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Palavras-chave 

 

Sistema imune; células T, quimiocinas, CXCR3, artrite reumatóide 
 

Resumo 

 

 

A artrite reumatóide (AR) é uma doença autoimune caracterizada por poliartrite e 

inflamação crónica, resultado, pelo menos em parte, de uma resposta excessiva das 

células T na membrana sinovial associada a uma excessiva produção de citocinas pró-

inflamatórias, que contribuem para a perpetuação da inflamação. O CXCR3 parece 

também estar envolvido na AR, por um lado pela sua capacidade de promover a 

migração, mas também porque têm sido descritos elevados níveis dos seus ligandos 

na AR. Neste sentido, o objetivo do presente estudo foi avaliar a frequência e o valor 

absoluto das células T CD4+, CD8+ e γδ, bem como a distribuição entre os 

compartimentos de células naïve, efectoras, memória central e memória efectora 

tendo por base a expressão do CD27 e do CD45RA. Adicionalmente propôs-se uma 

análise que incluiu a expressão do CD28 e do CD62L em combinação com o CD27 e 

o CD45RA. Avaliou-se ainda a expressão do CXCR3 nas diferentes subpopulações 

identificadas.  

Observou-se uma diminuição na frequência e no valor absoluto das células T CD8+ e 

das células T γδ nos doentes com AR, para além disso verificou-se também uma 

diminuição da frequência e do valor absoluto das células T CD4+ com fenótipo de 

memória efectora e das células T CD8+ naïve. Através da análise conjunta da 

expressão dos marcadores CD45RA, CD27, CD28 e CD62L identificou-se cinco 

subpopulações dentro das células T CD4+ e CD8+ e nove subpopulações nas células T 

γδ diminuídas nos doentes com AR. Relativamente à expressão de CXCR3, os 

resultados parecem apontar na sua globalidade para um aumento da expressão nas 

diferentes subpopulações de células T CD4+ e CD8+ dos doentes com AR, no entanto 

nas células T γδ dos doentes com AR observou-se uma menor expressão de CXCR3.  

Em suma, o presente estudo evidencia a importância de uma análise detalhada das 

subpopulações de células T com recurso à combinação de diferentes parâmetros 

fenotípicos. Os resultados parecem sugerir que as células T dos doentes com AR se 

encontram distribuídas de forma diferente entre os diferentes subtipos. Estas 

evidências em conjunto com o aumento da frequência de alguns subtipos celulares a 

expressar CXCR3 podem ajudar a perceber a migração das diferentes subpopulações 

de células T e o seu contributo para a destruição dos tecidos verificada nos doentes 

com artrite reumatóide.  
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Abstract 

 

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic 

inflammatory polyarthritis as consequence, at least in part, of a T cell-driven 

inflammation in the synovial membrane, frequently associated with the production of 

pro-inflammatory cytokines, contributing for ongoing inflammation. CXCR3 have 

been implicated in RA, since it is known its ability to modulate migration and in 

addition an increased concentration of its ligands has been reported in RA. Hence in 

this study it was evaluated the frequency and absolute number of circulating CD4+, 

CD8+ and γδ T cells, as well as the distribution between naïve, effector, central 

memory and effector memory based on the CD27 and CD45RA expression. 

Furthermore minor T cells subsets were characterized according to the expression of 

CD62L and CD28 combined with CD27 and CD45RA; additionally the expression of 

CXCR3 was assessed in all the studied subsets.  

The frequency and absolute number of CD8+ and γδ T cells were significantly 

decreased in RA patients; moreover CD4+effector memory and CD8+ naïve T cells 

were also decreased in frequency and absolute number in RA patients compared to 

healthy controls. In addition through the new T cells analysis, combining the 

expression of the CD45RA, CD27, CD28 and CD62L, it was found an impairment of 

five subsets within CD4+ and CD8+ T cells and nine subsets within γδ T cells in RA 

patients. Finally, the analysis of CXCR3 overall seems to indicate an increased 

expression in CD4+ and CD8+ T cells, conversely γδ T cells from RA patients showed 

lower CXCR3 expression.   

In conclusion, this study highlighted the importance of a detailed analysis of the T 

cell subsets through the combination of different phenotypic parameters. Our findings 

suggest an abnormal distribution of specific T cells subsets together with altered 

frequencies of T cell subsets expressing CXCR3 might contribute to a better 

knowledge of the migration pattern of these cells and therefore for the inflammatory 

status verified on RA patients. 
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1. State of art 

1.1 Immune System 

The immune system comprises several interactions between cells and molecules with 

specialized roles in defence against host aggression. A general feature of this system is its 

ability to detect structural features of the pathogen or their toxins and mark them as 

distinct from host cells. These processes of recognition and elimination use a complex array 

of protective mechanisms to avoid unleashing a hostile process against the host own tissues 

(1). 

Immune system has traditionally been divided into two broad subsystems, on the basis of 

their role in host defence, that usually act together. The innate response represents the first 

line of host defence, it is a rapid response but it has lack of specificity, conversely the 

adaptive response is highly specific to a specific pathogen, and can also provide long-

lasting protection. The innate response includes phagocytic cells, like neutrophils, 

monocytes and macrophages, basophils, mast cells, eosinophils and NK cells. This type 

of response also includes physical barriers, soluble proteins and bioactive small 

molecules, like complement proteins, cytokines and chemokines ( 2 ) .  On opposite 

adaptive response manifests strong specific for target antigens, since this response is 

based primarily on the antigen-specific receptors expressed on the cells surfaces. This type 

of response involves a clonal expansion and proliferation of antigen-specific B and T cells 

(3). 

During infection or tissue damage, macrophages are activated by toll-like receptors (TLRs) 

and nucleotide-binding oligomerization domain like receptors and secrete cytokines like 

tumor necrosis factor (TNF) alpha, interleukin (IL)-1, IL-6, IL-12, IL-15, IL-18, IL-23 

and are involved in the release of matrix degradation enzymes, phagocytosis, antigen 

presentation and reactive oxygen intermediates. These mediators are able to recruit immune 

cells for inflammation sites, like neutrophils known to synthesize inflammatory 

prostaglandins, proteases and reactive oxygen intermediates (3). 

Dendritic cells (DCs) are specialized sentinel cells that bridge the innate and adaptive 

immune systems without directly engaging in effector activities such as pathogen killing. 

DCs recognize pathogens using pattern recognition receptors, like TLRs, and then they 

migrate to T cell areas of lymphoid organs to present pathogen-derived antigens to antigen-
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specific T cells. Activated DCs upregulate co-stimulatory molecules and produce cytokines 

that drive T cell priming and effector differentiation, and they are also able to activate several 

types of immune cells. In the absence of activation, antigen presentation by steady state 

DCs might lead to T cell unresponsiveness and might promote tolerance (4) .  The antigen 

specificity of T cells is based on recognition through the T cell receptor (TCR) of unique 

antigenic peptides presented by major histocompatibility complex (MHC) molecules on 

antigen presenting cells (APC). T cell mediated immunity is the central element of the 

adaptive immune system and includes a primary response by naïve T cells, effector 

functions by activated T cells and persistence of antigen specific memory T cells (5, 6). 

B cells have the ability to capture external antigens and to present them as peptide fragments 

on MHC class II molecules to CD4
+ 

T cells, this communication between B cells and T 

cells is a crucial step in the adaptive immune response and is required to B cells 

differentiate into high-affinity antibody-producing plasma cells and to develop into memory B 

cell populations (7). 

All immune cells secrete several types of cytokines, chemokines and soluble mediators that 

help to create and maintain an inflammatory environment. Although the innate and adaptive 

responses are different in their action mechanisms, the synergy between them is essential for 

an intact and fully effective response (8). 

1.2 T cells 

The physiological function of a multicellular organism depends on the generation of the 

proper number and diversity of cell types. T cells are critical mediators of the adaptive 

immune response together with B cells, this cell type express unique surface receptors as  a  

result of random rearrangements chain pairing mechanisms. These clonal receptors help to 

determine which lymphocyte precursor will successfully mature (9). T-linage cells include 

T-helper (Th) cells, cytotoxic T (Tc) cells, regulatory T (Treg) cells, natural killer T (NKT) 

cells and ɣδ T cells. T cells derived from hematopoietic stem cells that reside within 

specialized niches in bone marrow, unlike other blood lineages, T cells complete the 

majority of their development in a specialized organ in the mediastinum – the thymus 

(10). 

Thymus can be subdivided into four major compartments with distinct and specific functions 

responsible for the microenvironment, these conditions guide the different stages of T cell 
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development. The four compartments include, the subcapsular zone, comprised mainly by 

cortical thymic epithelial cells; the cortex – containing an abundant mix of cortical 

thymic epithelial cells, fibroblasts and macrophages; the medulla constituted by a stroma 

network of DC and medullary thymic epithelial cells and the corticomedullary junction 

which includes a dense network of endothelial cells faciliting the entry and exit of 

thymocytes to and from blood (11). Thymus is the only hematopoietic organ that, 

simultaneously, recruits hematopoietic precursor cells from the blood and excludes mature 

cells from entering. The requirement for the continuous import of hematopoietic precursors 

is related to the absence of self-renewing of these precursors in this lymphoid organ (12). 

The thymic stroma carries out several key functions in T cell development, including drive 

the T cell fate on arriving progenitors and regulates their repertoire. Moreover the 

intrathymic developmental pathway ultimately produces naïve T cells, which then 

emigrate from thymus to populate the periphery (11). 

1.2.1 Thymic differentiation 

T cell development is dependent of several mechanisms occurred in thymus, namely the 

formation and differentiation of thymic microenvironment, the entry site and nature of T 

cell progenitors, as well as, their interaction with stroma microenvironment and the control 

of exit of mature T cells. This process takes place in discrete areas of the thymus and it is 

dependent on interactions with specialized resident cells found in each of these anatomical 

regions (13). T cell development can be identified by tracking the gradual alterations in cell-

surface marker expression of various molecules, including rearranged TCR chains, CD3, 

CD4, CD8, CD25, among others. 

T cells arise from haematopoietic stem cells in bone marrow, which then differentiate in a 

common lymphoid progenitor cell (also common to a B cell progenitor) with ability to 

leave the bone marrow and migrate to the thymus. The mechanisms whereby progenitors 

home to the thymus is similar to those used by leucocytes to enter in lymph nodes and 

tissues; progenitors pass through post capillary venules using selectins, chemokines receptors 

and integrins in a regulated signalling cascade to arrest at the endothelial wall and 

extravagate (14). 

Thymocyte precursors enter in thymus at post capillary venules near the cortico-medullary 

junction (12, 13), the trafficking process is selective; the prethymic steps in T-cell 
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development impose at least two layers of specificity on progenitors. The first one is the 

possession of T-cell potential – the ability to generate T cells in the thymus, achieved 

through a signal from stromal cells, the Notch1 signalling pathway. This signalling pathway 

instructs the precursors to commit to the T-cell lineage by switching of specific genes. 

After Notch1 activation is not immediately triggered a T cell differentiation program on 

precursors, rather it, is a slow process of multiple differentiation steps that involve many 

transcriptional factors starts (10, 15). The second layer of specificity arises from the 

selectivity of thymic trafficking, some molecules expressed on progenitors were identified 

as able to confer competence for thymic settling, including CC- chemokine receptor 7 

(CCR7), CCR9 and platelet (P)-selectin glycoprotein ligand 1 (PSGL1) among others 

CXC-chemokine receptor 4 (CXCR4) and CCR5 (figure 1). PSGL1 is a glycoprotein 

expressed in circulating lymphoid progenitor cells and interacts with P-selectin (a 

carbohydrate-binding protein known as rolling receptor) which is expressed on thymic 

endothelium (13, 14, 16). This signalling axis has been involved in thymic settling, with 

importance in slows the cells, their adherence and allowing them to leave the blood vessel 

(17, 18). The expression of P-selectin appears to be dynamically regulated according to a 

feedback mechanism (18-20) related with the availability of intrathymic niches, indicating 

that concentration of P-selectin could regulate the thymus homing precursors. 
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Figure 1 | An Overview of T cell development in thymus(9). 

DN – double negative; DP - double positive; SP – Single positive  

Once in the thymus, progenitors differentiate and eventually become irreversibly committed 

to the T cell lineage, moving through different compartments in a coordinated migratory 

stream (14, 17). The earliest CD4
-
CD8

-
CD44

+
CD25

- 
thymocyte progenitors, double 

negative (DN) 1 cells can be found near the site of entry at the corticomedullary junction. 

The slightly more mature CD4
-
CD8

-
CD44

+
CD25

+ 
- DN2 subset is found throughout the 

cortex, whereas DN3 CD4
-
CD8

-
CD44

-
CD25+ are concentrated in the outermost part of the 

thymus, just below the thymic capsule. Intermediate CD4
+
CD8

+ 
double positive (DP) 

thymocytes constitute most of the cortex, and the most mature CD4
+
CD8

- 
and CD4

-
CD8

+ 

single positive thymocytes are found exclusive in the medulla (13). T cell lineage 

development occurs at the DN3 stage coincidently with the initiation of variable (diversity) 

joining gene rearrangement of the TCR β-chain, TCR γ-chain and TCR δ-chain genes (14). 

Cells that proceed along the αβ TCR pathway, first express a pre-TCR-α, which is encoded 

by a non-rearranging locus and pairs with the TCR β-chain resulting from a set of somatic 

DNA rearrangements required for expression of recombination-activating gene proteins. At 

the cell surface, the pre-TCR αβ is associated with a combination of proteins (CD3/ζ 

complex) involved in proximal signal transduction and required for further T cell maturation 

(9) .  Productive rearrangement of the TCR β leads to the expression of the pre-TCR, withal 

a Notch-mediated signalling occurs inducing cell proliferation and differentiation of DN3 

thymocytes to the DN4 stage (also called β selection) and subsequently to the double positive 
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(DP) stage (figure 1) (14). On the other hand, productive rearrangement of TCR γ and 

TCR δ induces commitment to the γδ T cell lineage. 

T cells that emerge from β selection after recombination at the TCR-α locus produces the 

second component chain of the mature αβ antigen receptor. The expression of pre-TCR-α is 

lost during this stage, resulting in a low level of αβ TCR in cell surface assembled with 

CD3/ζ complex proteins. The thymocytes also start to express co-receptor proteins; most 

frequently CD8 first followed by CD4 DP cells. From the large number of DP thymocytes 

only the cells best suited to function in host environment are able to mature and migrate 

to peripheral lymphoid tissues. This selection can occur in four distinct processes: death by 

neglect, negative selection, positive selection and lineage specific development. In this DP 

stage thymocytes express functional TCRs, however most of these cells interact so poorly 

with the available self-peptide MHC ligands that the intercellular signals required to sustain 

viability are not generated, leading to death by neglect. These few interactions between TCR 

and self-ligands peptides result from a low diversity of antigens on cortical epithelial cells 

involved in initiating T cell selection. Some DP thymocytes express TCR with strongly 

binding capacity to self-ligands peptides and can cause autoimmune diseases if they leave 

the thymus; however this process is regulated, when TCR binds to self-ligands peptides a 

rapid apoptotic signalling is promoted (negative selection). DP thymocytes expressing TCR 

are able to recognize self-ligands peptides and generate signals that have intensity between 

those resulting in neglect or negative selection initiate a multi-step process known as 

positive selection that ultimate results in lineage-specific differentiation into either CD4
+ 

or 

CD8
+ 

mature cells (9) (figure 1). 

Positive selection involves a change from the DP to the single positive CD4
+
CD8

− 
or 

CD4
−
CD8

+ 
cells stated by the transcription silencing of one co-receptor locus, which is 

followed by cell surface changes and other genetic events that determine the effector 

potential of the mature T cell (helper versus cytotoxic cell) (9). The cell surface changes 

identified have been associated with the transit from the DP stage, include induction of 

CD69 (a transmembrane C-type lectin protein), CD53 (a transmembrane tetraspanin), CCR7 

(G protein-coupled receptor), IL-7 receptor, as well as, the upregulation of TCR, CD5, and 

MHC class I. The interactions between the TCR, self-peptide/MHC complexes present on the 

surface of thymic epithelial cells initiate positive selection (figure 2). Since membrane 

proximal regions of the TCR and the associated CD3 signalling components are identical 
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between cells destined to become CD4
+ 

or CD8
+ 

T cells, it seems unlikely that 

completely distinct signalling pathways would direct alternative cell fates (21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 | Positive selection signalling in the thymus (22). 

A low-affinity ligand stimulates the TCR, which leads to the activation of a SRC-family kinase, typically lymphocyte-

specific protein tyrosine kinase (LCK). This kinase is associated with the TCR–CD3/ζ complex, as well as with the 

cytoplasmic tails of CD4 and CD8. Activated LCK tyrosine phosphorylates immunoreceptor tyrosine based activation 

motifs (ITAMs) in CD3/ζ, which produces a structure that is suitable for tight binding by the paired SRC-homology 2 

(SH2) domains of the SYK-family kinase ZAP70 (ζ-chain-associated protein kinase). Recruited ZAP70 is phosphorylated 

and activated by the already functional LCK. Active ZAP70, in turn, tyrosine phosphorylates a major adaptor protein — 

linker for activation of T cells (LAT) — in addition to several other enzymes and adaptors like PLCɣ 1 and Itk. This 

leads to an increase of the intracellular Ca2+ concentration, promoting the nuclear translocation of nuclear factor of 

activated T cells (NFAT). 

Mature naïve T cells (CD4
+ 

or CD8
+
) are then deployed to secondary lymphoid organs, 

including the spleen, lymph nodes, and the mucosa-associated lymphoid tissue, where 

they constantly survey for peptide-MHC molecules, for antigen recognition (23). Although 

both CD4
+ 

and CD8
+ 

T cells undergo an autonomous program of differentiation, the kinetics 

and efficiency of CD8
+ 

T cell proliferation differ substantially from those of CD4
+ 

T cell 

proliferation. The time of antigen exposure required to initiate the proliferative program for 

naïve CD8
+ 

T cells seems to be less than the required for naïve CD4
+ 

T cells, moreover 

CD8
+ 

T cells also divide sooner and have a faster rate of cell division than CD4
+ 

T cells 

(24). 

Stimulus 
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1.2.2 T cell subsets 

T cell can be divided in two general categories: generation of T helper (Th) cells and 

cytotoxic T (Tc) cells, a broad generalization assigns helper function to CD4+ T cells and 

cytotoxic functionality to CD8+ T cells. Other less prominent, although not necessarily 

less important, T cell subsets exist as γδ T cells and NKT cells (25). The physiological 

roles of γδ T cells are varied and include protective immunity against extracellular and 

intracellular pathogens, tumour surveillance, modulation of innate and adaptive immune 

responses, tissue healing, epithelial cell maintenance and regulation of physiological 

organ function. Likewise, these cells have ability to rapidly produce cytokines and 

therefore regulate pathogen clearance, inflammation and tissue homeostasis in response to 

tissue stress (26). 

NKT cells are a population of T cells which share some characteristics with natural killer 

cells. The most characteristic function of NKT cells is the rapid production of high 

levels of immunoregulatory cytokines like interferon (IFN) γ, IL-4 and TNF following in 

vitro stimulation. The range of actions attributed to NKT cells is extremely diverse, was 

suggested that an important function of these cells might be the protection of self-tissues 

(particularly vital organs) from damaging inflammatory-type immune responses. There are 

also evidences that they are involved in immune responses to infection and some tumors 

(27). 

T helper cell responses support the immune response by the robust release of cytokines 

and chemokines which either activate adjacent cells to perform specific functions or recruit 

new immune cell subsets to the sites of inflammation. Whereas cytotoxic T cells are also able 

to a diverse array of cytokine production, their function appears to be largely focused on 

the elimination of pathogen-infected host cells by cytotoxic activity. This is often taken 

along with the delivery of cytotoxic granules into the cytosol of the infected cell, 

recognized by TCR binding to peptide/MHC on the target cell (24). 

1.2.3 T cells compartments: naïve, memory and effectors cells 

Memory is the hallmark of the acquired immune system. It results from the clonal expansion 

and differentiation of antigen-specific lymphocytes that ultimately persist for a lifetime. 

Especially in young life, typical mature resting T cells display a naïve phenotype 

characterized by the expression of low levels of CD44 and high levels of the lymph node 

homing receptors, L-selectin (CD62L) and CCR7 (figure 3). These mediate the rolling, 
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adhesion, and extravasation of the cells through the high endothelial venules (specialized 

venules found in lymphoid tissues) in peripheral lymph nodes and mucosal lymphoid 

organs. Survival of naïve cells is maintained by low-affinity TCR/self-antigen interaction 

and signalling as well as by the presence of IL-7. These signals are normally sufficient to 

maintain homeostasis of naïve T cells for several months. When naïve T cells react to 

antigen during the immune response, a small proportion of the responding cells survive to 

form antigen-specific memory T cells (28). 

Memory lymphocytes confer immediate protection in peripheral tissues and develop a 

rapidly response against antigens in secondary lymphoid organs. Protective memory is 

mediated by effector memory T cells (TEM) that migrate to inflamed peripheral tissues and 

display immediate effector function, whereas reactive memory is mediated by central 

memory T cells (TCM) that home to T cell areas of secondary lymphoid organs, have 

little or no effector function, but readily proliferate and differentiate to effector cells in 

response to antigenic stimulation (29). 

 

 

 

 

 

 

 

 

 

 

 

A) 

B) 

Figure 3 | Subsets of memory T cells. 

Subsets of CD4+ and CD8+ T cells based on 

differential expression of CD45RA, CD62L and CCR7 

(A) (24). Phenotypic heterogeneity of human memory 

T cells (B) (29). PBMC – peripheral blood mononuclear 

cell; TEM – effector memory T cells; TCM -  central 

memory; TEMRA – effector memory T cells expressing 

CD45RA 
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T cell memory was initially defined in the human system based on two distinct criteria: 

the absence or presence of immediate effector function and the expression of homing 

receptors that allow cells to migrate to secondary lymphoid organs or to non lymphoid 

tissues ( 3 0 ) .  Human TCM are CD45RO
+ 

memory cells that constitutively express CCR7 and 

CD62L, two receptors that are also characteristic of naïve T cells, which are required for 

cell extravasation through high endothelial venules and migration to T cell areas of 

secondary lymphoid organs (8, 9). When compared with naïve T cells, TCM have higher 

sensitivity to antigenic stimulation, are less dependent of costimulation, and upregulate 

CD40L in a greater extent, thus providing more effective stimulatory feedback to dendritic 

cells and B cells. TCM produce mainly IL-2, although after proliferation they efficiently 

differentiate to effector cells and produce large amounts of IFN-γ or IL-4. Human TEM are 

memory cells that have lost the constitutive expression of CCR7, have a heterogeneous 

CD62L expression and display characteristic sets of chemokine receptors and adhesion 

molecules required for homing to inflamed tissues. When compared with TCM, TEM are 

characterized by rapid effector function. CD8+ TEM carries large amounts of perforin, and 

both CD4 and CD8 produce IFN-γ, IL-4 and IL-5 within hours following antigenic 

stimulation (29).  

The relative proportions of TCM and TEM in blood differ in the CD4+ and CD8+ T  subsets; 

TCM is predominant in CD4 and TEM in CD8. However, within the tissues, TCM and TEM 

show characteristic patterns of distributions, TCM are enriched in lymph nodes and tonsils, 

whereas lung, liver and gut contain higher proportions of TEM (31). Subsets of TCM and TEM 

with distinct functional programs can be identified according to the expression of surface 

molecules. Costimulatory molecules have been the first markers used to distinguish the 

heterogeneity of memory T cells. CD27 and CD28, which are expressed on naïve T cells, 

are also expressed on some memory T cells but are absent in a subset of CD8 memory T 

cells characterized by high effector function and expression of CD45RA (figure 3b) (32). 

The combinatorial expression of adhesion molecules and chemokine receptors allows 

tissue specific targeting of T cell and leukocyte subsets. The expression of CCR4 seems to 

identifies skin homing T cells, whereas the expression of CCR9 and α4β7 (an integrin) 

are characteristic of gut-homing T cells. Some skin-homing and gut-homing T cells express 

CCR7, suggesting that they may be capable of homing to lymphoid and non lymphoid 

tissues. Moreover, while most TCM simultaneously express CCR7 and CD62L, there are 
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several TEM, especially within CD4, that lack CCR7 but express CD62L (30). This finding 

is consistent with the ability of CD62L+ TEM to entering the lymph nodes through high 

endothelial venules using other receptors that bind to chemokines mediating arrest under 

flow. This may be particularly relevant in inflammatory conditions when chemokines 

produced in peripheral tissues may be transported and displayed on the luminal face of 

endothelial cells (29). 

1.2.4 T cells activation and differentiation 

The initial step of the naïve cells differentiation is the antigenic stimulation as a result 

of interaction between TCR and their co-receptor (CD4 or CD8) and the antigen-MHC II or 

I complex, respectively, expressed in APCs. TCR coupled with CD3 activation 

consequently induces a network of downstream signalling pathways, which eventually lead 

to naïve cell proliferation and differentiation into specific effector cells. Lineage-specific 

differentiation depends of the cytokine milieu in the microenvironment, as well as the 

antigens concentration, type of APCs, and costimulatory molecules (33). Costimulatory 

signals are able to augment TCR signals, inducing a transcriptional program resulting in 

robust IL-2 production and secretion, in an autocrine and paracrine way, inducing T cells 

stimulation, proliferation and differentiation (25). The main co-stimulatory receptor is the 

CD28, which is expressed in all naïve T cells; its ligands on DC are the CD80 and CD86 

(34). 

In response to a specific cytokine environment, antigen-stimulated T cells will be 

genetically programmed into a variety of potential subsets possessing effector mechanisms 

appropriate to trigger the pathogen (25, 35).  Several cytokines produced by these cells 

can create a positive feedback loop, whereby the differentiation and response are 

marginally enhanced (36). CD4
+ 

T cell responses can be therefore classified into different 

sort of T helper subsets, with the major ones (although not all) designated as Th1, Th2, 

Th17, Th9, follicular helper T cells (Tfh), and Tregs (figure 4). The Th1 and Th2 subsets 

were named as 1 and 2 because they were the first two subsets classified (25). 
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Figure 4 | Differentiation of CD4+ T cells. T cells show plasticity and are able to differentiate into many different subsets 

based on the soluble molecules secreted during priming of the subsets. 

Th1 cells are generated from naïve T helper cells by TCR engagement and signal transducers 

and activators of transcription (STAT) 1 signalling, induced by activation of the IFN-γ 

receptor. Phosphorylated STAT1 induces expression of the T-box transcription factor (T-

bet), which then drives Th1 differentiation by transactivating the Th1 signature cytokine 

IFN-γ. The specific subunit of the receptor for IL-12 – IL12Rβ2 also plays an important 

role in suppressing the development of Th2 and Th17 subsets. Thus, the cell becomes 

responsive to IL-12, which is produced by activated APCs, subsequent IL-12 signalling 

through STAT4 stabilizing the Th1 phenotype (37-39). These cells predominantly secrete 

IFN-γ and lymphotoxin and are important for host defence against intracellular pathogens 

and induction of delayed type hypersensitivity responses. These cells can also produce 

macrophage inflammatory protein (MIP)-1α, MIP-1β and CCL1 resulting in attraction and 

activation of macrophages (35). 

While Th1 cells are generally associated with host defence and autoimmunity, Th2 cells, 

are described as being involved in effector functions related with the clearance of 

extracellular organisms like parasites and helminths and as playing an important role in 

eosinophilic inflammation and immunoglobulin E production in allergic reactions and 

asthma (40, 41). IL-4 and IL-2 are the critical cytokines for Th2 differentiation likewise the 

major transcription factor involved is the master regulator GATA-binding protein 3 

(GATA3). Distinct mechanisms of GATA3 involvement in Th2 differentiation have been 

postulated, including enhanced Th2 cytokine production, selective proliferation of Th2 cells 

through recruitment of growth factor independent 1 transcription repressor, and inhibition of 
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Th1 differentiation presumably by interacting with T-bet and by downregulation of STAT4 

(42, 43).  

Activation of T cells via TCR and IL-4 receptor, leads to phosphorylation of STAT6 which 

is critical for induction of GATA3 transcription factor and in turn GATA3 is responsible 

for the Th2-specific cytokines transcription, such as IL-4, IL-5 and IL-13. On the other 

hand, a downregulation of Th1-related factors, like STAT4 and IL-12Rβ2 occurs (35). 

IL-6, IL-21, IL-23, and transforming growth factor beta (TGF-β) are the major signalling 

cytokines involved in Th17 cells differentiation, and retinoic acid receptor-related orphan 

receptor gamma-T (RORγt) is the master regulator. The differentiation process can be split 

into 3 stages, including the differentiation stage mediated by TGF-β and IL-6, the self 

amplification stage by IL-21, and the stabilization stage by IL-23. IL-6 signalling leads 

to the phosphorylation of STAT3, which is essential for proper Th17 differentiation. In 

IL-6 absence differentiation of Th17 cells can also be induced by TGF-β plus IL-21, but 

comparatively IL-6 is a stronger driver of Th17 responses (44).  In addition, Th17 cells also 

produce IL-21, which acts in an autocrine fashion to amplify Th17 differentiation. This 

process is mediated via interferon regulatory factor 4 which in turn is regulated by the IRF-

binding protein (45). IL-6 and TGF-β signals ultimately lead to the expression of the 

transcription factor RORγt, responsible to transactivate many components essential for 

differentiation of Th17 cells including IL-17A, IL-17F and IL-23R (46). 

Th17 cells were established as an independent T-cell subset, with specific functions related 

to IL-17 production, their development seems to be regulated by Th1 and Th2 cells, 

since both IFN-γ and IL-4 inhibit Th17 cell differentiation (35). Th17 cells are involved 

in a range of autoimmune diseases, but an exclusive role as mediators of pathology is 

unlikely their primary function. IL-17 stimulates the mobilization and generation of 

neutrophils by granulocyte-colony stimulating factor, thereby bridging innate and adaptive 

immunity as an early defence mechanism against severe trauma that would result in tissue 

necrosis or sepsis. An important role of IL-17-producing T cells in a wide range of infections 

was suggested because of IL-17 importance in the host defence against extracellular bacteria 

such as Klebsiella pneumonia or Bacteroides fragilis or against fungi such as Candida 

albicans (47). 

Among the major Thelper subsets, a subset which predominantly produces IL-9 was 

identified, the Th9 cells. These cells are induced by TGF-β plus IL-4 and are characterized 
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by the secretion of both IL-9 and IL-10, effector cytokines that were previously 

associated with Th2 cells. However, Th9 cells produce much larger amounts of IL-9 than 

Th2 cells while secreting only small amounts of other Th2-related cytokines such as IL-4, 

IL-5 and IL-13. In addition, Th9 cells also do not express the Th2 transcription factor 

GATA3, neither RORγt nor Forkhead transcription factor (FOXP3), transcription factors 

associated with Th17 and Treg cells. These findings support the concept that Th9 cells are 

an independent T-cell subset; however, no Th9-specific transcription factor has been 

identified so far (35). 

Follicular helper T cells are C-X-C motif receptor-5 (CXCR5) expressing cells and are located 

in follicular areas of lymphoid tissue, where they participate in the development of antigen-

specific B-cell immunity, a fundamental aspect of adaptive immunity and the generation of 

immunological memory. IL-6 and IL-21 are the main cytokines involved in their 

differentiation process together with the master regulator transcription factor Bcl6 (48, 49).  

STAT3 activates their cytokine downstream signalling and is also an important transcription 

factor of Tfh. Bcl6 is activated downstream to IL-6 and IL-21 signalling and its 

overexpression induced Tfh differentiation (36). 

Regulatory T cells play an indispensable role for the maintenance of self tolerance and 

immune homeostasis. Quantitative and/or qualitative deficiencies in Treg cells could lead 

to the development of autoimmune diseases. FOXP3 is a key transcription factor for the 

development and function of natural CD4
+ 

Treg cells. However, recent studies have 

shown that human FOXP3
+
CD4

+ 
T cells are not homogeneous in gene expression, phenotype 

and suppressive function (50).  TGF-β is the critical cytokine responsible for the initiation of 

the Treg cell lineage commitment. FOXP3 is induced downstream to TGF-β signalling, after 

interaction with TCR. STAT5-induced downstream to IL-2 signalling is required for the 

differentiation of Treg. STAT5 was found to enhance FOXP3 expression and 

subsequently downstream to FOXP3 signalling and promote Treg development. STAT5 

and STAT3, which bind to multiple common sites across the IL-17 locus, function 

closely and antagonize each other. Activation of STAT5 by IL-2 signalling impair 

STAT3 binding to the locus sites and consequently enhance Treg differentiation instead of 

Th17 differentiation (36). 
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1.2.5 Chemokine receptor CXCR3 

CXCR3 is a G protein–coupled cell surface receptor with a seven-transmembrane α-

helical structure constituted by 368 amino acid residues with a molecular weight of 

approximately 40 kDa. The extracellular N-terminal domain contains three loops, which are 

involved in the binding of the chemokine ligand, one of the loops is essential for effective 

receptor activation by all CXCR3 ligands. The intracellular C terminal domain (also 

containing three loops) allows signal transduction upon chemokine recognition, through 

phosphorylation of serine and threonine residues (51). (52) 

The CXCR3 receptor–ligand system is involved in two main biological mechanisms: (1) 

chemotaxis of immune cells and (2) angiogenesis. Their role on orchestrate the 

homeostatic immune cell trafficking during haematopoiesis and immune surveillance is due 

to their three ligands, namely Chemokine (C-X-C motif) ligand 

( CXCL) 9 (a monokine induced by IFN-γ), CXCL10 (the IFN-γ 

inducible protein 10), and CXCL11 (an IFN-γ inducible T cell α 

chemoattractant) (figure 5) which are responsible for the 

recruitment of immune cells at infection/inflammation sites. The 

binding of CXCL10 to the receptor can interfere in the regulation 

of T cell responses since they are able to modulate T cell 

proliferation in response to an antigen and they favour Th1-type 

cytokine production while down-regulating Th2 cytokines. 

CXCR3 has been reported to be expressed on several immune cell types, among which are NK 

cells, plasmacytoid and myeloid dendritic cells, B cells and especially activated T cells (51). 

The increased secretion of CXCR3 ligands promotes additional recruitment of CXCR3
+ 

effector cells. In turn, these effectors cells secrete IFN-γ locally, which further amplifies 

infiltration of effector cells. This inflammatory loop allows CXCR3 and its ligands to 

coordinate T cell responses in the inflamed periphery, and suggests why expression of 

CXCR3 is tightly linked to autoimmunity (53). The role of CXCR3 in the pathogenesis of 

rheumatoid arthritis (RA) it is not clear, although CXCR3 is a receptor for CXCL10 and 

CXCL9, which are produced mainly by macrophages and fibroblasts (54) and these 

ligands can be produced and preferentially expressed in inflamed joints of RA patients (55), 

suggesting that these chemokines may participate in the selective recruitment of T cells. 

These chemokines, in Th1-dominant conditions, induce chemotactic migration of 

circulating CXCR3-expressing Th1 cells. Recruited Th1 cells produce cytokines such as 

Figure 5 | CXCR3 ligands (52) 
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IL-2 and IFN-γ, which further activate synovial macrophages (figure 6). Thus, production 

of CXCL10 and CXCL9 by macrophages and fibroblasts and selective expression of 

CXCR3 on Th1 cells may represent an important biological amplification mechanism to 

promote local Th1-type responses in RA (56). 

 

 

 

 

 

 

 

 

Figure 6 | Role of Th1 CXCR3 and its ligands in rheumatoid arthritis (57). 
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1.3 Rheumatoid arthritis 

Rheumatoid arthritis is a systemic, chronic inflammatory and autoimmune disease that 

primarily affects the joints. It is characterized by swelling, tenderness, and destruction of 

synovial joints, leading to severe disability and premature mortality. Onset can occur at 

any age, but is more often between 30 and 50 years (58). The disease is three times more 

frequent in women than in men. Prevalence rises with the age and is highest in women older 

than 65 years, suggesting hormonal factors could have an influence in the pathogeneses (59). 

The exact prevalence across the entire population is unknown however available data 

suggests that RA affects around 1% of the population, making it one of the most common 

autoimmune rheumatic diseases (60). The disease is common in northern Europe and North 

America compared with parts of the developing world, such as rural west Africa (61). These 

variations are indicative of different genetic risks and environmental exposures. The health-

related quality of life in RA patients is significantly reduced by pain, fatigue, loss of bodily 

function, and heavy economic burden associated with disease progression (3). 

RA patients typically present to health care once the signs and symptoms of arthritis (joint 

pain, stiffness and swelling) develop; however, established and emerging data from 

multiple studies support that the initial immune dysregulation of RA, as measured by 

autoantibodies (e.g. rheumatoid factor (RF) and antibodies to citrullinated protein antigens 

(ACPA)) and other inflammatory markers, occurs long prior to the first joint symptoms 

(62). The synovium, or membrane present in the synovial joints that lines the joint capsules 

and creates synovial fluid for the joints in the hands and feet, is usually the first structure 

affected. The subsequent inflammatory changes lead to cartilage and bone destruction. In 

addition, the corresponding systemic inflammation may result in disorders of multiple organ 

systems (3). 

The RA diagnosis is based on the symptoms, physical examination, laboratorial results and 

imaging tests in accordance with 2010 American College of Rheumatology/European 

League Against Rheumatism classification criteria. This classification criteria can be 

applied to any patient as long as 2 mandatory requirements are met: 1) there must be 

evidence of currently active clinical synovitis (i.e., swelling) in at least 1 joint; 2) the 

criteria may be applied only to those patients in whom the observed synovitis is not better 

explained by another diagnosis, as for example systemic lupus erythematosus, psoriatic 

arthritis, gout among others. Four additional criteria can then be applied to eligible patients, 
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as defined above, to identify those with “definite RA”; these are shown in Table 1. 

Application of these criteria provides a score of 0 to 10, with a score of 6 being indicative of 

the presence of definite RA (63). 

Table 1. Classification criteria for RA 

A. Joint involvement Score 

1 large joint 0 

2–10 large joint 1 

1–3 small Joints (with or without involvement of large joints) 2 

4–10 small joints (with or without involvement of large joints) 3 

>10 joints (at least 1 small joint) 5 

B. Serology (at least 1 test result is needed for classification) 

Negative RF and negative ACPA 0 

Low-positive RF or low positive ACPA 2 

High-positive RF or high positive ACPA 3 

C. Acute-phase reactants (at least 1 test result is needed for classification) 

Normal CRP and normal ERS 0 

Abnormal CRP and abnormal ERS 1 

D. Duration of symptoms 

< 6 weeks 0 

≥ 6 weeks 1 

RF, rheumatoid factor; ACPA anti-citrulinated protein antibody; CRP, C-reactive protein; ESR, erythrocyte 

sedimentation rate. Based on the American College of Rheumatology/European League Against Rheumatism 

classification criteria. A score of ≥6 in 10 is needed for classification of patient as having definite RA.  
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1.3.1 The pathogenesis 

RA seems to be a result of genetic, environmental and perhaps stochastic factors 

combined to initiate autoimmunity. Once an initial homeostatic dysregulation has occurred, 

over time, and influenced by ongoing factors including the same or perhaps additional 

genetic and environmental factors, several pathophysiological processes occur (figure 7) (62, 

64). 

 

 

The devastating potential of this disease is connected to joint destruction. This tissue injury 

is mainly due to chronic inflammation, although to some extent it seems independent from 

inflammatory process (65). The initiating event in RA is followed by the induction of an 

immune response, resulting in inflammation in the lining of the joint, known as the 

synovial membrane. The normal synovium is a relatively acellular structure with an 

intimal lining comprised of macrophage and fibroblast-like cells known as synoviocytes 

(66). 

Figure 7 | Summary of rheumatoid arthritis pathogenesis (63). 
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Osteoclasts are abundant in these patients are able to damage the bone, furthermore 

fibroblast-like synoviocytes are involved in cartilage damage. In addition, the chondrocyte 

function is altered, mainly the collagen synthesis which affect the cartilage repair. On the 

other hand, synovial tissue undergoes hypertrophy, cell proliferation induces aggressive 

invasion on neighbouring tissues, leading to bone erosion and joint injury (figure 8) (64). 

These microenvironmental changes, combined in profound synovial architectural 

reorganization and local fibroblast activation, allowing the build up of synovial inflammatory 

tissue (67).  

 

 

 

 

 

 

 

 

 

The relationship between loss of self-tolerance and synovial involvement is unclear, but 

synovitis occurs when leukocytes infiltrate the synovium. Leukocyte accumulation reflects 

cell migration, which is enhanced by endothelial activation and expression of adhesion 

molecules such as E-selectin, intercellular adhesion molecule, and vascular cell adhesion 

molecule (65, 68). All this cell accumulation is resulted of insufficient 

lymphangiogenesis, which limits cellular egress, causing local hypoxia, cytokine release 

and fibroblast activation. These changes in the synovial environment are manifested by 

expansion of autoreactive T and B cells, epitope spreading, increases in inflammation, up-

Figure 8 | Development of rheumatoid arthritis (65). 



 

23 

regulation of signalling molecules, increases in autoantibody levels and alterations of 

autoantibodies pathogenicity such as changes in glycosylation rendering them more ability 

to induce damage (62). The autoimmune process may be more closely related to loss of 

peripheral tolerance than to loss of central (thymic) tolerance (66). 

1.3.2 Role of T cells in rheumatoid arthritis 

Involvement of T cells in determining not only the onset but, more important, the evolution 

of the rheumatoid syndrome is indicated by the formation of lymphoid microstructures 

in the inflamed joint. These follicles are identical to those found in lymph nodes, and the 

synovium can therefore be likened to a secondary lymphoid organ capable of stimulate T 

and B cells (64). T cell–mediated hypersensitivity reactions take place because of the 

stimulation and release of cytokines and chemokines, which recruit macrophages to the 

inflammation sites, mediating tissue injury (69). 

Antigen-activated CD4+ T cells stimulate monocytes, macrophages, and synovial fibroblasts 

to produce cytokines like IL-1, IL-6, and TNF-α and to secrete matrix metalloproteinases 

(Figure 9) through cell-surface signalling of CD69 and CD11 as well as through the 

release of soluble mediators such as IFN-γ and IL-17. IL-1, IL-6, and TNF-α are the 

key cytokines that drive inflammation in RA. Activated CD4+ T cells also stimulate B cells, 

through cell-surface contact and binding of α1β2 integrin, CD154 (CD40 ligand), and 

CD28, to produce immunoglobulins, including rheumatoid factor (an antibody against the 

Fc portion of IgG). The precise pathogenic role of rheumatoid factor is unknown, but it may 

involve the activation of complement through the formation of immune complexes. 

Activated CD4+ T cells express osteoprotegerin ligands that stimulate osteoclastogenesis 

(Figure 9) (70). 

The characteristics of synovial T cells indicate lymphocyte exhaustion, with loss of the 

CD3ζ chain, intrinsic resistance to apoptosis in vivo and loss of expression of CD25, 

CD28, CD27, CD40L; enhanced expression of inflammatory cytokines such as IFN-γ and 

TNF-α and chemokines expression like CCR4, CCR5, CXCR3, and CXCR5 (71). 

Activated macrophages, lymphocytes, and fibroblasts, as well as their products, can also 

stimulate angiogenesis, which may explain the increased vascularity found in the synovium 

of patients with RA (70). Synovial angiogenesis is a key factor for the development of 

synovitis. Vascular endothelial growth factor is the most important proangiogenic factor 
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and can be produced in response to all the stimuli present inside rheumatoid synovium, like 

inflammation (via proinflammatory cytokines like TNF-α and IL-1), hypoxia, cellular 

proliferation and reduced apoptosis. Their effects include an increase in blood vessel 

permeability, proliferation and migration of endothelial cells (64). Endothelial cells in the 

synovium are activated and express adhesion molecules promoting the recruitment of 

inflammatory cells into the joint. This process is enhanced by the release of cytokines, such 

as IL-8, by the inflammatory cells in the joint (70). 

 

 

 

 

 

 

 

 

 

1.3.3 Treatment in rheumatoid arthritis 

The key aim of treatment for established rheumatoid arthritis is minimize the disease activity,  

diminishing the joint pain and swelling, preventing deformity (such as ulnar deviation) and 

radiographic damage (such erosions), maintaining life quality (personal and work) and 

controlling extra-articular manifestations (72). This goal can be achieved with disease-

modifying antirheumatic drugs (DMARDs) and biological agents: singly or in combination, 

with or without glucocorticoids (figure 10). Flare-ups and persistently active disease are 

treated by switching or combining DMARDs, adding glucocorticoids, and starting or 

switching biological agents. TNF inhibitors are the dominant biological agent in established 

disease they are usually continued unless they become ineffective or a relevant adverse effect 

arises (73).  

Figure 9 | Cytokines signalling involved in inflammatory arthritis (68) 
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Glucocorticoids are frequently used in the treatment of RA because they enable fast relief of 

symptoms and retardation of radiologically visible joint damage. Furthermore, due to their 

rapid anti-inflammatory effects, glucocorticoids are very frequently used as bridging therapy 

in patients with established RA (74). They are able to inhibit the release and activity of pro-

inflammatory cytokines, such IL-1 and TNF, which stimulate production of the ligand for 

receptor activator for nuclear factor κB (RANKL) by osteoblasts and T cells. RANKL binds 

to its receptor on osteoclast precursor cells and on mature osteoblasts, leading to activation of 

osteoclasts, which are responsible for bone resorption, periarticular osteopenia and formation 

of bone erosions in RA patients (75). Thus, the mechanism of glucocorticoids action explains 

why these drugs particularly reduce the formation of new erosions, whereas they have little or 

no effect on joint-space narrowing (76).  

They can be especially useful in two settings. First, short-term use during flare-ups in disease 

can lead to rapid improvement and allow other treatments, which have a slower onset of 

action, use of steroids in this way represent low risk for the patient. Oral or intramuscular 

glucocorticoids are administered in this setting. Second, intra-articular glucocorticoids are a 

highly effective local treatment for individual active joints used mostly for local control, but 

can also be part of a treatment strategy in combination with DMARDs (73). 

DMARDs are a heterogeneous collection of agents that are the mainstay of treatment for RA. 

Their mechanisms of action are incompletely understood, they are known to reduce joint 

swelling and pain, and decrease acute-phase markers, to limit progressive joint damage and to 

improve function. These DMARDs agents include methotrexate, leflunomide 

hydroxychloroquine, sulfasalazine, among others. Methotrexate is a folic acid antagonist 

cytotoxic drug recommended as the first line treatment in patients with active disease. Their 

mechanism of action in RA is related to the inhibition of dihydrofolate reductase by binding 

to this enzyme, methotrexate interferes with DNA synthesis and cell proliferation (77). 

Leflunomide may be used as an alternative to methotrexate, is a dihydroorotate 

dehydrogenase inhibitor, this enzyme is require for de novo pyrimidine synthesis in this way it 

inhibits replication of activated lymphocytes by blocking the synthesis of pyrimidines and 

hence DNA. 

Sulfasalazine and hydroxychloroquine is recommended as monotherapy in patients with low 

disease activity or without poor prognostic features (72). Hydroxychloroquine is an 

antimalarial agent but its role in RA treatment is related with the inhibition of the immune 
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response by blocking Toll-like receptors. Other mechanisms have been described, such as 

interfering with antigen presentation and lysosomal acidification and inhibiting phospholipase 

A2, all of these molecular effects could partially explain the immunomodulatory effect of this 

drug upon pro-inflammatory cytokines, such as IL-6, IL-1β and TNF-α (78). 

Combination therapy with two or more DMARDs is more effective than monotherapy; 

however adverse effects may also be greater and could include minor adverse effects as 

nauseas or serious effects like hepatotoxicity, blood dyscrasias and also interstitial lung 

diseases (73). Despite the effectiveness of this medication, a significant number of patients 

continue to have clinical symptoms of inflammation and progressive joint destruction. Recent 

advances in the understanding of the pathogeneses have led to the identification of novel 

therapeutic targets. Biologic agents include monoclonal antibodies and recombinant receptors 

to block cytokines that promote the inflammatory cascade responsible for the symptoms (79). 

The most common agents inhibited the biological activity of TNF-α (anti-TNF), a cytokine 

known not only to contribute to host defence against infection, but also to be key in 

perpetuating the inflammatory response in RA, leading to synovial proliferation and bone 

destruction. As a class, TNF inhibitors are generally well tolerated; however, adverse effects 

such as decreased resistance to both routine and opportunistic infections can be devastating 

and must be aggressively sought and treated (80). By combining the synthetics DMARDs and 

the available biologic agents, the management of RA has been transformed over the past years 

offering RA patients great hope that they will experience clinical benefit and maintain 

productive, functional lives (79).  

 

Figure 10 | Therapeutic algorithm for active RA patients. 
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2. Aims 

T cells are known to play a role in the pathogenesis of RA through different mechanisms for 

induction of tissue inflammation, such as cytokine production and attracting different 

secondary cells into the target organs. The diversity of T cell populations and its migration 

dynamic might be important for understanding the disease and could provide important 

insights for new therapeutic approaches. Since CXCR3 has been implicated in selective T cell 

recruitment, particularly for Th1 cells, we propose to characterize and quantify different 

functional peripheral blood T cells subpopulations based in the concomitant expression of 

CD45RA, CD27, CD28, CD62L and CXCR3 in RA patients and in a healthy group, in order 

to understand its role in the pathophysiology of this disease.  

Therefore we address the following specific objectives: 

 Evaluate the frequency and absolute number of circulating T cells subsets namely, 

CD4+, CD8+, CD4+CD8+ and γδ T cells in RA patients compared with healthy 

individuals. 

 Determine the CD4+ and CD8+ T cell distribution between the conventional functional 

compartments (naïve, central memory, effector memory and effector) identified based 

on CD27 and CD45RA expression in RA patients compared with healthy individuals. 

 Characterization of different T cell subsets according to the simultaneously expression 

of CD62L and CD28 combined with CD27 and CD45RA in CD4+, CD8 + and γδ T 

cells in RA patients compared with healthy individuals.  

 Assess the frequency of all T cell subpopulations expressing CXCR3 as well as its 

expression in RA patients compared with healthy individuals. 

 Correlate the laboratorial findings with the clinical parameters. 
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3. Material and Methods 

3.1 Patients  

Overall, eighteen RA patients according to the American College of Rheumatology 1987 

Criteria for RA (63), followed in the Rheumatology Department of the University Hospital 

Center of Coimbra, were recruited and asked to provide a blood sample collected into K3-

EDTA for this study. Patients enrolled were classified according to clinical activity (EULAR 

classification) as having an inactive or low disease activity (DAS28-3v < 3.2) or as moderate 

to high disease activity (DAS28-3v > 3.2) (81). Exclusion criteria included the following: 

secondary amyloidosis, neoplasm, chronic medication and/or active infection. 

Data regarding the number of swollen joints and tender joints, erythrocyte sedimentation rate 

(ESR) and C-reactive protein (CRP) were collected, and disease activity through DAS28-3v 

calculated. Data regarding current therapy, rheumatoid factor (RF), anti-citrullinated peptide 

antibodies (anti-ACPA), radiographic erosions and disease duration were collected by chart 

review.  

3.2 Healthy individuals 

The healthy control group (HC) comprised 14 healthy individuals who provided blood 

samples collected into K3-EDTA. These participants were required to complete a brief 

questionnaire regarding previous or current medical conditions. Inclusion criteria for this 

group included absence of autoimmune and allergic diseases, as well as active infection. 

Additionally, only individuals who were not undergoing treatment with immunomodulatory 

drugs for any known conditions were included in this control group. 

3.3 Ethical aspects 

The study protocol was approved by the ethics committee of the University Hospital Center of 

Coimbra. All participants provided a signed informed consent and the principles of the 

Helsinki Declaration were fully respected. 
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3.4 Multiparameter flow-cytometry immunophenotypic studies of circulating T 

cells subsets 

Identification and characterization of circulating T cells subsets was performed using the 

monoclonal antibodies described on Table 2. The amount of antibody (ab) was according to 

the manufacturer’s instructions. 

Table 2. Panel of antibodies used for T cell characterization.  

Ab CD62L CXCR3 CD45RA CD27 CD28 CD8 CD3 HLA-DR CD4 

Fluorochrome FITC PE PE-CyTM7 PC5 APC V500 ECD APC-H7 PB 

Clone DREG-56 1C6 L48 1A4CD27 CD28.2 RPA-T8 UCHT1 L243 RPA-T4 

Amount 20µL 20µL 5µL 10µL 20µL 5µL 5µL 2.5µL 2.5µL 

Company BDB BDP BDB BC BDP BDH BC BDB BDP 

FITC, fluorescein isothiocyanate; PE, phycoeritrin; PE-CyTM7, phycoerythrin-cyanine 7; PC5, phycoerythrin-cyanine 5; 

APC, allophycocyanin; ECD, phycoerythrin-Texas Red conjugate (energy coupled dye); APC-H7, allophycocyanin-

Hilite® 7 PB, pacific blue; BDB, Becton Dickinson (BD) Bioscience; BDP, BD Pharmingen; BC, Beckman Coulter; 

BDH, BD Horizon; 

For the sample staining, a direct immunofluorescence technique was used. Briefly, ab were 

added to 250 μL of peripheral blood (PB) and were incubated for 15 min at room temperature 

in darkness. After this incubation period, a lyse-and-then-wash protocol was followed: 

incubation with 2 mL of FACS Lysing Solution (BD Bioscience) diluted 1:10 (vol/vol) in 

dH2O for 10 min followed by a washing step with 2 mL of PBS (Gibco BRL-life 

Technologies). Cells were ressuspended in 0.5 mL of PBS before acquisition in flow 

cytometer. 

3.5 Flow cytometry data acquisition and analysis 

Data acquisition was performed in a Navios flow cytometer (Beckman Coulter) using the 

Navios software (Beckman Coulter). Results illustrate the percentage of positive cells within 

each cell subset and their mean fluorescence intensity (MFI). Absolute numbers were 

calculated using a dual platform methodology (flow cytometry and hematological cell 

analyser). For data analysis the Infinicyt™ software, V.1.5 (Cytognos SL, Salamanca, Spain) 

was used. 
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T cells were identified according to their positivity for CD3 and typical light scatter. Among 

positive CD3 cells, CD4 T cells were analyzed by the expression of CD4 and absence of CD8; 

instead, CD8 T cells were identified by the co-expression of both markers (CD3 and CD8). γδ 

T cell were identified according to their negativity for CD8 and CD4 and higher reactivity 

with anti-CD3 monoclonal antibody and typical light scatter. Previous studies using CD27 

and CD45RA surface markers have showed that T cells could be divided into four 

populations, the conventional functional compartments; CD27+CD45RA+ (naïve), 

CD27+CD45RA- (central memory), CD27-CD45RA- (effector memory) and CD27-CD45RA+ 

(effector) subsets. Furthermore, we assessed the expression of CD28 and CD62L in these 

populations (figure 11). 

3.6 Statistical analyses 

Statistical evaluations of data were performed using the non-parametric Mann–Whitney U test 

for continuous variables and Spearman’s rank correlation was applied to detect the association 

between different parameters. Results were expressed as median with range or interquartil 

range. All statistical analyses were performed using Statistical Package for Social Sciences 

IBM SPSS 20 (IBM, Armonk, NY. USA) and Graphpad Prism version 5 (GraphPad 

Software, San Diego, CA, USA). Differences were considered to be statistically significant 

when the p value was less than 0.05. 
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Figure 11 | Flow cytometry gate strategy to identify the T cells subsets 

A) CD45RA-CD27+CD28+CD62Ldim B) CD45RA-CD27+CD28+CD62L+ C) CD45RA+CD27+CD28+CD62Ldim D) CD45RA+CD27+CD28+CD62L+ 

E) CD45RA-CD27-CD28+CD62L- F) CD45RA-CD27-CD28dimCD62L- G) CD45RA-CD27-CD28-CD62L- H) CD45RA-CD27+CD28dimCD62L- 

I) CD45RA+CD27-CD28+CD62L- J) CD45RA+CD27-CD28dimCD62L- K) CD45RA+CD27-CD28-CD62L- L) CD45RA-CD27+CD28-CD62L- 

M) CD45RA-CD27+CD28dimCD62L+ N) CD45RA-CD27+CD28-CD62L+ O) CD45RA+CD27+CD28+CD62L- P) CD45RA+CD27+CD28-CD62L- 

Q) CD45RA-CD27-CD28+CD62L+ R) CD45RA-CD27-CD28dimCD62L+ S) CD45RA-CD27-CD28-CD62L+ T) CD45RA+CD27-CD28+CD62L- 

U) CD45RA+CD27-CD28-CD62L-    
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4. Results 

Table 3. Demographic and clinical parameters of the HC and the patients with RA included in 

the study 

 RA patients Healthy Controls 

Number 18 14 

Female, n (%) 13 (72.2) 10 (71) 

Age (years); median (range) 53 (26 – 71) 45 (22 – 50) 

RF positivity, n (%) 16 (94.1)*  

ACPA positivity, n (%) 16 (94.1)*  

Erosive arthritis, n (%) 10 (55.6)  

Smoking, n (%) 7 (38.9)  

CRP [mg/dL]; median (range) 0.4 (0.1 – 5.4)  

ESR [mm/hr]; median (range) 18 (2.0 – 70)  

DAS28 with 3 variables; median (range) 2.6 (0.7 – 5.6)  

Tender joints count; median (range) 1 (0 – 9)  

Swollen joints count; median (range) 1 (0 – 14)  

Remission#, n (%) 11 (61.1)  

Treatment:   

Prednisolone†, n (%) 

Doses (mg/day); (range)  

15 (83.3) 

(1.25 – 20) 
 

Methotrexate, n (%) 

Doses (mg/week); (range) 

14 (77.8) 

(12.5 – 25) 
 

Sulfasalazine, n (%) 

Doses (mg/day); (range) 

7 (38.9) 

(2000 – 3000) 
 

Hydroxychloroquine, n (%) 

Doses (mg/day); (range) 

6 (33.3) 

(400) 
 

Leflunomide, n (%)  

Doses (mg/day); (range) 

1 (5.6) 

(20) 
 

NSAIDs, n (%) 12 (66.7)  

RF, reumatoid factor; ACPA anti-citrulinated protein antibody; CRP, C-reactive protein; ESR, erythrocyte 

sedimentation rate; DAS28, disease activity score of 28 joints, including ESR; NSAIDs, non-steroidal anti-

inflammatory drugs. #According to the 2011 ACR–EULAR Boolean-based definition of remission in RA (82); 

*ACPA status and RF status was unknown for one patient. †Prednisolone or others corticosteroids  
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4.1 Demographic and clinical characteristics of the study participants 

The characteristics of the participants are summarized on the table 3. From the eighteen RA 

patients enrolled in the study thirteen were females with median age of 53 years. The majority 

of the patients (94.1%) presented positivity for RF and ACPA, however for one of the 

patients, was not possible to determine them. RA disease activity was evaluated using the 

DAS28-3v score based on the ESR and on the number of tender and swollen joints the 

patients presented a score median of 2.6. Based on this classification patients were clustered 

as inactive or low disease activity (n=11 (61.1%) DAS28-3v median 2.4) or as moderate to 

high disease activity (n=7 (38.9%) DAS28-3v median 4.3).  

Overall the patients’ therapy results from the combination of DMRADs (including 

methotrexate, sulfasalazine, hydroxychloroquine and/or leflunomide), prednisolone or others 

corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs). 

Only one patient was free of medication, classified with inactive or low disease activity 

(DAS28-3v=2.6); one patient was only under DMRADs classified with inactive or low 

disease activity (DAS28-3v=2.4); other patient has been treated with DMRADs and NSAIDs, 

the treatment of other patient included prednisolone or correspondent (dose 20mg/day) in 

combination with NSAIDs. Four out of eighteen patients were under DMRADs combined 

with prednisolone or others corticosteroids. The majority of the patients (n=10 – 55.6%) have 

been treated with at least one DMRADs combined with NSAIDs and prednisolone or others 

corticosteroids.  



 

Table 4. Relative frequency and absolute cell number of circulating peripheral blood T cells subsets in the studied groups. 

*Differences were considered statistically significant when p < 0.05. The Mann–Whitney U test used to compare between HC and RA. The results were given 

by median with range.  
 

 

 

A. T cells CD4+ T cells CD8+ T cells 
CD4/CD8 double 

positive T cells 
γδ T cells 

 

Relative 

frequency 

(%) 

Absoute value  

(cell/μL) 

Relative 

frequency 

(%) 

Absoute value  

(cell/μL) 

Relative 

frequency 

(%) 

Absoute value  

(cell/μL) 

Relative 

frequency 

(%) 

Absoute value  

(cell/μL) 

Relative 

frequency 

(%) 

Absoute value  

(cell/μL) 

HC 
19.0 

(14.2 – 27.8) 
1517 

(1087 – 2225) 
59.6 

(42.3 – 79.1) 
897 

(550 – 1209) 
27.5 

(16.0 – 39.8) 
419 

(245 – 712) 
0.8 

(0.2 – 2.6) 
12 

(3 – 33) 
7.1 

(2.4 – 19.2) 
114 

(36 – 426) 

RA 
17.0 

(4.9 – 27.6) 
1265 

(380 – 2936) 
70.5* 

(47.4 – 87.5) 
907 

(181 – 1914) 
21.3* 

(10.7 – 42.3) 
263* 

(76 – 724) 
0.6 

(0.1 – 2.0) 
8 

(1 – 38) 
3.5* 

(0.1 – 11.9) 

39* 

(1 – 132) 

         

B.  Naïve Central Memory Effector Memory Effector  

  
Relative 

frequency 

(%) 

Absoute value  

(cell/μL) 

Relative 

frequency 

(%) 

Absoute value  

(cell/μL) 

Relative 

frequency 

(%) 

Absoute value  

(cell/μL) 

Relative 

frequency 

(%) 

Absoute value  

(cell/μL) 
 

CD4+  

T cells 

HC 
33.4 

(16.9 – 52.1) 
298 

(120 – 567) 
47.6 

(33.9 – 59.6) 
399 

(284 – 690) 
18.9 

(8.1 – 31.7) 
157 

(97 – 318) 
0.4 

(0.2 – 1.1) 
4 

(2 – 9) 
 

RA 
31.8 

(17.1 – 44.8) 
203 

(74 – 709) 

55.9* 
(42.4 – 73.2) 

502 
(86 – 1388) 

12.0* 
(5.4 – 22.0) 

69* 
(19 – 254) 

0.4 
(0.0 – 5.4) 

4 
(1 – 27) 

 

CD8+  

T cells 

HC 
43.1 

(24.4 – 62.8) 
139 

(78 – 280) 
29.7 

(12.0 – 46.6) 
95 

(47 – 229) 
15.9 

(6.1 – 39.5) 
74 

(15 – 188) 
7.6 

(1.8 – 29.9) 
34 

(4 – 179) 
 

RA 
24.9* 

(7.4 – 46.5) 
51* 

(11 – 266) 
30.8 

(13.8 – 53.4) 
57 

(11 – 208) 
23.3* 

(12.3 – 46.3) 
49 

(9 – 236) 
14.9 

(0.8 – 35.6) 
31 

(1 – 199) 
 



 

42 

4.2 RA patients display a different T cells distribution 

The relative frequency and absolute number of CD8+ T cells and γδ T cells were significantly 

decreased in RA patients compared with HC, therefore we observed a relative increased in the 

CD4+ T cells frequency (table 4A). Regarding to CD4/CD8 double positive T cells no 

differences were found between the groups (table 4A).  

Concerning to the conventional functional compartments, identified based on the CD27 and 

CD45RA expression, four populations were characterized (naïve, central memory, effector 

memory and effector). Compared to HC, RA patients presented in CD4+ T cells a decreased 

frequency and absolute value in the effector memory subset, consequently an increase in the 

frequency of central memory subset was observed.  

On the other hand, RA CD8+ T cells displayed a different pattern compared to CD4+ T cells: it 

was observed a lower frequency and absolute value of naïve cells and on the other hand a 

higher frequency of the effector memory and effector subsets, although in the latter not 

reaching statistical significance (table 4B).  

4.3 Identification of CD4+ T cells subsets base on the CD45RA, CD27, CD28 

and CD62L expression 

Multicolour flow cytometry analysis demonstrated ten different populations in CD4+ T cells 

according with CD45RA, CD27, CD28 and CD62L expression. The phenotypes are described 

in table 5.  

Table 5. Phenotype of the CD4+ T cells subsets identified. 

CD4+ T cells           

           

CD45RA + + - - - - - + + + 

CD27 + + + + - - - - - - 

CD28 + + + + - dim + - dim + 

CD62L dim + - + - - - - - - 
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RA patients showed a decreased frequency and absolute number of the CD45RA-CD27-

CD28+CD62L- and the CD45RA+CD27-CD28+CD62L- subsets (figure 2a). Conversely, an 

increase in the subset CD45RA+CD27-CD28-CD62L- was detected in RA group, despite the 

heterogeneity observed in this group (figure 11).  
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Figure 12 | Frequency (A) and absolute value (B) of different CD4+ T cells subpopulations.  

*Differences were considered statistically significant when p < 0.05. The Mann–Whitney U test used to compare between HC and RA.  
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4.4 Identification of CD8+ T cells subsets based on the CD45RA, CD27, CD28 

and CD62L expression 

In CD8+ T cells we were able to characterize eleven different subsets base on the CD45RA, 

CD27, CD28 and CD62L expression. The phenotype of the identified subsets is described on 

table 6. 

Table 6. Phenotype of the eleven subsets identified in CD8+ T cells  

CD8+ T cells           

            

CD45RA + + - - - - - - + + + 

CD27 + + + + + - - - - - - 

CD28 + + + + dim - dim + - dim + 

CD62L dim + - + - - - - - - - 

Compared to HC, RA patients evidenced a lower frequency and a lower absolute number of 

the subsets CD45RA+CD27+CD28+CD62Ldim and CD45RA-CD27+CD28+CD62L- (figure 12a 

and b), in line with this observation a decrease in absolute value of the subset CD45RA-

CD27+CD28dimCD62L- was also found in RA patients (figure 12a). On the other hand, we 

observed a higher frequency and absolute value of the CD45RA+CD27-CD28+CD62L- subset 

in RA patients when compared to HC group (figure 12). 

4.5 γδ T cells compartments  

Through the combination of the CD45RA, CD27, CD28 and CD62L expression, we were able 

to identify sixteen γδ T cells subsets,8 for each subset CD27+ or CD27- of γδ T cells ; the 

phenotype is described below (table 7). 

Table 7. Phenotype of the sixteen subsets identified in γδ T cells. 

CD27+ 

CD45RA + + - - - - - - 

CD28 + - - dim + - dim + 

CD62L - - + + + - - - 

CD27- 

CD45RA + + - - - - - - 

CD28 + - - dim + - dim + 

CD62L - - + + + - - - 
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In γδ T cells of RA patients we noticed a lower absolute number of the following subsets: 

CD45RA-CD28dimCD62L+; CD45RA-CD28+CD62L+; CD45RA-CD28dimCD62L-; CD45RA-

CD28+CD62L-, independent of the CD27 expression (figure 13b). Conversely the absolute 

number of the CD27+CD45RA+CD28+CD62L- subset was also decreased in RA patients 

when compared to HC (figure 13b). 
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Figure 13 | Frequency (A) and absolute value (B) of different CD8+ T cells subpopulations.   

*Differences were considered statistically significant when p < 0.05. The Mann–Whitney U test used to compare between HC and RA. 
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Figure 14 | Frequency (A) and absolute value (B) of different γδ T cells subpopulations.  

*Differences were considered statistically significant when p < 0.05. The Mann–Whitney U test used to compare between HC and RA. 
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4.6 Expression of CXCR3 is different between RA patients and HC 

Concerning to the conventional functional compartments described above, naïve CD4+ and 

CD8+ T cells from RA patients had a higher frequency of CXCR3 when compared with HC 

(table 8b). Furthermore it was observed an increase in the frequency of cells expressing 

CXCR3 in RA patients, mainly in the CD4+CD45RA+CD27+CD28+CD62Ldim, 

CD8+CD45RA+CD27+CD28+CD62Ldim, CD8+CD45RA+CD27+CD28+CD62L+, 

CD8+CD45RA+CD27-CD28-CD62L- and  CD8+CD45RA+CD27-CD28+CD62L- subsets (table 

9a). Although these differences, surprisingly we don’t observed any variation in the frequency 

of total CD4+ and CD8+ T cells expressing CXCR3 neither in their relative expression per cell 

(table 8a). 

Conversely, we noticed a decrease in the CXCR3 expression (MFI) in the following CD4+ T 

cell subsets, CD45RA+CD27+CD28+CD62L+, CD45RA-CD27+CD28+CD62L-, CD45RA-

CD27-CD28dimCD62L-  subsets. Additionally, CD8+ T cell subsets like CD45RA-

CD27+CD28+CD62L+, CD45RA-CD27+CD28dimCD62L- and CD45RA+CD27-

CD28dimCD62L- from RA patients  showed less expression of CXCR3 when compared with 

HC (table 9b). 

Regarding to γδ T cells, an increase frequency of cells expressing CXCR3 was found in total 

γδ T cells and in both CD27+ and CD27- subsets from RA patients when compared to HC, 

although no differences were verified in the relative CXCR3 expression (table 10a).  

Additionally, γδ T cells subsets identified according to the concomitant expression of CD27, 

CD45RA, CD28 and CD62L overall demonstrated a decrease in the frequency and expression 

of CXCR3 in RA patients compared to HC, with exception of CD27-CD45RA+CD28+CD62L- 

subset were we found an higher frequency of cells expressing CXCR3 in RA patients (table 

10b). Likewise, the RA patients subsets CD27-CD45RA-CD28dimCD62L+, CD27+CD45RA-

CD28-CD62L-, CD27+CD45RA-CD28dimCD62L- and CD27+CD45RA-CD28+CD62L- 

exhibited lower frequency and expression of CXCR3 (table 10b and c) compared with HC . In 

line with these observations, we observed a decrease in the frequency of cells expressing 

CXCR3 in the subsets CD27-CD45RA-CD28-CD62L+ and CD27-CD45RA-CD28-CD62L-.  

Beside the changes in the frequency of cells expressing CXCR3 we also demonstrated a 

decrease in the expression of this chemokine receptor per cell in the 
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CD27+CD45RA+CD28+CD62L-, CD27+CD45RA+CD28-CD62L-, CD27-CD45RA-

CD28+CD62L+ and CD27-CD45RA-CD28+CD62L-subsets  (table 10c).  

 

 



 

 

 

Table 8. Frequency (%) of CD4+ and CD8+ T cell subsets and conventional CD4+ and CD8+ T cell functional compartments (naïve, central memory, effector 

memory and effector) expressing CXCR3 and relative CXCR3 expression per cell (MFI).  

 

A    CD4 positive T cells CD8 positive T cells    

 

    
Frequency 

(%) 
MFI 

Frequency 

(%) 
MFI  

  

 
   HC 

36.7 
(20.7 – 67.9) 

8825 
(6621 – 13802) 

57.7 
(29.0 – 76.1) 

6286 
(4323 – 8174) 

 
  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
   RA 

31.0 
(15.2 – 47.2) 

8098 
(6266 – 10122) 

59.9 
(37.2 – 89.0) 

6145 
(4808 – 8788) 

 
  

            

B   Naïve Central Memory Effector Memory Effector 
 

 
  

Frequency 

(%) 
MFI 

Frequency 

(%) 
MFI 

Frequency 

(%) 
MFI 

Frequency 

(%) 
MFI 

 

 

CD4+ T cells 

HC 
6.15 

(3.7 – 54.1) 
6926 

(4620 – 10333) 
42.08 

(28.9 – 69.1) 
9473 

(7345 – 14286) 
60.16 

(40.4 – 77.5) 
6946 

(5431 - 12629) 
49.16 

(26.4 – 77.1) 
6616 

(3531 – 9590) 

 

 
RA 

7.20* 
(4.3 – 37.5) 

5679 
(3213 – 9247) 

39.43 
(27.8 – 54.6) 

8583 
(6630 – 10648) 

50.19 
(36.6 – 77.3) 

6641 
(5140 - 9456) 

45.03 
(27.2 – 94.6) 

5105 
(2959 – 10059) 

 

 

CD8+ T cells 

HC 
69.74 

(45.7 – 93.2) 
4716 

(3687 – 6756) 
78.97 

(50.7 – 90.4) 
8264 

(5420 – 10721) 
43.98 

(12.7 – 69.7) 
5683 

(3912 – 6464) 
35.21 

(11.1 – 70.0) 
3635 

(2894 – 5131) 

 

 
RA 

83.41* 
(62.2 – 96.2) 

4894 
(3689 – 9034) 

74.40 
(41.3 – 95.3) 

7617 
(5809 – 10210) 

46.96 
(16.0 – 71.7) 

4506 
(3543 – 6624) 

52.03 
(20.6 – 94.9) 

3390 
(2856 – 5473) 

 

 

Results were expressed as median (minimum-maximum); *Differences were considered statistically significant when p < 0.05. The Mann–Whitney U test used to compare 

between HC and RA. 



 

 

Table 9. Frequency (%) of CXCR3 expressing cells in CD4+ and CD8+ T cells subsets identified based on the concomitant expression of CD45RA, CD27, 

CD28 and CD62L and relative CXCR3 expression per cell (MFI).  

 

A CD45RA + + - - - - - - + + +   
 CD27 + + + + + - - - - - -   
 CD28 + + + + dim - dim + - dim +   
 CD62L dim + - + - - - - - - -   

CD4+ T cells 

HC 
6.09 

(3.5 – 37.42) 

6.28 

(3.3 – 82.1) 

40.10 

(23.6 – 79.6) 

44.46 

(31.9 – 66.8) 
n.a. 

41.67 

(3.3 – 74.7) 

42.48 

(9.9 – 76.3) 

82.74 

(72.4 – 91.5) 

51.32 

(0 – 90.9) 

49.63 

(0 – 100) 

48.38 

(15.8 – 73.13) 
  

RA 
11.49* 

(4.4 – 54.95) 

11.45 

(3.0 – 35.9) 

32.10 

(20.4 – 48.1) 

41.83 

(31.1 – 65.6) 
n.a. 

22.00 

(2.5 – 80.6) 

45.65 

(5.3 – 88.0) 

78.84 

(71.6 – 88.1) 

26.67 

(0 – 94.1) 

50.00 

(13.9 – 90.3) 

57.33 

(39.0 – 83.93) 
  

CD8+ T cells 

HC 
60.67 

(36.3 – 90.3) 

68.11 

(44.9 – 93.0) 

84.32 

(68.0 – 97.2) 

79.77 

(57.9 – 92.3) 

63.42 

(23.1 – 86.4) 

20.55 

(2.0 – 57.9) 

50.58 

(16.1 – 79.4) 

63.82 

(20.0 – 80.2) 

22.09 

(2.6 – 46.8) 

60.03 

(28.4 – 75.0) 

74.47 

(45.0 – 95.8) 
  

RA 
86.56* 

(63.5 – 97.2) 

85.02* 

(62.1 – 95.9) 

75.80 

(34.6 – 95.9) 

85.70 

(38.9 – 97.2) 

66.52 

(14.5 – 84.3) 

29.06 

(7.4 – 59.3) 

46.12 

(11.4 – 82.8) 

64.34 

(20.1 – 92.9) 

43.29* 

(15.1 – 91.2) 

61.70 

(24.3 – 98.6) 

88.02* 

(57.9– 99.6) 
  

               

B CD45RA + + - - - - - - + + +   
 CD27 + + + + + - - - - - -   
 CD28 + + + + dim - dim + - dim +   
 CD62L dim + - + - - - - - - -   

CD4+ T cells 

HC 
6799 

(4356 – 10569) 

6708 

(4660 – 9919) 

10953 

(7962 – 14871) 

9054 

(6768 – 14037) 
n.a. 

3570 

(2618 – 5561) 

3937 

(3344 – 5627) 

5355 

(3678 – 9491) 

3174 

(2087 – 6916) 

3808 

(3127 – 7928) 

7620 

(5856 – 9931) 
  

RA 
5541 

(3121 – 9171) 

5536* 

(3171 – 9143) 

8979* 

(6536 – 11207) 

8451 

(6319 – 10583) 
n.a. 

3261 

(2683 – 5389) 

3509* 

(2688 – 4719) 

5589 

(3542 – 7523) 

3123 

(2366  – 5223) 

3321 

(2677 – 6103) 

7008 

(3873 – 10304) 
  

CD8+ T cells 

HC 
4986 

(4116 – 8000) 

5286 

(3860 – 7055) 

11084 

(7447 – 16047) 

7896 

(5960 – 10071) 

6603 

(4194 – 9164) 

3529 

(2842 – 6732) 

4640 

(3399 – 5904) 

6458 

(4617 – 8129) 

3302 

(2843 – 4257) 

4455 

(3055 – 7917) 

6326 

(3731 – 9399) 
 

RA 
5133 

(3607 – 8839) 

5020 

(3755 – 9222) 

9223 

(5530 – 11570) 

6991* 

(5212 – 9487) 

5046* 

(3567 – 7393) 

3433 

(2665 – 4534) 

4551 

(3104 – 5293) 

5546 

(4078 – 7588) 

3026 

(2394 – 4175) 

3656* 

(2821 – 6084) 

5451 

(4055 – 8958) 
 

Results were expressed as median (minimum-maximum); *Differences were considered statistically significant when p < 0.05. The Mann–Whitney U test used to compare 

between HC and RA. 



 

 

 Table 10. Frequency (%) of γδ T cells subsets based on CD27 expression and γδ T cells characterized by concomitant expression of CD45RA, CD27, CD28 

and CD62L expressing CXCR3 and relative CXCR3 expression per cell (MFI). 

 

Results were expressed as median (minimum-maximum); *Differences were considered statistically significant when p < 0.05. The Mann–Whitney U test used to compare 

between HC and RA. 

  

A  γδ T cells  CD27+ T cells CD27- T cells  

    
Frequency 

(%) 
MFI 

Frequency 

(%) 
MFI 

Frequency 

(%) 
MFI 

 

 
  HC 

54.4 

(8.5 – 95.0) 

5277 

(3193 – 9255) 

72.20 

(28.7 – 95.2) 

5115 

(3704 – 10624) 

51.36 

(9.4 – 81.9) 

3931 

(2979 - 6654) 

 

 
  RA 

45.3 

(11.0 – 82.1) 
4416* 

(3340 – 6946) 

62.85 

(30.4 – 94.9) 
3906* 

(3376 - 7111) 

33.99 

(6.9 – 76.6) 
3207* 

(2851 - 5042) 

 

           

B CD45RA + + - - - - - - 

  CD28 + - - dim + - dim + 

  CD62L - - + + + - - - 

CD27+ 

HC 
70.94 

(27.6 – 98.8) 

16.19 

(6.3 – 71.3) 

37.73 

(12.0 – 100) 

78.21 

(44.2 – 100) 

90.77 

(66.2 – 100) 

40.04 

(9.9 – 65.0) 

67.21 

(47.7 – 99.5) 

90.88 

(70.3 – 99.9) 

RA 
66.36 

(26.7 – 100) 

21.75 

(0.0 – 74.9) 

34.17 

(0.0 – 80.00) 

65.38 

(7.1 – 100) 

83.24 

(31.1 – 100) 

20.00* 

(0.0 – 63.0) 

49.49* 

(20.7 – 83.5) 

79.59* 

(38.2 – 97.6) 

           

CD27- 

HC 
35.37 

(10.3 – 100) 

18.62 

(0.0 – 66.7) 

40.00 

(7.9 – 94.6) 

66.51 

(37.5 – 100) 

89.21 

(58.3 – 100) 

25.45 

(8.7 – 66.4) 

51.74 

(27.4 – 100) 

70.72 

(32.3 – 98.9) 

RA 
80.00* 

(25.0 – 100) 

33.33 

(7.9 – 84.5) 

20.00* 

(0.0 – 75.0) 

45.79* 

(0.0 – 66.7) 

73.33 

(21.9 – 100) 

11.13* 

(1.6 – 47.1) 

37.50 

(16.0 – 76.5) 

61.72 

(24.9 – 90.6) 

C CD45RA + + - - - - - - 

 CD28 + - - dim + - dim + 

 CD62L - - + + + - - - 

CD27+ HC 
6914 

(2575 – 11463) 

3180 

(2237 – 4869) 

3537 

(2533 – 5274) 

4318 

(3401 – 12977) 

6567 

(4151 – 16372) 

3466 

(2744 – 4206) 

4040 

(3255 – 8391) 

6083 

(4192 – 11789) 

 
RA 

2550* 

(1670 – 4368) 

2542* 

(2092 – 3113) 

3385 

(2156 – 6114) 

3912 

(3029 – 7044) 

5488 

(4497 – 10225) 

2786* 

(2171 – 3210) 

3378* 

(2824 – 6705) 

4370* 

(3636 – 6700) 

          

CD27- HC 
3705 

(2797 – 7206) 

3018 

(2557 – 5290) 

3191 

(2463 – 5335) 

4106 

(3251 – 11017) 

5475 

(4045 – 13998) 

3014 

(2525 – 3967) 

3713 

(3007 – 7174) 

4371 

(3640 – 8829) 

 
RA 

4104 

(2819 – 6489) 

3218 

(2224 – 3879) 

2638 

(2100 – 4223) 

3280* 

(2583 – 10551) 

4411* 

(3481 – 11244) 

2820 

(2291 – 4017) 

3190 

(2758 – 4675) 

3642* 

(2982 – 5472) 
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4.7 Correlation of clinical parameters and T cell subsets 

The frequency of T cell subsets and the expression of CXCR3 in these subsets were compared 

with the clinical parameters, such as clinical activity through DAS28-3v, disease duration, 

ESR, CRP, rheumatoid factor and the demographic data of the patients, such as age and sex. 

No significant correlation to any of these parameters was found. 
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5. Discussion  

Maintaining equilibrium in the T cell compartments is complex because the immune system is 

in constant turnover and the demands for lymphocyte replacement are high, requiring a good 

balance between influx of new T cells, efflux by consumption and death, and self-replication 

within the existing pool of lymphocytes. This study demonstrates that T cell dynamics in RA 

patients are fundamentally altered. 

In this study, we demonstrated that the absolute value and the frequency of peripheral blood 

CD8+ T cells were significantly decreased in RA patients; therefore we observed an increase 

in the frequency of CD4+ T cells. These findings are probably reflecting a higher recruitment 

of these cells for the synovial tissue. In line with this observation, some studies reported an 

increased proportion of CD8+ T cells in synovial fluid of RA patients (83, 84) this migration 

appears to be promoted by the synovial milieu that contains various cytokines, such IL-1β, IL-

6, IL-12, IL-15, TGF-β among others (85, 86) and can support the expansion and 

differentiation of T cells and chemokines like CCL2, CCL5, CCL21, CXCL13 among others 

are associated to leukocyte recruitment, activation and retention of this cells within the 

inflamed tissue (87, 88). 

Despite the naïve/memory phenotype of T cells has previously been investigated in RA the 

results are questionable. The criteria used to classify the T cell subsets are still heterogeneous, 

some studies based the classification in CD45RA and CD45RO expression as markers of 

naïve and memory cells (89, 90), respectively, on the other hand, Federica Sallusto originally 

proposed a classification of T cells into central and effector memory (distinguished according 

to the surface expression of CCR7 and CD45RA) (30). More recent studies have been use the 

CD45 isoforms in combination with the expression patterns of costimulatory receptors CD27 

and CD28 to identify naïve, memory and effector function of human T cells (91). 

Our findings showed a decrease in the frequency of naïve CD8 T cells and a relative increase 

in effector memory suggesting that the homeostasis of CD8+ T cells is perturbed in RA and is 

different from the observed for CD4+ T cells (decreased of effector memory and relative 

increase of central memory). This decrease of naïve cells may be related to an unspecific 

(non-antigen-specific) acceleration in the differentiation observed in RA patients (92). The 

results are consistent with a model in which inflammatory stimuli promote the proliferation of 

naïve T cells in RA patients and their differentiation into subsets of atypical phenotype. Koetz 



 

58 

et al. demonstrated a reduction in telomere length of RA naïve T cells, suggesting an 

increased replicative history, even in patients with recent onset of disease (93).  

The decreased of circulating effector memory CD4+ T cells could be explained by the 

increase T cell trafficking observed in RA patients (94). Effector memory T cells are known 

to migrate into the peripheral inflamed tissue and not be able to recirculate (95). Davis et al. 

reported that the majority of CD4+ cells present in the RA synovium are from memory subset 

(96). 

The analysis of new cell surface molecules often results in the identification of an increasing 

number of subpopulations reflecting the large heterogeneity of CD4 and CD8 T cell subsets. 

Others groups previously demonstrated the necessity of including additional markers such as 

CD62L or CD11a to better distinguish naïve from memory T cells (97). The combined 

analysis of T cells based on the expression of the CD45RA, CD27, CD28 and CD62L allows 

a better characterization of these populations and can give some highlights in the transition 

between naïve/effector and/or central memory. 

In the present study we were able to identify five T cells subsets that were decreased in RA 

patients when compared to HC; CD4+CD45RA-CD27-CD28+CD62Ldim, 

CD4+CD45RA+CD27-CD28+CD62Ldim, CD8+CD45RA+CD27+CD28+CD62Ldim, 

CD8+CD45RA-CD27+CD28+CD62Ldim and CD8+CD45RA-CD27+CD28dimCD62Ldim, these 

decrease could be explained by their phenotype. We hypothesize that the presence of CD28 

and the weak expression of CD62L could be related with an increase predisposition for 

activation and migration, resulting in a decrease of these cells in circulation.  

CD62L expression is required for efficient recirculation and compartmentalization between 

blood and lymph node, for this reason is often used to identify naïve T cells. Nonetheless, 

some studies reported the expression of this molecule on a major subset of memory CD4+ T 

cells, with importance in the recirculation between blood, lymph node and inflammatory sites 

to immune surveillance (98).  

To better understand the origin of the CD62Ldim/- cells Hengel et al. compared both subsets 

and they found that CD62L- cells were larger, had greater cytoplasmic complexity and had 

shorter telomeres (result of more round of cell divisions) confirming that CD62L- arisen from 

CD62L+ cells (98). One of the explanations for the decrease of CD62Ldim subsets in RA 

patients could be related with the transition between CD62L+ to CD62L-, the block of this 
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shift could explain the decrease of CD62L- subsets however our data are not enough to 

support this statement since we do not observe an increase in the subset CD62L+ as a 

consequences of the transition blocking.  

On the other hand, CD62L is cleaved by a disintegrin and metalloprotease ADAM17 when 

cells become activated allowing the migration to the lymphoid tissues and to the inflammatory 

sites (99). Recently, was described that patients with RA exhibited higher levels of ADAM17 

in circulation when compared with age-match healthy controls (100) what contribute to the 

loss of CD62L, however our results evidence a decrease of this cells in circulation. Ponchel et 

al demonstrated that T cells from RA patients have different profiles of migration with 

accumulation of these cells in the sites of inflammation which seems to be related with the 

loss of CD62L expression (93, 101), in line with this an enrichment of CD62L- subsets were 

found in the inflamed synovium of RA patients (92). Studies in T cells phenotype of the 

synovial membrane and fluid may elucidate whether this skewed phenotype is also found in 

these sites, indicating increased recruitment into the inflamed synovium in RA. Inflammation 

and production of chemokines such as macrophage inflammatory protein-1α and RANTES in 

the synovium may result in preferential recruitment of such T cells subsets (which are 

important contributors to IFN-γ production) (92).  

Molecular studies on CD4+CD62L- T cells demonstrated exclusive expression of genes 

encoding effector, small molecules transport proteins, cytoskeletal, cell adhesion proteins, 

chemokines, growth factors, all together these findings implicated the CD62L- subset as a 

more recently activated, differentiated and expanded pool of cells (98). The effector capability 

of this cells is related to the expressing of higher levels of perforin (92) the release of the 

cytolytic cytokines is enhanced by the shedding of L-selectin that ultimately affect the 

cytoskeleton structure mobilizing the cytotoxic granules to the cell surface leading to the 

release of perforin and granzyme B (101). 

Several studies (102, 103) reported that γδ T cells from RA patients display abnormal 

characteristics, might behave differently during a different phase of the disease, although the 

immunopathological mechanism is unclear. We demonstrated that patients with RA exhibit 

lower frequency and absolute value of γδ T cells compared with age-matched healthy controls 

which is in line with several studies (104, 105) conversely, some authors reported an increase 

of this cells in RA PB (106, 107) and Mitogawa T. et al described no differences between 

healthy individuals and RA patients (108). The reasons for such divergent findings are unclear 



 

60 

but may reflect differences in the strategy of analysis and also in the patient population in 

terms of autoantibodies levels, disease activity, stage of disease and therapy. This decrease in 

the PB could to be associated with the increased of these cells in the inflammatory site, in line 

with this statement Andreu J. et al. reported an increase in frequency of γδ T cells in synovial 

membrane of RA patients compared with osteoarthritis patients (109). γδ T cells present in the 

synovial fluid have potential to present antigen and continuously activate CD4+ T cells, which 

then leads to an intense immunoreaction in the joint and aggravates the immune injury. In line 

with this, Bodman-Smith M. et. al. reported that the majority of γδ T cells within the synovial 

compartment of patients with RA are activated (102), this synovial fluid γδ T cells produce 

higher levels of IFN-γ and IL-17 upon activation compared with γδ T cells from PB. All 

together, these results indicated that this subset of T cells is an important source of 

inflammatory factors in the RA joints (110).  

Our results describe for the first time sixteen subpopulations within PB γδ T cells and point up 

for a dysregulation of these subsets in RA patients. Among all the subsets we observe a 

decrease in the CD28 positive (dim and positive) independent of the expression of CD62L, 

CD27 and CD45RA. CD28 is constitutively expressed on γδ T cells, and is involved in 

survival and proliferation of these cells in both mice and humans. The major and specific 

function of this molecule is the induction of IL-2 production in γδ T cells, which are known to 

strongly benefit from IL-2 signals for their expansion. The fact that γδ cells themselves can 

produce high levels of IL-2 strictly upon CD28 costimulation defines important rules for their 

expansion in situ (111). These results suggest that during the development of rheumatoid 

arthritis, γδ T cells migrate to the inflammatory sites can aggravate immune dysfunction 

(continuous activation of CD4+ T cells) and produce abnormal immune damage by secreting 

cytokines and inducing inflammatory cells to participate in synergistic inflammatory 

responses (110). 

Furthermore, is important to notice that the majority of the patients are under treatment with 

immunosuppressors known to have impact in the haematopoiesis resulting in a decreased 

output from the bone marrow. On the other hand the treatment can directly interfere with T 

cells to suppress the inflammation and in this way alter the T cell profiles, which may partly 

be related with the observed findings (112).  

Although considerable work in recent years has focused on identifying novel chemokines and 

their receptors involved in RA pathogenesis, little progress has been made to define relative 
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distribution and expression of CXCR3 in blood of RA patients. The inflamed synovial tissue 

of RA is characterized by an infiltration of inflammatory cells, mainly CD4+ T cells that 

preferentially express the chemokines receptors CXCR3 and CCR5 (55, 113); however the 

expression on blood T cells remains controversial. Some studied attested increase frequencies 

of CXCR3 in PB CD4+ T cells from RA patients (56, 114), while others reported a decrease 

frequency of PB CD4+ and CD8+ T cells expressing this chemokine receptor (115, 116). This 

inconsistency could be due to analysis strategy and also to different patients features including 

variations in their therapies once increase of CXCR3 was found after treatment with TNF-α 

inhibitors (117).  

Using multiparametric flow cytometry, we assessed the expression of CXCR3 in different T 

cell subsets identified based on the expression of CD27, CD28 and CD62L. Here we show in 

HC that these T cells subsets display a different pattern in the frequency of CXCR3 

expressing cells. The percentage of CD4+ T cells with naïve phenotype expressing CXCR3 is 

almost absent when compared with the memory and effector phenotype subsets, probably 

associated with a higher degree of differentiation as well as a different migration pattern the 

migratory ability of these cells.  

On the other hand, CD8+ T cells (from HC) with naïve phenotype exhibit a higher frequency 

of CXCR3 positive cells compared with the counterpart subset in CD4+ T cells. Among the 

different CD8+ T cells is also interesting the fact of the frequency of cells expressing CXCR3 

is rather similar between the subsets, with the exception of the CD45RA-

CD27+CD28dimCD62L-, CD45RA-CD27-CD28-CD62L- and CD45RA+CD27-CD28-CD62L- 

subsets, in which the percentage of CXCR3 is lower. These last findings might be related with 

the phenotypic feactures, mainly absence of CD28 expression, pointing different functions 

and characteristics which could be related with each phenotype subset. Thus, these 

observations raise the necessity of a more complete and detailed phenotypic analysis of the 

different subpopulations.  

In RA patients and in line with Ruth, J.H. et al. obervations, we did not find differences in the 

frequency of cells expressing CXCR3 neither in its expression in the total CD4+ or CD8+ T 

cells. Despite of these evidences, the expression of CXCR3 was altered in RA patients when 

we clustered among naïve, central memory, effector memory and effector compartments. We 

observed an increase in the frequency of CD4+ and CD8+ naïve T cells expressing CXCR3 

suggesting the presence of an inflammatory trigger and a chemotactic recruitment of T-cell 
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subsets to the joints in RA. Indeed we demonstrated a decrease in the frequency of these cells 

in the peripheral blood, more pronounced for CD8+ T cells (118). Furthermore, Xie, J. et al. 

verified that the mRNA level, as well as, the surface expression of CXCR3 is slightly 

increased in the presence of IL-12 and IL-4 supporting the idea that inflammatory 

environment can increase the expression of CXCR3 (119). Additionally, we propose, in line 

with the previous observations, that the higher frequency of naïve T cells expressing CXCR3  

is due to the inflammatory state established in RA patients, which is associated with high 

cytokines levels like IL-1, IL-2, IL-6, TNF-α and IFN-γ (120), cytokines known to induce the 

expression of CXCR3 (121). 

Moreover, we also evaluate the frequencies of CXCR3-expressing cells in different CD4+ or 

CD8+ T cell subsets characterized by the concomitant expression of CD45RA, CD27, CD28 

and CD62L. Only for the CD8+ T cells subsets we were able to notice this association, 

specifically for the CD45RA+CD27+CD28+CD62Ldim subsets, suggesting that CXCR3 might 

have influence in migration of recent activated cells, allowing the entry in to the lymph nodes 

(122, 123).  

CXCR3, through binding of its chemokine ligands, has been shown to coordinate 

inflammation in the periphery (124). CXCR3 binds three chemokines: CXCL9, CXCL10 and 

CXCL11; they mainly attract activated T lymphocytes, preferentially Th1 phenotype, which 

expresses high levels of CXCR3 (125). The increase frequency of CD8+CD45RA+CD27-

CD28-CD62L- and CD8+CD45RA+CD27-CD28+CD62L- subsets expressing CXCR3 in the 

PB seems to be related with enhanced recruitment to the synovium tissue through the CXCR3 

ligands exacerbating the local inflammation. Chemokines like CXCL9 and CXCL10 were 

demonstrated to be highly expressed in RA synovial tissues and fluids contributing to the 

continuous cells migration and accumulation observed in the joints of RA patients. Overall 

our data seems to point for an different migration profile of RA T cell subsets, particularly in 

the effector like subsets with an increased frequency of cells expressing CXCR3 expression, 

therefore dysplaing a higher ability to infliltrate the inflammatory sites, intensifying and 

perpetuating the inflammation.  

γδ T cells are known to be involved in cytotoxicity, immune survaillance, and regulatory 

effects on the functions of B cells, αβ T cells, natural killer cells, and macrophages (126). In 

normal PB, 50 – 95% of γδ T cells coexpress Vδ2 and Vγ9 in the TCR structure, whereas γδ 

T cells using other Vδ/Vγ elementes are usually rare in peripheral blood, but constitute the 
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major T cell population in other anatomical locations (127). Futhermore, some autores 

demonstrated a protective role of these cells in infectious diseases by recognising 

phosphorylated low molecular weight molecules produced by micro-organisms. In addition, 

discrete subsets within the γδ T cell population appear to regulate inflammatory and 

autoimmune diseases in experimental animals (126, 128). 

We have investigated the expression of chemokine receptor CXCR3 on PB γδ T cells with 

two goals. First, we aimed at a comparative analysis of CXCR3 expression on healthy 

individuals versus rheumatoid arthritis patients to determine whether major differences in the 

expression patterns exist. Secondly, we inquired whether the expression of this cell surface 

chemokine receptor was different in the γδ T cells subsets identified based on the CD45RA, 

CD27, CD28 and CD62L expression. Our results surprisingly reveal a decrease in the 

frequency of cells expressing CXCR3 and in its relative expression in RA patients despite the 

expression of CD27 and the cluster according to the expression of CD45RA, CD28 and 

CD62L. 

It has been postulated that circulating Vδ2/Vγ9 γδ T cells in PB of healthy adults are 

experienced cells and are ready to rapidly respond to TCR-dependent ligand recognition by 

Th1-like cytokines production and cytotoxic effector activity (127). Based on γδ T cells 

analysis we observed in RA patients a decrease in circulating γδ T cells and a lower frequency 

of cells expressing CXCR3 and decreased relative expression (MFI) which is generally 

common to all subtypes. These fidings could suggest that γδ T cells are less competent to 

migrate via CXCR3/CXCR3-ligands and therefore are limited to enter in the synovium.  

Cohen, I. et al. demonstrated that γδ T cells can have a protective effect through the secretion 

of cytokines and chemokines able to regulate immune cells and therefore attenuate 

autoimmune processes reflected in the synovium, when they were localy expanded (126). 

Conversely these cells might also be involved during the onset and progression of an 

autoimmune disseases by influencing lymphocytes migration having a positive effect in the 

control of joint destruction (129). Thus future studies are necessary to address the specific 

TCR Vδ/Vγ repertoire implicated in RA and the specific mechanism related to the protective 

effect or the damaging function of these cells in the joint and their contribution to the onset of 

rheumatoid arthritis.  



 

64 

 



 

65 

 

 

 

 

 

 

 

 

 

Conclusion 



 

66 



 

67 

6. Conclusion 

RA is possibly the greatest described chronic inflammatory disease with features of 

autoimmunity. Emerging data suggest that in RA there is inflammation arising as a 

consequence of tissue damage and cell death. In the inflamed synovial joint, persistence is 

probably mediated more through over-exuberant co-stimulatory pathways in T cells than 

through conventional pathways of antigen specific activation although many more studies will 

be necessary to get a thorough understanding of the underlying mechanisms 

In summary, our findings point to a T cell dysregulation in RA patient’s revealed by the 

decrease of CD8+ and γδ T cells, furthermore we observed a decrease in CD8+ naïve T cells 

and CD4+ effector memory T cells. In the present study, adopting a new combined T cells 

analysis based on the expression of the CD45RA, CD27, CD28 and CD62L we were able to 

identify five T cells subsets that were decrease in RA. Finally, the analysis of CXCR3 

indicated different contributions of CD4+, CD8+ and γδ T cell subsets to the maintenance of 

an inflammatory state verified in RA patients.  

Future studies aimed at studying the role of the CXCR3 and its ligands in these processes in 

detail will undoubtedly shed new light on this important chemokine system in the control of T 

cell function, migration and activation in rheumatoid arthritis. 
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