encoder and in
the decoder presents a delay of one symbol each. In order to synchronize the input data and
output data as well as the signal Input valid at the Error Rate Calculation input, two delay
blocks were inserted. The delay value of each one is 8 ∗ (1341 + 3 + 1) (in bit periods) which
is, in symbol periods, 1341 from the decoder, 3 from the encoder and one from the Serial to
Parallel Decoder block. Note that a previous delay block immediately after Data Generator
synchronizes the data bits with Input valid signal, with a value of one symbol period.

The performance of System Generator model for a RS(255,213) code over a BSC can be
observed in Figure 4.23. The results shows that the model performs as expected.
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Figure 4.23: RS(255,213) System Generator model simluation results

4.2.2 Convolutional codes

The implementation of Convolutional codes in System Generator is shown in Figure 4.24.
The model considers a Convolutional code with R = 1/2 and K = 7. The colours shown in
the model represents the sample times for each signal.

As in the previous models, the block Data Generator generates bits at a determined sample
time. These bits are read into the FPGA in the Data in gateway that feeds the Convolutional
Encoder 8.0 in the port data tdata data in. This encoder requires also a signal to validate the
information in the data input port that was set continuously to high (non-sampled constant).
The three outputs of the encoder are: data tdata data in which is the output of encoded data,
data tvalid which indicates that the output data is valid and data tready which signals that
the encoder is ready to accept new data.

The parameters of this block are listed below:

� Punctured = unchecked

� Output rate = 2

� Constraint length = 7

� Convolution code0 = ’1111001’

� Convolution code1 = ’1011011’

Since the encoder output is formed by two bits in parallel and the channel is a BSC, a
conversion Parallel to Serial is made before the encoded signal is sent to the gateway out,
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Conv out. Note that after this conversion the sample rate is two times faster than in the
original data. The encoded bits are then converted to boolean and sent through the BSC
model.

Figure 4.24: System Generator Convolutional synchronous model

In the receiver side the encoded data is read into the FPGA in the gateway Conv in.
Since the Viterbi decoder used has disjoint input ports for the n bits generated by the n
generators in the encoder, a Time Division Demultiplexer block was inserted in the receiver.
The implementation type of this block is multiple channel and the ”Frame sampling pattern”
configured was [11], which means the block has two outputs and consecutive bits shall be
routed to different output ports. This block presents a latency of 2 input bit periods that
corresponds to one bit period of the original data.

The decoding process is preformed by the Viterbi Decoder 7.0 block. As previously said,
the input ports data in0 and data in1 are the two encoded bits for each generator. The
output port of the decoder is data out and rdy port signals if the output data is valid. The
Viterbi Decoder parameters are:

� Viterbi Type = Standard
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� Constraint length = 7

� Traceback length = 42

� Architecture = Parallel

� Coding = Hard coding

� Output Rate 0 = 2

� Convolution 0 Code 0 = ’1111001’

� Convolution 0 Code 1 = ’1011011’

The Parallel architecture was selected due to the usage of an Hard Decoder, which is not
implemented in the Serial architecture. Despite Parallel architecture requires a larger space
in the FPGA, this decoder is faster than the Serial decoder. The decoded data is then sent
through the Data out gateway and posteriorly converted to boolean to be compared with
original data in the Error Rate Calculation block. According to LogiCORE IP Convolutional
Encoder v8.0 Product Guide, the latency of the encoder is 3 sample periods [51]. On the
other hand, Viterbi decoder parallel architecture latency can be calculated as latency u
4 × traceback length + K + n = 177 [52]. Thus, the latency between the transmitted and
received data is approximately 3 + 177 + 1 = 181. The measured latency was 197.

Figure 4.25: Convolutional code R=1/2, K=7 System Generator model simluation results

In the Figure 4.25 is shown the BER results for the System Generator Synchronous model
for a Convolutional Code with K=7 and R=1/2. At the error probability of 10−5 the coding
gain is approximately 3.1dB which match to the expected value.
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4.2.3 Interleaving

In Figure 4.26 is represented the System Generator model for the Convolutional Inter-
leaving. As the reader can observe, this model is identical to the model in Figure 4.19 with
the addition of the Interleaver and Deinterleaver blocks.

Figure 4.26: System Generator Convolutional Interleaving synchronous model

The same functional block, Interleaver/De-Interleaver 7.1, was used in both emitter and
receiver since it provides both functionalities. This block has one input for the data to be
interleaved/deinterleaved (data tdata din), one input for signalling if the data in previous
port is valid (data tvalid) and one other input to inform the block if the input data symbol
is the last one. The output are: data tready, which indicates if the block is ready to receive
new data; data tvalid informs that valid data is present at the output; data tdata dout is the
interleaved/deinterleaved data output; data tlast is asserted when a symbol is produced from
the last branch of Convolutional Interleaver; event tlast unexpected is a flag that is set if the
data tlast signal does not corresponds to the last branch of the Convolutional Interleaver.

The parameters configured for Interleaver 7.1 block are listed below:
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� Memory Style = automatic

� Symbol Width = 1

� Type = Forney Convolutional

� Mode = Interleaver

� Symbol Memory = Internal

� Number of Branches = 14

� Architecture = ROM-based

� Number of Configurations = 1

� Length of Branches = 1 (Constant length between consecutive branches)

� Pipelinig = Maximum

Despite the ”Mode” parameter, which shall be changed to ”De-Interleaver”, the De-
Interleaver 7.1 configurations are equal to the Interleaver. In both emitter and receiver,
data tlast is zero. In the emitter, data tvalid is set to one and, for synchronization purposes,
in the receiver this signal is generated by the data tvalid at the emitter.

As previously said in section 3.7, the latency of a Convolutional Interleaver with B
branches is given by B(B − 1). Thus, the latency for this model should be 14 × 13 = 182.
Additionally, each Interleaver/De-Interleaver block has a latency of 6 when the pipelining is
set to Maximum [53]. The total latency should be 194. However, the measured latency was
196.

In order to implement the Block Interleaving model, since the block Interleaver/De-
Interleaver 7.1 also supports Block Interleaving, the previous model was used with some
modifications, shown in Figure 4.27. The parameters of Block Interleaver model are listed
below:

� Memory Style = automatic

� Symbol Width = 8

� Type = Rectangular Block

� Mode = Interleaver

� Symbol Memory = Internal

� Number of Rows = 10 (constant)

� Number of Columns = 255 (constant)

� Row Permutation = none

� Column Permutation = none

� Block Size = Rows*Columns

� Pipelinig = Maximum
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Figure 4.27: System Generator Block Interleaving synchronous model

In this implementation, the symbol width chosen was 8 in order to match the RS(255,K)
symbol size. Therefore, a Serial to Parallel block was inserted at the input of the emitter.
When operating in Rectangular Block mode, the Interleaver/De-Interleaver 7.1 can only
guarantee a throughput of 50% due to the usage of the same memory block to input and output
data [53]. Thus, an additional control in data tvalid and data tlast shall be implemented. The
solution is identical to the used in the RS model of the Figure 4.22: a counter, a relational
block and a constant. Here, two constants and relational blocks were used in order to generate
both input ports. The counter has a sample time eight times greater than the bit period and
a maximum value is 255 ∗ 10 ∗ 2 + 10. This means that it counts 10 RS(255,K) codewords
two times, in order to give time to the Interleaver block read and write 10 codewords. The
additional ”+10” value is to take into account the latency of the Interleaver/De-Interleaver
7.1 blocks. According to [53], the latency of each block is 5 symbol periods, giving a total
of 10 symbol periods, which are added into the counter maximum value. Thus, the signal
data tvalid is generated by comparing if the counter value is lower than 10∗255 (total number
of elements in the Interleaver matrix) and the data tlast is a simple comparison between the
counter value and 10 ∗ 255− 1, since the counter starts from zero.
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The output of the Interleaver is then changed from symbols to bits and goes through the
BSC. The two control signals data tvalid and data tlast are delayed by one symbol period,
due to the serial to parallel operation in the input of the deinterleaving, and feeds the inputs
of the deinterleaver with the same name. At the output of the De-Interleaver 7.1 block, a
multiplexer decides, based on data tvalid output port, the output of the receiver: the original
deinterleaved data or null symbols. The error rate calculation is identical to the implemented
in the RS System Generator model, taking the Data valid signal to mask the non-transmitted
bits and to enable the Error Rate Calculation block.

Furthermore, as in the case of RS model, the probability of error shall be multiplied by 2
in order to compensate the unusable bits in the channel.

4.2.4 CRC-32

Since the System Generator does not provide a CRC block, the System Generator CRC-32
model requires an higher detail of implementation than the previous models. The principle
behind this model is to compute in the emitter the CRC-32 remainder and send it after the
transmitted data. In the receiver, the remainder of the received data (with possible existing
errors) is calculated and then is compared to the sent remainder value in order to evaluate
the validity of received data. The implemented System Generator model can be seen in
Figure 4.28.

Figure 4.28: System Generator CRC-32 model

This model contains the encoder (CRC TX) and the decoder (CRC RX) in subsystems
interconnected by the Additive Noise Channel model. The Figure 4.29 shows the CRC-32
encoder subsystem model.

The encoder main blocks are the CRC Generator and the crc tx ctrl. In order to perform
the polynomial division of modulo 2 required for CRC-32 computation, a Black Box was used
to incorporate VHDL code of a parallel CRC-32 generator in System Generator. The simplest
way to divide polynomials in modulo 2 is by using a Linear Feedback Shift Register (LFSR),
as seen in Figure 4.30 [54]. This implementation requires a serial input which is not optimized
since it need N clock cycles to compute the CRC remainder of a N bit input. A more efficient
algorithm uses a parallel architecture which accepts parallel bits at the input and processes
them on a single clock period. The parallel algorithm computes its next state based on the
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previous state as well as the input data.

Figure 4.29: System Generator CRC-32 emitter synchronous model

Figure 4.30: Hardware implementation of a serial CRC generator

The CRC implementation is the CRC-32 used in the IEEE 802.3 Ethernet standard. The
specifications of this algorithm are listed bellow:

� Polynomial Width: 32

� Polynomial Value: 0x04C11DB7 = 1 + x1 + x2 + x4 + x5 + x7 + x8 + x10 + x11 + x12 +
x16 + x22 + x23 + x26 + x32

� Initial state: 0xFFFFFFFF

� Reflected input bits: Yes

� Reflected output bits: Yes
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� Output XOR Value: 0xFFFFFFFF

A remark shall be made for the last four parameters above. This algorithm initializes its
initial state to be different that zero in order to prevent blind spots on the error detecting
process when bytes of input data is zeroed. The CRC-32 standard specifies that the bit order
of each byte before CRC computation as well as the CRC result shall be reversed. The last
parameter performs an XOR operation with 0xFFFFFFFF to obtain the final CRC value.

The VHDL code was generated by [55], which is an online tool to generate VHDL code
for a parallel CRC algorithm. The data width can be specified as well as the polynomial size
and its coefficients. The VHDL code of the algorithm can be seen in Appendix A. Note that
the lfsr q is the CRC output and the lfsr c is the next state of the CRC generator. The crc en
port enables the generator to update the output register to the next state. A reset port (rst)
is provided in order to force the internal state to the initial state. The input data is a vector
with 32 bit. The clock source for this block is a counter with one bit and a period 16 times
greater than the bit period.

Since the input ports must be carefully handled, a control block called crc tx ctrl imple-
ments a state machine that generates all the required control signals. This block is a MCode
block which can be configured with a MatLab function. Despite a limited number of MatLab
commands are accepted by this block, a state machine can be fully implemented in an high-
level programming language, which simplifies the process of the system design. The complete
MatLab code for the emitter state machine control can be seen in Appendix A. The design
of the controller considers three input ports: data valid signals that the data at the input of
CRC Generator is valid, data length is the number of input 32 bits data symbols and a reset
port. For the outputs, were considered four signals: crc enable and crc reset which drives
directly the CRC Generator block; the data out select selects the output data (input data or
CRC remainder); finally, the data valid output is a signal that acknowledge the output data
validity.

The Byte reflect block after the gateway in performs a conversion from serial bits to bytes.
However, the input order considers that the last input bit is the least significant bit of the
output byte. This block introduces a delay of 4 bytes. A posterior serial to parallel operation
groups 4 (reflected) bytes into a word of 32 bits which is the input of the CRC Generator
block, introducing a delay of 32 bit periods. Thus, the data is only valid at the input of
CRC Generator after two 32 bit word and a delay must be inserted in the data valid input.
At the output of the CRC Generator, a downsample block is used to convert the sample
time of previous block which is the same of the clock signal. The next step is to reflect the
CRC remainder bits and apply the XOR operation with 0xFFFFFFFF. The output data is
then selected between the reflected input data and the CRC output and converted to a serial
communication. Along with data output, the signal Ouput valid is sent in order to inform if
the data output is valid.

The CRC receiver model is shown in Figure 4.31. The main principle of the receiver
is to compute the CRC of received data and compare it to the CRC received value. The
inputs of this model are the Data input and Data valid that are produced by the emitter.
The Data length and Reset are also inputs of this model, as in the emitter model. After
conversion of received data to 32 bit words, the CRC remainder are computed in the CRC -
Generator RX. The block that controls the CRC Generator is similar to the implemented in
the emitter. However, the data out select was replaced crc valid. This new output validates
the comparison between the computed CRC in the receiver and the received CRC remainder.
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The source code of the crc rx ctrl block can be seen in Appendix A.

Figure 4.31: System Generator CRC-32 receiver synchronous model

The outputs of the receiver model are Data output and Data valid, which are the data bits
output and the signal to validate the data output, respectively. After the CRC calculation,
a statistical analysis of the received frames is made in the block error rate calculation. As in
the case of CRC control blocks, this is a MCode block and analyses the result of the CRC
comparison for each received frame. The state machine implemented in its MatLab function
computes the number of received frames and the number of frames that contains error, in
other words, the number of received frames that presents a mismatch on the CRC field. The
reset input clears the output values in the beginning of the simulation. The full source code
for the state machine of this block can be seen in Appendix A.

For model validation purposes, an error probability of p = 1/(10 × 212 × 8) was chosen,
considering an average of one error bit for each 10 frames of 212 Bytes. As can be seen in the
model displays, FER = 203/2000 = 0.1015, which is the expected value.

4.2.5 Hardware co-simulation

In order to obtain more accurate results in less time, the System Generator allows to create
models using Hardware co-simulation. This System Generator feature makes use of the FPGA
hardware to run the model simulation. In other words, it performs the implemented hardware
blocks in the FPGA using acquired data from System Generator and returns the processed
data. This data transmission occurs via the JTAG port of the Spartan SP605, which has a
limited bitrate.

The main goal is to implement as much as it possible the model in hardware blocks in
order to minimize the simulation time. Besides, the amount of data exchange between the
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System Generator and the FPGA shall be as lower as possible in order to take advantage of
the hardware implementation capabilities.

Before going into detail on the ECC co-simulation models, first it will be presented the used
methods to reduce data transmission over JTAG port. Despite the model is fully hardware
implemented (data generator, error generator, encoder, decoder and error rate calculation),
the error probability parameter shall remain selectable in order to perform simulation at
different Pe values. On the other hand, at the output, a statistical analysis of error rate shall
be delivered to the System Generator environment, particularly the number of received bits
and the number of received errors.

Since the error probability is a constant value during the simulation, this parameter is sent
to the FPGA at one sample per second, explicit in the gateway in of the models. However
for the output values, it is required a down sample operation, reducing the amount of values
per time unit that is sent to the System Generator.

In addition, in these hardware co-simulation models was used a structure called Shared
FIFO. This structure is a common FIFO, however, it is divided in two different blocks: To
FIFO in which the data is inserted into the buffer and From FIFO which is the complementary
function of the first block that allows to read the data inside the buffer. Using this structure,
the FPGA clock and the System Generator sample time can be completely different, allowing
the hardware implementation to run at the FPGA clock speed while the System Generator
only takes few values from the From FIFO block at a much slower rate. Both word length (in
bits) and FIFO depth (maximum number of stored words) can be configured in these blocks.

Bellow are described the co-simulation models for RS and Convolutional codes. The taken
approach in these models is to generate both data and errors as well as implement the Additive
Noise Channel with FPGA blocks. The first model implements only the BSC in order to give
to the reader an idea of how the Simulink blocks were replaced by Xilinx blocks. The Figure
4.32 is shown the co-simulation model for the BSC.

Figure 4.32: BSC co-simulation System Generator model
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The block Data Generator is a LFSR with 32 bits that generates a pseudo-random se-
quence. The parameters of this block are:

� Type: Galois

� Gate type: XNOR

� Number of bits in LFSR: 32

� Feedback polynomial: 0x80200003

� Initial value: 0x55555555

The feedback polynomial was chosen in order to provide the longest pseudo-random se-
quence, according to [56]. The sample rate of this block is 32 times slower than the minimum
period of the FPGA (20ns).

Figure 4.33: Generic model for hardware co-simulation data acquisition

Identical to the previous block, the Random Generator is also a LFSR. However, the
sample rate is 20ns which is the minimum allowed for hardware co-simulation in the Spartan
6 SP605 Evaluation Kit. The output random bits are then grouped in 32 bits parallel and
posteriorly compared to the error probability. Note that the Gateway In for the error prob-
ability interprets this value as a 32 bit fractional number. The Error Generator block sets
its output high if the word randomly generated is lower than the error probability constant.
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The blocks described in this paragraph implements a Bernoulli generator, identical to the
previously used from Simulink block set.

The Additive Noise Channel is also implemented in hardware with the XOR function.
Since the output type of the Error Generator block is Boolean, a conversion is made before
the XOR operation between Data bits and Error bits. The result is then compared to the
original data and an accumulator block is used to count the number of errors in the channel.
Parallel to error counter, an additional accumulator block counts the number of transmitted
bits, which in this case is merely a constant with value=1. The output of each accumulator is
down sampled in order to decrease the amount of data that will be sent to System Generator
environment using the Shared FIFO structure, as previously explained.

In order to receive the data from the hardware, it was used the model shown in Figure 4.33.
As the reader can observe, the From FIFO blocks have the same name of the To FIFO blocks
in the Figure 4.32, which means that they are part of the same FIFO structure. The read
sample time from these blocks is 1024 times slower than the bit sample time in the main
model, allowing the System Generator to work slower than the FPGA. The output data
is sent through the gateway outs and are stored in MatLab variables (nBits and nErrors).
Furthermore, the simulation stops if both conditions are verified: the number of simulated
bits is greater than the desired value (simulation bit precision) and the number of received
errors is greater than 10, in order to have a proper value to compute BER.

The measured error probability was according to the expected value, as Figure 4.34 shows.

Figure 4.34: Hardware co-simulation results for the a BSC

With the previous model in mind, both Reed-Solomon and Convolutional System Gener-
ator models were modified in order to perform fast simulation using a full hardware imple-
mentation. In Figure 4.35 is shown the co-simulation model for the RS(255,213) code. Note
that the error rate calculation section compares the input symbols from emitter and receiver
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only when the output valid at the receiver is set.

Figure 4.35: RS(255,213) co-simulation System Generator model

Figure 4.36: ChipScope Pro waveforms of input and input data bits, showing an misalignment
between signals

An important remark in the latency between input and output symbols shall be made.
In the first approach, the same latency as in the model of the Figure 4.22 was considered.
However, after perform the co-simulation, the achieved BER was approximately 0.5. This
value suggests a misalignment of input and output bits at the Relational block input. In
order to observe the internal FPGA signals, a ChipScope block was inserted in the model
to acquire data of the Relational block inputs. The Figure 4.36 shows the misalignment
between the signals which presents an unnecessary latency of one symbol period in the input
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data signal. Thus, the total delay value shall be 1344 symbol periods instead of the previous
value of 1345 periods. The same approach was made for the Convolutional codes, as seen in
Figure 4.37.

Figure 4.37: Convolutional code R=1/2, K=7 co-simulation System Generator model

The results obtained in hardware co-simulation for Reed-Solomon and Convolutional
Codes are shown in Figure 4.38 and 4.39, respectively.
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Figure 4.38: Performance of the RS(255,213) co-simulation System Generator model

Figure 4.39: Performance of the Convolutional code R=1/2, K=7 co-simulation System Gen-
erator model
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4.3 System Constraints

As previously said, this dissertation study focuses in the implementation of an effective
FEC scheme for a VLC system. Therefore, the choice of a specific scheme must consider the
system parameters, in particular the DLL and the modulation scheme.

The main goal of the encoder in a communication system is to encode the data to be
transmitted in order to improve the BER of the system. In this project, two data services
were considered: a Moderate Data Rate (MDR) used for control and management as well
as for advertising and infotainment services; A High Data Rate (HDR) for video broadcast.
Since these services must be transmitted through the same physical channel, the DLL must
process the requests of data transmission from higher layers. Therefore, this layer sends in the
same frame both services, giving priority to the MDR. Furthermore, if a transmitting request
length is larger than the supported transmitting length, the input data shall be fragmented
and sent in multiple frames which are reconstructed in the receiver side. The frame structure
of the DLL is shown in Figure 4.40.

Figure 4.40: Frame structure

As it can be seen, the frame header comprises 8 bytes. Before going into detail on each
header field, an important remark shall be made about the frame payload. This field contains
MDR, HDR or both services, depending on the transmitting requests from the higher layers.
In the case of the occurrence requests from both services, the DLL allocates fixed sizes for
each service, prioritizing the HDR service. Therefore, the frame size must be chosen carefully
in order to minimize the fragmentation of the HDR service [2]

One of the most common used container formats for transmission and storage of audio
and video is the MPEG transport stream (MPEG-TS). Since it is used in video broadcasting
systems, such as in DVB, the MPEG-TS standard shall be considered in the DLL frame size
choice [57].
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The models described in previous sections are an important tool to evaluate the perfor-
mance of different FEC techniques that will be later discussed in Chapter 5. At this point
is important to stablish which scheme will be used in the final FEC implementation, based
on each ECC performance. In the Figure 4.41 is a representation of the system encoder and
decoder.

Figure 4.41: VLCLighting encoder and decoder schemes

The first observation is that a CRC-N detection scheme shall be used in order to enable the
received decoded data validation. This block signals the DLL if the received frame contains
remaining errors that could not be corrected by the FEC techniques. In order to provide a
reasonable detection capability to the CRC algorithm, the CRC-32 standard was considered,
providing a detection probability of 0.99999999977, according to equation 3.25.

Figure 4.42: Performance of QPSK modulation over an AWGN channel
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According to the last results of VLCLighting project in [58], for a single LED system,
the BER of received data is at maximum 10−3 for a distance of 1.75m. This results were
achieved with an LED that consumes less than 1W. For outdoor scenarios is expected an
higher luminous output, providing an higher signal power. In other words, in the final stage
of the project the available optical signal power will be higher that will improve the SNR
and consequently reduce the BER. Therefore, the BER results for the 2.0m scenario was not
considered in this study.

The modulation scheme used in VLCLighting is a combination of QPSK and OFDM, more
specifically ACO-OFDM. As mentioned in Section 3.3, the OFDM modulation along with a
proper interleaving technique shall mitigate burst errors and a BSC must be considered in
the study of ECC. First of all is important to characterize the channel in terms of Eb/N0 and
BER. The Figure 4.42 shows the BER performance of a QPSK modulation in a narrow band
AWGN channel.

The results in this chapter for the ECC performance were obtained by using the bercoding
and berawgn MatLab functions. This function computes an estimative of the decoding BER
for a particular code used along with a specified modulation scheme as well as the Eb/N0. The
MatLab script that was used to obtain the results in this section can be seen in Appendix B.

The equivalent Eb/N0 of the BER obtained in [58] is about 7dB. This value will be
considered the maximum allowed value in order to proper system functioning.

A comparison between a Convolutional code with R=1/2,K=7 and a RS(255,213) perfor-
mance is shown in Figure 4.43.

Figure 4.43: Performance of RS(255,213) and Convolutional (R=1/2, K=7)

As the reader can observe in the figure, above 5.8dB of Eb/N0 the RS codes outperforms
the Convolutional code. Furthermore, the efficiency of the usedRS(255,213) code is 83.53%,
which is higher than the Convolutional code efficiency, 50%. Therefore, the RS codes shall be

81



preferred as opposed to Convolutional codes in order to accomplish both system performance
and efficiency. Additionally, the RS(255,K) achieve a better match with Byte addressable
architecture of the DLL. After selecting the most appropriate ECC, a study of RS(255,K)
codes shall be considered in order to observe the evolution of error correction capability by
varying the number of data symbols. The results of this analysis can be seen in Figure 4.44.

Figure 4.44: Reed-Solomon(255,K) codes efficiency vs BER performance

As opposed to the common thinking, the results shows that the performance of the code
starts to degrade if more than (255−165) = 90 correcting symbols are used. This is due to the
signal power normalization: the transmitting power is the same for the uncoded transmission
(K symbols) and the coded transmission (N symbols). This effect can be seen in equations 3.18
which is a parameter of RS symbol error probability (equation 3.16), where the Eb/N0 value is
multiplied by R. In the particular case of RS(255,K) code family the minimum K worth using
is 165 which gives a code efficiency of 64.71%. This value provides a very strong correction
capability and it is once again above the efficiency and performance of Convolutional codes
of R=0.5. Thus, the choice of RS(255,K) codes instead of Convolutional codes was the right
one.

The next step is to compute an adequate value of parameter K of the code. Since the
frame size can require more than one codeword to encode it, the definition of Block Error
Rate (BLER) and Frame Error Rate (FER) must be established. The parameter BLER is
related to the error probability of an existing wrong symbol in a codeword and is given by:

BLER = 1− (1−BER)K (4.5)

In the other hand, FER is the probability of a received frame with errors. In this context,
this parameter means the probability of an existing codeword with errors in the frame and is
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given by:

FER = 1− (1−BLER)NBLOCKS (4.6)

A desired FER can be easily calculated using equation 4.7.

FER =
1

Frames per second× time without errors
(4.7)

where Frames per second = bitrate/(8 × frame size) and frame size is expressed in
Bytes.

Figure 4.45: FER vs system efficiency

At this point it is interesting to understand how the FER behaves for different values of
K and the impact in the total system efficiency (frame efficiency× code efficiency). This
relation can be observed in Figure 4.45 where each line represents one RS(255,K) and each
point of the line is a different frame size (128, 256, 512, 1024, 2048, 4096). Note that to better
understanding of this figure, not all RS codes were included. Starting from RS(255,165), steps
of 6 in K value were considered. It is observed a superposition of several values in the plot.
It is also concluded that for the same ECC, a larger frame results in an higher FER value,
however with an higher efficiency.

It was considered that the application of VLCLighting must provide a continuous operation
without errors during one hour. Thus, the FER value for a 24Mbit/s [58] and a frame size
of 256 Bytes is 2.3704 × 10−8. The frame size 256 is a first approach value which includes
the 8 Bytes from frame header, the 188 Bytes from the MPEG-TS frame, 4 Bytes from the
CRC-32 remainder and the remaining Bytes comprises the MDR data. This last parameter of
the frame is dependent of how many Bytes remain in the codeword data field after a chosen
K.
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In Figure 4.46 is shown the FER values and respective system efficiency values for RS
codes from K=165 to K=253, considering a frame size+CRC of 256 Bytes. Note that this
results are a particular set of the previous obtained values. The horizontal line in the graph
establish the limit for the previous calculated FER value. Therefore, all RS(255,K) codes
below this line are eligible to fulfil the system requirements. However, the code with the
highest possible K shall be chosen in order to provide both system efficiency and the higher
MDR possible. The RS(255,215), highlighted in the figure, meets the FEC specification with
an efficiency of 79.61%.

Figure 4.46: FER vs system efficiency for a frame size=K-CRC

Due to the constraints of the DMA used in the DLL, addresses and transfer size need to
be aligned to 8 Bytes. Therefore the previous considered frame size of 215− 4 = 211 shall be
aligned to the immediately lower possible value, which is 208 Bytes. With the additional 4
Bytes of the CRC-32 remainder, a total of 212 Bytes will be transmitted. One last adjustment
of the code parameters must consider RS correction capability. According the equation 3.14,
and in order to correct an integer number of symbols, N − K needs to be even, thus, K
must be odd. This condition implies that a junk symbol must be inserted after the CRC-32
remainder. Thus, the code to be implemented in the project is a RS(255,213), which can
detect up to 42 wrong symbols and corrects up to 21 symbols. From equations 4.5 and 4.6
the expected FER at 7dB of Eb/N0 is 2.196210−10. Furthermore, using this code, the system
efficiency is given by:

η =
K − Junk symbol − CRC −Header size

N
=

213− 1− 4− 8

255
=

200

255
= 78.43% (4.8)

A last remark on the code choice is that the available number of Bytes for the MDR
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service is 200− 188 = 12, which is 6% of the total payload size. Note that this restriction is
only applied when the DLL receives requests from both data services.

4.4 Concluding Remarks

In this chapter were presented Simulink and System Generator models for several FEC
techniques. The results of these models were compared with the theoretical values. This
process helps to better understand each FEC characteristics.

The hardware-cosimulation tool proved to be useful. When compared with the same model
without co-simulation, the simulation time can decrease from several hours to few seconds.

At the end of this chapter, it was concluded that a combination of CRC-, RS(255,213) and
a block interleaver would be the better Channel Encoder approach to the considered scenario.
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Chapter 5

Implementation and Final Results

5.1 Channel Encoder model

As previously said, the proposed Channel Coding scheme comprises three functionalities:
CRC-32 algorithm in order to provide data validation, RS(255,213) codes in order to perform
error correction in the decoder and an Interleaving technique to improve RS capabilities in
the presence of burst errors.

Figure 5.1: Asynchronous architecture of the proposed Channel Coding scheme

In Figure 5.1 is shown the System Generator model of the proposed Channel Coding
scheme, implemented in an asynchronous architecture. As the reader can observe, it has 6
blocks which will be described in detail in this section: Data Generator, Channel Encoder,
Error Generator, Sync Output, Channel Decoder and CRC Analysis. The implementation
considers an 8 bits data width between blocks operating at the Spartan 6 frequency (50MHz).

The Data Generator block generates the data to be transmitted. As it can be seen in
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Figure 5.2, a Read-only-Memory (ROM) is used to store the Bytes to be sent. The ROM
address value is given by a Counter block which are enabled/disabled by the TX BUFFER -
CTRL block and the the output values are stored in the output FIFO of the asynchronous
architecture. Note that the FIFO Write Enable (WE) signal is delayed by one period in order
to match the ROM latency. The FIFO level state is monitored by the signal ”%full” which
is given with 4 bit precision and posteriorly converted from fractional to integer notation.
A RESET signal, which resets the TX BUFFER CTRL state machine and consequently the
Counter and the output FIFO. The Read Enable (RE) signal is controlled by the Channel
Encoder block and reads out the FIFO values to the data out output port. Additionally, an
Almost Empty signal is sent to the Channel Encoder in order to guarantee that the output
FIFO has enough stored valid data.

Figure 5.2: Asynchronous architecture - Data Generator

Figure 5.3: Asynchronous architecture - Channel Encoder
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The following block is the Channel Encoder, represented in Figure 5.3, and is formed by
three subsystems: CRC TX, RS TX and Block Interleaving TX. Each block is implemented
according to the asynchronous architecture, providing an AE signal to the following block
along with the RE signal to the previous block. The input data feeds the CRC TX block
along with the AE signal from Data Generator. The CRC TX is also responsible for control
the read operation from the Data Generator. At the output, the encoded data is provided
by the Block Interleaving TX which also returns its FIFO lower level state. The signal RE
from the following block controls the read operation of Block Interleaving TX internal output
FIFO. Now that the reader has an idea of how the Asynchronous Architecture works and how
the Channel Encoder is structured, a detailed description of the each block shall be made.

Figure 5.4: Asynchronous architecture - CRC-32 encoder

In Figure 5.4 is shown the CRC-32 asynchronous encoder. As in the synchronous model,
a CRC generator block controlled by a Finite State Machine (FSM) is used. However, some
changes were made in order to provide a processing speed of one byte per clock cycle.
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The implementation of the CRC FSM considers four states: RESET, DATA READ,
CRC RESULT and WAIT. The RESET state initializes all the outputs and variables. The
DATA READ state is responsible to read all the 208 Bytes (52 words) from the input data
that is followed by the CRC RESULT state that outputs the CRC-32 value. The FSM enters
in the WAIT state either if the AE signal of previous block is set or if the output FIFO is
AF (which disables En Data signal), returning only to the DATA READ state if both signals
have zero value.

Since the CRC generator processes 32 bits each time, its period, as well as the crc tx -
ctrl period, is four times longer than the Byte period. In order to match the periods of the
control block with other blocks in the system, a series of downsample and upsample blocks
were used. Furthermore, one read operation from the previous block results in an input of
four consecutive Bytes.

In the data input, a delay of three byte periods was introduced in order to perform a time
alignment between the four input bytes and the period of the processing blocks. Note that
the input bytes are already affected by one period of latency due to the FIFO read operation.
The Byte is reflected by a Bit Basher block that rearrange the bits in a reverse order. The
next operation concatenates four consecutive Bytes in a 32 bits word, giving to the first Byte
the lower significant position and the last Byte the highest significant position. After this
operation, a downsample is performed to match the CRC generator sample time.

The control signals from crc tx ctrl are delayed for two word periods (8 clock cycles) in
order to compensate the latency introduced by: 1) the FIFO delay plus the first delay; 2)
the delay introduced by the downsample block. Once again to perform fast bit reversion, the
CRC bits are reversed using the Bit Basher block. At the output of the CRC-32 encoder, the
32 bits word are converted again into four serial Bytes using Slices (to extract each Byte) and
a multiplexer selected by a 2 bit counter. The Bytes are stored in the output FIFO which is
controlled by the block TX BUFFER CTRL. This FIFO has 512 Bytes storage capacity. The
AF and AE thresholds was setted to 81.25% and 6.25% respectively, which correspond to 416
and 32 Bytes respectively. By using these values the FIFO takes into account the existent
latencies between the start/stop of processing and valid data output.

The following block of the Channel Encoder is the Reed-Solomon Encoder which are
represented in Figure 5.5. It makes use of the RS encoder used in the synchronous model
controlled by the RS CTRL FSM. The processing FSM has four states. The first state is
RESET, which initializes all the outputs and variables. If input data is available, the FSM
jumps to RS READ state and starts to read Bytes from CRC-32 block signalling the RS
Encoder block that it has valid data at its input port. The delays present in the RS data -
valid and RS data last are delayed in order to compensate the FIFO latency. When the last
Byte of the total 213 Bytes is being processed, the controller enters in the RS WAIT state
which waits a certain amount of time before starts processing a new codeword. This time,
already discussed in Section 4.2.1, is 1074 periods in order to avoid data loss due to the
processing delay of RS Decoder. After this time, the FSM enters in a WAIT state, waiting for
new input data. Furthermore, if in the middle of RS READ state output buffer gets almost
full or the previous block signals that its buffer is almost empty, the FSM jumps to the WAIT
state until the previous conditions are cleared.

The output section of RS Encodes Asynchronous model is identical to the used in the
CRC-32 encoder and the same approach concerning to the AF and AE thresholds was taken.
Particularly, this block generates more data at the output comparatively to the input. Thus,
is extremely crucial to guarantee free FIFO positions to handle with the extra 42 Bytes at
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the output.

Figure 5.5: Asynchronous architecture - RS encoder

Figure 5.6: Asynchronous architecture - Block Interleaver
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The last stage of the Channel Encoder is the Block Interleaving. As in the synchronous
model, 10 RS codewords are Interleaved before data transmission. This scheme is very similar
to the RS encoder. However, the size of output FIFO is 8K Bytes in order to provide enough
storage for 3 complete Interleaver matrix (30 RS codewords). Furthermore, the AF threshold
was also adjusted to guarantee that the Interleaver processor can output all the matrix at
once without fill, or worse, overflow the FIFO capacity. Hence, if the FIFO reach 62,5% of
its capacity (3072 free Bytes) the processing unit is stopped. In other words, the last Byte,
which triggers the data output, is only read into the Interleaving processor if the output FIFO
is capable of store a complete Interleaving matrix (2550 Bytes).

Figure 5.7: Asynchronous architecture - Error Generator

In order to evaluate the system performance an Error Generator was inserted in between
the Channel Encoder and the Channel Decoder. The model, shown in Figure 5.7, has the same
principle as of the previous implemented Error Generator used in hardware co-simulation.
However, since the Relational block named ”Error Generator” requires 32 bits from Random
Generator block, the data input must be downsampled 32 times. Additionally, this block
generates bit errors which means that, for each 32 clock cycles one error bit is generated.
Therefore, the total time required to process one input Byte, 8× 32 = 256 clock cycles.

Figure 5.8: Asynchronous architecture - Sync Output

The synchronization between Channel Encoder and Channel Decoder is provided by the
Sync Output block, represented in Figure 5.8. Bearing in mind the constraints of Error
Generator, if the output FIFO has available data, each Byte will be read to the channel every
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256 clock cycles. The WE signal to the Channel Decoder is delayed by 513 clock cycles: 512
cycles from the Error Generator latency and an additional cycle from the output FIFO read
latency.

Figure 5.9: Asynchronous architecture - Channel Decoder

The asynchronous architecture was also adopted in the Channel Decoder implementa-
tion as seen in Figure 5.9. It decodes the information starting from Deinterleaver process,
continuing to the RS decoder and finally to the CRC-32 check.

Figure 5.10: Asynchronous architecture - Block Deinterleaver
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In Figure 5.10 is shown the Block Deinterleaver implementation. As the reader can see it
has a similar structure when compared to the Interleaver. However, since this is the receiver
side, the FIFO was moved from the output to the input. The size of the input buffer is 8KBytes
and the RX BUFFER CTRL FSM defines the AF and AE as 75% and 25% respectively.

Figure 5.11: Asynchronous architecture - Reed-Solomon Decoder

The RS Decoder asynchronous block is shown in Figure 5.11. Three important remarks
shall be made regarding this model. The first one is related to the FIFO storage capacity must
take into account that are transmitted 2550 Bytes from Deinterleaver block at once. Thus, its
value was setted as 8KBytes. Furthermore, the AF threshold was defined as 62,5% (3072 free
Bytes) to accommodate a whole block Interleaver matrix. The second observation, already
referred in the asynchronous RS Encoder, is that the decoder has a processing delay of 1074
symbol cycles. In other words, after the read of a complete codeword, the decoder needs to
wait the processing delay time before start processing a new codeword. This is considered in
the RX CH ENC RS CTRL FSM. Last but not the least, the junk symbol inserted in the
encoder must now be discarded. The solution is to control the WE output signal, forcing it
to zero when the last symbol is present in the RS decoder output.

After the RS error correction a CRC check will be performed. The CRC-32 Decoder,
shown in Figure 5.12, is identical to the previous presented synchronous model with the
respective changes in order to work in Bytes. The FIFO size at the input is 512 Bytes. The
AF and AE thresholds was defined as 75% and 25% respectively. This block outputs the
decoded data Bytes as well as the CRC pass fail and CRC valid signals.

The FER is calculated in CRC Analysis block, shown in Figure 5.13. This block makes
use of the error rate calc that was previously implemented. The outputs, number of received
frames and number of frames containing errors are downsampled and stored in a ”To FIFO”
structure. The main goal is to generate the hardware co-simulation model for fast simulation
results.
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Figure 5.12: Asynchronous architecture - CRC-32 decoder
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Figure 5.13: Asynchronous architecture - CRC result analysis
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5.2 FPGA Utilization

One of the most important aspects in FPGA design is the number of used FPGA resources.
In this particular work, since the proposed implementation aims to integrate in a larger
system, a lower device utilization is even more important in order to spare resources for the
other blocks of the project.

According to Figure 2.11, the system will be implemented in two separate FPGA’s. Thus,
the resources utilization of Channel Encoder and Channel Decoder shall be obtained sepa-
rately.

Therefore, two models were created: one includes only the Channel Encoder and the
other one the Channel Decoder. The device utilization results were obtained from the model
compilation report. The Table 5.1 summarizes the FPGA resources used by the Channel
Encoder.

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 814 54576 1%
Number of Slice LUTs 981 27288 3%
Number used as Logic 951 27288 3%
Number used as Memory 30 6408 0%
Number used as SRL 30

Slice Logic Distribution
Number of LUT Flip Flop pairs used 1176
Number with an unused Flip Flop 362 1176 30%
Number with an unused LUT 195 1176 16%
Number of fully used LUT-FF pairs 619 1176 52%
Number of unique control sets 38

IO Utilization
Number of IOs 3
Number of bonded IOBs 0 296 0%

Specific Feature Utilization
Number of Block RAM/FIFO 7 116 6%
Number using Block RAM only 7

Number of BUFG/BUFGCTRL/BUFHCEs 1 16 6%

Table 5.1: Device Utilization Summary - Channel Encoder

As the reader can observe, the resources utilization percentage is very low, in the order
of 3%. The FIFO usage is the higher value, about 6%. The Table 5.2 shows the device
utilization of the Channel Decoder.

The results shows that the decoder uses more resources than the encoder. However, it
only uses 3% of the total number of slice registers and 8% of slice LUTs (look-up tables).
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Slice Logic Utilization Used Available Utilization

Number of Slice Registers 2011 54576 3%
Number of Slice LUTs 2267 27288 8%
Number used as Logic 2173 27288 7%
Number used as Memory 94 6408 1%
Number used as RAM 40
Number used as SRL 54

Slice Logic Distribution
Number of LUT Flip Flop pairs used 2803
Number with an unused Flip Flop 792 2803 28%
Number with an unused LUT 536 2803 19%
Number of fully used LUT-FF pairs 1475 2803 52%
Number of unique control sets 62

IO Utilization
Number of IOs 4
Number of bonded IOBs 0 296 0%

Specific Feature Utilization
Number of Block RAM/FIFO 13 116 11%
Number using Block RAM only 13

Table 5.2: Device Utilization Summary - Channel Decoder

5.3 System Performance

In this section will be presented the asynchronous channel encoder model performance.
It is important to note that due to the system complexity, a simulation in the Simulink
environment would take several hours or even days to perform a single simulation. Therefore,
the results in this section were obtained by using hardware co-simulation.

The first test performed in the system was its proper functioning. In this test, in order to
maximize the transmission rate, the block Error Generator was removed. Furthermore, the
block Sync output had some modification, shown in Figure 5.14, in order to be able to read
up to 1 Byte per clock cycle.

Figure 5.14: Asynchronous architecture - High data rate Sync Output block

The hardware co-simulation shows that all the 109 received frames were not affected by
errors.

At this point it is interesting to measure what is the maximum throughput of the proposed
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system. In order to obtain the system transmission rate an additional block was added to the
System Generator model. This block, in Figure 5.15, is a simple accumulator of a sampled
constant. It counts the number of clock cycles and stores them into a shared FIFO. The
throughput can be calculated using the Equation 5.1, where Frame size comes in Bytes and
Tclk is the FPGA clock period in seconds.

R =
NFrames × Payload size× 8

NClocks × Tclk
(bit/s) (5.1)

Figure 5.15: Clock Counter Block

The results from hardware co-simulation are shown in Table 5.3.

NFrames 1752707

NClocks 2147483648

Table 5.3: System data rate results

From the Equation 5.1 and the values from Table 5.3, the system is capable to transmit
up to 65,3 Mbit/s of data. The expected value is calculated from the maximum bit rate
referred in Section 4.2.1 (95 Mbit/s) imposed by the RS decoder processing delay multiplied
by the system efficiency from Equation 4.8 (78.43%), thus, 74.5 Mbit/s. The most probable
cause for the lower measured value are the FIFO sizes of the asynchronous architecture as
well as the AF and AE thresholds of buffer control FSMs. By using FIFOs with more storage
capacity and redefine the FIFO thresholds, the throughput should get closer to the expected
value. However, the actual VLCLighting results presents a transmission rate of 24 Mbit/s.
Furthermore if we consider a system efficiency of 78.43%, the maximum throughput is 18,83
Mbit/s. Thus, the proposed Asynchronous Channel Encoder fulfil the required throughput of
the VLCLighting project. Note that the present results were obtained with a clock frequency
of 50 Mhz.

The system performance analysis would not be complete without the simulation of FER
parameter. The results, shown in Figure 5.16, were obtained using the model of Figure 5.1,
varying the Error Probability value. The estimated FER is obtained from Equations 4.6

99



and 4.5 with NBLOCKS = 1. As the reader can see, the measured FER follows the theoretical
value.

Figure 5.16: Frame Error Rate system performance
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Chapter 6

Conclusions

6.1 Conclusions

In this work were discussed several FEC techniques. Later, it was made a study of the most
appropriate combination of these techniques to implement, in hardware, a Channel Encoder
comprising a CRC-32 computation block, a RS(213,255) code and a Block Interleaver.

The results shows that the usage of FEC techniques should always be considered in com-
munication systems, particularly in broadcast systems. In these systems, is not possible to
the emitter to guarantee that data was received without errors. Therefore, some preventive
measures such as FEC schemes shall be taken in order to assure the proper system function-
ality.

The ECC are extremely important in order to recover corrupted data at the receiver
side. The two studied ECC, Reed-Solomon and Convolutional codes, presented different
characteristics. In one hand, Convolutional codes showed a great performance over random
errors at low Eb/N0 values. On the other hand, the RS codes perform better in the presence of
burst errors since it corrects symbols instead of isolated bits. In particular, it was concluded
that the RS(213,255) code performs better than a Convolutional code with K=7 and R=1/2
for higher values of Eb/N0. Furthermore, this RS code has more efficiency than the referred
Convolutional code.

In scenarios where the channel presents burst errors, such as in the case of the VLC, the
usage of an interleaver scheme with the studied ECC usually improves the system perfor-
mance. At the end of the decoding process, all errors may not be completely removed. The
CRC-32 algorithm shows a great performance in the data validation.

The FPGA design was one of the most important aspects in this work. It proved that,
despite all the additional work in the implementation process which requires to take care of
the smallest details, it is a powerful tool to implement systems that require high-speed data
processing. Furthermore, the hardware co-simulation helped in the simulation process, since
it allows to obtain result faster when compared to the System Generator environment.

Another crucial implementation detail was the adoption the of Asynchronous Architecture.
Its usage in the final implementation turn the interaction between blocks (CRC-32, RS and
Interleaving) easier. It worked as expected: each block works independently of the adjacent
blocks.

Concerning to the final Channel Encoder implementation performance, the FPGA re-
sources utilization presents a low value. Therefore, the proposed Channel Encoder can be
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inserted in a larger system without change significantly the FPGA utilization. Further results
shows that the FER is according to the theoretical value.

6.2 Future Work

Through this work were considered several approaches in the Channel Encoder design.
However, other aspects shall be further addressed in the future. Some of the most relevant
future topics are listed below:

� Integrate the proposed Channel Encoder in the VLCLighting project.

� Real tests to evaluate system performance in a real scenario. Based on the results,
implement changes in the Channel Encoder.

� Consider a RS code with less parity symbols. It should increase the payload size and
at the same time it decreases the RS decoder processing delay value, which is the most
limiting factor of the proposed system throughput.

� Make adjustments in the FIFOs size and thresholds (AF and AE) in order to allow the
system to operate at the maximum speed without stop the processing units due to the
threshold values.

� Additional studies for other ECC such as RS shortened codes, Concatenated codes,
Turbo codes and Low-Density Parity-Check codes.
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[34] F. Jiang, E. Psota, and L. C. Pérez, “Decoding turbo codes based on their parity-
check matrices,” Proceedings of the Annual Southeastern Symposium on System Theory,
pp. 221–224, 2007.

[35] C. Berrou, R. Pyndiah, P. Adde, C. Douillard, and R. L. Bidan, “An overview of turbo
codes and their applications,” The European Conference on Wireless Technology, 2005.,
2005.

[36] B.-S. S. B.-S. Shim, S.-J. C. S.-J. Choi, H.-K. P. H.-K. Park, S.-Y. K. S.-Y. Kim, and
Y.-C. R. Y.-C. Ra, “A Study on Performance Evaluation of the Asymmetric Turbo
Codes,” 2008 International Conference on Convergence and Hybrid Information Tech-
nology, pp. 667–671, 2008.

[37] J. J. J. Jiang and K. Narayanan, “Iterative soft decoding of Reed-Solomon codes,” IEEE
Communications Letters, vol. 8, no. 4, 2004.

[38] Y. Q. Shi, X. M. Zhang, Z. C. Ni, and N. Ansari, “Interleaving for combating bursts of
errors,” IEEE Circuits and Systems Magazine, vol. 4, pp. 29–42, 2004.

[39] V. Tomashevich, “Convolutional Codes,” pp. 2–7, 2005.

[40] B. Lee and S. Choi, Broadband wireless access and local networks: mobile WiMAX and
WiFi. 2008.

[41] R. D. Roberts, “IEEE 802 . 15 . 7 Visible Light Communication : Modulation Schemes
and Dimming Support,” IEEE communications magazine, no. March, pp. 72–82, 2012.

[42] “FPGA structure.” http://www.xilinx.com/images/fpga-block-structure.gif.

[43] G. Hasslinger and O. Hohlfeld, “The Gilbert-Elliott Model for Packet Loss in Real Time
Services on the Internet,” 2008.

[44] B. Sklar, DIGITAL Fundamentals and Applications. 2013.

[45] “Reed Solmon Decoder.” http://cdstahl.org/wp-content/uploads/2010/08/rsd -
block.png.

[46] S. b. Wicker, “Error control systems for digital communication and storage,” 1995.

105



[47] J. G. Proakis, Digital Communications. 3rd ed., 1989.

[48] “Convolutional Codes.” http://www.tdm.uni-oldenburg.de/2004/Material/faltung.htm.

[49] “Convolutional Interleaver.” https://awrcorp.com/download/faq/english/docs/VSS -
System Blocks/images/cnv dlvr fig1.png.

[50] Xilinx, “Xilinx LogiCORE IP Reed-Solomon Decoder v8.0, Data Sheet,” pp. 1–32, 2011.

[51] Xilinx, “LogiCORE IP Convolutional Encoder v8.0,” pp. 0–22, 2012.

[52] Xilinx, “LogiCORE IP Viterbi Decoder v7.0, DataSheet,” pp. 1–34, 2011.

[53] Xilinx, “LogiCORE IP Interleaver/ De-Interleaver v7.1 Product Guide,” pp. 1–189, 2013.

[54] E. Stavinov, “A Practical Parallel CRC Generation Method,” 2010.

[55] Outputlogic.com, “outputlogic.com - CRC generator.” http://outputlogic.com/?page -
id=321.

[56] P. Alfke, “Efficient Shift Registers, LFSR Counters, and Long Pseudo- Random Sequence
Generators,” Xilinx, vol. 1996, pp. 1–6, 1996.

[57] Tektronix, “A Guide to MPEG Fundamentals and Protocol Analysis,”

[58] C. Ribeiro, M. Figueiredo, and L. N. Alves, “A Real-Time Platform for Collaborative
Research on Visible Light Communication,” 2015.

106



Appendix A

CRC-32 model

Parallel CRC generator VHDL code

1 -------------------------------------------------------------------------------
2 -- Copyright (C) 2009 OutputLogic.com
3 -- This source file may be used and distributed without restriction
4 -- provided that this copyright statement is not removed from the file
5 -- and that any derivative work contains the original copyright notice
6 -- and the associated disclaimer.
7 --
8 -- THIS SOURCE FILE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS
9 -- OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

10 -- WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
11 -------------------------------------------------------------------------------
12 -- CRC module for data(31:0)
13 -- ...

lfsr(31:0)=1+xˆ1+xˆ2+xˆ4+xˆ5+xˆ7+xˆ8+xˆ10+xˆ11+xˆ12+xˆ16+xˆ22+xˆ23+xˆ26+xˆ32;
14 -------------------------------------------------------------------------------
15 library ieee;
16 use ieee.std logic 1164.all;
17

18 entity crc is
19 port ( data in : in std logic vector (31 downto 0);
20 crc en , rst, clk : in std logic;
21 crc out : out std logic vector (31 downto 0));
22 end crc;
23

24 architecture imp crc of crc is
25 signal lfsr q: std logic vector (31 downto 0);
26 signal lfsr c: std logic vector (31 downto 0);
27 begin
28 crc out<= lfsr q;
29

30 lfsr c(0)<= lfsr q(0) xor lfsr q(6) xor lfsr q(9) xor lfsr q(10) xor ...
lfsr q(12) xor lfsr q(16) xor lfsr q(24) xor lfsr q(25) xor lfsr q(26) ...
xor lfsr q(28) xor lfsr q(29) xor lfsr q(30) xor lfsr q(31) xor ...
data in(0) xor data in(6) xor data in(9) xor data in(10) xor ...
data in(12) xor data in(16) xor data in(24) xor data in(25) xor ...
data in(26) xor data in(28) xor data in(29) xor data in(30) xor ...
data in(31);
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31 lfsr c(1)<= lfsr q(0) xor lfsr q(1) xor lfsr q(6) xor lfsr q(7) xor ...
lfsr q(9) xor lfsr q(11) xor lfsr q(12) xor lfsr q(13) xor lfsr q(16) ...
xor lfsr q(17) xor lfsr q(24) xor lfsr q(27) xor lfsr q(28) xor ...
data in(0) xor data in(1) xor data in(6) xor data in(7) xor data in(9) ...
xor data in(11) xor data in(12) xor data in(13) xor data in(16) xor ...
data in(17) xor data in(24) xor data in(27) xor data in(28);

32 lfsr c(2)<= lfsr q(0) xor lfsr q(1) xor lfsr q(2) xor lfsr q(6) xor ...
lfsr q(7) xor lfsr q(8) xor lfsr q(9) xor lfsr q(13) xor lfsr q(14) ...
xor lfsr q(16) xor lfsr q(17) xor lfsr q(18) xor lfsr q(24) xor ...
lfsr q(26) xor lfsr q(30) xor lfsr q(31) xor data in(0) xor data in(1) ...
xor data in(2) xor data in(6) xor data in(7) xor data in(8) xor ...
data in(9) xor data in(13) xor data in(14) xor data in(16) xor ...
data in(17) xor data in(18) xor data in(24) xor data in(26) xor ...
data in(30) xor data in(31);

33 lfsr c(3)<= lfsr q(1) xor lfsr q(2) xor lfsr q(3) xor lfsr q(7) xor ...
lfsr q(8) xor lfsr q(9) xor lfsr q(10) xor lfsr q(14) xor lfsr q(15) ...
xor lfsr q(17) xor lfsr q(18) xor lfsr q(19) xor lfsr q(25) xor ...
lfsr q(27) xor lfsr q(31) xor data in(1) xor data in(2) xor data in(3) ...
xor data in(7) xor data in(8) xor data in(9) xor data in(10) xor ...
data in(14) xor data in(15) xor data in(17) xor data in(18) xor ...
data in(19) xor data in(25) xor data in(27) xor data in(31);

34 lfsr c(4)<= lfsr q(0) xor lfsr q(2) xor lfsr q(3) xor lfsr q(4) xor ...
lfsr q(6) xor lfsr q(8) xor lfsr q(11) xor lfsr q(12) xor lfsr q(15) ...
xor lfsr q(18) xor lfsr q(19) xor lfsr q(20) xor lfsr q(24) xor ...
lfsr q(25) xor lfsr q(29) xor lfsr q(30) xor lfsr q(31) xor data in(0) ...
xor data in(2) xor data in(3) xor data in(4) xor data in(6) xor ...
data in(8) xor data in(11) xor data in(12) xor data in(15) xor ...
data in(18) xor data in(19) xor data in(20) xor data in(24) xor ...
data in(25) xor data in(29) xor data in(30) xor data in(31);

35 lfsr c(5)<= lfsr q(0) xor lfsr q(1) xor lfsr q(3) xor lfsr q(4) xor ...
lfsr q(5) xor lfsr q(6) xor lfsr q(7) xor lfsr q(10) xor lfsr q(13) ...
xor lfsr q(19) xor lfsr q(20) xor lfsr q(21) xor lfsr q(24) xor ...
lfsr q(28) xor lfsr q(29) xor data in(0) xor data in(1) xor data in(3) ...
xor data in(4) xor data in(5) xor data in(6) xor data in(7) xor ...
data in(10) xor data in(13) xor data in(19) xor data in(20) xor ...
data in(21) xor data in(24) xor data in(28) xor data in(29);

36 lfsr c(6)<= lfsr q(1) xor lfsr q(2) xor lfsr q(4) xor lfsr q(5) xor ...
lfsr q(6) xor lfsr q(7) xor lfsr q(8) xor lfsr q(11) xor lfsr q(14) ...
xor lfsr q(20) xor lfsr q(21) xor lfsr q(22) xor lfsr q(25) xor ...
lfsr q(29) xor lfsr q(30) xor data in(1) xor data in(2) xor data in(4) ...
xor data in(5) xor data in(6) xor data in(7) xor data in(8) xor ...
data in(11) xor data in(14) xor data in(20) xor data in(21) xor ...
data in(22) xor data in(25) xor data in(29) xor data in(30);

37 lfsr c(7)<= lfsr q(0) xor lfsr q(2) xor lfsr q(3) xor lfsr q(5) xor ...
lfsr q(7) xor lfsr q(8) xor lfsr q(10) xor lfsr q(15) xor lfsr q(16) ...
xor lfsr q(21) xor lfsr q(22) xor lfsr q(23) xor lfsr q(24) xor ...
lfsr q(25) xor lfsr q(28) xor lfsr q(29) xor data in(0) xor data in(2) ...
xor data in(3) xor data in(5) xor data in(7) xor data in(8) xor ...
data in(10) xor data in(15) xor data in(16) xor data in(21) xor ...
data in(22) xor data in(23) xor data in(24) xor data in(25) xor ...
data in(28) xor data in(29);

38 lfsr c(8)<= lfsr q(0) xor lfsr q(1) xor lfsr q(3) xor lfsr q(4) xor ...
lfsr q(8) xor lfsr q(10) xor lfsr q(11) xor lfsr q(12) xor lfsr q(17) ...
xor lfsr q(22) xor lfsr q(23) xor lfsr q(28) xor lfsr q(31) xor ...
data in(0) xor data in(1) xor data in(3) xor data in(4) xor data in(8) ...
xor data in(10) xor data in(11) xor data in(12) xor data in(17) xor ...
data in(22) xor data in(23) xor data in(28) xor data in(31);
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39 lfsr c(9)<= lfsr q(1) xor lfsr q(2) xor lfsr q(4) xor lfsr q(5) xor ...
lfsr q(9) xor lfsr q(11) xor lfsr q(12) xor lfsr q(13) xor lfsr q(18) ...
xor lfsr q(23) xor lfsr q(24) xor lfsr q(29) xor data in(1) xor ...
data in(2) xor data in(4) xor data in(5) xor data in(9) xor ...
data in(11) xor data in(12) xor data in(13) xor data in(18) xor ...
data in(23) xor data in(24) xor data in(29);

40 lfsr c(10)<= lfsr q(0) xor lfsr q(2) xor lfsr q(3) xor lfsr q(5) xor ...
lfsr q(9) xor lfsr q(13) xor lfsr q(14) xor lfsr q(16) xor lfsr q(19) ...
xor lfsr q(26) xor lfsr q(28) xor lfsr q(29) xor lfsr q(31) xor ...
data in(0) xor data in(2) xor data in(3) xor data in(5) xor data in(9) ...
xor data in(13) xor data in(14) xor data in(16) xor data in(19) xor ...
data in(26) xor data in(28) xor data in(29) xor data in(31);

41 lfsr c(11)<= lfsr q(0) xor lfsr q(1) xor lfsr q(3) xor lfsr q(4) xor ...
lfsr q(9) xor lfsr q(12) xor lfsr q(14) xor lfsr q(15) xor lfsr q(16) ...
xor lfsr q(17) xor lfsr q(20) xor lfsr q(24) xor lfsr q(25) xor ...
lfsr q(26) xor lfsr q(27) xor lfsr q(28) xor lfsr q(31) xor data in(0) ...
xor data in(1) xor data in(3) xor data in(4) xor data in(9) xor ...
data in(12) xor data in(14) xor data in(15) xor data in(16) xor ...
data in(17) xor data in(20) xor data in(24) xor data in(25) xor ...
data in(26) xor data in(27) xor data in(28) xor data in(31);

42 lfsr c(12)<= lfsr q(0) xor lfsr q(1) xor lfsr q(2) xor lfsr q(4) xor ...
lfsr q(5) xor lfsr q(6) xor lfsr q(9) xor lfsr q(12) xor lfsr q(13) ...
xor lfsr q(15) xor lfsr q(17) xor lfsr q(18) xor lfsr q(21) xor ...
lfsr q(24) xor lfsr q(27) xor lfsr q(30) xor lfsr q(31) xor data in(0) ...
xor data in(1) xor data in(2) xor data in(4) xor data in(5) xor ...
data in(6) xor data in(9) xor data in(12) xor data in(13) xor ...
data in(15) xor data in(17) xor data in(18) xor data in(21) xor ...
data in(24) xor data in(27) xor data in(30) xor data in(31);

43 lfsr c(13)<= lfsr q(1) xor lfsr q(2) xor lfsr q(3) xor lfsr q(5) xor ...
lfsr q(6) xor lfsr q(7) xor lfsr q(10) xor lfsr q(13) xor lfsr q(14) ...
xor lfsr q(16) xor lfsr q(18) xor lfsr q(19) xor lfsr q(22) xor ...
lfsr q(25) xor lfsr q(28) xor lfsr q(31) xor data in(1) xor data in(2) ...
xor data in(3) xor data in(5) xor data in(6) xor data in(7) xor ...
data in(10) xor data in(13) xor data in(14) xor data in(16) xor ...
data in(18) xor data in(19) xor data in(22) xor data in(25) xor ...
data in(28) xor data in(31);

44 lfsr c(14)<= lfsr q(2) xor lfsr q(3) xor lfsr q(4) xor lfsr q(6) xor ...
lfsr q(7) xor lfsr q(8) xor lfsr q(11) xor lfsr q(14) xor lfsr q(15) ...
xor lfsr q(17) xor lfsr q(19) xor lfsr q(20) xor lfsr q(23) xor ...
lfsr q(26) xor lfsr q(29) xor data in(2) xor data in(3) xor data in(4) ...
xor data in(6) xor data in(7) xor data in(8) xor data in(11) xor ...
data in(14) xor data in(15) xor data in(17) xor data in(19) xor ...
data in(20) xor data in(23) xor data in(26) xor data in(29);

45 lfsr c(15)<= lfsr q(3) xor lfsr q(4) xor lfsr q(5) xor lfsr q(7) xor ...
lfsr q(8) xor lfsr q(9) xor lfsr q(12) xor lfsr q(15) xor lfsr q(16) ...
xor lfsr q(18) xor lfsr q(20) xor lfsr q(21) xor lfsr q(24) xor ...
lfsr q(27) xor lfsr q(30) xor data in(3) xor data in(4) xor data in(5) ...
xor data in(7) xor data in(8) xor data in(9) xor data in(12) xor ...
data in(15) xor data in(16) xor data in(18) xor data in(20) xor ...
data in(21) xor data in(24) xor data in(27) xor data in(30);

46 lfsr c(16)<= lfsr q(0) xor lfsr q(4) xor lfsr q(5) xor lfsr q(8) xor ...
lfsr q(12) xor lfsr q(13) xor lfsr q(17) xor lfsr q(19) xor lfsr q(21) ...
xor lfsr q(22) xor lfsr q(24) xor lfsr q(26) xor lfsr q(29) xor ...
lfsr q(30) xor data in(0) xor data in(4) xor data in(5) xor data in(8) ...
xor data in(12) xor data in(13) xor data in(17) xor data in(19) xor ...
data in(21) xor data in(22) xor data in(24) xor data in(26) xor ...
data in(29) xor data in(30);
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47 lfsr c(17)<= lfsr q(1) xor lfsr q(5) xor lfsr q(6) xor lfsr q(9) xor ...
lfsr q(13) xor lfsr q(14) xor lfsr q(18) xor lfsr q(20) xor lfsr q(22) ...
xor lfsr q(23) xor lfsr q(25) xor lfsr q(27) xor lfsr q(30) xor ...
lfsr q(31) xor data in(1) xor data in(5) xor data in(6) xor data in(9) ...
xor data in(13) xor data in(14) xor data in(18) xor data in(20) xor ...
data in(22) xor data in(23) xor data in(25) xor data in(27) xor ...
data in(30) xor data in(31);

48 lfsr c(18)<= lfsr q(2) xor lfsr q(6) xor lfsr q(7) xor lfsr q(10) xor ...
lfsr q(14) xor lfsr q(15) xor lfsr q(19) xor lfsr q(21) xor lfsr q(23) ...
xor lfsr q(24) xor lfsr q(26) xor lfsr q(28) xor lfsr q(31) xor ...
data in(2) xor data in(6) xor data in(7) xor data in(10) xor ...
data in(14) xor data in(15) xor data in(19) xor data in(21) xor ...
data in(23) xor data in(24) xor data in(26) xor data in(28) xor ...
data in(31);

49 lfsr c(19)<= lfsr q(3) xor lfsr q(7) xor lfsr q(8) xor lfsr q(11) xor ...
lfsr q(15) xor lfsr q(16) xor lfsr q(20) xor lfsr q(22) xor lfsr q(24) ...
xor lfsr q(25) xor lfsr q(27) xor lfsr q(29) xor data in(3) xor ...
data in(7) xor data in(8) xor data in(11) xor data in(15) xor ...
data in(16) xor data in(20) xor data in(22) xor data in(24) xor ...
data in(25) xor data in(27) xor data in(29);

50 lfsr c(20)<= lfsr q(4) xor lfsr q(8) xor lfsr q(9) xor lfsr q(12) xor ...
lfsr q(16) xor lfsr q(17) xor lfsr q(21) xor lfsr q(23) xor lfsr q(25) ...
xor lfsr q(26) xor lfsr q(28) xor lfsr q(30) xor data in(4) xor ...
data in(8) xor data in(9) xor data in(12) xor data in(16) xor ...
data in(17) xor data in(21) xor data in(23) xor data in(25) xor ...
data in(26) xor data in(28) xor data in(30);

51 lfsr c(21)<= lfsr q(5) xor lfsr q(9) xor lfsr q(10) xor lfsr q(13) xor ...
lfsr q(17) xor lfsr q(18) xor lfsr q(22) xor lfsr q(24) xor lfsr q(26) ...
xor lfsr q(27) xor lfsr q(29) xor lfsr q(31) xor data in(5) xor ...
data in(9) xor data in(10) xor data in(13) xor data in(17) xor ...
data in(18) xor data in(22) xor data in(24) xor data in(26) xor ...
data in(27) xor data in(29) xor data in(31);

52 lfsr c(22)<= lfsr q(0) xor lfsr q(9) xor lfsr q(11) xor lfsr q(12) xor ...
lfsr q(14) xor lfsr q(16) xor lfsr q(18) xor lfsr q(19) xor lfsr q(23) ...
xor lfsr q(24) xor lfsr q(26) xor lfsr q(27) xor lfsr q(29) xor ...
lfsr q(31) xor data in(0) xor data in(9) xor data in(11) xor ...
data in(12) xor data in(14) xor data in(16) xor data in(18) xor ...
data in(19) xor data in(23) xor data in(24) xor data in(26) xor ...
data in(27) xor data in(29) xor data in(31);

53 lfsr c(23)<= lfsr q(0) xor lfsr q(1) xor lfsr q(6) xor lfsr q(9) xor ...
lfsr q(13) xor lfsr q(15) xor lfsr q(16) xor lfsr q(17) xor lfsr q(19) ...
xor lfsr q(20) xor lfsr q(26) xor lfsr q(27) xor lfsr q(29) xor ...
lfsr q(31) xor data in(0) xor data in(1) xor data in(6) xor data in(9) ...
xor data in(13) xor data in(15) xor data in(16) xor data in(17) xor ...
data in(19) xor data in(20) xor data in(26) xor data in(27) xor ...
data in(29) xor data in(31);

54 lfsr c(24)<= lfsr q(1) xor lfsr q(2) xor lfsr q(7) xor lfsr q(10) xor ...
lfsr q(14) xor lfsr q(16) xor lfsr q(17) xor lfsr q(18) xor lfsr q(20) ...
xor lfsr q(21) xor lfsr q(27) xor lfsr q(28) xor lfsr q(30) xor ...
data in(1) xor data in(2) xor data in(7) xor data in(10) xor ...
data in(14) xor data in(16) xor data in(17) xor data in(18) xor ...
data in(20) xor data in(21) xor data in(27) xor data in(28) xor ...
data in(30);

55 lfsr c(25)<= lfsr q(2) xor lfsr q(3) xor lfsr q(8) xor lfsr q(11) xor ...
lfsr q(15) xor lfsr q(17) xor lfsr q(18) xor lfsr q(19) xor lfsr q(21) ...
xor lfsr q(22) xor lfsr q(28) xor lfsr q(29) xor lfsr q(31) xor ...
data in(2) xor data in(3) xor data in(8) xor data in(11) xor ...
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data in(15) xor data in(17) xor data in(18) xor data in(19) xor ...
data in(21) xor data in(22) xor data in(28) xor data in(29) xor ...
data in(31);

56 lfsr c(26)<= lfsr q(0) xor lfsr q(3) xor lfsr q(4) xor lfsr q(6) xor ...
lfsr q(10) xor lfsr q(18) xor lfsr q(19) xor lfsr q(20) xor lfsr q(22) ...
xor lfsr q(23) xor lfsr q(24) xor lfsr q(25) xor lfsr q(26) xor ...
lfsr q(28) xor lfsr q(31) xor data in(0) xor data in(3) xor data in(4) ...
xor data in(6) xor data in(10) xor data in(18) xor data in(19) xor ...
data in(20) xor data in(22) xor data in(23) xor data in(24) xor ...
data in(25) xor data in(26) xor data in(28) xor data in(31);

57 lfsr c(27)<= lfsr q(1) xor lfsr q(4) xor lfsr q(5) xor lfsr q(7) xor ...
lfsr q(11) xor lfsr q(19) xor lfsr q(20) xor lfsr q(21) xor lfsr q(23) ...
xor lfsr q(24) xor lfsr q(25) xor lfsr q(26) xor lfsr q(27) xor ...
lfsr q(29) xor data in(1) xor data in(4) xor data in(5) xor data in(7) ...
xor data in(11) xor data in(19) xor data in(20) xor data in(21) xor ...
data in(23) xor data in(24) xor data in(25) xor data in(26) xor ...
data in(27) xor data in(29);

58 lfsr c(28)<= lfsr q(2) xor lfsr q(5) xor lfsr q(6) xor lfsr q(8) xor ...
lfsr q(12) xor lfsr q(20) xor lfsr q(21) xor lfsr q(22) xor lfsr q(24) ...
xor lfsr q(25) xor lfsr q(26) xor lfsr q(27) xor lfsr q(28) xor ...
lfsr q(30) xor data in(2) xor data in(5) xor data in(6) xor data in(8) ...
xor data in(12) xor data in(20) xor data in(21) xor data in(22) xor ...
data in(24) xor data in(25) xor data in(26) xor data in(27) xor ...
data in(28) xor data in(30);

59 lfsr c(29)<= lfsr q(3) xor lfsr q(6) xor lfsr q(7) xor lfsr q(9) xor ...
lfsr q(13) xor lfsr q(21) xor lfsr q(22) xor lfsr q(23) xor lfsr q(25) ...
xor lfsr q(26) xor lfsr q(27) xor lfsr q(28) xor lfsr q(29) xor ...
lfsr q(31) xor data in(3) xor data in(6) xor data in(7) xor data in(9) ...
xor data in(13) xor data in(21) xor data in(22) xor data in(23) xor ...
data in(25) xor data in(26) xor data in(27) xor data in(28) xor ...
data in(29) xor data in(31);

60 lfsr c(30)<= lfsr q(4) xor lfsr q(7) xor lfsr q(8) xor lfsr q(10) xor ...
lfsr q(14) xor lfsr q(22) xor lfsr q(23) xor lfsr q(24) xor lfsr q(26) ...
xor lfsr q(27) xor lfsr q(28) xor lfsr q(29) xor lfsr q(30) xor ...
data in(4) xor data in(7) xor data in(8) xor data in(10) xor ...
data in(14) xor data in(22) xor data in(23) xor data in(24) xor ...
data in(26) xor data in(27) xor data in(28) xor data in(29) xor ...
data in(30);

61 lfsr c(31)<= lfsr q(5) xor lfsr q(8) xor lfsr q(9) xor lfsr q(11) xor ...
lfsr q(15) xor lfsr q(23) xor lfsr q(24) xor lfsr q(25) xor lfsr q(27) ...
xor lfsr q(28) xor lfsr q(29) xor lfsr q(30) xor lfsr q(31) xor ...
data in(5) xor data in(8) xor data in(9) xor data in(11) xor ...
data in(15) xor data in(23) xor data in(24) xor data in(25) xor ...
data in(27) xor data in(28) xor data in(29) xor data in(30) xor ...
data in(31);

62

63

64 process (clk,rst) begin
65 if (rst = '1') then
66 lfsr q<= b"11111111111111111111111111111111";
67 elsif (clk'EVENT and clk = '1') then
68 if (crc en = '1') then
69 lfsr q<= lfsr c;
70 end if;
71 end if;
72 end process;
73 end architecture imp crc;

111



MatLab code for CRC emitter state machine controller

1 %% Emitter CRC generator control state machine
2 function [ data out select, crc enable, crc reset, output valid ] = ...

crc tx ctrl( data valid, data length )
3

4 RESET = 0;
5 DATA AQ = 1;
6 CRC WAIT = 2;
7 WAIT = 3;
8

9 DATA = 0;
10 CRC = 1;
11

12 persistent state, state = xl state(RESET,{xlUnsigned, 2, 0});
13 persistent data out select internal, data out select internal = ...

xl state(0,{xlUnsigned, 1, 0});
14 persistent crc enable internal, crc enable internal = ...

xl state(0,{xlUnsigned, 1, 0});
15 persistent data counter, data counter = xl state(0,{xlUnsigned, 8, 0});
16 persistent crc reset internal, crc reset internal = ...

xl state(0,{xlUnsigned, 1, 0});
17 persistent output valid internal, output valid internal = ...

xl state(0,{xlUnsigned, 1, 0});
18

19 switch state
20 case RESET
21 data out select internal = DATA;
22 crc enable internal = 1;
23 crc reset internal = 1;
24 output valid internal = 0;
25

26 data counter = 1;
27 if xfix({xlUnsigned, 1, 0, xlTruncate, xlWrap},data valid) == 1
28 state = DATA AQ;
29 end
30

31

32 case DATA AQ
33 if xfix({xlUnsigned, 1, 0, xlTruncate, xlWrap},data valid) == 1
34 data out select internal = DATA;
35 crc enable internal = 1;
36 crc reset internal = 0;
37 output valid internal = 1;
38

39 data counter = xfix({xlUnsigned, 8, 0, xlTruncate, ...
xlWrap},data counter + 1);

40

41 if xfix({xlUnsigned, 8, 0, xlTruncate, ...
xlWrap},data counter) ≥ xfix({xlUnsigned, 8, 0, ...
xlTruncate, xlWrap},data length-1)

42 state = CRC WAIT;
43 end
44 end
45

46
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47 case CRC WAIT
48 data out select internal = CRC;
49 crc enable internal = 1;
50 crc reset internal = 0;
51 output valid internal = 1;
52

53 state = RESET;
54

55

56 case WAIT
57 data out select internal = CRC;
58 crc enable internal = 0;
59 crc reset internal = 1;
60 output valid internal = 0;
61

62 state = RESET;
63

64 otherwise
65 state = RESET;
66 end
67

68 data out select = data out select internal;
69 crc enable = crc enable internal;
70 crc reset = crc reset internal;
71 output valid = output valid internal;
72 end
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MatLab code for CRC receiver state machine controller

1 function [crc enable, crc reset, output valid, crc valid] = crc rx ctrl( ...
data valid, data length )

2 %UNTITLED2 Summary of this function goes here
3 % Detailed explanation goes here
4

5 RESET = 0;
6 DATA AQ = 1;
7 CRC COMPARE = 2;
8 WAIT = 3;
9

10

11 persistent state, state = xl state(RESET,{xlUnsigned, 2, 0});
12 persistent crc enable internal, crc enable internal = ...

xl state(0,{xlUnsigned, 1, 0});
13 persistent data counter, data counter = xl state(0,{xlUnsigned, 8, 0});
14 persistent crc reset internal, crc reset internal = ...

xl state(0,{xlUnsigned, 1, 0});
15 persistent output valid internal, output valid internal = ...

xl state(0,{xlUnsigned, 1, 0});
16 persistent crc valid internal, crc valid internal = ...

xl state(0,{xlUnsigned, 1, 0});
17

18 switch state
19 case RESET
20 crc enable internal = 1;
21 crc reset internal = 1;
22 output valid internal = 1;
23 crc valid internal = 0;
24

25

26 data counter = 1;
27 if xfix({xlUnsigned, 1, 0, xlTruncate, xlWrap},data valid) == 1
28 state = DATA AQ;
29 end
30

31

32 case DATA AQ
33 if xfix({xlUnsigned, 1, 0, xlTruncate, xlWrap},data valid) == 1
34 crc enable internal = 1;
35 crc reset internal = 0;
36 output valid internal = 1;
37 crc valid internal = 0;
38

39 data counter = xfix({xlUnsigned, 8, 0, xlTruncate, ...
xlWrap},data counter + 1);

40

41 if xfix({xlUnsigned, 8, 0, xlTruncate, ...
xlWrap},data counter) ≥ xfix({xlUnsigned, 8, 0, ...
xlTruncate, xlWrap},data length-1)

42 state = CRC COMPARE;
43 end
44 else
45 crc enable internal = 0;
46 crc reset internal = 0;

114



47 output valid internal = 0;
48 crc valid internal = 0;
49 end
50

51

52 case CRC COMPARE
53 crc enable internal = 1;
54 crc reset internal = 0;
55 output valid internal = 0;
56 crc valid internal = 1;
57

58 state = RESET;
59

60

61 case WAIT
62 crc enable internal = 0;
63 crc reset internal = 1;
64 output valid internal = 0;
65 crc valid internal = 0;
66

67 state = RESET;
68

69 otherwise
70 state = RESET;
71 end
72

73 crc enable = crc enable internal;
74 crc reset = crc reset internal;
75 output valid = output valid internal;
76 crc valid = crc valid internal;
77

78

79

80 end
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MatLab code for Frame Error Rate calculation state machine

1 function [ N frame errors, N frames] = error rate calc( crc valid, ...
crc pass fail n, reset )

2

3 IDLE = 0;
4 CRC = 1;
5 RESET = 2;
6

7 persistent estado, estado = xl state(RESET,{xlUnsigned, 2, 0});
8 persistent n frame errors internal, n frame errors internal = ...

xl state(0,{xlUnsigned, 16, 0});
9 persistent n frames internal, n frames internal = xl state(0,{xlUnsigned, ...

16, 0});
10

11 if xfix({xlUnsigned, 1, 0, xlTruncate, xlWrap},reset) == 1
12 estado = RESET;
13 end
14

15 switch estado
16

17 case IDLE
18 disp(5);
19 if xfix({xlUnsigned, 1, 0, xlTruncate, xlWrap},crc valid) == 1
20 estado = CRC;
21 n frames internal = xfix({xlUnsigned, 16, 0, xlTruncate, ...

xlWrap},n frames internal + 1);
22

23 if xfix({xlUnsigned, 1, 0, xlTruncate, ...
xlWrap},crc pass fail n) == 0

24 n frame errors internal = xfix({xlUnsigned, 16, 0, ...
xlTruncate, xlWrap}, n frame errors internal + 1) ;

25 end
26 end
27

28 case CRC
29 if xfix({xlUnsigned, 1, 0, xlTruncate, xlWrap},crc valid) == 0
30 estado = IDLE;
31 end
32

33 case RESET
34 if xfix({xlUnsigned, 1, 0, xlTruncate, xlWrap},reset) == 0
35 estado = IDLE;
36 end
37

38 otherwise
39 estado = IDLE;
40 end
41

42 N frame errors = n frame errors internal;
43 N frames = n frames internal;
44 end
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Appendix B

System Constraints MatLab script
file

1 clear all
2 close all
3 clc
4

5 colorstring = 'rgbcmyk';
6

7 %% RS vs Convolutional
8 SNR = 0:0.1:12;
9 ber awgn = berawgn(SNR,'psk',4,'nondiff');

10 semilogy(SNR,ber awgn, 'LineWidth', 2.5)
11 hold on
12 grid on
13

14 SNR = 0:0.1:12;
15 trellis = poly2trellis(7, [171 133]);
16 RS = bercoding(SNR, 'RS', 'hard', 255, 213);
17 Conv = bercoding(SNR, 'conv', 'hard', 0.5, distspec(trellis));
18

19 semilogy(SNR,RS,'g', 'LineWidth', 2.5)
20 semilogy(SNR,Conv,'r', 'LineWidth', 2.5)
21

22 legend('QPSK uncoded','RS(255,213)','Convolutional code K=7, R=1/2')
23 axis([0 12 10ˆ-10 10ˆ-0])
24 xlabel('SNR (dB)','FontSize',19)
25 ylabel('Bit Error Rate','FontSize',19)
26 %title('FEC performance over AWGN channel','FontSize',19)
27 set(gca,'FontSize',14)
28

29 %% QPSK BER over AWGN channel
30 SNR = 0:0.1:10;
31 BER QPSK = berawgn(SNR, 'psk', 4, 'nondiff')
32 figure()
33 semilogy(SNR, BER QPSK, 'LineWidth',2)
34 hold on
35 grid on
36 semilogy(7,BER QPSK(70+1), '*r', 'LineWidth', 2)
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37

38 strQPSK = strcat('BER = 7.2e-4 @ 7.0dB');
39 text(6.5, BER QPSK(70+1),strQPSK,'HorizontalAlignment','right', 'FontSize', ...

12, 'Color', 'k', 'FontWeight', 'bold', 'Margin', 1, 'BackgroundColor', 'w')
40 xlabel('SNR','FontSize', 12)
41 ylabel('BER', 'FontSize', 12)
42 %title('QPSK performance over AWGN channel', 'FontSize', 12)
43 legend('QPSK')
44

45 %% BER out vs Code efficiency
46 N = 255;
47 K vector = 1:2:249;
48 R = K vector./N;
49 figure()
50

51 SNR = 7;
52 for i=1:length(K vector)
53 K = K vector(i);
54

55 BER out(i) = bercoding(SNR, 'RS', 'hard', N, K, 'psk', 4, 'nondiff');
56 end
57

58 semilogx(BER out, R, 'LineWidth', 2)
59 hold on
60 grid on
61

62 [minimo,indice]=min(BER out);
63 semilogx(minimo, R(indice), '*r','LineWidth', 2)
64

65 strRScode = strcat('\rightarrow RS(255,',num2str(K vector(indice)),'); ...
efficiency=', num2str(R(indice),4));

66 text(minimo*4,R(indice),strRScode,'FontSize', 10, 'Color', 'k', 'FontWeight', ...
'bold', 'Margin', 3, 'BackgroundColor', 'w');

67

68 xlabel('Bit Error Rate @ output', 'FontSize', 12)
69 ylabel('Code efficiency', 'FontSize', 12)
70 %title('Bit Error Rate vs efficiency', 'FontSize', 12)
71 legend(strcat('SNR = ', num2str(SNR), 'dB'))
72

73

74 %% Efficiency vs FER
75 clear all
76

77 frame size = [128 256 512 1024 2048 4096]; % frame size in Bytes
78 N = 255;
79 K = 165:2:253;
80

81 k = ceil(log2(N+1)); % Elements dimension
82 M = 2ˆk; % Number of different symbols
83 R = K/N; % Code rate
84 t = (N-K)/2; % Error correction RS capability
85

86 SNR = 7;
87 EbNo = 10.ˆ((SNR)/10); % Linear values
88

89 for f=1:length(frame size)
90 for c=1:length(K)
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91

92 k = ceil(log2(N+1)); % Elements dimension
93 M = 2ˆk; % Number of different symbols
94 R = K(c)/N; % Code rate
95 t = (N-K(c))/2; % Error correction RS capability
96

97 s = (1-qfunc(sqrt(2*R.*EbNo))).ˆk; % Probability of symbol is ...
correctly received

98 PM = 1-s; % Probability of code-word symbol ...
error

99

100 Pes=0;
101 for i = (t+1):N
102 Pes = Pes + (i*nchoosek(N,i).*(PM.ˆi).*(1-PM).ˆ(N-i));
103 end
104 BER(f,c) = Pes./N;
105

106 BLER(f,c) = 1-(1-BER(f,c)).ˆK(c);
107

108 NBLOCKS = ceil(frame size(f)/K(c));
109

110 FER(f,c) = (1-(1-BLER(f,c)).ˆNBLOCKS);
111

112 end
113

114 end
115

116 %% Efficiency vs FER plots
117 figure()
118 for i=1:length(K)
119 x(:,i)=(K(i)./N) .* (frame size./(frame size+8));
120 semilogy((K(i)./N) .* (frame size./(frame size+8)), FER(:,i), '-*')
121 hold on
122 grid on
123

124 end
125 hold on
126

127 plot(get(gca,'xlim'), [ 2.3704e-08 2.3704e-08])
128 %title('Efficiency vs FER Frame ','FontSize', 12)
129 axis([0.65 1 10e-15 2])
130 ylabel('FER','FontSize', 12)
131 xlabel('Total Efficiency','FontSize', 12)
132

133

134 %% Eff vs FER for framesize=256 for all RS codes
135 figure()
136 for i=1:length(K)
137

138 semilogy((K(i)./N) .* (frame size(2)./(frame size(2)+8)), FER(2,i), '-*', ...
'Linewidth', 1.5)

139

140 hold on
141 grid on
142 end
143

144 plot(get(gca,'xlim'), [ 2.3704e-08 2.3704e-08])
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145 semilogy((K(26)./N) .* (frame size(2)./(frame size(2)+8)), FER(2,26), '-rO', ...
'Linewidth', 2)

146

147 strRScode = strcat('\leftarrow RS(255,',num2str(K(26)),'); efficiency=', ...
num2str((K(26)./N) .* (frame size(2)./(frame size(2)+8))));

148 text((K(27)./N) .* (frame size(2)./(frame size(2)+8)), ...
FER(2,26),strRScode,'FontSize', 10, 'Color', 'k', 'FontWeight', 'bold', ...
'Margin', 1, 'BackgroundColor', 'w');

149 hold on
150

151 %title('Efficiency vs FER for Frame Size = 256','FontSize', 12)
152 axis([0.65 1 10e-15 2])
153 ylabel('FER','FontSize', 12)
154 xlabel('Total Efficiency','FontSize', 12)
155

156 %% Efficiency vs BER for one code
157 figure()
158

159 i=25;
160

161 semilogy((K(i)./N) .* (frame size./(frame size+8)), FER(:,i), '-*')
162 hold on
163 grid on
164 semilogy((K(i)./N) .* (frame size(2)./(frame size(2)+8)), FER(2,i), ...

'-rO', 'Linewidth', 2)
165

166 axis([0.785 0.85 3e-9 2e-7])
167 ylabel('FER','FontSize', 12)
168 xlabel('Total Efficiency','FontSize', 12)
169

170 %% Auxiliar calculations
171 %% Horas a funcionar sem errros para FER
172 bitrate=24e6; %24Mbits/seg
173 framesize=256; %em bytes
174 frameporseg=bitrate/(8*framesize);
175 tempo=60*60; %tempo em segundos
176 FER=1/(frameporseg*tempo)
177 %% FER para horas
178 FER=1.95*10ˆ-9;
179 bitrate=24000000; %24Mbits/seg
180 framesize=128; %em bytes
181 tempo horas=(1/FER)/(bitrate/(framesize*8))/3600
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Appendix C

MatLab scripts

Burst errors statistical analysis

1 %%
2 IDLE = 0;
3 ERROR = 1;
4 BURST = 2;
5 BURST END = 3;
6

7 c=0;
8 state=IDLE;
9 burstlengthcount = [];

10

11 for i=1:length(simout)
12 switch state
13 case IDLE
14 if simout(i) == 1
15 state = ERROR;
16 end
17

18 case ERROR
19 if simout(i) == 1
20 c=c+2;
21 state = BURST;
22 else
23 state = IDLE;
24 end
25

26 case BURST
27 if simout(i) == 1
28 c=c+1;
29 else
30 state = BURST END;
31 end
32

33 case BURST END
34 burstlengthcount = [burstlengthcount c];
35 c=0;
36 state = IDLE;
37 end
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38 end
39

40 number of burst errors = length(burstlengthcount)
41 average burst length=mean(burstlengthcount)
42 max burst length=max(burstlengthcount)
43 min burst length=min(burstlengthcount)

122



MatLab function for computing BER of Reed-Solomon codes

1 % Reed-Solomon bit error probability vs Eb/No
2 function ber = rsber estimation(EbNodb,N,K)
3 k = ceil(log2(N+1)); % Elements dimension
4 M = 2ˆk; % Number of different symbols
5 R = K/N; % Code rate
6 t = (N-K)/2; % Error correction RS capability
7

8 EbNo = 10.ˆ((EbNodb)/10); % Linear Eb/No values
9

10 s = (1-qfunc(sqrt(2*R.*EbNo))).ˆk; % Probability of symbol is correctly ...
received

11 PM = 1-s; % Probability of code-word symbol error
12

13 % Symbol error probability when code-word error is made
14 Pes = 0;
15 for i = (t+1):N
16 Pes = Pes + (i*nchoosek(N,i).*(PM.ˆi).*(1-PM).ˆ(N-i));
17 end
18 Pes = Pes./N;
19

20 % Conversion between symbol error probability to bit error probability
21 %ber = Pes.*((2ˆ(k-1))/(2ˆk-1));
22 ber = Pes./k; %approximated value for lower BER
23 end
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Appendix D

Asynchronous Implementation
FSMs

CRC TX FSM

1 function [ data out select, crc enable, crc reset, output valid, RE ] = ...
crc tx ctrl( En data, AE, data length, reset)

2

3 RESET = 0;
4 DATA READ = 1;
5 CRC RESULT = 2;
6 WAIT = 3;
7

8 DATA = 0;
9 CRC = 1;

10

11 %Boolean definitions
12 ON = xfix({xlBoolean}, 1); % Boolean '1'
13 OFF = xfix({xlBoolean}, 0); % Boolean '0'
14

15 persistent state, state = xl state(RESET,{xlUnsigned, 2, 0});
16 persistent data counter, data counter = xl state(0,{xlUnsigned, 8, 0});
17

18 switch state
19 case RESET
20 data out select = DATA;
21 crc enable = 0;
22 crc reset = 1;
23 output valid = OFF;
24 RE = OFF;
25

26 data counter = 0;
27

28 if En data == ON && AE == OFF
29 state = DATA READ;
30 end
31

32 case DATA READ
33 data out select = DATA;
34 crc enable = 1;
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35 crc reset = 0;
36 output valid = ON;
37 RE = ON;
38

39 data counter = xfix({xlUnsigned, 8, 0, xlTruncate, ...
xlWrap},data counter + 1);

40

41 if xfix({xlUnsigned, 8, 0, xlTruncate, xlWrap},data counter) ≥ ...
xfix({xlUnsigned, 8, 0, xlTruncate, xlWrap},data length)

42 state = CRC RESULT;
43 end
44

45 if En data == OFF | | AE == ON
46 state = WAIT;
47 end
48

49 if reset == ON
50 state = RESET;
51 end
52

53

54

55 case CRC RESULT
56 data out select = CRC;
57 crc enable = 1;
58 crc reset = 0;
59 output valid = ON;
60 RE = OFF;
61

62 state = RESET;
63

64 case WAIT
65 data out select = DATA;
66 crc enable = 0;
67 crc reset = 0;
68 output valid = OFF;
69 RE = OFF;
70

71 if En data == ON && AE == OFF
72 state = DATA READ;
73 end
74

75 otherwise
76 state = RESET;
77

78 data out select= DATA;
79 crc enable = 1;
80 crc reset = 1;
81 output valid = OFF;
82 RE = OFF;
83 end
84

85 end
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CRC RX FSM

1 function [ crc enable, crc reset, output valid, crc valid, RE ] = ...
crc rx ctrl( En data, AF, data length, reset)

2

3 RESET = 0;
4 DATA READ = 1;
5 CRC COMPARE = 2;
6 WAIT = 3;
7

8 %Boolean definitions
9 ON = xfix({xlBoolean}, 1); % Boolean '1'

10 OFF = xfix({xlBoolean}, 0); % Boolean '0'
11

12 persistent state, state = xl state(RESET,{xlUnsigned, 2, 0});
13 persistent data counter, data counter = xl state(0,{xlUnsigned, 8, 0});
14

15 switch state
16 case RESET
17 crc valid = OFF;
18 crc enable = 1;
19 crc reset = 1;
20 output valid = OFF;
21 RE = OFF;
22

23 data counter = 0;
24

25 if En data == ON && AF == OFF
26 state = DATA READ;
27 end
28

29 case DATA READ
30 crc valid = OFF;
31 crc enable = 1;
32 crc reset = 0;
33 output valid = ON;
34 RE = ON;
35

36 data counter = xfix({xlUnsigned, 8, 0, xlTruncate, ...
xlWrap},data counter + 1);

37

38 if xfix({xlUnsigned, 8, 0, xlTruncate, xlWrap},data counter) ≥ ...
xfix({xlUnsigned, 8, 0, xlTruncate, xlWrap},data length)

39 state = CRC COMPARE;
40 end
41

42 if En data == OFF | | AF == ON
43 state = WAIT;
44 end
45

46 if reset == ON
47 state = RESET;
48 end
49

50 case CRC COMPARE
51 crc enable = 1;
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52 crc reset = 0;
53 output valid = OFF;
54 crc valid = ON;
55 RE = ON;
56

57 state = RESET;
58

59 case WAIT
60 crc valid = OFF;
61 crc enable = 0;
62 crc reset = 0;
63 output valid = OFF;
64 RE = OFF;
65

66 if En data == ON && AF == OFF
67 state = DATA READ;
68 end
69

70 otherwise
71 state = RESET;
72

73 crc valid= OFF;
74 crc enable = 1;
75 crc reset = 1;
76 output valid = OFF;
77 RE = OFF;
78 end
79

80 end
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Reed-Solomon TX FSM

1 function [ RS data valid, RS data last, RE ] = TX CH ENC RS CTRL( En Data, ...
AE, reset)

2

3 % states declaration
4 RESET = 0;
5 RS READ = 1;
6 RS WAIT = 2;
7 WAIT = 3;
8

9 %Boolean definitions
10 ON = xfix({xlBoolean}, 1); % Boolean '1'
11 OFF = xfix({xlBoolean}, 0); % Boolean '0'
12

13 persistent state, state = xl state(RESET, {xlUnsigned, 2, 0});
14 persistent data counter, data counter = xl state(0, {xlUnsigned, 11, 0});
15

16 switch state
17 case RESET
18 RS data valid = OFF;
19 RS data last = OFF;
20 RE = OFF;
21

22 data counter = 0;
23

24 if AE == OFF && En Data == ON
25 state = RS READ;
26 else
27 state = WAIT;
28 end
29

30

31 case RS READ
32

33

34 if xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},data counter) == ...
xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},212)

35 RS data last = ON;
36 RE = OFF;
37 else
38 RS data last = OFF;
39 RE = ON;
40 end
41

42 RS data valid = ON;
43

44 data counter = xfix({xlUnsigned, 11, 0, xlTruncate, ...
xlWrap},data counter + 1);

45

46 if xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},data counter) == ...
xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},213)

47 state = RS WAIT;
48 end
49

50 if En Data == OFF | | AE == ON
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51 state = WAIT;
52 end
53

54 if reset == ON
55 state = RESET;
56 end
57

58 case RS WAIT
59 RS data valid = OFF;
60 RS data last = OFF;
61 RE = OFF;
62

63 if xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},data counter) == ...
xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},1074) % 1074

64 state = RESET;
65 else
66 data counter = xfix({xlUnsigned, 11, 0, xlTruncate, ...

xlWrap},data counter + 1);
67 end
68

69 if reset == ON
70 state = RESET;
71 end
72

73 case WAIT
74 RS data valid = OFF;
75 RS data last = OFF;
76 RE = OFF;
77

78 if AE == OFF && En Data == ON
79 state = RS READ;
80 end
81

82 if reset == ON
83 state = RESET;
84 end
85

86 otherwise
87 RS data valid = OFF;
88 RS data last = OFF;
89 RE = OFF;
90

91 state = RESET;
92

93 end
94

95 end
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Reed-Solomon RX FSM

1 function [ RS data valid, RS data last, RE ] = RX CH ENC RS CTRL( En Data, ...
AF, reset)

2

3 % states declaration
4 RESET = 0;
5 RS READ = 1;
6 RS WAIT = 2;
7 WAIT = 3;
8

9 %Boolean definitions
10 ON = xfix({xlBoolean}, 1); % Boolean '1'
11 OFF = xfix({xlBoolean}, 0); % Boolean '0'
12

13 persistent state, state = xl state(RESET, {xlUnsigned, 2, 0});
14 persistent data counter, data counter = xl state(0, {xlUnsigned, 11, 0});
15

16 switch state
17 case RESET
18 RS data valid = OFF;
19 RS data last = OFF;
20 RE = OFF;
21

22 data counter = 0;
23

24 if AF == OFF && En Data == ON
25 state = RS READ;
26 else
27 state = WAIT;
28 end
29

30

31 case RS READ
32

33

34 if xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},data counter) == ...
xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},254)

35 RS data last = ON;
36 else
37 RS data last = OFF;
38 end
39

40 RS data valid = ON;
41 RE = ON;
42

43 data counter = xfix({xlUnsigned, 11, 0, xlTruncate, ...
xlWrap},data counter + 1);

44

45 if xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},data counter) == ...
xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},255)

46 state = RS WAIT;
47 end
48

49 if En Data == OFF | | AF == ON
50 state = WAIT;
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51 end
52

53 if reset == ON
54 state = RESET;
55 end
56

57 case RS WAIT
58 RS data valid = OFF;
59 RS data last = OFF;
60 RE = OFF;
61

62 if xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},data counter) == ...
xfix({xlUnsigned, 11, 0, xlTruncate, xlWrap},1074) % 1074

63 state = RESET;
64 else
65 data counter = xfix({xlUnsigned, 11, 0, xlTruncate, ...

xlWrap},data counter + 1);
66 end
67

68 if reset == ON
69 state = RESET;
70 end
71

72 case WAIT
73 RS data valid = OFF;
74 RS data last = OFF;
75 RE = OFF;
76

77 if AF == OFF && En Data == ON
78 state = RS READ;
79 end
80

81 if reset == ON
82 state = RESET;
83 end
84

85 otherwise
86 RS data valid = OFF;
87 RS data last = OFF;
88 RE = OFF;
89

90 state = RESET;
91

92 end
93

94 end
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Interleaving TX FSM

1 function [ INT data valid, INT data last, RE ] = TX CH ENC INT CTRL( AE, ...
En Data, reset )

2

3 % states declaration
4 RESET = 0;
5 INT READ = 1;
6 INT WAIT = 2;
7 WAIT = 3;
8

9

10 %Boolean definitions
11 ON = xfix({xlBoolean}, 1); % Boolean '1'
12 OFF = xfix({xlBoolean}, 0); % Boolean '0'
13

14 persistent state, state = xl state(RESET, {xlUnsigned, 2, 0});
15 persistent data counter, data counter = xl state(0, {xlUnsigned, 12, 0});
16

17 switch state
18 case RESET
19 INT data valid = OFF;
20 INT data last = OFF;
21 RE = OFF;
22

23 data counter = 0;
24

25 if AE == OFF && En Data == ON
26 state = INT READ;
27 else
28 state = WAIT;
29 end
30

31 case INT READ
32 INT data valid = ON;
33 INT data last = OFF;
34 RE = ON;
35

36 if xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},data counter) < ...
xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},2550-1)

37 data counter = xfix({xlUnsigned, 12, 0, xlTruncate, ...
xlWrap},data counter + 1);

38

39 elseif xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},data counter) ...
== xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},2550-1)

40 INT data last = ON;
41 data counter = 0;
42 state = INT WAIT;
43 end
44

45 if En Data == OFF | | AE == ON
46 state = WAIT;
47 end
48

49 if reset == ON
50 state = RESET;
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51 end
52

53 case INT WAIT;
54 INT data valid = OFF;
55 INT data last = OFF;
56 RE = OFF;
57

58 % wait for 10 RS codewords (2550 symbols) and ...
Interleaving/Deinterleaving latency (5*2=10)

59 if xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},data counter) < ...
xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},255*10+10-1)

60 data counter = xfix({xlUnsigned, 12, 0, xlTruncate, ...
xlWrap},data counter + 1);

61 else
62 state = RESET;
63 end
64

65 case WAIT
66 INT data valid = OFF;
67 INT data last = OFF;
68 RE=OFF;
69

70 if En Data == ON && AE == OFF
71 state = INT READ;
72 end
73

74 otherwise
75 INT data valid = OFF;
76 INT data last = OFF;
77 RE = OFF;
78

79 state = RESET;
80 end
81 end
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Interleaving RX FSM

1 function [ INT data valid, INT data last, RE ] = RX CH ENC INT CTRL( AF, ...
En Data, reset )

2

3 % states declaration
4 RESET = 0;
5 INT READ = 1;
6 INT WAIT = 2;
7 WAIT = 3;
8

9

10 %Boolean definitions
11 ON = xfix({xlBoolean}, 1); % Boolean '1'
12 OFF = xfix({xlBoolean}, 0); % Boolean '0'
13

14 persistent state, state = xl state(RESET, {xlUnsigned, 2, 0});
15 persistent data counter, data counter = xl state(0, {xlUnsigned, 12, 0});
16

17

18 switch state
19 case RESET
20 INT data valid = OFF;
21 INT data last = OFF;
22 RE = OFF;
23

24 data counter = 0;
25

26 if AF == OFF && En Data == ON
27 state = INT READ;
28 else
29 state = WAIT;
30 end
31

32 case INT READ
33 INT data valid = ON;
34 INT data last = OFF;
35 RE = ON;
36

37 if xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},data counter) < ...
xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},2550-1)

38 data counter = xfix({xlUnsigned, 12, 0, xlTruncate, ...
xlWrap},data counter + 1);

39

40 elseif xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},data counter) ...
== xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},2550-1)

41 INT data last = ON;
42 data counter = 0;
43

44 state = INT WAIT;
45 end
46

47 if En Data == OFF | | AF == ON
48 state = WAIT;
49 end
50
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51 if reset == ON
52 state = RESET;
53 end
54

55 case INT WAIT;
56 INT data valid = OFF;
57 INT data last = OFF;
58 RE = OFF;
59

60 % wait for 10 RS codewords (2550 symbols) and ...
Interleaving/Deinterleaving latency (5*2=10)

61 if xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},data counter) < ...
xfix({xlUnsigned, 12, 0, xlTruncate, xlWrap},255*10+10-1)

62 data counter = xfix({xlUnsigned, 12, 0, xlTruncate, ...
xlWrap},data counter + 1);

63 else
64 state = RESET;
65 end
66

67 case WAIT
68 INT data valid = OFF;
69 INT data last = OFF;
70 RE=OFF;
71

72 if En Data == ON && AF == OFF
73 state = INT READ;
74 end
75

76 otherwise
77 INT data valid = OFF;
78 INT data last = OFF;
79 RE = OFF;
80

81 state = RESET;
82 end
83 end
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Data Generator Buffer Control FSM

1 function [En Data, AE, AF, Cnt Reset, estado] = ...
TX BUFFER CTRL Gen RE(full percent, RESET)

2

3 %FSM state coding
4 Wait 50 = 0; %Initial wait for the input buffer to fill to 50%
5 Enable Data = 1; %Allows processing of data
6 Wait Empty = 2; %Wait buffer to empty below threshold
7 Count Reset = 3; %Counter reseting state
8

9 %FSM variable
10 persistent state,
11 state = xl state(0, {xlUnsigned, 2, 0});
12

13 %Boolean definitions
14 ON = xfix({xlBoolean}, 1); % Boolean '1'
15 OFF = xfix({xlBoolean}, 0); % Boolean '0'
16

17 %working variables
18 %Number of loaded values counter
19 % persistent n load values,
20 % n load values = xl state(0, {xlUnsigned, 15, 0});
21

22 %Generic output definition
23 if full percent > 13 % 87.5%
24 AF = ON;
25 else
26 AF = OFF;
27 end
28

29 if (state == Enable Data | | state == Wait Empty) && full percent > 1 % 12.5%
30 AE = OFF;
31 else
32 AE = ON;
33 end
34

35 %FSM state transition
36 switch state
37 case Wait 50
38 En Data = ON;
39 Cnt Reset = OFF;
40 estado = 0;
41 if RESET == OFF
42 if full percent > 8 % 50%
43 state = Enable Data;
44 else
45 state = Wait 50;
46 end
47 else
48 state = Count Reset;
49 end
50

51 case Enable Data
52 En Data = ON;
53 Cnt Reset = OFF;
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54 estado = 1;
55 if RESET == OFF
56 if full percent > 13 % 87.5%
57 state = Wait Empty;
58 else
59 state = Enable Data;
60 end
61 else
62 state = Count Reset;
63 end
64

65 case Wait Empty
66 En Data = OFF;
67 Cnt Reset = OFF;
68 estado = 2;
69 if RESET == OFF
70 if full percent < 8 % 50%
71 state = Enable Data;
72 else
73 state = Wait Empty;
74 end
75 else
76 state = Count Reset;
77 end
78

79 case Count Reset
80 En Data = OFF;
81 Cnt Reset = ON;
82 estado = 3;
83 state = Wait 50;
84

85 otherwise
86 En Data = OFF;
87 Cnt Reset = OFF;
88 estado = 3;
89 state = Wait 50;
90 end
91

92 end
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TX Buffer Control FSM

1 function [En Data, AE, AF] = TX BUFFER CTRL(full percent,RESET)
2

3 %FSM state coding
4 Wait 90 = 0; %Initial wait for the input buffer to fill to 50%
5 Enable Data = 1; %Allows processing of data
6 Wait Empty = 2; %Wait buffer to empty below threshold
7

8 %FSM variable
9 persistent state,

10 state = xl state(0, {xlUnsigned, 2, 0});
11

12 %Boolean definitions
13 ON = xfix({xlBoolean}, 1); % Boolean '1'
14 OFF = xfix({xlBoolean}, 0); % Boolean '0'
15

16 %working variables
17 %Number of loaded values counter
18 % persistent n load values,
19 % n load values = xl state(0, {xlUnsigned, 15, 0});
20

21 %Generic output definition
22 if full percent > 13 % 87.5%
23 AF = ON;
24 else
25 AF = OFF;
26 end
27

28 if (state == Enable Data | | state == Wait Empty) && full percent > 1 % 12.5%
29 AE = OFF;
30 else
31 AE = ON;
32 end
33

34 %FSM state transition
35 switch state
36 case Wait 90
37 En Data = ON;
38 if RESET == OFF
39 if full percent > 13 % 90%
40 state = Enable Data;
41 else
42 state = Wait 90;
43 end
44 else
45 state = Wait 90;
46 end
47

48 case Enable Data
49 En Data = ON;
50 if RESET == OFF
51 if full percent > 13 % 87.5%
52 state = Wait Empty;
53 else
54 state = Enable Data;
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55 end
56 else
57 state = Wait 90;
58 end
59

60 case Wait Empty
61 En Data = OFF;
62 if RESET == OFF
63 if full percent < 10 % 67.5%
64 state = Enable Data;
65 else
66 state = Wait Empty;
67 end
68 else
69 state = Wait 90;
70 end
71

72 otherwise
73 En Data = OFF;
74 state = Wait 90;
75 end
76

77 end
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TX Interleaver Buffer Control FSM

1 function [En Data, AE, AF] = TX BUFFER CTRL INT(full percent,RESET)
2

3 %FSM state coding
4 Wait 90 = 0; %Initial wait for the input buffer to fill to 50%
5 Enable Data = 1; %Allows processing of data
6 Wait Empty = 2; %Wait buffer to empty below threshold
7

8 %FSM variable
9 persistent state,

10 state = xl state(0, {xlUnsigned, 2, 0});
11

12 %Boolean definitions
13 ON = xfix({xlBoolean}, 1); % Boolean '1'
14 OFF = xfix({xlBoolean}, 0); % Boolean '0'
15

16 %Generic output definition
17 if full percent > 10 % 87.5%
18 AF = ON;
19 else
20 AF = OFF;
21 end
22

23 if (state == Enable Data | | state == Wait Empty) && full percent > 1 % 12.5%
24 AE = OFF;
25 else
26 AE = ON;
27 end
28

29 %FSM state transition
30 switch state
31 case Wait 90
32 En Data = ON;
33 if RESET == OFF
34 if full percent > 10 % Garante que pelo menos 2730 bytes est o ...

disponiveis
35 state = Enable Data;
36 else
37 state = Wait 90;
38 end
39 else
40 state = Wait 90;
41 end
42

43 case Enable Data
44 En Data = ON;
45 if RESET == OFF
46 if full percent > 10 % Garante que pelo menos 2730 bytes est o ...

disponiveis
47 state = Wait Empty;
48 else
49 state = Enable Data;
50 end
51 else
52 state = Wait 90;
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53 end
54

55 case Wait Empty
56 En Data = OFF;
57 if RESET == OFF
58 if full percent < 5 % 67.5%
59 state = Enable Data;
60 else
61 state = Wait Empty;
62 end
63 else
64 state = Wait 90;
65 end
66

67 otherwise
68 En Data = OFF;
69 state = Wait 90;
70 end
71

72 end
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RX Buffer Control FSM

1 function [En Data, AE, AF] = RX BUFFER CTRL(full percent, RESET)
2

3 %FSM state coding
4 Wait 50 = 0; %Waits for the input buffer to fill to 50%
5 Enable Data = 1; %Allows processing of data
6

7 %FSM variable
8 persistent state,
9 state = xl state(0, {xlUnsigned, 1, 0});

10

11 %Boolean definitions
12 ON = xfix({xlBoolean}, 1); % Boolean '1'
13 OFF = xfix({xlBoolean}, 0); % Boolean '0'
14

15 %working variables
16 %Number of loaded values counter
17 % persistent n load values,
18 % n load values = xl state(0, {xlUnsigned, 15, 0});
19

20 %Generic output definition
21 if full percent > 12 %0.75
22 AF = ON;
23 else
24 AF = OFF;
25 end
26

27 if full percent < 4 %0.25
28 AE = ON;
29 else
30 AE = OFF;
31 end
32

33 %FSM state transition
34 switch state
35 case Wait 50
36 En Data = OFF;
37 if RESET == OFF
38 if full percent > 8 % 50%
39 state = Enable Data;
40 else
41 state = Wait 50;
42 end
43 else
44 state = Wait 50;
45 end
46

47 case Enable Data
48 En Data = ON;
49 if RESET == OFF
50 if full percent < 4 %0.25
51 state = Wait 50;
52 else
53 state = Enable Data;
54 end
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55 else
56 state = Wait 50;
57 end
58

59 otherwise
60 En Data = OFF;
61 state = Wait 50;
62 end
63

64 end
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RX Reed-Solomon Buffer Control FSM

1 function [En Data, AE, AF] = RX BUFFER CTRL RS(full percent, RESET)
2

3 %FSM state coding
4 Wait 50 = 0; %Waits for the input buffer to fill to 50%
5 Enable Data = 1; %Allows processing of data
6

7 %FSM variable
8 persistent state,
9 state = xl state(0, {xlUnsigned, 1, 0});

10

11 %Boolean definitions
12 ON = xfix({xlBoolean}, 1); % Boolean '1'
13 OFF = xfix({xlBoolean}, 0); % Boolean '0'
14

15 %working variables
16 %Number of loaded values counter
17 % persistent n load values,
18 % n load values = xl state(0, {xlUnsigned, 15, 0});
19

20 %Generic output definition
21 if full percent > 10
22 AF = ON;
23 else
24 AF = OFF;
25 end
26

27 if full percent < 5
28 AE = ON;
29 else
30 AE = OFF;
31 end
32

33 %FSM state transition
34 switch state
35 case Wait 50
36 En Data = OFF;
37 if RESET == OFF
38 if full percent > 8 % 50%
39 state = Enable Data;
40 else
41 state = Wait 50;
42 end
43 else
44 state = Wait 50;
45 end
46

47 case Enable Data
48 En Data = ON;
49 if RESET == OFF
50 if full percent < 5 %0.25
51 state = Wait 50;
52 else
53 state = Enable Data;
54 end
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55 else
56 state = Wait 50;
57 end
58

59 otherwise
60 En Data = OFF;
61 state = Wait 50;
62 end
63

64 end

146


	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Context
	Methodology
	Dissertation Structure
	Contributions

	Visible Light Communications
	Optical Wireless Communications History
	LED History
	Motivation
	Actual Context
	Optical Sources
	Optical Detectors
	Optical Filters
	Modulation Schemes
	OOK
	OFDM
	DCO-OFDM
	U-OFDM
	ACO-OFDM

	Forward Error Correction
	Reed-Solomon Codes
	Convolutional codes
	Turbo Codes
	Concatenated codes
	Interleaving
	Puncturing

	System architecture
	Overview
	Data Link Layer
	Emitter Physical Layer
	VLC Channel
	Receiver Physical Layer

	Tools and Devices for System Implementation
	Spartan-6 FPGA SP605 Evaluation Kit
	Xilinx System Generator
	Asynchronous Architecture

	Concluding Remarks

	Channel Coding
	VLC Channel Noise Sources
	Error patterns
	Bit Error Rate analysis
	Reed-Solomon Codes
	BER Analytical Estimation for Reed-Solomon Codes

	Convolutional Codes
	BER Analytical Estimation for Convolutional Codes

	CRC
	Interleaving
	Puncturing
	Concluding Remarks

	System Design Considerations
	Simulink Models
	Synchronous Implementation
	Reed-Solomon codes
	Convolutional codes
	Interleaving
	CRC-32
	Hardware co-simulation

	System Constraints
	Concluding Remarks

	Implementation and Final Results
	Channel Encoder model
	FPGA Utilization
	System Performance

	Conclusions
	Conclusions
	Future Work

	Bibliography
	CRC-32 model
	System Constraints MatLab script file
	MatLab scripts
	Asynchronous Implementation FSMs

