

Atmosphere 2 | Air pollution chemistry

.....

Tracing of aerosol sources in an urban environment using carbonaceous, major ions, Sr isotope, and mineralogical compositional data

ANDREIA PAULA¹, SÓNIA LOPES¹, SARA RIBEIRO², JOSÉ FRANCISCO SANTOS², CARLA PATINHA², EDUARDO ANSELMO², ROSÁRIO SOARES³, REGINA DUARTE^{1,3}, ARMANDO DUARTE¹ ¹Department of Chemistry & CESAM &, University of Aveiro, 3810-193 Aveiro, Portugal ²Department of Geosciences & GeoBioTec, University of Aveiro, 3810-193 Aveiro, Portugal ³Department of Chemistry & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal

Understanding the chemical composition of atmospheric particulate matter (PM), particularly with a diameter less than 2.5 μ m (PM_{2.5}), has became an emergent topic in atmospheric research due to its relation to climate change and serious health issues. In this study, a comprehensive assessment of the carbonaceous (organic carbon, water-soluble organic carbon, elemental carbon), major water-soluble inorganic ions (SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻, K⁺, Na⁺), ⁸⁶Sr/⁸⁷Sr isotope ratios, and mineralogical composition of PM2.5 samples has been performed for a one-year period in an urban environment at the Western European Coast (Aveiro, Portugal). The concentration of each component was found to be highly dependent on the seasonal events, with the carbonaceous component being the major constituent of the PM25 in almost all seasons. The concentration of SO_4^{2} is higher in samples collected during warm seasons than in those of colder seasons, which is indicative of secondary formation (mediated by sunlight) in the atmosphere [F. Zhang et al., 2014]. On the other hand, the concentration of the more volatile NO³ ion is highest for samples collected in colder seasons, which can be explained by the combined effects of lower air temperature and an increase of biomass burning and vehicles emissions during these seasons [F. Zhang et al., 2014] . The equivalent molar ratio of cations to anions was also computed, indicating that the PM_{2.5} is more acidic during high air temperature periods probably due to the highest accumulation of acidic components (e.g., SO_4^{2}) during this period [J. Zhang et al., 2014].

For the ⁸⁶Sr/⁸⁷Sr isotope ratios, it was possible to distinguish the labile (acid-leached) from the natural (remaining residue) Sr components (Fig.1). The highest ⁸⁶Sr/⁸⁷Sr ratios were observed for the residues embedded in the collection medium, being this indicative of a natural crustal dust source. The ⁸⁶Sr/⁸⁷Sr isotope ratios verified for the leachates are of the same order of magnitude of the reference value for seawater, thus suggesting that the urban PM_{2.5} samples have also a predominant marine influence. These findings are also in agreement with the mineralogical composition data, which shows the presence of gypsum with a clear marine origin on almost all samples, besides feldspar with an anthropogenic origin, and aluminosilicates from soil dust.

Fig. 1: ⁸⁷Sr/⁸⁶Sr isotope ratios in residues and leachates of PM_{2.5} samples collected in the city of Aveiro (Portugal) during one-year period and under different air mass trajectories.

poster presentations

375

nicals, more plers) mpler ipling ifacts radag, but pares ifacts

2

bhase both these ough scade hane hout ough ential

pling reacning. d are lants

anic 1.

Atmosphere 2 | Air pollution chemistry

Acknowledgements: Centre for Environmental and Marine Studies (UID/AMB/50017/2013) and the Portuguese Science and Technology Foundation (FCT), through the European Social Fund and "Programa Operacional Potencial Humano – POPH", are acknowledged for financial support. FCT is also acknowledge for a Post-doctoral grant (Regina Duarte, SFRH/ BPD/102882/2014). This work was also funded by FEDER under the Operational Program for Competitiveness Factors – COMPETE and by National funds via FCT within the framework of research projects CN-linkAIR (PTDC/AAG-MAA/2584/2012) and ORGANOSOL (PTDC/ CTE-ATM/118551/2010).

.....

Zhang, F., Cheng, H., Wang, Z., Lv, X., Zhu, Z., Zhang, G., Wang, X. Atmos. Environ.. 2014, 86, 193-202 Zhang, J., Cheng, J., Yang, L., Sui, X., Lan, Y., Zheng, L., Wen, L., Xu, C., Wang, W. Atmos. Envirot. 2014, 99, 641-649.

Long-term size-segregated particle (PM10, PM2.5, PM1) characterization study in the rural background of Germany – influence of air mass inflow and season

Gerald Spindler¹, Achim Grüner¹, Konrad Müller¹, Bastian Stieger¹, Markus Wallasch², Yoshiteru Iinuma¹, Hartmut Herrmann¹

¹Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany ²Federal Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany

Long-term studies allow quantifying the influence of decreasing emissions to the concentrations. The particle mass concentration is also influenced by particle formation from precursors and long-range transport. The rural-background site Melpitz (12°56' E, 51°32' N, 86 m asl.) is located in Germany in the Saxon lowlands near Torgau in the glacial valley of the river Elbe (Spindler et al. 2013). The Melpitz station is integrated in ACTRIS and EMEP and representative for a large area in central Europe.

High-Volume (HV) quartz filter samples for particles < 10 µm aerodynamic-diameter (PM_{10}) were collected daily (since November 1992). Particles $PM_{2.5}$ and PM_1 were collected daily respective every six days (since January 2003). The determination of the particle mass was done gravimetrically. Main water-soluble ions (NO_3^- , SO_4^{-2} , Cl⁻, Na^+ , NH_4^+ , K^+ , Mg^{2+} , Ca^{2+}) were analyzed by ion chromatography. The determination of OC and EC (available since 2003) performed by a two-step thermographic method (according to VDI 2465 part 2). PAH and n-alkanes were determined by CPP-GC-MS (Curie point 510°C) for PM_{10} samples in 2012.

Daily samples were evaluated at first as yearly means and quarterly means (per year), at second for spatial and seasonal discrimination days were sorted for air mass transport from a western sector (W, 210-320°, mostly maritime influenced) and a broad eastern sector (E, 35-140°, continentally influenced) using backward trajectories (96 h) Days with a strong change in transport direction (often more local influenced by inversion) were excluded here. A seasonal discrimination was done for winter (Wi, November-April) and for summer (Su, May-October). The result are the four categories WiW, WiE, SuW and SuE in which 68% of the whole time (November 1992 until December 2014) can be sorted (53.3% for W, 15.1% for E).

poster presentations

poster₁

PM

(20

abs

(20)

ant

moi

can

and gen

and

trati regi

Oxy atm

Pérc

ART

¹Cher ²Scho

³Phys.

⁴Cellu

^sNatic

The I

ment

sourc

Ama:

of ov

In thi

tificat

(PAH:

cond

(Nove

The n

overa

PAH v

PHE a

durin

IcdP a

Tracing of aerosol sources in an urban environment using carbonaceous, major ions, Sr isotope, and mineralogical compositional data

<u>Andreia Paula</u>¹, Sónia Lopes¹, Sara Ribeiro², José Francisco Santos², Carla Patinha², Eduardo Anselmo², Rosário Teixeira³, Regina Duarte^{1,3} Armando Duarte¹

¹ CESAM & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal ² GeoBioTec & Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal

³ CICECO & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

Introduction.

Understanding the chemical composition of atmospheric particulate matter (PM), particularly with a diameter less than 2.5 μ m (PM_{2.5}), has became an mergent topic in atmospheric research due to its relation to climate change and serious health issues. This study aims at performing a comprehensive assessment of:

- carbonaceous species (organic carbon, water-soluble organic carbon, elemental carbon) and major water-soluble inorganic ions (SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻, K⁺, Na⁺) in PM_{2.5} samples collected over 1-year period in an urban environment at the Western European Coast (Aveiro, Portugal);
- ⁸⁷Sr/⁸⁶Sr isotope ratios and mineralogical composition of the urban PM_{2.5} samples.

Fig. 1 - Chemical mass closure for urban $\mathsf{PM}_{\!2.5}$ samples.

- During the course of the measuring period, seasonal PM_{2.5} mass concentrations were extremely variable.
- The carbonaceous component is the major constituent of the PM_{2.5} samples.
 The average ambient concentrations of SO₄² and NO₃⁻ follow an opposite trend
- between warm and cold seasons, the reason for which is depicted in Fig. 2.

Fig. 2 - Justification for the different SO₄²⁻ and NO₃⁻ concentrations in warm and cold seasons

Acknowledgem

References

^[1] Zhang, F., Cheng, H., Wang, Z., Lv, X., Zhu, Z., Zhang, G., Wang, X. Atmos. Environ.. 2014, 86, 193-202

⁸⁷Sr/⁸⁶Sr isotopic signature of PM_{2.5}

Fig. 3 - ⁸⁷Sr/⁸⁶Sr isotope ratios in reference matrices (rainwater, seawater, and marine sediments), and in residues and leachates fractions of urban PM_{2.5} samples collected under different air mass trajectories.

The highest $^{87}Sr/^{86}Sr$ ratios were found in the $PM_{2.6}$ residues, being this indicative of a natural crustal dust source. The $^{87}Sr/^{86}Sr$ ratios of the $PM_{2.6}$ leachates are of the same order of magnitude of the reference value for seawater, thus suggesting that the urban $PM_{2.5}$ samples have also a predominant marine influence.

Mineralogical composition of PM_{2.5}

Mineral	Compound name	Chemical Formula	Potential source
Illite	Potassium Calcium Magnesium Aluminum Iron Alum num Silicate Hydroxide	$\begin{array}{c}(K_{0.74}Ca_{\!0.03})(AI_{\!1.02}Mg_{\!0.09}Fe_{\!0.01})((SI_{\!3.22}AI_{\!0.78})O_{\!10}\\(OH)_2)\end{array}$	Continental crust
	Calcium Sodium Aluminum Silicate Hydroxide Hydrate	(Ca,Na) _{0.3} Al ₂ (Si,Al) ₄ O ₁₀ (OH) ₂ •xH ₂ O	
	Potassium Aluminum Silicate Hydroxide Hydrate	$(K,H_3O)Al_2(Si_3Al)O_{10}(OH)_2{}^{\bullet}xH_2O$	
Muscovite	Potassium Aluminum Silicate Hydroxide	KAl ₂ Si ₃ AlO ₁₀ (OH) ₂	
Kaolinite	Alum num Silicate Hydroxide	Al ₂ Si ₂ O ₅ (OH) ₄	
Hydrotalcite	Magnesium Aluminum Carbonate Hydroxide Hydrate	$Mg_{0.67}AI_{0.33}(CO_3)_{0.165}(OH)_2(H_2O)_{0.48}$	
Chlorite	Magnesium Aluminum Silicon Oxide Hydroxide	Mg _{2,45} Al _{1.1} Si _{1.45} O ₅ (OH) ₄	
Gypsum	Calcium Sulfate Hydrate	Ca(SO ₄)(H ₂ O) ₂	Marine derived
Halite	Sodium Chloride	NaCl	
	Sodium Nitrate	NaNO ₃	Anthropogenic

Table 1 - Mineralogical composition obtained by X-ray diffraction analysis of $\mbox{urban}\ \mbox{PM}_{2.5}$ samples.

A similar profile of mineral phases was observed for all PM_{2.5} samples: 1) aluminosilicates are likely related to the resuspension of soil dust, 2) gypsum is typical of marine aerosols, and 3) feldspar has an anthropogenic origin.

COMPET

Conclusions

- The major constituent of urban PM_{2.5} is organic matter, followed by SO₄²⁻ (secondary origin) and NO₃⁻ (anthropogenic origin) ions.
 - The difference in the ⁸⁷Sr/⁸⁶Sr isotopic composition of the leachates (i.e. labile, soluble marine Sr fraction) and residues (i.e. natural crustal Sr fraction) suggests that urban PM_{2.5} has both marine and crustal dust influence. These findings are in agreement with the mineralogical composition data..