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resumo 
 

 

Recentemente têm sido identificados alguns perigos relativamente ao 

ambiente no mar profundo, como atividades de mineração marinha, e 

que exigem uma melhor compreensão sobre as características únicas 

destes ecossistemas. A alta pressão hidrostática (HHP) é uma das 

condições abióticas mais importantes para a vida neste ambiente; no 

entanto os seus efeitos nos processos e estruturas dos organismos são 

pouco compreendidos. Enquanto a realização de testes com organismos 

do fundo do mar é muito desafiadora e cara, avaliar os efeitos da HHP 

utilizando espécies de águas rasas parece ser a melhor abordagem. O 

camarão Palaemon varians é uma espécie com estreita relação 

filogenética com algumas espécies-chave do mar profundo. No presente 

estudo, P. varians foi exposto a uma gama de diferentes HHP (10, 20, 30 

e 40 MPa) e a duas temperaturas diferentes (4 ºC e 20 ºC), e diversos 

marcadores bioquímicos (as actividades de AChE, GST e CAT e os níveis 

de LPO) foram medidos a fim de avaliar a utilização desta espécie como 

modelo para estudos a desenvolver em laboratório. Todos os animais 

expostos a HHP acima de 20 MPa morreram durante a exposição. 

Embora nenhuma interação nos marcadores bioquímicos medidos 

tenha sido encontrada entre HHP e temperatura, os animais expostos a 

20 MPa e 4 ° C também morreram durante a exposição. Os níveis de 

LPO e a atividade da GST aumentaram a temperaturas baixas, e por isso 

a utilização desta espécie a essas temperaturas requer uma 

investigação mais aprofundada. Devido à ausência de resposta de todos  



 

 

 

 

os biomarcadores medidos, esta espécie parece ser adequado para 

ensaios laboratoriais com pressões de 10 MPa. A pressões de 20 MPa, 

foram observadas algumas alteração nos níveis de LPO e AChE após 8 

horas de recuperação da exposição sendo por isso necessário 

aprofundar o estudo destes efeitos. Além disso, a mortalidade registada 

a temperaturas baixas faz com que o uso desta espécie em tais pressões 

seja limitada. Na segunda parte deste trabalho, a fim de avaliar o efeito 

da pressão sobre a sensibilidade desta espécie para a exposição a 

cádmio, P. varians foi exposto a várias concentrações de cádmio 

durante 96 h, juntamente com diferentes regimes de pressão: pressão 

atmosférica; simultaneamente, durante 8 horas, com uma pressão de 

20 MPa; e pré-expostos a 20 MPa durante 8 h. Os valores de LC50 

calculados foram semelhantes para os diferentes regimes de pressão, o 

que indica que a esta pressão não são observados efeitos sobre a 

toxicidade do cádmio para P. varians. Embora esta seja uma avaliação 

importante dos efeitos tóxicos do cádmio a pressões elevadas, são 

necessários estudos adicionais sobre outras espécies e outros produtos 

químicos que também são propensos a aparecer no fundo do mar. 
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abstract 

 
The recent rising threats to the deep-sea, as deep-sea mining, require a 

better understanding about the unique characteristics of these 

ecosystems. High hydrostatic pressure (HHP) is one of the most 

important abiotic conditions to life in this environment; however its 

effects on processes and structures of the organisms are very poorly 

understood. While experimentation with organisms from the deep-sea 

is very challenging and expensive, assessing the effects of HHP using 

shallow-water species seem to be best approach. The caridean shrimp 

Palaemon varians is a species with close phylogenetic relation with 

some key species in the deep-sea. In the present study, P. varians was 

exposed to a range of different HHP (10, 20, 30 and 40 MPa) and to two 

different temperatures (4 ºC and 20 ºC), and biochemical markers 

(AChE, GST, CAT activities and LPO level) were measured in order to 

evaluate the use of this species as a model for future laboratory 

research. All animals died during exposure at HHP above 20 MPa. While 

no interaction between HHP and temperature on biochemical markers 

were found, animals at 20 MPa and 4 ºC also died during the exposure. 

LPO levels and GST activity increased at low temperatures, and the use 

of this species at such temperatures requires further investigation. Due 

to the absence of response of all biomarkers measured, this species 

seems to be suitable for laboratory assays with pressures of 10 MPa. At 

20 MPa, some small alteration in LPO and AChE levels after 8 hours post 

exposure may require further investigation. Also, the mortality  



 

 

 

 

registered at low temperatures makes the use of this species at such 

pressures limited. In order to evaluate the effect of pressure on the 

sensitivity of this species to cadmium, P. varians were exposed to 

several concentration of cadmium during 96h, along with different 

pressure regimes: at atmospheric pressure; simultaneously, for 8h, with 

a pressure of 20 MPa; and pre-exposed to 20 MPa for 8 h. Only slightly 

differences were found between the calculated LC50 for the different 

pressure regimes, indicating that at this pressure no effects on the 

toxicity of cadmium to P. varians are observed. Although this is an 

important input regarding hazard assessment at higher pressures, 

additional studies are needed regarding other species and other 

chemicals that are also prone to appear in the deep sea. 

 



INDEX 

 

Part 1  General Introduction .......................................................................................................... - 1 - 

1.1  THE DEEP-SEA ....................................................................................................................... - 1 - 

1.1.1 Characterization and abiotic conditions ....................................................................... - 2 - 

1.1.2  Biological effects of pressure ....................................................................................... - 3 - 

1.1.3  High pressure and low temperature, a biological bottleneck ...................................... - 6 - 

1.1.4  Mining activity and other treats ................................................................................... - 9 - 

1.2  PALAEMON VARIANS ............................................................................................................. - 12 - 

1.2.1  Taxonomy and morphology ....................................................................................... - 12 - 

1.2.2  Habitat, ecology and relevance .................................................................................. - 13 - 

1.3  CADMIUM ............................................................................................................................ - 14 - 

1.3.1  Sources and uses ........................................................................................................ - 14 - 

1.3.2  Biological effects ........................................................................................................ - 16 - 

1.4  BIOMARKERS ....................................................................................................................... - 17 - 

1.5  RATIONALE AND AIMS .......................................................................................................... - 19 - 

1.6  REFERENCES .................................................................................................................... - 20 - 

PART 2: High Hydrostatic Pressure (HHP) and physiological changes in Palaemon varians: a 

biochemical approach .................................................................................................................. - 31 - 

2.1  ABSTRACT ........................................................................................................................... - 31 - 

2.2  INTRODUCTION .................................................................................................................... - 32 - 

2.3  MATERIALS AND METHODS ................................................................................................... - 34 - 

2.3.1  Organisms’ collection and acclimation conditions ..................................................... - 34 - 

2.3.2  Pressure system.......................................................................................................... - 34 - 

2.3.3  Pressure exposure ...................................................................................................... - 34 - 

2.3.4  Chemicals .................................................................................................................... - 35 - 

2.3.5  Biomarkers analysis .................................................................................................... - 35 - 

2.3.6  Statistical analysis ....................................................................................................... - 38 - 

2.4  RESULTS .............................................................................................................................. - 38 - 

2.5 DISCUSSION .......................................................................................................................... - 43 - 

2.6  REFERENCES ........................................................................................................................ - 45 - 

Part 3  Effect of High Hydrostatic Pressure (HHP) on cadmium toxicity in Palaemon varians .... - 49 - 

3.1  ABSTRACT ........................................................................................................................... - 49 - 



3.2  INTRODUCTION .................................................................................................................... - 50 - 

3.3  MATERIALS AND METHODS .................................................................................................. - 52 - 

3.3.1  Organisms’ collection and acclimation conditions ..................................................... - 52 - 

3.3.2  Cadmium exposure..................................................................................................... - 52 - 

3.3.3  Acute toxicity test ....................................................................................................... - 53 - 

3.3.4  Acute toxicity test with different exposures to pressure ........................................... - 54 - 

3.3.5  Statistical analysis ....................................................................................................... - 54 - 

3.4  RESULTS .............................................................................................................................. - 55 - 

3.5  DISCUSSION ......................................................................................................................... - 58 - 

3.6  REFERENCES ........................................................................................................................ - 60 - 

Part 4  Concluding remarks .......................................................................................................... - 63 - 

Part 5  Annexes............................................................................................................................. - 65 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LIST OF ACRONYMS AND ABBREVIATIONS 

 
 

HHP High Hydrostatic Pressure 

HC Hyperbaric Chamber 

GST Glutathione S-transferase 

LPO Lipid Peroxidation 

CAT Catalase 

AChE Acetycholinesterase 

ROS Reactive Oxygen Species 

PMS Post-mitochondrial supernatant 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

LIST OF FIGURES 
Figure 1 Adult specimen of Palaemon varians. .......................................................................................... - 12 - 

 

Figure 2 AChE (A), GST (B), CAT (C) activities and LPO levels (D) measured at optimal conditions (20 ºC, 

aeration and light) and in Palaemon varians that were inside the hyperbaric chamber (20 ºC, no aeration and 

no light) with standard error bars. The blue bars represent values in animals frozen immediately after the 

exposure and green bars represent animals that were allowed to recovery during 8 hours. In the graphic (C), 

the n represents the number of animas in which catalase activity was possible to assess. .......................... - 40 - 

 

Figure 3 LPO levels (nmol TBARS g-1 tissue) of Palaemon varians exposed during 8 hours to different 

pressures (atmospheric pressure, 10 and 20 MPa) and temperature (20 ºC and 4 ºC) with standard error bars. 

The blue bars represent LPO values in animals frozen immediately after the exposure and green bars 

represent animals that were allowed to recovery during 8 hours. Different letters represent a statistical 

difference between organisms exposed at 20 ºC and 4 ºC. Statistical difference from the control is marked by 

an *. ............................................................................................................................................................. - 41 - 

 

Figure 4 GST activity (nmol min-1 mg-1 protein) measured in Palaemon varians exposed during 8 hours to 

different pressures (atmospheric pressure, 10 and 20 MPa) and temperature (20 ºC and 4 ºC) with standard 

error bars. The blue bars represent values in animals frozen immediately after the exposure and green bars 

represent animals that were allowed to recovery during 8 hours. Different letters represent a statistical 

difference between organisms exposed at 20 ºC and 4 ºC. .......................................................................... - 41 - 

 

Figure 5 AChE activity (nmol min-1 mg-1 protein) measured in Palaemon varians exposed during 8 hours to 

different pressures (atmospheric pressure, 10 and 20 MPa) and temperature (20 ºC and 4 ºC) with standard 

error bars. The blue bars represent values in animals frozen immediately after the exposure and green bars 

represent animals that were allowed to recovery during 8 hours. Statistical difference is marked by a *. .. - 42 - 

 

Figure 6 CAT activity (µmol min-1 mg-1 protein) measured in Palaemon varians exposed during 8 hours to 

different pressures (atmospheric pressure, 10 and 20 MPa) and temperature (20 ºC and 4 ºC) with standard 

error bars. The blue bars represent values in animals frozen immediately after the exposure and green bars 

represent animals that were allowed to recovery during 8 hours. The number of animals in which CAT 

activity was possible to assess is shown above each bar. ............................................................................ - 42 - 

 

Figure 7 Total survival of Palaemon varians exposed to cadmium for 48 h. Data is presented as % of 

survival. The blue bars represents animals exposed to atmospheric pressure, the green bars represents animals 

pre-exposed to pressure before cadmium exposure, and the red bars the animals exposed to both pressure and 

cadmium simultaneously. ............................................................................................................................ - 57 - 

 

Figure 8 Total survival of Palaemon varians exposed to cadmium for 72 h. Data is presented as % of 

survival. The blue bars represents animals exposed to atmospheric pressure, the green bars represents animals 

pre-exposed to pressure before cadmium exposure, and the red bars the animals exposed to both pressure and 

cadmium simultaneously. ............................................................................................................................ - 57 - 

 

Figure 9 Total survival of Palaemon varians exposed to cadmium for 96 h. Data is presented as % of 

survival. The blue bars represents animals exposed to atmospheric pressure, the green bars represents animals 

pre-exposed to pressure before cadmium exposure, and the red bars the animals exposed to both pressure and 

cadmium simultaneously. ............................................................................................................................ - 58 - 

 
 
 
 



LIST OF TABLES 
 
Table 1 Reaction volume associated with some biochemical important reactions at 25 ºC (adapted from Gross 

and Jaenicke 1994) ........................................................................................................................................ - 5 - 

 

Table 2 Nominal cadmium concentration and the respective dissolved concentrations obtained in the 

chemical analysis (mg/L). ........................................................................................................................... - 55 - 

 

Table 3 LC50 values (± 95% confidence limits) in mg/L for 96 h calculated for Palaemon varians exposed to 

cadmium (value calculated for dissolved concentration of cadmium). ....................................................... - 56 - 

 



- 1 - 
 

PART 1  GENERAL INTRODUCTION 

 

 

1.1  THE DEEP-SEA 

 

The deep-sea covers an area of 360 x 106 Km2, representing around 90% of the 

world oceans and around 50% of the Earth’s surface. With an average depth of 3800 m 

and a volume of 1368 x 106 Km3, is by far the largest ecosystem on earth (Ramirez-Llodra 

et al. 2011). The beginning of the deep-sea is marked by a clear transition between the 

shallow-water fauna of the continental shelf to the deep-water fauna at about 200 m 

depth (Sanders et al. 1965). Because of this 200 m water layer, all existing and needed 

information for a comprehensive understanding of structure and functions of the deep-

sea depends on modern and expensive technology, being often a very slow process. Due 

to these difficulties, in 1844, Edward Forbes, after a period of extensive sampling in the 

Mediterranean in which no sign of life was observed, proposed the Azoic Theory, stating 

that little or no life could be found bellow 600 m (Anderson and Rice 2006). However, 

during the late 19th century, the necessity of laying telegraphic cables in the ocean 

bottom pushed by the industrial revolution led to a series of important expeditions, 

especially the worldwide cruise HMS Challenger (1872-1876) that found deep-sea 

organisms in all the samples recovered from different abyssal plains (Glover et al. 2010; 

Ramirez-Llodra et al. 2011; Thistle 2003). After this expedition, a growing interest for the 

deep-sea led to a period of intense exploration, culminating in the Galathea expedition 

which proved that animals could be found at all depths (Ramirez-Llodra et al. 2011). After 

this period of intense exploration the deep sea was viewed as a quiescent environment, a 

vast undisturbed and invariant dark sedimented plain with low biodiversity and no 

seasonality (Tyler 1988). Nowadays, this idea has been strongly rejected. Newly 

developed technology, such as cameras and remote operated vehicles, allow having a 

broader vision of the deep-sea environment. It is now known that benthic storms are an 

example of a dynamic process that can re-suspend sediment in hours or the sink of a 
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whale carcass can provide food for a variety of specialized organisms, changing the 

community composition of a given site for years (Gage and Tyler 1992). Extensive 

sampling using corers, trawls and sledges has shown a much higher biodiversity that 

originality thought and recent studies put the biodiversity of several taxonomic groups 

present in the deep-sea above several hotspots of diversity, such as the coral reefs and 

rain forests (McClain and Schlacher 2015). The extreme conditions of the deep-sea seem 

to be a counterpoint to such high biodiversity, and the reasons behind it are not fully 

understood (López-García et al. 2001; McClain and Schlacher 2015). 

To explain the adaptation of deep-sea organisms, the importance of this ecosystem 

in the global environment and the threats and ways to protect it, further investigation is 

needed in order to understand the condition that rule life in the deep-waters.  

 

1.1.1 Characterization and abiotic conditions  

 

The deep-sea has very unique set of conditions that makes life-traits very different 

from any other ecosystem.  

Temperature is relatively stable in deep-water systems when compared to other 

environments. In shallow-water, temperature changes with seasonality and latitude, 

varying between almost 0 ºC in high latitudes to 27 ºC in low latitudes (Thistle 2003). 

However, temperature drops with increased depth, reaching to -1 to 4 ºC in abyssal 

plains, while variation due to latitude and seasonality can be considered almost negligible 

(Gage and Tyler 1992; Mantyla and Reid 1983). Hydrothermal vents are the exception; in 

those the temperatures can reach up to 400 ºC, heating the water and constituting 

“warm oasis” in the frigid waters of the deep-sea (Lutz and Kennish 1993).  

Pressure is probably the most predictable condition in marine ecosystems. It has a 

linear relationship with depth and increases about 1 MPa for every 100 m of water. In the 

deepest parts of ocean, like in the Mariana Trench, it can reach almost 110 MPa. These 

pressures can crush any terrestrial and shallow-water organism, although many animals 

and bacteria have adapted to live in such conditions (Somero 1992). 
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Slow descent surface water keeps the salinity of the deep-sea at 35, very close to 

those observed in marine shallow-water (Thistle 2003). Few exceptions occur, for 

example in the Mediterranean Sea, where the deep-water have a considerably higher 

salinity of about 38 (Tsimplis and Baker 2000).  

No photosynthetic useful light reaches depths below 250 m, even in clear water. 

Therefore photosynthetic processes do not occur in the deep-ocean. Chemosynthetic 

processes are considered the basis of food chains in some isolated communities, like 

hydrothermal-vents and cold seeps, but in most of the abyssal plains, food is imported 

from shallow-water and land communities (Thistle 2003). The occasional sinking of a large 

carcass (e.g., whales) constitute an enormous input of food that can last for decades, 

while the continuous sinking of small particles as crustacean molts and faecal pellets are 

also very important in terms of nutrient re-cycling (Gage 2003). Despite this absence of 

photosynthesis, the deep-sea water is kept oxygen saturated by the descent of surface 

waters which form currents across the ocean floor (Thistle 2003).    

Most of the deep-sea is covered by small particulate sediment, mostly originated by 

the weathering of rocks on land and by particles produced by planktonic organisms such 

as the silica shells from diatoms (Thiel 2003). In some places, bare rock is also present, 

which constitutes an important fixation point for several organisms (Glover et al. 2010). 

The abiotic conditions in the deep ocean are so different from other habitats that it 

is often considered an extreme environment. But the definition for “extreme 

environments” is related to the distance from the “optimum conditions”. Therefore it 

usually reflects a terrestrial or shallow water organism “point of view”. For both deep-sea 

and shallow water species, the homeostatic effort required to maintain internal 

conditions when exposed to environmental conditions beyond optimum is increased and 

poses a challenge to their survival (Brown and Thatje 2014; Treude et al. 2002).  

 

1.1.2  Biological effects of pressure 

 

Any physiological or biochemical process that involve a change in the system’s 

volume is affected by changes in pressure (Somero 1992). The effect of high hydrostatic 
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pressure (HHP) in a system can be analyzed by the follow equation (Gross and Jaenicke 

1994; Macdonald 1997): 

(
𝜕 ln 𝑘

𝜕𝑝
)

𝑇

=  
−∆𝑉

𝑅𝑇
 

Where k is the reaction rate coefficient, p the pressure, T the absolute 

temperature, R the gas constant and ΔV is the difference between final and initial volume 

of the reactants. At constant temperature, the reaction rate coefficient (k), which 

determines the direction in which a chemical reaction shifts, is affected by the pressure 

and by changes in volume. Hence, the dependence of k on pressure can be written: 

(
𝜕 ln 𝑘

𝜕𝑝
)

𝑇

=  
−∆𝑉≠

𝑅𝑇
 

Where ∆V≠ represents the activation volume of a reaction. Thus any reaction with a 

decrease (negative) change in volume will be accelerated and any reaction with an 

increase (positive) in volume will be slowed down. In table 1 are listed the volume change 

associated with some important biochemical reaction that are affected by pressure. For 

example, the formation of ionic interaction in the water molecule occurs associated with 

an increase in the volume. Hence an increase in pressure favors the dissociation of the 

ionic interaction and an increase of the free [H]+. This leads to a decrease in the pH of 

pure water by 0.3 when pressure is increased from 0.1 MPa to 100 MPa (Gross and 

Jaenicke 1994).  

Several proteins and biomolecules are affected by pressure. In the table 1 we can 

see that the denaturation of myoglobin is induced by an increase in the pressure. This 

dissociation by pressure occurs in most of the multisubunit proteins, with sensitivity to 

pressure being as higher as the rate of the volume change associated to its dissociation 

(Cioni and Strambini 1996; Somero 1992). Even when partial, this denaturation exposes 

nonpolar groups of the protein to water causing its inactivation (Balny et al. 2002). 

Diverse processes in the organism can be affected by this sensitivity of proteins to HHP, 

among others, enzymes catalysis, protein mediated signalization and transport of 

biomolecules (Chong et al. 1985; Ruan and Weber 1989; Siebenaller et al. 1991). The cell 
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morphology can be also changed due to the dissociation of tubulin and actin caused by 

HHP (Brown and Thatje 2014; Swezey and Somero 1985).  

 

Table 1 Reaction volume associated with some biochemical important reactions at 25 ºC (adapted from Gross and 
Jaenicke 1994) 

Reaction Example ΔV (ml/mol) 

Protonation H+ + OH- → H20 +21.3 

 Protein-COO- + H+ → protein-COOH +10 

Hydrogen-bond formation 
Poly(A+U) (helix formation) in DNA 
denaturation 

+1 

Hydrophobic hydration (CH4)hexane →  (CH4)water -22.7 

Hydration of polar groups n-propanol →  (n-propanol)water -4.5 

Protein dissociation/association Tubulin propagation; ΔV per subunit +90 

 Ribosome association (E. coli 70S) ≥200 

Protein denaturation Myoglobin (pH 5, 20 ºC) -98 

 

 

Almost all studied processes played by the cell membrane were reported to be 

affected by changes in pressure (Macdonald 1997; Pradillon and Gaill 2007; Somero 

1992). This reduction in the membrane functionality is explained by the reduction in the 

fluidity of the phospholipid bilayer (Sébert et al. 1997). Changes in the fluidity highly 

affect the transmission potential in neural cells of organisms of shallow waters (Oliphant 

et al. 2011; Wann and Macdonald 1980). These malfunctions cause the high pressure 

neurological syndrome in terrestrial and shallow water organism’s when exposed from 

slightly too severe changes in pressure. Virtually, all neural and muscular functions on the 

organism are affected by this change in pressure causing tremors, lack of movement 

coordination and other neurological malfunctions (Oliphant et al. 2011).  

Transmembranar ion flux across the membrane is drastically affected by changes in 

pressure (Macdonald 1997). For example, Roer and Shelton 1981 reported a reduction of 

sodium uptake by crayfish of 80% when exposed to a pressure of 50 to 100 atm. Several 
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proteins on the membrane that play key roles on the osmoregulation are also highly 

sensitive to pressure changes. One of the most important proteins in the osmoregulation 

process, the Na+ K+ - adenosine thriphosphatase (Na+ - K+ ATPase), was shown to be very 

sensitive to the change in the fluidity of the surrounding cell membrane being highly 

inhibited by HHP (Chong et al. 1985). 

With all these effects on the function of proteins and membranes, it is not 

surprising that complex processes, such as the transcription and transduction of DNA into 

mRNA and proteins, involving several proteins and different cell compartments, are 

shown to be highly affected (e.g. Hardon and Albright 1974; Hildbrand and Pollard 1972). 

For example, Hildebrand and Pollard (1972) showed that an increase in pressure of about 

640 atm caused 95% inhibition of the synthesis of polyphenylalanine. 

However, it is important to point out that volume change can occur not only in 

molecules directly involved in the processes itself, but also by the pressure ability to 

change the density and viscosity of the involving aqueous environment. Therefore, some 

processes are disrupted not by a shift in the protein responsible for it, but by changes in 

fluidity of the surrounding membrane (Chong et al. 1985; Somero 1992). Hence it is 

important to look at the whole system and not only a process or a chemical reaction 

alone. 

 

 

1.1.3  High pressure and low temperature, a biological bottleneck 

 

Despite the mechanism of action being different, studies have shown that both high 

pressures and low temperature have similar effect on biological systems (Pradillon and 

Gaill 2007; Ravaux et al. 2013).  While pressure effects result only from volume changes, 

temperature affects both volume and energy in the system (Pradillon and Gaill 2007).  

For the cellular membrane, both low temperature and high pressure cause an 

increase in the phospholipid bilayer order and also a decrease in fluidity (Macdonald and 

Cossins 1984). A temperature increase of 2.8 ºC has been reported to reverse the effect 

on the fluidity of the membrane caused by an increase in pressure of 10 MPa (Brown and 
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Thatje 2014; De Smedt 1979 et al.). The reduction in membrane functionality and fluidity 

and of the proteins associated caused by both high pressure and low temperature 

difficult the transport of ions and biomolecules from and within the cell, leading to a 

higher demand of energy to keep the internal homeostasis (Brown and Thatje 2015; 

Somero 1992). Survival under such conditions is time limited, because the higher demand 

of oxygen to keep the increased mitochondrial activity is not always matched by an 

increase on the ventilation and circulation capacity on the organism (Brown and Thatje 

2014; Cottin et al. 2012). Despite adaption being needed in other compartments and 

organs, the capacity of an organism to keep the aerobic function, appear to be the key for 

survival at low temperatures (Sommer and Pörtner 2002).  

Like the exposure to high pressures, low temperature also causes denaturation on 

the structure of diverse proteins, putting more pressure on the mitochondria’s capacity to 

deliver energy for the production of chaperones to counteract this process (Brown and 

Thatje 2015; Privalov 1990). This denaturation is related with the unfolding on the 

structure caused by the hydration of nonpolar groups by water (Privalov 1990). This 

unfolding open the normally compact structure of the protein, exposing other nonpolar 

groups to water and causing its inactivation (Balny et al. 2002; Privalov 1990). This 

relation between the water content of the body tissues and the resistance to exposures 

to pressure and temperature outside of the normal ranges can be observed in 

tardigrades. Tardigrades are small terrestrial microorganisms that when exposed to 

extremely dry environments become immobile and shrink, losing almost all the water in 

their body and stopping most of the biological processes (Seki and Toyoshima 1998). This 

state allows them, among other things, surviving to extremely low temperatures and high 

pressures. While on his normal state they only support pressures until 200 MPa and 

temperatures of about -196 ºC, at the dehydrated state they can survive pressures above 

600 MPa and temperatures as low as -253 ºC for long periods of time (Hengherr et al. 

2009; Seki and Toyoshima 1998).     

Given the fact that both high-pressure and low temperature promote similar effects 

in the organisms structures and metabolism, it is not surprising to observe a similar 

response in organism exposed to low temperatures or HHP. Several cold shock response 
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proteins usually found in response to cold temperatures can also be found in organisms 

exposed to high pressures (Wemekamp-Kamphuis et al. 2002). Wemekamp-Kamphuis et 

al. (2002) reported that the pathogen Listeria monocytogenes increases his resistance to 

high pressure from 200 MPa to 300 MPa when prior incubated at 10 ºC and then 

transferred to 37 ºC, when compared to those always kept at 37 ºC. Avrova (1984) 

reported an increased presence of mono-unsaturated fatty acids and low saturated fatty 

acids (a well-known adaptation to cold temperatures) on the deep-living fish Antimora 

rostrata when compared to his shallow-water cousins adapted only to cold temperatures.  

The synergistically effect of cold temperatures and high pressures indicate that 

these abiotic conditions can be the major barrier that shallow water living organism had 

to overcome in the colonization of the deep-sea (Brown and Thatje 2015; Cottin et al. 

2012; Mestre et al. 2014). The colonization of deep-sea may therefore occurred during 

the Mesozoic and early Cenozoic periods, when the ocean was colder and the difference 

in temperatures between upper and bottom of the water column were smaller (Cottin et 

al. 2012). Evolution of deep-sea life at high altitudes, where the differences in the 

temperature of the upper layers of water and the water below is also a possibility (Thatje 

et al. 2005). 

Some taxonomical groups appear to be originated from the deep-sea. For example, 

Lindner et al. (2008) found that stylasterid corals, the second most diverse group of 

extant hard corals, appeared in shallow water environment through three distinct 

invasions from the deep-sea. Despite this and other examples, the invasions of deep-sea 

animals to shallow-water environment appear to be relatively few (Brown and Thatje 

2014). This can be explained by the low ability of deep-sea organisms to compete with 

shallow-water species by resources. De Long and Yayanos (1986) reported a lower 

capacity of transport of glucose in deep-sea bacteria when exposed to shallow-water 

pressures. Several adaptation allow the deep-sea organisms to survive under-pressure, 

however those same adaptation cripple their ability to compete in shallow-water 

environments. Deep-living species not only are adapted to the high pressure, but they 

also perform better under it and sometimes even require these conditions to survive and 

perform basic life functions like reproduction and growing (Harper et al. 1987; Yayanos 
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1986). Therefore organisms that colonized the deep-sea had adapted to low 

temperatures, HHP and total absence of light (Somero 1992).   

 

1.1.4  Mining activity and other treats 

 

The vastness and remoteness of the deep-sea have always kept it away from public 

consciousness. Due to its size and the covering water layer, it is perceived as safe from 

anthropogenic pressures that endanger almost all the other habitats. When dumping 

waste on land is considered unethically, unaesthetically or inconvenient, it is common 

sinking it on the sea. This “away from sight, away from mind” idea led to the presence of 

diverse materials in the bottom of the sea. Despite several conventions that legislate and 

prohibit the dumping of litter from ships, being the International Convention for the 

Prevention of Pollution from Ships (MARPOL) the most important (www.imo.org), United 

Nations Environment Programme (UNEP) estimates that about 6.4 million tons are still 

being dumped in the sea every year from vessels only (UNEP, 2009; Strand et al. 2015). 

Despite the vastness of the deep-sea, this dump of materials can have a huge impact on 

the ecosystem. For example, in the age of steam power, transatlantic ships used to dump 

clinker to the sea. In many spots of the deep-sea, usually associated with old common 

routes, this residuum of burnt coal can form more than 50% of the hard substratum with 

unknown consequences (Kidd and Hugget 1980).  

Like the visible waste, several contaminants such as synthetic organochlorine 

compounds (Iwata et al. 1993), chlorofluorocarbons (Doney and Bullister 1992), 

pharmaceuticals, sewage and radioactive materials (Ramirez-Llodra et al. 2011) also reach 

the deep-sea. The downwelling of dense water masses is the main entry of these 

contaminants (Thiel 2003), which can also sink alone adsorbed to small particles (Mason 

and Fitzgerald 1992; Thiel 2003). 

Another source of pressure that has not been taken into account for several years is 

the effect of global changes in the deep-sea. The deep-sea is not immune to the fast 

global changes that are presently occurring, due to anthropogenic activity. Climate 

change is predicted to imply acidification of the seawater, temperature changes, 
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expansion of hypoxic zones, destabilization of the slopes and changes in the nutrient cycle 

(Glover et al. 2010; Ramirez-Llodra et al. 2011). Unlike other more studied ecosystems, 

effects in the deep-sea are very hard to predict and evaluate, thus very few data is 

available, and changes in the community composition are very hard to evaluate (Glover et 

al. 2010). 

Recently, a new threat to the deep-sea ecosystem has been also described. The idea 

of exploring the mineral resources of the deep-sea is not recent, as the first dredge of 

minerals with commercial interest was performed in 1873 (Thiel 2003; Thiel et al. 2013). 

Between the years of 1977-81, very intensive exploitation was performed, but the mining 

project did not advance due the value loss of metals in the market (Thiel et al. 2013). 

Several impact studies were carried out, however the lack of technology and the market 

conditions were not favorable and several projects were delayed. In the recent years 

however, the rising price of the minerals in the global markets and the development of 

new advanced technologies that permit cheaper and effective ways of exploration had 

caused an exponentially increase in the interest for this resources (Thiel et al. 2013). 

Three forms of mineral resources are the mainly target for mining exploitation: 

manganese nodules, cobalt rich crusts and massive polymetallic sulphide deposits 

(Ramirez-Llodra et al. 2011). The problem with these resources is that most of them are 

localized in hydrothermal vents and on other spots of high biodiversity and their removal 

is expected to cause a high impact on the communities (Dover 2014). The full extensions 

of impacts are far from being completely understood, and the recovery rates of 

communities can take several years (Mestre et al. 2014). Due the high value of the 

resources several projects have already started (Nautilus and Coffey 2008; Lamarche and 

Clark 2012; ISA 2011). Mining cause several direct impacts on the previously undisturbed 

deep-sea communities, like the loss of habitat by removing the hard subtract which is 

essential for organisms fixation (Coffey and Nautilus 2008). The minerals are mechanically 

removed and then dragged to the surface and filtered to recover particles >8 µm, with 

the remaining mud being then returned to the sea, and forming a plume that buries 

sessile organisms from areas of several Km2 (Coffey and Nautilus 2008; Dover 2014; 

Montagna et al. 2013). These processes can re-suspend a lot of metals in sea water, some 
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of them with a recognized higher toxicity, that are then transported for several kilometers 

by the bottom currents of the deep-sea (Mestre et al. 2005; ISA 2011; Thiel 2003). In the 

impact studies conducted in the Red Sea, between 1977 and 1981, several trace metals, 

such as cadmium, nickel, mercury, lead, and cobalt were released to the water (Thiel 

2003). The first toxicological tests with mine tailings, demonstrated a threshold level of 

approximately 10 mg solids per liter. Considering the typical recommended safety factor 

of 0.1% to exclude chronic effects, content above 0.01 mg L-1 would be unacceptable 

(Thiel 2003). Concentrations above this levels are however likely to occur in the plume 

associated with the removal of minerals (ISA 2011; Mestre et al. 2014). 

Originated by either inland sources, such as industry and sewage, by vessels or from 

mining, man-made contaminants are today ubiquitous in the deep-ocean (Thiel 2003). 

Several studies have shown that different abiotic factors can change the toxicity of many 

compounds (see Holmstrup et al. 2010, for review), therefore it is important to 

understand the role of the unique environmental conditions in the deep-sea on the 

toxicity of the compounds. Providing this data can be essential to the elaboration of 

complete impact studies of the mining in the deep-sea and to the well informed take of 

conservation and management actions. In addition, finding good test species to assess 

hazard in the deep-sea environment can be challenging. Not only all the systems 

apparatus for capturing, transport and maintenance of the organisms in laboratory are 

really expensive, but also it is changeling to capture a sufficient number of animals to 

allow a representative amount of replicates required for a robust laboratory assay 

(Mestre et al. 2014; Ravaux et al. 2013; Treude et al. 2002). Finding suitable shallow-

water organisms that can be used as model for this type of assays is of crucial importance. 
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1.2  PALAEMON VARIANS 

 

1.2.1  Taxonomy and morphology 

 

The crustacean Palaemon varians (Leach 1814), referred in old literature as 

Palaemonetes varians (Grave and Ashelby 2013), commonly called Atlantic Ditch shrimp, 

is a shrimp from the order Decapoda and infraorder Caridea.  

Like other caridean shrimps, the body of P. varians is elongated with a very 

hydrodynamic form which allows fast locomotion while swimming. His body can be 

divided in two major parts, the cephalothorax, constituted by the head, two stalked eyes, 

thorax, and the abdomen. The body is covered by an exoskeleton, a thin, transparent and 

very flexible organ that confers support and protection. 

The cephalothorax is protected by a calcified carapace and contains almost all the 

shrimp vital organs such as the brain, the stomach and the heart (fig. 1). The abdomen is 

almost totally constituted by muscle, adapted for their swimming activity, and also holds 

the ventral nerve cord and the hindgut (Bauer 2004). 

 

  
Figure 1 Adult specimen of Palaemon varians. 

Like most decapods, P. varians has sexual dimorphism. The second pair of pleopods 

is modified in the males and used for mating. Females do not present this modification 

and usually have a bigger body compared to the males. During the reproductive season, 

that takes place from late may until early september, females have a different molt called 

breeding dress that is characterized by the presence of extra setae, with the purpose of 
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egg bearing (Bouchon 1991; Frelon et al. 1993). This molt allows the fixation and 

incubation of embryos in the abdomen, for approximately 30 days, and posterior release.  

 

 

1.2.2  Habitat, ecology and relevance 

 

P. varians can be generally found in inland coastal ponds, like estuaries and salt 

marshes with abundant vegetation that provides shelter and food. Normally it is found in 

turbid and shallow waters, with salinities varying from very low (but never in freshwater) 

to salinities above the salinity of the seawater (>35). Besides salinity, several studies have 

found that this species has a high capacity to adapt to different water temperatures, 

oxygen concentrations, and even pressure (although it is never found on deep waters), 

characteristics that allow P. varians to have a wide range of distribution in Western 

Europe (Healey 1997; Oliphant et al. 2011; Palma et al. 2009). It can be found from the 

coasts of Norway in the North Sea and in Baltic Sea, down to the coasts of southern 

Europe and north-western Africa until Tunisia in the Mediterranean basin (Aguzzi et al. 

2005; Cuesta et al. 2012; Gonzales-Ortégon and Cuesta 2006; Healey 1997). 

P. varians is very important in the transference of nutrients across various tropic 

levels. Escaravage and Castel (1990) reported an increase in abundance of nematodes, 

insect larvae’s and copepods when P. varians is present in the community. Due to its 

detritivorous habits, it promotes the mechanical breakdown of organic matter, such as 

macroalgae and plants, into small particles causing their resuspension (along with 

bacteria and other organisms) in the water column, making them available to the 

microfauna (Escaravage and Castel 1990). Despite its diet consisting mainly of small algae 

and plant parts, P. varians is also an active predator of microfauna, such as nematodes 

and mosquito larvae, across the entire water column (Aguzzi et al. 2005; Escaravage and 

Castel 1990).   

Being one of the few native species of shrimps from the Iberian Peninsula with 

commercial value, P. varians is commonly captured in Portugal and Spain (Palma et al. 

2009; Pinto 2010). Due to its high economic value and seasonal fluctuation in terms of 



- 14 - 
 

availability, P. varians is produced in intensive/semi-intensive systems, like abandoned 

salt ponds in southern Spain and Portugal (Aguzzi 2005; Encarnação 2013; Pinto 2010). 

According to the records of FAO (Food and Agriculture Organization of the United 

Nations), P. varians is the only species of crustacea produced in Portugal. The production 

started in 2005 and in 2013 it was registered the highest production with a total of about 

5 tons produced. Despite being a small shrimp, P. varians is used in human consumption 

and as live bait in fishery (Palma et al. 2009). P. varians is also used as live feed in 

aquaculture, with special importance to the production of commercial species with higher 

demand on live feeds (Domingues et al. 2003; Domingues et al. 2009; Palma et al. 2008; 

Sykes et al. 2006). Domingues et al. 2003 and Sykes et al. 2006 reported good growth 

rates of cuttlefish Sepia officinalis when fed with P. varians. Palma et al. 2008 reported 

the same results for the seahorse Hippocampus guttulatus when feed with a mixture of P. 

varians and mysids shrimps. 

Although not so extensively used as other species, P. varians can be considered a 

good test-species to be used in ecotoxicological assays (e.g. Boisson et al. 2003) due to its 

relatively short life cycle, ease to handle, maintain and reproduce in laboratory. Also, this 

species has a lower sensitivity to changes in abiotic conditions, such as salinity (from 0 to 

salinities above the seawater level), temperature (between 0 ºC and 33 ºC, Oliphant et al. 

2011) and hypoxia (Nielsen and Hangerman 1998).    

 

 

1.3  CADMIUM 

 

1.3.1  Sources and uses 

 

Cadmium (Cd), as others trace metals, occurs naturally in the environment, in 

geological ores and in background levels in the marine environment (OSPAR 2010). Its 

distribution is ubiquitous trough the environment, being present in water, soil and air 

(Flick et al. 1971). In freshwater cadmium is normally present in its ionic form, Cd2+, very 

toxic to organisms. In saltwater, however, it forms complexes with chloride, reducing its 
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toxicity (Simpson 1981). When compared with other trace metals, cadmium and his 

compounds are relatively more soluble in water and in organic solvents (Nordic Council of 

Ministers 2003). Despite the existence of cadmium ores (greenockite), their abundance is 

not sufficient to justify mining and cadmium for industrial purposes is produced as a by-

product from mining, smelting and refining of other minerals, primarily sulphide ores of 

zinc (ECB 2007).  

Cadmium is used in NiCd batteries, as intermediate and catalyst for electroplating, 

as a pigment in paint, as stabilizer for plastic, in photographical processes and in dyes 

(ECB 2007; OSPAR 2010). However, due to its toxicity new legislation has been adopted in 

the last decades, restricting cadmium use and making its price drop; nowadays its 

production is more dependent on zinc refinement than on market demand (Nordic 

Council of Ministers 2003).  

In the European Union, cadmium use has been reduced in the last decades and 

banned in several products as cosmetics, packing and toys. Its use is regulated by the 

Annex XVII of Regulation (EC) 1907/2006 of December 2006 on registration, evaluation, 

authorization and restriction of chemicals (REACH), which has been applied in all member 

states since the 1st June 2009.  

The most important sources of cadmium and its compounds to the environment are 

emissions from combustion processes in industry and power plants, and in fertilizers, 

where cadmium is present as an impurity in the phosphate minerals used during 

production (ECB 2007; OSPAR 2010). Despite the lower toxicity of cadmium in its metallic 

form, when in the environment it transforms into soluble ions Cd2+ which are much more 

toxic/hazardous (ECB 2007; Sunda et al. 1978). 

 

 

 

 

 

 

 

 



- 16 - 
 

1.3.2  Biological effects 

 

Cadmium was included in 2013 in the Priority List of Hazardous Substances and 

considered the seventh more hazardous substance for human health by the Agency for 

Toxic Substances & Disease Registry. For the aquatic ecosystem, Abel (1989) had listed 

cadmium as the second most toxic metal to aquatic life, only surpassed by mercury.  

Cadmium is harmful to cells primarily due to his affinity to sulfur, present in several 

amino acids, binding to the proteins and preventing them to interpret their metabolic role 

(Rainbow 2002; Sarkar et al. 2013). Moreover, aquatic invertebrates, algae, fish and other 

species, as humans, bioaccumulate cadmium in their tissues and contrary to the majority 

of trace metals, evidences of possible cadmium biomagnification were reported in a 

microbiological food web and in freshwater food webs (Croteau et al 2005; Gray 2002; 

Rainbow 2002; Werlin et al. 2010). All crustaceans, as P. varians, are not able to regulate 

cadmium concentration in their body, being accumulated in the cytosol in a detoxified 

form, primarily bound to methallothioneins, without potential excretion (Engel and 

Fowler 1979; Rainbow 2007). This accumulation of cadmium in the cells can induce 

multiple effects, like inhibition of several transport mechanisms in the cell membrane, 

changing the cellular and plasma concentration of other metals, such as calcium and 

sodium, whose concentrations are essential for the normal function of the cell (Dhavale 

et al. 1988; Verbost et al. 1989). As other toxic compounds, accumulation of cadmium is 

also linked with overproduction of reactive oxygen species (ROS), such as hydrogen 

peroxide (H2O2) and hydroxyl radicals (•OH) (McGeer et al. 2011). Despite the short half-

life, ROS can cause multiple damages in several structures of the cell, such as proteins, 

lipids and DNA (Gobe and Crane 2010). The cell has several enzymes which catalyze 

reaction to control the presence of ROS, such as catalase that converts H2O2 into water 

and oxygen (Patra et al. 2011). Cadmium binds to the complex III of the mitochondrial 

electron transport chain, causing an increased formation of ROS, and disrupting the 

balance between antioxidant enzymes and the amount of ROS (Chen et al. 2011; McGeer 

et al. 2011; Wang et al. 2004). 
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Some marine diatoms, like Thalassiossira weissflogii, in the absence of zinc, can 

produce a specific carbonic anhydrase that replaces zinc by cadmium in its active site. This 

enzyme catalyzes the conversion between carbonic acid and carbon dioxide, essential for 

the algae metabolism (Lane & Morel 2000; Lane et al. 2005). Due to the low 

concentration of zinc in the ocean and the high density of microalgae in the aquatic 

environment when compared to plants, despite its toxicity, cadmium may play an 

essential role in the global cycle of carbon (Lane et al. 2005). However, no other biological 

function is known for cadmium and still being generally considered a non-essential metal 

for organisms. 

 

1.4  BIOMARKERS 

 

Biomarkers are tools which allow the evaluation of an exposure to a toxic agent, the 

extent of the response and that can also be used to predict a likely response (Timbrell 

1998). Biomarkers can be divided in 3 types: i) biomarkers of exposure are the actual 

chemical, or molecules that results from his metabolization than can be measured in the 

body, and/or in its excretions. This type of biomarkers is particularly useful in 

biomonitoring assays (e.g. Eason and O’Halloran 2003). ii) Biomarkers of effect are the 

quantifiable changes caused by a chemical compound or abiotic factor, and are important 

in lab-based bioassays because they can provide information about the mechanism of 

toxicity of a certain compound (e.g. Oliveira et al. 2013). iii) Biomarkers of susceptibility 

are genetic factors that turn some organisms more sensitive than others to a certain 

compound. 

Several enzymes are involved in the response to a toxic compound. The super 

family of soluble GSTs is a ubiquitous superfamily of multi-functional enzymes that occur 

mainly in the cytosol (Hayes et al. 2005); These group of enzymes neutralize a broad 

range of toxic compounds and endogenous metabolic by-products in the detoxification 

process, conjugating electrophilic xenobiotics, such as chemical carcinogens and 

environmental pollutants, with glutathione (Hayes et al. 2005; LaCourse et al. 2009).  
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The exposure to several toxic compounds causes the production of reactive oxygen 

species (ROS), which, although with short half-life, are highly reactive and have the 

capacity to damage several structures of the cell (Winston and Di Giulio 1991). Lipid 

peroxidation (LPO) is one of the major effects of oxidative damage caused by ROS, and 

leads to loss of function of several cell structures, and its increase is a sign of a 

disequilibrium in the mechanism of the cell to prevent ROS induced damage (Ruas et al. 

2008; Santi et al. 2011). Catalase is one of those enzymes involved in the protection of the 

cell against ROS by catalyzing the reduction of H2O2 into oxygen and water (Thannickeal 

and Fanburg 2000). The activity of catalase and other enzymes such as superoxide 

dismutase (which reduce O2
- to H2O2) is very important in the prevention of damages 

caused by ROS and play crucial roles in maintaining the cell homeostasis (Diaz-Albiter et 

al. 2011; Kopecka-Pilarczyk and Coimbra 2010). 

Acetylcholinesterase (AChE) is an enzyme that catalyzes the hydrolysis of 

acetylcholine in the cholinergic synapses in the central nervous system and in 

neuromuscular synapses, and its activity terminates the synaptic transmission (Santi et al. 

2011). It was extensively used as a biomarker indicator of exposure to organophosphorus 

and carbamate compounds (Colovic et al. 2013), although nowadays it is widely known 

that this enzyme is inhibited by other chemicals such as metals (e.g. Frasco et al. 2005). 

The inhibition of AChE causes accumulation of acetylcholine that leads to 

hyperstimulation of nicotinic and muscarinic receptors, disrupting the neurotransmission 

(Colovic et al. 2013). 

Extensive work has been performed to address effects of toxic compounds using 

several biomarkers (e.g. Dewes et al. 2005; Ferreira et al. 2015; Oliveira et al. 2012). 

However, several biomarkers have been reported to be affected by environmental 

conditions such as temperature (Vinagre et al. 2014), HHP (Low and Somero 1975) and 

salinity (Rodrigues et al. 2012), among others.   
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1.5  RATIONALE AND AIMS 

 

Collection, transport and stocking of deep-sea organisms is a challenging and 

expensive task and toxicity testing using them as models imply a lot of technical 

constraints. Therefore, it should be possible to employ shallow-water species as models 

to evaluate the potencial effects of HHP. Caridean shrimps from the species P. varians 

appear to be suitable candidates as they are phylogenetically related to important and 

emblematic deep-sea species (Mestre et al. 2014). Additionally, previous studies indicate 

P. varians as a species with a high capacity to adapt to different environmental 

conditions, such as pressure (Cottin et al. 2012; New et al. 2014; Oliphant et al. 2011). 

This species is also very common and easy to capture and manage in the laboratory.  

This thesis is divided in two major parts. With the objective of determining how HHP 

affected P. varians and how suitable this species is to laboratory testing in pressure 

assays, several biomarkers were measured upon exposure to two different temperatures 

and five different pressure regimes. The biomarkers used were the activity of AChE, CAT 

and GST and LPO.  

In the second part of this work, the influence of HHP on the toxicity of Cd was 

studied. Despite being far from human presence, contaminants released in the 

environment by anthropogenic activity can easily reach the deep sea. Also, deep-sea 

mining will lead to presence of metals, such as cadmium, in concentrations exceeding the 

safety levels currently considered. For this purpose, P. varians was exposed to a range of 

cadmium concentrations, at different HHP regimes, and survival was recorded. The 

suitability of this species for this kind of assays was discussed. 

In the two parts of this work, a pressure system was assembled to simulate HHP 

closer to those of the deep-sea. All procedures and details are included in this thesis in 

Annex 1. 

The main objectives of this work were: i) to evaluate the effect of HHP and low 

temperature in P. varians; and ii) how HHP affects the sensitivity of P. varians to Cd. 
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PART 2: HIGH HYDROSTATIC PRESSURE (HHP) AND 

PHYSIOLOGICAL CHANGES IN PALAEMON VARIANS: A 

BIOCHEMICAL APPROACH 

 

 

 

 

 

 

 

 

 

 

2.1  ABSTRACT 

 

The recent rising threats to the deep-sea require a better understanding about the 

unique characteristics of these ecosystems. High hydrostatic pressure (HHP) is one of the 

most important abiotic conditions to life in this environment; however its effects on 

processes and structures of the organisms are very poorly understood. While 

experimentation with organisms from the deep-sea is very challenging and expensive, 

assessing the effects of HHP using species with strong phylogenetic relation with deep-

sea organisms seem to be the best approach. The caridean shrimp Palaemon varians is a 

species with close phylogenetic relation with some key species in the deep-sea. In the 

present study, P. varians was exposed to a range of different HHP (10, 20, 30 and 40 MPa) 

and to two different temperatures (4 ºC and 20 ºC), and biochemical biomarkers (AChE, 

GST, CAT activities and LPO level) were measured in order to evaluate the use of this 

species as a model for future laboratory research in HHP assays. All animals exposed at 

HHP above 20 MPa died during exposure. While no interaction in biochemical biomarkers 

was found between HHP and temperature, animals exposed at 20 MPa and 4 ºC also died 

during the exposure. LPO levels and GST activity increased at low temperatures, and the 

use of this species at such temperatures requires further investigation. Due to the 

absence of response of all the biomarkers measured, this species seems to be suitable for 

laboratory assays with pressures of 10 MPa. At 20 MPa, some alterations in LPO level and 

AChE activity after 8 hours post exposure may require further investigation. Also, the 
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mortality registered at low temperatures makes the use of this species at such pressures 

limited. 

 

 

2.2  INTRODUCTION 

 

The deep sea covers more than half of the earth’s surface. Starting in the edge of 

the continental shelf (Sanders et al. 1965; Thistle 2003), the deep ocean is protected from 

the surface conditions by a 200 m water layer. Because of this water layer, the deep-sea 

presents completely different conditions than those observed in shallow-water 

ecosystems, as very high pressures and lower temperatures. These extreme conditions 

had posed a challenge for its exploration and therefore most of the processes that occur 

are unknown. However, recent advances in the modern industry and science allow an 

exploration of deep-sea resources, like minerals and fish, which was impossible a few 

decades ago, disturbing these previous relatively stable ecosystems (Ramirez-Llodra et al. 

2011). In addition, the growth of the world population had led to a mass production of 

several materials which often found their final destination in the deep sea. While visible 

waste tends to settle in the ocean floor, chemical compounds like metals and pesticides 

are transported during long-term periods by the same global currents that supply oxygen 

to the deep-sea ecosystems (Thiel 2003). A model study performed by Stemmler and 

Lammel (2013) suggested that this horizontal and vertical transport can eventually led to 

a re-rise of these contaminants to shallow-water, in important fisheries sites, disturbing 

alongside shallow-water ecosystems. Moreover, several of these contaminants have the 

ability to bioaccumulate, disrupting the trophic chains, and changing the deep-sea 

ecosystem, and all the services provided (Thiel 2003; Thurber et al. 2014). Therefore, 

developing techniques for monitoring the state of the deep-sea ecosystems are of crucial 

importance in the near future, being the first step the detailed knowledge and 

characterization of its good status. 

Several biomarkers have been used as indicators of cellular stress due to 

environmental contamination in several environmental compartments. Several 
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environmental conditions, as temperature (Vinagre et al. 2014) or salinity (Rodrigues et 

al. 2012), have also been reported to affect the levels of several biomarkers; therefore 

the influence of those factors must be taken into account in pollution monitoring 

programs, to avoid biased results. One of the abiotic factors that should be considered 

when evaluating chemicals effects in the deep sea is HHP, whose effects are still poorly 

understood. Kopecka-Pilarczyk and Coimbra (2010a) found no (to few) effects of HHP on 

several biomarkers tested in the silver eel Anguilla Anguilla, a species in which part of its 

life cycle occurs in the deep-sea. Hochachka (1974) reported adaptation of 

acetylcholinesterase (AChE) extracted from the brain of deep-sea fish, which appear to 

have a smaller binding region in the anionic site, as high pressure favors no-hydrophobic 

bindings; therefore effects of HHP in AChE can be expected in shallow-water organisms. 

Both HHP and low temperatures have been reported to have several similar effects in 

organisms (eg. Oliphant et al. 2011), however no studies evaluating the effects of both 

conditions in biochemical biomarkers have been performed. 

Due to the constraints regarding the evaluation of hazardous effects in deep-sea 

ecosystems, one proposed way is the use of species that can tolerate or can adapt to high 

pressures (Mestre al. 2014). The brackish shrimp P. varians has a close phylogenetic 

relation with some deep-sea shrimps such as Rimicaris exoculata, Chorocaris chacei and 

Mirocaris fortunata (Gonzalez-Rey et al. 2008; Mestre et al. 2014; Olhiphant et al. 2011). 

Despite P. varians being only found in shallow-water ecosystems, it has the capacity to 

support a wide range of temperatures (between 0 ºC and 33 ºC) and HHP (up to 30 MPa) 

(Oliphant et al. 2011). 

The objective of this work was to evaluate if P. varians can tolerate HHP and low 

temperatures and therefore be used as a test-species for hazardous assessment 

simulating the deep-sea particular conditions. For that the effects of HHP and/or low 

temperature were measured in biochemical biomarkers. The following rationale was 

followed: low to no changes in metabolism caused by pressure can indicate P. varians to 

be a good model for deep sea ecotoxicological testing. The biomarkers tested were 

catalase (CAT), glutathione S-transferase (GST), lipid peroxidation (LPO) and 

acetycholinesterase (AChE).   
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2.3  MATERIALS AND METHODS 

 

2.3.1  Organisms’ collection and acclimation conditions 
 

Adult grass shrimps (P. varians) were collected from a salt marsh (N 40º38’39”; W 

8º39’51”) at the Ria de Aveiro estuary in Aveiro, Portugal in January 2015. Shrimps were 

collected with a net and afterwards transported to the laboratory at the University of 

Aveiro, in 20 L buckets containing water from the collection point (±12 ºC and salinity 17). 

Animals with a carapace length between 4.7 and 5.2 mm were selected and acclimatized 

during 48 hours to the laboratory conditions. After this period, animals were transferred 

in a density inferior of 3 shrimps per liter, to 20 L tanks containing clean synthetic sea 

water at a salinity of 35 prepared with Tropic Marin® Sea Salt and freshwater purified by a 

reverse osmosis unit. Tanks were then kept at 20 ºC in a temperature controlled room 

and 16 h: 8 h light : dark cycle for a minimum of 10 days prior to testing. Once a day, 20% 

water was renewed in each tank. Ammonia levels and pH were monitored using API® 

colorimetric tests once a day. Constant aeration was provided by bubble stones and 

oxygen monitored using a probe Oxi 330i/set WTW®. Food was provided twice a day 

consisting of decapsulated Artemia cysts (Artemia salina) and seaweed food pellets 

®Hikari Marine A. After one hour the reminiscent food was removed from the system. 

 

2.3.2  Pressure system 
 

The hydrostatic pressure system used in this work is described in annex 2.   

 

 

2.3.3  Pressure exposure 
 

Animals were not fed 24 h prior and during the tests. For the pressure exposure, 

two animals were placed in 140 mL plastic vessels filled with synthetic saltwater at a 

salinity of 35. All vessels were filled up till the top and closed with a lid. Four 

replicates/vessels were placed in per hyperbaric chamber. Each chamber was then filled 

with water at 20 ºC, closed and set to a desired pressure: 0, 10, 20, 30 and 40 MPa. Two 
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chambers were used per pressure, being one left at 20 ºC and the other at 4 ºC. The 

experimental control was additionally set to simulate optimal conditions, using the same 

exposure medium, two animals were place in four vessels with 250 mL synthetic salt 

water, at 20 ºC with aeration and light.  

After eight hours, all chambers were depressurized for 5 minutes, and one shrimp 

from each replicate treatment was transferred to a 2 mL cryotube and deep frozen in 

liquid nitrogen. The remaining individuals from each replicate were then transferred to 

the control conditions (250 mL of aerated clean medium with aeration and light, at 20 ºC). 

For shrimps exposed in the chambers at 4 ºC, the water in the control conditions was pre-

cooled to the same temperature prior to the transfer of the shrimp to avoid a thermal 

shock, and then left in the room at 20 ºC. Organisms were left to recover another eight 

hours in optimum conditions, and were then deep frozen as above. Exposure conditions 

as pH, temperature and dissolved oxygen were also measured at the beginning and at the 

end of each exposure. All animals were stored at -80 ºC until biochemical analyses. 

 

2.3.4  Chemicals  
 

Acetylthiocholine iodide, 5,5’-Dithiobis(2-nitrobenzoic acid), bovine γ-globulin, 

reduced L-Gluthathione (GSH), 1-chloro-2,4-dinitrobenzene (CDNB), trichloroacetic acid 

(TCA), thiobarbituric acid (TBA), 2,6-Di-tert-butyl-4-methylphenol (BHT), 

diethylenetriaminepentaacetic acid (DTPA) and hydrogen peroxide (H2O2) were obtained 

from Sigma-Aldrich Europe (Netherlands). All the other chemicals used were purchased 

from Merck (Germany). 

 

2.3.5  Biomarkers analysis 
 

A) Sample preparation: 

Prior to homogenization, shrimps’ exoskeletons and locomotors appendices were 

removed with the help of a tweezers and a scalpel under a stereo microscope.  

The eyes plus stalks were then separated from the rest of the body and 

homogenized in 0.5 mL of ice-cold k-phosphate buffer (pH 7.2, 0.1 M) and then 
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centrifuged at 3824 g during 3 minutes at 4 ºC. The resulting supernatant was used to 

measure AChE. Regarding the previous results by Veldesema-Currie (1973) eyes and stalks 

were used to measure AChE activity as these organs alone represent a high percentage of 

the total acetylcholinesterase activity (14±3.3%).  

The remaining tissues were rapidly weighted and homogenized in k-phosphate 

buffer (pH 7.4, 0.1 M). A 150 µL aliquot of the homogenate was separated and 2.5 µL of a 

solution of BHT at 4% was added to prevent the formation of lipid oxidation artifacts 

(Torres et al. 2002) and the aliquot stored at -80 ºC up to a maximum of 24 h before lipid 

peroxidation assessment. The remaining homogenate was centrifuged at 10 000 g during 

20 minutes at 4 ºC to obtain post-mitochondrial supernatant (PMS). An aliquot of the 

PMS was then diluted in k-phosphate buffer (0.05 M, pH 7.0) for CAT determination and a 

second aliquot diluted in k-phosphate buffer (0.1 M, pH 6.5) for GST determination. Both 

aliquots were stored up to a maximum of 1 week at -80 ºC prior to analysis. 

All measurements were conducted using a Thermo Scientific Multiskan® Spectrum 

microplate reader. 

 

B) Lipid peroxidation determination 

LPO was determined by measuring the thiobarbituric acid reactive substances 

(namely malondialdehyde, a product of lipid peroxidation) as described by Ohkawa (1979) 

and Bird and Draper (1984). Briefly, to each sample aliquot prepared 500 µL of 12% TCA, 

400 µL of Tris-HCL (60 mM) with DTPA (0.1 mM) and 500 µL of 0.73% TBA were added to 

the homogenate. The samples were then incubated during 60 minutes at 100 ºC and 

centrifuged at 14000 g during 5 minutes, at 25 ºC. From the supernatant, 300 µL of 

sample was then transferred to the microplate and read at 535 nm. LPO was calculated 

using an extinction coefficient of 1.53 x 105 M-1 cm-1 for the formation of TBARS and 

expressed in nmol TBARS g-1 of tissue. 

 

C) Protein determination 

Protein quantification of all samples was performed according to Bradford (1976) 

methodology as adapted to microplate by Guilhermino et al. (1996). In summary, 10 µL of 
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the sample was incubated with 250 µL of Bradford reagent for 15 minutes. Absorbance 

was then read at 595 nm. Bovine -globulin was used as protein standard. 

  

D) Acetylcholinesterase activity determination 

AChE activity was determined by Elman’s technique (Elman et al. 1961) adapted to 

microplate by Guilhermino et al. (1996). The sample was diluted 10 times, and the protein 

in the samples used was 0,251±0.067 mg/ml. Briefly, for four replicates of 50 µl sample 

added, 250 µl of reaction mixture (30 ml of k- phosphate buffer 0.1 M, pH 7.2, 0.2 ml of 

acetylthiocholine iodide 0.075 M and 1 ml of DTNB 10 mM) was added and the 

absorbance at 414 nm was measured at 10, 15 and 20 minutes. After reading absorbance, 

the AChE activity was calculated using an extinction coefficient for DTNB of 13.6 M-1 cm-1. 

For normalization, the result was divided by the total amount of total protein and the 

enzymatic activity of AChE was expressed in nmol of substrate hydrolyzed per minute per 

mg of protein. 

 

E) Catalase activity  

CAT activity was measured as described by Clairborne (1985) adapted to microplate. 

Briefly, for each PMS aliquot previously prepared (total protein of 0.787±0.332), 15 µL of 

sample was added in quadruplicate in a microplate and 135 µL of K-phosphate buffer (pH 

7.0, 0.05 M) and 150 µL of H2O2 were added. H2O2 consumption was then measured at 

240 nm during 1 minute. After reading the absorbance, CAT activity was calculated using 

a molar extinction coefficient for the conversion of H2O2 of 50 M-1 cm-1. For normalization 

purpose, the result was divided by the total amount of protein and catalase activity was 

expressed in µmol min-1 mg-1 of protein. 

 

 

F) GST activity 

GST activity was determined by measuring the conjugation of reduced glutathione 

with CDNB at 340 nm as described by Habit et al. (1974) adapted to microplate. In brief, 

200 µL of this reaction solution (14.85 mL of K-phosphate buffer 0.1M, pH= 6.5, 0.45 mL 
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of CDNB 10 mM and 2.7 mL of GSH) was added to 100 µL of PMS previously prepared 

(with a total protein of 0.630±0.183 mg/mL of PMS) and measured at 340 nm during 5 

minutes. After reading the absorbance, GST activity was calculated using a molar 

extinction coefficient for CDNB of 9.5 mM-1 cm-1. For normalization purpose, the result 

was divided by the total amount of protein and the GST activity was expressed in nmol 

min-1 mg-1 of protein.     

 

2.3.6  Statistical analysis 
 

A Shapiro-Wilk test was performed in order to evaluate the normality distribution of 

data. Appropriate data transformations were performed when necessary to perform 

further analysis. A two-way analysis of variance (ANOVA) was performed to compare 

pressure (atmospheric and 10 MPa) and temperature (4 ºC and 20 ºC) (α=0.05). A one 

way-ANOVA was performed to evaluate organisms exposed to different pressures 

(atmospheric, 10 MPa and 20 MPa) at 20 ºC. Post hoc, multiple comparisons of factors 

were carried out using Holm-Sidák method. Different t-tests were performed in all the 

different treatments between value after the 8 hours exposure and after 8 hours 

recovery. All statistics were performed using SigmaPlot version 11.0. 

 

 

2.4  RESULTS 

 

All animals exposed to 30 and 40 MPa of HHP died during the exposure. In addition, 

at 4 ºC the animals exposed to 20 MPa of HHP also died. All the other animals used during 

the test survived both the exposure and after 8 hours of recovery. When removed from 

the chambers, animals exposed to 20 MPa showed high activity when compared to all 

other treatments, but with some erratic movements. After five minutes in the recovery 

vessel, animals start presenting an apparently normal behavior, resting in the bottom of 

the vessel without loss of equilibrium.  
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No statistical difference were found (p>0.05) between animals at optimal conditions 

(20 ºC, aeration and light) and those inside chambers, with no pressure set, at 20 ºC (fig. 

2).  

No interaction between pressure and temperature was found in all molecular 

biomarkers measured, both after exposure and after the 8 hours recovery (p>0.05).  

LPO levels (fig. 3) after the 8 hours exposure at 20 ºC with atmospheric pressure 

and at 10 MPa (258.06±154.82 nmol TBARS g-1 wt-1 and 160.28±65.09 nmol TBARS g-1 wt-

1) were significantly lower than animals exposed to 4 ºC at the same pressures 

(437.91±157.55 nmol TBARS g-1 wt-1 and 333.02±95.03 nmol TBARS g-1 wt-1 respectively) 

(Two way ANOVA, F20,23= 8.694; p< 0.01). However, after 8 hours recovery, no differences 

due temperature or pressure were observed (Two way ANOVA, F20,23 = 0.303; p>0.05). For 

animals exposed at 20 MPa, no differences in LPO levels were observed after the 8 hours 

exposure. However, after 8 hours recovery, LPO level of organisms exposed at 20 MPa 

(468.24±63.8 nmol TBARS g-1 wt-1) were significantly higher (One Way ANOVA 

F13,15=4.547; p<0.05) than those kept at atmospheric pressure (252.05±126.14 nmol 

TBARS g-1 wt-1). 

Lower temperature also caused a significant higher activity of GST (fig. 4) (Two way 

ANOVA, F24,27= 6.868; p<0.05), which does not occur after 8 recovery (Two way ANOVA, 

F20,23=0.047; p>0.05). In organisms exposed to 10 MPa at 20 ºC, GST activity were 

significantly higher after 8 hours recovery (12,32±0.73 nmol min-1 mg-1 protein) when 

compared to those measured in shrimps which were not allowed to recover (8.51±1.68 

nmol min-1 mg-1 protein) (t=-3.817; p<0.01). 

No significant difference was observed in AChE levels (fig. 5) after the 8 hours 

exposure to pressure and temperature. However, after 8 hours recovery, animals 

previous exposed to 20 MPa at 20 ºC had a significant (1 way ANOVA, F13,15 =5,141; 

p<0.05) higher activity of AChE (91.57±33.78 nmol min-1 mg-1 protein) when compared to 

shrimps exposed to atmospheric pressure (51.55±17.56 nmol min-1 mg-1 protein) and 10 

MPa (54.96±7.94 nmol min-1 mg-1 protein).   

No significant differences were found in catalase activity (fig. 6) in all the conditions 

measured (p<0.05). In some animals, it was not possible to detect any enzymatic activity.  
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Oxygen and pH levels measured during the assay are presented in annex 1. 

 

 

 

  

  

Figure 2 AChE (A), GST (B), CAT (C) activities and LPO levels (D) measured at optimal conditions (20 ºC, aeration and 
light) and in Palaemon varians that were inside the hyperbaric chamber (20 ºC, no aeration and no light) with standard 
error bars. The blue bars represent values in animals frozen immediately after the exposure and green bars represent 
animals that were allowed to recovery during 8 hours. In the graphic (C), the n represents the number of animas in 
which catalase activity was possible to assess.  
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Figure 3 LPO levels (nmol TBARS g-1 tissue) of Palaemon varians exposed during 8 hours to different pressures 
(atmospheric pressure, 10 and 20 MPa) and temperature (20 ºC and 4 ºC) with standard error bars. The blue bars 
represent LPO values in animals frozen immediately after the exposure and green bars represent animals that were 
allowed to recovery during 8 hours. Different letters represent a statistical difference between organisms exposed at 20 

ºC and 4 ºC. Statistical difference from the control is marked by an *. 

 

 

 

Figure 4 GST activity (nmol min-1 mg-1 protein) measured in Palaemon varians exposed during 8 hours to different 
pressures (atmospheric pressure, 10 and 20 MPa) and temperature (20 ºC and 4 ºC) with standard error bars. The blue 
bars represent values in animals frozen immediately after the exposure and green bars represent animals that were 
allowed to recovery during 8 hours. Different letters represent a statistical difference between organisms exposed at 20 
ºC and 4 ºC. 
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Figure 5 AChE activity (nmol min-1 mg-1 protein) measured in Palaemon varians exposed during 8 hours to different 
pressures (atmospheric pressure, 10 and 20 MPa) and temperature (20 ºC and 4 ºC) with standard error bars. The blue 
bars represent values in animals frozen immediately after the exposure and green bars represent animals that were 

allowed to recovery during 8 hours. Statistical difference is marked by a *. 

 

 

 

Figure 6 CAT activity (µmol min-1 mg-1 protein) measured in Palaemon varians exposed during 8 hours to different 
pressures (atmospheric pressure, 10 and 20 MPa) and temperature (20 ºC and 4 ºC) with standard error bars. The blue 
bars represent values in animals frozen immediately after the exposure and green bars represent animals that were 
allowed to recovery during 8 hours. The number of animals in which CAT activity was possible to assess is shown above 
each bar. 
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2.5 DISCUSSION 

 

In the deep-ocean pressure can reach levels above 100 MPa (Glover et al. 2010) and 

several mining resources can be found at depths higher than 2000 m (Thiel et al. 2015). 

Due to the mortality observed in the present work, it is not recommended to use P. 

varians in assays with the objective to simulate pressures at depths beyond 2000 m, 

where HHP raises above 20 MPa.  

While all the eight shrimps survived while exposed to 20 MPa at 20 ºC, all animals 

exposed to the same pressure at 4 ºC died, showing a synergistic effect between these 

temperature and pressure. Oliphant et al. (2011) and Cottin et al. (2012) observed a 

higher disruption of P. varians behavior caused by HHP at lower temperatures and a 

higher capacity to keep a normal function at HHP exposed to higher temperatures. 

Compared to these studies, P. varians showed less resistance to HHP in this work, thus all 

the shrimps exposed to 30 MPa died during the experiment. This fact may have occurred 

because the system used in the present study does not allow a slower and controlled 

acclimation to HHP, similar to those used in other works. New et al. (2014) reported an 

increase in HHP tolerance of P. varians when animals where acclimated to low 

temperatures or HHP. 

  Contrary to the results observed in mortality at higher pressures and to several 

other processes and structures that are synergistically affected by HHP and low 

temperature (Pradillion and Gail 2007; Somero et al. 1992), no interaction between 10 

MPa pressure and low temperature were found in the measured biomarkers. HHP did not 

have an effect on the levels of all the biomarkers measured till 20 MPa. This means that P. 

varians can possible be a suitable candidate for ecotoxicological testing in order to 

evaluate the effects of pressure at 10 MPa. However, changes in proteins function and 

structure are sometimes reversible after a short period after the end of exposure to HHP 

(Gross and Jaenicke 1993; Macdonald 1997). In the future, a possible way to test the 

function of the metabolism, and in particular, the effects of HHP in the function of the 

enzymes involved in the detoxification processes can be the evaluation of the damages 
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caused by a toxicant while exposed to HHP in comparison to those caused in animals at 

atmospheric pressure.  

As in the present work, Vinagre et al. (2014) and Wang et al. (2001) also have 

reported increased in LPO levels in organisms exposed to low temperatures. Despite the 

fact that low temperature causes a reduction on the metabolism, and therefore a smaller 

production of ROS could be expected, the increased effort to maintain the homeostatic 

internal conditions of the cell and the stress caused by the cold shock, can cause an 

increase in the release of ROS which cause peroxidation of the lipids (Abele and Puntarulo 

2004; Wang et al. 2011).   Also, antioxidant enzymes like CAT and GST of animals from 

warm waters have lower activity at low temperatures, and therefore a higher 

accumulation of ROS is possible (Abele 2002; Regoli et al. 1997). The significant increase 

in GST probably occurred due the increased level of hydroperoxides formed as secondary 

metabolites during the peroxidation of the polyunasaturaded fatty acids (Hayes et al. 

2005). Vinagre et al. 2014 reported than different temperatures can change the levels of 

GST in shrimps. However Verlecar et al. (2007) did not found a clear increase in the GST 

activity in organism exposed to a cold-shock. It is important to note that the temperature 

used in this work in the cold exposure is much lower than those used by Verlecar et al. 

(2007) and (Vinagre et al. 2014).  

Levels of catalase obtained in the present study (1.05 ± 0.78 µmoles min-1 mg-1 

protein) were similar than those obtained in other studies, like the one of Gonzalez-Rey et 

al. (2007) where an activity of 2 ± 0.5 µmoles min-1 mg-1 protein in P. varians was 

reported. The absence of activity in some shrimps probably occurred due errors in the 

experimental work. 

Hochachka (1974) reported high disruption of AChE activity by pressure. The Km of 

AChE isolated from Electrophorus electricus increased about fourfold upon exposure to 20 

MPa. In the present work already no effect of exposure to pressure and temperature was 

observed in the AChE activity. While it is unlikely that the AChE of P. varians presents 

similar adaptation to the one found in deep-sea organisms by Hochachka, the absence of 

response in this work is a possible indicator that if in any time the activity of AChE 
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decreases while under pressure, it has the ability of rapidly regains its function while at 

normal temperature and pressure.  

Like in the present work, Kopecka-Pilarczyk and Coimbra (2010a) did not find a 

significant effect of HHP in CAT and GST activity levels in silver eel (Anguilla anguillar). A 

significant reduction on LPO levels upon exposure to 5 MPa was observed. However, it is 

important to notice that contraty to P. varians, this specie is commonly found in some 

parts of its life cycle in the deep-sea. Also, these results were observed after 3 and 7 days 

of exposure, a longer-term period when compared to the one performed in this work. In 

Pagellus bogaraveo no effect of HHP was found in GST, CAT, AChE activities and LPO 

levels after 14 days exposure at 5 MPa (Kopecka-Pilarczyk and Coimbra 2010b). 

No significant difference were found between animals placed inside the HC and 

those exposed at optimal conditions, therefore this chambers can be used in this kind of 

assays. Although due the impossibility of renew the medium or provide oxygen, the 

duration of the test cannot exceed short periods of time with big invertebrates. 

Based on the absence or response of all the biomarkers measured in this work, P. 

varians appear to be a suitable candidate to assess chemical hazard under pressures up to 

10 MPa, corresponding to depths of 1000 m. Although no effects were observed 

immediately after the exposure, the shifts on the levels of LPO and AChE after an eight 

hour recovery should be investigated in order to use P. varians as a model for pressures 

between 10 MPa and 20 MPa. The changes in the LPO and GST levels due low 

temperature can also restrain the use of P. varians as a model to evaluate stressors at 

deep-sea conditions. Although, a significant part of deep-sea mineral resources is located 

near hydrothermal vents, (Coffey and Nautilus 2008; Ramirez-Llodra et al. 2011), with 

these habitats displaying a high abundance and diversity of species (Thistle 2003). In this 

way, performing assays at higher temperature than those on the surrounding deep-sea 

may be of special relevance to access potential impacts of deep-sea mining in these 

environments.  
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PART 3  EFFECT OF HIGH HYDROSTATIC PRESSURE (HHP) ON 

CADMIUM TOXICITY IN PALAEMON VARIANS 

 

 

 

 

 

 

 

 

 

 

3.1  ABSTRACT 

 

The release of several metals from deep-sea mining can represent serious hazards 

to organisms from the deep sea. While the toxicity of these metals is very well described 

for terrestrial and shallow-water organisms, few information is available regarding deep-

sea organisms. Therefore, there is a need to develop or adapt ecotoxicological assays with 

model organisms, considering pressure and lower temperatures into account when 

assessing the effects of these metals to the deep-sea organisms. While the use of deep-

sea species represents a challenge, shallow-water species, like Palaemon varians, can 

represent a good model organism due to their phylogenetic similarity. But understanding 

the effects of high hydrostatic pressure is essential to infer their use for this purpose. In 

the present work, P. varians were exposed to several concentration of cadmium during 

96h, along with different pressure regimes: at atmospheric pressure; simultaneously, for 

8h, with a pressure of 20 MPa; and pre-exposed to 20 MPa for 8 h. Only slightly 

differences were found between the calculated LC50 for the different pressure regimes, 

indicating that at this pressure no effects on the toxicity of cadmium to P. varians are 

observed. Although this is an important input regarding hazard assessment at higher 

pressures, additional studies are needed regarding other species and other chemicals that 

are also prone to appear in the deep sea. 
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3.2  INTRODUCTION 

 
Covering an area of 360 million Km2, equivalent to about 50% the surface of the 

Earth, the deep-sea is by far the largest ecosystem on earth. Protected by a water layer of 

about 200m, the deep waters were perceived as highly buffered from the abiotic 

changing conditions, or anthropogenic exploration and pollution which characterize 

terrestrial and shallow water environments (Ramirez-Llodra et al. 2011). However this 

vision of a stable environment has changed since the late XX century. The deep-sea is now 

seen has a very rich biodiverse ecosystem with unique characteristic, with numerous 

mass extinction in the past and exposed to several changes and treats caused by human 

activity (Glover et al. 2010; Grassle & Maciolek 1992; Thuy et al. 2012).  

The major anthropogenic threats to the deep-sea ecosystem are chemical pollution, 

resources exploitation, like fisheries and minerals, and climate changes (Brown and Thatje 

2015; Montagna et al. 2013; Ramirez-Llodra et al. 2011; Yasuhara et al. 2014). The 

development of new technologies enabled the exploration of diverse forms of 

inaccessible high commercial value mineral resources, such as gold, silver and zinc, which 

are now passive to be explored (Ramirez-Llodra et al. 2011). The future mining activity is 

considered to be the major threat to several endemic ecosystems in the deep sea (Dover 

2014). The removal of the hard-substrate will cause not only a loss of habitat for the 

marine fauna fixation, but also a considerable/potential exposure to high amounts of 

metals, like mercury, cooper and cadmium, at concentrations exceeding the safety limits 

(Mestre et al. 2014; Thiel et al. 2015). The formation of sediment plumes can spread 

these metals across time and space (ISA 2011; Nautilus and Coffey 2008), causing hazard 

to deep-sea organisms. Several studies have shown the high toxicity of these metals to 

different marine fauna (e.g. Ahsanullarh et al. 1981). However no experimental work has 

been performed in order to test their effects in the deep-sea abiotic conditions. 

Hydrostatic pressure is a continuous condition in the ocean, increasing about 1 MPa 

for each 100 meters of depth in the water column. Pressure changes several processes in 

the organisms, like membrane-based functions, conformation of proteins and the 

function and affinity for the enzymes’ substrate (Brown and Thatje 2014; Somero 1992). 
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Exposure of organisms to pressures out of the normal range can cause perturbation in the 

neural function, motor impairment, immobilization and ultimately death (Brown and 

Thatje 2014; Macdonald 1997; Pradillon and Gaill 2007). However, the deleterious effects 

of metals and other compounds at high pressure conditions are almost completely 

unknown. The only work addressing this issue was performed by Edward and Ehrlich 

(1977) where several colonies of deep-sea bacteria were exposed to manganese, copper, 

cobalt and nickel. Their results indicated evidences of interaction between metal toxicity 

and the applied pressure. Depending on the tested metal, pressure had no effect or 

synergistic or antagonistic effects when combined with a metal on the cell yield of the 

colonies.  

Testing the effect of pressure ranges in the toxicity of compounds in deep-sea 

organisms can be a hard and expensive task. The need of expensive equipment to keep 

the animals at high pressure at all moments, during transport and maintenance (Pradillon 

and Gaill 2007), and the high number of animals required for an ecotoxicological assay 

can be an obstacle. In addition, working with deep-sea organisms is challenging and 

perhaps impossible. Within this scope, and in the need of several impact studies to take 

pressure into account when accessing the effects of these compounds in water, the use of 

shallow-water organisms with close phylogenetic relations with deep-sea species is can 

be considered as a potential solution to overcome current constraints (Mestre et al. 

2014).  

The aim of this work was to test the effects of high hydrostatic pressure on the 

toxicity of cadmium for the shallow-water shrimp Palaemon varians, Leach 1814. 

However, due to technical constrains, it was not possible to apply pressure for the full 

exposure to cadmium. The effect of cadmium was tested in animals exposed to two 

different regimes of HHP during 8 hours (in animals exposed simultaneously to cadmium 

and pressure and in animals exposed to pressure prior to metal exposure). 
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3.3  MATERIALS AND METHODS 

 

3.3.1  Organisms’ collection and acclimation conditions 
 

Adult grass shrimp, P. varians, were collected using traps with bait from a salt marsh (N 

40º38’39”; W 8º39’51”) near the Ria de Aveiro estuary in Aveiro, Portugal in March 2015. 

Collected shrimps were transported to Universidade de Aveiro in 20 l buckets containing 

water from the collection point. Animals with a carapace length between 3.5 and 4 mm 

were then selected. After an acclimation of 48 hours, shrimps were placed, in a density 

inferior of three shrimps per liter, in 20 L tanks containing synthetic sea water prepared 

with Tropic Marin® Sea Salt and freshwater purified by a reverse osmosis unit. Tanks were 

then kept in a temperature controlled room at 20 ºC and 16 h: 8 h light : dark cycle for 20 

days prior to testing. Constant aeration was provided by bubble stones and oxygen was 

measured once a day with a probe Oxi 330i/set WTW®. Once a day, 20% water was 

renewed in each tank and ammonia levels and pH were measured using API® colorimetric 

tests. Food was provided 2 times a day consisting in decapsulated artemia cysts (Artemia 

salina) and seaweed food pellets ®Hikari Marine A. Excessive food was removed after 1 

hour. 

 

3.3.2  Cadmium exposure 
 

The protocol EPA OPPTS 850.1035 Ecological Effects Guidelines for Mysid Acute 

Toxicity Test was used as a background and adapted for this work using P. varians. 

A stock solution of 1 g Cd/L was prepared by dissolving cadmium chloride 

anhydrous (CAS No. 10108-64-2, Sigma-Aldrich, Germany) in ultra-pure water (Millipore® 

Academic Milli-Q system). To perform the dilutions necessary for the exposure tests, 

synthetic sea water was used which was previously filtered with a 0.45 µm mesh. 

Cadmium concentrations chosen for the test were 0.625, 1.25, 2.5, 5, 10 and 20 mg/L. 

These concentrations were based on preliminary studies (data not shown). 

In the beginning and at the end of the tests, 50 mL of the medium sampled, from a 

pool of the different replicates for each concentration was sampled, and filtered with a 
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0.45µm mesh. Samples where then acidified with nitric acid 60% and stored, prior to 

chemical analysis (according to EPA (1993)). Cadmium concentration in samples were 

analyzed by ICP-OES spectrometer Horiba® Jobin Yvon, model Activa M with a 

autosampler JY AS500. The measurements were performed following the norm ISO 

11885, using a potency of 1200 W, with the following conditions: Power generator 

1200W, argon plasma flux of 13 L min-1, a Burgener Miramist nebulizer with an aspiration 

rate of 1 mL min-1 and a conical spray chamber. 

 

3.3.3  Acute toxicity test 
 

 

For the acute toxicity test performed without changes in pressure, all organisms 

were placed in pairs in 140 mL plastic vessels containing clean synthetic sea water. Each 

flask was filled until top and closed with a lid. All vessels were then placed in the 

hyperbaric chambers, without pressure being applied and stored in a room acclimatized 

at 20 ºC. Water used to fill the chambers was also at 20 ºC. After eight hours the animals 

were removed, and randomly transferred for 250 mL plastic boxes containing the test 

medium. Three replicates were set for each tested concentration plus a control with six 

replicates (clean water). Three shrimps were randomly placed in each box and then 

closed with a lid. Continuous aeration was provided by a bubble stone placed in each box. 

Room temperature was kept at 20 ºC with photoperiod of 16 h : 8 h light : dark cycle. The 

number of survivors was counted every 24 h, and dead organisms removed; 20% of the 

medium was renewed every 24 h during the test duration. No food was provided during 

the test. 

Dissolved oxygen using a probe Oxi 330i/set WTW® and pH were monitored using a 

probe pH 330/SET WTW® and temperature was controlled with a thermometer at the 

beginning and end of the test to pressure and as well as for the 96h exposure test. 
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3.3.4  Acute toxicity test with different exposures to pressure 
 

For the acute toxicity test with pre-exposure to pressure, the same procedure 

described above was performed. The only difference was that 20 MPa pressure was 

applied in the HC during eight hours. After this time, each HC was depressurized for five 

minutes and the vessels containing the shrimps in clean water removed. Shrimps were 

then transferred for the plastic boxes containing the test medium. 

Regarding the simultaneous exposure to cadmium and pressure, shrimps were 

placed in 140 mL plastic vessels containing the cadmium exposure medium, using the six 

different cadmium concentrations mentioned above plus a control with clean medium. 

Five vessels for each concentration were filled up until top, and two shrimps placed per 

replicate, and then closed with a lid. The vessels were then randomly placed in the HC 

and the chambers closed. Pressure was then set to 20 MPa and kept in a controlled room 

at 20 ºC for eight hours. After this period all HC were depressurized for 5 minutes and the 

shrimps randomly divided in groups of three and transferred to plastic boxes containing 

250 mL of new medium with the same concentrations which they were exposed in the 

HC. As above three replicates for each treatment were established plus a control with six 

replicates. One individual for each concentration was discarded.  

The rest of the procedure was the same as described above for the shrimps pre-

exposed and not exposed to pressure. 

 

3.3.5  Statistical analysis  
 

Mortality was used as endpoint and LC50 values calculated by Probit analysis using 

Minitab® Release 14.12.0.  
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3.4  RESULTS 

 
The measured concentration of dissolved cadmium used in the tests is presented in 

table 2. The LC50 values calculated were based on the real concentrations measured. 

 

 

Table 2 Nominal cadmium concentration and the respective dissolved concentrations obtained in the chemical analysis 
(mg/L). 

   

 

 

 

 

 

 

 

 

 

No mortality was observed in the control animals, for all the pressure tests, during 

the full duration of the test. In addition, all animals were alive after the 8 hours of 

exposure to a pressure of 20 MPa in control and Cd treatments. However, animals 

presented some erratic movements after the decompression, as swimming backwards 

and sometimes in circles. After 5-10 minutes, no behavior differences were observed 

between animals exposed and not exposed to pressure and the animals appeared to be 

recovered from decompression.  

The LC50 values were calculated for every 24 hs for P. varians exposed to cadmium 

under different pressure conditions using the Probit analysis and are presented in table 3. 

After 48 h of exposure, animals pre-exposed to 20 MPa pressure showed a lower LC50 

value (LC50= 9.46 mg/L) when compared with the other treatments. However, after 96 h, 

all LC50 values were similar. LC50 values for 24 h could not be calculated because no 

dose-response curve could be attained. 

Nominal 
concentration (mg/L) 

Dissolved 
concentration 

measured (mg/L) 

0.625 0.60 

1.25 1.17 

2.5 2.22 

5 4.40 

10 9.09 

20 17.90 
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Figures 7, 8 and 9 show the survival rates of P. varians at the different cadmium 

concentrations for 48 h, 7 2h and 96 h, respectively, for the three different pressure 

assays. While sensitivity to the higher cadmium concentrations (9.09 and 17.9 mg/L) were 

almost the same for the different pressure regimes, a higher mortality was observed in 

animals not exposed to pressure at 1.17, 2.22 and 4.40 mg/L cadmium concentrations. No 

mortality was observed at the lowest concentration of Cd (0.60 mg Cd/L).  

Oxygen levels measured after the exposure to pressure in the HC were above 

recommended levels (60%). Oxygen levels in the post-exposure were above 90% in all 

replicates during the whole experiment. No significant variation in pH levels was observed 

and all samples had values between 8.1 and 8.2. 

 

 
 

Table 3 LC50 values (± 95% confidence limits) in mg/L for 96 h calculated for Palaemon varians exposed to cadmium 
(value calculated for dissolved concentration of cadmium). 

Pressure treatment 48 h LC50 (mg/L) 72 h LC50 (mg/L) 96 h LC50 (mg/L) 

Cadmium exposure at 
atmospheric pressure  

12.14  
(8.73 – 15.55)  

4.04 
(2.80 – 5.28) 

2.50  
(1.77 – 3.22) 

Cadmium exposure after a 
8h pre-exposure to 

20MPa (in clean media) 

9.46  
(7.05 – 11.87) 

6.19  
(4.60 – 7.78) 

2.84 
(2.15 – 3.53) 

Simultaneous exposure of 
cadmium and 20 MPa 
(8h), followed by Cd 

exposure till 96h 
 

12.11  
(9.46 - 14.75) 

4.69  
(3.30 - 6.08) 

2.88 
(2.09 - 3.66) 
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Figure 7 Total survival of Palaemon varians exposed to cadmium for 48 h. Data is presented as % of survival. The blue 
bars represents animals exposed to atmospheric pressure, the green bars represents animals pre-exposed to pressure 
before cadmium exposure, and the red bars the animals exposed to both pressure and cadmium simultaneously. 

 
 

 
 

Figure 8 Total survival of Palaemon varians exposed to cadmium for 72 h. Data is presented as % of survival. The blue 
bars represents animals exposed to atmospheric pressure, the green bars represents animals pre-exposed to pressure 
before cadmium exposure, and the red bars the animals exposed to both pressure and cadmium simultaneously. 
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Figure 9 Total survival of Palaemon varians exposed to cadmium for 96 h. Data is presented as % of survival. The blue 
bars represents animals exposed to atmospheric pressure, the green bars represents animals pre-exposed to pressure 
before cadmium exposure, and the red bars the animals exposed to both pressure and cadmium simultaneously. 

 

 

 

3.5  DISCUSSION 

 

The results of this work indicate that exposure to pressure does not caused any 

potentiation or decrease on the toxic effect of cadmium in P. varians. However, an 

exposure to HHP during the 96h was not possible to access, due the oxygen depletion in 

the vessels. Finding ways to increase the exposure times should be tested in future 

assays. 

A synergism upon their combined exposure could be expected in this work, mainly 

for 2 reasons. First, high hydrostatic pressure cause the dissociation of ionic bounds, 

therefore more cadmium would be available in its ionic form, which is more toxic for 

marine organisms (Engel and Fowler 1979; Gross and Jaenicker 1994). However, the 

extent of the increase in the ionic cadmium is unknown. Although no work was 

performed with pressure, it is common that several natural stressors such as temperature 
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and oxygen levels that are out of a species natural range can cause an increase in the 

toxicity of a chemical (for review, see Holmstrup et al. 2010). However, the absence of 

response of P. varians to HHP in the previous work, can explain the equal response of P. 

varians to cadmium when exposed to different pressure regimes. 

As other organisms, P. varians have shown increase sensitivity to cadmium with 

the increasing exposure time. While the seawater on open sea have a cadmium 

concentration of 5-20 ng/L, concentration up to 400 ng/L have been reported in certain 

coastal zones like in the Liverpool Bay, United Kingdom (Nordic Council of Ministers 2003; 

OSPAR 2002; UNEP 1985). Despite the lack of capacity of decapods to regulate internal 

cadmium levels (White and Rainbow 1982), the sensitivity of P. varians to an acute 

exposure is not relevant when the values are compared to the concentrations found in 

the environment.  

Regarding the sensitivity of the species used in the present work, it can be 

considered in the same range or lower in sensitivity when compared to other species. 

Khan et al. (1988) calculated a 96 h LC50 of total metal concentration for cadmium of 

Palaemon pugio of 1.83 mg/L and Burton and Fisher (1990) calculated a 96 h LC50 for the 

same species of 1.3 mg/L. The 96 h LC50 for Palaemon vulgaris was calculated by Eisler 

was 0.42 mg/L (in EPA 2001). When compared with the values calculated for other 

species of the same genus, P. varians have shown a lower sensitivity to cadmium (LC50 to 

total concentration of 2.81 mg/L). It is important to notice that a higher salinity was used 

in this work when compared to the other studies mentioned above which can also justify 

these small differences. Both Howard and Hacker (1990) and Pierron et al. (2007) 

reported a positive relation between the increase on the toxicity of cadmium and the 

salinity decrease in the shrimps Palaemon Pugio and Palaemon elegans respectively. At 

higher salinities the amount of cadmium in the ionic form (Cd2+) is lower and therefore 

less bioavailable (Pierron et al. 2007; Sunda et al. 1978). 

While more research is needed to evaluate the effect of pressure on the sensitivity 

of different groups of organisms to metals, looking specially at sub-lethal and more 

ecological relevant parameters, this work provided evidences that exposure to high level 

pressure do not cause an increase in the sensitivity of P. varians to cadmium.  
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PART 4  CONCLUDING REMARKS 

 
The continuously growing of world’s population is adding high levels of pressure 

to all ecosystems on Earth. As land resources become exhausted due to overexploitation, 

the interest on the deep-sea resources keeps growing. The rising of new technologies can 

today allow the exploitation of minerals which were unavailable a few decades ago. 

However, the management and protection of this previously undisturbed ecosystem 

require more knowledge to understand the effect of the very particular environmental 

conditions, the ecological services provided by the deep-sea and the ecology and 

vulnerability of the unique species which live there. 

The main aim of the present study was to gain an insight knowledge on the 

pollution effects in the deep sea, and for that available tools were tested. So a shallow 

water marine species was used (Palaemon varians) based on its similarity in terms of 

phylogeny with deep-sea species, to understand the effects of HHP in their survival and 

selected biochemical biomarkers. These biomarkers are currently used tools in 

biomonitoring studies as a way of detect effects upon exposure of an organism to 

contaminants. In addition, a non-effective pressure was chosen in order to evaluate the 

joint effect with cadmium, as a model metal for environmental pollution. 

For this work, an easy to operate and affordable high-pressure system was used. 

The simplicity of the system when compared to others, allows running series of tests at 

low costs. However, this system does not allow renewing the medium during the test 

duration. Because no aeration can be provided, the oxygen inside the test vessels quickly 

drops due the animal’s respiration, causing them to be in hypoxia some hours. Therefore, 

the use of smaller species or younger animals, such as shrimp larvae can allow accessing 

the effects of longer exposures to HHP using this system. However, no mortality or 

changes in the biochemical biomarkers was observed in P. varians, showing that this 

shrimp can be used with this system while assessing effects of HHP during short term 

exposures.  

At hydrostatic pressure lower than 20 MPa, the tested biomarkers did not show 

any response to HHP indicating possibly low to no effect under those exposures. At low 
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temperatures, the present work showed some changes of some biochemical biomarkers 

and interaction with HHP in terms of mortality. A long acclimation of the animals is a 

possible way to improve the use of these animals at low temperatures. 

Exposure duration to pressure was also considered short termed and therefore 

looking at long term exposures would also be advisable.   

Despite some technical limitations, the present study gave an important 

contribute for future research. While exposed to non-acute levels of HHP, P. varians have 

shown no sign of increased sensitivity to cadmium. Therefore, based on this work results, 

no potentiation of the toxic effect (mortality) from cadmium is expected when organisms 

are exposed to non-lethal levels of HHP for short periods of time. In the future, it is 

important to test longer exposures to metals under the effect of HHP. 

While more research is needed to test the effect of several other metals and 

xenobiotics, the data presented in this work can be of use in the elaboration of hazard 

assessment studies due to the exploitation of deep-sea minerals.  

 

In a nutshell: 

 
1. The pressure system used successfully simulated the desired parameters and 

the conditions of the chambers did not have a significant effect in exposed 

animals. 

 

2. P. varians did not survive pressures above 20 MPa, therefore cannot be used 

in assays which simulate conditions of depths higher than 2000 m. 

 

 

3. Exposures to low temperatures cause some changes in P. varians biochemical 

biomarkers and further investigation is required. 

 

4. Short-term exposure to HHP did not have any effect in the sensitivity of P. 

varians to cadmium. 
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ANNEX 1 

Table 1 Oxygen and pH levels measured during the biomarkers assay using Palaemon varians. Oxygen was measured 
using a probe Oxi 330i/set WTW® and pH was measured using a probe pH 330/SET WTW®. 

Treatment 
8 h exposure (inside the hyperbaric 

chamber) 
8 h recovery (optimal 

conditions) 

Oxygen pH Oxygen pH 

Optimal conditions 
(aeration, light. 20 ºC) 

95% 8 88% 7.9 

94% 8 89% 8 

95% 8 92% 8.1 

94% 8 91% 8 

77% 7.9 88% 8.1 

88% 7.9 89% 8.1 

87% 7.9 92% 8 

89% 7.9 92% 8 

Atmospheric pressure (inside 
the hyperbaric chamber, 20 

ºC) 

46% 8.1 91% 8.1 

39% 8.2 88% 8 

12% 8.1 94% 8.1 

41% 8.2 92% 8 

54% 8 91% 8.1 

37% 7.9 89% 8.1 

51% 8 89% 8 

32% 7.8 88% 8 

Atmospheric pressure (inside 
the hyperbaric chamber, 4 

ºC) 

70% 8.2 94% 8.1 

65% 8 93% 8.1 

66% 8 93% 8.2 

69% 8 88% 8 

60% 8 89% 8.1 

65% 7.9 90% 8 

59% 8 90% 8 

64% 8 89% 8 

10 MPa, 20 ºC 

43% 8.2 91% 8 

39% 8.2 91% 8.1 

15% 8.2 92% 8.1 

18% 8.2 89% 8 

10 MPa, 4 ºC 

58% 8.2 89% 8 

70% 8.1 91% 7.9 

65% 8.3 92% 8 

55% 8.2 91% 7.9 

20 MPa, 20º C 

41% 7.9 91% 8 

33% 7.8 90% 8 

27% 7.8 88% 7.9 

55% 7.9 93% 7.9 
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Introdução 

 

O seguinte protocolo destina-se à utilização do sistema de câmaras hiperbáricas para 

testes sobre pressão hidrostática com organismos aquáticos de pequenas dimensões. 

O sistema está concebido para utilização de pressões até 500 Bar, não devendo este 

valor ser ultrapassado em caso algum. 

O procedimento de pressurizar e despressurizar as câmaras exige alguma força física 

e deve ser efectuado sempre por duas pessoas. 

O sistema deve ser utilizado cumprindo SEMPRE as regras de segurança neste 

protocolo enunciadas. As altas pressões com que se trabalha podem causar lesões 

graves e/ou permanentes quando não seguidas as normas de segurança. 

Composição do sistema 

 
O sistema é composto por: 

 5 câmaras hiperbáricas (CH) 

 1 bomba e respectiva mangueira de ligação 

 Frascos para teste em plástico 

o 36 frascos 60 ml 

o 36 frascos de 125 ml 

 Material de protecção 

o Botas de protecção 

o Luvas  

o Viseira 

 Ferramentas para manutenção  

o 2 chaves de boca 

o 1 chave inglesa 

 1 spray WD-40 

 1 grampo para fixação da bomba a diferentes superfícies 
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Preparação das amostras 

 

Os recipientes utilizados devem ser em plástico e apropriados para suportar altas 

pressões como aqueles indicados na figura 1. 

NUNCA usar recipientes em vidro ou em material não deformável. 

 

Figura 1 Frascos de plásticos para teste  

 

Nos frascos deve ser colocado o organismo a testar e o meio de teste. Estes devem 

ser cheios até ao máximo possível e bem fechados.  

 Reduzir ao máximo a presença de bolhas de ar no interior do recipiente. As 

bolhas de ar podem causar a implosão, aquando da pressurização. 

 

Preparação do sistema de pressão 

 

Utilizar material de protecção apropriado para manuseamento do sistema, 

principalmente durante a pressurização e manuseamento das CH sobre pressão.  
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 Luvas de protecção 

o Evitar cortes e aumentar a aderência das mãos ao manusear as CH 

 Botas de biqueira de aço 

 Viseiras de protecção  

o Durante a pressurização e despressurização e manuseamento das CH 

com pressão 

 

1. Verificar o aperto das porcas e parafusos das CH antes de iniciar o 

procedimento, evitando assim fugas de água durante o processo de 

pressurização (fig. 2). 

 

 

Figura 2 Verifica sempre o estado de aperto das porcas indicadas na figura pelas setas 

amarelas. 
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2. Abrir a CH e encher com água da torneira ou água de osmose, NUNCA com 

água salgada (fig. 3). 

 

 

               Figura 3 Enchimento da CH com água de osmose 

 

3. Colocar os frascos na CH e fechar bem a mesma (fig. 4). Para fechar é 

necessário colocar a parte superior de forma correta na parte inferior.  

o Utilizar sempre a peça superior correspondente à inferior (as peças 

encontram-se marcadas com fita colorida correspondente). 

o  Se a rosca entrar torta a peça vai enroscar um pouco mas depois 

bloquear. Um truque pode ser colocar a peça superior sobre a 

inferior e rodar lentamente no sentido oposto ao sentido de enroscar 

(no sentido contrário aos ponteiros do relógio) até ouvir um ligeiro 
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estalido, nesse ponto parar e começar a enroscar correctamente (no 

sentido horário).  

 

 

Figura 4 Colocação dos frascos na CH e fecho da mesma 

 

Manuseamento da bomba e pressurização 

 

1. Prender a bomba à mesa com ajuda de um grampo e enroscar a mangueira 

e a alavanca como indicado na figura 5. 

2. Fechar a válvula de despressurização indicado na figura com uma seta 

vermelha. 

3. Encher o depósito indicado na figura com uma seta azul com água de 

osmose ou água da torneira.  
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Figura 5 Bomba presa à mesa e pronta para a pressurização. A seta azul indica o depósito da água e a seta vermelha 
indica a válvula de despressurização. 

 

4. Encaixar bem a mangueira na CH e enroscar usando a peça presente na 

mesma até apertar o encaixe como indicado na figura 6 e de seguida abrir a 

torneira (na figura a torneira encontra-se fechada, para abrir rodar no 

sentido indicado pela seta). 
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Figura 6 Encaixe da mangueira na CH. A seta vermelha indica a peça utilizada para enroscar a mangueira 

 

5. Iniciar o bombeamento de água para o interior da CH utilizando a alavanca 

como indicado na figura 7. O volume de água no depósito deve ser 

verificado constantemente durante este processo, podendo ser necessário 

voltar a encher o mesmo. Manter sempre o depósito mais de meio e NUNCA 

bombear ar para dentro da CH. 
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Figura 7 Sistema pronto para pressurizar. Seta verde indica a torneira de despressurização. A seta azul indica o 
manómetro que mostra a pressão na mangueira e a seta vermelha o manómetro que indica a pressão no interior da 

CH 

6. Verificar constantemente o manómetro. Quando a pressão começar a subir, 

bombear mais lentamente (a pressão aumenta abruptamente nesta fase) 

até o manómetro da CH indicar a pressão pretendida. O manómetro 

indicado com uma seta azul indica a pressão na mangueira e o indicado com 

uma seta vermelha indica a pressão no interior da CH (estas podem diferir 

ligeiramente durante o processo de pressurização). 

7. Quando atingida a pressão pretendida fechar a torneira da CH e APENAS de 

seguida despressurizar a mangueira usando a válvula de descompressão na 

figura indica com a seta verde. NUNCA retirar a mangueira da CH se o 

manómetro indicado pela seta azul não estiver a indicar 0 Bar de pressão. 
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8. A CH pode agora ser guardada onde pretendido. Durante a duração do teste 

verificar o manómetro diariamente, para controlar eventuais perdas de 

pressão. 

 

Repetir o mesmo processo para as restantes CH se necessárias para o 

teste 

 

Descompressão  

 

1. Ligar a bomba à mangueira e de seguida abrir a torneira da CH. Isto vai 

causar a perda de uma parte da pressão contida na CH para a mangueira, 

levando a uma despressurização muito rápida. Para uma despressurização 

mais lenta, fechar a válvula de despressurização e pressurizar a mangueira 

antes de abrir a torneira da CH.  

o A mangueira pressuriza muito rápido, estar atento ao manómetro da 

bomba e NUNCA ultrapassar a pressão colocada previamente na CH. 

Após este processo abrir a torneira da CH. 

2. LENTAMENTE abrir a válvula de descompressão, pode ser necessário 

remover água do depósito da bomba durante este processo se o mesmo 

encher. 
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Figura 8 Sistema após despressurização. Mangueira pronta a ser retirada, repare que o manómetro indica pressão 0 
na mangueira 

 

3. Verificar no manómetro da CH a pressão no seu interior. Apenas para a 

despressurização quando o valor for 0. 

4. Para abrir a câmara rodar a parte superior ou inferior mantendo a outra fixa. 

Pode ser necessário usar um torno para abrir as mesmas. Antes de abrir 

certificar SEMPRE que a pressão no interior da CH é 0. Mesmo com esta 

indicação alguma água vai sair com alguma pressão (insuficiente para 

provocar qualquer lesão), evitar ter perto de objectos que não devem ser 

molhados. 

5. Retirar os frascos com as amostras e analisar. 
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Seguir o mesmo procedimento para as restantes CHs. 

 

Finalizar  

 

1. Secar as CH e a bomba o melhor possível e deixar alguns dias a secar a 

restante humidade. 

2. Aplicar WD-40 ou similar nas CH, principalmente nas válvulas, porcas e 

parafusos. 

3. Arrumar em local seco. 


