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resumo 
 

 

A poliadenilação é um passo de processamento fundamental da maturação 
do mRNA, essencial para o seu transporte, estabilidade e tradução. Análises 
bioinformáticas têm demonstrado que cerca de 70% dos genes humanos 
têm vários sinais de poliadenilação na região 3’ não traduzida (3’UTR). 
Estes sinais são usados para produzir várias isoformas de mRNA por 
poliadenilação alternativa (APA), um processo com um papel fundamental 
na expressão génica em programas celulares bem como em condições 
patológicas e não patológicas. Quando ocorre na região 3’ não traduzida, a 
APA dá origem a transcritos com diferentes tamanhos da 3’UTR. Os 
microRNAs (miRNAs) e as proteínas que se ligam ao RNA (RBPs) ligam-se 
frequentemente a sequências presentes nesta região e portanto isoformas 
de mRNA com 3’UTRs mais longas contêm mais locais onde estes 
reguladores se podem ligar e, por isso, estão mais sujeitos a regulação. Os 
miRNAs são reguladores pós-transcricionais da expressão génica com cerca 
de 23 nucleótidos, que têm sido envolvidos numa variedade de condições 
celulares. No sistema imune, tem sido demonstrado que após activação dos 
linfócitos T passa a haver uma maior seleção dos sinais de poliadenilação 
proximais em vez dos distais, originando mRNAs com 3’UTRs mais curtas e 
consequentemente com menos locais onde se possam ligar miRNAs e 
RBPs. O gene MCL1 (Myeloid Cell Leukemia Sequence 1) codifica uma 
proteína (Mcl-1) com função anti-apoptótica essencial para o 
desenvolvimento e manutenção dos linfócitos T em animais, que faz parte 
da família proteica da Bcl-2, uma família de reguladores da apoptose. Tem 
sido demonstrado que o MCL1 é altamente regulado tanto ao nível 
transcricional como pós-transcricional. Os objetivos do nosso estudo são 
determinar o padrão de APA que ocorre no MCL1 em linfócitos T humanos e 
caracterizar o papel dos miRNAs na regulação das isoformas de mRNA do 
MCL1 produzidas por APA. Verificamos que o MCL1 produz quatro 
isoformas de mRNA pelo uso de quatro sinais de poliadenilação canónicos 
localizados na 3’UTR e que esses sinais são altamente conservados nos 
mamíferos. Observamos que a isoforma de mRNA mais longa é regulada ao 
nível pós-transcricional nos PBMCs ativados. Nos nossos resultados 
demonstramos também que as 3’UTR mais curtas dão origem a uma maior 
actividade de luciferase do que o mRNA mais longo. Isto sugere que durante 
a ativação dos PBMCs o aumento na proteína Mcl-1 é devida à tradução das 
isoformas mais curtas. Na segunda parte do estudo identificamos o miRNA-
17 como um possível regulador da isoforma longa após ativação dos 
linfócitos T. A expressão deste miRNA está aumentada após ativação dos 
linfócitos T e quando é mutado o seu local de ligação ao mRNA putativo na 
3’UTR do MCL1 observou-se um aumento na atividade da Luciferase na 
linha celular HeLa. Também realizamos a sobreexpressão do miRNA-17, do 
miRNA-29b e do miRNA-92a o que levou a uma diminuição na expressão 
endógena do Mcl-1. A partir deste estudo concluímos que a isoforma do 
MCL1 gerada por APA mais longa é regulada negativamente ao nível pós-
transcricional após ativação celular de modo a aumentar a expressão do 
Mcl-1 e que o miRNA-17 poderá ser o regulador chave deste mecanismo. 
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abstract 

 
Polyadenylation is a fundamental processing step of mRNA maturation, 
essential for its export, stability and translation. Bioinformatic analyses have 
shown that 70% of human genes have several polyadenylation signals (pA 
signals) in the 3’untranslated region (3’UTR) that are used to produce 
multiple mRNA isoforms by alternative polyadenylation (APA). This process 
has a fundamental role in gene expression in a variety of cellular programs 
as well as in non-pathological conditions and diseases. When it occurs in the 
3’UTR, APA gives rise to transcripts with different 3’UTR lengths. MicroRNAs 
(miRNAs) and RNA-binding proteins (RBPs) often bind to sequences present 
in that region and thus mRNA isoforms with longer 3’UTRs have more sites 
where these regulators can bind, being more prone to regulation. miRNAs 
are 23 nucleotides in length post-transcriptional regulators of gene 
expression that have been implicated in a variety of cell conditions. In the 
immune system, it has been shown that upon T cell activation there is a 
global switch in pA signal selection from a distal to a proximal pA signal, 
originating mRNAs with shorter 3’UTRs and, consequently, with less miRNAs 
and RBPs target sites. The MCL1 (Myeloid Cell Leukemia Sequence 1) gene 
encodes an anti-apoptotic protein (Mcl-1), which is a member of the Bcl-2 (B 
cell lymphoma-2) family of apoptosis regulators. MCL1 is essential for 
development and maintenance of both B and T lymphocytes in animals. It 
has been demonstrated that MCL1 is highly regulated at both transcriptional 
and post-transcriptional levels. The aims of our study were to characterize 
the pattern of MCL1 APA and to unravel the role of miRNAs in the regulation 
of MCL1 APA-derived isoforms. We discovered that MCL1 produces four 
mRNA isoforms by the usage of four canonical pA signals located in the 
3’UTR and that these pA signals are highly conserved in mammals. We 
verified that the longest mRNA isoform is regulated at a post-transcriptional 
level in activated PBMCs. We also demonstrated that the shortest 3’UTRs 
give rise to higher amounts of luciferase activity than the longest mRNA. 
Additionally, we showed that Mcl-1 protein levels increase upon PBMCs 
activation. This suggests that during PBMCs activation the increase in Mcl-1 
protein is due to the translation of the shortest isoforms. In the second part of 
this study we identified miRNA-17 as a putative regulator of the longest 
isoform upon T cell activation. The expression of this miRNA increased upon 
activation of T cells and when we mutated its putative-binding site on MCL1 
3’UTR we observed an increase in luciferase activity in HeLa cells. We also 
overexpressed miRNA-17, miRNA-29b and miRNA-92a and showed that this 
causes a decrease in endogenous Mcl-1 expression. From this study we 
conclude that the MCL1 longest APA-derived isoform is down-regulated at a 
post-transcriptional level upon T cell activation in order to increase Mcl-1 
expression and that miRNA-17 may be the key regulator in this mechanism. 
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PAP polyA polymerase 

PBMCs Peripheral blood mononuclear cells 

PBS Phosphate-buffered saline 

PHA Phytohemagglutinin 

Pre-mRNA Precursor mRNA 

RBP RNA-binding protein 

SP Single positive 



 

STAT Signal transducer and activator of transcription 

TLI Tandem UTR length index 

TRBP Transactivating response RNA-binding protein 

USE Upstream sequence element 

UTR Untranslated region 

VEGF Vascular endothelial growth factor 

XRN1 Exoribonuclease 1 
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Gene Expression 

Gene expression is a biological process highly regulated at multiple steps. 

These steps include modulation of the chromatin structure by the interaction of 

regulatory proteins with specific DNA motifs of the target genes, and also messenger 

RNA (mRNA) synthesis and processing in the nucleus, mRNA transport, and ultimately 

translation and decay of the mRNA in the cytoplasm.1, 2 These steps, in which 

information flows from DNA to RNA (transcription and precursor mRNA (pre-mRNA) 

processing) and finally to protein (translation and mRNA decay), are remarkably 

elaborate and highly interconnected in eukaryotic cells (figure 1).3, 4  

Pre-mRNA processing is a complex mechanism crucial to mRNA metabolism. 

The RNA molecule resulting from transcription (pre-mRNA) contains both coding and 

non-coding sequences. Before it can be translated into protein, introns have to be 

removed (splicing) and both ends of the pre-mRNA are modified by capping on the 5’-

end and polyadenylation on the 3’-end. These processes are known as post-

transcriptional events and occur co-transcriptionally being also highly regulated and 

interconnected. Thus, it is now well-stablished that pre-mRNA processing regulates 

downstream events affecting the fate of the transcript and thus modulating gene 

expression.5-8  

Figure 1 - Schematic illustration of the steps from DNA transcription to protein translation in 

eukaryotes. The mechanisms by which a protein is produced starts with transcription of DNA by 

RNA polymerase II to produce a pre-mRNA. Before it can be translated into a protein, the pre-mRNA 

has to be processed, forming the mature RNA that is transported to the cytoplasm where translation 

takes place. The mechanisms of RNA processing include 5’ capping, splicing and 3’ polyadenylation. 

Adapted from Alberts et al.6 
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Polyadenylation 

Polyadenylation is a pre-mRNA 3’end processing step that consists in the 

addition of a polyA (pA) tail9 by polyA polymerase (PAP) upon an endonucleolytic 

cleavage of the transcript.10-12 The length of the pA tail (about 250-300 adenines in 

humans) is crucial for the transport of mature mRNAs to the cytoplasm, their translation 

efficiency and for the quality control and degradation of mRNAs.1, 9, 11 As reviewed in 

Curinha et al.1, recent studies have now challenged what is known about the length of 

the pA tail. The pA tail is a dynamic region of the mRNA13 that is controlled differently 

depending of the developmental stage. Also, it has been shown that an increase in 

PAP activity is associated with poor prognosis in certain cancers14 and also that usage 

of PAP inhibitors affect some genes involved in inflammatory conditions15. Thus, a tight 

control of the pA tail length may be a determinant factor in the development of some 

diseases.   

Several cis- and trans-acting RNA elements (sequences in the 3’ untranslated 

region (3’UTR) of the pre-mRNA and molecules that bind to these sequences, 

respectively) are core components of the polyadenylation process. The most important 

cis-acting element is a hexanucleotide sequence, which is known as the 

polyadenylation signal (pA signal) located 15-30 nucleotides (nt) upstream of the 

cleavage site (preferably a CA dinucleotide). The AAUAAA sequence is the canonical 

pA signal and the strongest in defining the place where polyadenylation takes place, 

but this signal can also adopt more than ten weaker variants. In order to enhance the 

cleavage efficiency, two more U or GU-rich sequences located upstream and 

downstream of the pA signal, the upstream sequence element (USE) and downstream 

sequence element (DSE), are needed.9-12 The most important trans-acting elements in 

the pA signal recognition are the cleavage and polyadenylation specificity factor 

(CPSF), which binds to the pA signal, and the cleavage stimulating factor (CstF), that 

binds to the DSE sequence. Additionally, the cleavage factors I and II (CFIm and 

CFIIm), that bind to the USE sequence and are essential for the cleavage step, the 

PAP, responsible for the pA tail addition, and the pA-binding protein (PAB), are also 

core elements of the polyadenylation machinery (figure 2).9, 12  

 

Alternative Polyadenylation 

Some protein-coding genes can harbor two or more pA signals in their 

sequences and thus polyadenylation can occur in different points of the gene, a 

process known as alternative polyadenylation (APA).9-12 Different studies have 

demonstrated a role for APA in regulating 70% of the mammalian genes, increasing 

immensely the transcriptome diversity.16, 17 The recognition of one pA signal over 
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another is due to the strength of the cis and trans-acting elements that surround each 

pA signal, the strength of the pA signal itself, and the regulation at the DNA level, such 

as chromatin remodeling and epigenetic marks (figure 3).9, 10, 12  

 

 

 

 

 

 

Figure 3 – Regulatory mechanisms of alternative polyadenylation. The production of different 

APA-derived mRNA isoforms from the same transcriptional unit is tightly regulated by trans-acting 

factors (A), such as polyadenylation and splicing factors; cis-acting sequences (B), such as RBPs 

and miRNAs-binding sites; and by chromatin remodeling (C), such as the nucleosome positioning in 

the vicinity of the polyadenylation sites (pA sites). Adapted from Giammartino et al.12 

Figure 2 - Schematic illustration of the polyadenylation core elements. The cis- and trans-acting 

elements involved in the polyadenylation process are represented. The color of the trans-acting factors and 

the cis-acting elements to which they bind are the same. Adapted from Elkon et al.9 
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The pA signals can be present in the coding or intronic region, giving rise to 

transcripts with different coding sequences and thus affecting the function of the gene, 

or be present in the 3’UTR, giving rise to transcripts with the same coding region but 

different 3’UTR lengths.9-12 In this last case, since 3’UTR harbor putative-binding sites 

for several microRNAs (miRNAs) and RNA-binding proteins (RBPs), longer 3’UTRs are 

more prone to suffer regulation affecting their stability, cellular localization and/or 

translation efficiency (figure 4). Thus, the length of the 3’ UTR affect the fate of the 

transcript produced and ultimately modulates the expression of the gene.10-12  

 

 

 

 

 

 

 

 

 

 

 

 

 

Several studies have been made in the APA field and it is now known that the 

APA pattern tends to be gene-, tissue-, or disease-specific. The usage of one pA site 

over another depends on how the regulatory features mentioned above behave in the 

type of cell where the process is occurring, in the health or disease condition that the 

organism is suffering, and ultimately, in the gene being regulated (figure 5). Some 

examples of the implications of APA in health and disease will be further described 

ahead.  

 

 

 

 

 

 

Figure 4 - Regulation of alternative polyadenylated mRNAs by cis and trans-acting factors. 

The presence of RBPs and miRNAs-binding sites in the 3’UTR of different mRNA isoforms promotes 

the binding of these regulators to their specific cis-elements and thus modulate the fate of a specific 

transcript. mRNA isoforms with longer 3’UTRs are more prone to undergo this type of regulation 

since they have more of these cis-elements present in their sequence. Adapted from Tian et al.10 
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Polyadenylation and Alternative Polyadenylation in Health and Disease 

Besides exciting results in the past few years have highlighted the crucial roles 

of APA in the control of gene expression, major efforts are needed to characterize the 

APA regulatory mechanisms in a variety of genes and its importance in health and 

disease. Several studies have reported a role for polyadenylation and APA in 

oncological, immunological, neurological and haematological diseases, as well as in 

cellular and molecular conditions important for cell homeostasis. It has been described 

a preferential usage of proximal pA signals resulting in 3’UTR shortening in proliferative 

cells, such as under activation of T lymphocytes, and in tumour cells. In contrast, in 

development, differentiation processes and neurological tissues, there is a preferential 

usage of distal pA signals which gives rise to a lengthening of the 3’UTR (figure 6).1  

Some examples reviewed in Curinha et al.1 are described below.  

An important study in proliferation field is the one made by Sandberg et al.18 in 

T lymphocytes. In this study they developed a tandem UTR length index (TLI) that 

assessed the expression of extended 3’UTR relative to total gene expression levels. 

They have found that the TLI is decreased after 48h upon activation of T lymphocytes, 

representing a decrease in the relative expression of isoforms with longer 3’UTRs. 

Additionally, it was established in the same study a negative correlation between 

proliferative index and TLI.18 As B and T lymphocyte activation is a key immune 

Figure 5 - APA in a variety of cellular and organismal events. It is well-described that the usage 

of one pA site over another is actively regulated in a cellular, health and/or disease-specific manner.  

Adapted from Lutz et al.11 
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response to several stimuli, this may represent an efficient mechanism to escape 

regulation and respond quicker when lymphocyte activation is necessary. 

 

 

 

 

 

 

 

 

 

 

 

In what concerns the oncological field, Mayr et al.19 demonstrated that besides 

nontransformed cells and cancer cells have similar proliferation rates, cancer cells tend 

to produce more levels of transcripts with shorter 3’UTRs, and thus the correlation 

between shorter 3’UTRs and cell transformation is higher than shorter 3’UTRs and 

proliferation. Also in this study it was demonstrated that isoforms with shorter 3’UTRs 

produce more protein due to its higher stability, which may be a relevant activation 

mechanism employed by some oncogenes in cancer cells. This was demonstrated 

using the proto-oncogene insulin-like growth factor 2 mRNA binding protein 1. The 

shortest mRNA isoform was shown to promote higher oncogenic transformation levels 

than its longest mRNA isoform. This could be explained by the fact that shorter 3’UTRs 

have less binding sites to negative regulators such as miRNAs and thus are less prone 

to regulation.19 Also in this field, Fu et al.20, described an opposite pattern of 3’UTR 

length in two different breast cancer cell lines. In MCF7 cell line it was seen an 

elevated production of  mRNA isoforms with shorter 3’UTRs whereas in MB231 cell line 

it was seen high production of longer 3’UTR mRNA isoforms.20 What it can be 

concluded from this observation is that in cancer, APA is regulated at a cell type-

specific manner.  

Figure 6 - APA in proliferative and developmental conditions. According to a variety of cellular 

states, as well as diverse diseases, the choice of one pA site over another is differentially regulated. 

The choice of proximal pA signals occurs preferentially in proliferative conditions and cell 

transformation while the choice of distal pA sites occurs mostly in cell differentiation and late 

developmental stages. Adapted from Di Giammartino et al.12 
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In contrast to cell proliferation and tumour cells, it has been shown that during 

development and cell differentiation there is an increase in the usage of distal PAS. 

Hoque et al.16, analyzed C2C12 and 3T3-L1 cells, which were induced to differentiate 

and represent a model for myogenesis and adipogenesis respectively, and also mouse 

embryos as a model for embryogenesis. In this study it was demonstrated an increase 

in the levels of mRNAs produced by the usage of distal PAS both in mouse embryos 

and during cell differentiation.16 

In what concerns neurological system, it has been shown that an aSyn mRNA 

isoform with a longer 3’ UTR is more highly expressed in brain tissues of Parkinson 

disease patients compared with unaffected brains.21 Another study in this field 

demonstrated that COX-2, which is expressed in the brain, produces two different 

mRNAs with 2.8 kb and 4.6 kb by APA. It has been demonstrated that the neocortex, 

which is affected in Alzheimer disease, expresses high levels of the 4.6 kb COX-2 

mRNA, and therefore a possible association between COX-2 APA pattern, its 

expression levels and Alzheimer disease phenotype may be foreseen.22 

 

Myeloid Cell Leukemia-1 gene  

Myeloid cell leukemia-1 (MCL1) gene was first described to be up-regulated in 

ML-1 cells, a human myeloid leukemia cell line, in an early differentiation stage. It 

encodes Mcl-1, a member of the B-cell lymphoma 2 (Bcl-2) protein family. The Bcl-2 

protein family is known to be involved in the regulation of apoptosis, a programmed 

form of cell death crucial for tissue homeostasis, development, inflammation and safe 

removal of unwanted or damaged cells. An aberration in this physiological event could 

lead to human disease, such as cancer, once it promotes cell immortalization. The 

regulation of apoptosis by Bcl-2 protein family members is achieved throughout the 

balance between the pro- (e.g., Bax and Bad) and anti-apoptotic proteins (e.g., Bcl-2, 

Bcl-XL and Mcl-1) of this family, which determines the flow of cells through proliferation 

and differentiation.23-26 

Mcl-1 is an anti-apoptotic protein known to provide short-term enhancement of 

cell viability influencing cell fate transitions and also life and dead-decisions. Mcl-1 

exerts its anti-apoptotic function by sequestering Bax and Bak proteins, pro-apoptotic 

members of the Bcl-2 protein family. Mcl-1 is a ubiquitous protein, however, its 

expression varies in a tissue- and differentiation-specific manner according to its 

physiological role.23-25, 27 A variety of cell types depend on Mcl-1 expression for their 

survival and development, such as B and T-lymphocytes and neutrophils. Also, it is 

described that Mcl-1 is very important for macrophage effector function.23, 25, 28 
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Contribution of Mcl-1 to T cells biology and pathophysiology  

T lymphocytes are core elements of immunity that confer specificity to the 

immune response. These cells are produced in bone marrow and mature in the thymus 

where differentiate from double negative (four stages: DN1, DN2, DN3, DN4), CD4-

CD8-, to double positive (DP), CD4+CD8+, and then to single positive (SP), CD4+CD8- 

or CD8+CD4- cells. From the thymus, SP thymocytes transit to peripheral blood where 

after activation and subsequent proliferation, differentiate from naïve T cells to effector 

T cells.29, 30 Mcl-1 is expressed by T cells at all developmental stages and is necessary 

for their survival and, consequently, their maturation.29, 31 In order to determine the role 

of Mcl-1 in T cell development and function, a variety of studies have been made and  

demonstrated the role of Mcl-1 in regulating T cells biology. For example, Opferman et 

al.31 and Dzhagalov et al.29 verified a dependence of T lymphocytes on Mcl-1 for their 

development, survival and maintenance. In the Opferman et al.31 study they used a 

knockout mouse for Mcl-1 and found a decrease in the overall expression of 

thymocytes: double positive cells and single positive cells. Also, it was demonstrated 

that the loss of Mcl-1 increased apoptosis at DN2 thymocytes and arrested the 

development of DN3 thymocytes. Moreover, in this study it was shown a role for Mcl-1 

in maintaining the existing mature T lymphocytes since the deletion of Mcl-1 lead to the 

depletion of T cells from the spleen.31 Dzhagalov et al.29 went further and demonstrated 

also a role for Mcl-1 in the survival of activated T cells and thus this study together with 

the Opferman et al.31 study demonstrates that Mcl-1 promotes the survival of DN, DP, 

SP, naïve and activated T cells. In Dzhagalov et al.29 study they confirmed that MCL1 

deletion resulted in the blockage of DN2/DN3 to DN4 transition and also in the 

decreased of SP cells. It was also demonstrated in vitro that DP cells depend on Mcl-1 

for their survival, but in vivo the loss of Mcl-1 did not have an effect in the DP survival 

cells since other anti-apoptotic molecules of this family also have important roles in the 

survival of T cells at this developmental stage. The authors also searched for the role 

of Mcl-1 in activated T cells and in contrast with DP cells in vitro, activated T cells from 

a MCL1 knockout mouse undergone apoptosis demonstrating the importance of Mcl-1 

in the maintenance of activated T cells. Also, they have stimulated T cells with an anti-

CD3 antibody, which binds to CD3 on the surface of T cells, and a strongly up-

regulation of Mcl-1 was seen, demonstrating a role for Mcl-1 in the survival and 

function of activated T cells.29 

It was also demonstrated that MCL1 has a relevant role under pathological 

conditions. Particularly, MCL1 is highly expressed in diverse human cancers with poor 

prognosis, a variety of which hematopoietic cancers, such as acute lymphoblastic 
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leukemia (ALL) and chronic lymphocytic leukemia (CLL), contributing to malignant cell 

growth and evasion of apoptosis.25 Therefore, compounds that inhibit MCL1 could be 

an efficient therapeutic agent in cancers with MCL1 overexpression. 

MCL1 gene characterization and post-transcriptional regulation 

The human MCL1 gene comprises 3 exons, all of which encode the information 

that gives rise to the anti-apoptotic protein Mcl-1. This gene is actively regulated at both 

transcriptional and post-transcriptional levels.23, 24 A variety of interleukins (IL-332, IL-

533, IL-634) as well as growth factors, such as epidermal growth factor (EGF)35 and 

vascular endothelial growth factor (VEGF)36, were described to induce transcriptional 

up-regulation of MCL1. At transcriptional level, a variety of transcription factors are 

implicated in MCL1 regulation, being the signal transducers and activators of 

transcription (STAT) an important family of these regulators. In response to IL-637, IL-

332, and VEGF38, STAT3 was described to up-regulate the transcription of this gene. 

Other transcription factors involved in MCL1 transcription regulation are the PU.139 and 

hypoxia-inducible factor 1-alpha (HIF-1α)40, described to up-regulate transcription of 

MCL1, and E2F-141, that down-regulate MCL1 through its binding to the MCL1 

promoter.23, 24, 27 

At post-transcriptional level, MCL1 is initially regulated by alternative splicing, 

which gives rise to three mRNA isoforms. By the skipping of exon 2 or by the skipping 

of a portion of exon 1, it is generated two shortened mRNA isoforms, Mcl-1S and Mcl-

1ES, respectively. Contrary to the anti-apoptotic isoform, these two alternative splicing-

derived isoforms have a pro-apoptotic role by sequestering the Mcl-1 anti-apoptotic 

isoform and because they are unable to interact and sequester the pro-apoptotic Bcl-2 

family members (figure 7). MCL1 is also down-regulated by miRNAs, being the most 

known miRNA-2923, 42, as will be further explained below. At translation level, one 

example of MCL1 regulation is by the PI3K-AKT-mammalian target of rampamycin 

complex 1 (mTORC1) pathway, which induces MCL1 translation (figure 8).23, 24, 27, 42 

 

 

 

 

 

Figure 7 - MCL1 gene characterization. In this figure the light blue boxes correspond to exons, the 

dark blue lines correspond to 5’UTR (left) and 3’UTR (right), and the green lines correspond to 

introns. MCL1 is transcribed in three mRNA isoforms; the longest mRNA produces an anti-apoptotic 

protein (Mcl-1) and the other two mRNA isoforms (MCL-1S and MCL-1ES) are generated by 

alternative splicing and encode pro-apoptotic proteins. 

MCL1ES 

MCL1S 
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MicroRNAs 

miRNAs are non-coding RNAs found in animals and plants representing a large 

family of post-transcriptional regulators of gene expression, whose mature products 

have 21 to 23 nucleotides in length.43-47 Several studies have demonstrated the 

important role of miRNAs in a wide range of biological processes like development, 

proliferation and differentiation, metabolism, apoptosis and cancer.45, 46, 48 Also, it is 

now known that a single miRNA might control numerous distinct targets and it is 

estimated that about 50% of all mammalian genes are under miRNA control.43, 48 

 The miRNAs are usually processed by RNA polymerase II from precursor 

molecules such as independent genes or introns of protein-coding genes. The product 

of RNA polymerase II (pri-miRNA) acts as a substrate for two members of RNase III 

family of enzymes, Drosha and Dicer. First, Drosha in complex with DGCR8, processes 

the pri-miRNA giving rise to a ~70-nucleotide precursor hairpin, the pre-miRNA. The 

pre-miRNA is then recognized by exportin 5 and thus exported to the cytoplasm where 

is processed by DICER, assisted by the transactivating response RNA-binding protein 

(TRBP). This leads to the formation of a ~20 nucleotide miRNA/miRNA duplex. One of 

the two strands of this complex, the mature miRNA, is then incorporated into an 

Argonaute (AGO) protein, essential for target recognition, giving rise to the miRNA-

induced silencing complex (miRISC).43, 45, 46, 48 

Figure 8 - MCL1 gene transcriptional and post-transcriptional regulation. MCL1 is 

transcriptionally and post-transcriptionally regulated by a variety of transcription factors, by miRNAs, 

such as miRNA-29b and by signalling pathways, such as the PI3K-AKT-mTORC1 pathway. Juin et 

al.24 
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 miRISC recognizes an mRNA to be silenced through the base pairing-

interactions between the miRNA and its target mRNA. The seed region, a ~8-

nucleotide motif at the 5’ domain of the miRNA, is the predominant mechanism for 

target mRNA recognition. Along the mRNA sequence there is a plenitude of regions 

where seed matches may occur, however, they are more prone to silence an mRNA 

when they are in the 3’UTR49, 50. The targets to be silenced can contain a partially or 

fully complementary sequence to the corresponding miRNAs. According to the type of 

base pairing interactions, miRNA-mediated gene silencing can occur by mRNA 

cleavage, mRNA degradation or translational repression. If the miRNA contains a fully 

complementary sequence the target will be repressed by mRNA cleavage. In contrast, 

if the miRNA contains a partially complementary sequence the mechanism of action 

will be trough translational repression or mRNA degradation.44-46 

According to a variety of studies that have been done in the past few years, 

mRNA degradation is responsible for ~75%-85% of the changes observed in protein 

synthesis, attributing a less important role of miRNAs in translational repression. 45, 47, 48 

The mechanism of mRNA degradation by miRNAs is the following: once an mRNA is 

targeted by the miRISC complex to be silenced, GW182 interacts by its amino-terminal 

domain with AGO protein and by its carboxy-terminal domain with polyA-binding 

protein, cytoplasmic 1 (PABPC1) that is bound to the pA tail of the target mRNA. Then, 

the complex AGO-GW182-mRNA leads to the removal of the pA tail (deadenylation) by 

the CAF1-CCR4-NOT deadenylase complex. This mechanism, in turns, leads to the 

decapping of the mRNA by the DCP2 enzyme and mRNA degradation by the 5’-to-3’ 

exoribonuclease 1 (XRN1).43, 48, 51 

A general overview of the miRNAs biogenesis and function described above is 

illustrated in figure 9. 

  

miRNAs in MCL1 regulation 

Several miRNAs were demonstrated to down-regulate MCL1 expression in a 

variety of human cancers. Examples of this regulation are: miRNA-135a/b in a lung 

cancer cell line52, miRNA-133a/b in human osteosarcoma53, 54, miRNA-204 in 

pancreatic cancer55, miRNA-100/99a in acute lymphoblastic leukaemia56, miRNA-193a 

in epithelial ovarian cancer cells57, miRNA-139 in glioma58, miRNA-26a in breast 

cancer59, and miRNA-29b in, for example, a glioblastoma multiforme cell line60.  
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The most well-established miRNA that regulates MCL1 expression is miRNA-

2942, 60. Aldaz et al.60  described that the overexpression of miRNA-29a and miRNA-29b 

in GN1C cells, a type of glioblastoma multiforme cell line, leads to the decrease of Mcl-

1 protein expression (54% and 62%, respectively), resulting in an increase of apoptosis 

(about 1,6-fold and 1,56-fold increase, respectively).60 In what concern cancers of the 

lymphoid lineage, Li et al.56  demonstrated a role for miRNA-100 and miRNA-99a in 

down-regulating MCL1 expression in ALL. In this study, they first demonstrated that 

both miRNAs had lower expression in acute lymphoblastic leukemia patients and that 

when they overexpressed these two miRNAs the levels of MCL1 were decreased.56  

Since MCL1 plays a major role in suppressing apoptosis, characterization of the 

MCL1 mRNA isoforms produced by APA and the miRNAs that regulate its expression 

may be a useful therapeutic tool in different clinical contexts in the future. 

 

Figure 9 - miRNAs biogenesis and function. miRNAs are transcribed in the nucleus by RNA 

polymerase II and exert their function in the cytoplasm. miRNAs regulate their targets by translation 

repression, mRNA degradation or mRNA cleavage, depending on their complementary to their 

targets. There is strong evidence that target degradation provides a major contribution to silencing by 

animal miRNAs. Adapted from Breving et al.45 
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Aims of this thesis 

Despite all the studies regarding MCL1 regulation, nothing was known about the 

role of polyadenylation and APA on MCL1 regulation. Also, post-transcriptional 

regulation of MCL1 by miRNAs in T cells in resting and activated states had not been 

previously investigated. Therefore, the main goals of this thesis were to characterize 

the APA pattern of MCL1 in primary human T cells in both resting and activated 

conditions and to identify miRNAs involved in MCL1 post-transcriptional regulation. 

 

Overall, the specific objectives of the experimental work were to: 

 Map the mRNAs 3’ ends of MCL1 produced by APA; 

 Determine the MCL1 APA-derived mRNA isoforms expression both at mRNA 

and protein level. 

 Identify the miRNAs that could influence MCL1 expression in T cells; 

 Quantify the expression of potential miRNAs in primary human T cells; 

 Analyse the effect of mutations of the putative miRNA-binding sites on MCL1 

3’UTR ; 

 Study the consequences of miRNAs overexpression in the expression of Mcl-1 

protein; 

 Identify a miRNA that affects MCL1 expression and that could be used as a 

potential therapeutic target in the future. 
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IN SILICO ANALYSIS  

In order to check for MCL1 coding and 3’UTR sequences and for predicted APA 

pattern we used the UCSC genome browser. To assess the conservation of the 3’UTR, 

the pA signals and the putative-binding sites of the chosen miRNAs we performed a 

multiple sequence alignment of the mRNA or genomic sequence of ten mammalian 

species using the default settings of the MUSCLE 3.6 software running on Geneious 

program v4.8. 

To search for miRNAs putative-binding sites on MCL1, TargetScan 

(https://www.targetscan.org/), microRNA.org (https://www.microRNA.org/) and 

miRTarBase (https://www.mirtarbase.mbc.nctu.edu.tw/) databases were assessed 

using the default settings. The microRNA.org database and miRNAmap 

(https://www.mirnamap.mbc.nctu.edu.tw/) databases were used to determine the 

expression of the miRNAs in different tissues. 

 

EXPERIMENTAL MODELS 

Cell culture 

Jurkat E6.1 cell line was grown and maintained in culture at 37 ºC with 5% CO2 

atmosphere in complete medium (RPMI 1640 medium modified with GlutaMAX and 

phenol red, 10% fetal bovine serum (FBS) and 1% of a penicillin/streptomycin antibiotic 

solution). Cells were split every 3-4 days in order to be at a concentration around 2 x 

106 cells/mL.  

HeLa cell line was also grown and maintained in culture at 37 ºC with 5% CO2 

atmosphere in complete medium (DMEM with 10% FBS and 1% of a 

penicillin/streptomycin antibiotic solution). Cells were split in a 1:10 ratio every 3-4 days 

to maintain subconfluency. 

All the reagents mentioned above are from Gibco®, Life technologies. 

Human PBMCs and T cells isolation 

Human blood buffy coats were obtained from volunteer blood-donors from 

Hospital de São João. Peripheral blood mononuclear cells (PBMCs) were isolated 

using Lympholyte®-H (Cedarlane Labs) according to the manufacturer’s 

instructions.  

In order to isolate T lymphocytes, previously isolated PBMCs were 

resuspended in 1X PBS (phosphate-buffered saline) at approximately 5x107 

cells/mL and the EasySep negative selection kit (STEMCELL technologies) was 

used. Using this kit the unwanted cells (using antibodies CD14, CD16, CD19, 
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CD20, CD36, CD56, CD66b and CD123) are retained using magnetic beads while 

T cells are enriched by separating the desire fraction into a new tube.  

Both PBMCs and T cells were counted using an automated cell counter 

(Countess®, Life Technologies) and cultured at 1 x 106 cells/mL in RPMI complete 

medium. 

Cell Activation 

Both primary PBMCs and human T cells were activated with 

phytohemagglutinin (PHA) in a final concentration of 1 µg/mL for 48 hours. Cells in 

resting and activated states were harvested for further RNA extraction. 

 

QUANTITATIVE MRNA EXPRESSION ANALYSIS 

RNA fractionation 

PBMCs were collected, washed twice with 1X PBS and resuspended in 1 

mL of RSB buffer (10 mM Tris pH 7.4, 10 mM NaCl and 3 mM MgCl2). After 3 min 

incubation on ice, cells were centrifuged at 3200 g for 3 min at 4 ºC, and the 

supernatant was discarded. The pellet was resuspended in 150 µL of RSBG40 

buffer (10 mM Tris pH 7.4, 10 mM NaCl, 3 mM MgCl2, 10% glycerol, 0.5% NP-40, 

0.5 mM DTT (Invitrogen) and 40U/L RiboLock RNase Inhibitor (Thermo 

Scientific)). Cells were centrifuged at 4500 g for 3 min at 4 ºC. Upon supernatant 

(the cytoplasmic fraction) had been transferred to a new eppendorf, it was added 1 

mL of TRIzol to the supernatant and to the pellet (nuclear fraction). The RNA 

extraction was then performed as described bellow. 

RNA extraction 

Total RNA was extracted with TRIzol reagent (Invitrogen) following the 

manufacturer standard protocol. First we added 1 mL of TRIzol reagent and incubated 

5 min at room temperature. Then 200 µL of chloroform was added and the samples 

were mixed and centrifuged for 15 min at 12000g at 4ºC. The upper aqueous phase 

was transferred to a fresh tube containing 1 µL of Glicoblue (15mg/mL, Life 

Technologies) and the same amount of isopropanol as the aqueous phase transferred. 

The samples were mixed and then frozen overnight at -80ºC. In the next day, after 

thawing, samples were centrifuged for 20 min at 12000g at 4ºC following by a pellet 

washing step with 500 µL of 75% cold ethanol centrifuged 10 min at 12000g at 4ºC . 

The pellet was air dried and resuspended in 11 µL of Nuclease-free water (Thermo 

Scientific).  
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Total RNA enriched with small RNAs extraction was performed using the 

mirVanaTM isolation kit protocol (Ambion, Life Technologies). Primary T cells and/or 

Jurkat E6.1 cell line were counted as described above and 102 to 107 cells were 

pelleted and further washed using 1mL of cold PBS 1X. HeLa cells were 

trypsinized, counted and then 102 to 107 cells were pelleted and further washed 

using 1 mL cold PBS 1X.  After cell suspension preparation the RNA extraction 

was performed according to the manufacturer’s instructions with minor 

modifications. The first wash step using miRNA Wash Solution 1 was divided in 

two steps: instead of using 700 µL of this solution and centrifuged once, we added 

350 µL twice and centrifuged each time performing the DNase (DNase I 

recombinant, Roche) treatment (final concentration 3 U/µL) between these two new 

steps. 

RNA quantification was performed in a NanoDropTM 1000 

Spectrophotometer (Thermo Scientific) and the RNA stored at – 80 ºC.  

DNase treatment 

DNase treatment for total RNA was performed in a final volume of 12 µL, 

the volume necessary to further perform cDNA synthesis. DNase recombinant I 

(Roche) was used at a final concentration of 1 U/µL and the samples were 

incubated at 37ºC for 90 min. Samples were then incubated 10 min at 75ºC for 

enzyme inactivation. 

cDNA synthesis 

After total RNA or fractionated RNA extraction and DNAse treatment, 

SuperScript IIITM Reverse Transcriptase enzyme (Invitrogen, Life Technologies) was 

used to synthesise cDNA from 300 ng or 500 ng of DNase treated RNA from human 

primary T cells and PBMCs or HeLa and Jurkat E6.1 cell lines, respectively, following 

the manufacture’s guidelines. Briefly, to the treated RNA was first added 1µL of dNTPs 

(10 mM) and 1 µL of random hexamers (50 µM) and the mixture was then incubated at 

65ºC for 5 min in order to denature RNA, followed by 5 min at 4ºC. The mix for reverse 

transcription was prepared at a final volume of 6 µL containing 4 µL of cDNA synthesis 

buffer (5X), 1µL of DTT (0,1 M), 0,5 µL of RiboLock RNase Inhibitor (40 U/µL, Thermo 

Scientific) and 0,5 µL of SuperScript III reverse transcriptase enzyme (200 U/µL, 

Invitrogen). The samples were then incubated for 10 min at 25ºC, 60 min at 50ºC and 

finally 10 min at 70ºC to inactivate the enzyme, using a TPersonal thermocycler 

(Biometra). To discard genomic DNA contaminations, negative reactions were 

performed without SuperScript III.  
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To synthesise cDNA from total RNA enriched with small RNAs extraction the 

TaqMan®MiRNA Assays (Life Technologies) protocol was followed. For this reaction a 

total of 10 ng of RNA was used. The master mix for this reaction was composed by 1,5 

µL of dNTPs (10 mM), 1 µL of MultiscribeTM reverse transcriptase (50U/µL), 1,5 µL of 

reverse transcription buffer (10X), 0,19 µL of RiboLock RNase Inhibitor (40 U/µL, 

Thermo Scientific) and Nuclease-free water (Thermo Scientific) up to 7 µL. To this 

reaction was then added 5 µL of RNA (10ng) and 3 µL of RT primer (5X) and the 

samples were then mixed. The mixture was incubated on ice for 5 min before 

proceeding to the thermal cycling at 16ºC for 30 min, 42ºC for 30 min followed by 5 min 

at 85ºC for enzyme inactivation.  

All cDNA samples were stored at -20ºC. 

Quantitative Real Time PCR (RT-qPCR) 

For quantification of MCL1 mRNA isoforms the primer pairs designed (table 

1) were first optimized. The optimization consisted in performing the RT-qPCR 

reactions, as described below, using series of cDNA dilutions (1, 1:10, 1:100 and 

1:1000) to create a standard curve. In this standard curve the slope should be 

around -3.3, in order to obtain an ideal efficiency (90% to 110%). The efficiency 

was obtained through the following equations: E = 10 (-1/slope) and %E = (E-1) x 100. 

Each RT-qPCR reaction was performed using 10 µL of SYBR® Select Master 

Mix (Applied Biosystems, Life technologies), 0,25 µL of each primer (10 µM), 1 µL of 

the cDNA sample and nuclease-free water up to 20 µL. Reactions were performed 

using the StepOne Real-time PCR System (Applied Biosystems) thermocycler 

following the program recommended by the company.  

The reference gene chosen was the ribosomal gene 18S for all samples 61, 

62. The results were analyzed using the ∆Ct method (relative expression=2-(CT target 

gene – CT reference gene)), used to determine the expression of the target gene relative to 

the endogenous control, assuming the maximum efficiency (E=2), since the results 

do not suffered significant changes when the real efficiency was used.  

For quantification of the miRNAs expression, it was prepared a master mix 

containing 10 µL of TaqMan® Universal PCR Master Mix II, no UNG (Applied 

Biosystems, Life Technologies), 1 µL of 20X TaqMan® Small RNA Assay (Applied 

Biosystems, Life Technologies) and Nuclease-free water (Thermo Scientific) up to 18,7 

µL. To this mix it was added 1,3 µL of the prepared cDNA. Reactions were performed 

in the StepOne Real-time PCR System (Applied Biosystems) thermocycler using the 

recommended thermal cycling program (2 min at 50ºC; 10 min at 95ºC, and 40 cycles 

of 15 sec at 95ºC and 60 sec at 60ºC). The results were analysed with the previously 
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described ∆CT method using as reference gene the human U6 small nuclear RNA63.  

The codes of the TaqMan® probes used are described below (table 2). 

 

3’RACE (RAPID AMPLIFICATION OF CDNA ENDS) AND NESTED PCR 

The SMARTer™ RACE cDNA Amplification kit (Clontech) was used to 

synthesized 3´RACE cDNA, using SMARTScribeTM Reverse Transcriptase and 1 µg of 

total RNA, according to the manufacturer’s protocol. The first and nested 3’ RACE PCR 

reactions were done using the Phusion High-Fidelity DNA Polymerase (2U/µL – 

Thermo Scientific), following the manufacturer’s protocols. The forward primers were 

designed according to SMARTer™ RACE kit protocol’s specificities (table1). The 

products were then analysed by agarose gel electrophoresis (1,5%) stained with 

SybrSafe DNA gel stain (Invitrogen) and using the GeneRuler DNA ladder mix (Thermo 

Scientific). The desired bands from the agarose gel electrophoresis were cut and 

purified using the GRS PCR and Gel Band Purification Kit (Grisp). 

 

CLONING INTO TOPO VECTOR 

Previously to the TA-cloning procedure, we performed the addition of an 

adenine residue to the 3´-ends of the blunt gel purified PCR products by incubating 15 

min at 72 ºC the following mixture: 4 µL of the purified band, 0,5 µl of 5X GoTaq 

Reaction Buffer (Promega), 0,3 µL of dATP (2.5 mM) and 0,2 µL of GoTaq® DNA 

Polymerase (5 U/µl - Promega).  Cloning of the 3’RACE PCR purified bands was done 

using the TOPO TA Cloning Kit (Life technologies) according to the manufacturer’s 

instructions with minor modifications. Briefly, 4 µL of the mixture described above was 

added to 1 µl of Salt Solution (Life Technologies) and 1 µL of pCR2.1-TOPO vector 

(Life Technologies) and incubated for 30 min at 22ºC. The total volume of this mixture 

was transformed in 100 µl of Echerichia coli TOP10 competent cells. 

 

 

TRANSFORMATION OF COMPETENT BACTERIA 

Ten µL (or 6 µL in the case of the TA-cloning) of the plasmid ligation 

product were added to 100 µL of TOP10 chemically competent Echerichia coli 

(Invitrogen, Life Technologies). Cells were incubated on ice for 15 min, followed by 

a heat shock at 42 ºC for 90 seconds and put back on ice for more 5 min. LB 

medium (400 µL) was added and cells were incubated for 60 min in an orbital 

shaker at 37 ºC. The cells were then plated in LB plates with kanamycin (25 
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μg/mL) or ampicillin (100 μg/mL), according to the antibiotic resistance present in 

the plasmid used, and put at 37ºC overnight (ON).  

 

COLONY PCR 

In order to determine the colonies that incorporated properly the insert a 

colony PCR was performed. The PCR reaction was performed using 0,15 µL of 

GoTaq® DNA Polymerase (5 U/µl - Promega); 2 µL of 5X Green GoTaq® Reaction 

Buffer (Promega); 0,75 µL of MgCl2  (25 mM - Promega); 0,5 µL of each primer (10 

µM); 0,5 µL dNTPs (10 mM); and Nuclease-free water up to 10 µL. The plasmid 

template was obtained by a  stab of each colony with a tip that was then emerged in 

the reaction mix. The PCR reactions were carried out in TPersonal thermocycler using 

the following program: 5 min at 95ºC; 35 cycles of 1 minute at 95ºC, 30 seconds at 

56ºC, 30 seconds at 72ºC; and a last extension time of 7 min at 72ºC. The reaction 

product was then analysed by a 1% agarose gel electrophoresis. 

 

ACTINOMYCIN-D TREATMENT 

In this experiment seven time-point conditions were used (0, 0.5, 1, 2, 4, 6 

and 24 hours) and each condition was made in triplicates. Jurkat E6.1 cells were 

counted as described above and seed out at a confluence of 3x106 cells/mL in 24 

well-plates. To the time-point “0h” no Actimycine-D antibiotic (Sigma-Aldrich®) was 

added. To the other conditions 5 µg/mL of Actinomycin-D was added to the RPMI 

complete medium and the samples were then incubated at 37ºC. At each time- 

point, the samples were centrifuged at 300g for 5 min and, after removing the 

supernatant, the pellet was resuspended in 1 mL TRIzol. Posteriorly, the RNA 

extraction was performed as described above. 

 

PLUC CONSTRUCTS/PMIRGLO CONSTRUCTS 

 Each MCL1 3’UTR isoforms were amplified using as template the 

sequences cloned into the TOPO vector and specific primers (table 1). The 

forward and reverse primers used to amplify all isoforms had at its 5’ end a 

sequence for the SacI and SalI restriction enzymes (New England Biolabs), 

respectively. Using these primers all MCL1 APA-derived mRNA isoforms were 

amplified using the Phusion High-Fidelity DNA Polymerase (2U/µL – Thermo 

Scientific). For this reaction it was used 4 µL of 5X Phusion HF buffer; 0,4 µL of 

dNTPs (10 mM); 1 µL of each primer (10 µM); 0,2 µL of Phusion High-Fidelity DNA 



MATERIAL AND METHODS 

Page 25 of 68 

Polymerase (2 U/µL – Thermo Scientific); 1µL of the plasmid used as template 

(250 ng); and Nuclease free water up to 20 µL. The amplification was performed in 

the TPersonal thermocycler using the following program: 1 minute at 98ºC; 25 

cycles of 10 seconds at 98ºC, 30 seconds at 56ºC, 2,5 min at 72ºC; and a final 

extension step of 7 min at 72ºC. The PCR products were analyzed by agarose gel 

electrophoresis (0,8%) as described above and then purified using QIAquick PCR 

Purification Kit (QIAGEN) according to manufacturer’s instruction. The purified PCR 

products and the plasmid “pLuc” were then digested with SacI and SalI restriction 

enzymes (New England Biolabs) and cloned as described below. 

 To clone the ~100-bp sequence of MCL1 3’UTR containing the putative binding 

sites for the selected miRNAs and those sites mutated two templates were used. To 

clone the wild type sequences it was used as template the pLuc constructs where 

MCL1 pA4 3’UTR were cloned and as backbone vector pmiRGLO (Promega). To clone 

the sequences containing the putative-binding sites mutated, it was used the pLuc 

plasmid where pA4 MCL1 3’UTR was cloned and where all miRNAs putative-binding 

sites were mutated by directed mutagenesis (described bellow). Once again, the 

primers used to amplify these sequences contained at their 5’end the sequences for 

SacI (primer forward) and SalI (primer reverse). For the amplification reaction it was 

used 0,2µL of GoTaq® DNA Polymerase (5U/µl - Promega); 4 µL of 5X Green GoTaq® 

Reaction Buffer (Promega); 1,5 µL of MgCl2  (25 mM - Promega); 1 µL of each primer 

(10 µM); 1 µL dNTPs (10 mM); 1 µL of the plasmid template and Nuclease-free water 

up to 20 µL. The PCR reactions were carried out in TPersonal thermocycler using the 

following program: 5 min at 95ºC; 25 cycles of 30 seconds at 95ºC, 30 seconds at 

56ºC, 30 seconds at 72ºC; and a last extension time of 5 min at 72ºC.The PCR 

products were analyzed by agarose gel electrophoresis (0,8%) as described above 

and then purified using QIAquick PCR Purification Kit (QIAGEN) according to 

manufacturer’s instructions. The PCR products and the plasmids used were then 

digested with SacI and SalI restriction enzymes (New England BioLabs). 

To perform the cloning of the sequences in pLuc and pmirGLO it was used 

the T4 DNA ligase (Thermo Scientific) according to the manufacturer’s guidelines. 

Posteriorly, the ligation product was transformed into competent cells as described 

above. Plasmid DNA extractions were performed using the PureLink™ Quick 

Plasmid Miniprep Kit (Life Technologies) and plasmids were sequenced in GATC 

Biotech company to confirm that they had the correct sequence.  
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DIRECTED MUTAGENESIS 

This procedure was performed to mutate the proximal pA sinals in each 

APA isoform to obtain the MCL1 3’UTR isoforms containing only the distal pA 

signals and to mutate the putative-binding sites of the miRNAs selected. Using this 

procedure it was possible to generate: the pA2 isoform with pA1 pA signal 

mutated, pA3 isoform with the pA1 and pA2 pA signals mutated, and pA4 isoform 

with pA1, pA2 and pA3 isoforms mutated. The pA4 construct was used to mutate 

the miRNAs putative-binding sites and this construct was then used as a PCR 

template to clone the ~100-bp sequence of MCL1 3’UTR containing the putative 

binding sites for the selected miRNAs into pmirGLO vector. 

This technique was performed according to the protocol described in Liu 

and Naismith 2008 64, with minor alterations. The primers were designed so that 

their 5’ends were complementary to each other and contained at the 

complementary region the mutations to be inserted. These primers pairs amplified 

all the plasmid sequence inserting only the desired mutation. Due to the template 

length it was used the Phusion High-Fidelity DNA Polymerase (2 U/µL – Thermo 

Scientific). For this reaction it was used 1,5µL of the plasmid template (15ng), 10 

µL of 5X Phusion HF buffer; 1 µL of dNTPs (10 mM); 2,5 µL of each primer (primer 

forward and primer reverse, 10 µM); 1,5 µL of Phusion High-Fidelity DNA 

Polymerase (2 U/µL – Thermo Scientific); and Nuclease free water up to 50 µL. 

After several optimizations, the PCR program used was the following: 1 minute at 

98ºC; 3 cycles of 10 seconds at 98ºC, 30 seconds at 70ºC, 5 min at 72ºC; 3 cycles 

of 10 seconds at 98ºC, 30 seconds at 68ºC, 5 min at 72ºC; 18 cycles of 10 

seconds at 98ºC, 30 seconds at 65ºC, 5 min at 72ºC; and a last extension step of 

10 min at 72ºC. The PCR products were analyzed by agarose gel electrophoresis 

(0,8%) as described above and then purified using QIAquick PCR Purification Kit 

(QIAGEN) according to the manufacturers’ instructions. To eliminate any remains 

of the parental plasmid, the purified PCR products were digested by using 2 µL of 

DpnI enzyme (New England Biolabs), 10 µL of 10X Cut Smart buffer, 49µL of the 

purified PCR product and Nuclease-free water up to 100 µL, for 2 hours at 37ºC 

followed by an inactivation time of 20 min at 80ºC. After, the PCR-generated 

mutant plasmids were transformed into competent cells as described above. All 

plasmids were sequenced in GATC Biotech company to confirm that they had the 

correct mutations. 
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TRANSFECTION ASSAYS 

 These procedures were performed in order to transfect the cells with the 

pLuc constructs containing the MCL1 3’UTR isoforms, the pmirGLO constructs 

containing the ~100bp sequences around the putative-binding sites for the 

selected miRNA, or to perform the overexpression of the selected miRNAs 

(Addgene Plasmid 21113: pcDNA3-miR17; Addgene Plasmid 21121: pcDNA3-miR29b; 

Addgene Plasmid 46672: pcDNA3.2 miR-1-1 reporter hsa-miR-92a-1). 

 HeLa cells were transfected using the Lipofectamine® 3000 reagent (Life 

Technologies) according to the manufacturer’s guidelines. Cells were placed on 

24-well plates at a concentration of 2x105 cells/mL and transfected when reached 

70%-90% confluency. Transfections were performed using in total 0,5 µg of 

plasmids. In the experiments to measure the Luciferase activity produced by the 

MCL1 3’UTRs isoforms two plasmids had to be transfected: pLuc (0,35 µg) and 

pCMV-Renilla (0,15 µg), once pLuc didn’t have the Renilla gene in its backbone. 

For pmiRGLO (has luciferase and renilla genes in its backbone) and miRNA 

overexpression experiments, 0,5 µg of plasmid were used. 

 

LUCIFERASE ASSAY 

 To perform the Luciferase assays the Dual-Luciferase® Reporter Assay 

(Promega) was used according to the manufacturer’s guidelines. The lysis process 

used in these experiments was the Passive Lysis procedure. Briefly, the cells were 

harvested and rinsed once with 1X PBS. Then, 100 µL of 1X Passive Lysis Buffer 

was added followed by 15 min shaking at room temperature. Next, 10 µL of each 

sample was added to a 96-well plate and 50 µL of LAR II was added to perform the 

firefly luciferase activity measurement. After, 50 µL of Stop & Glo® Reagent was 

added to perform the Renilla luciferase activity measurement. For the 

measurements of both firefly and renilla luciferase activities a Synergy 2 Multi-Mode 

Reader (Bio-Tek) was used. To achieve the final luciferase activity, the values 

obtained for luciferase were normalized to renilla. Final luciferase activity values 

represent the mean of three independent experiments. Each experiment was 

performed using duplicates. 

 

WESTERN BLOT 

To obtain the protein lysates needed to perform the western blot the medium from 

HeLa cells was removed and cells washed with PBS 1X. In the PBMCs and Jurkat 
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E6.1 cell line cells were first centrifuged for 5 min at 300 g, the supernatant was 

removed and cells washed with PBS 1X. 100 µL of Lysis buffer (10mM Tris-HCl pH 

7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40) with 1X proteases inhibitors (Roche) 

was added to the cells and incubated on ice for 15 min. The lysates were then 

transferred to an eppendorf and centrifuge for 10 min at 14,000g. The supernatant 

(containing the protein lysates) was then transferred to a new eppendorf. In order 

to perform the protein quantification the Bradford reagent (Bio-Rad) was used and 

absorvancy was read at 595 nm in a microplate spectrophotometer (µQuant™ - 

BioTek). After, 25 µg of protein (in a final volume of 10 µL) of each sample to 

which was added 10 µL of 2X loading buffer (with 5% β-mercaptoethanol) was 

boiled at 95ºC for 5 min. Then, the samples were loaded on a 12% SDS–PAGE gel 

and after 45 min at 200V, transferred onto a nitrocellulose membrane (Life 

Technologies) and subjected to western blot analysis. Briefly, membrane was 

blocked for 45 min with 5% non-fat milk in TBS with 0.2% tween and incubated 

overnight at 4ºC with a mouse monoclonal anti-human Mcl-1 antibody 

(eBioscience; 1:500 dilution). The horseradish peroxidase-conjugated goat anti-

mouse secondary antibody (1:20000 dilution; Santa Cruz Biotechnology) was 

added for 45 min. Between antibody incubations membrane was washed with TBS 

with tween 0,2% for 10 min four times. After the final wash, membrane was 

incubated with ECL for 5 min on dark and then revealed using a ChemiDoc™ XRS+ 

System instrument (Bio-Rad).  

 

FLOW CYTOMETRY 

Flow cytometry experiences were done using  1 x 106 cells per condition. 

Briefly, cells were centrifuged at 300g for 5 min at 4ºC and the supernatant was 

removed. Pellet was washed with 4 mL of 1X PBS and centrifuged at 300g for 5 

min at 4ºC. After supernatant has been removed, the cells were fixed with 2mL of 

2% paraformaldehyde during 20 min at room temperature in the dark. Cells were 

washed and resuspended in FACS buffer (1X PBS, 0.2% BSA, 0.1% NaN3). 

Afterwards, cells were incubated with anti-CD69-APC and anti-CD3-PE 

(Pharmingen) during 20 min at 4ºC in the dark. Following antibody incubation, cells 

were washed twice with FACS buffer and resuspended in 200 µL of FACS buffer 

for flow cytometry analysis. All experiments were then performed on the FACS 

CALIBUR (Becton Dickinson). 
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STATISTICAL ANALYSIS 

 To perform all statistical analysis the student t-test (for paired samples) was 

used. A p-value lower than 0,05 (*), 0,01 (**) or 0,001 (***) denoted the presence of a 

statistically significant difference. The analysis was performed using the GraphPad 

Prism® 6 software.  

Table 1 - List of primers used in this study 

Primers name Primers Sequence (5’-3’) Application 

MCL1-E2-RACE CTCGTAAGGACAAAACGGGACTGGCTAG 3’RACE PCR 

MCL1-E3-RACE AGGTGGCATCAGGAATGTGCTGCTG Nested RACE PCR 

cod-F-new AGGACCTAGAAGGTGGCATCAG RT-qPCR 

cod-R-new TAGATATGCCAAACCAGCTCCT RT-qPCR 

pA4 GCTTGGGGCAGTGAGGGCT RT-qPCR 

pA4 ACCACCTGCCTCCTCCTCC RT-qPCR 

MCL1-UTR-F -SacI TATGAGCTCCCTTACTGTAAGTGCAATAG Cloning 

MCL1-UTR-R-SalI CGAGTCGACGAATAAAAGATTTATTTTTTTTTCTC Cloning 

MCL1-pA1.2-R-SalI CGAGTCGACATAGAAACAAAACAGTAAGTATT Cloning 

MCL1-pA1.1-R-SalI CGAGTCGACCCAAGCCATCATTTTATAATTTATTAAG Cloning 

MCL1-pA0-R-SalI CGAGTCGACGGAGCACTCTTCCCATGTATT Cloning 

pA1mut-F CAAGAACTAGTACATGGGAAGAGTGCTCCC Directed mutagenesis 

pA1mut-R CATGTACTAGTTCTTGTTAGCCATAATCCTCTTGC Directed Mutagenesis 

pA2mut-F TGCTTAACTAGTTATGGAATGATGGCTTGGAAAAGC Directed Mutagenesis 

pA2mut-R TTCCATAACTAGTTAAGCAAACAAGGGATCAAATGTC Directed Mutagenesis 

pA3mut-F GTATGTCAACTAGGCAAATACTTACTGTTTTGTTTC Directed Mutagenesis 

pA3mut-R ATTTGCCTAGTTGACATACTAGGCTTAGACCTGT Directed Mutagenesis 

miR-92a mut-F TAAACTCCGTCGTTGACTTTTAACCAACCACC Directed Mutagenesis 

miR-92a mut-R GTCAACGACGGAGTTTACAGTAAGGGAGCTCG Directed Mutagenesis 

miR-29b mut-F CTAACCCTGATTCGATTATTAGGCTTGCTTGTTAC Directed Mutagenesis 

miR-29b mut-R ATAATCGAATCAGGGTTAGACTAGCCTGCTTTTC Directed Mutagenesis 

miR-320 mut-F TTCCTACGGAGTTCCCCTGCCATCCCTGAACTC Directed Mutagenesis 

miR-320 mut-R CAGGGGAACTCCGTAGGAATTGATATAAATATCTGTAG Directed Mutagenesis 

miR-17mut-F3 GGACCTAGAATCAAGCTATGTAGCTCTTCATTAGTC Directed Mutagenesis 

miR-17mut-R3 GAGCTACATAGCTTGATTCTAGGTCCTGAGAGATAC Directed Mutagenesis 

F_Luc_F AGGTCTTCCCGACGATGA RT-qPCR 

F_Luc_R GTCTTTCCGTGCTCCAAAAC RT-qPCR 

RL-F GCAGAAGTTGGTCGTGAGG RT-qPCR 

RL-R TCATCCGTTTCCTTTGTTCTG RT-qPCR 

92-f CTCGAGCTCCCTTACTGTAA Cloning 

92-R CGAGTCGACGAAGTTACAGCTTGGAGTCC Cloning 

29-f TATGAGCTCGGAGAGACATTTGATCCCTT Cloning 
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Primers name Primers Sequence (5’-3’) Application 

29-R CGAGTCGACCTAGGCTTAGACCTGTGTGT Cloning 

320-F TATGAGCTCGTTCTGCTCCCTCTACAGA Cloning 

320-R CGAGTCGACCAGTGCCAA AATCTAAAAGGG Cloning 

17-F TATGAGCTCCTTGATCATAAGCCGCTTA Cloning 

17-R CGAGTCGACCACTGGATTTGGCAGACA Cloning 

pmiRGlo_seq-F CATGACCGAGAAGGAGATCG Sequencing 

M13 F CCCAGTCACGACGTTGTAAAACG Sequencing 

M13 R CAGGAAACAGCTATGAC  Sequencing 

Note: Some of the sequencing and RT-qPCR primers were also used to perform the colony PCRs, according to the 
sequence used. 
 
 

Table 2 - List of the TaqMan probes used for the quantification of miRNAs expression 

Target Code 

miRNA-92a hsa-miR-29 - 000431 

miRNA-29b hsa-miR-29 - 000413 

miRNA-320 hsa-miR-320 - 002277 

miRNA-17 hsa-miR-17 - 002308 

U6 U6 - 001973 
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Characterization of the MCL1 alternative polyadenylation pattern in human T 

cells 

MCL1 mRNA 3’ end mapping identified four APA-derived isoforms 

Using high throughput RNA-sequencing data, a collaborator of the Gene 

Regulation group at IBMC (Joel Neilson) identified MCL1 as a good candidate for 

studying APA in T cells as: 1) its expression is altered upon T cell activation originating 

transcripts with shorter 3’UTRs, 2) this event is conserved between primary human and 

mouse T cells and Jurkat E6.1 cell line and 3) this gene is important for T cell 

homeostasis and therefore MCL1 is a good model gene for studying APA in T cells. 

To attest the APA pattern of MCL1 identified by RNA-sequencing we first 

inspected the UCSC Genome browser (https://www.genome.ucsc.edu/). We observed 

that the previously described three MCL1 mRNA isoforms produced by alternative 

splicing contain the same 3’UTR sequence. In this browser four putative pA sites are 

predicted, all located in tandem in the 3’UTR of MCL1 (figure 10). However, at the 

beginning of this study in 2013, only the two most distal pA sites were described in the 

UCSC Genome browser.  

We extended our MCL1 in silico analysis to 3’end mapping by collecting all the 

deposited ESTs (expressed sequence tags) of human MCL1 available from multiple 

tissues at the UniGene database (ncbi.nlm.nih.gov/unigene/). From these, we selected 

the sequences (n = 350) that contained a pA signal or a pA tail for ESTs analysis in 

order to guarantee mRNAs with 3’ ends, and aligned these sequences against the 

MCL1 reference gene sequence (ENSG00000143384) to map their location. By this 

analysis (figure 11), we identified four APA-derived mRNA isoforms. For simplicity, we 

Figure 10 - MCL1 gene characterization by in silico analysis. This scheme illustrates the position of MCL1 

gene in chromosome one (red bar) and its genomic organization (under chromosome scheme). Blue or black 

boxes represent exons and the dashed lines between them represent introns. The thin blue or black boxes 

represent the 5’ UTR (at right) and the 3’UTR (at left). MCL1 produces three mRNA isoforms by the exclusion of 

part of exon one (upper scheme), inclusion of the three exons (middle scheme), or skipping of exon two (lower 

scheme). All mRNA isoforms present the same 3’UTR, which contain four regions that are predicted pA sites 

(green bars below genomic sequence). 
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decided to number these isoforms according to the position of the pA site in the MCL1 

3’UTR. Thereby we named pA1, pA2, pA3 and pA4 the mRNA isoforms produced by 

the recognition of the first, second, third and fourth pA signals, respectively. However, 

the pA2 pA site described by the human EST analysis does not match the one 

currently reported in the UCSC genome browser (green boxes in figure 10). Instead, 

the pA2 pA site identified by human EST analysis corresponds to the pA3 region 

reported in UCSC genome browser that also comprises pA3 of the EST analysis. The 

pA2 reported in UCSC genome browser was not identified in the EST analysis. These 

differences in reported mRNA isoforms may be due to differential expression of MCL1 

APA-derived mRNA isoforms in different tissues. What we observed from the human 

EST analysis is that pA4 mRNA is the isoform with more ESTs deposited sequences 

(Figure 11). 

 

 

 

 

 

 

 

To experimentally validate the results obtained with the in silico analysis, we 

performed 3’RACE and nested PCR (figure 12A and 12B, respectively) using primary 

human T cells (in a resting state and activated with PHA), Jurkat E6.1 (human cell line 

derived from an acute T cell leukemia) and HeLa cells (human cervical cancer cell 

line). Besides human primary T cells, we included HeLa cells in our analyses because 

as a cell line is easier to work and good to perform optimizations and Jurkat E6.1 cell 

line as its a good T cell model widely used. We observed that the APA pattern is the 

same in all the cell types analyzed (figure 12). Although 3’RACE is not a quantitative 

method, in figure 12A, in primary T cells, there is an increase in the intensity of the 

band correspondent to the MCL1 pA3 APA-derived isoform upon T cells activation. 

Figure 11 - Human MCL1 EST analysis. The pA4 is the mRNA isoform that has more deposited 

ESTs, followed by pA2, pA3 and pA1 isoforms.  
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Similarly to activated T cells (a proliferative condition), the intensity of the band 

correspondent to the pA3 mRNA isoform is also higher in Jurkat E6.1 and HeLa cell 

lines (oncological cell lines), in comparison to resting T cells (figure 12B). These 

evidences are in agreement to Sandberg et al.18 and Mayr et al.19 where they have 

shown an increase of transcripts with shorter 3’UTRs under proliferative conditions, 

such as activated T lymphocytes, and oncological conditions, respectively. 

 For further experiences we decided to investigate the four APA-derived mRNA 

isoforms: pA1, pA3 and pA4, identified both in the EST analysis and in 3’RACE, and 

the pA2 isoform, detected only by EST analysis. For that, we cloned the PCR products 

of the Jurkat E6.1 cell line produced by 3’RACE and obtained three of the four mRNA 

isoforms produced by APA represented in figure 11 (pA1, pA3 and pA4). The construct 

containing pA2 was generated by PCR from pA3. All construts were sequenced in 

order to map their pA signals and cleavage sites. Figure 13 summarizes the results 

obtained by the in silico analysis, 3’RACE and sequencing: all MCL1 APA-derived 

mRNA isoforms are represented as well as the sequence of the MCL1 3’UTR, where 

all four pA signals are highlighted and the mRNA cleavage sites are indicated by an 

arrow.  
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Figure 12 - mRNA isoforms of MCL1 produced by APA (blue arrows) by 3' RACE and Nested 

PCR. As observed in figure 12A APA gives rise to a two mRNA isoforms with about 3Kb and 1,5 Kb 

in length. By Nested PCR (figure 12B) it was possible to identify one more mRNA isoform (the 

shortest one) with about 0,3 Kb. (-) stands for no template negative control. 
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As described above the recognition of one pA signal over another is dependent 

of a variety of factors. However, one important factor to take into account in this 

mechanism is the strength of the pA signal. The most distal pA signals are usually 

described to be stronger, i.e., have the canonical AAUAAA pA signal, and thus tend to 

be more used65. Having this in consideration, our results from the EST analysis are in 

agreement with this concept, since pA4 has more ESTs deposited in comparison with 

the other pA signals. However, by sequencing the PCR bands of the 3’RACE we 

observed that all the four MCL1 pA signals have the AAUAAA canonical hexamer 

(figure 13). The presence of four strong canonical pA signals in the same gene is not a 

common event65. This particularity may impact the regulation of MCL1 APA-isoforms 

since it cannot be the strength of the pA signal by itself that dictates the choice of one 

pA signal over another.  It is therefore possible that in this case there are more 

intervenients in the choice of the pA sites. 

Figure 13 - Schematic illustration of MCL1 APA-derived mRNA isoforms, pA signals and 

cleavage sites used. The blue boxes highlight the four pA signals and the green arrows represent 

the sites where the mRNA cleavage takes place in order to produce each MCL1 APA-derived mRNA 

isoform. 
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MCL1 pA signals are highly conserved in mammals 

Given that the human MCL1 has four canonical pA signals, we went on to verify 

if this is the case for other mammals, revealing their importance throughout evolution. 

By the alignment of the MCL1 sequence in 10 representative mammalian species we 

observed a high degree of conservation of the MCL1 3’UTR with an overall pairwise 

identity of 65.5 % (figure 14). This degree of conservation on a non-coding region is 

striking, indicating a strong selective pressure throughout evolution to maintain 

sequences important for MCL1 function and regulation in different species. In 

accordance, one of the most important cis-regulatory elements present in the 3’UTR, 

the pA signals, are also highly conserved in these mammals: 96% for pA1, 90% for 

pA2, 97% for pA3 and 100% for pA4 (figure 14). Curiously, all species analysed have 

four pA signals on its 3’UTR. The majority of the species display 4 canonical pA signals 

and the ones that do not display the canonical pA signal present at least three 

canonical pA signals and a non-canonical one (mouse and Tasmanian devil) or two 

canonical and two non-canonical pA signals (elephant).  These results suggest that the 

MCL1 3’UTR is important for MCL1 functioning and regulation due to its high degree of 

conservation in different species. Moreover, it seems that the human MCL1 

orthologues also possess four pA signals possibly undergoing alternative 

polyadenylation, indicating that this mechanism is conserved for MCL1 in many 

mammalian species. 

96 % 90 % 100 %97 %

Figure 14 - The MCL1 3’UTR and pA signals are highly conserved in mammals. The multiple 

sequence alignment was made using Geneious v4.8 software. The pA signals are indicated by blue 

arrows above the alignment and a snapshot of the pA signal alignment, sequence logos and pairwise 

identities is represent bellow the overall alignment. All four pA signals are highly conserved among a 

variety of mammals, being pA4 the most conserved one (100%). 
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pA4 MCL1 mRNA isoform is highly regulated at the post-transcriptional level 

As it was described above, Sandberg et al.18 described that in proliferative 

conditions, specifically upon T cell activation, there is an increase in the expression of 

mRNAs with shorter 3’UTRs. This could be due through the usage of proximal pA sites 

or by down-regulation of the longest isoforms. Also, by RNA-sequencing our 

collaborator Joel Neilson identified MCL1 as one of the genes that undergoes 3’UTR 

shortening upon T cell activation, so we decided to investigate what is the process 

behind this mechanism. We started by quantifying the expression of MCL1 APA-

derived mRNA isoforms by RT-qPCR in primary T cells and PBMCs in resting and 

activated conditions (with PHA for 48 hours). We performed this experiment in PBMCs 

to check if this working model could be used instead of primary T cells, since PBMCs 

are cheaper to work and are very enriched in T lymphocytes.  

In order to confirm that the cells were efficiently activated we first analysed the 

phenotype of both T cells and PBMCs and then performed flow cytometry in PBMCs. 

As it can be observed in figure 15A, T cells and PBMCs were activated using PHA for 

48 hours since both produced large clusters of aggregated cells. We then quantified 

the activation in PBMCs using CD69 as a marker of activation and two time points: 24 

hours and 48 hours. As observed in figure 15B, the time point of 48 hours was the one 

that demonstrated to activate PBMCs at a higher level (~72% of CD69+ cells). From 

this figure it is also clear that the activation of T cells has a great contribution for the 

overall activation (68.4% of CD3+CD69+ cells). Also by analyzing these results we 

verified that from PBMCs isolation about 77% of the cells are CD3+, and thus T cells 

(figure 15 C). For that reason we decided to activate PBMCs using PHA for 48 hours.  

To measure the expression of MCL1 APA-derived mRNA isoforms by RT-qPCR 

two different primer sets were used: one that measures the expression of all APA-

derived isoforms (total RNA) that is localized in the coding region (named coding) and 

another primer pair that only measures the expression levels of the longest isoform 

(named pA4) (figure 16). Using these two primer pairs we could investigate how the 

pA4 MCL1 mRNA isoform expression is regulated in resting and activated conditions.
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Figure 15 - Optimization of T cells and PBMCs activation using PHA. A) Cells phenotype in both 

resting and activated conditions. The formation of cell clusters upon T cells/PBMCs activation with 

PHA for 48h is observed. B) Representative flow cytometry analysis showing that PBMCs present an 

increase in activated cells (CD69+ cells) when PHA was used for 48 hours. C) PBMCs contain 

approximately 77% of CD3+ cells demonstrating that they are very enriched in T cells. 

Figure 16 - Schematic illustration of the primer pairs used to measure the expression of MCL1 

APA-derived mRNA isoforms. The primer pair named coding measures the expression of all MCL1 

isoforms since is located on exon three, which is present in all isoforms. The primer pair named pA4 

only measures the expression of the longest isoform being located immediately upstream of the pA4 

pA signal. 
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Figure 17 shows the expression levels of MCL1 in primary T cells and PBMCs, in 

both resting and activated conditions, using the coding and pA4 primer pairs. We 

observe that although the expression of the measured isoforms in T cells being 10 

times smaller than in PBMCs, the pattern of expression is the same in these two cell 

types, which allowed us to use PBMCs in the following studies. Comparing the 

expression levels between resting and activated states, it is evident a statistically 

significant increase in the mRNA expression levels of all MCL1 isoforms upon T cells 

(17A) and PBMCs (17B) activation. On the contrary, in both cell types there are no 

differences in the expression of the MCL1 longest mRNA isoform (pA4) between the 

two cell states. Given that the expression of the pA4 isoform does not change but there 

is an increase in the expression of the coding region, this indicates that upon activation 

there is an increase in the shorter MCL1 APA-derived mRNA isoforms, confirming the 

previous results obtained for MCL1 by RNA-sequencing.  

 

Given that this experience was performed using total RNA (that includes both 

nuclear and cytoplasmic fractions), it is not possible to discriminate if the pattern of 

expression observed in figure 17 is due to APA, by more usage of proximal pA signals 

(mRNA regulation at the nuclear level), or to post-transcriptional regulation at the 

cytoplasmic level. To investigate this we performed a fractionation of nuclear and 

cytoplasmic RNA isolated from PBMCs.  

As it can be observed in figure 18A, the relative expression of pA4 mRNA 

comprises half of the coding relative expression in the nuclear fraction, suggesting that 

pA4 is the isoform that contributes more for the total MCL1 expression. This is in 

Figure 17 - MCL1 APA-derived mRNA isoforms relative expression. Relative expression of both 

coding and pA4 isoforms in resting (grey) and activated conditions (black) in primary T cells (left) and 

PBMCs (right), quantified by RT-qPCR; n=7 or 6 donors, respectively. Asterisks indicate significant 

values (p-value < 0.05* and p-value < 0,01 **). 

T cells 
n=7 

PBMCs 
n=6 
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agreement with the EST analyses performed above. Also, it is observed in the nuclear 

fraction a decrease in the expression measured by coding primer pair upon PBMCs 

activation. Besides not statistically significant, this decrease is also seen in pA4 

expression in the nucleus, and thus, once pA4 seems to be the isoform more 

expressed, the decrease in pA4 expression may have a major contribution in the 

overall decrease of MCL1 mRNA under PBMCs activation. Also, the decrease verified 

in pA4 expression upon PBMCs activation is higher than the decrease of the coding 

expression. This may indicate that upon cell activation the pA signals of the shorter 

isoforms are being recognized and more isoforms with shorter 3’UTRs are being 

produced.  

In the cytoplasmic fraction of activated PBMCs a decrease in pA4 relative 

expression is observed, suggesting that this isoform is regulated at the post-

transcriptional level in the cytoplasm of activated cells. In contrast, although not 

statistical significant, it seems that the total MCL1 expression (measured by coding 

primers pair) is higher in activated PBMCs than PBMCs in a resting state. As it has 

been described a role for MCL1 in T cells activation29, this could be a mechanism of to 

compensate the decreased levels of MCL1 mRNA seen in nucleus upon PBMCs 

activation. In order to understand in which cellular state the MCL1 APA-derived mRNA 

isoforms are more regulated in the cytoplasm, we measured the fold induction (figure 

18B) of cytoplasmic fraction in relation to total fractions. From this result we can 

conclude that MCL1 total mRNA (coding) levels are increased in the activated state in 

comparison to the resting state. In contrast, pA4 mRNA levels seems to be more prone 

to suffer down-regulation upon PBMCs activation.  

 

 

 

 

 

Figure 18 - Relative expression of fractionated MCL1 APA-derived mRNA isoforms. A.Relative 

expression of MCL1 APA-derived mRNA isoforms measured in the nucleus and cytoplasmic 

fractions. The expression was measured both in resting (grey) and activated (black) states. B. Fold 

induction of cytoplasmic fraction over total fractions (nuclear and cytoplasmic). A decrease in the 

coding and an increase in pA4 is observed upon PBMCs activation. Asterisks indicate significant 

values (p-value < 0.05*). For the fold induction (figure 18B) a donor from activated condition was 

eliminated due to its discrepancy. 
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Taken together the results shown in figure 18 indicate that upon T cell activation there 

is a shortening of the 3’UTR of MCL1 and that both APA at the nucleus, by the choice 

of proximal pA signals, and cytoplasmic post-transcriptional regulation mostly by the 

down-regulation of the pA4 longest isoform, have a role in MCL1 mRNA metabolism. 

 

Mcl-1 protein levels increase upon PBMCs activation 

To quantify Mcl-1 protein upon T cell activation, we performed western blot 

using protein extracts prepared from both Jurkat E6.1 and PBMCs (figure 19A and 

19B, respectively).  As described in Dzhagalov et al.29, we observe an increase in Mcl-

1 protein levels upon T cell activation. In accordance to what Mayr et al.19 described for 

oncogenes that isoforms with shorter 3’UTRs produce more protein due to its higher 

stability since these 3’UTRs have less binding-sites for negative regulators, a possible 

scenario is that the longest mRNA isoform of MCL1 is down-regulated in activated T 

cells in order to increase the production of Mcl-1 protein by translation of mRNAs with 

shorter 3’UTRs.  

This result together with the results obtained from RNA frationation assays may 

indicate that down-regulation of pA4 MCL1 APA-derived mRNA occurs in order to 

increase Mcl-1 protein levels in T cells states dependent of Mcl-1 expression, such as 

the activated state29. 
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Figure 19 – Mcl-1 protein levels in both Jurkat E6.1 cell line and PBMCs in resting and 

activated states. A)  An increase in Mcl-1 protein expression upon PBMCs and Jurkat E6.1 

activation is observed by western blot. B) Quantification of the western blot bands showing a ~2-fold 

increase of Mcl-1 in activated over resting states in the two cell types analysed.  
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MCL1 APA-derived mRNA isoforms have a half-life of four hours 

To determine MCL1 APA-derived mRNA isoforms stabilities, which could explain 

the differences observed in the relative expression of these isoforms, we performed an 

Actinomycin-D assay using the Jurkat E6.1 cell line.  Actinomycin-D inhibits RNA 

transcription by interfering with the action of RNA polymerase II and thus with the 

elongation process66. Therefore, this experiment is used to measure the stability of the 

mRNAs once the transcription was blocked. From this experiment (figure 20) we 

observed that there are no differences in the stability of the mRNAs as the half-life of all 

isoforms is approximately four hours. It has been described that  Mcl-1 protein and 

MCL1 mRNA have a very short half-life and that this depends on cell-type and cellular 

conditions23. Thus, we conclude that the stability of each isoform does not seem to 

have an impact in the relative expression of the MCL1 APA-derived mRNA isoforms in 

Jurkat E6.1 cells.  

 

 

 

 

 

 

 

 

 

 

 

pA3 MCL1 mRNA is the isoform that produces higher Mcl-1 protein levels 

In order to investigate the function of the different 3’UTRs of MCL1 APA-derived 

mRNAs in protein production we cloned the 3’UTRs from each isoform downstream of 

a luciferase reporter gene. To assure that each isoform was correctly expressed and 

used the corresponding pA signal at the end of the 3’UTR, all the proximal pA signals 

were mutated. By Luciferase assay (figure 21A) we show that pA4 is in fact the 

isoform that gives rise to less amount of luciferase activity and that the shortest 

isoforms are the ones originating more luciferase protein, in particular the pA3 isoform. 

We also performed a ratio between protein and mRNA levels in order to infer about the 

Figure 20 – MCL1 mRNA stability in Jurkat E6.1 cells after Actinomycin-D treatment. There are 

no differences in the stability of the different mRNA isoforms measured, being the half-life of all 

isoforms 4 hours. N=3 independent experiments. 
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translation efficiency for each mRNA (figure 21B). From this result it seems that pA3 

isoform seems to be the one more efficiently translated. In contrast, pA2 and pA4 

isoforms are the ones less efficiently translated.  

The decrease of luciferase protein production by pA4 could be also due to post-

transcriptional regulation of this long isoform. This result is in accordance with the 

results of the RNA fractionation (figure 18) and the western blots (figure 19) providing 

evidence that pA4 mRNA is down-regulated at post-transcriptional level to produce 

more protein by the shortest isoforms, which is once again in accordance to the Mayr 

et al.19 study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 - Luciferase assay for MCL1 APA-derived mRNA isoforms. A) Luciferase activity produced 

by the use of the 3’UTRs of each mRNA isoform of MCL1 generated by APA. Cells were transfected with 

luciferase reporter vectors containing the 3’UTRs of the four different APA-derived isoforms. In each 

construct the upstream pA signal was mutated. B) Translation efficiency measured by dividing protein 

levels by mRNA levels. Asterisks indicate significant values (p-value < 0.05*, p-value < 0.01**, p-value < 

0.001***, p-value < 0.0001****). This procedure was performed in three independent experiments using 

duplicate replicas. 

21A. 21B. 
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Characterization of post-transcriptional regulation of MCL1 APA-derived mRNAs 

by miRNAs 

MCL1 has a variety of putative-binding sites for miRNAs on its 3’UTR 

As previously observed in figure 18, we observed that pA4 MCL1 mRNA 

isoform is down-regulated at the post-transcriptional level in the cytoplasm, given that 

its expression significatively decreases under PBMCs activation. As described above, 

miRNAs are good candidates to be regulators in this process and for that reason we 

decided to study this possibility. By in silico analysis, we searched for putative-binding 

sites for miRNAs that could target MCL1. As we obtained a large number of putative 

miRNAs-binding sites on MCL1 3’UTR we decided to restrict our analysis using the 

following criteria: a) study the miRNAs that were predicted to target MCL1 in at least 

two of the databases used (https://www.targetscan.org/; 

https://www.miRNA.org/miRNA/home.do; https://www.mirtarbase.mbc.nctu.edu.tw/); 

b) study those that target a conserved sequence in mammals and c) choose the ones 

that were described to be expressed in T cells. According to these criteria, we selected 

three miRNAs to be studied: miRNA-17 that only targets the MCL1 longest APA-

derived isoform; miRNA-29b that binds pA3 and pA4 and that was previously described 

to regulate MCL1 in other cell types; and miRNA-92a that can target all MCL1 APA-

derived isoforms. We decided to also study miRNA-320 that, although its target site 

was not very conserved among the mammalian species analysed, is described to be 

expressed in T cells and is predicted to target MCL1 in two of the databases used.  

Figure 22 represents the location and sequence of each miRNA putative-binding site 

on MCL1 3’UTR.  

The conservation of the miRNAs binding sites on MCL1 3’UTR was verified by 

multiple sequence alignment of the 3’UTR of the ten mammalian species used for the 

in silico analysis shown in figure 14.  From this analysis it is clear that, with the 

exception of the putative-binding site for miRNA-320, all the other putative-binding sites 

are 100% conserved (figure 23). This suggests that these sequences have been 

important for MCL1 regulation throughout evolution and that the miRNAs that putatively 

bind these sequences could regulate MCL1 in other mammalian species as well.  

 Later on, we used the miRNAMap database 

(https://www.mirnamap.mbc.nctu.edu.tw/) to search for the reported expression of the 

selected miRNAs. We search for the expression in thymus since this tissue has high 

amounts of T lymphocytes. From figure 24 we can observe that all selected miRNAs 

are expressed in thymus. Also, it is clear that miRNA-92a is the one that is more 

expressed in thymus, followed by miRNA-17, miRNA-320 and miRNA-29b, 
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respectively. Thus, we decided to investigate the possible role of these miRNAs in 

MCL1 regulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 - miRNAs putative-binding sites on MCL1 3'UTR. 3’ UTR sequence with the pA signals 

(AAUAAA sequence in blue) and the cleavage sites for each isoform (green arrows). The miRNAs 

putative-binding sites are represented by the outlined sequences: miRNA-92a in blue, miRNA-29b in 

orange, miRNA-320 in green and miRNA-17 in purple. 

miRNA-92a 

miRNA-29b 

miRNA-320 miRNA-17 

Figure 23 – Conservation of the miRNAs putative-binding sites on MCL1 3'UTR conservation. 

Red arrows represent the putative-binding sites of each miRNA. The putative-binding sites for miRNA-

92a, miRNA-29b and miRNA-17 are 100% conserved among a variety of mammalian species.  The 

putative-binding site for miRNA-320 presents a 56% of conservation among the studied species.  
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miRNA-17 and miRNA-320 expression increase upon T cell activation 

To experimentally determine the expression levels of the four selected miRNAs 

in our cell model, we measured their expression by RT-qPCR using TaqMan probes. 

Since we observed that MCL1 mRNA isoforms are differential regulated between 

resting and activated conditions (figure 18), we decided to measure miRNAs 

expression in these two cell conditions in human primary T cells. Moreover, we also 

performed this experiment in Jurkat E6.1 and HeLa cells given that they are suitable 

testing models. As Jurkat E6.1 is a cancer cell line, the proliferation rate and the 

miRNAs expression are themselves already altered, therefore in these cells, we did not 

quantify miRNAs expression in resting and activated conditions. 

As it can be seen in figure 25, all chosen miRNAs are expressed in T cells. 

However they are differential expressed: miRNA-92a is the one more expressed, 

followed by miRNA-320, miRNA-17 and miRNA-29b. These results are very similar to 

those obtained with the in silico analysis. In figure 25, it is also clear that both miRNA-

92a and miRNA-29b, are not differentially expressed between resting and activated 

Figure 24 - miRNAs expression in miRNAMap database. The highlighted bar demonstrates the 

expression of each miRNA in the thymus, the tissue where T lymphocytes mature. From these 

graphs we observed that miRNA-92a is the one more expressed, followed by miRNA-17, miRNA-320 

and miRNA-29b. 
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conditions. On the contrary, miRNA-17 and miRNA-320, that presumably target the 

longest MCL1 mRNA (pA4), are more expressed upon T cell activation. In accordance 

with the fractionation experience, where a decrease of pA4 expression is seen in 

activated conditions in the cytoplasmic fraction (figure18A), the increase of these two 

miRNAs upon PBMCs activation could be an indirect evidence that miRNA-17 and/or 

miRNA-320 may be involved in pA4 isoform down-regulation.  

The high expression levels of miRNA-92a and the increase in the expression of 

miRNA-17 during T cell activation are in accordance with previous studies. It has been 

previously shown that the cluster miRNA-17-92 is strongly induced after T cell 

activation being an important regulator of the rapid proliferation of these cells and also 

important in a variety of immune diseases67 68.  

In figure 25 it is also represented the expression of miRNA-92a, miRNA-29b 

and miRNA-17 in Jurkat E6.1 and HeLa cell lines. We verified that both miRNA-92a 

and miRNA-17 are highly expressed, which is in accordance with studies that 

described these miRNAs as being frequently amplified in some cancers types, since 

they belong to the miRNA-17-92 cluster described to be an oncomir, i.e., a miRNA 

associated with oncological conditions67, 68. From these results it can be concluded that 

the expression pattern of miRNA- 92a, miRNA-29b and miRNA-17 is the same in both 

cell lines.  
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Figure 25 - Relative expression of the selected miRNAs. A) The miRNAs that potentially target 

the longest MCL1 mRNA isoform (pA4), miRNA-17 and miR-320a, are the ones that increase their 

expression upon T cell activation. B) Expression of each miRNA in the two cell lines used in this 

study. It is clear that the expression pattern of these miRNAs is the same between Jurkat E6.1 and 

HeLa cells, two cancer cell lines. Asterisks indicate p value<0,05 * and p value<0,001 ***. 
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miRNA-17 and miRNA-29b have a role in regulating MCL1 3’UTR 

To investigate the function of the chosen miRNAs in MCL1 regulation we cloned 

a fragment of MCL1 3’UTR containing the putative-binding sites of each miRNA (wild 

type) and the putative-binding sites of each miRNA mutated, using the luciferase 

reporter gene. After transfection of HeLa cells we compared their effect by luciferase 

assays. In figure 26 it is seen a statistical significant increase in luciferase activity 

when putative-binding sites of miRNA-17 and miRNA-29b are mutated. This indicates 

that they both target MCL1 mRNA at those specific sites (described in figure 22) and 

regulate MCL1 3’UTR once when the putative-binding sites of these two miRNAs were 

mutated an increase in luciferase activity was seen compared with the luciferase 

activity produced by the wild type construct. The increase of luciferase activity seen 

when the putative-binding site for miRNA-29b was mutated is in accordance with 

previous studies that have demonstrated a role for miRNA-29b in regulating MCL1, as 

previously described in the introduction42.  

On the contrary, when the putative-binding sites of miRNA-320 and miRNA-92a 

were mutated no differences were observed in luciferase activity comparing with the 

wild type. From this result we can infer that miRNA-320 and miRNA-92a do not have a 

role in regulating MCL1 3’UTR or another possibly is that its putative-binding site is not 

the one described above. In fact, MiRTarBase database 

(https://www.mirtarbase.mbc.nctu.edu.tw) described another putative-binding site for 

miRNA-320 in the beginning of the MCL1 3’UTR.   

 In the future we will focus on miRNA-17 as a good candidate to down-regulate 

the longest isoform to support the results observed in the RNA fractionation. 

The luciferase assays were also performed in the Jurkat E6.1 cell line (data not 

shown). Although being only preliminary results (n=1), we observed the same pattern 

of luciferase activity depicted on figure 26 for HeLa cells.  

One interesting finding from these experiments was that the overall luciferase 

activity values produced by the fragment of MCL1 3’UTR where miRNA-320 was 

supposed to bind was always very diminished (about five-fold decrease) when 

comparing with the other constructs. This may indicate that other cis-regulatory 

elements may be present in this region of MCL1 3’UTR and are somehow down-

regulating it. For that reason we searched for putative-binding sites for miRNAs and/or 

RBPs in that sequence (figure 27). We have identified four sequences where three 

RBPs can bind (https://www.rbpdb.ccbr.utoronto.ca/): RBMX, MBNL1 and ELAVL1; 

and one sequence where two miRNAs can bind: miRNA-16 and miRNA-15a 

(https://www.mirtarbase.mbc.nctu.edu.tw/). RBMX is a RBP known to be implicated in 

tissue-specific regulation of gene transcription and alternative splicing of several pre-
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mRNAs69. Also, MBNL-1 was described to regulate alternative splicing events and 

mRNA decay70, 71. ELAVL1 has been described to regulate APA in the brain and also to 

stabilize the mRNA with longer 3’UTRs72. Thus, this RBP does not seem to be the one 

that is exercising the  down-regulation of MCL1 in this sequence in HeLa cells. We then 

searched for the predicted expression of miRNA-16 and miRNA-15a. From the 

graphics depicted on figure 27 it is observed that miRNA-16 is highly expressed in the 

thymus. Although miRNA-15a is expressed, its expression levels are lower than those 

presented by miRNA-16. Also, some studies have demonstrated the role of these two 

miRNAs in down-regulating MCL173, 74. For that reason these two post-transcriptional 

regulators may be the ones more responsible for the decrease in luciferase activity 

produced by this specific sequence of MCL1 3’UTR. In this way it seems that all of 

these putative regulators, except ELAVL1, could be involved in the regulation of MCL1 

3’UTR through binding to this sequence and therefore explaining the lower values in 

the luciferase assays.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 

Figure 26 - Role of the four selected miRNAs on MCL1 3'UTR regulation. Luciferase activity 

produced by the wild type sequence of MCL1 3’UTR (black) and the Luciferase activity produced 

by the miRNA target sequence mutated (grey). Mutations in miRNA-17 and miRNA-29b target 

sites increases luciferase activity. Asterisk indicate p value < 0,05*. N=3 independent 

experiments.  

miRNA-92a miRNA-29b 

miRNA-17 miRNA-320 
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miRNA-17, miRNA-29b and miRNA-92a down-regulate Mcl-1 protein 

We then performed the overexpression of miRNA-17, miRNA-92a and miRNA-

29b in HeLa cells to study the effect of these miRNAs on endogenous Mcl-1 protein 

expression. We were particularly interested in testing miRNA-17, because it targets the 

MCL1 longest mRNA. However, we also tested miRNA-29b as a positive control in our 

experiment, because is well established that it down-regulates Mcl-1, and miRNA-92a 

to investigate its function in overall down-regulation of Mcl-1 expression. If this is the 

case, then miRNA-92a could be used in the future as a strategy to down-regulate Mcl-1 

in conditions where this protein is overexpressed, such as in some cancers as 

previously described. 

As it can been observed in figure 28 it is clear that miRNA-29b down-regulates 

Mcl-1 expression as previously described42. Also, another finding from this experience 

is that miRNA-92a also down-regulates Mcl-1 in similar levels as miRNA-29b. From the 

western blot (figure 28A and 28B), Mcl-1 expression is decreased by approximately 

30% in miRNA-17 and 60% in miRNA-92a and miRNA-29b overexpression conditions, 

in comparison to the control. However, when the overexpression of miRNA-17 was 

measured by RT-qPCR (figure 29) no differences were observed in relation to 

pcDNA3.1 (the backbone of the plasmids, used as a control). This experiment was 

repeated twice and the same result was obtained (data not shown). This could be due 

 

Figure 27 - In silico analysis to identify RBPs and miRNAs in the MCL1 3'UTR sequence used 

to test the role of miRNA-320. A. Three RBPs are described to have putative-binding sites in this 

sequence, indicated by coloured boxes. Also, two miRNAs (miRNA-16 and miRNA-15) were 

predicted to target this sequence, blue line. B. Predicted expression of miRNA-16 and miRNA-15 in 

thymus (highlighted bars). 

miRNA-320 miRNA-16 and miRNA-15 

27A. 

 

27B. 
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to the fact that this miRNA is already highly expressed in HeLa cells (figure 18) so it is 

possible that miRNA-17 levels are autoregulating themselves. 

From these results, we conclude that overexpression of miRNA-17, miRNA-29b 

and miRNA-92a down-regulate endogenous Mcl-1 protein expression. and thus all of 

them could be good candidates to regulate Mcl-1 expression.  So, miRNA-17 could be 

used by the cell as a strategy to down-regulate the longest MCL1 mRNA and promote 

the translation of the shortest isoforms that produce more protein, in situations when 

more Mcl-1 protein is required, such as during T cell activation. However, in figure 28A 

it is clear that miRNA-17 down-regulates endogenous Mcl-1 protein. A possible 

explanation for this is that HeLa cell is a tumor cell line and since Mcl-1 is already 

highly expressed in this cell line maybe the shortest isoforms are not being efficiently 

translated. Instead, in a situation where more Mcl-1 is needed, the down-regulation of 

the longest isoform by miRNA-17 overexpression could lead to an activation of the 

shortest isoforms translation, since in this case Mcl-1 is not highly expressed. To 

investigate this possibility, in the future, this experience has to be performed in PBMCs 

in resting and activated conditions. 

Figure 28  - Role of the selected miRNAs on endogenous Mcl-1 protein expression. A) Western 

blot showing that miRNA-17, miRNA-92a and miRNA-29b overexpression in HeLa cells lead to a 

decrease in the endogenous Mcl-1 protein expression. B) Quantification of Mcl-1 protein expression 

upon miRNAs overexpression by densitometry of the western blot bands demonstrating that miRNA-29b 

and miRNA-92a are the ones that lead to a higher downregulation of Mcl-1, followed by miRNA-17. 

28B. 
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Figure 29 - miRNAs expression quantification after overexpression in HeLa cells. miRNAs 

expression was quantified by RT-qPCR after overexpression in HeLa cells. Black bars – miRNAs; 

grey bar – control.  Asterisks indicate p value < 0,05*. N= 3 experiments. 
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Characterization of MCL1 alternative polyadenylation pattern in human T cells 

From the results of this study we conclude that MCL1 undergoes APA 

generating four mRNA isoforms with different 3’UTR lengths.  From the RNA 

fractionation results it is observed a decrease in the expression of both coding and pA4 

mRNA in the nucleus, upon PBMCs activation. However, this decrease is more evident 

in the longest isoform (pA4) which is in agreement with our previous results and may 

indicate that proximal pA signals are preferentially used by APA, to produce shorter 

mRNAs, in this cell state. Another evidence from this result is that MCL1 is regulated in 

the cytoplasm at a post-transcriptional level given that a decrease in the pA4 isoform 

upon PBMCs activation is observed. This result suggests that this mRNA is silenced in 

the cytoplasm by the action of miRNAs. Also, although not statistical significant, there 

is an increase in total mRNA levels in the cytoplasm upon PBMCs activation 

demonstrating that the shorter isoforms account for this increase by possibly escaping 

regulation in the cytoplasm. From these evidences we can conclude that there is an 

increase of the shorter 3’UTRs upon cell activation both due to a switch in the pA signal 

recognition from the distal to a proximal one, and to the post-transcriptional regulation 

of the longest isoform (pA4) by miRNAs. 

Dzhagalov et al. 29 described that upon T cell activation more Mcl-1 protein is 

needed, and in fact we show that there is an increase in Mcl-1 protein upon activation 

of PBMCs and Jurkat cells. Also, Mayr et al.19 have demonstrated that the shortest 

mRNA isoforms of oncogenes give rise to more protein. According to these facts, one 

possible explanation for the RT-qPCR results is that two mechanisms occur 

simultaneously in order to increase the Mcl-1 protein levels upon cell activation. First, 

the pA4 isoform is silenced in the cytoplasm by miRNAs upon PBMCs activation and 

second the shortest isoforms, the ones demonstrated to be more effyciently translated 

by luciferase assays, specially pA3, are less prone to regulation and thus more coding 

mRNA is measured upon cell activation.  

Taken together our results indicate that MCL1 mRNA levels produced by the 

longest isoform are regulated in the cytoplasm by miRNAs upon PBMCs activation. As 

it has been previously described that Mcl-1 is needed to promote activation of T cells, 

we propose that this is a mechanism used by the activated cells to promote the 

translation of the shortest mRNA isoforms, and consequently, produce higher amounts 

of Mcl-1 protein.  
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Characterization of the post-transcriptional regulation of MCL1 APA-derived 

mRNA isoforms by miRNAs 

As it was clear that MCL1 undergoes APA and that the four mRNA isoforms 

produced are differentially regulated under resting and activated cell conditions, we 

decided to identify the miRNAs that could be exerting a function in this control. All the 

four miRNAs chosen in this study are expressed in T cells and miRNA-17 and miRNA-

320, the ones that target the longest mRNA isoform, increase their expression upon T 

cell activation. For that reason these two miRNAs were used as two potential key 

regulators of the MCL1 longest mRNA upon T cell activation. From the selected 

miRNAs, miRNA-92a was the one more expressed in T cells both in resting and 

activated conditions. This result, together with the increase of miRNA-17 upon T cell 

activation is in accordance to what is already described for the miRNA-17-92a cluster 

that is known to be involved in proliferative conditions and highly expressed upon T 

cells activation67, 68.  

Using reporter assays, we identified miRNA-17 and miRNA-29b as targeting 

MCL1 3’UTR since when the putative-binding sites for those miRNAs where mutated 

an increase in luciferase activity was observed. On the other hand no statistical 

significant changes were seen when the same analysis was performed for miRNA-92a 

and miRNA-320. Since we have shown a decrease in Mcl-1 expression upon miRNA-

92a overexpression (figure 28), it is possible it is targeting MCL1 3’UTR in another 

site, different from the one we mutated in our experiments. It is worth noting that there 

is a general decrease in luciferase activity when the fragment surrounding the miR-320 

putative-binding site was used. This indicates that this fragment could have important 

cis-elements to which regulators of MCL1 3’UTR may bind. It will be interesting to 

further investigate this possibility in future works.  

 At the endogenous Mcl-1 protein level it is clear that miRNA-17, miRNA-29b 

and miRNA-92a overexpression induced protein downregulation. miRNA-29b was 

already described to down-regulate Mcl-1 expression, however, we showed that both 

miRNA-17 and miRNA-92a also down-regulate endogenous Mcl-1. As in some 

pathologies Mcl-1 is overexpressed, such as in cancers and since the miRNA-17-92a 

cluster is described to be important in T cells biology the use of these miRNAs  could 

be a therapeutic strategy in some hematopoietic cancers in order to decrease cancer 

cell survival. 

  

 Overall, in this thesis we dissected some of the molecular mechanisms involved 

in MCL1 regulation and illustrated the interplay between APA and miRNA silencing that 

regulates Mcl-1 expression in human T cells. 
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Working Model 

 According with the results presented in this thesis we proposed a working 

model for MCL1 APA-derived isoforms regulation in T cells. In this model we propose 

that in the nucleus, in T cells resting, there is a preferential usage of the distal pA signal 

(pA4). In activated T cells there is a decrease in the recognition of the pA4 signal and 

thus the MCL1 expression is predominantly due to the transcription of the shortest 

isoforms. In the cytoplasm, the longest isoforms are post-transcriptional down-

regulated by miRNA-17 in activated T cells. Therefore the shortest isoforms, the ones 

more efficiently translated, are the ones more expressed in this cell condition leading to 

an increase of Mcl-1 protein expression upon T cell activation.  

 

 

 
 
 
 

Figure 30 - Working model for MCL1 APA-derived isoforms regulation in T cells. Schematic 

representation of APA and post-transcriptional regulation role in MCL1 and Mcl-1 expression in T 

cells. 
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Future perspectives 

In future work it will be necessary to repeat the luciferases assays in resting and 

activated PBMCs, to characterize both the protein levels that each MCL1 APA-derived 

mRNA isoforms produces and also to study the miRNAs, in a more physiological 

context. The overexpression of the selected miRNAs should be also performed in 

PBMCs in both resting and activated states in order to understand if, in fact, the down-

regulation of the longest isoform could lead to an increase in Mcl-1 protein levels. 

Simultaneously, it will be important to quantify MCL1 APA-derived mRNA isoforms by 

RT-qPCR in the cells where the overexpression of miRNA-17 was performed. This 

would further confirm if miRNA-17 down-regulates the mRNA levels of MCL1 longest 

isoform. Also, it would be important to perform luciferase assays with overexpression of 

miRNA-17 and inhibit miRNA-17. With these experiments we could further validate our 

idea that miRNA-17 is involved in Mcl-1 biology. 

It will be important to understand how MCL1 APA impacts on T cell biology, by 

investigating its effect in proliferation, cellular viability and apoptosis, and also to 

disclose what happens to these cellular processes under miRNA-17 overexpression 

and inhibiton. 
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