
Universidade de Aveiro
2016

Departamento de Eletrónica, Telecomunicações e
Informática

PURNACHAND
NALLURI

ALGORITMO DE ESTIMAÇÃO DE MOVIMENTO E
SUA ARQUITETURA DE HARDWARE PARA HEVC

A FAST MOTION ESTIMATION ALGORITHM AND
ITS VLSI ARCHITECTURE FOR HIGH EFFICIENCY
VIDEO CODING

Universidade de Aveiro
2016

Departamento de Eletrónica, Telecomunicações e
Informática

PURNACHAND
NALLURI

ALGORITMO DE ESTIMAÇÃO DE MOVIMENTO E
SUA ARQUITETURA DE HARDWARE PARA HEVC

A FAST MOTION ESTIMATION ALGORITHM AND ITS
VLSI ARCHITECTURE FOR HIGH EFFICIENCY VIDEO
CODING

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Engenharia Eletrotécnica,
realizada sob a orientação científica do Doutor António José Nunes Navarro
Rodrigues, Professor Auxiliar do Departamento de Eletrónica, Telecomuni-
cações e Informática da Universidade de Aveiro e do Doutor Luis Filipe
Mesquita Nero Moreira Alves, Professor Auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

 This PhD thesis was supported by FCT
(Fundação para a Ciência e a
Tecnologia), Portugal. Grant ref.
:SFRH/BD/73266/2010

dedicated to my family

my brother late Govind Nalluri

my dad and mom

and my wife

O Júri

Presidente: Doutor Fernando Manuel dos Santos Ramos, Professor Catedrático,
Universidade de Aveiro

Vogais: Doutor Luciano Volcan Agostini, Pró-Reitor de Pesquisa e Pós-Graduação,

Universidade Federal de Pelotas, Brasil

Doutor Marco Mattavelli, Maître D’enseignement et de Recherche, École
Polytechnique Fédérale de Lausanne, Suiça

Doutor Leonel Augusto Pires Seabra de Sousa, Professor Catedrático, Instituto
Superior Técnico, Universidade de Lisboa

Doutor Dinis Gomes de Magalhães dos Santos, Professor Catedrático,
Universidade de Aveiro

Doutor António José Nunes Navarro Rodrigues, Professor Auxiliar,
Universidade de Aveiro (supervisor/orientador)

agradecimentos

The research work for this thesis was carried at Institudo de Telecomunicações (IT) and

Departamento de Electrónica, Telecomunicações e Informática (DETI), Universidade

de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal, during the years 2010-

2015.

I would like to express my gratitude to my supervisors Prof. Luis Nero Alves and Prof.

Antonio Navarro for their guidance, motivation and every possible effort to carry out

my research work. Prof. Luis Nero taught me how to approach towards a problem

(especially in VLSI circuits and systems) in research work, and motivated at many

points. Prof. Navarro’s experience in video coding helped how to solve the critical

problems without which this thesis could not have been accomplished.

I would like to thank Prof. Manuel Almeida Valente for his great help and support

given to me in the initial days of my arrival to Portugal, and because of whom I came to

know about Aveiro and FCT scholarship.

I would like to thank all my colleagues in CSI lab of IT, Aveiro for their technical

support and friendship, Nuno Lourenço, Domingos Terra, Miguel Bergano, Nelson

Silva and Mónica Figueiredo all made the lab a comfortable place to work. I would also

like to express my thankfulness to IT administrative, HR and security staff for their

cooperation throughout my stay in IT.

I would like to thank my family, my wife Sirisha and my parents (dad Prof. Dr. N.

Veeraiah and mom N.V. Kumari) for their wonderful support and love that helped me

survive in difficult times. I would also like to thank my uncles Dr. V. Ravikumar, Dr.

G. Sahaya Bhaskaran, Dr. Y. Gandhi, Dr. K.S.V. Sudhakar, Dr. G. Nagaraju and to my

cousin Valluri Ravikumar for their support throughout my PhD period.

I would like to express my gratefulness to my loving brother late Govind Nalluri,

whose very thoughts are foundation to my conscience.

Finally, I would like to thank and acknowledge my funding agency FCT (Fundação

para a Ciência e a Tecnologia). This research work was supported by FCT grant

reference SFRH/BD/73266/2010.

palavras-chave

Codificação de vídeo, Norma HEVC, Estimação de movimento, Arquitetura de
hardware, FPGA.

resumo

A codificação de vídeo tem sido usada em aplicações tais como, vídeo-
vigilância, vídeo-conferência, video streaming e armazenamento de vídeo.
Numa norma de codificação de vídeo, diversos algoritmos são combinados
para comprimir o vídeo. Contudo, um desses algoritmos, a estimação de
movimento é a tarefa mais complexa. Por isso, é necessário implementar esta
tarefa em tempo real usando arquiteturas de hardware apropriadas. Esta tese
propõe um algoritmo de estimação de movimento rápido bem como a sua
implementação em tempo real. Os resultados mostram que o algoritmo e a
arquitetura de hardware propostos têm melhor desempenho que os existentes.
A arquitetura proposta opera a uma frequência máxima de 241.6 MHz e é
capaz de processar imagens de resolução 1080p@60Hz, com todos os
tamanhos de blocos especificados na norma HEVC, bem como um domínio de
pesquisa de vetores de movimento até ±64 pixels.

keywords

Video Coding, HEVC standard, Motion Estimation, VLSI Architecture, FPGA.

abstract

Video coding has been used in applications like video surveillance, video
conferencing, video streaming, video broadcasting and video storage. In a
typical video coding standard, many algorithms are combined to compress a
video. However, one of those algorithms, the motion estimation is the most
complex task. Hence, it is necessary to implement this task in real time by
using appropriate VLSI architectures. This thesis proposes a new fast motion
estimation algorithm and its implementation in real time. The results show that
the proposed algorithm and its motion estimation hardware architecture out
performs the state of the art. The proposed architecture operates at a
maximum operating frequency of 241.6 MHz and is able to process
1080p@60Hz with all possible variables block sizes specified in HEVC
standard as well as with motion vector search range of up to ±64 pixels.

Table of Contents

i

Table of Contents

TABLE OF CONTENTS .. I

LIST OF FIGURES .. VII

LIST OF ACRONYMS .. X

1 INTRODUCTION ... 1

1.1 PROBLEM DEFINITION AND MOTIVATION ... 1

1.1.1 The Need of Video Compression ... 1

1.1.2 Block-based Video Encoder System .. 3

1.1.3 The Motion Estimation Problem .. 4

1.1.4 The Demand for Video Core Complexity .. 5

1.2 OBJECTIVES OF THESIS ... 6

1.3 SUMMARY OF ORIGINAL CONTRIBUTIONS ... 7

1.4 SUMMARY OF THESIS ... 8

2 FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION

ESTIMATION ... 9

2.1 INTRODUCTION .. 9

2.2 DIGITAL VIDEO CODING TERMINOLOGY ... 9

 Block Based Video Coding ... 9

 Group of Pictures (GOP) ... 9

 Pictures, Frames and Fields ... 10

 Slices and Coding Blocks .. 11

 Pixel Color space and Sampling Techniques .. 12

 Video Formats ... 13

 Video Quality Measurement .. 13

List of Figures

ii

 Video Bitrate ... 14

 Rate Distortion Performance for Video Encoder .. 16

 Bjontegaard Delta Metrics for RD Performance Measurement 16

2.3 TYPES OF REDUNDANCIES IN DIGITAL VIDEO 17

2.4 DIGITAL VIDEO COMPRESSION TECHNIQUES 19

 Intra Frame Coding ... 19

 Inter Frame Coding ... 19

 Transform Coding and Quantization .. 20

 Entropy Coding ... 20

2.5 DIGITAL VIDEO CODING STANDARDS .. 21

 History of video coding standards .. 21

 ITU/VCEG standards .. 22

 ISO/MPEG Standards.. 24

 Other standards ... 25

2.6 H.264/AVC CODING STRUCTURE ... 26

2.7 HEVC CODING STRUCTURE ... 26

2.8 REFERENCE SOFTWARES FOR VIDEO CODING STANDARDS 27

 H.264/AVC Reference Software JM .. 27

 HEVC Reference Software HM ... 27

 Various Configurations in HM .. 28

 Reference Test Sequences for HM ... 30

2.9 BLOCK DIAGRAM OF HEVC ENCODER .. 31

2.10 MOTION ESTIMATION FEATURES ... 36

 Motion Estimation Objective ... 36

 Variable Block Size Motion Estimation ... 37

 Multiple Reference Frames for Motion Estimation .. 39

List of Figures

iii

 Bi-directional Motion Estimation .. 40

 Fractional Motion Estimation .. 41

 Rate Distortion Optimized Motion Estimation ... 41

 Distortion Metrics for Motion Estimation .. 43

3 MOTION ESTIMATION ALGORITHMS AND THEIR VLSI

ARCHITECTURES .. 45

 INTRODUCTION .. 45

 CLASSIFICATION OF MOTION ESTIMATION ALGORITHMS 45

 THE FULL SEARCH ALGORITHM ... 47

 TYPES OF FAST MOTION ESTIMATION ALGORITHMS 48

3.4.1 Successive Elimination Algorithms ... 48

3.4.2 Hierarchical and Multiresolution Algorithms ... 49

3.4.3 Pixel Decimation Block Matching Algorithms ... 51

3.4.4 Search Points Reduction Algorithms ... 52

 COMPLEXITY REDUCTION TECHNIQUES IN SEARCH POINT

REDUCTION ALGORITHMS .. 58

3.5.1 Dynamic Search Range for Motion Estimation .. 58

3.5.2 Predictive Based Motion Estimation .. 60

3.5.3 Early Termination Algorithms for Motion Estimation .. 62

3.5.4 Grid Patterns for Finding Motion Vector ... 63

3.5.5 Fine Refinement Patterns for Finding Optimal Motion Vector 64

 H.264/AVC AND HEVC HYBRID MOTION ESTIMATION

ALGORITHMS 65

3.6.1 EPZS (ENHANCED PREDICTIVE ZONAL SEARCH) Algorithm 65

3.6.2 UMHEXS (UNSYMMETRICAL-CROSS MULTI HEXAGON-GRID SEARCH)

Algorithm ... 67

3.6.3 SUMHEXS (SIMPLE UMHEXS) Algorithm .. 68

List of Figures

iv

3.6.4 TZSearch (TEST ZONE SEARCH) Algorithm .. 69

 MOTION ESTIMATION ARCHITECTURES .. 71

3.7.1 Classification of Motion Estimation Architectures ... 71

3.7.2 Design Considerations of Motion Estimation ... 73

3.7.3 Internal Architecture of Motion Estimation Accelerator 74

3.7.4 Algorithm Specific Architectures .. 74

3.7.5 Flexible and Configurable Architectures .. 78

3.7.6 Programmable Architectures and Processor Extensions 79

3.7.7 Motion Estimation Architectures for HEVC Standard .. 80

4 PROPOSED MOTION ESTIMATION ALGORITHM 83

4.1 INTRODUCTION .. 83

4.2 PROPOSED DYNAMIC SEARCH RANGE ALGORITHM.......................... 83

4.2.1 Spatial Predictors .. 83

4.2.2 Upper Mode Block Predictors ... 84

4.2.3 Temporal Predictors .. 85

4.2.4 Dynamic Search Range Prediction Algorithm .. 85

4.3 PROPOSED INITIAL SEARCH POINT PREDICTION ALGORITHM 87

4.4 PROPOSED EARLY TERMINATION ALGORITHM 88

4.5 PROPOSED GRID PATTERN ALGORITHM .. 89

4.6 PROPOSED FINE REFINEMENT ALGORITHM ... 92

4.7 SIMULATION RESULTS OF OVERALL PROPOSED ALGORITHM 94

4.8 SOFTWARE TOOLS AND TEST CONDITIONS ... 113

4.9 SUMMARY OF PROPOSED ALGORITHM... 115

5 PROPOSED VLSI ARCHITECTURE .. 117

5.1 INTRODUCTION .. 117

List of Figures

v

5.2 ALGORITHM ADAPTION TO HARDWARE .. 118

5.3 CONTROL UNIT AND ADDRESS GENERATION UNIT 119

5.3.1 State Machine of the System .. 119

5.3.2 Address Generation Unit .. 120

5.4 PROPOSED MEMORY ARCHITECTURE .. 121

5.4.1 Search Window Memory Architecture .. 121

5.4.2 Current Block and Search Window Buffer Memory Architecture 124

5.5 PROPOSED SAD ARCHITECTURE.. 125

5.5.1 Adder Tree Architecture for 4x4 SAD Unit .. 126

5.5.2 Quad-tree Adders ... 127

5.5.3 Latency Calculations .. 128

5.5.4 Area Calculations ... 129

5.5.5 Intra-parallelism ... 129

5.5.6 Inter-parallelism ... 130

5.6 COMPARATOR AND RD COST CALCULATION UNIT 132

5.7 RESULTS AND ANALYSIS ... 133

 Synthesis Results.. 133

 Data Schedule, Total Delay and Throughput ... 133

 Comparison with other FPGA based Design ... 135

 Verification Setup and Results .. 137

5.8 SUMMARY OF OVERALL DESIGN ... 140

6 CONCLUSIONS AND FUTURE RESEARCH 141

6.1 SUMMARY OF RESEARCH ... 141

6.2 FUTURE RESEARCH DIRECTIONS .. 142

REFERENCES .. 144

List of Figures

vi

ANNEX A .. 160

List of Figures

vii

List of Figures

Fig. 1.1 Forecast of Global IP Traffic in Future by Application Category (Source Cisco

VNI, 2014) .. 1

Fig. 1.2 Illustration of Increased trend in the usage of HD and UHD TVs (Source: Cisco

VNI, 2014) .. 2

Fig. 1.3 Block Diagram of Block-based Video Encoder .. 3

Fig. 1.4 Illustration of Motion Estimation Process ... 4

Fig. 1.5 Trend in Increase of Relative Hardware Complexity for a Mobile Video Processor

from Years 2004 to 2020 .. 6

Fig. 2.1 Frames in a GOP with M=3 and N=10 ... 10

Fig. 2.2 Illustration of frame and fields in foreman video sequence 11

Fig. 2.3 Illustration of various Pixel sub-sampling techniques .. 13

Fig. 2.4 Illustration of RD curves of test sequence Johnny (720p) using various video

coding standards ... 16

Fig. 2.5 Illustration of RD curves used to calculate BD metrics. (a) Normal RD Plots (b)

Logarithmically scaled plots ... 17

Fig. 2.6 Progression of ITU-T and MPEG works... 22

Fig. 2.7 Illustration of Macroblock and its sub-block sizes in H.264/AVC 26

Fig. 2.8 Quadtree coding structure in HEVC ... 27

Fig. 2.9 Illustration of encoding order of pictures in HEVC Intra-only configuration 29

Fig. 2.10 Illustration of encoding order of pictures in HEVC low-delay B configuration ... 29

Fig. 2.11 Illustration of picture encoding order in HEVC Random Access configuration .. 30

Fig. 2.12 Block Diagram of HEVC Encoder .. 32

Fig. 2.13 Comparison of various luma intra-prediction modes in (a) HEVC (b) H.264/AVC

 .. 34

Fig. 2.14 Sub-partition sizes of each PU for variable block size ME in HEVC 38

Fig. 2.15 Illustration or multiple reference frames and bi-directional ME........................... 40

Fig. 2.16 Illustration of luma fractional interpolated samples around integer samples. 42

Fig. 3.1 Hierarchical pyramid structure for ME ... 49

List of Figures

viii

Fig. 3.2 Pixel-decimation Pattern for Motion Estimation .. 50

Fig. 3.3 Illustration of Three-Step Search Algorithm for Motion Estimation 53

Fig. 3.4 Illustration of Block Based Gradient Descent Algorithm 54

Fig. 3.5 Illustration of (a) Diamond Search Algorithm (b) Large Diamond Search Pattern

(LDSP) (c) Small Diamond Search Pattern (SDSP) ... 55

Fig. 3.6 Illustration of 2D Logarithmic Search Algorithm ... 55

Fig. 3.7 Illustration of Cross Search Algorithm ... 56

Fig. 3.8 Illustration of (a) Hexagonal Search Pattern (b) Hexagonal Search Algorithm 57

Fig. 3.9 Relation of Search Range with Search Window Size ... 58

Fig. 3.10 Various Positions of Blocks for Prediction in Motion Estimation 61

Fig. 3.11 Search Patterns for Motion Estimation with stride length 8 63

Fig. 3.12 Various Predictors Used in EPZS Algorithm .. 66

Fig. 3.13 Various Search Patterns used in UMHexS Algorithm .. 67

Fig. 3.14 Flowchart of SUMHexS Algorithm .. 68

Fig. 3.15 Search Patterns used in TZSearch Algorithm (a) Diamond Grid Patterns (b)

Raster Search Pattern .. 69

Fig. 3.16 Flowchart of TZSearch Motion Estimation Algorithm ... 70

Fig. 3.17 System-on-Chip Architecture of Video Encoder with Motion Estimation

Accelerator.. 72

Fig. 3.18 General Classification of Motion Estimation Architectures 72

Fig. 3.19 Internal Architecture of Motion Estimation Module... 74

Fig. 3.20 Data Reuse schemes for Full Search Motion Estimation Architectures 75

Fig. 4.1 Illustration of Relation between Predicted Motion Vector, Co-located Motion

Vector and Optimal Motion Vector. ... 84

Fig. 4.2 Flowchart of proposed ISP algorithm ... 88

Fig. 4.3 Illustration of Rotating-hexagonal search pattern ... 89

Fig. 4.4 Flowchart of the proposed grid pattern algorithm ... 91

Fig. 4.5 Surface plot of ME cost for class C RaceHorses sequence 93

Fig. 4.6 Fine refinement patterns using hexagons .. 93

Fig. 5.1 Top Level Block Diagram of Proposed Motion Estimation Architecture 118

Fig. 5.2 Flowchart of the Proposed Algorithm ... 118

List of Figures

ix

Fig. 5.3 State Machine for the Proposed Architecture ... 120

Fig. 5.4 BRAM used for search window memory architecture .. 123

Fig. 5.5 Proposed BRAM based search window memory architecture 123

Fig. 5.6 Architecture of Proposed SAD Calculation Unit .. 125

Fig. 5.7 Internal Architecture of 8x8 SAD Unit ... 125

Fig. 5.8 Internal Architecture of 4x4 SAD Unit ... 126

Fig. 5.9 Internal Architecture of Absolute Difference Circuit ... 127

Fig. 5.10 Internal Architecture of Carry Select Adder ... 127

Fig. 5.11 Schematic Diagram of Quad-Tree Adders .. 128

Fig. 5.12 Internal architecture of each Quad Tree Adder .. 128

Fig. 5.13 Quad-core 1-stage (Type-I) SAD Architecture .. 129

Fig. 5.14 Comparator Tree Architecture for Type-II SAD Unit 129

Fig. 5.15 RD Cost Calculation and Comparator Unit Architecture................................... 131

Fig. 5.16 Data Schedule for the Proposed ME Architecture ... 134

Fig. 5.17 Verification Setup Used to Validate the Proposed Design 137

Fig. 5.18 Current Block and Search window Pixels used for Verification 138

Fig. 5.19 Hardware Simulation Output for the Current Block and SW Pixels 138

List of Acronyms

x

List of Acronyms

AGU Address Generation Unit

AMP Asymmetric Mode Partitions

ASIC Application Specific Integrated Circuit

AVC Advanced Video Coding

BBME Block Based Motion Estimation

BD Bjontegaard Delta

BDM Block Difference Measure

BRAM Block Random Access Memory

CABAC Context Adaptive Binary Arithmetic Coding

CAGR Compound Annual Growth Rate

CAVLC Context Adaptive Variable Length Coding

CB Coding Block

CBR Constant Bit Rate

CIF Common Intermediate Format

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CTB Coding Tree Block

CTU Coding Tree Unit

CU Coding Unit

DCT Discrete Cosine Transform

DSR Dynamic Search Range

DVD Digital Versatile Disc

EPZS Enhanced Predictive Zonal Search

ET Early Termination

FPGA Field Programmable Gate Array

FME Fractional Motion Estimation

FR Fine Refinement

List of Acronyms

xi

GOP Group Of Pictures

HEVC High Efficiency Video Coding

HD High Definition

HDTV High Definition TeleVision

HDL Hardware Description Language

HM HEVC software reference Model

HVS Human Visual System

IEC International Electrotechnical Commission

ISO International Organization for Standardization

IP Intellectual Property

ITU-T International Telecommunication Union - Telecommunication Standardization

JCT-VC Joint Collaborative Team on Video Coding

JVT Joint Video Team

LDB Low Delay Bi-predictive

LDP Low Delay Predictive

LUT Look Up Table

MC Motion Compensation

MCP Motion Compensated Predication

ME Motion Estimation

MMVSSP Multiple Min-point Variable Step Size Prediction

MPEG Moving Picture Experts Group

MSE Mean Square Error

MV Motion Vector

MVD Motion Vector Difference

NTSS New three step search

PB Prediction Block

PMV Predicted Motion Vector

PSNR Peak signal-to-noise ratio

PU Prediction Unit

List of Acronyms

xii

QCIF Quarter Common Intermediate Format

RA Random Access

RAM Random Access Memory

ROM Read Only Memory

RDO Rate Distortion Optimization

RTL Register Transfer Level

SAD Sum of Absolute Differences

SATD Sum of Transformed Differences

SD Standard Definition

SDTV Standard Definition TeleVision

SEA Successive Elimination Algorithm

SIMD Single Instruction Multiple Data

SR Search Range

SSD Sum of Squared Differences

SUMHEXS Simple Unsymmetrical-Cross Multi Hexagon-Grid Search

SW Search Window

TB Transform Block

TSS Three step search

TU Transform Unit

TZSearch Test Zone Search

UMHEXS Unsymmetrical-Cross Multi Hexagon-Grid Search

VBSME Variable Block Size Motion Estimation

VCEG Video Coding Experts Group

VoD Video on Demand

INTRODUCTION

1

1 INTRODUCTION

1.1 PROBLEM DEFINITION AND MOTIVATION

With the advent of digital revolution, there is a huge change from analog and

mechanical technology to digital technology. This revolution created a huge impact on

almost all types of industries in the areas of arts, entertainment, communications,

marketing, media etc. and has marked the beginning of information age. With more and

more advances in computational speed of digital computing devices, there is an ever

growing increase in generation and demand for digital information including data, audio

and video. Amongst all these multimedia data, the digital video is more complicated and

challenging to process (which is the used in many applications including storage,

surveillance, web streaming, broadcasting, video communications and conferencing) as

the amount of data required for video is huge compared to data and audio information.

Hence, there is an endless research actively going on from the past three decades to

compress the digital video.

1.1.1 The Need of Video Compression

Compression of video is always necessary in streaming, broadcasting and storage

applications. With the growing demand for mobile and fixed line internet video, the

demand for compressing the video is also growing by including more sophisticated

compression algorithms. Fig. 1.1 shows the trend and forecast of future IP (Internet

Protocol) video, which includes internet streamed video, IP VoD (Video on Demand),

video file sharing, video-streamed gaming and videoconferencing [1]. According to

Fig. 1.1 Forecast of Global IP Traffic in Future by Application Category (Source Cisco

VNI, 2014)

INTRODUCTION

2

Cisco, this trend continues to grow and the expected internet video traffic by 2018 will

be about 79% of total internet traffic. In the figure, the percentage values in the

parenthesis next to the legend shows the relative traffic shares in the year 2013 and

2018 respectively. CAGR represents compound annual growth rate. From the figure it is

clear that there is a growth in the rate for internet video (internet video + managed IP

video) from 63% to 79% from the year 2013 to 2018, with a CAGR of 21%. The

highlights of some of the predictions and forecasts about video service demands

according to Cisco [1] are:

• Global IP video traffic will increase to 79% (of total IP traffic) by 2018

compared to 66% in 2013

• There is a rapid pace in the usage of Internet video to TV (via set top boxes).

• By 2018, the amount of VoD traffic will be equivalent to 6 billion DVDs per

month.

• The number of consumers with 4k television sets will increase to 200 million by

2018 compared to 1 million in 2013 and 28 million in 2015, with a CAGR of

190%, as shown in Fig. 1.2.

From the above highlights, it is clear that there is always a growing trend in the

video content generation and usage. Due to increase in 4k TV sets, there is also an

increase in demand for compressing the video in broadcast services for providing video

services at HD (High Definition) and UHD (Ultra HD). Further, the video content that is

generated, need to be stored at data centers and cloud servers using hard disks or solid-

Fig. 1.2 Illustration of Increased trend in the usage of HD and UHD TVs (Source: Cisco

VNI, 2014)

INTRODUCTION

3

state drives or using any other storage devices. The higher the compression of video, the

lesser is the amount of memory used at these storage devices. Hence, there is always a

growing demand for compressing the video.

1.1.2 Block-based Video Encoder System

Block based video coding is one of the mostly used compression technique for video. In

block based video coding, each video frame is split into coding blocks. Each coding

block is predicted, transformed. quantized and entropy encoded. The block diagram of a

typical video encoder is shown in Fig. 1.3. Each frame is split into various coding

blocks and then the blocks of first frame in a video frame sequence is intra predicted

and encoded (prediction of image blocks within the frame) and the rest of the frames’

blocks are either intra predicted or inter predicted (prediction between frames using

Motion Estimation (ME) and motion compensation blocks). Nevertheless, in inter-

prediction, in every frame the first block of slice (group of blocks) can be intra-coded

and depends on the mode-decision algorithm. The ME block predicts and estimates

motion between frames and generate the Motion Vectors (MVs). The MVs are entropy

encoded and also sent to motion compensation block. The motion compensation block

uses these MVs to generate motion compensated frames. These motion compensated

frames are subtracted from the original frames (current frames) to generate residual

frame blocks. This residual information is transformed, quantized and then entropy

encoded. To generate identical predicted information in the decoder side, the encoder

Fig. 1.3 Block Diagram of Block-based Video Encoder

INTRODUCTION

4

typically includes a decoding loop to reconstruct the original frames using predicted

information. The decoding blocks are shown in dark color in Fig. 1.3. To do this, the

decoder takes the quantized information and passes it through inverse quantization and

inverse transformation blocks. Then, the obtained data is added to the predicted data to

reconstruct the subsequent video frames.

1.1.3 The Motion Estimation Problem

Motion Estimation (ME) is the essential task in block based video encoders. It

contributes to reduce the overall bitrate of a video signal by predicting and estimating

the Motion Vectors (MVs) for each block in every frame. A good estimate of motion in

a frame generates less entropy information (for residual frame blocks) and fewer bits to

encode it and hence the compression ratio will be increased. So, for each block in every

frame, the main task of ME is to estimate the motion content by finding the best

matched block in the previously encoded frame (reference frame) region of interest

(also called search window). The process of ME is shown in Fig. 1.4. For every block of

the current frame, a new Search Window (SW) is defined and the ME algorithm

searches for the best matched block using a predefined cost function. The final output of

the ME are the coordinates of the optimal MV and its cost.

The ME problem can be formulated using (1.1) and (1.2), where MV(x,y)

represents the optimal motion vector, SW represents the search window, J represents the

Lagrangian cost function, D represents the distortion and R represents the bitrate

required to encode the motion vector MV and λMV is the lagrangian multiplier. The

distortion function usually employed is either SAD (Sum of Absolute Difference) or

SSD (Sum of Squared difference). The SAD is widely used distortion function that can

Fig. 1.4 Illustration of Motion Estimation Process

INTRODUCTION

5

be defined using (1.3), where C represents the current block, R represents the reference

block and MxN represents size of the block in pixels.

Block based video encoders typically use Block Matching Algorithms (BMAs) to

perform ME. In case, the ME algorithm searches each and every block in the SW, called

Full Search (FS) algorithm. Searching every block in the entire SW increases the

complexity of the encoder. Hence video encoders employ fast ME algorithms which

skip most of the blocks that are unlikely to be the optimum MV. But by using fast

search algorithms we may experience some degradation in the also decrease the output

video quality as the estimated optimum MVs may not be accurate enough. Hence a

good fast ME algorithm is necessary to decrease the ME complexity but with negligible

loss in compression ratio and output video quality.

1.1.4 The Demand for Video Core Complexity

Although the fast ME algorithms reduce the ME complexity when compared to

FS algorithm, they have higher complexity when compared with the other operations of

the video encoder. Hence a good hardware architecture is necessary to reduce the

complexity and exploit parallelism and pipelining at various levels of ME operation.

On the other hand, designing hardware for ME operation is challenging task as the

architecture is constrained by many real time parameters like hardware resources usage,

critical path delay, off-chip to on-chip memory bandwidth, on-chip memory buffer size,

power consumption etc. Due to the increase in the complexity of advanced video coding

standards (like the latest standard HEVC [2]), the hardware complexity of video core

also increases. Fig. 1.5 shows the trend in relative complexity requirement of video

encoder in mobile application processors, plotted over the years 2004 through 2020 [3].

The figure shows that the complexity of video core by 2020 is expected to increase

����� , ��	 = min�,� �������� + �, � + ��� �� + �, � + ��	�	��

(1.1)

 ����� = � + � !" (1.2)

 � = �#���, �� =$$%&��� , ��	 − "��� , ��	%(
�)*

�)* (1.3)

INTRODUCTION

6

almost exponentially compared to that of video core complexity in 2014. Hence it is

very crucial and essential to design a dedicated hardware that meets the performance

requirements as well as considering the hardware design costs like area, memory size,

memory bandwidth etc.

1.2 OBJECTIVES OF THESIS

The problem of motion estimation is always challenging as the motion of objects in a

video move randomly in both direction and magnitude. Many algorithms exist in the

literature [62-104], where the origin of this problem dates back as old as 1981 [77].

When the video coding projects started standardizing and getting evolved to newer

standards, the problem of ME was also getting more and more complicated. The latest

video coding standard is the HEVC developed by JCT-VC which is a joint collaboration

ITU-T and ISO/IEC [2, 4]. Compared to its prior standard H.264/AVC [5, 6], the coding

block size increased from 16x16 to 64x64 pixels. Therefore the number of block modes

also increased and so as the complexity of ME. Hence, the present thesis focused on

reducing the computational complexity of ME through the proposal of novel hybrid ME

algorithm. The algorithm is called hybrid because it comprises of various tools to reduce

the computational complexity problem of ME. The algorithm is designed and verified

using HEVC reference software [7, 8], which is the software for the latest video coding

standard.

Although at the search window level, the algorithm for ME is independent of

the block size, the hardware implementation of the architecture depends on the current

Fig. 1.5 Trend in Increase of Relative Hardware Complexity for a Mobile Video

Processor from Years 2004 to 2020

INTRODUCTION

7

block size of the search process. Hence implementation of ME that is compatible with

the coding sizes standardized in HEVC is another objective of this thesis. Hence, after

designing and verifying the algorithm in software, a hardware architecture was designed

at RTL (Register Transfer Level) using Verilog HDL (Hardware Description Language)

[9]. The architecture is verified and synthesized using an FPGA (Xilinx Virtex-6 FPGA)

[10].

The summary of objectives of this thesis are listed below:

� To design and verify a novel hybrid fast ME algorithm which outperforms

the fast ME algorithm present in HEVC reference software.

� To implement the proposed ME algorithm in HDL that is compatible with

the HEVC coding standard and to verify it using an FPGA.

1.3 SUMMARY OF ORIGINAL CONTRIBUTIONS

The summary of publications are listed below:

1. Nalluri, P; Alves, L. N.; Navarro, A.; "Complexity Reduction Methods for Fast

Motion Estimation in HEVC", Elsevier Journal of Signal Processing: Image

Communication (EURASIP), Vol. 39, Part A, pp. 280 - 292, November 2015.

2. Nalluri, P; Alves, L. N.; Navarro, A.; "High Speed Sad Architectures For

Variable Block Size Motion Estimation In HEVC Video Coding", Proc. IEEE

International Conf. on Image Processing – ICIP-2014, Paris, France, , Oct. 2014.

3. Nalluri, P; Alves, L. N.; Navarro, A.; “A novel SAD architecture for variable

block size motion estimation in HEVC video coding”, Proc. IEEE International

Symposium on System on Chip (SoC), 2013, pp.1-4, 23-24 Oct. 2013

4. Nalluri, P; Alves, L. N.; Navarro, A.; "Fast Motion Estimation Algorithm for

HEVC Video Encoder", Proc Conf. on Telecommunications - ConfTele, Castelo

Branco, Portugal, Vol. 1, pp. 1 - 4, May, 2013.

5. Nalluri, P; Alves, L. N.; Navarro, A.; "FPGA Based Synchronous Multi-Port

SRAM Architecture for Motion Estimation", Proc Jornadas sobre Sistemas

Reconfiguráveis - REC, Coimbra, Portugal, Vol. 9, pp. 89 - 92, February, 2013.

6. Nalluri, P; Alves, L. N.; Navarro, A.; "Fast Motion Estimation Algorithm for

HEVC", Proc IEEE International Conf. on Consumer Electronics - ICCE, Berlin,

Germany, Vol. 3, pp. 34 - 37, September, 2012.

INTRODUCTION

8

7. Nalluri, P; Alves, L. N.; Navarro, A.; "Improvements to TZSearch Motion

Estimation Algorithm for Multiview Video Coding", Proc. IEEE International

Conf. on Systems, Signals and Image Processing - IWSSIP, Vienna, Austria,

Vol. 19, pp. 388 - 391, April, 2012.

8. Nalluri, P; Alves, L. N.; Navarro, A.; "A Fast Motion Estimation Algorithm and

its FPGA based hardware architecture for HEVC" (Submitted).

1.4 SUMMARY OF THESIS

The rest of the chapters in the thesis is organized as follows.

Chapter 2 describes the fundamentals and concepts of digital video coding. The chapter

outlines a history of video coding standards, encoder block diagram of the latest video

coding standard HEVC and describes the function of each block in the encoder. Further,

this chapter explores various features and techniques involved in motion estimation.

Chapter 3 explains the state-of-the-art of ME algorithms. The chapter also explains ME

hardware architecture and explains the state-of-the-art of ME hardware architectures.

Chapter 4 explains in detail each of the proposed ME method implemented and verified

using HEVC reference software. The chapter explains in detail, each method that is

used to design the algorithms and shows the results simulated in HEVC reference

software.

Chapter 5 explains the proposed ME hardware architecture which is designed using

HDL. This chapter explains in detail, the design methodology used in FPGA, state-

diagrams and the simulated results and compares the synthesis results with recent

works.

Chapter 6 concludes the thesis by summarizing the achieved results and presents future

research directions.

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

9

2 FUNDAMENTALS OF DIGITAL VIDEO CODING AND

MOTION ESTIMATION

2.1 INTRODUCTION

A video is a sequence of still images displayed at a fixed frame rate. The net after-effect

is a video with objects moving in a background. If all the pictures (frames) in the video

are encoded individually, then the size of the complete video will be equal to the sum of

the bits obtained from each frame. This is practically not possible for large videos either

in storage or communication applications. Hence there is a huge necessity to remove the

redundant information in a video [11].

2.2 DIGITAL VIDEO CODING TERMINOLOGY

 Block Based Video Coding

As explained in Chapter 1, in block based video coding, the sequence of images is

compressed by dividing each frame into blocks. Each block is then motion compensated

(predicted using previously coded neighboring blocks), transform coded, quantized and

finally entropy coded (removes statistical redundant information). Each of these

techniques is explained in the subsequent sections. The decoder receives these coded

blocks and generates frames which are displayed at a fixed frame rate [12], [13].

Besides block based coding there are many other types of video coding like

pixel-based video coding, content based video coding, fractal based video coding etc.

but the block based video coding is the most widely used and efficient way of

implementing a video codec either in software or in real-time due to its regularity in the

coding structure. Some of examples of block based codecs include MPEG based codecs

like MPEG-1, MPEG-2, MPEG-4, VCEG based codecs H.261, H.263 and their joint

collaborated codecs like H.264, HEVC, etc.

 Group of Pictures (GOP)

In block based video coding, the entire video is divided into a group of picture

sequences so that the video encoder can further make the encoding process easy. Each

Group of Pictures (GOP) contains a fixed number of frames [14]. Each frame is either

intra coded or inter predicted depending upon the GOP pattern.

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

10

Fig. 2.1 Frames in a GOP with M=3 and N=10

A GOP typically contains three types of frames – Intra frame (or I-frame),

Predictive frame (or P-frame) and Bi-predictive frame (or B-frame). The intra frame is

coded independent of other frames and is coded just like a still image. The blocks in P-

frame are coded using past frames that are already encoded. The blocks in a B-frame

can use both past and future frames (stored in a frame buffer) for prediction. The GOP

structure is typically represented by the order of these three types of frames I, P and B.

The GOP structure is typically represented by two parameters, the GOP size and the

maximum prediction depth. In MPEG based codecs, these values are represented by

letters M (maximum prediction depth) and N (GOP size) [15]. For example M = 3 and

N = 12 represents the GOP structure IBBPBBPBBPBBIBBP… and so on, which shows

that the distance between two successive I frames is 12 (GOP size or N=12) and the

distance between two successive P frames is 3 (M =3). The value N represents the

number of frames in GOP in which the entire video is repeated with same pattern of

frames with the first frame being Intra frame. The value M represent the maximum

value of a reference frame index from a current frame. Fig. 2.1 represents the GOP

structure of above example (IBBPBBPBBPI…, N=10). The arrow marks in the figure

indicate the reference frames used to predict the corresponding frame.

 Pictures, Frames and Fields

In digital videos, the next level of hierarchy after GOP are frames or fields. As

mentioned in the above section, the frames can be either of types I, B or P. Depending

on the type of sampling, the pictures can be called either frames or fields. If the

scanning lines are progressive, then the picture is termed as a frame [16]. If the picture

is scanned in interlaced order, then it is called a field. Each field is either odd-field or

even-field depending on the line numbers index of scanned picture. Fig. 2.2 shows a

QCIF size picture, top field and bottom field of foreman test sequence (2nd frame) [17].

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

11

2nd frame 2nd frame Top field 2nd frame Bottom field

Fig. 2.2 Illustration of frame and fields in foreman video sequence

 Slices and Coding Blocks

Each frame of video consists of two dimensional array of picture elements (or

pixels). The pixel is the fundamental element of video frames. In block based video

codecs each frame is divided into blocks of these pixels, and the maximum size of block

depends on the video coding standard. For example in MPEG-2, H.264/AVC and

HEVC the block sizes are 8x8, 16x16 and 64x64 respectively. Further, all the coding

blocks in a frame need not be of same type (I/P/B type). Depending on the prediction

requirement, some blocks may be of I-type, some may be P-type and some may be of B-

type. I-frame contains all intra-predicted blocks (I-blocks). A P-frame contains both I-

type and P-type blocks. A B-frame contains all the types of blocks (I, P and B blocks)

[18].

A sequence of coding blocks can be grouped together and are called slices. A frame

may contain one or more slices. The slice can be decoded independently from other

slices in the same frame and hence useful for resynchronization of frame after data

losses. Further slices can be encoded using I or P or B types. I-slice contains all I-type

coding blocks. A P-slice can be encoded using coding blocks of P-type, in addition to I-

(a) (b)

Fig. 2.3 Subdivision of picture into (a) slices (b) tiles

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

12

type. A B-slice can be encoded using coding blocks of B-type, in addition to coding

types available in P-slice. Fig. 2.3 (a) shows a frame that is divided into slices [19]. To

enable parallelism in encoder and decoder architectures, HEVC defines another type of

abstraction similar to slices which is termed as tiles. Tiles are typically rectangular

blocks (but not necessarily) as shown in Fig. 2.3 (b). The entire frame can be partitioned

into tiles, which further contain coding blocks. Each tile may contain slices and coding

blocks. Further a group of tiles may also be ordered together to from slices [2].

 Pixel Color space and Sampling Techniques

Each pixel in a video frame can be represented into luma component and chroma

component. The luma component represents brightness and the chroma component

represents color information. There are many color models such as RGB, CMYK,

YCbCr, HSL (Hue Saturation and Lightness), HSV (Hue Saturation and Value), YPbPr,

YIQ, YUV etc., each is used in a specific application, but broadly classifying, all these

models can be categorized into two types. First type is to encode each value of primary

colors (red, green, blue) or secondary colors (Cyan, Magenta, Yellow) separately and

added to form various composite colors (like RGB model). The second type is to

separate brightness (luminance) information from color (chrominance) information and

to be encoded separately to get various combinations of luma-chroma values. The

second type of color model is chosen in many video coding systems, since it has a

flexibility to exploit the amount of chrominance information from luminance

information. In principle, the Human Visual System (HVS) is more sensitive to

luminance than to the color information. Hence, in color models like YCbCr, YUV etc,

the color information is sub-sampled to reduce the bitrate or to save the memory

required to store the pixel. In YCbCr model, the luminance value Y, chrominance-red

(Cr) value and chrominance-blue (Cb) value can represented from basic RGB value as

shown in (2.1).

 Y = 0.299R + 0.587G + 0.114B

2.1 Cb = 0.564(B-Y)

 Cr = 0.713(R-Y)

The sub-sampling scheme is usually notated in three part ratio R:H:V (like 4:2:2) to

describe number of luminance and chrominance samples in a grid of R pixels wide and

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

13

2 pixels height. The first value (R) represents width of sampling reference pixels grid.

Typically R is taken as 4. The next digit (H) indicates the number of chroma samples in

the top row of Rx2 sample grid. The third digit represents number of chroma samples in

the bottom row of Rx2 sample grid. For example 4:4:4 in YCbCr means for every 4x2

luma samples, it has four chroma samples in top and bottom row each. Similarly, 4:2:2

has two chroma samples in top row and two chroma samples in bottom row. The 4:2:0

format means it has only two chroma samples (Cb and Cr) in the top row but has no

color samples in the bottom row of 4x2 sample grid [20]. Fig. 2.3 illustrates various

chroma sub-sampling formats. H.264 and HEVC employs YCbCr color space model

with 4:2:0 chroma sub-sampling technique.

 Video Formats

A video format defines the number of horizontal and vertical pixels (resolution) that

are encoded or decoded. A video compression algorithm can compress many types of

video formats. Depending upon the applications, the formats standardized by ITU and

ISO/IEC can be categorized to three types – Intermediate formats, Standard Definition

format, High Definition formats. The intermediate formats like CIF (Common

Intermediate Format), and QCIF (Quarter CIF) are used in streaming applications like

internet video and video conferencing. The Standard Definition (SD) Format was

widely used in the older digital video televisions. The HD (High Definition) video

formats are used in high-end display applications where high resolution is required.

TABLE 2.1 shows various display formats with their resolution [16]. HEVC standard

supports decoding and encoding upto 8k resolution [21].

 Video Quality Measurement

To evaluate and compare the quality of video communication systems or codec, a

good quality metric is essential. The most widely used quality measuring metric is

PSNR (Peak Signal to Noise Ratio). The PSNR gives the relative measure for the error

(a) 4:4:4 (b) 4:2:2 (c) 4:1:1 (d) 4:2:0

Fig. 2.3 Illustration of various Pixel sub-sampling techniques

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

14

TABLE 2.1 LIST OF VARIOUS DIGITAL VIDEO FORMATS WITH ITS

RESOLUTION

Format Resolution
QCIF 176 x 144

CIF 352 x 288

SD (PAL) 720 x 576

SD (NTSC) 720 x 480

HD – 720p 1280 x 720

HD – 1080i 1920 x 1080 (50 fields)

HD – 1080p 1920 x 1080 (25 frames)

2K (DCI-Digital Cinema Initiative) 2048 x 1080

UHD (Ultra High Definition) 3840 x 2160

4K (DCI) 4096 x 2160

8K 7680 x 4320

between original video and decoded video. PSNR is measured in logarithmic scale and

it depends on the MSE (Mean Squared Error) between original and decoded video

frames, relative to highest possible signal value in the image (2n-1)2, where n is the

number of bits per image sample. The equation for PSNR is shown in (2.2) [22].

 +�,"-. = 10 log*4 �26 − 1�7��8 = 209:;*4 <26 − 1√��8> 2.2

PSNR is measured individually for luminance and chrominance components. For

YUV format, there will be three PSNR values, PSNR-Y, PSNR-U, and PSNR-V. But

for comparison, typically PSNR-Y (luminance) is only considered. For a 32-bit color

video, there will be 8 bits allocated for luminance components. So, in (2.2) ‘n’ will be 8,

making the numerator value equal to 255. Higher value of PSNR indicates high quality

of video. Typically, a PSNR of 30-50 dB indicates that the quality of video is very

good, 25-30 dB indicates an average quality, and below 25 dB indicates poor quality.

Apart from this objective quality measurement metrics, there are also subjective

measurements, where the video quality is measured using the survey of viewers

opinions on the decoded videos [23]. In HEVC, the objective measurement using PSNR

is widely used.

 Video Bitrate

The amount of bits at which the video encoder streams the compressed video (to a

file or a communication channel) is measured in bits per second (bps) and is termed as

bitrate. High bitrate video usually accommodates higher quality video (measured using

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

15

TABLE 2.2 COMMONLY USED BITRATES FOR VARIOUS STORAGE,

STREAMING AND BROADCASTING STANDARDS

Target Bit rate Application

16 kbps videophone quality

1.15 Mbps (max) VCD quality (using MPEG 1)

2.5 Mbps 480p (SD) Youtube video (using H.264/AVC)

3.5 Mbps (max) SDTV (using MPEG 2)

5 Mbps 720p (Half HD) Youtube video (using H.264/AVC)

8 Mbps 1080p (Full HD) Youtube video (using H.264/AVC)

9.8 Mbps (max) DVD (using MPEG 2)

8-15 Mbps HDTV (using H.264/AVC)

29 Mbps HD DVD

40 Mbps 1080p Blu-ray Disc (using MPEG4 AVC)

PSNR). Further, for a given bitrate constraint, a good encoder (like HEVC) can have

better quality video compared to older codecs like H.264/AVC. Similarly, for a given

video quality constraint, the new codec HEVC will use less bitrate compared to its

predecessor H.264/AVC [2]. Some of the commonly used bitrates in various storage and

streaming standards are listed in TABLE 2.2.

 There are two types of bit rate schemes that a video encoder can use for video

coding – Constant Bit Rate (CBR) and Variable Bit Rate (VBR). The CBR maintains a

bit rate (set by user) over the entire video clip but limits the video quality over complex

video segments. Live broadcasting media that are used via cable, satellite and terrestrial

broadcasting require constant bitrate for their transmission. To achieve CBR the

complex video frames are compressed either in real time or pre-encoded before they are

transmitted.

The second type of coding scheme uses variable bit rate. In VBR scheme, all the

video frames can have the same or targeted quality (PSNR), although the bitrate for

each frame may vary (depending on the scene complexity). For more complex frame

segments (blocks or slices), the VBR scheme allocates higher bitrate and for low

complex frame segments it allocates less bitrate. The final average bitrate of encoded

video is calculated by adding all the bitrates of individual frames and dividing it by the

frames duration.

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

16

 Rate Distortion Performance for Video Encoder

The Rate-Distortion (RD) performance is one of the methods that is used to evaluate the

performance of different video (or image) encoders considering both the video quality

(PSNR) and compression rate (bitrate). RD performance is usually depicted using

graphs termed as RD curves as shown in Fig. 2.4 [24].

The figure shows RD curves simulated for test sequence Johnny (720p) using

reference softwares of various video coding standards – H.262/MPEG-2 Main Profile,

MPEG-4 Advanced Simple Profile, H.263, H.264/AVC High Profile and HEVC Main

Profile. On x-axis, the bitrate in kbps is taken and on y-axis the PSNR (video quality) in

dB is taken. The nearer the curve is towards the y-axis, the better is the RD performance

for the corresponding standard. This is because, for a constant PSNR, the curve towards

the y-axis takes lesser bitrate (better compression) compared to other curves. Further,

for the same bitrate, the curve towards the y-axis achieve higher video quality. From the

plots shown in Fig. 2.4, the highest RD performance is achieved by HEVC, followed by

H.264/AVC, H.264, MPEG-4 and then the last, H.262/MPEG-2.

 Bjontegaard Delta Metrics for RD Performance Measurement

The RD performance difference between two curves can be measured using

Bjontegaard Delta (BD) metrics [25, 26]. While taking one RD curve as a reference, the

BD metrics (for the second curve) denotes the overall bitrate savings and the overall

PSNR savings. There are two types BD measurements – BD-bitrate (or BD-rate) and

Fig. 2.4 Illustration of RD curves of test sequence Johnny (720p) using various video

coding standards

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

17

BD-PSNR. The BD-bitrate provides a number that denotes the overall bitrate savings,

while the BD-PSNR denotes the overall PSNR difference between the two curves.

To calculate BD-bitrate and BD-PSNR, the RD performance of two encoder

configurations for four different QP settings are taken and plotted with logarithmic scale

of bitrate in x-axis and PSNR on y-axis. An example RD plots of two curves with their

logarithmically scaled version of x-axis (bitrate values) is shown in Fig. 2.5. The curves

are interpolated over the measured points using either (2.3) or (2.4), and then integrated

over the x and y-axis respectively. The interpolation of PSNR as a function of bitrate is

shown in (2.3) and (2.4) shows interpolation of bitrate as a function of PSNR. The

difference over the integrated value over x-axis is taken as BD-bitrate value and the

difference over y-axis is taken as BD-PSNR. In this way, the average PSNR difference

in DB over the whole range of bitrates is calculated and similarly, the average bitrate

difference in % over the whole range of PSNR is calculated.

 +�," = ? + �@ A @�BC?BD� + �E A @�BC?BD7� + �F A @�BC?BDG� 2.3

 @�BC?BD = ? + �@ A PSNR� + �E A PSNR7� + �F A PSNRG� 2.4

2.3 TYPES OF REDUNDANCIES IN DIGITAL VIDEO

Broadly classifying, there are two types of redundant information, one is the

duplicate data and the other is irrelevant data. Duplication of data in videos mostly

occurs due to correlation of objects within frames and between frames. There are three

types of redundancies that occur due to duplicate data - spatial redundancy, temporal

redundancy, and statistical coding redundancy. Irrelevant data is the information that the

(a) (b)

Fig. 2.5 Illustration of RD curves used to calculate BD metrics. (a) Normal RD

Plots (b) Logarithmically scaled plots

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

18

Human Visual System (HVS) cannot perceive. This is usually termed as psycho-visual

redundancy. Each of the redundancy type is explained briefly in the following sub-

sections [16], [19].

(a) Spatial Redundancy

Neighboring pixels are highly correlated amongst themselves in a frame of video

sequence. This redundant information can be exploited to achieve video compression. In

block based video encoders like H.264/AVC, HEVC intra-prediction method is used to

exploit this spatial redundancy which predicts the neighboring pixel blocks within the

frame.

(b) Temporal Redundancy

Successive frames in a video are highly correlated since most of the video sequences

consist of objects moving on a still background. This redundancy can be exploited using

motion compensated coding technique.

(c) Psycho-Visual and Spectral Redundancy

This redundancy occurs due sensitivity variations of Human-Visual-System (HVS) for

luminance and chrominance components in a video frame. Human visual system is less

sensitive to details of pixel differences in an image. Hence the finer details of an image

are quantized to achieve compression. The quantization based coding is a lossy coding.

Further, the human eye is more sensitive to luminance component than chrominance

component. Hence, video frames are typically encoded using chroma sub-sampling

techniques (like 4:2:0) to remove the redundant color information.

(d) Statistical Coding Redundancy

The statistical redundancy occurs due to redundancy in neighboring bits of video

information. After transforming the video frames (using transforms like Discrete Cosine

Transform), the frame pixels information are arranged in according to their frequencies

and hence the redundant data is easily removed. The statistical redundant data is

exploited using entropy encoder.

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

19

2.4 DIGITAL VIDEO COMPRESSION TECHNIQUES

For exploiting the aforementioned redundancies, the digital video encoders use

many algorithms and techniques. Altogether, these techniques can be classified into four

types. Each of these types of coding techniques is explained in the following

subsections [19].

 Intra Frame Coding

Intra frame coding technique reduces the spatial redundant information (redundant

information that occurs between pixels in the same frame). Typically for doing temporal

coding in a video coding process, there should be at least one reference frame that

should not be encoded by using blocks of neighboring frames. Hence, the first frame out

of n frames is always intra-coded. The rest of the frames are coded using temporal

prediction (exploiting temporal redundant information). The number 'n' is the GOP

(Group of Pictures) size and denotes the number of frames in a sequence.

Although there is only one frame (intra-frame) in a GOP, the number of bits that are

produced by intra-frames is significantly larger. Hence to compress this information,

spatial prediction techniques were used. This is similar to still image coding, but used as

part of video coding. Some standards like H.264/AVC and HEVC have a direct intra

coding extensions (profiles) which use only intra frame coding and without any

temporal (or inter-frame) coding.

 Inter Frame Coding

To exploit the temporal redundant information, motion compensated coding (inter frame

coding) technique is used. In motion compensated coding, each block of a video frame

is predicted with neighboring blocks in past frames using block matching algorithms.

This process is called Motion Estimation (ME). The output of the ME process is the

Motion Vector (MV) of the predicted block, which is sent to the decoder.

 After the prediction process, the motion compensated (or predicted) frames are

generated using these predicted blocks. The MC frames are subtracted from the current

frames to get the residual frames. Typically, the subsequent stages after motion

compensation (MC) coding are the transformation stage, quantization stage and entropy

coding stage. The final output of entropy coding are the bits that represent the motion

compensated residual frames. The output of the motion compensated coding is not just

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

20

MC residual frames, but also Motion Vectors (MVs) that represent predicted blocks

obtained from Motion Estimation (ME). These MVs are also entropy encoded. Hence

the necessary condition that should be satisfied in MC coding is that the output entropy

coded bits of MVs and MC residuals (after transformation and quantization) is less than

the entropy coded bits of difference images without MC coding (also after

transformation and quantization). This is shown in (2.5), where J represents entropy

coded bits and difference image represents residual frame without MC.

 ���&LM��-NOP� + ����� Q 	��F�RRDCDSED_RC?UD� 2.5

 Transform Coding and Quantization

The transform coding is a method to exploit irrelevant information in video frames. This

is typically a lossy compression technique. In transform coding, the image or video

frame (motion compensated residual frame) is transformed into frequency domain

which represents distribution of frequencies of pixel values within block. Technically,

the transformed blocks indicate low to high frequencies in original residual frame

blocks. After the transformation, the transformed blocks are quantized to remove

irrelevant information that cannot be visualized in detail by human eye. The

quantization process leads to a lossy data.

Broadly classifying, there are two types of transforms - block-based and image

based. Block based transforms operate on block of pixels and are suitable for block

based video coding standards. They have low memory requirements and have low

complexity compared to image based transforms. Image based transforms apply on an

entire image or a large portion of image. Hence, they require high memory and are

computationally expensive. Block based transforms suffer from blocking artifacts and

hence require de-blocking filtering. Some of the examples for block based transforms

are KL-transforms, Singular Value Decomposition, Discrete Cosine Transform (DCT),

integer transforms, Hadamard transforms, etc. The most widely used block transform is

Discrete Cosine Transform. The most commonly used image transform is the Discrete

Wavelet Transform (DWT).

 Entropy Coding

The entropy coders exploit the statistical redundancy in the quantized transform

coefficients of residual information and in other information like motion vector

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

21

differences, frame headers, block headers etc. The entropy encoder encodes the input

information into minimum number of bits by allocating more bits to low frequent data

and less number of bits to high frequent data. The most widely used entropy coding

schemes in block based video encoders are Context Adaptive Variable Length Coder

(CAVLC) [27] which is based on variable length coding and Context Adaptive Binary

Arithmetic Coder (CABAC) [28] which is based on arithmetic coding.

2.5 DIGITAL VIDEO CODING STANDARDS

A video coding standard is a language that contains syntaxes and other elements so

that the decoder can understand and decode it, besides achieving a goal of compressing

the video. A video coding standard, gives some flexibility in the implementation of the

encoder but constraints it to follow a common format that every other decoder

complying with the specified standard can understand the encoded bitstream. There are

mainly two major working groups that standardize video codecs. One is the VCEG

(Video Coding Experts Group) led by ITU-T (International Telecommunications Union

- Telecommunication Standardization Sector) and the other is the MPEG (Moving

Pictures Experts Group) led by ISO/IEC - JTC 1 (International Organization for

Standardization / International Electrotechnical Commission - Joint Technical

Committee 1) [19].

VCEG is more focused on conventional (esp. low-delay) video coding goals (e.g.

good compression and packet-loss/error resilience). The VCEG standardized (and

maintain) the H.26x line of video coding standards. MPEG is larger and takes on more

ambitious goals (e.g. “object oriented video”, “synthetic-natural hybrid coding”, and

digital cinema). The MPEG standardized (and maintain) MPEG-x line of video coding

standards. Sometimes these major organizations team up and create a standard (e.g.

ISO, IEC and ITU teamed up for both MPEG-2, JPEG, H.264/AVC and HEVC) [29].

 History of video coding standards

The first video coding standard was H.120 published by CCITT (Comité

Consultatif International Téléphonique et Télégraphique) which was renamed to ITU-T

in 1984. There were very few implementations with very low quality, but it then gave a

good initiative to its successors like H.261. The first practical coding standard from

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

22

VCEG group was H.261 standardized in 1988 and from MPEG it was MPEG-1

standardized in 1993. After these two standards, there are many successor individual

standards and collaborative standards within (and in between) these groups. The

timeline of these standards are shown in Fig. 2.6.

 ITU/VCEG standards

Video Coding Expert Group (VCEG) has been handling the responsibility of

standardizing and maintaining the video compression formats, and corresponding

standards.

H.120: It is the first standard in digital video compression techniques [30] standardized

in 1984 but like most firsts in many fields of study, is not matured enough and had poor

quality and fewer implementations. It featured conditional replenishment, variable-

length coding, scalar quantization, and differential PCM. Although its encoder offered

good spatial resolution, it had very poor temporal quality, and thus could not be of much

practical use.

H.261: Although H.120 preceded H.261 in late 1990, the latter is clearly the first video

coding standard to be of practical use, in view of the conforming implementations, and

the subsequent coding standards that emerged with H.261 as their base design [31].

H.261 is the first video coding standard that pioneered the concept of a basic processing

unit, titled macroblock. H.261 only specifies the guidelines for decoding a video, the

encoding process can employ any algorithm as long as the output can be decoded

Fig. 2.6 Progression of ITU-T and MPEG works

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

23

according this standard. H.261 is published by ITU-T VCEG. The popular MPEG-1

video coding standard was derived from H.261 and JPEG standards.

H.262: An enhancement of MPEG-1 (based on H.261 & JPEG) video coding standard,

and jointly developed by VCEG and MPEG groups (process completed in late 1994),

H.262/MPEG-2 offers support for interlaced video and is optimized for high bit rates

above 3 Mbits/sec [32], [33]. H.262/MPEG-2 allows the tools to implement only a

subset of the standard by defining various profiles and levels within the specification to

accommodate diverse needs of the applications.

H.263: H.263 was an evolutionary development based on the learnings from the

previous video coding standards H261, MPEG-1, and MPEG-2 (standardized in late

1995). It was originally intended for H324 communications (PSTN, video conferencing

and video telephony), but found applicable even for H320 (ISDN based video

conferencing), H323 (RTP/IP based video conferencing), SIP (IP based video

conferencing) and RTSP (streaming media) solutions [34].

H.263V2 : H.263V2/H.263+ is the enhanced version of H.263 video coding standard

that provides additional features as appendices to the original H.263 standard, thus

retaining every aspect of the parent yet improving encoding efficiency and reducing

data loss in transmission channels.

H.264: H.264/MPEG-4 is often called "Advanced Video Coding" (AVC) standard, and

is by far the most widely used one in the industry. It was collectively developed by a

committee of experts from VCEG and MPEG groups, titled Joint Video Team (JVT).

The first version of its draft is released in May 2003 [5]. H.264 is lossy, motion

compensated, and block-oriented video compression standard that offers good quality

and high compression ratio at low bit rates. H.264 offers several advancements in video

compression techniques such as Scalable Video Coding (SVC), Multiview Video

Coding (MVC), Entropy Coding Design including binary arithmetic coding (CABAC)

and variable length coding (CAVLC), loss resilience features such as Network

Abstraction Layer (NAL), Flexible Macroblock Ordering (FMO), Data Partitioning

(DP), etc [6], [35].

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

24

H.265: H.265 or High Efficiency Video Coding (HEVC) is a successor to the

H.264/MPEG-4 AVC standard and was developed by a Joint Collaborative Team on

Video Coding (JCT-VC), a collaboration effort by MPEG, and VCEG groups. Its first

version of draft was completed and released in January 2013 [4]. H.265 takes advantage

of the advancements in computational power of the hardware devices in recent times to

achieve higher compression at lower bit rates without compromising much on quality,

offering at least 50% improvement over H.264/MPEG-4 [2].

 ISO/MPEG Standards

The Moving Picture Experts Group (MPEG) is a standards body setup by ISO and IEC

to standardize the compression and transmission techniques for Digital Audio and

Video. MPEG team actively collaborates with other such expert groups to formulate

worldwide standards in digital video compression. The most notable outcomes of such

collaboration are with the VCEG team that culminated in the specification of

H.264/MPEG-4 AVC, and H.265/HEVC video coding standards. MPEG standards are

segregated into several parts, each part describing a certain aspect of the whole

specification. MPEG team has formulated the following digital video coding standards:

MPEG-1 (1993): It specified the compression mechanism for moving pictures, and

accompanying audio at bit rates lesser than 1.5 Mbits/sec [36] [37]. This specification

also includes the MPEG-1 Audio Layer III (MP3) audio compression format. MPEG-1

decimates images to meet the low bit rate requirement, and thus results in comparatively

poor quality. MPEG-1 was primarily used to store videos in CD until MPEG-2 has

arrived on stage.

MPEG-3: MPEG-3 was intended for high definition television with features like

scalable and multi-resolution compression but was found redundant, and was merged

with MPEG-2 [15]. There is no MPEG-3 standard now.

MPEG-4 (1998): MPEG-4 achieves higher compression ratios at lower bit rates without

compromising on the quality, and advances in depicting computer graphics with three

dimensional shapes and surface texture. MPEG-4 also supports intellectual property

management and protection (IPMP). There were several parts included in MPEG-4, of

which two are highly used – MPEG-4 part 2 and MPEG-4 part 10. The MPEG-4 part 10

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

25

is just another name for H.264/AVC Joint Video Team (JVT). The MPEG-4 part 2, also

known as MPEG-4 visual is developed and maintained by MPEG [38].

MPEG-7 (2002): Multimedia Content Description Interface, a mechanism to allow

additional information such as the composer, lyrics, author, publisher, and other such

details along with the compressed content to facilitate easier lookup of such metadata,

once the content is in hand. MPEG-7 is not another standard like MPEG-1 or MPEG-4

but a mechanism to standardize sharing of such metadata along with the content

compressed with any of the above standards [39].

 Other standards

Apart from MPEG and VCEG based standards, there are many other video codec

standards of which Microsoft’s VC-1 and Google VP9 based codecs are most widely

used in both web and physical devices.

VC-1: VC-1 is a proprietary video standard which was initially released by Microsoft in

2006 as SMPTE video codec (Society of Motion Picture and Television Engineers)

[40]. It is described as alternative to H.264/AVC. VC-1 supports both interlaced and

progressive encoding. VC-1 is an attractive codec for video broadcasting industry

because it supports direct interlaced video coding without converting the video first to

progressive format. VC-1 is supported in windows media, Microsoft Silverlight

framework, Blu-ray discs, Slingbox [41].

VP9: VP9 is an open standard developed by Google with the aim to reduce bitrate by

50% compared to its predecessor VP-8 [42]. Web browsers like Firefox, Opera, and

Chrome, uses VP9 with HTML5 video tag. VP9 is being used in smart TVs with 4k

resolution and in some YouTube web streaming videos with 4k resolution.

AVS: Audio Video Standard (AVS) is a compression standard for digital audio and

digital video, which was meant to compete with AAC audio and H.264/MPEG-4 AVC

video to potentially replace MP3 audio and MPEG-2 video. The audio and video files

have an .avs extension as a container format. From the year 2013, its working group set

a new target to compete with H.265/HEVC. Some of the open-source implementations

of an AVS video decoder were found in the OpenAVS project and in the libavcodec

library [29].

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

26

Fig. 2.7 Illustration of Macroblock and its sub-block sizes in H.264/AVC

2.6 H.264/AVC CODING STRUCTURE

H.264/AVC is the most widely used standard prior to the latest video coding

standard HEVC. H.264/AVC is developed by JVT (Joint Video Team) which is a

collaboration team formed by ISO/IEC MPEG and ITU-T VCEG [6]. In H.264/AVC

each frame is divided into 16x16 size coding blocks termed as macroblocks. Each

macroblock can be again subdivided into blocks of size 16x8, 8x16, 8x8, 8x4, 4x8 and

4x4 as shown in Fig. 2.7. In H.264/AVC, new features like multiple reference frames

and variable block size motion estimation were introduced. With multiple reference

frames, more than one reference frame is used for estimating the motion vector. In prior

standards like MPEG-2 only one reference frame is used for ME. H.264/AVC allows up

to 16 reference frames (or 32 reference fields for interlaced scanning). With variable

block size motion estimation, the motion estimation is performed on all block sizes of

coding block from 4x4 to 16x16 as shown in Fig. 2.7.

2.7 HEVC CODING STRUCTURE

In HEVC, the block size for coding is increased to 64x64, in-order to increase the

coding efficiency at the cost of increase in coding complexity. The structure of HEVC

block coding hierarchy is generalized into quadtree-based coding tree units (CTUs) or

coding units (CUs). The maximum size of each CTU is 64x64 and each CTU is further

sub-divided recursively into square blocks down to 8x8 sizes [2]. Each CTU is a

generalized structure of block coding hierarchy, where it is assigned quadtree-based

prediction units (PUs) of different types, either intra or inter or skip. Each PU is further

assigned into quadtree-based Transform Units (TUs) with a specific transform size. The

representation of quadtree-based CTU with their PU types is shown in Fig. 2.8.

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

27

2.8 REFERENCE SOFTWARES FOR VIDEO CODING STANDARDS

To verify and test the performance of various encoding and decoding algorithms for the

specified standard, reference software is usually implemented for some of the standards

including H2.64/AVC and HEVC. The reference software is normative and any decoder

implementation should be able to decode the bitstream encoded using reference

software encoder. The reference software also includes a decoder software which is

used to decode the bitstream encoded using the complying standard encoder. One of the

main goals of the reference software is to provide a platform to conduct experiments in

order to determine which coding tools provide the desired coding performance.

 H.264/AVC Reference Software JM

A reference software was implemented for H.264/AVC by JVT of ISO/IEC MPEG and

ITU-T VCEG that complies with the standard. The software is technically termed as

Joint Model (JM), which was initially released in August 2004 [43] and the latest

version is JM 18.0 released in March 2011. JM consists of both encoder and decoder

softwares. JM software is supported in MS Visual studio .NET platform (for Windows

operating system) and gcc (GNU Compiler Collection) platform (for UNIX and

Windows operating system) [44].

 HEVC Reference Software HM

Like JM for H.264/AVC, reference software for HEVC was implemented by JCT-VC

regrouping experts from ITU-T SG 16 and ISO/IEC SC29 WG11, known as HM

(HEVC Model) [7]. The initial version of HM (HM 1.0) was released in 2010 and the

Fig. 2.8 Quadtree coding structure in HEVC

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

28

current version of HM is HM 16.2 [8]. Like JM, HM also consist of both encoder

software and decoder software. The supported environments for HM are MS Visual

Studio 8, MS Visual Studio 9, Xcode and Linux GCC compiler.

 Various Configurations in HM

There are eight default configurations provided with HM reference software out of

which four configurations belong to 10-bit internal bit depth (bit depth for luma and

chroma both set to 10 bit) and the remaining four belong to 8-bit internal bit depth. The

internal bit depth here specifies the number of bits used to represent a pixel sample with

4:2:0 chroma sub-sampling. The four modes provided are intra-mode, low-delay mode,

low-delay P mode and random access mode. Each mode had two types of configurations

– one with 8-bit internal bit depth and the other with 10-bit internal bit depth making a

total of eight configurations. The 8-bit mode is technically termed as main mode and

10-bit mode is termed as High Efficiency (HE or HE10 or Main10) mode. In each

mode, the first frame in a GOP sequence is encoded as I-frame or IDR (Instantaneous

Decoder Refresh) picture. In IDR picture all the slices are encoded as I-slices. TABLE

2.3 lists out the summary of various configurations available for HM encoder [45, 46].

 Intra-only Configuration:

In intra-mode, all the frames are encoded as IDR pictures (encoded using intra-

prediction) only. There are no temporal reference pictures and there is no motion

compensated coding. The quantization parameter (QP) does not change between and

within each picture. This mode has lowest coding efficiency and coding complexity

compared to other modes. The graphical representation of this configuration is shown in

TABLE 2.3 VARIOUS CONFIGURATIONS FOR HEVC HM ENCODER

Configuration

Internal Bit Depth

Main

High

Efficiency

(HE)

Intra (I) 8 10

Low Delay-B (LB) 8 10

Low Delay-P (LP) 8 10

Random Access (RA) 8 10

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

29

Fig. 2.9. The number associated for each picture represents the encoding order. The QPI

represents QP for IDR picture which is same for all pictures.

 Low-delay Configurations:

In low-delay configuration, only the first frame is encoded as IDR picture. There

are two low-delay configurations that are supported by HEVC. One is low-delay

configuration (or low-delay B configuration) and the other is low-delay-P configuration,

which is treated as optional configuration. The difference between low-delay

configuration and low-delay P configuration is, in low-delay P mode all the frames in a

GOP are taken as P-pictures only while in low-delay mode all the frames in a GOP are

taken as Generalized P and B pictures (GPB) only. In both these configurations the first

frame is encoded as IDR picture. A graphical representation for low-delay B

configuration is shown in Fig. 2.10. The number shown for each picture represents

encoding order. The QP for each inter coded picture is derived by adding an offset to

Fig. 2.9 Illustration of encoding order of pictures in HEVC Intra-only configuration

Fig. 2.10 Illustration of encoding order of pictures in HEVC low-delay B

configuration

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

30

the QP of intra-coded picture. The QP offset depends on temporal layer of inter coded

picture.

 Random Access Configuration:

In random access configuration, a hierarchical B-structure is used for encoding as

shown in Fig. 2.11. As shown in the figure the frames are divided into different layers –

L1 to L4. The first picture is encoded as IDR picture. The second picture in the

following first pictures is encoded as GPB picture, that can refer (for inter prediction) to

I-frames or any other GPB pictures. The pictures in the rest of the layers are B-pictures.

The pictures in the last layer are non-referenced B-pictures (that are not used as

reference frames for any other frames). Depending on the temporal layer, the offset of

QP is derived and added to the QP of IDR picture, to get the final QP for the

corresponding inter picture.

 Reference Test Sequences for HM

For testing the HM encoder software, standard test sequences were recommended by

JCT-VC. These test-sequences are available in [47]. The test sequences are grouped

into classes from A through F, depending on their frame size or format. TABLE 2.4

shows the names of these test sequences with their frame size, frame count, frame rate

and supported configurations in the subsequent columns of the table [45]. All the

Fig. 2.11 Illustration of picture encoding order in HEVC Random Access

configuration

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

31

sequences are not recommended for all modes – class-A sequences do no support low-

delay modes and class-E sequences are not recommended for random access modes.

2.9 BLOCK DIAGRAM OF HEVC ENCODER

A brief outlook of HEVC encoder with individual blocks is shown in Fig. 2.12 [48],

[49]. Each frame is first split into Coding Tree Units (CTUs) conforming HEVC

TABLE 2.4: SUMMARY OF TEST SEQUENCES RECOMMENDED FOR HEVC

HM ENCODER

Class Sequence name Frame size
Frame

count

Frame

rate

Bit

depth

Intra

mode

Random

Access

mode

Low-delay

mode

A

Traffic

4k (2560x

1600)

150 30fps 8 Main/HE10 Main/HE10 NA

PeopleOnStreet 150 30fps 8 Main/HE10 Main/HE10 NA

Nebuta 300 60fps 10 Main/HE10 Main/HE10 NA

SteamLocomotive 300 60fps 10 Main/HE10 Main/HE10 NA

B

Kimono

1080p

(1920x

1080)

240 24fps 8 Main/HE10 Main/HE10 Main/HE10

ParkScene 240 24fps 8 Main/HE10 Main/HE10 Main/HE10

Cactus 500 50fps 8 Main/HE10 Main/HE10 Main/HE10

BQTerrace 600 60fps 8 Main/HE10 Main/HE10 Main/HE10

BasketballDrive 500 50fps 8 Main/HE10 Main/HE10 Main/HE10

C

RaceHorses

WVGA

(832x480)

300 30fps 8 Main/HE10 Main/HE10 Main/HE10

BQMall 600 60fps 8 Main/HE10 Main/HE10 Main/HE10

PartyScene 500 50fps 8 Main/HE10 Main/HE10 Main/HE10

BasketballDrill 500 50fps 8 Main/HE10 Main/HE10 Main/HE10

D

RaceHorses

WQVGA

(416x240)

300 30fps 8 Main/HE10 Main/HE10 Main/HE10

BQSquare 600 60fps 8 Main/HE10 Main/HE10 Main/HE10

BlowingBubbles 500 50fps 8 Main/HE10 Main/HE10 Main/HE10

BasketballPass 500 50fps 8 Main/HE10 Main/HE10 Main/HE10

E

FourPeople
720p

(1280x720)

600 60fps 8 Main/HE10 NA Main/HE10

Johnny 600 60fps 8 Main/HE10 NA Main/HE10

KristenAndSara 600 60fps 8 Main/HE10 NA Main/HE10

F

BaskeballDrillText 832x480 500 50fps 8 Main/HE10 Main/HE10 Main/HE10

ChinaSpeed 1024x768 500 30fps 8 Main/HE10 Main/HE10 Main/HE10

SlideEditing 1280x720 300 30fps 8 Main/HE10 Main/HE10 Main/HE10

SlideShow 1280x720 500 20fps 8 Main/HE10 Main/HE10 Main/HE10

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

32

standard. Each CTU is converted into motion vectors (or intra prediction information)

and predicted blocks. Then the predicted information is subtracted from original frame

data to get residual information. The residual information is transformed and quantized.

The quantized information along with prediction information is entropy encoded using

arithmetic encoder CABAC (Context Adaptive Binary Arithmetic Coder).

The encoder also includes a decoder processing loop (shown in blue color) to

ensure that it will generate identical prediction information for the subsequent processed

data. Hence the quantized transform coefficients are inverse-scaled and then inverse-

transformed to generate a decoded approximation of residual data. This residual will

then be added to the predicted information to get a decoded approximation of original

frame data. The block-wise processing and quantization process usually introduces

some artifacts in the reconstructed frame and hence it is fed to loop filters – deblocking

filter, Sample Adaptive Offset (SAO) filter and Adaptive Loop Filters (ALF) to smooth

these artifacts. The output of these filters are passed through a memory buffer called

Decoded Picture Buffer (DPB) which stores the decoded frames which are later used for

prediction of subsequent pictures.

Fig. 2.12 Block Diagram of HEVC Encoder

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

33

Intra-Prediction Unit: The first picture in each GOP sequence is encoded using the

intra prediction unit, apart from the first CTU in each slice of other frames. If the

encoding mode is of intra type, all blocks are encoded in intra prediction mode. HEVC

supports 35 luma directional modes (including DC intra prediction and planar prediction

modes) compared to H.264/AVC with 8 directional modes and hence the complexity of

intra-prediction is increased while achieving a huge intra-coding efficiency. The intra-

prediction modes for HEVC and H.264/AVC are shown in Fig. 2.13. In planar

prediction mode, the predicted block is generated by averaging the horizontal and

vertical interpolated blocks [50]. The intra-prediction can be performed at different

block sizes ranging from 4x4 to 64x64.

Apart from luma intra-prediction, there are also chroma intra-prediction modes.

In HEVC, the chroma intra-prediction modes are increased to six compared to four

intra-prediction modes in H.264/AVC. The various chroma intra-prediction modes in

HEVC are direct mode (DM), linear mode (LM), vertical (mode 0), horizontal (mode

1), DC (mode 2), and planar (mode 3). The modes DM and LM are used to exploit

correlation between luma and chroma components [51]. The DM and LM modes are

frequently used in intra-coding of chroma component due to existing correlation

between luma and chroma components of an image [52].

Motion Estimation and Motion Compensation: The motion estimation unit together

with motion compensation unit performs inter-picture prediction by converting the

frames into motion vectors and motion predicted blocks. The motion estimation unit

estimates the motion vectors of each block in a frame (except in intra frames) while the

motion compensation unit uses these motion vectors and generates motion compensated

(predicted) frames. These motion compensated frames are then subtracted from the

original video frames to get the residual frames and processed further. Typically, the

motion estimation block uses block matching algorithms to find the motion vector of

each block in a frame. The motion compensation unit performs interpolation (using

functions like weighted-prediction) on reference picture to form motion compensated

frame for every current frame.

The ME is performed on various block sizes called Variable Block Size ME

(VBSME). In H.264/AVC, there are 7 modes (4x4 to 16x16) for inter-prediction with an

output of 41 MVs (in maximum) for each macroblock. Since the block size in HEVC is

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

34

increased until 64x64, there are 13 modes for inter-prediction. The details of various

modes in HEVC are explained in section 2.10.2. Further, the ME is performed in sub-

pixel accuracy (details explained section 2.10.5) using interpolation filters. Like in

H.264/AVC, the HEVC performs ME and MC up to quarter pixel accuracy, but with

improved interpolation filters [53], [54].

Transform: The transform unit transforms the residual information using integer

transforms. In HEVC, the transform size is increased until 32x32 (compared to 8x8 in

H.264/AVC). Just like DCT (Discrete Cosine Transform), the integer basis functions are

defined and can be applied on various transform block sizes ranging from 4x4 to 32x32

pixels (4x4, 8x8, 16x16 and 32x32) [55]. As mentioned above, the TU is the basic unit

for transforms and quantization in HEVC with its tree structure having root at CU level.

The size and shape of TU depends on PU size. Further, HEVC supports rectangular

transforms (for non-square PUs) with row and column transforms having different sizes.

For 4x4 luma intra-prediction modes, integer transform derived from Discrete Sine

Transform (DST) is alternatively used in HEVC. The DST is used (for some 4x4 intra-

mode sample) because they fit better for residual samples near boundaries (which tend

be of large in amplitude for pixels away from boundaries) [56]. The DST contribute up

to 1% reduction in bitrate for intra prediction data with almost same computationally

complex compared to DCT - based integer transforms [2].

Scaling and Quantization: The transformed coefficients of the residual data are scaled

and passed through quantizer which make the coefficients to select from a limited set of

Fig. 2.13 Comparison of various luma intra-prediction modes in (a) HEVC (b) H.264/AVC

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

35

discrete finite values. This is one of the lossy compression technique, where the number

of transform coefficients are reduced and any insignificant coefficients are reduced to

zero. Hence the quantizer is considered as one of the primary sources of compression in

a video encoder [57]. HEVC supports quantization scaling matrices for different

transform block sizes.

To control a tradeoff between compression ratio and video quality, a parameter

called Quantization Parameter (QP) is used and is set before the HEVC encoder starts

encoding. Larger QP value increases step size and increases the quantization step size

and increases the compression ratio but decrease the output video quality. On the other

hand, smaller QP can be set and increase the output video quality but it increases the

encoded video stream bitrate (or reduces the compression ratio). Hence the QP is set

depending on the bandwidth constraints and video quality requirements. Like in

H.264/AVC the QP values can be set ranging from 0 to 51 and the mapping of QP

values to step size is logarithmic. Hence for every increment in QP by 6 almost doubles

the quantization step size.

Inverse Transform and Rescaling: As explained above, the quantized coefficients are

rescaled (or inverse quantized) and inverse transformed to get a decoded approximation

of residual data. Each quantized coefficient is multiplied by an integer value to restore it

to its original scale. The inverse transform apply inverse DCT operation which is a

weighted coefficient matrix applied to a rescaled information. The reconstruct residual

data will be similar but not identical to the original residual data, due to the loss of

information in forward quantization process. A larger quantization step value (due to

larger QP) will produce a larger difference between original and reconstructed data.

Loop Filters: As explained above, the loop filters are applied after the picture is

reconstructed and before they are used for motion compensated prediction. Apart from

deblocking filter (which is also used in H.264/AVC), HEVC includes one in-loop

processing filters - SAO filter. These in-loop filters are used to compensate the

distortion introduced by the encoding steps – prediction, transformation and mostly by

quantization. The more these in-loop filters are used the better is the quality of the

reconstructed frame which are used as reference pictures for motion compensated

prediction unit.

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

36

The deblocking filters in HEVC is similar to that of in H.264/AVC. The blocking

artifacts in HEVC is due to several kinds of block boundaries such s CUs, PUs and TUs.

For each block boundary and based on the artifact introduced, the encoder applies a

decision to turn the filter on or off and to apply a weak filter or strong filter [48]. The

SAO filter classifies the reconstructed pixels into either intensity or edge properties. It

then adds offset value - either Band Offset (BO) or Edge Offset (EO) to these classified

pixels to reduce the distortion [58], [59].

Entropy Coding Unit: The entropy encoder encodes the data by exploiting any

statistical redundant data if exist. The entropy encoder is applied to quantized

transformed coefficient data, MV data, and loop-filter coefficients data and to various

high level syntax elements of HEVC. In H.264/AVC, only CAVLC is used in base

profile and CABAC is optionally used in main and high profiles. In HEVC CABAC is

used as it is more efficient than CAVLC due to its arithmetic coding engine and more

sophisticated context modeling [60]. The CABAC increases the coding efficiency but

at the cost of increase in coding complexity. Hence, to increase the throughput in HEVC

an alternative mode called High Throughput Binarization (HTB) mode is used which

utilizes the best features of both CAVLC and CABAC [61]. The first mode which uses

only CABAC is termed as High Efficiency Binarization (HEB) mode. In HTB, the

quantized transformed residual coefficients are encoded using CAVLC while the rest of

the data like syntax elements, MV data, filter coefficients etc. are encoded using

CABAC.

2.10 MOTION ESTIMATION FEATURES

 Motion Estimation Objective

As explained in Chapter 1, the objective of the ME is to find the best matched block in

past (or buffered future frame) frame’s search window for each block of current frame.

First, the current block is defined after the frame is divided into blocks of size specified

by the standard (maximum of 64x64 pixels in HEVC). Then the reference frame is

defined using neighboring frames. The reference frame may also be a future frame,

where the current frame is virtually a current frame and in reality a buffered past frame.

The next stage is to identify the region of interest where search has to be performed.

This region is called Search Window (SW). If the ME performs search on all the blocks

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

37

in the reference frame then the search complexity will be very high. Hence the search

window is defined around the best predicted search point.

After defining the SW, the search has to be done, based on the ME algorithm. This

is shown in Fig. 1.4. Within the search window, if the search operation is done on all the

search points, then it is called Full Search (FS) algorithm. The full search gives the best

compression efficiency with best output video quality at the cost of highest coding

complexity. To reduce the search complexity, most of the blocks are skipped which are

less likely to be the final MV. These algorithms are called fast search algorithms.

 Variable Block Size Motion Estimation

To achieve higher compression efficiency, the motion estimation is performed in many

dimensions, one of them being the variation in block size. This is done by splitting

current block into smaller sized sub-blocks and performing ME for each sub-block. This

feature is called Variable Block Size ME (VBSME). Hence the output of ME operation

for one current block will be a MV for each of the sub-blocks. In the motion

compensation stage, the motion compensated frame is generated by considering all the

modes (block sizes) of the current block, and choosing the best mode.

As explained in Section 2.6, Fig. 2.7 shows the variable block sizes in H.264. As

seen from the figure, the maximum block size in H.264 is 16x16. Each block can be

partitioned into seven modes which are 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4. The

number of blocks in modes 16x8, 8x16, 8x8 is 2, 2, and 4 respectively. Each 8x8 block

is again subdivided in two 8x4, two 4x8 and four 4x4 sized blocks. For each 16x16

block (also called macroblock in H.264), there are 41 sub-blocks (including 16x16

mode). The search operation of ME has to be performed for each of all these 41 blocks

giving an output of 41 MVs. Thus the complexity is increased dramatically when

VBSME feature is added. Due to VBSME, the compression efficiency will be increased

as the encoder can select the best mode that gives the lowest bitrate. Hence at the cost of

increase in computational complexity, the compression efficiency is increased.

Furthermore, this complexity can also be reduced using fast mode-decision algorithms

[62]- [63]. The fast mode-decision algorithm skips some modes for ME operation that

are unlikely to be the best mode.

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

38

 The VBSME feature in HEVC is much more complex. In HEVC, the maximum

block size is 64x64. Each current frame is divided into blocks of Coding Tree Units

(CTUs) or Coding Units (CUs) of maximum size 64x64. As explained in section 2.7 -

Fig. 2.8, each CTU is sub-divided into Prediction Units (PUs) for inter-prediction.

There are three variables that a PU can have - partition depth (d), partition size (s) and

partition index (idx). The partition depth takes values from 0 to 3 corresponding to each

CU size as shown in TABLE 2.5. Each CTU has different PU partition sizes with values

2Nx2N, 2NxN, Nx2N, NxN. The value N can have values 32, 16, 8 and 4 which

corresponds to half of the CTU. For example, the CTU with partition size 32x32 (N=16)

can have PU sizes 32x32, 32x16, 16x32 and 16x16. These modes are called symmetric

partition modes. Apart from these, HEVC supports motion estimation for Asymmetric

Partition Modes (AMPs) with PU sizes 3N/2 x 2N, N/2 x 2N, 2N x 3N/2 and 2N x N/2.

Hence the CU size 32x32 can also have PU sizes 32x8, 32x24, 8x32 and 24x32.

Further each PU sub-partition is denominated by partition indices starting from

0. The various PU sizes that each CU can have are shown in TABLE 2.5, 3rd column.

This is also illustrated in Fig. 2.14. The figure also indicates the partition index values

for each PU sub-partition. The total number of MVs that each 64x64 PU (including its

sub-partitions) can have are shown in TABLE 2.5 last column. For 8x8 CU size, the PU

modes 8x6, 8x2, 6x8, 2x8 and 4x4 are usually not used in HEVC reference software [7],

as the additional computational cost that has to be spent on encoder is huge even after

considering their improved RD performance. Hence, the total number of variable block

Fig. 2.14 Sub-partition sizes of each PU for variable block size ME in HEVC

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

39

size MVs that are to be calculated in HEVC are 593 (as shown in the TABLE 2.5),

which is huge in number compared to 41 MVs in H.264/AVC.

 Multiple Reference Frames for Motion Estimation

The reference frame used for motion estimation can be more than one. Each PU (or

macroblock in H.264/AVC) searches for MV in more than one previous frame, as

illustrated in Fig. 2.15. As a result, the PU can choose the best matched block from

more than one reference frame (in its corresponding SW) and hence the final

compression efficiency can be improved but at the cost of increase in computational

complexity.

 In H.264/AVC, the maximum number of reference frames allowed is 16 [44]

while in the latest standard HEVC, it is 4 [7]. Different PUs in the same current frame

can have MV from different reference frames. Furthermore, different partition sizes in

the same PU can have MV from different reference frames. To reduce the complexity,

some of the reference frames are skipped using heuristic approaches. These are called

reference frame skip algorithms [64].

TABLE 2.5: LIST OF VARIOUS PU PARTITIONS AND ITS SUB-PARTIONS

IN A 64X64 CTU

CU

depth (d)

CU

Size

PU and its Sub-block

sizes

Number of PU

partitions at each CU

size

Total MVs for a 64x64 PU

0 64x64

64x64, 64x16, 64x32,

64x24, 16x64, 32x64,

48x64, 32x32

32x32 – 4 partitions,

rest of the sizes – 2

partitions each

64x64 – 1 MV, 32x32 – 4 MVs,

rest of the sizes – 2 MVs each

1 32x32

32x8, 32x16, 32x24,

8x32, 16x32, 24x32,

16x16

16x16 – 4 partitions,

rest of the sizes – 2

partitions each

16x16 – 16 MVs,

rest of the sizes – 8 MVs each

2 16x16
16x4, 16x8, 16x12,

4x16, 8x16, 12x16, 8x8

8x8 – 4 partitions,

rest of the sizes – 2

partitions each

8x8 – 64 MVs,

rest of the sizes – 32 MVs each

3 8x8 8x4, 4x8
8x4 – 2 partitions,

4x8 – 2 partitions.

8x4 – 128 MVs,

4x8 – 128 MVs.

Total MVs 593

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

40

During decoding process, the reference frames are stored in temporary reference

frame buffers. The usage of more reference frames demands increase in memory buffer

size and its usage. Hence apart from increase in reference frame buffer size, the memory

bandwidth also increases. Furthermore, due to increase in number of reference frames

there is also more possibility of same reference memory locations being accesses

multiple times. This problem is known as locality of reference which impacts speed of

decoder. Efficient data reuse algorithms need to be designed as the number of reference

frames increase.

 Bi-directional Motion Estimation

As explained in section 2.2.2, the motion estimation and prediction can be done using

both past and/or future reference frames. Prediction using past reference frames is called

forward prediction, while the one using future reference frames is called backward

prediction. This is illustrated in Fig. 2.15. Both the forward or backward prediction is

done by storing the reference frames (past or future frames) in reference frame buffers.

Using bi-directional ME, the compression efficiency can be increased at the cost of

increase in complexity.

Technically the list of reference frames corresponding to forward prediction is

called forward list, and corresponding to backward prediction is called backward list.

Each frame (and block) that is being encoded is categorized as either of type I, P or B,

which stands for Intra-type, Prediction type (forwarded only) or Bi-directional type

(both forward and backward prediction). In an I-frame, all the coding blocks are only

intra coded. A P-frame can have coding blocks of type P apart from I-type. A B-frame

Fig. 2.15 Illustration or multiple reference frames and bi-directional ME

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

41

can have all the types of coding blocks – I, P, and B type. A P-type coding block uses

reference frames only from the forward list. A B-type coding block combines the

reference frame indices from forward and backward list (technically called combined

list) and uses this list for ME operation [7].

 Fractional Motion Estimation

As explained in section 2.9, the motion estimation can be carried with sub-pixel

accuracy. Just like in H.264/AVC, the accuracy of motion estimation in HEVC is

carried out until ¼ pixel for luma samples. To obtain the subpixel samples, interpolation

filters are used. These interpolated samples are later used to estimate the MVs using full

search or fast search algorithms. In HEVC, the interpolation is usually done using 8-tap

digital filter for half-pixel luma samples and 7-tap filters for quarter-pixel luma samples

(horizontally and vertically) [53], [48].

An illustration of half-pixel and quarter-pixel samples around integer pixels is

shown in Fig. 2.16. The letters with uppercase (A) in the figure shows integer sample

locations, whereas the lower case letters represent fractional sample locations that will

be generated using interpolation. The filter coefficients that are used in half-pixel and

quarter-pixel interpolation for luma samples are shown in TABLE 2.6 [48].

 Rate Distortion Optimized Motion Estimation

The cost function that is associated in the search process of motion estimation involves

both distortion metric and the bitrate of the Motion Vector Difference (MVD). This is

shown in (2.6). Hence, the final encoded output is optimized with video quality loss and

the amount of data bits required by the final video (bitrate). Further it is easy to control

the ME process if the encoding process is of constant bitrate type or constant quality

type.

 � ! = � + �. " 2.6

As shown in (2.6), the Rate Distortion Optimization (RDO) works by including

Lagrange multiplier (λ) in the cost function. For a given target bitrate and QP

(Quantization Parameter), the λ can be calculated using empirical relationship shown

(2.7), where λMODE is the Lagrange multiplier when the distortion function is the SSD

(Sum of Squared Difference).

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

42

 If the distortion function used is SAD then the Lagrange multiplier can be

denoted by λMotion and can be calculated using empirical relationship shown in (2.8). The

value ‘α’ in (2.7) is equal to 1 for a non-referenced hierarchical B-picture. But for a

referenced B-picture, the value depends on number of referenced B pictures

(num_of_B_Pictures) used for that picture and can be calculated using (2.9), where

clip3(a,b,v) function clips the value ‘v’ between ‘a’ and ‘b’. The value ‘Wk’ in (2.7) is a

weighting factor and depends on QP offset hierarchy level of the current picture within

a GOP. Various values of ‘Wk’ with its corresponding QP offset, hierarchical level and

slice type is shown in TABLE 2.7 [46].

 � �-M = α A�X A 0.85 A 2[\]^_` 2.7

 � ����6 = a� �-M 2.8

 α = b1.0 − clip3�0.0, 0.5,0.05 A SfU_:R_g_+�EBfCDh�, R:C	CDRDCDSEDF	i�EBfCD1.0, R:C	S:S − CDRDCDSEDF	i�EBfCD 2.9

Fig. 2.16 Illustration of luma fractional interpolated samples around integer samples.

TABLE 2.6 SUB-PIXEL INTERPOLATION FILTER COEFFICIENTS IN HEVC

FOR LUMA SAMPLES

Index i -3 -2 -1 0 1 2 3 4

¼ position -1 4 -11 40 40 -11 4 1

½ position -1 4 -10 58 17 -5 1 0

¾ position 1 -5 17 58 -10 4 -1 0

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

43

 Distortion Metrics for Motion Estimation

There are many distortion functions that can be used in the cost function shown in (2.6)

like SAD (Sum of Absolute Difference), SSD (Sum of Squared Difference), SATD

(Sum of Transformed Difference), MSE (Mean Squared Error) etc. The distortion

functions trade-off between search accuracy and complexity. The most commonly used

functions are SAD and SSD. For a given current and reference blocks of pixels with

equal size MxN, the SAD and SSD can be calculated using (2.10) and (2.11), where ‘C’

and ‘R’ are current and reference pixel blocks respectively, (x, y) are MV coordinates of

reference block.

 �#���, �� = $ $|&��, �� − "�� + �, � + ��|(k*
�)4

 k*
�)4 2.10

 �����, �� = $ $�&��, �� − "�� + �, � + ��	7(k*
�)4

 k*
�)4 2.11

TABLE 2.7: DERIVATION OF ‘WK’ VALUES USED FOR CALCULATING λ

Number

of

referenced

Pictures,

k

QP offset

Hierarchical

Level

Slice

type
Referenced kW

0 0 I - 0.57

1 0 GPB 1
RA: 0.442

LD: 0.578

2 1, 2
B or

GPB
1

RA: 0.3536 x Clip3(2.0, 4.0, (QP-

12)/6.0)

LD: 0.4624 x Clip3(2.0, 4.0, (QP-

12)/6.0)

4 3 B 0 RA: 0.68 * Clip3(2.0, 4.0, (QP-12)/6.0)

FUNDAMENTALS OF DIGITAL VIDEO CODING AND MOTION ESTIMATION

44

The SSD metric has high prediction accuracy but has high computational complexity.

For a given MxN current and reference blocks of pixels, the SAD has 3MN operations

(subtract, absolute and add) whereas SSD requires MN additions and MN

multiplications. Since multiplications require huge complexity over subtract and

absolute operations, SAD is more often used than SSD.

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

45

3 MOTION ESTIMATION ALGORITHMS AND THEIR

VLSI ARCHITECTURES

 INTRODUCTION

As explained in Chapter 2, motion estimation is the most time consuming task in a

video encoder. The main objective of the motion estimation is to find the optimized

motion vector for each of the current encoding block. The brute way to do this is to

search each point in the entire search window and find the motion vector of the block

that gives a global minimum error. This is called Full-Search method. Full search

method is very time consuming, however it gives the best video quality and the lowest

bitrate (highest compression ratio). Instead of searching all the blocks in the search

window, the motion estimation algorithms can be designed to choose a certain fixed or

varying pattern of blocks which gives the closest matching block, or sometimes the best

block. As mentioned earlier, these types of methods are called fast search methods. The

fast search methods are usually very fast compared to full search, with only a slight

reduction in encoded video quality (PSNR) and slight increase of bitrate.

The ME problem explained so far is a block based technique. But there are many

other types of ME methods (or algorithms) which are used in various applications apart

from video compression. Various types of ME methods and their classification are

explained in the following section.

 CLASSIFICATION OF MOTION ESTIMATION ALGORITHMS

There are many ways to classify ME algorithms. Broadly classifying, they can

be categorized into two types - direct methods and indirect methods. In direct methods,

the MVs are estimated directly from measurable image quantities at each pixel in the

image (such as image brightness, brightness based cross correlation) [65]. In indirect

methods (also called feature-based methods), distinct features (based on corners of the

image, geometry of the objects such as epi-polar and focal geometry, photometric

invariance of the image) from each image are extracted separately and then

reconstructed and examined for their resemblances to find the motion and shape of

objects [66]. Indirect methods typically match correspondence by using a statistical

function applied over a local or global area in the image. In summary, feature-based

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

46

methods minimize the error surface based on the distances between some corresponding

features while the direct methods minimize an error measurement based on direct image

information from all pixels in the image.

Direct methods can be further classified into two types – time domain methods

and frequency domain methods [67]. Frequency domain techniques are based on

relationship between transformed coefficients of shifted images, and they are not widely

used for image sequence coding. In these methods, the motion estimation is done by

taking the transform of the block in frequency domain. Some of the methods in

frequency domain are phase correlation using DFT, matching in DCT and wavelet

domain. Time domain methods match the correspondences in the spatial domain of two

different frames of a video. Time domain methods can be again classified into two types

– pixel based methods and block based methods.

The pixels based methods (also called optical flow methods) determine MVs for

each pixel in the image. They are designed with an assumption that the brightness or

intensity of a pixel remains constant when they are shifted. They also add additional

constraints like smoothness for the displaced motion vectors to make the algorithms

interactive. Optical flow methods are used in many applications like object detection

and tracking, image dominant plane extraction, movement detection and robot

navigation. The optical flow methods require huge computation time which make this

impractical for video compression applications. Hence, an alternative approach for

video compression are the block based methods. In block based methods, the entire

frame is divided into non-overlapping blocks (of sizes such 64x64, 16x16, 8x8) and for

each block the optimal MV (MV of block which has least distortion) is searched in the

reference frame. Although this is done with an assumption that the entire block

undergoes a translational motion, it is practically valid except for introduction of

blocking artefacts, which can be removed through de-blocking filters [16]. Because of

its low complexity in implementation (compared to optical flow methods), block based

methods are used in most of the video coding standards including MPEG-2,

H.264/AVC and the latest standard, HEVC.

Further, there are two approaches in estimating the MVs using block based

methods. The first type is full search and the others are fast ME methods (or algorithms)

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

47

as explained in Section 3.1. The fast search algorithms can be of many types. Broadly

classifying, they can be categorized into two types: basic and hybrid algorithms. The

basic algorithms are based on a single idea or concept. The hybrid algorithms combine

two or more basic algorithms with a mixture of concepts. Some of the basic and hybrid

fast ME algorithms are explained in Section 3.4 and Section 3.6, respectively.

 THE FULL SEARCH ALGORITHM

The full search method searches every possible location in the entire search window. As

a result the algorithm finds the best matching block for every block in all the frames of

video and gives the highest PSNR. But the computational time is very high. Let R be

the search range set for the ME algorithm. Then the maximum possible number of

search points for the SW are (2R+1)2. Let WCB x HCB be the width and height of the

current block and let Wf x Hf be the frame width and height. Then there will be NCB

coding blocks for each frame that can be calculated using (3.1). Let Np be the number of

sub-partitions for each current block CTU. Let Nf be the number of reference frames for

each block that the ME has to be performed. Then the total number of search points per

CTU NSP-CTU can be calculated using (3.2).

 ,l. = �m A nm�l. A nl. (3.1)

 ,opklqr = ,m A ,s A,l. A �2" + 1�7 (3.2)

For example, in H.264/AVC, the default maximum coding block size 16x16, with

seven variable block size modes varying from 16x16 to 4x4 (one 16x16, two 16x8, two

8x16, four 8x8, eight 8x4, eight 4x8, sixteen 4x4 blocks). The total Np is equal to 41, the

default Nf is equal to 5. For an HD frame (1280x720), there are 3600 coding blocks

(NCB). Hence the Nsp-CTU is equal to 738k blocks/frame. For a five minutes video with

30fps frame rate, the total number of frames is equal to 9k, and hence the total search

points will be 6.642x109. For HEVC the number is even higher, since the coding block

size is 64x64. While this number is very huge, the fast search algorithm rely on

reducing the Nf and/or Np and/or NCB. Algorithms that reduce NCB are called block skip

algorithms, and that reduce Nf are called reference-frame skip algorithms. Algorithms

that reduce search points Np which is at SW level are typically called fast ME

algorithms. The present thesis proposes a fast ME algorithm for HEVC.

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

48

 TYPES OF FAST MOTION ESTIMATION ALGORITHMS

The fast ME algorithms can be classified into many types. Based on the loss of output

video quality, the algorithms can be classified into lossless fast ME algorithms and

lossy fast ME algorithms. In lossless fast ME algorithms, the ME algorithms achieve

gain in speed with same PSNR (video quality) and bitrate (compression ratio) compared

to FS algorithm. The Successive Elimination Algorithm (SEA), MLSEA (Multi level

Successive Elimination Algorithm), PDE (Partial Distortion Elimination) etc. are some

examples. In lossy fast ME algorithms, there will be huge gain in speed but slight

decrease in PSNR and bitrate compared to FS algorithm. Some of the examples are

search area sampling techniques, pixel decimation techniques, hybrid algorithms

(include more than one fast ME algorithms) etc. Each of these techniques is explained

briefly in the following sub-sections.

3.4.1 Successive Elimination Algorithms

The Successive Elimination Algorithm (SEA) is a two stage algorithm [68]. In the first

stage, the algorithm calculates the absolute difference between sum of intensities of all

pixels between current and reference blocks as shown in (3.3), where ADS represents

Absolute Difference between Sums, C represents current frame block, R represents

Reference frame block and with MxN taken as the size of the block. In the second stage,

the algorithm eliminates the search points based on an inequality equation shown in

(3.4).

 #�� =	 t$$&��, ��(
�

� −	$$"��, ��(

�

� t (3.3)

 #�� u �#� = 	$$|&��, �� − "��, ��|(
�

� (3.4)

For any two blocks of equal size MxN, the ADS is always less than or equal to

their SAD. Based on this inequation, the search blocks which has larger ADS then the

current minimum distorted search point, can be omitted from the search process (and

SAD calculation is not done). Though there is an additional cost of adding the intensity

values, the omitted search points account more for reduction in total complexity. By

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

49

using SEA in [68], the computational complexity of ME is reduced by 75% to 85%

compared to full-search algorithm.

In [69], the MSEA (Multilevel SEA) algorithm was proposed which extends the

concept of SEA in a multilevel hierarchical way. Each level is a subsampled version of

original current/reference block, as illustrated in Fig. 3.1. In each level l, the pixel

values are calculated by adding all the values of corresponding neighbouring pixels at

level l+1. Then, the Subsampled-SAD (SSAD) at each level between current and

reference blocks is calculated. Based on the inequality shown in (3.5), the complete

SAD is calculated only if the corresponding block satisfies the criteria in all the levels.

The MSEA is stated to reduce the computational complexity up to 95% compared to FS

algorithm.

 ��#�4 u ��#�* u ��#�7 u ⋯ u ��#�P⋯ u �#� (3.5)

Another important lossless technique is PDE (Partial Distortion Elimination)

[70, 71]. The PDE algorithm eliminates the non-possible candidates before the complete

calculation of matching error. Here the calculation of matching error is considered as

sequential calculation and accumulation of partial distortions. Hence, the non-possible

candidate can be judged if the accumulated partial distortion for the candidate exceeds

minimum distortion or minimum cost value. Like SEA algorithms, the PDE algorithms

also reduce huge computation time compared to FS algorithm.

3.4.2 Hierarchical and Multiresolution Algorithms

In hierarchical search algorithms (also called search area sampling algorithms), the

given frame or SW is down-sampled to lower resolution. Typically this is done by

Fig. 3.1 Hierarchical pyramid structure for ME

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

50

forming a multi-level pyramidal structure, with each higher level containing a down-

sampled version of SW (or frame) for previous level, as shown in Fig. 3.1. Usually,

these multiresolution levels are formed using sampling filters like low-pass filters [72,

73]. In the hierarchical SW technique [74], the ME is first coarse performed at higher

level of pyramid hierarchy and for fine-refinement the ME is performed in the lower

levels (high resolution level).

The hierarchical motion estimation algorithms are not only used in video

compression, but also widely used in in frame interpolation for frame rate up conversion

applications [72, 75]. In [73], a hierarchical stochastic fast ME algorithm was proposed

which uses Kalman filter to get the low resolution hierarchical levels, and then the final

MVs are obtained by using block matching ME algorithm. The total computational gain

is about 5% of the computations taken for full-search algorithm. In [76], a hierarchical

motion estimation method using adaptive image down-sampling method was proposed.

Based on the motion analysis in the frames the sampling position of the pixel in the

(a) ½ Down-Sampled Pattern (b) ¼ Down-Sampled Pattern

(c) 4-Queen Tiles in 8x8 Block (d) 8-Queen Pattern

Fig. 3.2 Pixel-decimation Pattern for Motion Estimation

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

51

frame is changed adaptively. The proposed algorithm achieves more accurate MVs than

that of traditional hierarchical ME methods.

3.4.3 Pixel Decimation Block Matching Algorithms

The block matching algorithms uses matching criteria on all pixels of a block with an

assumption that all the pixels in the block are moved by the same amount of

displacement (and direction). But, if only few pixels in the block are used, then the

accuracy of estimated MV will be degraded. However, if some pre-defined pattern of

pixels in the blocks is used, the degradation in the accuracy of MV estimate may be

controlled and reduced. Hence by reducing the complexity for each search point, there

will be a huge savings in the computational time of the total ME algorithm. Some of

these patterns are shown in Fig. 3.2. Fig. 3.2 (a) shows the ½ down-sampled version and

Fig. 3.2 (b) shows ¼ down-sampled version of a 16x16 block originally proposed in

[77] and the ¼ down-sampled version is analysed and improved in [74].

There are many other approaches like hexagonal pattern, spiral patterns etc. and

one of the efficient and successful approach was by using N-Queen pattern proposed in

[78], as shown in Fig. 3.2 (c) and (d). The name is derived from a famous problem in

chess with an objective of placing ‘N’ queens in an NxN chessboard such that no two

queens threaten each other. Fig. 3.2 (c) shows the lattice structure for 4-Queen pattern

of pixels tiled in an 8x8 block, while Fig. 3.2 (d) shows 8-Queen pattern. To evaluate

the efficiency of the patterns objectively, the spatial homogeneity and directional

coverage are calculated. The spatial homogeneity is measured using average (µ) and

variance (σ2) of spatial distances from each skipped pixel to its nearest skipped pixel as

shown in (3.6) and (3.7), where S(x,y) represent co-ordinates of pixels selected nearest

to the position P(x,y), K represents number of selected pixels and N represents the

dimension of the block. For calculating the directional coverage, an edge is defined

which a line is passing through the pixel point taken in any of the directions horizontal

(00), vertical (900) and diagonal (450 and 1350). The directional coverage is measured as

percentage of edges with at least one of the selected points exist on the edge,

 w = 1�,7 − x� $‖+��, �� − ���, ��‖(
�z,{� (3.6)

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

52

 |7 = 1�,7 −x� $�‖+��, �� − ���, ��‖ − w-�7(
�z,{� (3.7)

In [78], a comparison for sampling lattices for an 8x8 block is performed and

showed that the 8-Queen pixel-decimation pattern has highest spatial coverage

compared to other patterns. The directional coverage of 8-Queen pattern has full

directional coverage which is equivalent to non-decimated block’s directional coverage.

In [79], a new pixel decimation algorithm for ME was proposed based on boundary

region matching and genetic algorithms for finding the optimal length pattern in an NxN

block. The algorithm improved coding efficiency almost similar video quality compared

to existing pixel-decimation patterns.

3.4.4 Search Points Reduction Algorithms

The search point reduction algorithms aim to reduce the complexity of ME process by

reducing the number of search points in the search window. Some of these algorithms

are explained in the following sub-section.

3.4.4.1 Three Step Search (TSS) Algorithm

The TSS algorithm was one of the oldest algorithm that was proposed (1981) for ME

[77]. Later, many modifications were proposed to improve the performance and

efficiency of the algorithm. The general idea of the algorithm is shown in Fig. 3.4. The

three step search starts with searching the centre point, which is the collocated point of

current block in reference frame. Then, with step size 4, it starts searching the

surrounding eight locations, shown in circles. The point which has the minimum error

(minimum SAD or SSD), is taken as reference centre point to the next step. If the lowest

cost is at the centre, then the motion search is stopped and the centre point is taken as

the motion vector. Otherwise, the algorithm proceeds to second step. In the second

stage, the step size is reduced to 2, and the search is performed around the surrounding

eight positions, as shown in triangles in the figure. The best matching point is again

taken as reference, to the third step and the search is performed with step size one, as

shown with square dots in the figure. The step is the final step, since there is no further

search possible with step size less than one. The best matched point in the third step is

the final best matching motion vector.

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

53

3.4.4.2 Block Based Gradient Descent (BBGDS) Algorithm

The Block Based Gradient Descent Search algorithm applies the gradient descent

algorithm (or steepest descent algorithm) that is widely used in optimization theory

[80]. The steepest descent algorithm basically optimizes a function for minima, in the

steepest direction. A similar approach is followed for block matching algorithm, where

the search is performed based on the minimal point obtained in previous steps. This is

similar to the TSS algorithm with a step size of one at each stage of algorithm. The

search pattern used in BBGDS algorithm is also a square pattern with step size one.

Initially, the search is performed for the eight points around the centre point, along with

the centre point location. The minimal point is taken as the origin for the next step and

the pattern checked in the next step is also square pattern with step size one. Depending

on the location of the minimal point, the number of search points in the next step will be

either three or five points. If the location is at the corner of the square pattern, the

number of search points will be five in the next step, otherwise the number of search

points will be three. If the minimal point is at the centre point, the algorithm stops, and

the centre point is taken as the final motion vector location. The algorithm continues in

unlimited steps, until the minimal point is found to be at the centre point location. The

algorithm is illustrated graphically in Fig. 3.4.

The example shown in Fig. 3.4 has a solution in eight steps. The centre point

location for the eight step, which is taken from the optimal point obtained in the seventh

Fig. 3.3 Illustration of Three-Step Search Algorithm for Motion Estimation

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

54

step (indicated by *) is the final optimal motion vector. The BBGDS algorithm gives the

fastest and the most optimal motion vector since the minimal distorted blocks are

continuously converging towards the minima. The main disadvantage is that this

algorithm gets trapped in the local minima point, just like the gradient descent algorithm

in optimization theory. A conjunction of this algorithm with another global search

algorithm, will give the most optimal motion vector in fewer search locations.

3.4.4.3 Diamond Search (DS) Algorithm

The Diamond Search algorithm [81] is similar to BBGDS algorithm except that the

search is performed in diamond shaped pattern instead of square pattern. In principle,

the algorithm takes two types of fixed patterns, one is Large Diamond Search Pattern

(LDSP), and the other is Small Diamond Search Pattern (SDSP), shown in Fig. 3.5 (b)

and (c) respectively. The first steps of the algorithm are initiated with the LDSP and the

last step uses the SDSP, as illustrated in Fig. 3.5(a). If the least cost point is at the origin

in the initial steps, the algorithm jumps to last step. The algorithm continues using

LDSP, until the minimal point comes out to be at the origin of the LDSP. If the least

weight is not at the origin, then in the algorithm checks three or five locations

depending on the location of the minimal point in the previous step. If the minimal point

is at the corner of the LDSP, then the next step needs to be checked 5 locations and if

the minimal point is at the side of the diamond, then the next step needs to be checked

Fig. 3.4 Illustration of Block Based Gradient Descent Algorithm

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

55

only 3 locations. Since there is no limitation to the number of steps, the algorithm gives

a good PSNR which is close to that of Full Search algorithm [81].

3.4.4.4 2D-Logarithmic Search Algorithm

The Two Dimensional Logarithmic Search is designed by extending the TSS

Algorithm [82]. It starts searching with five locations along the centre of the edges of

the search window, and the centre point. The minimal point is taken as the reference

point for the next step and the search area is reduced by a factor of two. The algorithm

continues to search until the search area is reduced to 3x3, and in the last step the search

is performed in the entire nine locations. The algorithm is illustrated graphically in Fig.

3.6.

(a) (b) (c)

Fig. 3.5 Illustration of (a) Diamond Search Algorithm (b) Large Diamond Search

Pattern (LDSP) (c) Small Diamond Search Pattern (SDSP)

Fig. 3.6 Illustration of 2D Logarithmic Search Algorithm

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

56

3.4.4.5 Cross Search (CS) Algorithm

The cross search algorithm [11] is similar to Logarithmic search, except that the search

is performed in cross (‘X’) pattern instead of diamond (plus ‘+’) pattern. The algorithm

starts with the corners of the search window, along with the centre point. The minimal

point obtained is taken as the reference centre to the next step, with search window size

reduced by a factor of two. The algorithm continues until the search window size is

reduced to 3x3. In the last step with search window size 3x3, the pattern is either cross

pattern or SDSP (Small Diamond Search Pattern), depending upon the location of the

minimal point obtained in the previous step. If the location of the minimal point

obtained in the previous of the last step is at the bottom left or top right, then the search

is performed in a SDSP pattern in the last step, otherwise it is performed in a cross

pattern in the last step also. The algorithm is illustrated graphically in Fig. 3.7.

3.4.4.6 Hexagonal Search (HS) Algorithm

The hexagonal Search is one of the most efficient fast-block-matching-algorithms [83].

The algorithm searches for the minimal point by considering a hexagonal pattern. The

algorithm can be explained by classifying into three stages: Starting, Searching and

Ending.

Starting: The large hexagon (shown in Fig. 3.8(a)) along with centre point (0,0) making

seven points are checked initially. If the minimal point is found to be at the centre, then

the algorithm skips to final stage, the ending step.

Fig. 3.7 Illustration of Cross Search Algorithm

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

57

Searching: The minimal point (minimal distorted block), obtained in the starting step is

taken as centre, and a large hexagon is again formed by adding only three new search

locations. With the obtained hexagonal pattern, the minimal point is again searched. If

the minimal point is found to be at the centre, then the algorithm skips to the third step

’ending’, otherwise this step is repeated continuously.

Ending: In this final step, the search pattern is switched from large hexagon to small

hexagon that needs to be covered only four points, as shown in Fig. 3.8 (a). The

minimal point obtained in this small hexagon is taken as the final motion vector block.

An example based on Hexagonal search is shown in Fig. 3.8 (b), which converges

towards the minima in five steps. The hexagon search is similar to BBGDS algorithm,

except that the search is performed in hexagonal pattern instead of square pattern.

Changing the pattern to hexagon makes the convergence towards the optimal point more

fast, since in every successive step (except initial and final steps), the number of new

search points added is only three, while in the BBGDS algorithm the number of points

added are three or five based on the location obtained in the previous step. On the other

hand, the 2DLGS and Cross Search Algorithms also have three locations added in every

subsequent step, but the probability of converging towards the local minima is more

compared to Hexagonal Search Algorithm.

The aforementioned algorithms search for MV with an assumption that the

optimal point in monotonically converging. But the objects in videos move randomly in

(a) (b)

Fig. 3.8 Illustration of (a) Hexagonal Search Pattern (b) Hexagonal Search

Algorithm

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

58

directions and the same block may contain more than one object that move in different

directions. Hence these algorithms are to be pre-processed with one or more techniques

for searching an efficient MV while the search is performed to minimum number of

points. These are called hybrid ME algorithms. The Hybrid ME algorithms embed more

than one technique to reduce the complexity of the ME process and to maintain almost

similar video quality and bitrate compared to FS ME algorithm. The details of some of

the techniques used in hybrid ME algorithms are explained in the following section.

 COMPLEXITY REDUCTION TECHNIQUES IN SEARCH POINT

REDUCTION ALGORITHMS

There are many ways to reduce the complexity of SW points. But the complexity

reduction should not decrease the output video quality and compression efficiency

compared to full search algorithm. Hence all the complexity reduction techniques are

typically compared against the results of Full Search algorithm.

3.5.1 Dynamic Search Range for Motion Estimation

Before starting the search operation, the Search Window (SW) size or its range

(distance from search centre to outer edge of SW) has to be defined. The search window

size depends on search range and search block size as shown in (3.8), where SWW and

SWH represents SW width and SW height respectively, SBW, SBH represents search

Fig. 3.9 Relation of Search Range with Search Window Size

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

59

block width and search block height respectively, SRx and SRy denotes the search range

in horizontal and search range in vertical direction respectively. This is also illustrated

in Fig. 3.9. The number of search points only depends on search range in horizontal

(SRx) and vertical directions (SRy) as shown in (3.10). The search range is typically

same in horizontal and vertical directions and is equal to maximum block size defined in

the codec. For H.264 its default value is equal to 16 [44], and for HEVC it is equal to 64

[8].

 ��},~ = �2 × �"z,{	 + �g},~ (3.8)

 �+ = ��2 × �"z� + 1	 × ��2 × �"{	 + 1� (3.9)

For reducing the complexity of ME operation, the SW size can be reduced

dynamically based on statistics of previously coded neighbouring MVs. There are many

dynamic search algorithms that were proposed in the literature [9]-[12]. HEVC

reference software [4] uses an adaptive search range algorithm, which changes SW size

in according to temporal difference between current and reference frames as shown in

(3.10), where POC represents Picture Order Count or corresponding current and

reference frames, ‘Round’ represents rounding function, SRMax denotes the maximum

search range configured initially for ME, ASR_SCALE denotes adaptive search range

scaling factor with default value 1 and ‘GOP_Size’ denotes the GOP size. According to

(3.10), for near reference frames, the search range increases and for farther reference

frames the search range decreases

 �" = ":fSF��" Oz × #�"_�&#�8 × %+�&lNL − +�&�Mm%��+_���D (3.10)

In [84, 85], the authors use Cauchy and Laplace distribution functions to model

previously encoded neighbouring motion vector differences (MVDs) and vary the

search range according to their probabilities. Compared with full search algorithm, the

achieved reduction in complexity was more than 90%. In [86], an adaptive search range

algorithm working at block level based on quantization parameter was proposed. The

ME computational time reduction achieved was about 16% on average compared to

H.264/AVC fast ME algorithm [87]. In [88], the authors describe an adaptive search

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

60

range algorithm working at block level based on motion vector differences (MVDs).

The algorithm increases the search range by one pixel and performs ME for the new

search points, if the MVD (after motion estimation) lies on the edge of search window.

The achieved reduction in computation load is about 97% compared with full search

algorithm.

3.5.2 Predictive Based Motion Estimation

One of the simplest techniques to reduce the ME complexities is to start the search

process with initial point at nearest possible position from final MV. This is achieved by

predicting the MV using prediction algorithms and terminating the ME algorithm using

early termination algorithm. A good prediction algorithm provides a good initial search

point close to the optimal MV and reduces the number of iterations in ME, thus

reducing the complexity. To do this, a ME algorithm can incorporate more than one

prediction algorithm and take the least cost point as the initial search point. One of the

earliest and efficient prediction algorithms is the median predictor, which is the median

of left, right and up-right (or up-left) block’s MV. Fig. 3.10 shows the position of

candidate blocks left, up, up-right and up-left and their MVs are used for spatial

prediction. Since these blocks are already encoded, their MVs are used for predicting

the current block MV. The MVs of these blocks are called predictors - left predictor for

MV of left block, up predictor for MV of up block and up-right predictor for MV of up-

right block. The median predictor is defined using (3.11), where MVL, MVU and MVUR

are left predictor, up predictor and up-right predictors. If the up-right predictor is not

available (for blocks in right side border of the frame) then up-left (MVUL) predictor is

used in (3.11).

 ��pLM- = UDF�?S���� ,��r, ��r�� (3.11)

Some of the prediction algorithms used in H.264/AVC ME algorithms are

median prediction, up-layer prediction, co-located block prediction and neighbouring

reference frame prediction [87, 43]. The co-located block predictor is the MV of the co-

located (same position block in the previous frame) block, as shown in Fig. 3.10 (b).

The up-layer predictor (or upper-mode predictors) is the MV of upper-mode variable-

size block of the same block (macroblock in H.264/AVC) which is already encoded.

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

61

Fig. 3.10 (c) shows the upper mode blocks for various block sizes in H.264/AVC. Since

the ME is performed from higher block size to lower block sizes, the MVs of its

immediate higher size blocks (or upper mode blocks) can be used to predict the MV of

the current block. HEVC uses left, up, up-right, up-left, down left and median predictors

for ME [8]. The down-left predictor is the MV of the block located left down-side of the

current block as shown in Fig. 3.10.

In [89, 90], the authors proposed Simulated Annealing Adaptive Search (SAAS)

algorithm which predicts initial search point based on statistical analysis of previous

frame's Motion Vector Correlation. The search pattern is adjusted for each block

according to Predicted Motion Vector and the search region is adaptively divided and

(a) Spatial Predictors (UL = Up-

Left, ER = Up-Right, L = Left

and LD = Left-Down)

(b) Co-located Block Predictor

(c) Upper Mode Predictors

Fig. 3.10 Various Positions of Blocks for Prediction in Motion Estimation

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

62

Simulated Annealing (SA) mechanism is adopted to select search power for each region

to avoid trapping into local minima. It was reported that the algorithm offers

considerable improvement in computing time and motion search points at the same rate-

distortion performance compared to the conventional fast motion estimation algorithms.

In [91], the initial search point is predicted based on directional asymmetry search, by

taking a small diamond pattern with five points as the initial predictors. It was reported

that method significantly reduces the number of search points for locating a motion

vector and contribute to speed up the search process with reasonable PSNR values.

3.5.3 Early Termination Algorithms for Motion Estimation

After the prediction step, some of the prediction blocks may get the optimal

motion vectors without the necessity to perform further searches. For this reason, fast

ME algorithms use early termination algorithms, defining a threshold to terminate the

search process. If the threshold value is fixed to a constant, the encoded video may lose

quality because some of the MVs may have better MV than the threshold limit. On the

other hand if the threshold is too lower, the algorithm may lose performance in terms of

speed. Hence early termination (ET) algorithms uses adaptive threshold, which changes

threshold value dynamically depending on parameters such as SADs or MVDs of

previously encoded neighboring blocks.

Adaptive ET algorithms for ME can be applied at frame level and block level. In

our work, for determining the threshold in ME algorithm for HEVC, the average of all

costs in the first frame of GOP after intra-frame is taken since there is a close

relationship between average costs of each frame of GOP. This is shown in (3.12),

where ‘N(d,p)’ represents the total number of coding units in the first frame of GOP for

the depth ‘d’ and partition size ‘p’, and cost is the distortion cost used in the algorithm.

 �ℎ�F, i� = 		 $ E:hB���,�F, i�
(�-,s�

�)*
 (3.12)

In H.264/AVC, fast ME algorithms - UMHexS, SUMHexS [92], the threshold is

defined at block level using SADs of previously encoded spatial neighbouring blocks,

upper mode SAD, collocated block SAD. In [93], the authors proposed an early-level

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

63

termination method suitable for hierarchical ME structure which terminates high-level

redundant motion searches by establishing thresholds based on current block mode and

motion search level. It also applies the early refinement termination in order to avoid

unnecessary refinement for high levels of hierarchical block structure. In [94], an

adaptive early termination strategy was developed based on statistical characteristics of

rate-distortion (RD) cost regarding current block and previously processed blocks and

modes. It was reported that by using their method, most motion searches can be stopped

early, with a large number of search points saved.

3.5.4 Grid Patterns for Finding Motion Vector

If the motion vector does not satisfy the early termination condition, the ME algorithm

starts searching for the best matched block. In the searching process, there is a

possibility that the MV gets trapped into local minima. To avoid this, the ME process

uses a global optimization algorithm. The global search patterns are usually grids

(diamond or square or hexagon grids) with stride-lengths (length from start point to grid

pattern) smaller near initial search point and with stride-lengths large as the grid moves

away from start point. Fig. 5.5 shows some of the most commonly used grid patterns.

Fig. 3.11(a) shows square patterns, Fig. 3.11 (b) shows diamond patterns and Fig. 3.11

(c) shows hexagon patterns. These patterns are evaluated based on the number of search

points used in a given search window and based on the directional coverage. A good

pattern must have highest directional coverage with lowest number of search points

used. From the patterns in Fig. 5.5 the hexagon has better directional coverage and

lower number of search points compared to others, and hence many fast algorithms use

hexagon patterns to find the coarse refined MV [87, 92]. The minimum cost block in

(a) Diamond Pattern (b) Square Pattern (c) Hexagonal Pattern

Fig. 3.11 Search Patterns for Motion Estimation with stride length 8

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

64

these grids can be taken as the initial MV for further processing steps in ME algorithm.

After finding the minimum point, the ME algorithm can check with a threshold value

for early termination again.

Some hybrid ME algorithms like EPZS [95] and PMVFast [96] skip this global

search stage since they rely on several prediction algorithms to predict the initial search

point (explained in detail in Section 3.6.1). Fast ME algorithms in H.264/AVC reference

software like UMHexS and SUMHexS [92, 87, 43] use hexagonal grids to find the

coarse optimum point (explained in detail in Section 3.6.2 and Section 3.6.3). TZSearch

fast ME algorithm in H.264 JMVC (Joint Multi-view Video coding) [97] and HEVC [7,

8] use diamond and square patterns to find the global optimum (explained in detail in

Section 3.6.4). In [98], a new fast ME algorithm was proposed by replacing multi-

hexagonal grids with multi octagonal grids in UMHexS algorithm [87]. It was reported

that the algorithm can reduce five to ten percent of the computational complexity of the

UMHexS algorithm without loss of its accuracy. In [99], a new ME algorithm based on

multi-octagonal grids was proposed. The algorithm takes adaptive search strategies by

using the distribution characteristics of motion vector. The reported improvement in

speed is 91% compared to FS algorithm with little negligible loss in PSNR and

compression ratio.

3.5.5 Fine Refinement Patterns for Finding Optimal Motion Vector

After finding the global minima, the ME algorithm can be designed to use early

termination algorithm. If the threshold for MV cost is not met by global minima, then

the ME algorithm refines the MV obtained from the previous step using one of the

gradient descent based algorithms explained in Section 3.4.4. As explained, the gradient

descent based ME algorithm starts with an initial search point and finds the cost of the

search points of the pattern formed around the search center.

The fast ME algorithms in H.264/AVC like UMHexS, SUMHexS [92, 87, 43]

use hexagonal patterns for fine refinement. The EPZS algorithm uses LDSP and SDSP

patterns for fine refinement [95]. In [100, 101], the authors propose a pattern switching

mechanism that adaptively switches between 3-step search and block-based gradient

descent search algorithms. The algorithm classifies the motion content of a block using

a simple and efficient motion content classifier called error descent rate where the

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

65

classifier requires only the searching of a few points in the search window and then a

division operation. It was reported and verified that the algorithm is very robust. In

[102], a new Hybrid Hexagon Kite Cross Diamond Search (HYBHKS) algorithm based

on adaptive switching of the Hexagon Search (HEXS) and Kite Cross Diamond Search

(KCDS) patterns was proposed. It was reported that that HYBHKS performed better

than KCDS and HEXS in terms of number of search points while maintaining similar

compression ratio and PSNR.

 H.264/AVC AND HEVC HYBRID MOTION ESTIMATION ALGORITHMS

The encoder in reference software for H.264/AVC (JM) and for HEVC (HM) uses

hybrid ME algorithms, which combines more than one technique (as mentioned in

Section 3.2). Some of these hybrid ME algorithms are explained in detail in the

following sub-sections.

3.6.1 EPZS (ENHANCED PREDICTIVE ZONAL SEARCH) Algorithm

The Enhanced Predictive Zonal Search (EPZS) algorithm [95, 103] is a prediction based

hybrid algorithm and mainly comprises of 3 steps. The first step is the initial predictor

selection which selects the best MV predictor from a set of potentially likely predictors.

The second step is the adaptive early termination which terminates the motion

estimation process if some predefined conditions are satisfied. The last step is the

prediction refinement stage which employs a refinement pattern around the best

predictor to essentially improve the final prediction. All these features add up to

improve the performance of the algorithm.

3.6.1.1 Predictor Selection

The predictor selection stage is the key feature in EPZS algorithm, as the accuracy and

speed of converging optimal MV depends on how best the predicted MVs are. The

prediction algorithms used here are, spatial predictors (left, top, top-right), median

predictor, co-located block predictor and temporal predictors. The spatial, median and

collocated predictors are explained in Section 3.5.2. In temporal predictors, the MVs of

neighbouring blocks of collocated block are taken, as shown in Fig. 3.12. If there is

more than one reference frame, then for the new reference frame which is at temporal

distance TDN from current frame, the new motion vector (MVN) can be predicted using

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

66

previous coded MV information using other reference frames as shown in (3.13). MVC

in (3.13) denotes already coded MV for current block in a reference frame which is at

temporal distance TDC from the current frame.

 ��(= ��(×��l��l (3.13)

3.6.1.2 Adaptive Early Termination

The threshold cost value for early termination used in EPZS algorithm is adaptive to the

costs obtained for previously encoded neighbouring blocks (of same block size) of

current block. Initially, a threshold value T1 (which is equal to number of pixels of the

current block type) is used. Then for sub-sequent blocks, the threshold T2 is changed

according to (3.14), where ‘a’ and ‘b’ are constants (with a=1.1 and b=T1) and minJ1,

minJ2… minJn are minimum cost values obtained for previous blocks.

 �7 = ? ×U�S�U�S�*, U�S�7, …U�S�6� + @ (3.14)

3.6.1.3 Motion Vector Refinement

If the early termination condition is satisfied for any predicted point, then the predicted

point is taken as final MV. Otherwise, the algorithm searches for optimal MV around

the least cost point in predictors set, using LDSP pattern explained in Section 3.4.4.3,

Fig. 3.5 (b). If block size is smaller than 8x8, then the algorithm searches using square

patterns shown in Fig. 3.13. Further, to get a better MV even after the termination

condition is met, the algorithm searches using a SDSP pattern shown in Fig. 3.13 (c).

Fig. 3.12 Various Predictors Used in EPZS Algorithm

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

67

3.6.2 UMHEXS (UNSYMMETRICAL-CROSS MULTI HEXAGON-GRID

SEARCH) Algorithm

The UMHexS [87, 44] Search algorithm aims to use efficient search pattern schemes

and reduce the complexity. The algorithm starts with a prediction step for finding the

best predicted search point. The prediction algorithms used are median predictor, up-

layer predictor and collocated block predictors. In the second step, the UMHexS

algorithm uses two advanced pattern schemes – unsymmetrical cross search and uneven

multi hexagon grid search, shown in Fig. 3.13 (a) and (b). These patterns are found very

efficient in searching the least cost point without getting trapped in local minima [87],

and hence is the name of the algorithm. Though the UMHexS is mainly based on these

advanced search patterns, it also employs early termination criteria after the prediction

stage. Hence, if the early termination criterion is not met, then the algorithm uses the

search patterns and if it is met, the algorithm terminates. The threshold values taken to

terminate the algorithm are based on the costs of neighboring blocks (of same size) for

current block. Further the threshold for early termination is multiplied by modulating

factor β which depends on QP. In the final stage, the algorithm goes for a final

(a) Unsymmetrical-cross Pattern (b) Uneven Multi-hexagon Grid Pattern

(c) Extended Hexagon Pattern (d) Small Diamond Search Pattern

Fig. 3.13 Various Search Patterns used in UMHexS Algorithm

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

68

refinement based on two patterns extended hexagon based search and Small Diamond

Search (SDSP) as shown in Fig. 3.13 (c) and Fig. 3.13 (d) respectively.

3.6.3 SUMHEXS (SIMPLE UMHEXS) Algorithm

The SUMHexS algorithm is similar to UMHexS, except for a few modifications [104,

92], to make the algorithm simple. The temporal predictors in UMHexS algorithm

consume much memory due to variable block sizes and multiple reference frames.

Hence the temporal predictors are removed and only spatial median and up-layer

predictors are used in SUMHexS algorithm. The complicated early termination

Fig. 3.14 Flowchart of SUMHexS Algorithm

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

69

condition in UMHexS algorithm is replaced with simple convergence and intensive

search conditions. The detailed flowchart of the algorithm is shown in Fig. 3.14.

3.6.4 TZSearch (TEST ZONE SEARCH) Algorithm

The TZSearch algorithm is used in encoder of HEVC reference software HM [7, 8]. It

combines the concept of grid patterns (used in UMHexS and SUMHexS algorithms)

and search area sampling technique (explained in Section 3.4.2) which is also termed as

raster search. It consists of four stages:

1. Motion Vector Prediction: TZS algorithm employs median predictor, left

predictor, up predictor and upper right predictor. The minimum of these

predictors is selected as a starting location for further search steps.

2. Initial Grid Search: In this step, the algorithm searches the search window in

diamond or square patterns with different stride lengths ranging from 1 through

64, in multiples of 2. Each grid pattern contains 8 search points. The patterns

used are either 8-point diamond search or 8-point square search that can be

selected. A sample diamond grid pattern with stride length 8 is shown in Fig.

3.15 (a). The motion vector with minimum cost is taken as the centre search

point for further steps. The stride length for this minimum distortion point is

stored in variable ‘uiBestDistance’.

(a) (b)

Fig. 3.15 Search Patterns used in TZSearch Algorithm (a) Diamond Grid Patterns

(b) Raster Search Pattern

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

70

3. Raster Search: As mentioned, the raster search is a simple full-search on a

down-sampled version of the search window. A predefined value ‘iRaster’ for

raster scan is set (with default value ‘5’) before compilation of the code [7]. This

value is used as a sampling factor for search window. The search window (for

16x16 search window) for raster scan with iRaster value ‘5’ is shown in Fig.

3.15 (b). As shown in flowchart of Fig. 3.16, the condition for performing this

raster search is that uiBestDistance (obtained from previous step) must be

greater than iRaster. If this condition is not satisfied, the algorithm will skip this

step. If this step is processed, then uiBestDistance is changed to iRaster value.

4. Raster/Star Refinement: This step is a fine refinement of the motion vectors

obtained from the previous step. As shown in flowchart in Fig. 3.16, either raster

Fig. 3.16 Flowchart of TZSearch Motion Estimation Algorithm

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

71

refinement or the square/diamond (star refinement) pattern refinement can be

enabled. In general, only one of the refinement methods is enabled for fast

computation. In both of these refinements, either 8-point square pattern or 8-

point diamond pattern is used. The two refinement methods differ in their search

operation. The raster-refinement will search by down-scaling the uiBestDistance

value (obtained from raster search) by 2 in every step of the loop, till

uiBestDistance equals to zero. The star refinement is similar to step 2 except for

change in starting search location. The whole refinement process will only start

if uiBestDistance is greater than zero. After every loop, the new stride length is

stored in variable uiBestDistance. The loop breaks (or the search stops) when

uiBestDistance equals to zero, which means that the obtained search point is the

optimal MV.

 MOTION ESTIMATION ARCHITECTURES

The design metrics used to evaluate performance of a system in software applications

are different from that of hardware implementation. Typically, the complexity analysis

in software is measured in terms of number of search operations (for motion

estimation) or total motion estimation time taken. But in hardware, this design

metric is defined considering the I/O bandwidth and silicon area also, apart from

processing speed. So, the algorithm verified in software is only for functionality

and the algorithm should be properly modified with these design considerations for

designing the suitable architecture of the motion estimation accelerator module.

Fig. 3.17 shows a basic video encoder unit with motion estimation accelerator

interfacing with the system buses. Either the motion estimation unit can be embedded

into total encoder system, with encoder being as a single module, or the motion

estimation module can be separated as a single unit with advanced configurations.

The present proposal considers designing the motion estimation accelerator as a

separate module with its interfaces to the SOC buses.

3.7.1 Classification of Motion Estimation Architectures

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

72

There are many ways of designing architecture for ME module. Broadly classifying

there are two type of architectures, one is to design a state machine that is suitable for

only one algorithm (algorithm specific architecture explained in Section 3.7.4) and the

other type is to add some programmability to the architecture (programmable

architectures explained in Section 3.7.6), so that the end user can configure the

algorithm and architecture based on the video coding requirements. Some architectures

are designed for more than one pre-defined algorithm without much programmability

and the end user can select/configure one from these pre-defined algorithms. These are

Fig. 3.17 System-on-Chip Architecture of Video Encoder with Motion Estimation

Accelerator

Fig. 3.18 General Classification of Motion Estimation Architectures

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

73

called flexible or configurable architectures (explained in Section 3.7.5).

 Another important type for accelerating the ME process is by adding ME specific

instructions to the general purpose CPUs (explained in Section 3.7.6). The processor

extensions may accelerate the ME process but are not much efficient compared to real

time encoding. Each of these techniques with some of the recent works are explained in

the following sub-sections. As we observe from algorithm specific architectures to

programmable architectures, the flexibility of handling more rates of video data (like

fast motion, intermediate motion and slow motion videos) increases, but at the cost of

reduced performance and increased complexity and hardware costs (like power

consumed, area occupied etc.). Fig. 3.18 shows the general classification of ME

architectures with their performance and cost comparisons. In the figure, the tip of the

triangle indicates the lowest value while the base of the triangle indicates the highest

value.

3.7.2 Design Considerations of Motion Estimation

In the hardware implementation stage the main limitations is the amount of memory

required to process and the clock speed of the embedded processor that executes the

motion estimation core. The maximum clock speed constraint can be met, by using a

highly parallel architecture, which can reduce the total motion estimation time. Due to

high requirement of the memory, the data that is required to travel from the motion

estimation core and the processor also increases. This is a main limitation of the

hardware bus architecture, which cannot be increased arbitrarily. To reduce the data

traffic in the data bus, the ME architecture design employs data-reuse schemes, since

there are lot of overlapping pixels between consecutive search windows and reference

blocks. The Variable Block Size Motion Estimation (VBSME) for H.264/AVC and

HEVC standard impels the motion estimation process to compute the motion vectors in

various different modes for each coding macro block (4x4 to 16x16 in H.264/AVC and

4x4 to 64x64 in HEVC). By using this VBSME, there is a huge improvement in Rate-

Distortion Performance, but it makes motion estimation implementation highly

computational intensive and hardware expensive. Hence, for real time applications, the

ME architectures are composed of PE (Processing Element) arrays, where each PE is

responsible for calculating the SAD between one current block pixel and candidate

block pixel.

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

74

3.7.3 Internal Architecture of Motion Estimation Accelerator

Fig. 3.19 shows a typical internal architecture of motion estimation module. The

structure consists of a search area buffer, and the current area buffer, a data path unit

(DPU) module (for implementing Processing element array and optimization logic), and

an address generation unit (AGU) and control unit. The entire ME module is controlled

using a state machine in control unit, with addresses of search points in the search

window stored in AGU using a program counter. When the control unit triggers the

AGU, the AGU sends the address to the SW RAM which in turn sends the reference

block data to the DPU. The DPU receives the reference block data along with the

current block data (from current block RAM) and calculates the SAD and rate-distortion

cost. The costs are compared using a comparator module, and the least distortion cost

along with its MV address is stored in final register

3.7.4 Algorithm Specific Architectures

As mentioned, algorithm specific architectures are optimized for one single

algorithm and usually provide high throughput and low VLSI costs (in terms of

area, power etc.). But these kind of architectures are not flexible enough to adapt

the architectures to the changing VLSI demands.

Fig. 3.19 Internal Architecture of Motion Estimation Module

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

75

3.7.4.1 Full Search Algorithm Architectures

Full search algorithm has many advantages over fast search in VLSI

implementations like regular structures, simple control overhead, and highest

PSNR over fast search algorithms. As mentioned, the basic element of a motion

estimation architecture is the Processing Element (PE) block, which is responsible

for calculating the SAD between one current and one reference pixel. There are many

architectures implemented for full search algorithm in the video coding history,

and can be broadly classified into two categories based on their topology of PE arrays:

1D array architectures and 2D architectures. These architecture implementations has

two basic requirements, one is to reduce computational overhead by designing an

appropriate parallel architecture and the other is to reduce data traffic by reusing the

overlapping pixels in the consecutive reference blocks of search window (and in

between consecutive search windows).

In [105], the authors Huang et. al. proposed a 2D Motion Estimation

architecture. It consists of 4x4 arrays of 4x4PEs with 1D data broadcasting and 1D

partial data reuse scheme. The reference pixels are sent simultaneously to PEs through

multiplexers, and the initial reference pixels in a 4x4 block are propagated through

delay elements. Totally it takes 4 clock cycles to calculate one SAD.

In [106], the authors propose data reuse schemes for full search ME architecture

which are categorized into 4 levels of schemes – level-A, level-B, level-C and level-D.

The level-A scheme reuses the overlapped reference pixels between adjacent reference

Fig. 3.20 Data Reuse schemes for Full Search Motion Estimation Architectures

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

76

blocks of one current macro block. The level-B scheme reuses overlapped reference

pixels of adjacent horizontal block strips of one current macroblock. The level-C reuses

for adjacent search windows of one current macroblock and level-D for entire adjacent

search window strips. Fig. 3.20 shows these four level data reuse schemes, where N

denotes macroblock size, W denotes frame width, SRV denotes the vertical search range

and SRH denotes horizontal search range. The level-A scheme has the smallest local

memory requirement but highest off-chip memory traffic, while the level-D has the

smallest off-chip memory and largest local memory. Level-C has a balance between the

local memory and off chip memory data traffic and hence recommended in most

designs.

In [107], the authors Chen et. al. proposed 2D array architecture for motion

estimation. The architecture is a multiple 8-candidate parallel architecture and uses a

shared reference buffer. Each array consists of a 16x16 PE and computes 41 SADs of a

reference block in every cycle. In the architecture, eight horizontally adjacent reference

blocks are processed in parallel. By using this multiple candidate data reuse scheme, the

design considerably reduced on-chip memory traffic and power-consumption.

In [108], the authors Kao et. al. proposed a memory efficient and highly parallel

variable block size ME architecture for full search. The architecture consists of 16 2-D

arrays and each array consists of 16x16 processing elements (PEs). In the architecture

four groups of 2D array PEs perform block matching for four current blocks in a

pipelined fashion. To reduce memory access the architecture uses memory data reuse

scheme by taking advantage of overlapping pixels and saves 98% of on-chip memory

access compared to level-C data reuse scheme proposed in [106] and with only 25% of

local memory overhead. The architecture was synthesized into a TSMC 180-nm CMOS

cell library and is capable of processing full HD at 30 fps video when running at 130

MHz.

3.7.4.2 Fast Search Algorithm Architectures

There are many architectures that were proposed for fast ME algorithms [109]-[129].

Each of the fast architectures typically modifies the basic search pattern in the algorithm

according to the hardware constraints. For instance, if the search points in the search

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

77

pattern are irregular, some of them are removed to make memory access simple and the

obtained algorithm is designed and verified for RD performance [109, 110].

In [111], the authors Porto et. al. proposed architecture for diamond search

algorithm. In the architecture, the nine candidate blocks of the LDSP pattern are sent to

nine processing units in parallel where computation for SADs is done and then a

comparator compares the SADs. If the minimum cost point obtained is at the centre of

the pattern, then a final search with SDSP is performed. The architecture can perform

ME for blocks of size 16x16 in a maximum search range of ±100. On an average, the

architecture was reported to process 120 full HD frames per second at a maximum clock

frequency of 185.7 MHz.

In [110, 112, 109], the authors Ndili et.al proposed an architecture for hardware

oriented, modified diamond search algorithm. The algorithm had a better RD

performance and is comparable to full search algorithm and has high speed up gain

compared to full search algorithm. The architecture is verified and prototyped on an

FPGA, and supports encoding of QCIF to HD (720p) sized frames in all variable block

sizes of H.264/AVC (4x4 to 16x16) and with a search range of ±16. The architecture

can process four 16x16 blocks in parallel and uses SAD adder tress architecture to

compute variable block size SADs. The maximum operating clock frequency of the

architecture obtained was 246.5 MHz.

In [113], the authors Ndili et.al proposed architecture for modified SUMHexS

algorithm. The SUMHexS algorithm was changed with hardware oriented

modifications. The architecture uses SAD adder tress architecture to compute variable

block size SADs (from 4x4 to 16x16). The architecture can process at maximum

frequency of 145.2 MHz and can support full HD frames.

In [114], the authors Rahman et. al. proposed VLSI architecture based on

UMHexagonS algorithm. The architecture emphasizes on providing a trade-off between

gate count and throughput. It uses dual port SRAMs to store current and previous frame

outside the chip and uses 6 processing units to compute SADs of six 16x16 blocks in

parallel. The architecture also uses six buffers to store. The architecture required 32

bytes of memory bandwidth, and approximately 30 MHz of minimal clock speed for

calculating ME with 5 reference frames and 16 pixels search range.

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

78

In [115], the authors Juri et. al. compared and proposed and improvement in the

throughput of UMHexS based architectures proposed in [114, 112, 116]. The

architecture uses 256 processing elements (PEs) where each PE calculates SAD for one

current block pixel and one reference block pixel. The architecture uses adder tree

architecture to calculate variable block size SADs from 4x4 to 16x16. The architecture

improved throughput of about 91% compared to full search architecture and about 20%

improvement in throughput compared to UMHexS algorithm based architecture [116].

3.7.5 Flexible and Configurable Architectures

Flexible architectures are designed to perform motion estimation using more than one

single algorithm. Flexibility in the designed architecture reduces the efficiency,

since they require additional logic for memory management, setting up of data

paths and address generation units (AGUs). But the flexible architectures has the

advantage of providing high quality and high processing speed for a mixture of slow,

medium and fast moving videos.

Lee. et. al. [117] proposed an integer ME algorithm that can realize more than

one fast ME algorithm and including FS algorithm. The algorithm consists of

customizable search centres that can be more than one. Then the local search is

performed using either full-search or gradient-descent based fast search algorithms. The

architecture consists of 5 parallel search units, each able to perform for one search point.

Each search unit consists of a 16x16 PE (Processing Element) array and adder trees to

support variable block size ranging from 16x16 to 4x4. The authors showed that in real-

time, the architecture can perform ME for a full HD frame (with 2 reference frames) at

60fps at a maximum clock frequency of 266 MHz.

In [118], the authors Xiong et. al. proposed a flexible architecture that can

support full-search and three fast search algorithms – 4-step search algorithm, diamond

search algorithm and hexagonal search algorithm. The architecture uses 2-D RAMs and

2-D PE array to support the fast ME algorithms. The architecture increased system

throughput by up to 85.47% and decreased power consumption by up to 13.83%

compared to conventional baseline ME architecture, with an area increase of up to

65.53% in worst case scenario.

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

79

In [119], the authors Verma et. al. proposed a reconfigurable ME architecture

that supports full-search and fast search algorithms that use patterns including diamond,

hexagon, big-hexagon and spiral. The architecture uses a 2-D hybrid PEs which can

reuse reference frame blocks and the routing architecture is designed using NOC

routers. The architecture also reduced the gate count up to 7x compared to its ASIC

counterpart.

In [120], the authors Vanne et. al. proposed a configurable ME architecture that

can support wide range of block matching algorithms including – BBGDS (Block Based

Gradient Descent Search), DS (Diamond Search), CDS (Cross Diamond Search),

Hexagonal Based Search (HEXBS) and TSS (Three Step Search). The architecture by

maps the memory blocks to SAD unit in accordance to the search path generated from

the input parameters. The architecture provided high performance than the conventional

ME architecture in real time for full HD videos.

3.7.6 Programmable Architectures and Processor Extensions

Programmable ME architectures has application specific instruction sets to program any

of the fast ME algorithms. Depending on the application of video compression, the fast

ME algorithm parameters like search range, search pattern shapes early termination

criteria and others can be programmed. The application specific instructions can also be

used to exploit parallelism at search point level like computing matching criteria (SADs

or SSDs).

In [121] the authors Drolapas et. al. proposed a programmable ME architecture

with low hardware cost. The architecture uses a speculative execution technique which

compares the current SAD value with the best SAD value discovered so far, instead of

waiting for the new SAD value itself. Hence using the speculation calculator, the

partially accumulated SADs are forwarded to control module which continues the

program execution in parallel with SAD module. Hence the total number of effective

clock cycles for search process is decreased. The architecture is programmable with an

instruction set common to most of the block matching algorithms like MVFAST and

PMVFAST algorithms. The architecture is implemented in an FPGA.

In [122], the authors Nunez-Yanez et. al. proposed a programmable ME

processor that can process HD videos of H.264/AVC standard. The processor can be

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

80

programmed using c-like syntaxes in the developed tools to describe almost all the fast

ME algorithms. These syntaxes are later compiled into custom instruction set which can

then be executed by the ME processor. Further the processor architecture is scalable and

configurable which is able to select the desired number of execution units and which is

determined by algorithm and throughput requirements. The architecture was

implemented and verified in an FPGA.

The processor extensions are architecture/assembly-language level extensions to

an existing general purpose CPU ISAs (Instruction Set Architectures) for accelerating

the execution of a required application. For multimedia applications, there are two types

of processor extensions – Sub-word parallelism and arithmetic instruction extensions.

Sub-word parallelism is typically referred as Single Instruction Multiple Data (SIMD)

which exploits the parallel processing of data by splitting a high precision ALU to a

number of low precision ALUs and by controlling them together. For example, a 64 bit

addition is performed by adding eight 8-bit additions, and adding them again with the

carry bits. There are many SIMD ISAs implemented and traded under various

companies like INTEL’s MMX and SSIE-2, AMD’s 3DNow!, Apple’s AltiVec etc

[123]. Though these processor extensions perform the required instruction in parallel,

the output data bytes should be consecutively addressable in the memory for every

search position. Typically for the motion estimation task, the required operation is the

distortion measure criteria operation like SAD (Sum of Absolute Differences) or MAD

(Mean of Absolute Differences). Some ISAs like SPARC’s VIS (Visual Instruction

Set), DEC’s Alpha MVI (Motion Video Instructions) etc. has special instruction for

performing SADs [67].

In [124], the authors S.Kim et. al. proposed a Motion Estimation Specific

Instruction Set (MESIP) Processor with has high data reusability. The authors

introduced a novel search scan order called center biased search scan which exploits the

symmetry of the search pattern and reduce redundant data loading on MESIP by about

26.9% and 16.1% compared with raster scan and snake scan. The authors report that

their architecture is suitable for low power and high performance ME implementations.

3.7.7 Motion Estimation Architectures for HEVC Standard

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

81

There are very few number of ME architectures complying HEVC standard [125]-[129],

that were implemented and published, as of now. Though, for HEVC ME algorithm at

search window level has the same logic with H.264/AVC at functional level, it will have

a huge difference in implementation level. This is because the SAD calculation and the

memory access have to perform for 64x64 blocks. Further complexity lies when the

architecture supports variable block size ME with all the block sizes present in HEVC

standard (from 8x4/4x8 to 64x64).

In [125], the authors Sinangil et. al. proposed a cost and coding efficient ME

engine for HEVC standard. The authors analyse 11 different configurations of the ME

engine by quantifying coding efficiency and hardware costs including on-chip

bandwidth, off-chip bandwidth, core area and on-chip memory area. Based on their

analysis one configuration is chosen and algorithm improvements are presented to

further reduce hardware implementation cost of the selected configuration. The search

algorithm used for the architecture is a two stage search strategy, where the first stage

consists of a coarse search process performed by sub-sampling the SW and in second

the stage, the algorithm performs a localised 3-step search by using TSS algorithm

(explained in Section 3.4.4). It is reported, that in overall, the architecture provided 56x

on-chip bandwidth, 151x off-chip bandwidth, 4.3x core area and 4.5x on-chip memory

area savings when compared to the hardware implementation of the HM-3.0 encoder

design.

In [126], the authors Jou et. al. proposed an architecture for fast ME algorithm

complying HEVC. To reduce complexity of ME process, the authors proposed a joint

algorithm and architecture optimization, with a predictive integer ME (IME) algorithm

to select the most probable search directions and steps through a statistical analysis

which reduced the number of search points by 90.5%. The architecture uses a 16x16

processing unit to compute the partial matching cost of all PUs with the same 16x16

current block in an interlaced order and share their common reference block to reduce

the on-chip buffer size and off-chip memory bandwidth. The bandwidth is further

reduced by a cache with double Z-scan indexed addressing to simplify the cache

controller. The architecture was reported with implementation in TSMC 90-nm CMOS

process and to support real-time encoding of 4Kx2K (QFHD) at 60 frames per second

operated at 270 MHz with 778.7K logic gates and 17.4 KB of on-chip memory.

MOTION ESTIMATION ALGORITHMS AND THEIR VLSI ARCHITECTURES

82

In [127], the authors Byun et. al. proposes a full search ME architecture for

HEVC standard which supports asymmetric motion-partitioning (AMP) mode. In the

architecture, two new structures, one for a memory read controller and the other for sum

of absolute difference (SAD) summation block were proposed. The memory read

controller reduces the internal memory read time, and the SAD summation block

structure supports the recursive quad-tree coding unit structure and the asymmetric

motion-partitioning mode. It is reported that the proposed design was implemented in

Verilog HDL and synthesised using the 65 nm CMOS technology and the obtained gate

count is 3.56 M with an internal static random access memory of about 20 kbyte. The

maximum operation frequency obtained was 250 MHz for a 4K-Ultra high definition

(UHD) (3840 × 2160P at 30 Hz) sized video.

In [128], the authors Sanchez et. al. proposed a hardware friendly Multi Point

Diamond Search (MPDS) ME algorithm for HEVC with its low power hardware

architecture. The MPDS algorithm was implemented in HEVC reference software and

its efficiency is compared with the standard HEVC fast algorithm. The evaluation result,

in average, shows loses of only 1.7% in the compression rate and 0.05% in PSNR. The

main advantage of the MPDS algorithm is its hardware friendly aspect and hence the

authors present its hardware design with focus on real time processing HD 1080p

videos. It was reported that the designed architecture is synthesized for TSCM 90nm

technology and is capable to process HD 1080p videos in real time at 30 frames per

second with an operational frequency of only 41.3 MHz and maintains a good trade-off

among quality, compression rate and hardware costs.

In [129], the authors Xu et. al. proposed a high performance VLSI architecture for

integer motion estimation in HEVC. The architecture supports coding tree block (CTB)

structure with the AMP mode. The architecture contains two parallel sub-architectures

to meet 1080p at 30fps real-time video coding. The size CTB in the architecture is set to

32x32 pixels by default, and it can be extended 64x64 pixels. A serial mode decision

module to find optimal partition mode for the architecture was also implemented. The

architecture was designed for full search algorithm with level-D data reuse scheme

(explained in Section 3.7.4) [106].

PROPOSED MOTION ESTIMATION ALGORITHM

83

4 PROPOSED MOTION ESTIMATION ALGORITHM

4.1 INTRODUCTION

The proposed algorithm in the thesis consists of novel techniques for each of the motion

estimation tools explained in Section 3.5 of Chapter 3. The enhanced tools are then

integrated to form a hybrid fast ME algorithm. This algorithm is then compared with the

fast search algorithm (TZSearch) included in the HEVC reference software HM [130].

Each of these enhanced techniques is explained in the following sections.

4.2 PROPOSED DYNAMIC SEARCH RANGE ALGORITHM

The proposed algorithm reduces search window size using the search range of the

previously coded blocks. This is done by calculating the Euclidean distance between the

search center and the collocated MV as shown in (4.1). The actual search center for the

SW is the Predicted MV (PMV) and the coordinates of PMV and the final MV are taken

with the co-located block as origin (with coordinates (0,0)). This is illustrated in Fig.

4.1. The difference between PMV and MVopt is the Motion Vector Difference (MVD)

which is shown in (4.2). The new origin of the MVD is shifted to the PMV from the co-

located block resembling the actual search range of the previously coded neighboring

blocks. Hence the euclidean length of the MVDs of previously coded blocks is taken for

SW size prediction. For predicting the search range, three sets of prediction points are

taken into consideration - spatial predictors, up-layer predictors and temporal predictors.

 C = ���s	7 + ��s	7 (4.1)

 �����, �� = +����s, �s	 − ���s����, ��� (4.2)

4.2.1 Spatial Predictors

The MV of the current block has a probability to be near to the MVs of already encoded

spatially neighboring blocks. This is due to fact that the moving object in the current

block could be shared with one or many of the encoded neighboring blocks. This means

the search range and direction for the current block can be predicted using the MVDs of

PROPOSED MOTION ESTIMATION ALGORITHM

84

these predictors. The spatial predictors considered for search range prediction are left

predictor, up, up-right and up-left predictors. The maximum value of these MVDs is

calculated and used for SR prediction as formulated in (4.3), where L, Up, UR,

represents the MVD co-ordinates of the spatial left-down, up-left and up-right blocks.

 ��"�sO� = U?� ����7 + ��7�* 7⁄ , ��rs7 + �rs7 	* 7⁄ , ��r�7 + �r�7 �* 7⁄ � (4.3)

4.2.2 Upper Mode Block Predictors

For any current block in HEVC, the ME starts from the upper mode block size to the

lower mode block sizes. Since the upper mode is already encoded, its MVD can be used

to predict the search range of the current block. In HEVC there are seven inter-

prediction mode block sizes for each partition depth as shown in TABLE 4.1. For a

Co-located

block point

PMV

(Search center)

MVopt

MVD=MV - PMV

Fig. 4.1 Illustration of Relation between Predicted Motion Vector, Co-located Motion

Vector and Optimal Motion Vector.

TABLE 4.1: PROPOSED UP-LAYER PREDICTION MODES

FOR HEVC (d = 0,1,2,3; N = 32,16,8,4; n=N/2;)

Current

depth

Current

partition

size

Sub-partition

Size and Mode

Upper mode

depth

Upper mode partition

size

d 2Nx2N

2Nx2N d-1, d>0 min(2NxN, Nx2N), d>0
2NxnD

D 2Nx2N
2NxN

2NxnU
nRx2N
Nx2N
nLx2N

PROPOSED MOTION ESTIMATION ALGORITHM

85

block with maximum size of 64x64 there are four depths (d=0 to 3) and for the last

partition depth (d=4 and block size 4x4) there is no further splitting. For rectangular

blocks, their immediate upper mode square block MVD is taken for SR prediction. For

square blocks, the MVDs of two immediate upper mode rectangular blocks are

considered. The maximum value of these two MVDs is taken and used for predicting

the SR of the current block.

4.2.3 Temporal Predictors

The accuracy of spatial predictors may decrease for sequences with fast moving objects.

The spatial predictors are also erroneous if the moving objects in the neighboring blocks

share different boundaries from that of the current block. In such cases, the correlation

of objects in the temporal domain can be taken into account. Unlike spatial predictors,

the temporal predictors depend on search window reference frame index. Furthermore,

the MV gives better information about the search range than the MVD (of co-located

block), as the MVD itself depends on spatial predictors of the collocated block. Hence,

the proposed approach takes the MV of collocated block and uses its reference frame

index to predict the search range.

4.2.4 Dynamic Search Range Prediction Algorithm

The present paper uses the aforementioned predictors and defines the search range. The

maximum value of the Euclidean radius of all the predicted points is taken as the new

Search Range (SR). The detailed steps of the proposed algorithm are:

Step 1: Take the MVDs of the spatial neighboring blocks and calculate their euclidean

radius. The maximum value is taken as the predicted search range due to spatial

predictors as shown in (4.4).

 ��"�sO� = U?� ����7 + ��7�* 7⁄ , ��rs7 + �rs7 	* 7⁄ , ��r�7 + �r�7 �* 7⁄ � (4.4)

Step 2: Take the MVD of upper mode block and calculate its Euclidean radius. This is

taken as the predicted search range due to upper mode block as shown in (4.5).

PROPOSED MOTION ESTIMATION ALGORITHM

86

 ��"r = ��r 7 + �r 7 �* 7⁄ (4.5)

Step 3: Take the MV of the collocated block and calculate its euclidean radius. Divide

it by the reference frame number as shown in (4.6).

 ��"�M�s = ����P7 + ���P7 �* 7⁄CDR_RC?UD_SfU@DC (4.6)

 Step 5: Take the maximum of all the above predicted DSR values as shown in (4.7).

 ��"sLM- = U?����"�sO�, ��"r , ��"�M�s� (4.7)

Step 6: Multiply the obtained search range obtained with (4.7) by the factor 2 to get

the DSR value. The final DSR value is the clipped version of the previous result as

shown in (4.8)

 ��" = 2 × ��"pLM- �≥ �SifB_hD?CEℎ_C?S;D4≤ �SifB_hD?CEℎ_C?S;D (4.8)

The proposed DSR algorithm was compared with the TZSearch algorithm of the

HEVC reference software HM. TABLE 4.2 shows the summary of simulation results.

The test conditions for the simulation are shown in Table 2.3 of Section 2.7. The results

show that on an average, there is 47.2% decrease in ME time (∆T) or 48.5% reduction

in search points (∆N), when compared to TZSearch algorithm, with negligible reduction

in PSNR (0.004 dB average) and negligible increase in bitrate (0.12 %). The variation

(in time savings and complexity) between various test sequences is due to the fact that

some sequences have high motion content while some have low.

PROPOSED MOTION ESTIMATION ALGORITHM

87

4.3 PROPOSED INITIAL SEARCH POINT PREDICTION ALGORITHM

The proposed algorithm uses a median predictor and the aforementioned spatial,

temporal, upper-mode predictors for finding the initial search point. The median

predictor is calculated by taking the average of the spatial left, up and upper right

coordinates. The cost of each predictor is calculated. The predictor with least cost is

taken as the best starting point for ME process.

A set of predicted MV points called Initial Search Points set (ISP set) is used to

store the initial search points. Initially, the least cost point is added to this set. Though

the least cost point can lead to fast convergence when compared with other predictors,

there is also a possibility that the other predictors may finally converge to a better MV.

Hence, for each of the predicted points, the Euclidean distance from the least cost point

is calculated. If this distance is greater than a threshold value (taken as 16) then the local

minima of the predicted point is calculated and added to the ISP set. The least cost point

in the ISP set is taken as the final ISP (Initial Search Point) for the ME process. The

complete ISP algorithm is depicted in Fig. 4.2.

TABLE 4.2: SIMULATION RESULTS FOR PROPOSED DSR ALGORITHM

Class Sequence ∆∆∆∆T (%) ∆∆∆∆N (%)
∆∆∆∆PSNR

(dB)

∆∆∆∆bit-

rate

(%)

B

(1920x1080)

Kimono 60.4 62.8 0.005 -0.13

ParkScene 43.7 47.1 0.001 -0.08

Cactus 56.5 57.5 0.003 -0.31

BasktbalDrve 32.7 33.6 0.002 -0.05

BQTerrace 65.1 68.7 0.003 -0.09

C

(832x480)

RaceHorses 63.4 69.8 0.001 -0.14

BQMall 51.3 53.8 0.003 -0.11

PartyScene 48.8 50.0 0.006 -0.02

BasktbalDril 61.4 64.2 0.012 -0.36

D

(416x240)

RaceHorses 64.3 67.6 0.007 -0.25

BQSquare 17.6 17.8 0.001 -0.19

BlwngBubles 38.5 38.5 0.006 -0.04

BasktbalPass 62.5 65.5 0.007 -0.04

E

(1280x720)

FourPeople 32.8 30.9 0.002 -0.07

Johnny 20.0 17.0 0.004 -0.05

KristnAndSar 37.5 32.4 0.002 -0.06

Average 47.2 48.5 0.004 -0.12

PROPOSED MOTION ESTIMATION ALGORITHM

88

TABLE 4.3 shows the summary of simulation results after adding the proposed

ISP algorithm to the TZSearch algorithm. The simulation results show that there is on

average 13.9% reduction in ME time or 14.1% reduction in search points compared

with original TZSearch algorithm. The PSNR loss is 0.001 dB (average) and bitrate

increase is 0.02% (average) which is negligible.

4.4 PROPOSED EARLY TERMINATION ALGORITHM

For the aforementioned spatial neighboring blocks and temporally co-located block the

previous cost values are stored and the least cost in these values is taken as the threshold

for early termination. If the cost between the current block and ISP is less than this

threshold then this point is skipped. This is possible due to the correlation of the cost of

spatial neighbors and temporal blocks (of same size) with the cost of current block. This

step can reduce the complexity. Even after skipping the global search stage, fine

refinement stage is carried out and hence the quality loss can be compensated. TABLE

4.4 shows the summary of simulation results after adding this algorithm to the

TZSearch algorithm. The simulation results show that there is on average 8.2%

TABLE 4.3: SIMULATION RESULTS FOR

PROPOSED ISP ALGORITHM

Class Sequence
∆∆∆∆T

(%)

∆∆∆∆N

(%)

∆∆∆∆PSNR

(dB)

∆∆∆∆bit-

rate

(%)

B

(1920x1080)

Kimono 18.2 18.6 0.000 -0.07

ParkScene 15.9 15.4 -0.001 0.01

Cactus 14.1 15.0 0.000 -0.01

BasktbalDrve 8.3 8.3 0.000 0.00

BQTerrace 15.6 15.9 0.001 -0.03

C

(832x480)

RaceHorses 17.6 18.3 0.001 -0.01

BQMall 14.8 15.2 -0.002 -0.09

PartyScene 14.2 15.3 0.001 0.03

BasktbalDril 17.3 17.5 0.003 -0.07

D

(416x240)

RaceHorses 20.7 20.8 0.005 -0.07

BQSquare 2.8 4.4 0.000 0.02

BlwngBubles 14.9 14.4 -0.005 -0.06

BasktbalPass 17.1 17.2 0.003 0.00

E

(1280x720)

FourPeople 10.8 11.0 -0.002 -0.07

Johnny 7.5 7.2 0.000 0.08

KristnAndSar 12.3 11.8 -0.003 0.02

Average 13.9 14.1 0.001 -0.02

Fig. 4.2 Flowchart of proposed

ISP algorithm

PROPOSED MOTION ESTIMATION ALGORITHM

89

reduction in ME time or 5.8%

reduction in search points compared

with TZSearch algorithm without

early termination. There is negligible

PSNR loss - 0.001 dB and negligible

bitrate increase is 0.03%.

4.5 PROPOSED GRID PATTERN ALGORITHM

After the early termination stage, if the threshold condition is not satisfied, the

algorithm searches for the global minimum point. This step is used in order to prevent

the MV from getting trapped into local minimum. Once the coarse point is found, it can

be later refined to get final the optimal MV. The parameters that affect the convergence

speed and accuracy of the global search point stage are the search pattern shape and the

step size. The search pattern shape is the grid pattern shape taken and the step size is the

distance between successive grids. In our published work [P5], it was demonstrated that

rotating hexagonal grids provide better performance than square or diamond patterns.

The proposed algorithm improves the results by advancing a variable step-size for the

rotating-hexagonal search pattern.

As explained in chapter 3, the fast ME algorithm used in HEVC has two types of

grids, diamond and square. Both of these types of grids have 8 search points per grid. If

these grids are replaced with hexagonal grids, computational time can be saved as the

TABLE 4.4: SIMULATION RESULTS FOR

PROPOSED GLOBAL SEARCH SKIP

ALGORITHM

Class Sequence
∆∆∆∆T

(%)

∆∆∆∆N

(%)

∆∆∆∆PSNR

(dB)

∆∆∆∆bit-

rate

(%)

B

(1920x1080)

Kimono 2.1 4.3 0.001 -0.07

ParkScene 5.4 5.1 0.000 -0.08

Cactus 7.3 6.0 0.002 -0.04

BasktbalDrve 5.1 4.3 0.000 -0.04

BQTerrace 8.7 6.6 0.001 -0.02

C

(832x480)

RaceHorses 20.3 6.9 0.000 -0.05

BQMall 10.5 7.7 0.000 -0.06

PartyScene 9.4 7.3 0.001 0.01

BasktbalDril 8.8 7.1 0.003 -0.09

D

(416x240)

RaceHorses 9.3 7.0 0.003 -0.06

BQSquare 7.8 5.7 0.002 0.02

BlwngBubles 8.6 6.4 -0.003 -0.06

BasktbalPass 9.1 7.4 0.004 -0.03

E

(1280x720)

FourPeople 6.8 4.5 0.000 -0.01

Johnny 4.7 2.3 0.000 0.02

KristnAndSar 7.7 3.7 -0.003 0.08

Average 8.2 5.8 0.001 -0.03

Fig. 4.3 Illustration of Rotating-

hexagonal search pattern

PROPOSED MOTION ESTIMATION ALGORITHM

90

hexagonal grids have only 6 points per grid. Although hexagonal grids save

computation time, they might lose output video quality for vertical motion estimation as

the pattern orientation favor horizontal motion. This is due to the fact that the horizontal

hexagons have more horizontal search points and thus provide better estimates for

horizontal moving objects. On the other hand, vertical hexagons have more vertical

search points and provide better estimates for vertically moving objects, losing

performance for horizontal motion. Hence, the proposed algorithm adopts a rotating

hexagonal pattern for balancing performance between horizontal and vertical motion as

shown in Fig. 4.3. The total number of search points for each pattern for a given search

range can be computed with (4.9) and (4.10), where ND, NS, NH, NRH represents the

number of search points for diamond, square, hexagon and rotating-hexagon patterns

respectively (floor rounds to the least integer).

 ,� = ,o = 8 × R9::C�9:;7"� (4.9)

 ,~ = ,�~ = 6 × R9::C�9:;7"� (4.10)

The proposed algorithm uses variable step size for the search pattern to increase the

accuracy of the global search point. Since the MV probability density is high until the

stride length (radius of the search pattern) value reaches 16, the proposed algorithm uses

a constant step-size of 2. After this stride length, the proposed algorithm uses a

logarithmic step size with initial value 2 and proceeding to values 4, 8, 16 and so on.

This is due to the center-biased nature of MVs, whose distribution is concentrated more

near the origin and decreases as it moves away [131].

Though the global minimum search point algorithm is actually used to solve

local minima problems, a single minimum search point may not be always enough.

Some search points which have cost slightly higher than the minimum point may

converge to a better optimum in a fine refinement stage. Hence, all the points in the

global search stage with a cost less than a threshold cost value are identified and added

to GSP (Global Search Point) set in sorted order. The cost threshold value that is

considered is the minimum cost value of previously coded spatial neighboring blocks

and co-located block. Then, for each point in GSP set, the Euclidean distance (∆r) and

the cost difference (∆J) to the least cost point are calculated. Points with ∆r less than 16

PROPOSED MOTION ESTIMATION ALGORITHM

91

are deleted from the GSP set. The value 16 is taken since, the fine-refinement stage in

the proposed ME algorithm is performed in the reduced SW size of 16 and thus any

point with a distance less than 16 from least cost point will be searched in the fine

refinement stage.

Furthermore, if the number of points (N) in GSP set is too large, the complexity

of the total ME algorithm increases, as the fine refinement has to be performed for each

point in the GSP set. Hence, a tolerance limits for the cost difference and the total

number of points are set, and the redundant points are removed from the GSP set to get

a better trade-off between complexity and PSNR loss. The tolerance limit for ∆J is set to

20% and for ‘N’, it is set to 5 points. Any point which has ∆J less than 20% is first

removed and then checked for the total number of remaining points in the GSP set. If

there are more than 5 points, than these points are sorted in descending cost (∆J) order.

All the points above the fifth position are removed from the GSP set. The detailed

flowchart of the proposed algorithm is shown in Fig. 4.4.

Yes

Perform search using

rotating hexagon pattern

Take least cost point in

GSP set as reference point

Add each point with cost

below reference cost to

GSP set in the order of

their cost

Calculate ∆r and ∆J from

reference point to each of

the points in GSP set

Skip the GSP points with

∆r < 16 and ∆J < 20%

Final GSP set for fine

refinement stage

N > 5

Take the next four least

cost points after reference

point

No

Fig. 4.4 Flowchart of the proposed grid pattern algorithm

PROPOSED MOTION ESTIMATION ALGORITHM

92

The proposed algorithm is implemented with the TZSearch fast ME algorithm

present in the HEVC reference software. TABLE 4.5 shows the summary of simulation

results. The results show that there is 15.6% decrease in ME time or 16.9% decrease in

ME search points, with negligible loss in PSNR (0.002 dB) and bitrate (0.09%).

4.6 PROPOSED FINE REFINEMENT ALGORITHM

After searching the global minimum point, the next task is to find the final optimal MV.

Most often, the SAD error function does not decrease monotonically from the global

minimum point. This is illustrated in Fig. 4.5, for class C RaceHorses sequence for a

search window in 7th frame. The graph illustrates that there are many local minimum

points. Hence, to find the optimal point, first the local search window is constructed

with search range 16. Then the rotating hexagon search pattern (with constant step-size

two) is used again within this local SW to find a local sub-optimal search point. After

finding the local sub-optimal point, the ME algorithm starts refining monotonically

using a gradient descent search based hexagonal pattern shown in Fig 4.6. In each step

of the refinement, the minimum point is taken as the center point of the new hexagonal

search pattern. Hence for a hexagon, there are only three new points to be searched in

TABLE 4.5: SIMULATION RESULTS FOR PROPOSED MMVSSP

ALGORITHM

Class Sequence ∆∆∆∆T (%) ∆∆∆∆N (%)
∆∆∆∆PSNR

(dB)

∆∆∆∆bit-

rate

(%)

B

(1920x1080)

Kimono 12.8 15.0 0.003 -0.13

ParkScene 16.3 17.9 0.001 -0.13

Cactus 14.2 15.9 0.002 -0.04

BasktbalDrve 17.7 19.6 0.000 -0.01

BQTerrace 15.3 17.1 0.002 -0.08

C

(832x480)

RaceHorses 11.9 13.7 0.003 -0.11

BQMall 16.0 17.1 0.001 -0.10

PartyScene 15.6 17.0 0.004 -0.08

BasktbalDril 12.1 12.8 0.006 -0.08

D

(416x240)

RaceHorses 13.2 14.2 0.010 -0.20

BQSquare 22.6 24.1 0.001 -0.02

BlwngBubles 17.2 17.0 0.002 -0.14

BasktbalPass 14.4 15.5 0.003 -0.19

E

(1280x720)

FourPeople 16.1 17.0 0.000 -0.09

Johnny 16.9 18.0 0.002 -0.01

KristnAndSar 16.9 18.3 -0.002 -0.03

Average 15.6 16.9 0.002 -0.09

PROPOSED MOTION ESTIMATION ALGORITHM

93

each step, unlike in a square pattern which has either three or five new points in each

step. The diamond pattern also has three new points in each step. The hexagon pattern is

however able to cover wider search area than the diamond and hence it converges

accurately. The fine refinement stops when the minimum cost point is the center point.

Then, there are ten points that were not covered by the convergence process. The

proposed ME algorithm checks these last ten points around that search point, as shown

by the grey points in Fig. 4.6.

The native fine refinement algorithm embedded in the TZSearch ME Algorithm

was replaced by the proposed algorithm, in order to verify its performance. The

summary of the simulation results are shown in TABLE 4.6. The results show that

there is 15.9% reduction in ME time or 13.7% reduction with negligible loss in PSNR

(0.003 dB) and negligible increase in bitrate (0.05 %), when compared to the TZSearch

Fig. 4.5 Surface plot of ME cost for class C RaceHorses sequence

Fig. 4.6 Fine refinement patterns using hexagons

PROPOSED MOTION ESTIMATION ALGORITHM

94

ME Algorithm.

4.7 SIMULATION RESULTS OF OVERALL PROPOSED ALGORITHM

The proposed algorithms were integrated to form a hybrid ME algorithm. This

algorithm was implemented and tested with the HEVC reference software HM [130].

TABLE 4.7 to TABLE 4.20 show the simulation results for full search, TZSearch

algorithm, and the proposed complete algorithm. TABLE 4.21 to TABLE 4.24 show the

comparison results of proposed algorithm with full search and TZSearch algorithm. In

each experiment, the average results of all sequences for each class are shown. ∆T, ∆N,

and ∆E represents the percentage difference of total ME time, number of search points

and total encoding time between the original TZSearch algorithm and the proposed

algorithm, respectively. BD-PSNR and BD-Bitrate denotes the Bjontegard-Delta PSNR

and Bjontegard-Delta bitrate [25] between TZSearch and the proposed algorithm. The

results show that there is a 48.3% to 66.1% reduction in ME complexity or 50.3% to

TABLE 4.6: SIMULATION RESULTS FOR PROPOSED FINE REFINEMENT

ALGORITHM

Class Sequence ∆∆∆∆T (%) ∆∆∆∆N (%)
∆∆∆∆PSNR

(dB)

∆∆∆∆bit-

rate

(%)

B

(1920x1080)

Kimono 14.4 15.0 0.001 0.08

ParkScene 19.2 16.8 0.001 0.06

Cactus 14.5 13.1 0.002 0.01

BasktbalDrve 15.8 13.6 0.002 0.08

BQTerrace 15.6 14.2 0.002 0.02

C

(832x480)

RaceHorses 24.1 14.5 0.001 0.04

BQMall 17.4 15.4 0.003 0.05

PartyScene 14.4 13.5 0.002 0.02

BasktbalDril 13.8 12.8 0.006 0.10

D

(416x240)

RaceHorses 17.7 16.0 0.003 0.01

BQSquare 12.3 10.6 0.003 0.01

BlwngBubles 17.4 15.6 0.002 0.08

BasktbalPass 16.0 15.3 0.005 0.06

E

(1280x720)

FourPeople 12.2 10.2 0.003 0.05

Johnny 13.2 10.5 0.005 0.07

KristnAndSar 15.6 12.4 0.008 0.12

Average 15.9 13.7 0.003 0.05

PROPOSED MOTION ESTIMATION ALGORITHM

95

65.6% reduction in ME time with negligible loss in bitrate (0.12 to 0.85 BD-bitrate) and

PSNR (0.004 to 0.03 dB BD-PSNR).

TABLE 4.25 shows the summary of the comparison results with the full search

algorithm and the TZSearch algorithm for all configurations. The results show that on

an average there is 98.6 to 99.4% decrease in complexity or 97.1 to 98.8% reduction in

ME time compared to FS algorithm. Similarly, compared to TZSearch algorithm the

decrease in complexity and ME time are 34.5 to 55.7% and 32.4 to 55.1% respectively.

The decrease in total encoding time compared to FS and TZSearch algorithm ranges

from 78.7 to 92.1% and 10.3 to 33.9% respectively. The BD-PSNR loss and BD-bitrate

compared to FS range from -0.023 to -0.055 dB and 0.53 to 0.84 % respectively.

Similarly, the BD-PSNR loss and BD-bitrate compared to TZSearch range from -0.015

to -0.048 dB and 0.39 to 0.51 % respectively. Hence the results show that in any given

configuration the overall gains in complexity and encoding speeds are significant with

negligible loss in PSNR and bitrate. Annex A shows the RD curves of each sequence for

the full search, TZSearch and the proposed algorithm. These RD curves demonstrate

that the complexity reduction is achieved with negligible loss in bitrate and output video

quality (PSNR).

The proposed algorithm is compared with some of the latest works of HEVC

motion estimation in the literature [132] and [133]. When comparing to other papers,

our proposed algorithm outperforms the related results. For instance, for BasketballPass

video sequence, the proposed algorithm reached ∆T = 81.75% (QP = 27) and ∆T =

80.29% (QP = 32) whereas in [132], ∆T = 76.81% (QP = 27) and ∆T = 74.70% (QP =

32) and in [133], ∆T = 21.37% (QP = 27) and ∆T = 18.08% (QP = 32) were reached.

PROPOSED MOTION ESTIMATION ALGORITHM

96

TABLE 4.7: SIMULATION RESULTS OF FULL SEARCH ALGORITHM FOR

CLASS B AND CLASS C SEQUENCES IN LOW DELAY P MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Kimono

(class B)

1920x1080

22 7363.0976 42.0089 30703 3.18029E+11 29036

27 3562.88 40.0787 29929 3.16192E+11 28584

32 1771.616 37.3917 29352 3.15173E+11 28230

37 892.864 34.6794 28843 3.13112E+11 27870

Park Scene (class

B)

1920x1080

22 9616.864 39.9021 15603 1.55357E+11 14063

27 3920.5888 37.19 14663 1.50695E+11 13512

32 1710.4064 34.5179 14184 1.48398E+11 13227

37 756.544 32.0279 13406 1.40301E+11 12548

Cactus (class B)

1920x1080

22 26892.1867 38.5293 9469 85704110312 7800

27 7668.12 36.5113 8520 81706099384 7377

32 3471.1067 34.4457 8117 79868816982 7179

37 1724.1067 32.1464 8172 80965171300 7317

Basketball Drive

(class B)

1920x1080

22 67358.704 39.0987 17181 1.66816E+11 15145

27 15127.344 35.3152 14176 1.43992E+11 12943

32 4595.856 33.1709 11104 1.1423E+11 10183

37 1827.104 30.913 8772 88491644009 7951

BQ Terrace

(class B)

1920x1080

22 14950.6667 39.8842 37039 3.92948E+11 35430

27 5354.2133 38.4426 35882 3.88643E+11 34669

32 2603.1733 36.7536 35123 3.84485E+11 34092

37 1375.0267 34.7734 34806 3.78846E+11 33862

Race Horses (class

C) 832x480

22 7089.584 39.5332 6309 63737199410 5854

27 2901.288 35.5399 6256 64375362098 5913

32 1320.352 32.2388 6153 64241037765 5880

37 621.656 29.3896 6030 63845471709 5803

BQ Mall (class C)

832x480

22 5527.728 39.7072 1491 13130164079 1196

27 2541.024 36.7977 1402 12873734814 1173

32 1271.12 33.7717 1386 13156620907 1195

37 656.48 30.7793 1340 12992349959 1171

Party Scene (class

C)

832x480

22 13861.8267 38.2909 1500 11377168059 1048

27 6313.2 34.0909 1417 11764317384 1086

32 2902.0267 30.49 1415 12638747206 1160

37 1330.2 27.313 1395 13022545748 1188

Basketball Drill

(class C)

832x480

22 3945.8933 40.4765 2018 18637282920 1704

27 1831 37.3603 2090 20232013917 1843

32 884.3467 34.4784 2181 21810973597 1979

37 458.3733 31.9658 2350 24052779670 2175

PROPOSED MOTION ESTIMATION ALGORITHM

97

TABLE 4.8: SIMULATION RESULTS OF FULL SEARCH ALGORITHM FOR

CLASS D AND CLASS E SEQUENCES IN LOW DELAY P MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Race Horses

(class D)

416x240

22 1700.08 39.5203 1062 10319522416 949

27 830.52 35.3431 1065 10554651413 975

32 404.872 31.7321 1039 10405557275 966

37 203.112 28.7918 1009 10575393851 951

BQ Square

(class D)

416x240

22 2921.136 38.8745 218 1389023841 124

27 1138.736 34.6021 191 1391405615 125

32 514.24 31.4292 177 1362340327 125

37 244.032 28.4483 167 1431340558 126

Blowing

Bubbles (class

D)

416x240

22 2226.7867 38.399 282 2040904656 184

27 952.08 34.8528 284 2342016121 211

32 426.28 31.7578 254 2169090209 198

37 194.4933 29.0058 248 2288982356 202

Basketball Pass

(class D)

416x240

22 921.1467 41.3041 184 1442628035 126

27 462.64 37.6572 191 1602193844 141

32 232.2667 34.3564 196 1700333098 152

37 119.4267 31.4207 191 1750457401 152

Four People

(class E)

1280x720

22 3047.056 42.484 1681 14109467777 1260

27 1311.264 40.377 1519 13066090000 1166

32 710.704 37.8422 1462 12758729494 1135

37 403.504 34.9432 1483 13144551438 1167

Johnny (class E)

1280x720

22 2976.176 42.7202 2147 18940012850 1697

27 916.896 40.9513 1870 16920269420 1511

32 420.496 39.0079 1649 14858222257 1320

37 230.992 36.6697 1553 13952985209 1240

Kristen And

Sara

(class E)

1280x720

22 2842.112 43.1495 1857 15796594631 1418

27 1136.272 41.0986 1645 14256984642 1273

32 576.064 38.7833 1693 15133389627 1353

37 315.408 36.1355 1739 15922624158 1416

PROPOSED MOTION ESTIMATION ALGORITHM

98

TABLE 4.9: SIMULATION RESULTS OF FULL SEARCH ALGORITHM FOR

CLASS B AND CLASS C SEQUENCES IN LOW DELAY B MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Kimono

(class B)

1920x1080

22 6989.7 42.1573 32125 3.29E+11 29969

27 3459.3 40.2322 30933 3.23E+11 29117

32 1704.5 37.5649 30061 3.18E+11 28500

37 851.56 34.8612 29292 3.14E+11 27901

Park Scene (class

B)

1920x1080

22 9193.2 39.9779 17748 1.73E+11 15733

27 3826.3 37.237 16289 1.63E+11 14687

32 1680.1 34.5439 15304 1.56E+11 13919

37 741.39 32.0333 14596 1.5E+11 13343

Cactus (class B)

1920x1080

22 24399 38.6072 11436 1.02E+11 9352

27 7398.9 36.5712 9886 9.21E+10 8354

32 3408.6 34.4943 9524 9.1E+10 8205

37 1700.5 32.1786 9401 9.12E+10 8188

Basketball Drive

(class B)

1920x1080

22 56327 39.0548 19214 1.84E+11 16767

27 12453 35.6032 15077 1.5E+11 13470

32 3944.1 33.3929 12521 1.25E+11 11208

37 1680.1 31.0729 10273 1.02E+11 9068

BQ Terrace

(class B)

1920x1080

22 13976 39.9553 37575 3.94E+11 35523

27 5141.2 38.5337 36468 3.89E+11 34811

32 2513.5 36.8806 35691 3.85E+11 34241

37 1340.7 34.9053 34934 3.79E+11 33600

Race Horses (class

C) 832x480

22 6691 39.5571 6762 6.74E+10 6212

27 2824.9 35.6457 6585 6.68E+10 6147

32 1300.2 32.303 6383 6.56E+10 6017

37 614.69 29.4174 6138 6.49E+10 5823

BQ Mall (class C)

832x480

22 5198.6 39.8052 1711 1.45E+10 1339

27 2429.9 36.8791 1593 1.41E+10 1291

32 1231.4 33.8592 1525 1.38E+10 1261

37 643.52 30.8433 1475 1.38E+10 1237

Party Scene (class

C)

832x480

22 12504 38.4023 1792 1.36E+10 1262

27 5999.5 34.2471 1746 1.41E+10 1322

32 2823 30.5495 1701 1.46E+10 1354

37 1305.9 27.3367 1670 1.53E+10 1383

Basketball Drill

(class C)

832x480

22 3688.5 40.5948 2250 2.02E+10 1857

27 1753.9 37.4717 2343 2.21E+10 2016

32 852.24 34.5658 2367 2.33E+10 2091

37 443.17 32.0506 2428 2.44E+10 2182

PROPOSED MOTION ESTIMATION ALGORITHM

99

TABLE 4.10: SIMULATION RESULTS OF FULL SEARCH ALGORITHM FOR

CLASS D AND CLASS E SEQUENCES IN LOW DELAY B MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Race Horses

(class D)

416x240

22 1660 39.6077 1165 1.14E+10 1030

27 824.81 35.4252 1134 1.13E+10 1022

32 401.78 31.7454 1085 1.1E+10 991

37 201.15 28.8194 1091 1.12E+10 1011

BQ Square

(class D)

416x240

22 2244.9 38.9145 247 1.52E+09 137

27 970.02 34.9272 217 1.47E+09 133

32 472.48 31.6392 196 1.41E+09 127

37 232.64 28.5271 184 1.4E+09 124

Blowing

Bubbles (class

D)

416x240

22 2106.5 38.479 353 2.56E+09 233

27 924.49 34.9171 356 2.93E+09 263

32 421.92 31.7923 340 2.95E+09 264

37 194.92 29.0344 299 2.63E+09 234

Basketball Pass

(class D)

416x240

22 900.19 41.3494 213 1.57E+09 138

27 456.36 37.7131 209 1.61E+09 142

32 230.33 34.398 203 1.64E+09 143

37 118.79 31.398 208 1.74E+09 152

Four People

(class E)

1280x720

22 2896.3 42.5569 1899 1.49E+10 1323

27 1289.5 40.4316 1760 1.42E+10 1257

32 706.13 37.8646 1676 1.37E+10 1204

37 402.67 34.9589 1717 1.43E+10 1263

Johnny (class E)

1280x720

22 2587.9 42.8426 2586 2.22E+10 1977

27 856.02 41.0844 2224 1.93E+10 1709

32 413.2 39.1141 1972 1.69E+10 1493

37 228.82 36.7544 1921 1.66E+10 1456

Kristen And

Sara

(class E)

1280x720

22 2701.8 43.2114 2218 1.8E+10 1609

27 1113.3 41.1433 2066 1.73E+10 1537

32 565.6 38.8118 2096 1.81E+10 1605

37 314.4 36.1756 2128 1.83E+10 1643

PROPOSED MOTION ESTIMATION ALGORITHM

100

TABLE 4.11: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR

CLASS B AND CLASS C SEQUENCES IN LOW DELAY P MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Kimono

(class B)

1920x1080

22 7357.53 42.0075 2375 6.196E+09 736

27 3561.786 40.076 1944 5.017E+09 624

32 1777.504 37.3727 1607 3.86E+09 512

37 889.792 34.6967 1350 2.824E+09 409

Park Scene (class

B)

1920x1080

22 9622.176 39.8995 1778 2.142E+09 263

27 3922.08 37.1851 1361 1.769E+09 228

32 1710.906 34.5171 1130 1.446E+09 196

37 757.9264 32.0245 996 1.188E+09 168

Cactus (class B)

1920x1080

22 26935.2 38.5296 1964 2.826E+09 325

27 7678.147 36.5099 1397 2.315E+09 276

32 3475.613 34.4353 1161 1.872E+09 236

37 1731.107 32.1414 1029 1.493E+09 201

Basketball Drive

(class B)

1920x1080

22 67392.53 39.0977 2267 2.321E+09 277

27 15129.17 35.3067 1421 1.677E+09 212

32 4596.88 33.1538 1080 1.267E+09 174

37 1828.016 30.8963 937 997718451 142

BQ Terrace

(class B)

1920x1080

22 14929.88 39.8812 2259 5.622E+09 688

27 5356.493 38.4422 1739 4.263E+09 554

32 2603.987 36.7461 1441 3.164E+09 445

37 1376.947 34.759 1250 2.358E+09 358

Race Horses (class

C) 832x480

22 7118.28 39.5403 632 1.554E+09 182

27 2917.112 35.5395 496 1.31E+09 160

32 1326.4 32.2238 403 1.038E+09 135

37 623.6 29.3662 336 794031692 112

BQ Mall (class C)

832x480

22 5543.456 39.7067 341 446815190 50

27 2549.552 36.7953 269 388602040 45

32 1273.392 33.771 227 326834209 39

37 656.944 30.7602 200 272688700 34

Party Scene (class

C)

832x480

22 13890.95 38.2977 513 620446227 68

27 6329.373 34.0949 388 545585109 62

32 2914.333 30.4886 306 450311595 54

37 1333.107 27.3043 250 358812891 45

Basketball Drill

(class C)

832x480

22 3956.667 40.4824 387 670078838 75

27 1837.333 37.3527 312 569456541 67

32 886.6267 34.4763 257 461882086 58

37 458.0533 31.9501 222 368540515 49

PROPOSED MOTION ESTIMATION ALGORITHM

101

TABLE 4.12: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR

CLASS D AND CLASS E SEQUENCES IN LOW DELAY P MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Race Horses

(class D)

416x240

22 1702.336 39.5124 147 326350758 36

27 835.904 35.3394 120 287298379 33

32 407.816 31.7276 99 235870365 29

37 203.92 28.7732 81 184092883 24

BQ Square

(class D)

416x240

22 2914.464 38.866 98 44107053 4

27 1136.672 34.6002 69 41073161 4

32 513.744 31.4165 53 38747966 4

37 243.584 28.444 45 36576430 4

Blowing

Bubbles (class

D)

416x240

22 2233.107 38.4098 109 129333066 14

27 953.9333 34.8495 84 111632416 12

32 428.28 31.7539 65 90117509 10

37 195.92 28.9916 54 72658664 9

Basketball Pass

(class D)

416x240

22 924.1067 41.3012 65 74604633 8

27 462.8667 37.6504 56 66739132 7

32 231.1867 34.345 49 57244446 7

37 119.2267 31.4102 44 49413123 6

Four People

(class E)

1280x720

22 3033.488 42.4883 466 425547001 49

27 1312.496 40.3803 389 382700843 42

32 710.848 37.8325 361 348783802 40

37 401.12 34.9331 345 321518005 38

Johnny (class E)

1280x720

22 2983.616 42.7226 497 458236419 56

27 915.168 40.9506 398 380403494 45

32 422.976 38.9891 362 333470300 40

37 230.08 36.6498 345 304617434 38

Kristen And

Sara

(class E)

1280x720

22 2845.248 43.1457 501 583931233 71

27 1133.344 41.0897 422 479206214 58

32 574.688 38.7774 385 405412172 51

37 316.448 36.1441 364 357662162 49

PROPOSED MOTION ESTIMATION ALGORITHM

102

TABLE 4.13: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR

CLASS B AND CLASS C SEQUENCES IN LOW DELAY B MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Kimono

(class B)

1920x1080

22 6987.44 42.157 2983 6.52E+09 884

27 3455.96 40.237 2521 5.42E+09 763

32 1701.70 37.564 2165 4.24E+09 649

37 851.30 34.860 1907 3.14E+09 548

Park Scene (class

B)

1920x1080

22 9197.84 39.979 2341 2.26E+09 389

27 3833.63 37.236 1904 1.88E+09 350

32 1682.75 34.545 1645 1.55E+09 308

37 741.00 32.033 1525 1.29E+09 284

Cactus (class B)

1920x1080

22 24394.92 38.608 2474 2.97E+09 447

27 7418.97 36.575 1877 2.41E+09 384

32 3415.41 34.496 1624 1.95E+09 342

37 1698.83 32.176 1509 1.55E+09 308

Basketball Drive

(class B)

1920x1080

22 56350.30 39.051 2771 2.45E+09 404

27 12499.15 35.592 1876 1.72E+09 318

32 3959.44 33.369 1548 1.29E+09 276

37 1677.97 31.045 1433 1.04E+09 247

BQ Terrace

(class B)

1920x1080

22 13979.64 39.955 2797 5.81E+09 809

27 5162.84 38.535 2265 4.39E+09 668

32 2516.11 36.866 1944 3.27E+09 552

37 1335.71 34.898 1766 2.42E+09 470

Race Horses (class

C) 832x480

22 6703.48 39.558 736 1.54E+09 204

27 2841.68 35.654 606 1.31E+09 182

32 1303.71 32.283 512 1.04E+09 157

37 615.05 29.396 439 7.94E+08 131

BQ Mall (class C)

832x480

22 5195.76 39.804 434 4.62E+08 73

27 2431.76 36.884 362 4.02E+08 64

32 1237.78 33.856 317 3.35E+08 60

37 644.85 30.838 289 2.79E+08 54

Party Scene (class

C)

832x480

22 12502.95 38.392 609 6.3E+08 93

27 6012.80 34.251 495 5.53E+08 86

32 2831.73 30.547 413 4.6E+08 74

37 1305.48 27.324 352 3.68E+08 67

Basketball Drill

(class C)

832x480

22 3696.37 40.595 480 6.7E+08 95

27 1759.20 37.460 407 5.73E+08 88

32 850.25 34.558 350 4.63E+08 78

37 441.77 32.036 312 3.72E+08 70

PROPOSED MOTION ESTIMATION ALGORITHM

103

TABLE 4.14: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR

CLASS D AND CLASS E SEQUENCES IN LOW DELAY B MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Race Horses

(class D)

416x240

22 1665.18 39.605 175 3.28E+08 43

27 830.34 35.416 147 2.89E+08 38

32 405.15 31.749 125 2.37E+08 34

37 200.94 28.786 107 1.86E+08 28

BQ Square

(class D)

416x240

22 2242.69 38.912 116 44997116 10

27 971.47 34.933 90 41624063 10

32 472.83 31.636 76 38992282 9

37 234.45 28.529 67 36967461 9

Blowing

Bubbles (class

D)

416x240

22 2107.79 38.479 136 1.34E+08 19

27 930.53 34.915 110 1.15E+08 18

32 419.92 31.767 90 93907847 15

37 193.20 29.017 77 75976792 14

Basketball Pass

(class D)

416x240

22 898.49 41.326 87 76637077 13

27 458.37 37.724 77 68235827 12

32 229.64 34.392 70 58349909 11

37 117.92 31.409 65 50987854 11

Four People

(class E)

1280x720

22 2894.26 42.561 663 4.45E+08 94

27 1290.13 40.431 586 3.98E+08 89

32 707.02 37.868 553 3.61E+08 84

37 402.58 34.964 535 3.3E+08 81

Johnny (class E)

1280x720

22 2576.40 42.833 705 4.76E+08 103

27 857.47 41.083 603 3.99E+08 93

32 412.08 39.105 563 3.49E+08 87

37 228.21 36.733 541 3.13E+08 82

Kristen And

Sara

(class E)

1280x720

22 2693.94 43.208 730 6.52E+08 127

27 1111.31 41.148 635 5.17E+08 107

32 566.00 38.810 591 4.31E+08 100

37 315.28 36.177 562 3.72E+08 92

PROPOSED MOTION ESTIMATION ALGORITHM

104

TABLE 4.15: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR

CLASS B AND CLASS C SEQUENCES IN LOW DELAY P MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Kimono

(class B)

1920x1080

22 7362.57 42.008 1814 1.36E+09 177

27 3570.14 40.073 1485 1.21E+09 162

32 1766.65 37.390 1240 1.07E+09 142

37 890.80 34.685 1076 9.33E+08 131

Park Scene (class

B)

1920x1080

22 9644.87 39.896 1639 9.31E+08 122

27 3928.15 37.181 1245 8.53E+08 112

32 1710.71 34.510 1043 7.86E+08 103

37 756.33 32.020 933 7.28E+08 97

Cactus (class B)

1920x1080

22 26987.25 38.521 1766 9.07E+08 115

27 7723.00 36.503 1240 8.24E+08 105

32 3487.80 34.429 1035 7.69E+08 101

37 1733.76 32.137 936 7.24E+08 92

Basketball Drive

(class B)

1920x1080

22 67531.95 39.094 2131 9.39E+08 120

27 15153.23 35.302 1323 8.2E+08 106

32 4582.14 33.148 1005 7.4E+08 97

37 1830.91 30.892 888 6.9E+08 90

BQ Terrace

(class B)

1920x1080

22 14946.49 39.881 1734 1.22E+09 164

27 5368.09 38.441 1330 1.05E+09 145

32 2610.72 36.741 1128 9.17E+08 128

37 1378.71 34.752 1010 8.18E+08 117

Race Horses (class

C) 832x480

22 7142.51 39.541 487 2.98E+08 38

27 2924.09 35.522 373 2.71E+08 35

32 1330.76 32.211 300 2.39E+08 32

37 625.83 29.357 252 2.09E+08 29

BQ Mall (class C)

832x480

22 5587.98 39.698 315 1.66E+08 19

27 2560.99 36.776 248 1.56E+08 20

32 1287.86 33.754 210 1.46E+08 17

37 661.01 30.761 188 1.37E+08 17

Party Scene (class

C)

832x480

22 13962.89 38.289 473 1.91E+08 24

27 6373.64 34.083 351 1.82E+08 23

32 2921.97 30.472 275 1.69E+08 21

37 1333.68 27.299 225 1.54E+08 19

Basketball Drill

(class C)

832x480

22 3978.64 40.463 337 1.94E+08 24

27 1849.56 37.345 269 1.77E+08 22

32 887.52 34.453 222 1.61E+08 20

37 459.39 31.937 194 1.48E+08 19

PROPOSED MOTION ESTIMATION ALGORITHM

105

TABLE 4.16: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR

CLASS D AND CLASS E SEQUENCES IN LOW DELAY P MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Race Horses

(class D)

416x240

22 1713.21 39.513 119 70639388 8

27 840.52 35.316 95 66144311 7

32 409.26 31.698 76 59863410 7

37 204.69 28.772 63 52756039 7

BQ Square

(class D)

416x240

22 2941.01 38.867 97 35786878 4

27 1145.90 34.576 68 33813930 4

32 512.88 31.402 53 32123884 4

37 243.54 28.416 45 30889806 4

Blowing

Bubbles (class

D)

416x240

22 2243.16 38.393 102 48990277 6

27 959.33 34.840 77 45924563 5

32 428.41 31.741 60 41833241 5

37 198.04 28.994 50 37782697 4

Basketball Pass

(class D)

416x240

22 929.28 41.289 62 34984216 4

27 467.71 37.656 53 34061723 4

32 233.73 34.348 47 32925241 3

37 119.32 31.388 43 31780297 3

Four People

(class E)

1280x720

22 3041.50 42.478 462 3E+08 37

27 1317.97 40.369 392 2.85E+08 35

32 712.26 37.837 365 2.76E+08 34

37 404.38 34.945 350 2.69E+08 33

Johnny (class E)

1280x720

22 2994.13 42.712 490 3.23E+08 39

27 920.90 40.934 398 2.99E+08 38

32 419.76 38.980 365 2.82E+08 34

37 227.81 36.650 350 2.72E+08 33

Kristen And

Sara

(class E)

1280x720

22 2850.56 43.141 484 3.31E+08 42

27 1134.75 41.086 411 3.08E+08 39

32 573.78 38.777 379 2.92E+08 36

37 318.50 36.143 361 2.81E+08 36

PROPOSED MOTION ESTIMATION ALGORITHM

106

TABLE 4.17: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR

CLASS B AND CLASS C SEQUENCES IN LOW DELAY B MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Kimono

(class B)

1920x1080

22 6992.24 42.159 2406 2.27E+09 303

27 3458.41 40.235 2062 2.08E+09 283

32 1703.93 37.567 1796 1.9E+09 259

37 850.44 34.851 1606 1.74E+09 242

Park Scene (class

B)

1920x1080

22 9210.20 39.978 2229 1.86E+09 247

27 3834.25 37.232 1817 1.72E+09 233

32 1685.58 34.539 1580 1.6E+09 217

37 741.36 32.027 1449 1.52E+09 207

Cactus (class B)

1920x1080

22 24442.68 38.609 2268 1.58E+09 207

27 7432.48 36.570 1699 1.35E+09 177

32 3427.24 34.486 1483 1.27E+09 170

37 1708.80 32.166 1368 1.2E+09 158

Basketball Drive

(class B)

1920x1080

22 56401.20 39.050 2649 1.86E+09 247

27 12488.70 35.592 1801 1.64E+09 219

32 3951.87 33.369 1496 1.52E+09 202

37 1677.86 31.038 1382 1.44E+09 193

BQ Terrace

(class B)

1920x1080

22 13987.25 39.956 2288 2.07E+09 278

27 5164.25 38.528 1879 1.87E+09 258

32 2523.69 36.867 1656 1.71E+09 241

37 1337.80 34.911 1525 1.6E+09 226

Race Horses (class

C) 832x480

22 6733.18 39.560 606 5.01E+08 66

27 2851.66 35.653 491 4.64E+08 63

32 1307.35 32.267 416 4.22E+08 57

37 618.74 29.390 364 3.82E+08 54

BQ Mall (class C)

832x480

22 5200.86 39.800 402 2.63E+08 34

27 2441.06 36.873 333 2.46E+08 32

32 1245.17 33.847 293 2.31E+08 30

37 647.79 30.830 269 2.16E+08 27

Party Scene (class

C)

832x480

22 12526.59 38.399 573 3.75E+08 48

27 6037.48 34.252 463 3.55E+08 46

32 2839.31 30.544 385 3.27E+08 42

37 1309.99 27.327 329 2.97E+08 39

Basketball Drill

(class C)

832x480

22 3714.40 40.597 429 2.96E+08 37

27 1761.31 37.453 363 2.79E+08 36

32 854.89 34.551 312 2.61E+08 34

37 444.31 32.033 282 2.47E+08 33

PROPOSED MOTION ESTIMATION ALGORITHM

107

TABLE 4.18: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR

CLASS D AND CLASS E SEQUENCES IN LOW DELAY B MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Race Horses

(class D)

416x240

22 1670.08 39.594 150 1.23E+08 15

27 831.42 35.386 125 1.17E+08 15

32 405.57 31.724 106 1.08E+08 14

37 201.94 28.761 91 97015348 13

BQ Square

(class D)

416x240

22 2244.66 38.913 116 74235128 9

27 972.18 34.922 91 71254287 9

32 472.74 31.630 77 66801454 8

37 233.81 28.531 68 62261607 8

Blowing

Bubbles (class

D)

416x240

22 2114.56 38.475 131 95485714 11

27 930.63 34.925 104 89160582 11

32 418.61 31.746 85 81078083 10

37 194.04 28.992 73 73230996 9

Basketball Pass

(class D)

416x240

22 903.89 41.325 80 51936540 7

27 459.79 37.709 72 51108934 6

32 230.33 34.368 66 51162345 6

37 118.53 31.412 62 52260397 6

Four People

(class E)

1280x720

22 2901.89 42.554 640 4.44E+08 57

27 1291.89 40.427 563 4.08E+08 53

32 707.81 37.863 532 3.85E+08 49

37 403.62 34.959 513 3.72E+08 48

Johnny (class E)

1280x720

22 2582.30 42.837 684 5.34E+08 70

27 858.90 41.076 585 4.85E+08 64

32 415.46 39.100 546 4.5E+08 57

37 227.52 36.732 526 4.24E+08 54

Kristen And

Sara

(class E)

1280x720

22 2694.29 43.205 688 5.63E+08 74

27 1115.47 41.143 606 5.22E+08 69

32 568.18 38.802 567 4.96E+08 63

37 316.00 36.170 542 4.75E+08 64

PROPOSED MOTION ESTIMATION ALGORITHM

108

TABLE 4.19: SIMULATION RESULTS OF TZSEARCH ALGORITHM FOR

CLASS A SEQUENCES IN RANDOM ACCESS MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Traffic (class A)

2560x1600

22 13628.03 41.620 3006.014 1.84E+09 342

27 5461.34 39.057 2471.496 1.6E+09 309

32 2607.24 36.481 2180.01 1.41E+09 281

37 1350.86 33.814 2041 1.28E+09 265

People on Street

(class A)

2560x1600

22 32858.05 40.193 4614 6.8E+09 980

27 15824.14 37.165 3842 5.72E+09 865

32 8313.78 34.184 3318 4.7E+09 749

37 4678.12 31.429 2994 3.91E+09 667

Nebuta (class

A)

2560x1600

22 917165.90 38.832 11532 1.91E+10 2358

27 679629.39 32.511 10587 1.7E+10 2120

32 472875.45 26.790 9721 1.35E+10 1863

37 298457.71 21.120 8646 9.46E+09 1531

Stream

Locomotive

(class A)

2560x1600

22 778091.58 38.500 10629 1.38E+10 1668

27 561708.59 32.570 9763 1.16E+10 1453

32 373970.14 27.070 8809 8.88E+09 1241

37 270132.99 22.840 7759 6.36E+09 1036

PROPOSED MOTION ESTIMATION ALGORITHM

109

TABLE 4.20: SIMULATION RESULTS OF PROPOSED ALGORITHM FOR

CLASS A SEQUENCES IN RANDOM ACCESS MODE

Sequence QP Bitrate (Kbps)
Y-PSNR

(dB)

Total

encoding time

(sec)

Total ME Search

Points

Total ME

Time (sec)

Traffic (class A)

2560x1600

22 13823.15 41.610 2925 2.06E+09 274

27 5584.13 39.040 2430 1.95E+09 257

32 2692.29 36.460 2197 1.88E+09 249

37 1406.48 33.790 2071 1.83E+09 239

People on Street

(class A)

2560x1600

22 33109.93 40.190 3980 2.79E+09 372

27 15960.13 37.150 3330 2.62E+09 354

32 8397.89 34.160 2920 2.47E+09 329

37 4722.05 31.400 2649 2.33E+09 317

Nebuta (class

A)

2560x1600

22 920653.80 38.820 9380 3.25E+09 419

27 683683.20 32.562 9069 3.25E+09 424

32 477046.04 26.838 8385 3.24E+09 432

37 301275.70 21.140 7508 3.12E+09 420

Stream

Locomotive

(class A)

2560x1600

22 780416.40 38.540 9247 3.21E+09 408

27 564626.37 32.612 8913 3.15E+09 411

32 377392.85 27.031 8141 3.06E+09 403

37 271941.98 22.777 7122 2.89E+09 387

PROPOSED MOTION ESTIMATION ALGORITHM

110

TABLE 4.21: COMPARISON OF RESULTS OF PROPOSED ALGORITHM

WITH FULL SEARCH ALGORITHM FOR CLASS B SEQUENCES

Sequence Name QP
Num of srch points ∆∆∆∆N

(%)

ME time T

(∆∆∆∆T %)
Total Enc Time (∆∆∆∆E %) BD-PSNR BD-bitrate

Kimono (class B)

1920x1080

22 99.571 99.390 94.092

3.53E-05 -0.03952
27 99.617 99.433 95.038

32 99.662 99.497 95.775

37 99.702 99.530 96.269

ParkScene (class B)

1920x1080

22 99.401 99.132 89.496

-0.01158 0.374027
27 99.434 99.171 91.509

32 99.471 99.221 92.647

37 99.481 99.227 93.040

Cactus (class B)

1920x1080

22 98.942 98.526 81.350

-0.02384 1.025484
27 98.991 98.577 85.446

32 99.037 98.593 87.249

37 99.106 98.743 88.546

Basketball_Drive

(class B)

1920x1080

22 99.437 99.208 87.597

-0.01745 0.786849
27 99.431 99.181 90.667

32 99.352 99.047 90.949

37 99.220 98.868 89.877

BQTerrace (class

B)

1920x1080

22 99.689 99.537 95.318

-0.01216 0.604316 27 99.729 99.582 96.293

32 99.762 99.625 96.788

37 99.784 99.654 97.098

Average

PROPOSED MOTION ESTIMATION ALGORITHM

111

TABLE 4.22: COMPARISON OF RESULTS OF PROPOSED ALGORITHM

WITH TZSEARCH ALGORITHM FOR CLASS B SEQUENCES

Sequence Name QP Num of srch points ∆∆∆∆N

(%)

ME time T

(∆∆∆∆T %)

Total Enc Time (∆∆∆∆E %) BD-PSNR BD-bitrate

Kimono (class B)

1920x1080

22 56.56 53.61 23.62

-0.007 0.223
27 51.76 50.88 23.61

32 45.67 47.45 22.84

37 38.74 42.26 20.30

ParkScene (class B)

1920x1080

22 67.91 64.62 7.82

-0.017 0.677
27 64.39 61.96 8.52

32 58.91 57.20 7.70

37 51.53 54.23 6.33

Cactus (class B)

1920x1080

22 59.54 56.68 10.08

-0.006 0.315
27 51.13 50.00 11.24

32 41.59 44.25 10.85

37 30.84 36.62 9.04

Basketball_Drive

(class B)

1920x1080

22 78.24 76.16 6.00

-0.007 0.349
27 75.34 73.83 6.90

32 71.03 71.24 6.94

37 65.29 67.32 5.23

BQTerrace (class

B)

1920x1080

22 56.56 53.61 23.24

-0.007 0.223
27 51.76 50.88 23.52

32 45.67 47.45 21.72

37 38.74 42.26 19.20

Average 60.08 59.93 13.73 -0.006 0.25

PROPOSED MOTION ESTIMATION ALGORITHM

112

TABLE 4.23: COMPARISON OF RESULTS OF PROPOSED ALGORITHM

WITH TZSEARCH ALGORITHM FOR CLASS C SEQUENCES

Sequence Name QP
Num of srch points

∆∆∆∆N (%)

ME time

∆∆∆∆T (%)

Total Enc Time

∆∆∆∆E (%)
BD-PSNR BD-bitrate

Race Horses

(class C)

832x480

22 80.81 79.12 22.94

-0.025 0.594

27 79.34 78.13 24.80

32 76.94 76.30 25.56

37 73.68 74.11 25.00

BQ Mall

(class C)

832x480

22 62.90 62.00 7.62

-0.046 1.125

27 59.90 55.56 7.81

32 55.36 56.41 7.49

37 49.62 50.00 6.00

Party Scene

(class C)

832x480

22 69.15 64.71 7.80

-0.034 0.733

27 66.68 62.90 9.54

32 62.47 61.11 10.13

37 57.08 57.78 10.00

Basketball Drill

(class C)

832x480

22 71.05 68.00 12.92

-0.032 0.808

27 68.99 67.16 13.78

32 65.13 65.52 13.62

37 59.82 61.22 12.61

Average 66.18 65.00 13.60 -0.034 0.815

PROPOSED MOTION ESTIMATION ALGORITHM

113

TABLE 4.24: COMPARISON OF RESULTS OF PROPOSED ALGORITHM

WITH TZSEARCH ALGORITHM FOR CLASS D AND CLASS E SEQUENCES

Sequence Name QP
Num of srch points ∆∆∆∆N

(%)

ME time T

(∆∆∆∆T %)

Total Enc Time (∆∆∆∆E %) BD-PSNR BD-bitrate

RaceHorses (class

D)

416x240

22 78.35 84.85 77.78

-0.044 0.872
27 76.98 83.80 78.79

32 74.62 82.17 75.86

37 71.34 79.86 70.83

BQSquare (class D)

416x240

22 18.86 46.77 0.00

-0.037 0.941
27 17.67 42.37 0.00

32 17.10 39.12 0.00

37 15.55 37.37 0.00

BlowingBubbles

(class D)

416x240

22 62.12 60.18 57.14

-0.027 0.707
27 58.86 59.82 58.33

32 53.58 57.63 50.00

37 48.00 53.43 55.56

BasketballPass

(class D)

416x240

22 53.11 82.38 50.00

-0.044 0.902
27 48.96 81.75 42.86

32 42.48 80.29 57.14

37 35.68 78.60 50.00

Average 48.33 65.65 45.27 -0.038 0.856

FourPeople (class

E)

1280x720

22 57.20 54.26 4.87

-0.007 0.08
27 53.26 52.06 2.83

32 48.71 50.86 4.49

37 44.06 47.79 3.71

Johnny (class E)

1280x720

22 48.12 47.34 3.18

-0.003 0.27
27 42.37 42.34 2.70

32 37.25 40.66 2.33

37 32.55 36.59 2.27

KristenAndSara

(class E)

1280x720

22 63.48 64.78 10.69

-0.002 0.02
27 57.57 58.29 14.81

32 51.14 55.93 7.04

37 44.87 53.62 7.41

Average 48.38 50.38 5.53 -0.004 0.12

4.8 SOFTWARE TOOLS AND TEST CONDITIONS

The reference software HM version 16.0 is used for all the simulations [130]. The test

sequences that were used in each class are listed in Table 2.4, Section 2.9.4 of Chapter

PROPOSED MOTION ESTIMATION ALGORITHM

114

2. The test conditions for various configurations LDP, LDB and RA are shown in Table

4.26.

 In LDB (also called as main configuration) and LDP the hierarchical coding

structure was disabled and the GOP size limited to 4. In RA configuration, hierarchical

coding structure was enabled and the GOP size is taken as 8. In LDP configuration, bi-

TABLE 4.25: SUMMARY OF COMPARISON OF PROPOSED VS FULL SEARCH

AND TZSEARCH ALGORITHMS FOR VARIOUS CONFIGURATIONS

Sequence

LDP

Total_encoding_

time (%)

Total ME

Search Points

(%)

Total_ME_Tim

e (%)
BD-PSNR BD-bitrate

FS TZS FS TZS FS TZS FS TZS FS TZS

B 91.752 13.735 99.441 60.081 99.187 59.926 -0.013 -0.006 0.550 0.253

C 85.587 13.601 99.047 66.182 98.703 65.001 -0.051 -0.034 1.225 0.815

D 75.895 8.374 98.241 48.330 97.755 45.268 -0.051 -0.038 1.154 0.856

E 76.264 5.530 98.017 48.380 97.247 50.380 -0.014 -0.004 0.445 0.120

Total

Average
82.375 10.310 98.686 55.743 98.223 55.144 -0.033 -0.020 0.843 0.511

LDB

B 89.595 36.657 99.487 46.584 98.586 46.330 -0.011 -0.006 0.473 0.207

C 83.069 33.931 99.141 54.267 97.896 52.986 -0.035 -0.021 0.809 0.493

D 71.424 31.352 98.383 38.585 95.894 35.424 -0.034 -0.020 0.711 0.415

E 70.999 33.965 98.250 36.563 95.990 34.434 -0.013 -0.012 0.481 0.444

Total

Average
78.772 33.976 98.815 44.000 97.092 42.293 -0.023 -0.015 0.619 0.390

RA

B 93.887 23.601 99.526 43.229 98.932 41.255 -0.041 -0.049 0.848 0.365

C 91.353 20.836 99.371 49.587 98.715 48.189 -0.088 -0.079 0.506 0.325

D 91.101 29.887 99.341 31.582 98.666 29.919 -0.066 -0.052 0.701 0.535

E 92.355 29.286 99.371 13.638 98.923 10.549 -0.011 -0.011 0.394 0.323

Total

Average
92.174 25.903 99.402 34.509 98.809 32.478 -0.055 -0.048 0.534 0.394

Total

Average
84.440 23.396 98.968 44.751 98.041 43.305 -0.037 -0.028 0.665 0.432

PROPOSED MOTION ESTIMATION ALGORITHM

115

directional prediction was disabled and only P-frames were used. The intra period

(frequency of I frames) of RA mode was 32. For LDP and LDB modes only the first

frame can be I frame.

 The internal bit depth, that is the number of bits used to indicate the color of each

pixel, was taken 8 for all modes, which is the default value. The rate control algorithm

was disabled. The AMP was enabled so that ME is performed for all block sizes.

4.9 SUMMARY OF PROPOSED ALGORITHM

The proposed fast motion estimation (ME) algorithm is composed of five ME tools,

dynamic search range, initial search point prediction, early termination, rotating

hexagonal pattern and hexagonal fine refinement. Each of these tools contributes to

reduce the ME complexity. The overall reduction in the ME complexity compared to

TABLE 4.26: CONFIGURATION SETTINGS USED IN HM

CODING OPTIONS
 PARAMETER

LDP LDB RA

Encoder Version HM 16.0

Reference Frames 4

R/D Optimization Enabled

Motion Estimation TZSearch/Proposed

Search Range 64

GOP Size 4 8

Hierarchical Encoding Disabled Enabled

Bi-directional Prediction Disabled Enabled

Intra Period -1 (only first frame) 32

Coding Unit Size 64

Coding Unit Depth 4

Min. Transform Unit Size 4

Max. Transform Unit Size 32

Rate Control Disabled

Internal Bit Depth 8

Hadamard ME Enabled

Asymmetric Motion

Partitioning (AMP)
Enabled

PROPOSED MOTION ESTIMATION ALGORITHM

116

full search and fast ME algorithm (TZSearch) implemented in HEVC is significant with

negligible loss in the PSNR and bitrate, as it was further supported using the

Bjontegaard metric results.

PROPOSED VLSI ARCHITECTURE

117

5 PROPOSED VLSI ARCHITECTURE

5.1 INTRODUCTION

Motion estimation is usually performed sequentially in software based encoders. The

CPU calculates the RD cost for each point in SW sequentially. Furthermore the whole

ME operation is conducted for each block size of the current block sequentially, from

higher block size to lower block sizes. This is computationally very expensive and

particularly inefficient for HEVC, as the number of block modes and block sizes is very

large. Some of the complexity can be reduced using the preprocessing steps such as

DSR algorithm, motion vector prediction algorithm and early termination algorithm

(explained in Chapter 4). But, once the SW is fixed and an optimal MV has to be found

in the SW, the complexity will be too high with CPU as the cost calculation is

sequential. A good solution to this problem is to accelerate this process by designing a

suitable hardware architecture and exploit parallelism and pipelining. The present thesis

proposed a ME architecture which was able to comply with all the variable block sizes

of HEVC standard.

The architecture is based on a FPGA and uses block RAMs to store SW pixels

data. The top level block diagram of the overall system is shown in Fig. 5.1. The control

unit controls all the ME process using a state machine. The current PU (Prediction Unit)

and the SW pixels data are stored in their corresponding local memory units which are

addressed through an external bus from the external memory unit. The address

generation unit sends the address locations of the candidate reference block to the SW

memory unit depending on the algorithm. Then the reference candidate block data is

sent to the SW buffer for SAD calculation. The SAD unit calculates the SAD between

the current PU and reference blocks. The cost calculation unit calculates the RD cost by

adding the SAD value (calculated by SAD unit) to the bitrate of the MVD (explained in

Section 2.11.6 of Chapter 2). The comparator compares the RD cost of the current and

the previous minimum stored value. The final MV (along with its RD cost) of the block

which has least RD cost is stored in the register memory and sent to the output. The

details of each subsystem and their functional description are explained in the following

sections.

PROPOSED VLSI ARCHITECTURE

118

5.2 ALGORITHM ADAPTION TO HARDWARE

The proposed algorithm (explained in Chapter 4) is modified to suit the hardware design

requirements. The proposed architecture takes one 64x64 current block (prediction unit)

and a SW with 192x192 pixels data (search range=64) and outputs a set of variable

block size MVs. The coarse refinement step using rotating hexagonal patterns is

performed once the SW data is defined. After obtaining the minimum cost MV (from

coarse search) the fine refinement is performed using the hexagonal based gradient

descent method. In the last stage, the search is performed for the remaining 10 search

points in the hexagon (explained in Section 4.5, Fig. 4.3, of Chapter 4). A graphical

representation of these steps is depicted in the flowchart of Fig. 5.2.

Fig. 5.1 Top Level Block Diagram of

Proposed Motion Estimation

Architecture

Fig. 5.2 Flowchart of the Proposed

Algorithm

PROPOSED VLSI ARCHITECTURE

119

As shown in Fig.4.3 of Section 4.2.5, there will be 6 rotating hexagonal grids

resulting in 36 search points. Apart from hexagons, there is a small diamond search

pattern near the co-located point, making a total of five additional search points, as

shown in (5.1), where ‘R’ is the search range value. After finding the coarse minimal

point, the algorithm refines it using small hexagons (shown in Fig. 4.6 of Chapter 4). In

each iteration there will be three new search points. For simplicity in hardware

implementation, the maximum number of iterations for fine refinement is limited to 10.

The number of total search points which takes fine refinement iterations more than 10 is

less than 0.001% (with negligible RD loss) and further the fixed number of maximum

iterations value would be easy to calculate the maximum throughput instead of having a

variation in number of iterations between various current blocks. Hence the number 10

is chosen. The 10-point square pattern has 10 search points. The total fine refinement

points are given by (5.2), where ‘i’ represents the number of iterations in the fine

refinement stage. In the worst case there will be 43 (= 6+3x9+10) search points in the

fine refinement stage and hence the total number of search points is 84 (=

36+5+33+10). The total number of search points is given by (5.3).

 S�� = 5 + �6 × log7 "� (5.1)

 SmL = �6 + 3�� − 1�	 + 10 (5.2)

 S���OP = �5 + �6 × log7 "�� + �6 + 3�� − 1�	 + 10 (5.3)

5.3 CONTROL UNIT AND ADDRESS GENERATION UNIT

The control unit controls the entire ME process using a finite state machine described in

the following sub-section. The control unit also controls the operations of all the other

sub systems by transmitting and receiving input and output signals.

5.3.1 State Machine of the System

The state machine is designed using Moore FSM (Finite State Machine) design logic

[132], which is safer to use as the outputs change synchronously at every clock edge. A

graphical representation of the proposed FSM is shown in Fig. 5.3. The FSM contains 7

states – IDLE, LOAD_DATA, GET_ADDR, UPDATE_BUFFER, SAD, RD_COST,

COMPARE. Initially after reset the system goes into IDLE state. Then after the ‘start’

signal is given, it goes to the LOAD_DATA state. Here, the SW and current block data

PROPOSED VLSI ARCHITECTURE

120

are updated from the external memory. After the data is loaded, the system goes into

state GET_ADDR. In this state, the AGU (Address Generation Unit) sends the new

address to the SW memory for which the cost has to be calculated. Then in the next

state (UPDATE_BUFFER), the SW buffer is updated with the new reference PU block

data. After the buffer is updated, the system calculates the SAD and RD cost in the

states SAD and RD_COST respectively.

In the final state COMPARE, the RD cost is compared using a comparator. The

MV and SAD registers are updated with the final results. The states GET_ADDR, SAD,

RD_COST and COMPARE continue to loop until all the total search points are checked,

from global search stage to fine refinement. If the search points are finished, the

COMPARE state goes to IDLE state.

5.3.2 Address Generation Unit

The Address Generation Unit (AGU) sends addresses for the search window memory

and the current PU memory units so that they can send the corresponding data to the

SAD unit for calculation. The address sequences are generated according to the ME

!compare_finished

IDLE/

000000

!start

LOAD_DATA/

000001

SAD/

001000

start

!load_finished

load_finished

RD_COST/

010000

!sad_finished

sad_finished

!cost_finished

COMPARE/

100000
compare_finished

& !search_finished

compare_finished

& search_finished

GET_ADDR/

000010

!addr_sent

UPDATE_BUFFER/

000100

!update_finished

addr_sent

update_

finished

cost_finished

reset

Fig. 5.3 State Machine for the Proposed Architecture

PROPOSED VLSI ARCHITECTURE

121

algorithm. As explained, initially there are 41 search points (six hexagons, one small

diamond and co-located point) for finding the coarse minimum point. As the addresses

of these points are fixed for every current block, these values are stored in a ROM

(Read Only Memory) with width 14-bit and depth 41. The width is taken as 14 because

each co-ordinate (x and y) requires 7-bit with MV ranging from -64 to 63. After the

minimum point is calculated, the offset address is sent back from the comparator to the

AGU. Then the AGU generates offset addresses for small hexagon patterns to do fine

refinement.

5.4 PROPOSED MEMORY ARCHITECTURE

5.4.1 Search Window Memory Architecture

One of the critical design considerations for ME is the search window memory

architecture. Broadly classifying, there are two types of search window memories that

can be considered for the proposed fast ME architecture. The first type (Type-I memory

architecture) operates by sending only the required reference candidate block (or some

blocks) from the external memory to the on-chip search window memory. The second

type (Type-II memory architecture) reads the entire search window memory from the

external memory to the on-chip search window memory. Type-I memory architecture

increases the memory traffic because all pixels of each candidate block have to be

transmitted to the local memory even though some parts were transmitted previously.

Even with data reuse schemes to send only the part of candidate block which was not

sent previously, the pixels in the local memory have to be shifted arbitrarily each time to

meet the SAD calculation requirements. The Type-II memory architecture decreases the

memory traffic, but increases the on-chip memory size compared to Type-I.

Furthermore, the candidate reference block memory in Type-I has to be updated every

time (after SAD operation is finished) from the external memory via a limited width

external bus. This will introduce a latency in the entire ME operation. Hence, the

proposed ME architecture uses Type-II memory architecture to store the entire search

window memory.

To store the entire SW memory, the number of hardware resources (registers) will

be too high. One of the major advantages in using modern FPGAs is the availability of

embedded memory blocks (block RAMs or BRAMs). A comparison between hardware

PROPOSED VLSI ARCHITECTURE

122

costs for SW memory (with search range 64) between BRAMs and distributed RAM in

a Xilinx Virtex-6 FPGA [135] is shown in TABLE 5.1. The distributed RAM uses

register memory (flip flops) available from slice LUTs (Look Up Tables) of the FPGA.

As seen from the results, the distributed RAM uses 13% of the available FPGA LUTs.

On contrary the BRAM based architecture uses only 2% of slice LUTs and use the

available BRAMs for memory (5% of total BRAMs available). Hence, the present work

uses BRAMs to design the SW memory architecture for the proposed ME engine. The

number of BRAMs required depends on the required SW size and maximum memory

size of each available BRAM. The BRAM data and address bus width is designed based

on the number of pixel bytes needed concurrently for SAD operation.

The proposed memory architecture uses simple dual port BRAM which has two

data ports, (one for writing data and other for reading data) and with 36k memory as

shown in the diagram of Fig. 5.4. When writing the SW pixels from external memory to

the on-chip BRAM, the proposed architecture uses a 64-bit data bus. The read data bus

width is also taken 64, so as to read 8 pixels concurrently.

For the proposed ME algorithm, the maximum Search Range (SR) is taken as 64

and the maximum default size of the current PU (Prediction Unit) block in HEVC is

64x64. Hence the SW size will be 192x192 pixels, calculated using (5.4), where WSW,

HSW represents width and height of SW, WPU, HPU represent width and height of PU

block. Hence the depth of each BRAM is taken as 192 which is equivalent to the height

of the SW memory. The number of BRAMs required is calculated using (5.5), where

nBRAM represents number of BRAM units, WSW represents width of SW and WreadBus

represents required width of read data bus.

TABLE 5.1: COMPARISON BETWEEN DISTRIBUTED RAM ARCHITECTURE

AND BRAM BASED ARCHITECTURE

Distributed RAM

Architecture

BRAM based

Architecture

Slice LUTs 19986 (13%) 3441 (2%)

Slice Registers 4608 (1%) 64 (<1%)

BRAMs NA 24 (5%)

PROPOSED VLSI ARCHITECTURE

123

The search window width WSW is 1536 bits (= 192 × 8 bits/pixel). The read data

bus width should be considered based on the maximum allowable read data bits in the

BRAM specification. The proposed memory architecture uses Xilinx Virtex-6 BRAM36

[135] embedded memory, that has maximum allowable concurrent read bits 72 (with 64

data bits and 8 error correction bits). Hence the proposed memory architecture uses 64

 �o} × no} = ��2 A �"� +�pr	 A ��2 A �"� + npr	 (5.4)

 S.�� = �o}�LMO-.N� (5.5)

Fig. 5.4 BRAM used for search window memory architecture

Fig. 5.5 Proposed BRAM based search window memory architecture

PROPOSED VLSI ARCHITECTURE

124

bits wide read data bus (which is equivalent to 8 pixels) for each BRAM. Hence from

(5.5), nBRAM is equivalent to 24 (=1536/64).

In a similar manner, for any BRAM specification, the number of BRAMs can be

calculated using (5.5). The complete memory architecture is shown in Fig. 5.5, which

consists of 24 BRAMs, a write data bus (with width 64) to store SW pixels from the

external to the on-chip memory, address and control signals. The read data bus width is

512 bits (or 64 pixels).

5.4.2 Current Block and Search Window Buffer Memory Architecture

For each search operation, the current PU memory is fixed and hence the current PU

pixels data is stored into the on-chip memory. The data from the PU memory needs to

be accessed according to the input requirements of the SAD unit. The SAD unit

accesses each row from four 4x4 pixel blocks in one clock cycle. Accessing these

memory locations is easy if implemented in distributed RAM architectures. Furthermore

the memory required for 64x64 PU block is less when compared to SW memory. Hence

the PU memory is stored using distributed RAM. In order to make the memory access

regular, the candidate block from SW is stored in a 64x64 buffer (SWB or SW Buffer).

The synthesis results of the current PU memory block and SW buffer blocks are

shown in TABLE 5.2. Both the memory blocks operate at same frequency (500.95

MHz) and occupy almost the same number of slice registers (3.8k and 3.9k) and slice

LUTs (4.3k and 4.5k).

TABLE 5.2: SYNTHESIS RESULTS OF CURRENT PU MEMORY AND SW

BUFFER BLOCKS

 Slice

LUTs

Slice

Registers

Max freq.

(MHz)

Cur. PU Mem. 4390 3846 500.95

SWB 4519 3974 500.95

PROPOSED VLSI ARCHITECTURE

125

5.5 PROPOSED SAD ARCHITECTURE

The proposed SAD architecture is shown in Fig. 5.6. The architecture consists of four

8x8 SAD calculation units, one 16x16 SAD calculation unit and two Quad-tree Adders

(QAs) of size 32x32 and 64x64 for calculating variable block size SADs. Each 4x4

SAD block contains 16 PE (Processing Elements) and calculates one 4x4, two 4x2 and

two 2x4 partial SADs. In each clock cycle, one set of four 4x4 pixel blocks (or one 8x8

pixel blocks) of current PU and search window PU block is sent to the 4x4 SAD units.

64x64

QA

32x32

QA

16x16

Parallel

SAD Unit

8x8

Parallel

SAD Unit

SAD

Control

Unit

8x8, 8x4, 4x8,

SAD Registers

16x16, 16x8, 8x16, 16x4,

4x16, 16x12, 12x16

 SAD Registers

32x32, 32x16, 16x32, 32x8,

8x32, 32x24, 24x32

SAD Registers

64x64, 64x32, 32x64, 64x16,

16x64, 48x64, 64x48

SAD Registers

Four 4x4 Current

Blocks Pixels

Control Signals

from ME controller

Status Signals to

ME controller

Final SAD

Output

Values to

RD cost

calculator

and

comparator

blocks

8x8

Parallel

SAD Unit

8x8, 8x4, 4x8,

SAD Registers8x8

Parallel

SAD Unit

8x8

Parallel

SAD Unit

Four 4x4 Reference

Blocks Pixels

8x8, 8x4, 4x8,

SAD Registers

8x8, 8x4, 4x8,

SAD Registers
Parallelisism at

8x8 block level

Fig. 5.6 Architecture of Proposed SAD Calculation Unit

4x4 and its

sub-block

SADsFour 4x4 Current

blocks pixels

4x4 and its

sub-block

SADs

4x4 and its

sub-block

SADs

4x4 and its

sub-block

SADs

Four 4x4 Reference

blocks pixels

Parallelisism at 4x4

block level

Data to upper mode

(8x8) SAD unit

From SAD

control unit

Control signals from upper

mode (8x8) SAD unit

Fig. 5.7 Internal Architecture of 8x8 SAD Unit

PROPOSED VLSI ARCHITECTURE

126

All the partial SADs (four 4x4, eight 4x2 and eight 2x4) are stored in temporary

registers along with offset addresses and sent to the 8x8 SAD unit.

The internal architecture of the 8x8 SAD unit is shown in Fig. 5.7, which consists

of four 4x4 block size SAD units. Each 8x8 SAD then calculates one 8x8, two 8x4 and

two 4x8 partial SADs. These values are stored in registers (along with their MV offset

addresses) and then sent to upper depth PU (16x16) SAD unit. The process repeats until

64x64 SAD unit. The 32x32 QA and 64x64 QAs add and accumulate their lower mode

partial SAD while the 8x8 and 16x16 SAD units calculate the partial SADs in parallel.

5.5.1 Adder Tree Architecture for 4x4 SAD Unit

The internal architecture of the 4x4 SAD blocks is shown in Fig. 5.8. It consists of

sixteen absolute difference (AD) circuits and twenty-one 32-bit carry select adders.

Each AD (Absolute Difference) block takes one current pixel input and one search

window PU block pixel input and calculates absolute difference using the circuit shown

in Fig 5.10. After the absolute difference operation, the 4x4 SAD-block adds all the

sixteen AD values using an adder tree architecture and produces 4x4 partial SAD along

with its variable block size SADs – (4x2)0, (4x2)1, (2x4)0, (2x4)1. Although the 4x4

SAD and its variable size SADs are not used for the calculation of RD costs and finding

AD

1
AD

2

AD

3

AD

4

AD

5
AD

6

AD

7

AD

8

AD

9
AD

10

AD

11

AD

12

AD

13
AD

14

AD

15

AD

16

+

+

+ + +

+

+

D D D D D D D D D D D D D D D D

D D

+

D D

D D

D

+ + + +

+

+

D D

+

D D

D D

D

D

1
st

 clk

cycle

2
nd

 clk

cycle

3
rd

 clk

cycle

4
th

 clk

cycle

5
th

 clk

cycle

+
D

+
D

+
D

+
D

+
D

+
D

(2x4)L (4x2)U (2x4)R
(4x2)D

(4x4)

Fig. 5.8 Internal Architecture of 4x4 SAD Unit

PROPOSED VLSI ARCHITECTURE

127

MVs, they are used to calculate upper mode 8x8 partial SADs and its variable block size

SADs – 8x4, 4x8.

5.5.2 Quad-tree Adders

The Quad-tree Adder (QA) calculates variable block size SADs by adding and

accumulating lower size PU SADs. The schematic block diagram is shown in Fig. 5.11.

Each QA takes 5 variable block size inputs and outputs 13 upper mode variable block

size outputs, which includes Asymmetric Mode Partitions (AMPs). The internal

architecture of each output is shown in Fig. 5.12. In each clock cycle, one new input of

the quad-tree SAD is added to the previously stored SAD. There will be 13 adder-

register pairs corresponding to each variable block size. The proposed architecture has

two QAs corresponding to the 32x32 and 64x64 SAD units.

Fig. 5.9 Internal Architecture of Absolute Difference Circuit

Fig. 5.10 Internal Architecture of Carry Select Adder

PROPOSED VLSI ARCHITECTURE

128

5.5.3 Latency Calculations

The first set of sixteen 4x4 SADs are received at the end of 5 clock cycles (as illustrated

in Fig. 5.8). After that, for each clock cycle there will be a new set of sixteen 4x4 SAD

units. Similarly for the 16x16 SAD unit there will be two cycles delay (using adder tree

architecture) with a total delay of 7 clock cycles. After that, for every clock cycle there

will be one 16x16 SAD and its variable block size SADs (16x12, 16x8, 16x4, 12x16,

8x16, 4x16). Hence, the first set of four 16x16 SAD outputs is registered at the end of

10th clock cycle and afterwards each set of four 16x16 SADs take four additional clock

cycles. The 32x32 SAD takes each set of four 16x16 SADs and outputs one 32x32 SAD

(and its variable block size SADs) to the 64x64 SAD unit. Altogether there will be

sixteen 16x16 SAD units that has to be processed for one 64x64 SAD unit, each taking

one clock cycle, except the first 16x16 SAD that take 7 cycles. Hence, the total number

of clock cycles will be 23 (= 7+16).

2Nx2N

QA

(2Nd+1 X Nd+1)U

(2Nd+1 X Nd+1)D

(Nd+1 X 2Nd+1)L

(Nd+1 X 2Nd+1)R

(2Nd+1 X 2Nd+1)

(2Nd X Nd)U

(2Nd X Nd)D

(Nd X 2Nd)L

(Nd X 2Nd)R

(2Nd X 2Nd)

(2Nd X nd)U

(2Nd X 3nd)D

(2Nd X 3nd)U

(2Nd X nd)D

(nd X 2Nd)L

(3nd X 2Nd)R

(3nd X 2Nd)L

(nd X 2Nd)R

clk

reset_n

enable

Fig. 5.11 Schematic Diagram of Quad-Tree Adders

Fig. 5.12 Internal architecture of each Quad Tree Adder

PROPOSED VLSI ARCHITECTURE

129

5.5.4 Area Calculations

There are four 8x8 SADs and each 8x8 SAD unit contain four 4x4 SAD units. Each 4x4

SAD unit contain 16 Absolute Difference (AD) circuits and 21 Carry Select Adders

(CSAs) while each 8x8 SAD unit contain three CSAs to add the four 4x4 partial SADs.

After that the 32x32 and 64x64 SAD units are designed using Quad-tree Adders (QAs).

Hence, altogether there are 256 ADs, 336 CSAs (21x16) and 2 QAs.

5.5.5 Intra-parallelism

The aforementioned SAD architecture in Fig. 5.6, has parallelism at the CU depth three

and four (8x8 and 4x4 PU). This is two-stage (2-stage) intra-parallelism. The total

Fig. 5.13 Quad-core 1-stage (Type-I) SAD Architecture

comp #1

(core #1)

comp #2

(core #2)

comp #5

comp #3

(core #3)

comp #4

(core #4)

comp #6

comp #7

D D D D

D D

D

clk cycle 1

clk cycle 2

clk cycle 3

Fig. 5.14 Comparator Tree Architecture for Type-II SAD Unit

64x64

SAD

32x32

SAD

8x8

Parallel

SAD

16x16

SAD

64x64

SAD

32x32

SAD

8x8

Parallel

SAD

16x16

SAD

64x64

SAD

32x32

SAD

8x8

Parallel

SAD

16x16

SAD

64x64

SAD

32x32

SAD

8x8

Parallel

SAD

16x16

SAD

 Input Buses

Output Register Bus

Control Unit

PROPOSED VLSI ARCHITECTURE

130

number of clock cycles can be formulated using (5.6), where ‘p’ represents the number

of parallel stages (p ≤ 4). In 2-stage parallel architecture, putting ‘p’ equal to 2 gives a

total of 23 clock cycles. Similarly the number of adder circuits and other logic can also

be estimated using (5.7), (5.8) and (5.9) where nAD, nCSA, nQA represents the number of

ADs, CSAs and QAs, respectively. Substituting p=2 gives 256 ADs, 336 CSAs and 2

QAs.

The intra-parallelism can be extended to the next CU depth level (d=2 or 16x16

PU unit and p = 3) to further reduce the delay. Substituting p=3 in (5.6) reduces the

latency to 11 clock cycles but at huge expense of ADs and CSAs - 1024 ADs and 1344

CSAs. Although the QA is reduced to 1 QA, the adder circuits increase the total

hardware resources. On the other hand, if we reduce the total number of parallel stages

to 1 (p=1), the hardware resources will be reduced but the delay will be increased to 69

clock cycles. Hence, 2-stage parallelism was selected to balance the trade-off between

latency and hardware resources.

 S�PX = �3 + 2i� + 2�k7s (5.6)

 S�� = 4s�7 (5.7)

 Slo� = 21 × 4s (5.8)

 S�� = 4 − i (5.9)

5.5.6 Inter-parallelism

Apart from intra-parallelism, the SAD processing unit can also exploit parallelism at

inter-level. In an n-level inter-parallel SAD architecture, the SAD unit can compute

SADs for ‘n’ ME search points in parallel. This is similar to multicore architectures in

general purpose CPUs. The SAD architecture with 4-level inter parallelism (quad-core

SAD unit with 1-stage intra-parallelism) is shown in Fig. 5.13. Since the intra-

parallelism is only up to 8x8 SAD stage (1-stage), each set of four search points takes

69 clock cycles (calculated using (5.6) without considering the comparator delays). But

the hardware cost is quadrupled compared to single-core 1-stage intra-parallel SAD.

The quad-core 1-stage (Type-II) SAD architecture is compared with single-core 2-stage

intra-parallel (Type-I) SAD architecture.

PROPOSED VLSI ARCHITECTURE

131

Input = n Decimal

eqvlnt.

Output = ����� �
0000_0000_0000_0001 1 0

0000_0000_0000_001x [2-3] 1

0000_0000_0000_01xx [4-7] 2

0000_0000_0000_1xxx [8-15] 3

0000_0000_0001_xxxx [16-31] 4

0000_0000_001x_xxxx [32-63] 5

0000_0000_01xx_xxxx [64-127] 6

0000_0000_1xxx_xxxx [128-255] 7

0000_0001_xxxx_xxxx [256-511] 8

0000_001x_xxxx_xxxx [512-1023] 9

0000_01xx_xxxx_xxxx [1024-2047] 10

0000_1xxx_xxxx_xxxx [2048-4095] 11

0001_xxxx_xxxx_xxxx [4096-8191] 12

001x_xxxx_xxxx_xxxx [8192-16383] 13

01xx_xxxx_xxxx_xxxx [16384-32767] 14

1xxx_xxxx_xxxx_xxxx [32768-65535] 15

TABLE 5.3 lists the comparison results. The results show that the maximum

clock frequency is almost the same for both the architectures. The number of clock

cycles in Type-II architecture is relatively less compared to Type-I architecture, as the

Type-II architecture computes four SADs in parallel. But the number of CSAs, QAs,

ADs and comparators is higher in Type-II architecture compared to that of Type-I. Each

core uses 24 comparators corresponding to 24 modes of the SAD – 7 modes for 64x64

TABLE 5.3: COMPARISON BETWEEN TYPE-I SAD AND TYPE-II SAD

ARCHITECTURES

Type-I (Single-core

2-stage intra-

parallel SAD)

Type-II (Quad-core

1-stage intra-

parallel SAD)

�¡¢£
23 (for 1 SAD) or 92

(for 4 SADs)

69 (for 4 64x64

SADs)

�¤¥ 256 1024

�¦§¤ 336 1344

�¨¤ 2 12

�¦©ª« 24 (1x) 168 (4x+3x)

max freq. 250.7 MHz 251.3 MHz

Slice LUTs 20416 36388

Slice Registers 20361 28284

Fig. 5.15 RD Cost Calculation and

Comparator Unit Architecture

TABLE 5.4: TRUTH TABLE OF 4-BIT

PRIORITY ENCODER

PROPOSED VLSI ARCHITECTURE

132

(64x64, 64x32, 32x64, 64x16, 64x48, 16x64, 48x64), 7 modes for 32x32, 7 modes for

16x16 and 3 modes for 8x8 (8x8, 8x4, 4x8). The comparators have to be used for each

core in Type-II architecture and hence they are quadrupled and for each mode the

comparator tree has to be formed which adds an extra three comparators for each mode

(3x) as shown in Fig. 5.14. Due to this, the hardware resources including slice LUTs

and slice registers are higher in Type-II SAD architecture. Furthermore, Type-II SAD

architecture requires parallel accessing of multiple candidate reference blocks and due

to this, the SW buffer and current block memories have to be replicated, which

increases the FPGA slices. Hence, the proposed architecture uses Type-I SAD

architecture.

5.6 COMPARATOR AND RD COST CALCULATION UNIT

There are 24 modes corresponding to each block size in HEVC. For each PU block size,

the corresponding RD cost calculation and its comparator is designed. The architecture

is shown in Fig. 5.15, where the new SAD values come from the SAD unit and the

lagrangian cost is calculated using (1.2).

For each current block (and for its sub-blocks), the predicted MV and its

lagrangian parameter are sent from the encoder. The AGU sends the MV of the

reference block. Then the MVD (Motion Vector Difference) is calculated using (5.10),

where MV is the reference block MV and PMV represent the predicted MV. The total

number of bits occupied by MVD is calculated by the bitrate calculator using (5.11) and

(5.12) (deducted from reference software HM [7]). The log2 operation is implemented

using a priority encoder. The truth table of 4-bit priority encoder which is used to

calculate logarithmic operation is shown in TABLE 5.4. The second column in the table

represents the equivalent decimal value range. The output column represents the floor

function of	log7 S.

 �����, �� = ����, �� − +����, �� (5.10)

 @�Bh�S� = ¬2 × R9::C�9:;7�1 − 2S�	 + 1, 	S ≤ 02 × R9::C�9:;7�2S�	 + 1, S > 0 (5.11)

 @�Bh = @�Bh��� + @�Bh��� (5.12)

PROPOSED VLSI ARCHITECTURE

133

After the bitrate calculation, the obtained number of bits is multiplied by

lagrangian cost and then added to the SAD value. If the new cost value is less than

previously stored cost (obtained from the cost register), then the value is updated to the

same cost register in the next clock cycle and the corresponding MV value is also

updated to the MV register. This is done using a control signal ‘update’ coming from

the comparator (as shown in the figure).

5.7 RESULTS AND ANALYSIS

 Synthesis Results

The proposed architecture was designed using Verilog HDL and implemented in Xilinx

Virtex-6 XC6VLX240T FPGA [135]. The architecture can process full HD frames at

the rate of 60fps with a maximum operating frequency of 241.6 MHz for HEVC based

64x64 blocks, with search range ±64. The FPGA has 150720 slice LUTs, 301440 slice

registers and 416 BRAMs (of each 36Kb size). The total FPGA slice LUTs occupancy

of the design is 27998, the slice registers occupancy is 29571 and the total BRAMs

occupancy is 24. In percentages, the total slice LUTs occupancy is 18%, the slice

registers occupancy is 9% and the total BRAMs occupancy is 5% approximately. The

total memory size is calculated assuming 100% BRAM occupancy. Each BRAM size is

36 Kbits and there are 24 BRAMs used. Hence the total memory usage is 108 Kbytes.

 Data Schedule, Total Delay and Throughput

The data schedule diagram for the proposed architecture is shown in Fig. 5.16. Initially,

just after the SW and current block data are loaded, the AGU generates and sends the

MV row and column addresses to the search window memory (SWM) in the first clock

cycle. Then the data is loaded to the SWB, row by row in total of 64 clock cycles. After

the first 16 rows of data are loaded in SWB, they are processed by SAD unit in order to

reduce the pipeline delay. In each clock cycle, 16 4x4 blocks of reference block and

current block are accessed. Each 4x4 SAD takes 5 clock cycles to compute the 4x4

partial SAD (as explained using Fig. 5.6). During each of the subsequent clock cycle,

the calculated 4x4 partial SADs are added in pipeline to get variable block size SADs.

As explained earlier, altogether it takes 23 clock cycles to process one 64x64 reference

block in the SAD unit. The RD cost calculator takes 3 clock cycles (1 for bitrate

PROPOSED VLSI ARCHITECTURE

134

calculation, 1 for multiplication and 1 for addition). Finally, the comparator takes 1

clock cycles to compare the RD costs. Altogether it takes 92 (1 for AGU, 64 for SWB,

23 for SAD, 3 for RD cost and 1 for comparator) clock cycles to calculate costs of one

reference block (and its variable size blocks).

Altogether there are 84 search points (as explained in Section 5.2) and it takes

7728 (=84x92) clock cycles to process one current block. For the full search

architecture using any systolic array, it takes 4096 clock cycles to process the first

64x64 block. After that, each search point takes one clock cycle as the memory

accessing is regular (in the best case scenario, without considering line refresh delay).

But the total number of search points are equal to 16384 (=128x128) for a search range

of 64. Hence the total number of clock cycles is 20479 (=4096+16384-1) which is

higher compared to that of the proposed architecture. Further, the hardware resources

(processing elements) required in FS algorithm based architecture will be more as the

partial SADs have to be calculated and pipelined for each clock cycle.

The throughput (Trp) of the architecture can be calculated using (5.13), where

coding tree block (CTB) represents coded tree blocks or current blocks. For the current

architecture, full HD (1920x1080) resolution is used and hence the number of 64x64

CTBs is found to be 506 (1920x1080/64x64). For our proposed architecture, each CTB

takes 7728 clock cycles to process one CTB and we consider one reference frame. The

maximum clock frequency achieved was 241.6 MHz. Substituting all these in (5.13), we

AGU

SWB

SAD

RD_COST

COMPARE

64

92

23

27

26

65

t (clk cycles)

Fig. 5.16 Data Schedule for the Proposed ME Architecture

PROPOSED VLSI ARCHITECTURE

135

achieve a throughput of 61 frames/sec. Thus our proposed architecture supports ME for

full HD frames at 60 fps frame rate.

 Comparison with other FPGA based Design

TABLE 5.5 shows the synthesis results of the proposed architecture along with

comparison of some recent works. Compared to the architecture in [136], the proposed

architecture supports more block modes including AMP modes. Due to this, the RD

performance in the proposed architecture is higher, with a BD-rate decrease of only

0.84% compared to that of [136] which has BD-rate decrease of 12%. The architecture

in [127] supports all block sizes but it is based on full-search algorithm with more

circuit area requirements. When converted to effective gate count, the proposed

architecture occupies 0.87M gates (with a maximum of 24 gates per slice LUT and 7

gates per slice register [135]) whereas the gate count in [127] is 3.56M gates. The

architectures in [112] and [128] support block sizes only up to 16x16. The architecture

in [126] has a higher operating frequency (270 MHz), but does not support AMP modes.

The architectures [129] and [137] are FPGA based architecture supporting

HEVC block modes. Both the architectures operates with less frequency (110 MHz and

125 MHz) compared to the proposed architecture. Compared to [129], the proposed

architecture use less number of slice LUTs (27.9k vs 55.3k) and BRAMs (24 vs 33) and

slightly higher number of slice registers (29.5k vs 19.7k). But the architecture in [129]

used block sizes only until 32x32 and with search range 24. The architecture in [137]

supports all block sizes until 64x64 (including AMP modes) and with search range 64.

But it occupies more FPGA resources – 85.01k slice LUTs, 141k slice registers and 298

BRAMs.

 �Ci = U?�	_RCD®�6N�_�{�PM�lq. 	 A �6N�_lq.�mLO�M � A SfU_CDR_RCUh (5.13)

PROPOSED VLSI ARCHITECTURE

136

TABLE 5.5: SYNTHESIS RESULTS AND COMPARISON OF PROPOSED

ARCHITECTURE WITH OTHER ARCHITECTURES

Sinangil

et. al.

[136]

Byun et. al

[127]

Sanchez.

et. al.

[128]

Jou et. al

[126]

Ndili et. al.

[112]

Xu. et. al.

[129]

Thomas

et. al.

[137]

Proposed

Process
ASIC 65 nm

CMOS

ASIC 65 nm

CMOS

ASIC TSMC

90 nm

ASIC TSMC

90nm

Xilinx Virtex-

2 Pro

Xilinx Virtex-

6 XC6VLX-

550T (40nm)

Xilinx Virtex-

5 LX 330T

FPGA (65

nm)

Xilinx Virtex-

6 LX 220T

FPGA (40

nm)

Slice

LUTs

1830 K gates 3.56 M gates 50 K gates 787.7 K gates

10.8 K 55346 (16%) 85017 (41%) 27998 (18%)

Slice

Registers
11.3 K 19744 (2.9%) 141004 (68%) 29571 (9%)

BRAMs 10 33 (5.2%) 298 (92%) 24 (5%)

Memory

Size
208 KB

20.23 KB

(SRAM)
82 Kb 17.4 KB 2.5 KB 148 KB 1.34 MB 108 KB

Max

Operating

frequency

200 MHz 250 MHz 41.3 MHz 270 MHz 246.5 MHz 110 MHz 125 MHz 241.6 MHz

Search

Range
±64 ±64 ±44 ±64 ±16 ±24 ±64 ±64

Max.

Block

Sizes

64x64 64x64 16x16 64x64 16x16 32x32 64x64 64x64

Support

ed

Block

Sizes

16×16,

32×32,

64×64

All
All until

16x16

8×8, 8×4,

4×8, 16×16,

16×8, 8×16,

32×32,

64×64

All until

16x16

All up to

32x32
All All

Max.

Resoluti

on

3840×2160

(4kx2k)

@30fps

3840 × 2160P

(4k UHD)

@30fps

1080p

@30fps

4096×2048

(4kx2k QFHD)

@60fps

CIF

@30fps

1080p

@30fps

1080p

@27fps

1080p

@60fps

Algorith

m

8-pixel

SW

subsamplin

g + Three

Step

Search

Full Search

Multi Point

Diamond

Search

(MPDS)

TZSearch

(used in HM)

HW.

Modified

Diamond

Srch.

(HMDS)

Full

Search

Full

Search

Rotating

Hexagon

based Fast

Search +

Hexagon

Refinement

Supporte

d Tools
IME, FME IME IME IME, FME IME IME IME IME

BD-rate

decrease
12 % -

1.7% bitrate

increase

compared to

EPZS

algorithm

5.14 %

0.16% to

1.85%

bitrate

increase

compare to

FS

- - 0.84 %

Num. Ref.

Frames
1 ±1 1 1 5 1 1 1

AMP

Support
No Yes No No No Yes Yes Yes

PROPOSED VLSI ARCHITECTURE

137

 Verification Setup and Results

The proposed design was verified using the testbench shown in Fig. 5.17. The test

stimuli (search window pixels and current block pixels) was applied to the software

model for the proposed algorithm. The same test inputs are converted to 64 bit data

values and sent to ME IP core through data bus and address bus interfaces. The output

MVs from software are compared against the output values of ME IP core.

A sample values of inputs and outputs are shown below. The inputs from the test

stimuli are the current block pixels and the search window block pixels which are

shown as pictures in Fig.5.18 (a) and 5.18 (b) respectively. The output MV for these

inputs (for 64x64 current block size) is (14,-1) which was obtained with ME algorithm

software model. The same value is matched with that of the result obtained hardware

architecture model, shown in Fig. 5.19 (a) and its zoomed version in fig 5.19 (b). The

MV output in Fig 5.19 (b) is 7-bit unsigned decimal number. Hence MVx is seen as 14,

while MVy is seen as 65 which is equal ‘1 000001’ in binary. The first bit represents

sign (1 for -ve and 0 for +ve) and the rest 6 digits represents magnitude. Hence value 65

Fig. 5.17 Verification Setup Used to Validate the Proposed Design

PROPOSED VLSI ARCHITECTURE

138

is equivalent to ‘-1’. For the rest of block sizes, the MVs and their hardware verification

results are shown in Table 5.6. Each CTU block is divided into four partition blocks,

from 64x64 until 8x8, which results in many portioned CTUs. For simplicity, only the

first CTU size and their MVs are shown for CTUs 32x32, 16x16, 8x8. For each PU

(prediction unit) its corresponding MV is obtained from software and compared with

hardware MV result. For all the block sizes, the MV results from software and hardware

matches, as shown in the table.

(a) (b)

Fig. 5.18 Current Block and Search window Pixels used for Verification

(a)

(b)

Fig. 5.19 Hardware Simulation Output for the Current Block and SW Pixels

PROPOSED VLSI ARCHITECTURE

139

TABLE 5.6: HARDWARE VERIFICATION RESULTS FOR ALL THE

BLOCK SIZES

CTU size CTU index PU size PU index S/W MV Test Pass/Fail

64x64 0

64x64 0 (14,-1) pass

64x32 0 (6,0) pass

1 (14,29) pass

64x48 0 (6,0) pass

1 (13,47) pass

64x16 0 (5,0) pass

1 (14,15) pass

32x64 0 (14,-3) pass

1 (38,1) pass

48x64 0 (13,-2) pass

1 (25,6) pass

16x64 0 (3,0) pass
1 (32,-1) pass

32x32 (0,0)

32x32 0 (-64,-32) pass

32x16 0 (-64,-32) pass

1 (-63,32) pass

32x24 0 (-64,-32) pass

1 (-63,32) pass

32x8 0 (-64,-32) pass
1 (-63,21) pass

16x32 0 (-64,-32) pass
1 (-62,20) pass

24x32 0 (-64,-32) pass

1 (-64,24) pass

8x32 0 (-64,-32) pass

1 (-61,16) pass

16x16 (0,0,0)

16x16 0 (-64,33) pass

16x8 0 (-19,-7) pass

1 (-62,31) pass

16x12 0 (-17,-8) pass

1 (-64,29) pass

16x4 0 (-63,-33) pass

1 (-64,27) pass
8x16 0 (-56,40) pass

 1 (-61,31) pass

12x16 0 (-56,38) pass

 1 (-16,6) pass

4x16 0 (-16,-8) Pass
 1 (-61,28) Pass

8x8 (0,0,0,0)

8x8 0 (-10,5) Pass

8x4 0 (-1,-16) Pass
1 (-10,4) Pass

4x8 0 (-9,3) Pass

1 (-9,3) Pass

PROPOSED VLSI ARCHITECTURE

140

5.8 SUMMARY OF OVERALL DESIGN

A fast search ME algorithm for HEVC and its FPGA hardware architecture was

proposed and implemented. The architecture can perform ME for all the block sizes

until 64x64 including asymmetric mode partitions and with search range of ±64. The

synthesis results show that the proposed architecture outperforms in terms of area and

operating frequency compared to recent works in the literature. Further research is being

carried out to implement and embed a fractional ME architecture.

CONCLUSIONS AND FUTURE RESEARCH

141

6 CONCLUSIONS AND FUTURE RESEARCH

6.1 SUMMARY OF RESEARCH

Motion estimation is one of the most complex tasks in block based video encoders.

Especially in the encoder of the latest video coding standard HEVC, the complexity of

ME is further increased due to increase in the block size to 64x64 pixels. The ME has to

perform the operation in all variable block sizes including AMP modes. At the search

window level, the search range also increased to 64 in HEVC and hence the number of

search points also increases, where for each point the rate distortion cost has to be

calculated for all block sizes. Hence to reduce the ME complexity, reducing the number

of search points effectively without much effect in RD performance is one of the main

approach used in the present thesis. To do this, the present thesis uses a fast ME

algorithm which employs effective search patterns to get the optimal search point faster.

Compared to full search and state-of-the-art fast ME algorithm used in HEVC reference

software encoder, the overall reduction achieved in the ME complexity is significant

with negligible loss in the PSNR and bitrate.

The ME complexity can be further decreased by using an appropriate hardware

architecture. By introducing parallel stages for computing the SAD cost function, the

computational cost can be further reduced. The present thesis also focused on effective

implementation of an architecture of the fast ME algorithm which is able to perform in

real time. The simulation and synthesis results show that the proposed architecture

outperforms in terms of area and operating frequency compared with recent works.

The summary of achieved results are as follows.

� The proposed algorithm uses rotating hexagonal patterns and an efficient

adaptive early termination strategy to reduce the ME time. On an average

the total gain in ME time is 98.04% and 43.305% compared to full search

and TZSearch algorithm respectively.

� The proposed algorithm also uses hexagonal fine refinement strategy to

further reduce ME time and total encoding complexity costs. On an

average it achieves overall gain of 84.44% and 23.39% in encoding time

compared to full search and TZSearch algorithm respectively.

CONCLUSIONS AND FUTURE RESEARCH

142

� The total reduction in ME search points complexity for the proposed

algorithm compared to full search and TZSearch algorithm is 98.96% and

44.75% respectively.

� The overall BD-PSNR loss is 0.037 and 0.028 compared to full search and

TZSearch algorithm respectively.

� The overall BD-bitrate increase is 0.665 and 0.432 compared to full search

and TZSearch algorithm respectively.

� The proposed hardware architecture uses high speed SAD architecture

which effectively uses sixteen 4x4 parallel SAD calculating cores.

� The architecture can perform ME with a throughput of 61 frames/sec and

with a maximum clock frequency of 241.6 MHz for all the block sizes

until 64x64 including asymmetric mode partitions, at a search range of

±64.

6.2 FUTURE RESEARCH DIRECTIONS

To make the present research more complete, the present thesis work is planned to

extend in several directions, listed below.

� Effective mode decision algorithm: The ME complexity can be further reduced

by using effective mode decision algorithms, which focus on eliminating some

of the unnecessary modes of the current block. Hence for each selected mode,

the proposed fast ME algorithm can be used and thus the overall performance of

the video encoder can be increased. In the hardware architecture, the present

work can be extended in order to incorporate mode decision and produce MVs

for the blocks that are only necessary.

� Fractional ME architecture: As explained in chapter 2, the ME is also

performed at sub-pixel level. After performing the integer ME in hardware, the

MVs can be used to get the half-pixel and quarter-pixel accurate MVs. A future

line of work may focus on the implementation of the fractional ME hardware

architecture.

� Motion Compensation unit: The ME generates the MVs for each block in every

frame. The motion compensation unit utilizes these MVs and generate motion

compensated frames. These motion compensated frames are subtracted from the

CONCLUSIONS AND FUTURE RESEARCH

143

current frames to get the residual frames. To verify the effectiveness of the ME

architecture, the motion compensation unit hardware architecture can be

designed and integrated with ME architecture.

References

144

References

[1] "The Zettabyte Era: Trends and Analysis," Cisco Visual Networking Index (VNI)

White Paper, June 2014.

[2] G. J. Sullivan, J. R. Ohm, W.-J. Han and T. Wiegand, "Overview of the high

efficiency video coding (HEVC) standard," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, Dec 2012.

[3] G. Delagi, "Harnessing technology to advance the next-generation," in IEEE

International Solid-State Circuits Conference (ISSCC 2010), San Francisco, CA,

Feb. 2010.

[4] B. Bross , W.-J. Han , G. J. Sullivan , J.-R. Ohm and T. Wiegand, "High

Efficiency Video Coding (HEVC) Text Specification Draft 9," ITU-T/ISO/IEC

Joint Collaborative Team on Video Coding (JCT-VC), 2012.

[5] "Draft ITU-T recommendation and final draft international standard of joint video

specification (ITU-T Rec. H.264/ISO/IEC 14496-10 AVC," Joint Video Team

(JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G050, 2003.

[6] T. Wiegand, G. J. Sullivan, G. Bjøntegaard and A. Luthra, "Overview of the

H.264/AVC Video Coding Standard," IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS FOR VIDEO TECHNOLOGY, vol. 13, no. 7, pp. 560-576, July

2003.

[7] "HEVC Reference Software HM 16.2," [Online]. Available:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/.

[8] B. Frank, F. David, S. Karl and K. Suhring, "HEVC reference software HM 16.2

reference manual," ITU-T/ISO/IEC JCTVC HEVC reference software manual,

2014.

[9] "IEEE standard Verilog hardware description language," IEEE Standards (IEEE

References

145

Std 1364-2001), Sept. 2001.

[10] "Xilinx Virtex-6 FPGA Configuration User Guide," Aug. 2014. [Online].

Available: http://www.xilinx.com/support/documentation/user_guides/ug360.pdf.

[11] T. Wiegand and H. Schwarz, Source Coding: Part I of Fundamentals of Source

and Video Coding, Hanover MA USA: Now Publishers Inc, 2010.

[12] T. Wiegand and B. Girod, Multi-Frame Motion-Compensated Prediction for

Video Transmission, Kluwer Academic Publishers, 2001.

[13] B. Furht, Encyclopedia of Multimedia, Springer Science and Business Media,

2006.

[14] M. Ghanbari, Standard Codecs: Image Compression to Advanced Video Coding,

London UK: Institution of Electrical Engineers, 2003.

[15] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg and D. J. LeGall, MPEG Video

Compression Standard, London UK: Chapman & Hall Ltd, 1996.

[16] I. E. Richardson, The H.264 Advanced Video Compression Standard, West

Sussex, England: John Wiley & Sons, Ltd, 2010.

[17] "Foreman video test sequence QCIF format [online] Available:

https://media.xiph.org/video/derf/".

[18] I. E. Richardson, Video Codec Design: Developing Image and Video

Compression Systems, West Sussex, England: John Wiley & Sons Ltd., 2002.

[19] I. E. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for

Next-generation Multimedia, West Sussex, England: John Wiley & Sons Ltd,

2003.

[20] C. Poynton, Digital Video and HDTV: Algorithms and Interfaces, San Francisco

CA: Morgan Kaufmann Publishers, 2003.

References

146

[21] K. Iguchi, A. Ichigaya, Y. Sugito, S. Sakaida, Y. Shishikui, N. Hiwasa, H. Sakate

and N. Motoyama, "HEVC encoder for Super Hi-Vision," in 2014 IEEE

International Conference on Consumer Electronics 2014 (ICCE 2014), Las

Vegas, NV, Jan 2014.

[22] Q. Huynh-Thu and M. Ghanbari, "Scope of validity of PSNR in image/video

quality assessment," Institution of Engineering and Technology (IET) Electronics

Letters, vol. 44, no. 13, pp. 800-801, June 2008.

[23] K. Seshadrinathan, R. Soundararajan, A. Bovik and L. Cormack, "Study of

Subjective and Objective Quality Assessment of Video," Image Processing, IEEE

Transactions on , vol. 19, no. 6, pp. 1427-1441, 2010.

[24] J. Ohm, G. Sullivan, H. Schwarz, T. K. Tan and T. Wiegand, "Comparison of the

Coding Efficiency of Video Coding Standards—Including High Efficiency Video

Coding (HEVC)," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 22, no. 12, pp. 1669 - 1684, Dec. 2012.

[25] G. Bjontegaard, "Calcuation of average PSNR differences between RD-curves,"

ITU-T VCEG Q6/16 Report, Austin, TX, USA, April 2001.

[26] G. Bjontegaard, "Improvements of the BD-PSNR model," ITU-T VCEG Report

SG16 Q 6, 2008.

[27] H.-C. Chang, L. Chien-Chang and G. Jiun-In, "A novel low-cost high-

performance VLSI architecture for MPEG-4 AVC/H. 264 CAVLC decoding," in

IEEE International Symposium on Circuits and Systems (ISCAS 2005), 2005.

[28] X. Tian, T. M. Le and Y. Lian, Entropy Coders of the H.264/AVC Standard:

Algorithms and VLSI Architectures, Springer-Verlag, 2011.

[29] K. Rao, N. K. Do and J. H. Jae, Video coding standards: AVS China,

H.264/MPEG-4 PART 10, HEVC, VP6, DIRAC and VC-1, Springer, 2014.

[30] "H.120: Codecs for videoconferencing using primary digital group transmission,"

References

147

ITU-T Rocommendation, 1993.

[31] "H.261 : Video codec for audiovisual services at p x 384 kbit/s - Recommendation

H.261 (11/88)," ITU-T Recommendation, 1988.

[32] "H.262 : Information technology - Generic coding of moving pictures and

associated audio information: Video," ITU-T Recommendation, 2012.

[33] "Information technology -- Generic coding of moving pictures and associated

audio information -- Part 2: Video," ISO/IEC 13818-2:2013, 2013.

[34] "SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS: Infrastructure

of audiovisual services – Coding of moving video, Video coding for low bit rate

communication," ITU-T Recommendation H.263.

[35] G. Sullivan and T. Wiegand, "Video Compression—From Concepts to the

H.264/AVC Standard," Proceedings of the IEEE , vol. 93, no. 1, pp. 18-31, Jan

2005.

[36] "Information technology -- Coding of moving pictures and associated audio for

digital storage media at up to about 1,5 Mbit/s -- Part 2: Video," ISO/IEC 11172-

2:1993, 1993.

[37] G. H. Barry, P. Atul and N. N. Arun, Digital Video: An Introduction to MPEG-2,

Massachusetts USA: Kluwer Academic Publishers, 1997.

[38] "Information technology -- Coding of audio-visual objects -- Part 2: Visual,"

ISO/IEC 14496-2:1999 , 1999.

[39] Phillipe Salembier, Thomas Sikora and B.S. Manjunath, Introduction to MPEG-7:

Multimedia Content Description Interface, New York USA: John Wiley & Sons,

Inc, 2002 .

[40] "VC-1 Compressed Video Bitstream Format and Decoding Process," SMPTE

421M.

References

148

[41] J. Loomis and M. Wasson, "VC-1 Technical Overview," Windows Media.

Microsoft, Oct 2007.

[42] J. Bankoski, R. S. Bultje, et al, "Towards a next generation open-source video

codec," SPIE Visual Information Processing and Communication IV, vol. 8666,

Feb 2013.

[43] M. T. Alexis, L. Athanasios, S. Karsten and S. Gary, "H.264/14496-10 AVC

Reference Software Manual (revised for JM 18.0) JVT-AE010," ITU-T/ISO/IEC

JVT reference software (JM 18.0) manual, July 2009.

[44] "H.264/AVC Reference Software JM 18.0," [Online]. Available:

http://iphome.hhi.de/suehring/tml/download/.

[45] B. Frank, "Common HM test conditions and software reference configurations,"

Joint Collaborative Team on Video Coding (JCT-VC) document JCTVC-L1100,

Geneva, Jan. 2013.

[46] K. Il-Koo, M. Ken, S. Kazuo, B. Benjamin, H. Woo-Jin and S. Gary, "High

Efficiency Video Coding (HEVC) Test Model 15 (HM15) Encoder Description,"

ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) document

JCTVC-Q1002, Valencia, Apr. 2014.

[47] "Recommended Test Sequences for HEVC HM Encoder," [Online]. Available:

ftp://hevc@ftp.tnt.uni-hannover.de/testsequences/.

[48] S. Vivienne, B. Madhukar and J. S. Gary, High Efficiency Video Coding

(HEVC): Algorithms and Architectures, 2014: Springer.

[49] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, "HEVC: the new gold

standard for video compression," IEEE Consumer Electronics Magazine, vol. 1,

no. 3, pp. 36-46, July 2012.

[50] J. Chen and T. Lee, "Planar intra prediction improvement," ITU-T/ISO/IEC Joint

Collaborative Team on Video Coding (JCT-VC) document JCTVC-F483, July

References

149

2011.

[51] H. Li, B. Li, L. Li, J. Zhang, H. Yang, and H. Yu, "Non-CE6: Simplification of

intra chroma mode coding," ITUT/ISO/IEC Joint Collaborative Team on Video

Coding (JCT-VC) document, JCTVC-H0326, Feb. 2012.

[52] J. Chen, V. Seregin, W.-J. Han, J. Kim, and J. Moon, "CE6.a.4: Chroma intra

prediction by reconstructed luma samples," ITU-T/ISO/IEC Joint Collaborative

Team on Video Coding (JCT-VC) document JCTVC-E266, March 2011.

[53] E. Alshina, A. Alshin, J. Park, J. Lou and K. Minoo, "CE3: 7 taps interpolation

filters for quarter pel position MC from Samsung and Motorola Mobility," ITU-

T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) document,

Geneva, Nov. 2011.

[54] F. Bossen, B. Bross, K. Suhring and D. Flynn, "HEVC Complexity and

Implementation Analysis," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 22, no. 12, pp. 1685-1696, Oct. 2012.

[55] A. Fuldseth, G. Bjøntegaard, and M. Budagavi, "CE10: Core transform design for

HEVC," ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC)

document JCTVC-G495, Nov. 2011.

[56] H. Jingning, A. Saxena and K. Rose, "Towards jointly optimal spatial prediction

and adaptive transform in video/image coding," in IEEE International Conference

on Acoustics Speech and Signal Processing (ICASSP 2010), Dallas TX, March

2010.

[57] A. C. Bovik, The essential guide to video processing, Academic Press - Elsevier,

2009.

[58] F. Chih-Ming, E. Alshina, A. Alshin, Y.-W. Huang, C.-Y. Chen, C.-Y. Tsai, C.-

W. Hsu, S.-M. Lei, J.-H. Park and W.-J. Han, "Sample Adaptive Offset in the

HEVC Standard," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 22, no. 12, pp. 1755 - 1764, Oct. 2012.

References

150

[59] T. Chia-Yang, C.-Y. Chen, C.-M. Fu, Y.-W. Huang and S. Lei, "One-pass

encoding algorithm for adaptive loop filter in high-efficiency video coding," in

IEEE Visual Communications and Image Processing (VCIP 2011), Tainan, Nov.

2011.

[60] V. Sze and M. Budagavi, "High Throughput CABAC Entropy Coding in HEVC,"

IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12,

pp. 1778 - 1791, Oct. 2012.

[61] J. Lainema, K. Ugur and A. Hallapuro, "Single entropy coder for HEVC with a

high throughput binarization mode," ITU-T/ISO/IEC Joint Collaborative Team on

Video Coding (JCT-VC) document JCTVC-G569, Geneva, Nov. 2011.

[62] J. Vanne, M. Viitanen and T. Hamalainen, "Efficient Mode Decision Schemes for

HEVC Inter Prediction," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 24, no. 9, pp. 1579 - 1593, 2014.

[63] Z. Guo-Yun, H. Xiao-Hai, Q. Lin-Bo and L. Yuan, "Fast inter-mode decision

algorithm for high-efficiency video coding based on similarity of coding unit

segmentation and partition mode between two temporally adjacent frames," SPIE

Journal of Electronic Imaging, vol. 22, no. 2, June 2013.

[64] H. Bing-Yu, H. Yu-Wen, W. Tu-Chih, C. Shao-Yi and C. Liang-Gee, "Fast

motion estimation algorithm for H.264/MPEG-4 AVC by using multiple reference

frame skipping criteria," Proc. SPIE 5150, Visual Communications and Image

Processing, vol. 5150, pp. 1551-1560, 2003.

[65] I. Michal and P. Anandan, "About Direct Methods," in Proceedings of the

International Workshop on Vision Algorithms (ICCV-1999), London, UK,

Springer-Verlag, 2000, p. 267–277.

[66] H. S. T. Philip and Z. Andrew, "Feature Based Methods for Structure and Motion

Estimation," in Proceedings of the International Workshop on Vision Algorithms

(ICCV 1999), London, UK, Springer-Verlag, 2000, pp. 278-294.

References

151

[67] M. K. Peter, Algorithms, Complexity Analysis and VLSI Architectures for

MPEG-4 Motion Estimation, Kluwer Academic Publishers, 1999.

[68] W. Li and E. Salari, "Successive elimination algorithm for motion estimation,"

IEEE Transactions on Image Processing, vol. 4, no. 1, pp. 105-107, 1995.

[69] X. Q. Gao, J. D. C. and R. Z. C., "A multilevel successive elimination algorithm

for block matching motion estimation," IEEE Transactions Image Processing,

vol. 9, no. 3, pp. 501-504, 2000.

[70] B. Montrucchio and D. Quaglia, "New sorting-based lossless motion estimation

algorithms and a partial distortion elimination performance analysis," IEEE

Transactions on Circuits and Systems for Video Technology, vol. 15, no. 2, pp.

210 - 220, 2005.

[71] C. Changryoul and J. Jechang, "New sorting-based partial distortion elimination

algorithm for fast optimal motion estimation," IEEE Transactions on Consumer

Electronics, vol. 55, no. 4, pp. 2335 - 2340, 2009.

[72] A. Heinrich, C. Bartels, R. J. van der Vleuten, C. N. Cordes and G. de Haan,

"Optimization of Hierarchical 3DRS Motion Estimators for Picture Rate

Conversion," IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 2,

pp. 262 - 274 , Aug. 2010.

[73] S. Tedmori and N. Al-Najdawi, "Hierarchical stochastic fast search motion

estimation algorithm," IET computer vision, vol. 6, no. 1, pp. 21-28, 2012.

[74] M. Bierling, "Displacement estimation by hierarchical blockmatching," Proc.

SPIE 1001, Visual Communications and Image Processing '88: Third in a Series,

vol. 942, pp. 942-953, Oct. 1988.

[75] C.-M. Kuo, C. Shu-Chiang and S. Po-Yi, "Kalman filtering based rate-constrained

motion estimation for very low bit rate video coding," IEEE Transactions on

Circuits and Systems for Video Technology, , vol. 16, no. 1, pp. 3-18, Jan. 2006.

References

152

[76] L. Hyungjun and G. A. Tae, "An hierarchical motion estimation method using

adaptive image down-sizing," in IEEE International Conference on Consumer

Electronics (ICCE 2014), Las Vegas, NV, Jan. 2014.

[77] T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T. Ishiguro, "Motion compensated

interframe coding for video conferencing," in Proc. of National

Telecommunication Conference, New Orleans, USA, 1981.

[78] W. Chung-Neng, Taiwan, Y. Shin-Wei, L. Chi-Min and C. Tihao, "A hierarchical

decimation lattice based on N-queen with an application for motion estimation,"

IEEE Signal Processing Letters, vol. 10, no. 8, pp. 228 - 231, Aug. 2003.

[79] A. Saha, M. Jayanta and S. Shamik, "New pixel-decimation patterns for block

matching in motion estimation," Image Communication Signal Processing, vol.

23, no. 10, pp. 725-738, Aug. 2008.

[80] L. Liu and E. Feig, "A block-based gradient descent search algorithm for block

motion estimation in video coding," IEEE Transactions on circuits and systems

for Video Technology, vol. 6, no. 4, pp. 419-422, Aug. 1996.

[81] Z. Shan and M. Kai-Kuang, "A new diamond search algorithm for fast block-

matching motion estimation," IEEE Transactions on Image Processing, vol. 9, no.

2, pp. 287 - 290, Feb. 2000.

[82] J. R. Jain and A. K. Jain, "Displacement measurements and its application in

interframe image coding," IEEE Transaction on Communication, vol. 29, no. 12,

pp. 1799-1808., Dec. 1981.

[83] Z. Ce, L. Xiao and L.-P. Chau, "Hexagon-based search pattern for fast block

motion estimation," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 12, no. 5, pp. 349 - 355, May 2002.

[84] H. Ko. Y., H. S. Kang and S. W. Lee, "Adaptive search range motion estimation

using neighboring motion vector differences," IEEE Transactions on Consumer

Electronics, vol. 57, no. 2, pp. 726-730, May 2011.

References

153

[85] D. Wei, O. C. Au, L. Sijin, S. Lin and Z. Ruobing, "Adaptive search range

algorithm based on Cauchy distribution," in IEEE Visual Communications and

Image Processing (VCIP-2012), San Diego, CA, Nov. 2012.

[86] L. Xiaobing and X. Chuangbai, "A new strategy to predict the search range in

H.264/AVC," in IEEE International Conference on Multimedia and Expo, (ICME

2009)., New York, NY, June 2009.

[87] C. Zhibo, Z. Peng and H. Yun, "Fast motion estimation for JVT," ISO/IEC MPEG

& ITU-T VCEG Joint Video Team (JVT) document JVTG016, Mar. 2003.

[88] C. Zhenxing, L. Qin, T. Ikenaga and S. Goto, "A motion vector difference based

self-incremental adaptive search range algorithm for variable block size motion

estimation," IEEE International Conference on Image Processing, (ICIP 2008),

San Diego, CA, Oct. 2008.

[89] S. Zhiru, W. Fernando and A. Kondoz, "Adaptive Direction Search Algorithms

based on Motion Correlation for Block Motion Estimation," IEEE Transactions

on Consumer Electronics, vol. 57, no. 3, pp. 1354-1361, Aug. 2011.

[90] S. Zhiru, W. Fernando and A. Kondoz, "An Efficient Fast Motion Estimation in

H.264/AVC by Exploiting Motion Correlation Character," in IEEE International

Conference on Computer Science and Automation Engineering (CSAE 2012),

May 2012.

[91] K. Chung-Ming, K. Yu-Hsin, H. Chaur-Heh and L. Yi-Hui, "A Novel Prediction-

Based Directional Asymmetric Search Algorithm for Fast Block-Matching

Motion Estimation," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 19, no. 6, p. 893–899, June 2009.

[92] X. Xu and Y. He, "Comments on Motion Estimation Algorithms in Current JM

Software," ITU-T/ISO/IEC Joint Video Team (JVT) document JVT-Q089, Nice,

France, Oct. 2005.

[93] B. Xuena, Z. Dajiang, L. Peilin and S. Goto, "An Advanced Hierarchical Motion

References

154

Estimation Scheme With Lossless Frame Recompression and Early-Level

Termination for Beyond High-Definition Video Coding," IEEE Transactions on

Multimedia, vol. 14, no. 2, pp. 237-249, Oct. 2011.

[94] M. Sarwer and Q. Wu, "Adaptive Variable Block-Size Early Motion Estimation

Termination Algorithm for H.264/AVC Video Coding Standard," IEEE

Transactions on Circuits and Systems for Video Technology, vol. 19, no. 8, pp.

1196-1201, Apr. 2009.

[95] A. M. Tourapis, "Enhanced predictive zonal search for single and multiple frame

motion estimation," in Visual Communications and Image Processing (VCIP

2002), Jan. 2002.

[96] A. M. Tourapis, O. C. Au and M. L. Liou, "Predictive motion vector field

adaptive search technique (PMVFAST): enhancing block-based motion

estimation," Photonics West 2001 - Electronic Imaging, pp. 883-892, 2000.

[97] H. Schwarz, T. Hinz and K. Suehring, "H.264/AVC Multiview Refence Software

JMVC Version 8.2 Reference Manual," ITU-T/ISO/IEC Joint Video Team JVT,

May 2010.

[98] C. J. Duanmu, Z. Yu, C. Xing and Z. Shuihong, "Multi-octagon-grid search

algorithm for fast motion estimation," in International Conference on Information

and Automation (ICIA 2008), June 2008.

[99] W. Zhu, X. Chen and X. Li, "A New Search Algorithm Based on Muti-Octagon-

Grid," in International Congress on Image and Signal Processing (CISP 2009) ,

Oct. 2009.

[100] N. Ka-Ho, P. Lai-Man, W. Ka-Man, T. Chi-Wang and C. Kwok-Wai, "A Search

Patterns Switching Algorithm for Block Motion Estimation," IEEE Transactions

on Circuits and Systems for Video Technology, vol. 19, no. 5, pp. 753-759, Mar.

2009.

[101] N. Ka-Ho, P. Lai-Man and W. Ka-Man, "Search Patterns Switching for Motion

References

155

Estimation using Rate of Error Descent," in IEEE International Conference on

Multimedia and Expo (ICME 2007), July 2007.

[102] N. Ragasudha, D. Singh and S. Meher, "Block based Motion Estimation using

hybrid hexagon kite cross diamond search algorithm," in International

Conference on Communications and Signal Processing (ICCSP 2014), Apr. 2014.

[103] H.-Y. C. Tourapis and A. M. Tourapis, "Fast motion estimation within the H.264

codec," in International Conference on Multimedia and Expo. (ICME 2003), July

2003.

[104] Y. Xiaoquan, Z. Jun, L. Nam and S. Weijia, "Improved and simplified fast motion

estimation for JM," ITU-T/ISO/IEC Joint Video Team (JVT) document JVT-

P021, Poznan, Poland, July 2005.

[105] H. Yu-Wen, W. Tu-Chih, H. Bing-Yu and C. Liang-Gee, "Hardware architecture

design for variable block size motion estimation in MPEG-4 AVC/JVT/ITU-T

H.264," in IEEE International symposium on circuits and systems (ISCAS 2003),

Bangkok, Thailand, May 2003.

[106] T. Jen-Chieh, T. Hsinchu, C. Tian-Sheuan and J. Chein-Wei, "On the data reuse

and memory bandwidth analysis for full-search block-matching VLSI

architecture," IEEE Transactions on Circuits and Systems for Video Technology,

vol. 12, no. 1, pp. 61 - 72, Jan. 2002.

[107] C. Tung-Chien, C. Shao-Yi, H. Yu-Wen, T. Chen-Han, C. Ching-Yeh, C. To-Wei

and C. Liang-Gee, "Analysis and architecture design of an HDTV720p 30

frames/s H.264/AVC encoder," IEEE Transactions on Circuits and Systems for

Video Technology, vol. 16, no. 6, pp. 673 - 688, June 2006.

[108] K. Chao-Yang, T. Hsinchu and L. Youn-Long, "A Memory-Efficient and Highly

Parallel Architecture for Variable Block Size Integer Motion Estimation in

H.264/AVC," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 18, no. 6, pp. 866 - 874, June 2009.

References

156

[109] O. Ndili and T. Ogunfunmi, "Efficient fast algorithm and FPSoC for integer and

fractional motion estimation in H.264/AVC," in IEEE International Conference

on Consumer Electronics (ICCE 2011), Las Vegas, NV, Jan 2011.

[110] O. Ndili and T. Ogunfunmi, "Hardware-oriented Modified Diamond Search for

motion estimation in H.246/AVC," in IEEE International Conference on Image

Processing (ICIP 2010), Hong Kong , Sept. 2010.

[111] M. Porto, L. Agostini, S. Bampi and A. Susin, "A high throughput and low cost

diamond search architecture for HDTV motion estimation," in IEEE International

Conference on Multimedia and Expo (ICME 2008) , 2008.

[112] O. Ndili and T. Ogunfunmi, "Algorithm and Architecture Co-Design of

Hardware-Oriented, Modified Diamond Search for Fast Motion Estimation in

H.264/AVC," IEEE Transactions on Circuits and Systems for Video Technology,

vol. 21, no. 9, pp. 1214 - 1227, Mar. 2011.

[113] O. Ndili and T. Ogunfunmi, "FPSoC-based architecture for a fast motion

estimation algorithm in H.264/AVC," EURASIP journal on embedded systems,

vol. 2009, Oct. 2009.

[114] C. A. Rahman and B. Wael, "UMHexagonS Algorithm Based Motion Estimation

Architecture For H.264/AVC," in IEEE International Workshop on System-on-

Chip for Real-Time Applications, 2005.

[115] A. Juri and A. Jambek, "UMHexagonS based motion estimation architecture

comparison," in International Conference on Intelligent and Advanced Systems

(ICIAS 2012), June 2012.

[116] B. Myung-Suk, S. Yil-Mi and C. Yong-Beom, "Hardware Architecture for Fast

Motion Estimation in H.264/AVC Video Coding," IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, Vols.

E89-A, no. 6, pp. 1744-1745, Jun. 2006.

[117] J. Lee and K. Yoo, "Multi-algorithm targeted low memory bandwidth architecture

References

157

for H.264/AVC integer-pel motion estimation," Proceedings of IEEE

International conference on multimedia expo, pp. 701-704, 2008.

[118] X. Xiong, S. Yang and A. Akoglu, "Architecture design of variable block size

motion estimation for full and fast search algorithms in H. 264/AVC.," Computers

& Electrical Engineering, vol. 37, no. 3, pp. 285-299, 2011.

[119] R. Verma and A. Ali, "A coarse grained and hybrid reconfigurable architecture

with flexible NoC router for variable block size motion estimation," in IEEE

International Symposium on Parallel and Distributed Processing, April 2008.

[120] V. Jarno, A. Eero, K. Kimmo and D. H. Timo, "A Configurable Motion

Estimation Architecture for Block-Matching Algorithms," IEEE Transactions On

Circuits And Systems For Video Technology, vol. 19, no. 4, pp. 466-477, April

2009.

[121] D. Anargyros, L. George and R. Dionysios, "Programmable Motion Estimation

Architecture," in IEEE International Conference on Electronics, Circuits, and

Systems, December 2009.

[122] J. L. Nunez-Yanez, A. Nabina, E. Hung and G. Vafiadis, "Cogeneration of Fast

Motion Estimation Processors and Algorithms for Advanced Video Coding,"

IEEE Transactions on Very Large Scale Integration Systems, vol. 20, no. 3, pp.

437-448, March 2012.

[123] S. K. Raman, P. Vladimir and K. Jagannath, "Implementing streaming SIMD

extensions on the Pentium III processor," IEEE micro, vol. 20, no. 4, pp. 47-57,

2000.

[124] S. D. Kim and M. H. Sunwoo, "MESIP: A Configurable and Data Reusable

Motion Estimation Specific Instruction-Set Processor," IEEE Transactions on

Circuits and Systems for Video Technology, vol. 23, no. 10, pp. 1767-1780, 2013.

[125] M. E. Sinangil, V. Sze, M. Zhou and A. P. Chandrakasan, "Cost and coding

efficient motion estimation design considerations for high efficiency video coding

References

158

(HEVC) standard," IEEE Journal of Selected Topics in Signal Processing, vol. 7,

no. 6, pp. 1017 - 1028, July 2013.

[126] S. Jou, S. Chang and T. Chang, "Fast Motion Estimation Algorithm And Design

For Real Time QFHD High Efficiency Video Coding," IEEE Transactions on

Circuits and Systems for Video Technology, no. 99, Jan. 2015.

[127] J. Byun, Y. Jung and J. Kim, "Design of integer motion estimator of HEVC for

asymmetric motion-partitioning mode and 4K-UHD," Electronics Letters, vol. 49,

no. 18, pp. 1142-1143, Aug. 2013.

[128] G. Sanchez, M. Porto and L. Agostini, "A hardware friedly motion estimation

algorithm for the emergent HEVC standard and its low power hardware design,"

in IEEE International Conference on Image Processing (ICIP 2013), Melbourne,

Sept. 2013.

[129] Y. Xu, J. Liu, L. Gong, Z. Zhang and R. Teng, "A high performance VLSI

architecture for integer motion estimation in HEVC," in IEEE 10th International

Conference on ASIC (ASICON 2013), Oct. 2013.

[130] "HM Reference Software 9.0," [Online]. Available:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-9.0-dev/.

[131] Y. T. Jo, R. Surendra, M. Ranganath and A. A. Kassim, "A novel unrestricted

center-biased diamond search algorithm for block motion estimation," IEEE

Transactions on Circuits and Systems for Video Technology, vol. 8, no. 4, pp. 369

- 377, Aug. 1998.

[132] S.-H. Yang, J.-Z. Jiang and H.-J. Yang, "Fast motion estimation for HEVC with

directional search," IET Electronic Letters, vol. 50, no. 9, p. 673–675, April 2014.

[133] N. Parmar and M. H. Sunwoo, "Enhanced test zone search motion estimation

algorithm for HEVC," in International SoC Design Conference (ISOCC), Jeju,

Nov. 2014.

References

159

[134] D. E. Thomas and P. R. Moorby, The Verilog® Hardware Description Language,

Springer Science & Business Media, 2002.

[135] "Xilinx Virtex-6 FPGA Configuration User Guide," Aug. 2014. [Online].

Available: http://www.xilinx.com/support /documentation/user_guides/ug360.pdf.

[136] M. E. Sinangil, A. P. Chandrakasan, V. Sze and M. Zhou, "Hardware-aware

motion estimation search algorithm development for high-efficiency video coding

(HEVC) standard," in IEEE International Conference on Image Processing (ICIP

2012), Orlando, FL, Sept. 2012.

[137] D. Thomas, S. Momcilovic, F. Pratas and L. Sousa, "Reconfigurable data flow

engine for HEVC motion estimation," in IEEE International Conference on

Image Processing (ICIP 2014), Paris, France, Oct. 2014.

Annex A

160

Annex A

RD curves of the all the test sequences for Full Search, TZSearch and the proposed

algorithm.

Annex A

161

