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resumo 

 

A resistência antimicrobiana é um problema emergente e global, tanto a nível 
clínico como veterinário. Em teoria, os animais selvagens raramente estão 
expostos a agentes antimicrobianos, e deste modo espera-se que a sua flora 
bacteriana apresente baixos níveis de resistência. Contudo, a crescente 
interação destes animais com atividades antropogénicas pode influenciar a 
aquisição de uma flora bacteriana resistente. Escherichia coli faz parte do trato 
intestinal de uma grande variedade de animais, incluindo o Homem. Esta 
bactéria pode disseminar-se facilmente em diferentes ecossistemas, sendo 
também um importante indicador da pressão seletiva exercida pela utilização 
de antimicrobianos. Salmonella spp. é uma bactéria patogénica, normalmente 
encontrada no intestino de diversos animais. Anualmente, na União Europeia 
são reportados à EFSA mais de 90,000 casos de salmoneloses.  
O presente estudo foi realizado em três espécies de ungulados selvagens que 
habitam três localizações geográficas distintas em Portugal (Montesinho, 
Idanha-a-Nova e Lousã) e teve como objetivos: i) avaliar os níveis de 
resistência de isolados de E. coli ii) determinar o nível de ocorrência de 
Salmonella spp. e iii) determinar o nível de ocorrência de E. coli produtora da 
toxina shiga (STEC). Para tal foram recolhidas 67 amostras fecais de veado 
(n=41), javali (n=21) e corço (n=4). Numa primeira fase os isolados recolhidos 
foram tipados por BOX-PCR para selecionar estirpes geneticamente diferentes 
em cada amostra (n=152). Posteriormente realizou-se o teste de 
suscetibilidade a antimicrobianos (de acordo com o EUCAST). A deteção de 
Salmonella foi realizada de acordo com a norma ISO 6579:2002 Anexo D. 
Os resultados obtidos revelaram que para E. coli se verificou resistência aos 
antibióticos ampicilina (10%), tetraciclina (9%), streptomicina (5%), 
cotrimoxazol (4%), amoxicilina/ácido clavulânico (2%) e cofoxitina (1%). Um 
fenótipo de multirresistência foi encontrado em 3.3% dos isolados, todos 
provenientes da região da Lousã. Os resultados foram também analisados de 
acordo com os valores de ECOFFs, tendo sido encontrados fenótipos do tipo 
não-selvagem para a ampicilina (10%), ceftazidima (6%), cotrimoxazol (4%), 
amoxicilina/ácido clavulânico (2%), aztreonam (1%) e cefoxitina (1%). No que 
se refere à pesquisa de Salmonella, os resultados revelaram uma baixa 
incidência na população estudada (1.5%). Esta estirpe revelou-se suscetível a 
todos os antimicrobianos testados. 
Relativamente à presença de STEC, foi possível determinar que veados e 
corços dos três locais estudados são portadores deste tipo de estirpes. 
Detetaram-se três variantes do gene stx nos isolados STEC, incluindo stx1c, 
stx2d e stx2g. Foi ainda identificado o gene ehxA, que codifica para uma 
hemolisina, num isolado contendo a variante stx2g. 
No seu conjunto, os resultados obtidos mostram que as populações de 
ungulados selvagens estudados são reservatórios de bactérias resistentes, 
assim como de bactérias potencialmente patogénicas e podem, por isso, atuar 
como veículo de transmissão entre a vida selvagem, o gado e o Homem. 
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Abstract 

 

Antimicrobial resistance is as an emerging global problem in both human and 
veterinary medicine. In theory, wild animals are rarely exposed to antimicrobial 
agents and therefore low levels of AMR are to be expected. However, the 
growing interaction of these animals with anthropogenic activities can have a 
huge impact in their bacterial flora. 
Escherichia coli is commonly found in the intestinal tract of a wide variety of 
animals and humans. This intestinal bacterium can be easily disseminated in 
different ecosystems. Therefore, it can be an useful indicator of the selective 
pressure exerted by the use of antimicrobials. 
Salmonella is a pathogenic bacterium, commonly found in the intestine of 
healthy birds and mammals that can cause salmonellosis in humans. In the 
European Union, over 90,000 salmonellosis cases are reported every year to 
EFSA.  
This study was conducted in wild ungulates from three distinct geographical 
areas in Portugal (Montesinho, Idanha-a-Nova and Lousã) and aimed to: 
i) access the levels of antibacterial resistance occurring in E. coli strains 
ii) determine the occurrence levels of Salmonella spp. and iii) determine the 
occurrence levels of shiga toxin-producing E. coli (STEC). To that purpose, a 
total of 67 faecal samples from red deer (n=41), wild boar (n=21) and roe deer 
(n=4) were collected. Before antibacterial susceptibility testing (according to the 
EUCAST guidelines), the E. coli isolates obtained were typed by BOX-PCR to 
select for genetically different strains for each sample (n=152). The detection of 
Salmonella was performed according to ISO 6579:2002 Annex D. 
Results revealed that in E. coli resistance was observed to ampicillin (10%), 
tetracycline (9%), streptomycin (5%), co-trimoxazole (4%), 
amoxicillin/clavulanic acid (2%) and cefoxitin (1%). A total of 3.3% of the 
isolates exhibited a multiresistant phenotype, all from Lousã. The results were 
also analyzed according to ECOFFs. Non-wildtype phenotypes were obtained 
to ampicillin (10%), ceftazidime (6%), co-trimoxazole (4%), 
amoxicillin/clavulanic acid (2%), aztreonam (1%) and cefotxitin (1%). A low 
incidence of Salmonella spp. (1.5%) was observed and it was only identified in 
wild boar from Lousã. The isolate was susceptible to all the tested 
antimicrobials. Regarding the presence of STEC, it was possible to establish 
that red and roe deer from the three sampling sites carry this bacterium. The 
stx variants detected in the STEC isolates included stx1c, stx2d and stx2g. 
Moreover, the hemolysin gene ehxA was identified in a strain possessing the 
stx2g variant. 
Overall, our results reveal that these populations of wild ungulates are 
reservoirs of antibiotic resistant and potential pathogenic bacteria. Therefore, 
these animals can act as dissemination vehicles between wildlife-livestock-
human interfaces. 
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Antimicrobial resistance (AMR) is as an emerging global problem in both human 

and veterinary medicine. Its emergence is mainly due to massive antimicrobial use, 

selection and spread of resistant bacteria to the antimicrobial agents, either due to directly 

use in humans, as well as the use in food-production animals (Stefani, 2012). The origin 

of microbial resistance remains controversial: is it the result of human activity or rather a 

consequence of the antibiotic biosynthetic pathways that evolved over millions of years? 

This is a complex and challenging subject, existing evidences for both (Stefani, 2012). 

Some researchers believe that antibiotics have been produced for over 500 million years, 

dating back to the Cambrian period. Antibiotic-like molecules, are likely to be even older; 

the non-protein amino acids that are found as components of peptide antibiotics have 

been detected in meteorites and other primordial sources (Allen et al., 2010). In the last 

few years, the intestinal flora of humans and animals have been recognized as an 

important reservoir of resistance genes (Figure 1), which are constantly subjected to 

different types, concentrations, and frequencies of antimicrobial agents (Sayah et al., 

2005). AMR has an adverse impact in clinical evolution, leading to higher costs due to the 

consumption of health related resources. More importance should be given to 

strengthening of hygiene and infection prevention (World Health Organization, 2014). 

 

 

 

 
Figure 1: Development of antibacterial resistance according to (CDC, 2013). 

 
 

The antibiotic classes used in animals for food production (as livestock, poultry and 

fish farming, sometimes with mass administration) are mostly the same as those that are 

used by humans (e.g. amoxicillin and erythromycin) (Allen et al., 2010). The magnitude of 

the transmission of animal reservoirs for humans remains unknown and probably variable 

between different bacterial species (World Health Organization, 2014). 

Effective monitoring is crucial to the efforts of national and international control of 

AMR. Tracing the use of antibiotics and the emergence of the spread of resistant strains 
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are important tools needed to guide intervention policies and evaluate the actions taken to 

promote appropriate antimicrobial use at all levels, locally and globally. However, there is 

a long way to go before antimicrobial use and antimicrobial resistance surveillance are 

established worldwide. In countries with limited health resources and comparatively weak 

systems, there are limitations in infrastructure, trained personnel, networking and 

coordination. Methods for obtaining data are often problematic, especially regarding the 

data on the use of antimicrobials. Studies well-designed, small-scale, such as research 

indicators in different contexts can be effective for understanding the overall situation and 

to identify priority areas for intervention (World Health Organization, 2012). The European 

Antimicrobial Resistance Surveillance Network (EARS-Net) is the continuation of the 

European Antimicrobial Resistance Surveillance System (EARSS). The objectives of 

EARS-Net are: i) to collect comparable and validated AMR data, ii) analyze temporal and 

spatial trends of AMR in Europe, iii) provide timely AMR data that constitute a basis for 

policy decisions, iv) encourage the implementation, maintenance and improvement of 

national AMR surveillance programs and iv) support national systems in their efforts to 

improve diagnostic accuracy in the surveillance chain by offering an annual External 

Quality Assessment (EQA) (Bronzwaer et al., 1999). 

 

1.1. Antibacterial agents 

Antibiotics are usually classified in five functional groups, based on their structure 

and/or mode of action, including: i) inhibitors of cell wall synthesis, ii) inhibitors of protein 

synthesis, iii) inhibitors of membrane function, iv) anti-metabolites and v) inhibitors of 

nucleic acid synthesis (Jehl et al., 2012). All of them, except the inhibitors of membrane 

function were relevant for this study (Figure 2).  
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Figure 2: Representation of the site of action, targets of different classes of  antibiotics (Lewis, 2013). 

 

1.1.1. Inhibitors of cell wall synthesis 

The β-lactam antibiotics are the most important class of inhibitors of cell wall 

synthesis. They are of the most relevant due to their high efficacy and low toxicity to 

animals, including humans. These antibiotics have in common one β-lactam ring in their 

chemical structure, which interferes with the synthesis of peptidoglycan bacterial cell wall 

(Quinteira, 1999). The β-lactams include the subgroups of penicillins (e.g. ampicillin and 

amoxicillin/clavulanic acid), cephalosporins (e.g. cefotaxime and ceftazidime), 

cephamycins (e.g. cefoxitin), monobactams (e.g. aztreonam) and carbapenems (e.g. 

imipenem). 

 

1.1.2. Inhibitors of protein synthesis 

The inhibitors of protein synthesis include the aminoglycosides, tetracyclines and 

phenicols. 
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i. Aminoglycosides  

Aminoglycosides such as amikacin and streptomycin are multifunctional 

hydrophilic sugars that possess several amino and hydroxyl functionalities (Shakil et al., 

2008). Their bactericidal activity is concentration-dependent and they are more effective 

against susceptible bacterial populations that are rapidly multiplying. Their mechanism of 

action implies the entrance into the cell, followed by binding to 30S subunit of the bacterial 

ribosome, interfering with the initiation of peptide/protein formation. The transport system 

of these antibiotics is oxygen dependent which makes them harmless agents against 

anaerobic bacteria (Amaro, 2011). 

 

ii. Tetracyclines  

Tetracyclines (e.g. tetracycline) constitute a family of antibiotics containing a 

hydroxynaphthalene core, formed by four fused benzene rings (Amaro, 2011). 

Tetracyclines are bacteriostatic agents that bind to the 30S ribosomal subunit of the 

bacteria, inhibiting the binding of the aminoacyl-tRNA to the acceptor site of the mRNA-

ribosome complex. Consequently, they prevent the addition of amino acids during the 

elongation (Atwater, 1950). 

 

iii. Phenicols (Chloramphenicol) 

Phenicols such as chloramphenicol bind irreversibly to 50S subunit of the bacterial 

ribosome, impairing the peptidyl transferase activity and preventing the amino acid 

transfer to growing peptide chains. Its use is prohibited in animals intended for food in 

some countries due to the fact that it can cause fatal aplastic anemia in humans (Amaro, 

2011). 

 

1.1.3. Anti-metabolites 

An anti-metabolite, as suggested by the name, is a chemical that inhibits the use of 

a certain metabolite. An example is the antibiotic trimethoprim, which is a dihydrofolate 

reductase (DHFR) inhibitor. Thus, this antibiotic interferes with the production of 

tetrahydrofolate, required for the synthesis of nucleic acids and certain amino acids. It is 

normally administered with sulfamethoxazole, a combination often known as co-

trimoxazole. Sulfamethoxazole is a sulfonamide and is a competitive inhibitor of the 
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bacterial enzyme dihydropteroate synthetase (DFPS). This enzyme catalyzes an earlier 

step of the folate synthesis pathway than DHFR (Atwater, 1950). 

 

1.1.4. Inhibitors of nucleic acid synthesis 

Quinolones (e.g. nalidixic acid) and fluoroquinolones (e.g. ciprofloxacin) are 

chemically synthesized antibiotics. They inhibit the synthesis of DNA because they 

prevent the function of DNA gyrase and topoisomerase IV. This interfers with the winding 

of bacterial DNA, preventing the cellular replication (Amaro, 2011). 

 

1.2. General mechanisms of antibiotic resistance 

In Gram-negative bacteria, there are several mechanisms by which bacteria can 

survive to the action of antibiotics (Figure 3). These include (Allen et al., 2010): 

a) Impermeable barriers: resistance due to the inaccessibility of the antimicrobial 

into the cell due to the presence of an impermeable membrane or due to the absence of 

the antibiotic target. 

b) Multidrug resistance efflux pumps: presence of transport proteins that promote 

the expulsion of antibiotics from the cell to the outside environment. The efflux pumps may  

be specific to a substrate or may be able to carry structurally different compounds 

(Webber, 2002). 

c) Resistance mutations: bacteria can acquire mutations in genes that cause the 

alteration of the target of the antibiotic, inhibiting its effectiveness. For instance, resistance 

to fluoroquinolones can be caused by mutations that alter the conformation of proteins 

involved in DNA replication.  

d) Inactivation of the antibiotic: the antibiotics can be inactivated by covalent 

modification, such as that catalyzed by acetyltransferases acting on aminoglycoside 

antibiotics, or by degradation of the antibiotic, such as that catalyzed by β-lactamases 

acting on β-lactam antibiotics. 
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Figure 3: Schematic representation of the principal mechanisms of resistance to antibiotics (Allen et 
al., 2010). 

 

 

1.3. Movement of antibiotic resistance in the environment 

The selection and dissemination of resistance in the environment is a very 

complex process. Major environmental reservoirs of resistance are probably created by 

human activities involving the use of antibiotics as well as waste disposal (Figure 4) 

(Davies & Davies, 2010). For instance, according to CDC (2013), up to 50% of all 

antibiotics prescribed in human medicine are not needed or are prescribed 

inappropriately. Also, some antibiotics are not completely metabolized, and are 

subsequently excreted via the urine or faeces even with some antimicrobial activity. In 

addition to clinics, they are widely used in the treatment of animals and in agriculture, 

contributing to the increase of selective pressure, which contribute to the selection of 

several resistance determinants and bacteria also in the environment (Dantas & Sommer, 

2014). For instance, the microorganisms of the soil are considered the largest and most 

diverse reservoir of resistance. The spread of resistance in the environment can be 

influenced by physical factors such as those created by wind and watershed (Allen et al., 

2010). However, biological factors such as the acquisition of heterologous genes by 

lateral transfer largely facilitates the adaptive evolution of bacteria, in particular under 

strong selective pressures. This transfer of exogenous DNA in bacteria can be mediated 

by plasmids, phages, transposons, genomic islands, or by acquisition of free DNA by 

transformation (Lupo et al., 2012).  
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Figure 4: Schematic representation of factors involved in the dissemination of antibiotic resistance in the 

environment (Davies & Davies, 2010). 

 

 

1.4. Antimicrobial resistance in wildlife 

Wild animals provide a biological mechanism for the spread of antibiotic resistance 

genes (Figure 4). Usually, wild animals are not exposed to antimicrobial agents, but can 

acquire resistant bacteria due to contact with humans, other animals and the environment, 

where water polluted with faeces appear to be the main vehicle of contamination 

(Radhouani et al., 2014). Therefore, proximity to humans is predicted to influence the 

antibiotic resistance profile of the gut flora in wild mammals as it has been demonstrated 

in some studies (Allen et al., 2010). For instance, African baboons and apes that were in 

contact with humans carried more antibiotic-resistant enteric bacteria than those living in 

areas far away from anthropogenic influences (Rwego et al., 2008). 

Wild birds are important reservoirs of antibiotic-resistant bacteria with the potential 

for long-distance dissemination. Birds and migratory waterfowl in particular, can travel 

great distances and inhabit a wide variety of environments, from agricultural lagoons to 

remote mountain lakes, and can potentially spread resistance genes along the way. Some 
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studies have associated the proximity to human activities with the increase of antibiotic-

resistant bacteria associated with wild birds (Allen et al., 2010). Also, a study in Berlenga 

Island from Portugal had identified gulls as major source of faecal pollution in coastal 

waters and potential vectors of human infection. Additionally, they were identified as an 

important vector of dissemination of antimicrobial resistance genes because of their 

association with human activities (Marta S Alves et al., 2014). Moreover, resistant as well 

as multiresistant isolates of E. coli were detected in the normal flora of Arctic birds, one of 

the most remote areas on Earth (Sjölund et al., 2008). In England, 90% of the bacterial 

isolates from mice and voles captured in rural England were resistant to β-lactam 

antibiotics (Gilliver et al., 1999). On the other hand, faecal enterobacteria of wild elk, deer 

and voles in Finland have almost no resistance (Osterblad et al., 2001). These results 

may be explained by the influence of human activities in each country (Allen et al., 2010). 

Samples from red foxes collected in the North of Portugal were analyzed and 73% of the 

isolates presented resistance to at least one antimicrobial (Radhouani et al., 2013). 

 

1.5. Etiologic agents 

As human populations grow and transform landscapes, contact with wildlife largely 

increases. Disease emergence has been an important consequence of this escalation in 

interaction, with the high number of emerging infectious diseases in humans arising from 

wildlife reservoirs. Zoonoses are infections or diseases transmissible between animals 

and humans, which can be acquired by ingesting contaminated food or water (e.g. 

Salmonella spp., Campylobacter spp., norovirus, STEC), or through direct contact with 

infected animals (e.g. Salmonella spp. and STEC) (EFSA & ECDC, 2014). According to 

the CDC, approximately 75% of the recently emerging infectious diseases affecting 

humans are of animal origin. Also, EFSA and ECDC reported a total of 5,550 food-borne 

outbreaks between 2005 and 2009, caused mainly by Salmonella spp., viruses and 

bacterial toxins. The transmission of pathogens from humans to wildlife is also a growing 

threat, which increases the management challenges of wildlife conservation. 

 

1.5.1. Escherichia coli 

E. coli is a Gram-negative bacillus and is a member of the Enterobacteriaceae 

family (the enteric bacteria), which is a facultative anaerobe commonly found in the 

intestinal tract of a wide variety of animals and humans. This intestinal bacterium can be 

easily disseminated in different ecosystems and its usefulness as a model for examining 
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the transmission of faecal microorganisms between humans and wildlife was already 

demonstrated (Silva et al., 2011). In humans, E. coli is an important cause of urinary tract 

infections (UTIs), enteric infections and systemic infections. Genrelly, E. coli are often 

divided in intestinal pathogenic E. coli (causing infection in the gastrointestinal system) 

and extraintestinal pathogenic E. coli or ExPEC (cause infections outside the 

gastrointestinal system). The last incorporates the following variants: avian pathogenic 

E. coli, uropathogenic E. coli (UPEC), and those isolates responsible for septicemia and 

neonatal meningitis. The pathogenicity of ExPEC have been associated with the presence 

of several virulence genes (Pitout, 2012). E. coli is usually classified into four main 

phylogenetic groups (A, B1, B2 and D). Generally, the commensal strains are placed into 

the phylogenetic groups A and B1. Also, the E. coli strains causing extra-intestinal 

infections are known to mainly belong to group B2 and, to a lesser extent, group D. The 

intestinal pathogenic strains are usually assigned to groups A, B1 and D (Silva et al., 

2011). However, eight phylo-groups are now recognized: seven (A, B1, B2, C, D, E, F) 

belong to E. coli sensu stricto, whereas the eighth is the Escherichia cryptic clade I 

(Clermont et al., 2013). Although there are some limitations to the use of E. coli as a 

model organism, it is still regarded as the global standard for detection of faecal 

contamination (Pesapane et al., 2013). 

 

1.5.1.1. Resistance in E. coli  

In E. coli antibacterial resistance has been growing rapidly through mutations, 

frequently associated with fluoroquinolones resistance, or through the acquisition of 

mobile genetic elements involved in the resistance to third generation penicillins and 

cephalosporins. Resistance to third generation cephalosporins is mostly caused by 

extended spectrum beta-lactamases (ESBLs), which are able to hydrolyze many β-

lactams (World Health Organization, 2014). The production of ESBLs by 

Enterobacteriaceae, specifically by E. coli, has caused a major concern in several 

countries, being frequently implicated in human infections. Especially worrisome is the 

significantly increase of resistance to third generation cephalosporins and combined 

resistance to at least three antimicrobial classes (multiresistant) reported by many 

countries during the period 2008–2011 (Figure 5). This is a serious public health concern 

since it severely limits the number of treatment alternatives for patients with life-

threatening infections. Although EARS-Net data on ESBL production remain incomplete, a 

large percentage of third-generation cephalosporin-resistant E. coli was reported as 

ESBL-positive. Also, different reports have describing the spread of ESBL-positive E. coli 
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isolates in food products, in the intestinal microbiota of healthy food-producing animals 

and more recently in wild animals (Gonçalves et al., 2012). Moreover, multidrug 

resistance was evaluated with E. coli isolates from farms in Michigan. The majority of E. 

coli isolates tested was sensitive to all antimicrobial agents tested, but 34% were resistant 

to one or two antimicrobial agents and 13% were resistant to three or more agents (Sayah 

et al., 2005). Recently the first study reporting resistance of E. coli to antimicrobial agents 

in wild mammals (seagulls and deer) in Ireland was published. Resistance was found to 

penicilins, tetracyclines and rifamycins (Smith et al., 2014). In another study involving 

E. coli, Iberian wolf samples were collected in Portugal and mostly showed resistance to 

tetracycline, ampicillin, streptomycin and co-trimoxazole. Their predatory and travelling 

habits might be a source of exposure of this species and could in that way explain the 

high rates of resistance that were found (A Gonçalves et al., 2013). 

 

 

Figure 5: Percentage of E.  coli isolates resistant to third-generation cephalosporins, by country in 2013 
(European Centre for Disease Prevention and Control., 2014). 

 

1.5.1.2. Shiga toxin-producing E. coli 

E. coli has many different serotypes categorized into five major groups that are 

pathogenic to humans. These groups are designated according to virulence mechanisms: 

the first four are enterotoxigenic, enteropathogenic, enteroinvasive and enteroaggregative, 
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and the last one includes Shiga toxin–producing E. coli (STEC), which was previously 

known as enterohemorrhagic E. coli (WHO, 2011). STEC bacteria produce potent 

cytotoxins, called shiga toxins, which are composed by two subunits, A and B. The 

subunit A is the actual toxin that needs to interact with the subunit B (homopentamer) in 

order to bind to its cellular receptor the glycosphingolipid globotriaosylceramide (Gb3 or 

CD77; Figure 6) (Philpott & Ebel, 2002). Then, it is internalized by endocytosis and 

undergoes retrograde transport to the Golgi complex and then to the endoplasmic 

reticulum (ER) (4). In the ER, StxA encounters its target, the ribosome, inactivating it and 

causing inhibition of protein synthesis, leading to cell death by apoptosis (Figure 9) 

(Pacheco & Sperandio, 2012).  

 

 

 
Figure 6: Mechanism of action of Shiga Toxin (Pacheco & Sperandio, 2012). 

 

 

Infection with STEC may present a wide spectrum of clinical manifestations that 

can go from mild diarrhea to severe gastrointestinal and systemic diseases, such as 

hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS) (Sharma, 2006). The 

O157:H7 serotype is the better well-known STEC serotype and it is the principal cause of 

food-borne HUS in North America.  Thus, STEC are frequently divided in the O157 and 

non-O157 strains. Many laboratories do not routinely screen and isolate non-O157 STEC, 

mainly because of the lack of selective media and/or immune-chemical reagents for the 

detection of other O-types than O157 (Cooley et al., 2013). However, the number of 

infections caused by non-O157 STEC has increased since more laboratories are applying 

culture-independent tests to detect these strains (Gould et al., 2013). These often imply 

the identification of the shiga-toxin genes, with emphasis on the StxA subunit. The stx 

family is divided in two main groups, the stx1 and stx2. In the stx1 family, the variants 
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stx1, stx1c, and stx1d were already described. The stx2 family is composed by the 

variants stx2c, stx2c2, stx2d, stx2e, and stx2f. The Stx2 variants differ in their biological 

activity, immunological reactivity, and the receptor to which they bind. These binding 

properties allow them to target different cell types (Pacheco & Sperandio, 2012). 

STEC infection has been associated with the consumption of contaminated foods, 

such as inadequately cooked ground beef, unpasteurized apple juice and cider, 

unpasteurized milk and other dairy products, including raw vegetables (Figure 7) 

(Gansheroff & O’Brien, 2000). Different animal species possess STEC strains as part of 

their gut flora. In fact, ruminants especially cattle have been identified as the major 

reservoir of STEC strains highly virulent to humans (Hussein, 2007; Miko et al., 2009). 

Thus, the faeces of these animals are an important source of STEC strains for the 

environment. More recently, wildlife animals such as deer and migrating birds were also 

identified as an important source of STEC in the nature (Miko et al., 2009). For instance, 

49% of the samples belonging to wild or exotic mammals (including red and roe deer) 

from a study conducted in Belgium were positive for STEC strains (Piérard et al., 1997). 

 

 

 
 

 
Figure 7: Model of the STEC transmission pathways from cattle to humans (Gansheroff & O’Brien, 2000). 
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1.5.2. Salmonella spp. 

Salmonella spp. is commonly found in the intestines of healthy birds and mammals 

and is a bacterium that can cause salmonellosis in humans (European Food Safety 

Authority, 2014). In fact, it is the second most common cause of zoonotic diseases in 

humans, followed by campylobacteriosis (Botti et al., 2010). During 2010, 99.020 cases of 

infections by Salmonella spp. were confirmed in Europe (Chiari et al., 2013). A study 

developed in Portugal revealed that Salmonella spp. was responsible for 41.8% food-

poisoning-related outbreaks in the period 1987–1991 in that country (Caleja et al., 2011). 

The genus Salmonella consists of two species: S. enterica and S. bongori. The first one 

includes 6 subspecies (subsp.): enterica, salamae, arizonae, diarizonae, houtenae, and 

indica. Besides, over 2,500 serotypes of zoonotic Salmonella were already identified, 

most belonging to the subspecies enterica (Botti et al., 2010). The three main serovars of 

S. enterica are Typhimurium, Enteritidis, and Typhi. Overall, considering all Salmonella 

infections in the EU, S. Enteritidis and S. Typhimurium are the serovars most frequently 

associated with human illness (EFSA & ECDC, 2014). 

There are certain risk factors for human salmonellosis: infection may indirectly 

arise in agricultural areas from the contamination of vegetable products, through direct 

animal contact, during hunting, or directly from ingestion of contaminated meat or their 

products. Moreover, salmonellosis causes significant economic losses to the livestock 

industry. Actually, Salmonella species are able to infect a wide range of domestic and wild 

animal species and have been isolated from the intestinal content of white-tailed deer, 

rabbits and wild boars (Sus scrofa) (Chiari et al., 2013). In a study designed to evaluate 

the prevalence of Salmonella spp. in faecal samples of wild boars and wild rabbits hunted 

in Northern Portugal, the results showed that 22% of the wild boars presented 

Salmonella spp. in their faeces (Vieira-Pinto et al., 2011). Cattle seem to contribute to the 

Salmonella spp. prevalence in wild boar by introducing their own serotypes to the 

environment (Navarro-Gonzalez et al., 2012). 

Salmonella is also of public health problem because many strains are resistant to 

antimicrobial agents. In wildlife, the levels of antibacterial resistance in Salmonella spp. 

vary considerably, mainly depending on the host species, the bacterial species and the 

geographic location (Navarro-Gonzalez et al., 2012). However, the prevalence of 

resistance, including ampicillin and co-trimoxazole, has increased in recent decades. The 

location of specific antibiotic-resistance genes on mobile genetic elements (such as 

plasmids and transposons) facilitates the transmission of resistance among bacteria, even 

among different species (Caleja et al., 2011).  



 

 

16 

1.6. Ungulates in study 

Ungulates can be excellent model species to investigate AMR because: i) their 

increase in number during the last decades, ii) they have a considerably wide home range 

when compared with small mammals, iii) they are unlikely to be treated with antibiotics, iv) 

they share their habitat with livestock and humans and v) they allow exploring AMR in a 

geographic gradient (Torres et al., 2014). Thus, studies investigating the occurrence of 

AMR and potential pathogens in wild ungulates are urgently needed. Nevertheless, in 

Portugal, the information available is restricted to Northern populations (Poeta et al., 

2009). In this thesis, three ungulates will be the focus of study: wild boar, red deer and roe 

deer. 

1.6.1. Wild boar  

Wild boar (Sus scrofa) is a widely distributed ungulate whose success can be 

attributed to a variety of ecological features such as opportunistic omnivorous behavior 

and also high proliferative and adaptive capacity (Ferreira et al., 2009). Wild boar is a 

species that is utilized for food and sport hunting throughout the world. They have been 

increasing their natural populations, which in some circumstances, leads to conflicts 

involving several sectors, including agriculture damages, conservation problems and 

health risks. The disease-related conflicts are especially relevant since wild boar was 

raised as a potential host for numerous pathogens (Acevedo et al., 2014). Nowadays, this 

species are wide-spread throughout Portugal, with the exception of major urban areas and 

some parts of the coastline, they are also of ‘‘low concern’’ in terms of their national 

conservation status (Ferreira et al., 2009). 

 

1.6.2. Red deer 

There are several variables capable of influencing the habitat use and selection by 

the red deer. Besides the land cover units, variables like vegetation productivity, water 

proximity, diversity of plants, distance to roads, distance to villages, altitude, aspect and 

slope are identified as key factors influencing red deer habitat use (Joana Alves et al., 

2014). In Portugal, red deer (Cervus elaphus) populations have increased in size and 

distribution over the last three decades (Santos et al., 2011). One of the largest free-

ranging populations is located on the Spanish border, in the Northeast of the country 

(Montesinho Natural Park). Red deer recolonization of this region dates from the early 

1980s, when several animals dispersed naturally from Sierra de la Culebra Regional 

Hunting Reserve (Zamora, Spain) into the Portuguese territory (Santos et al., 2011). The 
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presence of red deer in Lousã is an outcome of a reintroduction process that occurred 

from 1995 to 1999, with the release of 96 animals. Since then, the population has 

expanded geographically and demographically, with the occupancy of new territories 

(Joana Alves et al., 2014). 

 

1.6.3. Roe deer 

The European roe deer (Capreolus capreolus) is the most abundant and 

widespread cervid species in Europe (Torres et al., 2011). Within the distribution range, 

roe deer occurrence is influenced by a variety of factors including food availability, cover, 

human disturbance, terrain characteristics, climatic factors and predation (Torres et al., 

2012). Roe deer is a native species in the North of Portugal, where populations have 

always persisted. During the 90’s a series of reintroductions took place in the centre of 

Portugal to increase prey availability for the endangered Iberian wolf, and in the south for 

touristic hunting grounds (Valente et al., 2014). 

 

1.7. Sampling locations 

1.7.1. Montesinho Natural Park 

The Montesinho Natural Park is one of the largest natural parks of the 12 existing 

in the country. Is situated in the region of Tras-os-Montes (Northeastern) covering the 

Northern part of the districts of Bragança and Vinhais. It was created in 1979 and contains 

about 240 species of vertebrates. It is a region with low human and cattle density (Cepo 

Verde Turismo Rural). 

 

1.7.2. Lousã Region 

The Lousã Mountain is located in the district of Coimbra transition to Leiria. The 

importance of biological and ecological richness that Lousã Mountain contains has been 

recognized nationally and internationally for its inclusion in the Natura 2000 network, 

concerning classified sites for possessing habitats and species of community interest 

(Fonseca et al., 2009).  In the 1990s, Lousã was enriched through the reintroduction of 

cervids, including deer and roe deer, with a view not only increased local animal 

biodiversity, as well as a hunting farm, framed in the sustainable management of their 

populations. This region has high human density and medium livestock density (Fonseca 

et al., 2009). 
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1.7.3. Idanha-a-Nova 

Idanha-a-Nova is a Portuguese village in the district of Castelo Branco, one of the 

largest townships of Portugal, however sparsely populated. Regarding the fauna, the 

presence of 277 vertebrate refers to the enormous wealth and faunal diversity. Herdade 

de Vale Feitoso in Penha Garcia was the collection site in this region, having an area of 

about 7,000 hectares fully fenced. It is a zone of tourist hunting and given the conditions 

of their habitat, especially favorable for the big game hunting, here we find the Corsican 

mouflon, red deer, fallow deer and wild boar. This zone has a low population density, but 

a high density of livestock (Núcleo Executivo de Idanha-a-Nova, 2005). 

 

1.8. Objectives 

Antimicrobial drugs have been widely used in human and veterinary medicine, with 

tremendous benefits to both human and animal health. The development of resistance to 

these medicines poses a serious public health threat. Monitor antimicrobial resistance in 

bacteria of clinical, foodborne and wildlife origin is extremely important. Therefore, studies 

investigating the antibiotic susceptibility of bacteria from wild ungulates are increasing. In 

Portugal, the information available is restricted to the Northern population. Thus, the 

present study focused on three species of wild ungulates inhabiting different geographical 

areas with different anthropogenic influences, from North to Central Portugal (Lousã 

region, Idanha-a-Nova and Montesinho). Thus the main objectives of the present study 

were: 

i) To access the levels of antibacterial resistance occurring in E. coli strains 

collected from Portuguese wild ungulates faeces; 

ii) Determine the occurrence levels of Salmonella spp. in Portuguese wild 

ungulates; 

iii) Determine the occurrence levels of shiga toxin-producing E. coli (STEC) in 

Portuguese wild ungulates; 
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2.  Material and Methods 
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2.1. Flowchart and methodologies followed 

The experimental strategy applied in the present study after field collection of the 

samples is presented on Figure 8.  

 

 

Figure 8: Schematic representation of the experimental strategy used in this work. 

 

2.2. Origin and description of the samples 

A total of sixty-seven faecal samples from different geographic locations were 

collected in Portugal by Wildlife Research Unit (UVS) of the University of Aveiro from 

October 2013 to April 2014. Samples of red deer (n=42) and roe deer (n=4) were 

collected from natural environments, when considered fresh. Samples of wild boar (n=21) 

were collected only from hunted animals and directly from the rectal area. The collection 

was performed using sterile recipients. The list of samples collection date, location and 

species are shown in Tables 10, 11 and 12 (Appendix 2). The samples were kept in a field 

cooler up to 2 h and afterwards stored at 4 °C until processed. The sampling locations 

(Figure 9) were i) Montesinho Natural Park (Bragança), a region with low human and 

cattle density, ii) Lousã, a region with high human density and medium livestock density 

and iii) Herdade de Vale Feitoso (Idanha-a-Nova), that is characterized by a low 

population density, but a high density of livestock. Once in the lab, 1 g of each faecal 

Isolation of E. coli

Isolation of 

Salmonella spp.

Screening of STEC

Dilution and plating on MacConkey agar

Pick Lac+ and plating on Chromocult® coliform agar

Amplification of gadA/B and uidA genes
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Enrichment and plating on MSRV agar

Re streak suspect colonies to XLD and SS agar

Amplification of hilA gene

Enrichment and preparation of DNA template by 
boiling ot the cellular pellet

Amplification of stx1 and stx2 genes using RT-PCR

Screen for rfbE gene and other virulence genes

Antibacterial 

susceptibility testing 

according to EUCAST
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sample was smashed and diluted in 10 mL of Buffered Peptone Water (BPW; Merck) 

under aseptic conditions. The composition of the culture media used is described in 

Appendix 1. 

 

Figure 9: Map of Portugal with the collecting sites indicated. 

 

 

2.3. Isolation and selection of E. coli isolates 

Serial dilutions of each sample were prepared and cultured on MacConkey agar 

plates (Oxoid), overnight at 37 °C. Ten lactose-positive colonies with E. coli phenotype 

were randomly selected and subcultured on Chromocult® coliform agar (Merck), overnight 

at 37 °C. In this media, only the blue to violet coloured colonies were considered E. coli 

isolates, using E. coli ATCC® 25922 as the positive control. 

 

2.3.1. Amplification of gadA/B (GAD) and uidA (GUD) genes 

PCR with gadA/B and uidA genes is one of the several techniques used for 

genotypic confirmation of E. coli. To confirm that the blue to violet isolates in Chromocult® 

agar belong to the E. coli species, a PCR was performed targeting the genes mentioned 
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above. Glutamate decarboxylase (GAD) is an enzyme that catalyzes the decarboxylation 

of glutamate to GABA (gamma-Aminobutyric acid) and CO2, and uidA gene codes for β-D-

Glucuronidase (GUD). GAD and GUD have the ability to detect various strains of E. coli, 

and to discriminate between other species. Most of nonpathogenic E. coli strains are 

reported to contain GUD and most other bacteria containing GUD do not grow on media 

selective for coliforms. A genotypic assay for GAD should be expected to show greater 

quantitative sensitivity because it would actually target two highly homologous genes, 

gadA and gadB, that always occur in the genome of E. coli. Shigella spp. can also be 

positive in this assay, but these bacteria do not ferment lactose and therefore would not 

be selected in MacConkey screening (McDaniels et al., 1996).  

PCR amplification was performed in a final volume of 12.5 μl containing 3 mM 

MgCl2, 0.2 mM dNTPs, 1X Green GoTaq® Reaction Buffer, 0.3 pmol/μL of each primer 

(the sequence of the primers is shown in Table 1), 1 μl of template DNA, and 0.3U of 

GoTaq® Buffer (Promega). The DNA template was prepared by resuspending each 

colony in 100 μl sterile nuclease free distilled water and boiled at 95 °C for 10 min. The 

parameters of amplification were: initial denaturation at 95 °C for 5 min, followed by 30 

cycles of 95 °C for 30 sec, 58 °C for 30 sec and 72 °C for 45 sec and a final extension 

step at 72 °C for 10 min. The amplification products were separated by electrophoresis in 

a 1% agarose gel at a constant voltage of 120V. 

After confirmation that the chosen isolates were E. coli, a maximum of three 

genetically different E. coli strains were selected to assess their respective antibacterial 

resistance profile.  

 

Table 1: List of primers used in the PCR reactions for amplification of gadA/B and uidA genes. 

 

Name Sequence Reference 

gadA/B forward 5’-ACCTGCGTTGCGTAAATA-3’ 

(McDaniels et al., 1996) 
gadA/B reverse 5’-GGGCGGGAGAAGTTGATG-3’ 

uidA forward 5’-CCAAAAGCCAGACAGAGT-3’ 

uidA reverse 5’-GCACAGCACATCAAAGAG-3’ 

 

2.3.2. BOX-PCR fingerprinting 

The strains isolated from each sample were submitted to rep-PCR genomic 

fingerprinting (n=640). This method is based on the use of primers targeting naturally 
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occurring, highly conserved and repetitive DNA sequences present in multiple copies in 

bacteria (Lupski & Weinstock, 1992). Three families of repetitive sequences are normally 

used, including the 35-40bp repetitive extragenic palindromic (REP) sequence, the 124-

127bp enterobacterial repetitive intergenic consensus (ERIC) sequence, and the 154bp 

BOX element (Versalovic et al., 1994; Rademaker & De Bruijn., 1997). In this study, all 

the isolates were submitted to BOX-PCR. The DNA template was prepared by growing 

each E. coli isolate in 500 μl of LB medium (Merck) at 37 °C, overnight with aeration at 

180 rpm. Each culture was boiled at 95 °C for 10 min and centrifuged at maximum speed 

for 5 min. The supernatant was removed and the pellet resuspended in 100 μl of sterile 

distilled water, before used in the PCR reaction. The amplification was performed in a final 

volume of 12,5 μl, containing 3 mM MgCl2, 0.2 mM dNTPs, 1X Green GoTaq® Reaction 

Buffer, 0.6 pmol/μL of BOXA1R primer (5'-CTACGGCAAGGCGACGCTGACG-3'), 0.5 μl 

of template DNA and 0.3U of GoTaq® Buffer (Promega). The parameters for amplification 

were, initial denaturation at 95 °C for 5 min, 30 cycles of 95 °C for 30 sec, 53 °C, 52 °C or 

53 °C for 30 sec and 72 °C for 8 min and a final extension step at 72 °C for 10 min. The 

products of amplification were separated by electrophoresis in a 1.5% agarose gel at a 

constant voltage of 120V during 1 h and 30 min, and the gels stained with ethidium 

bromide were visualized under the UV light. The fingerprints obtained were analyzed with 

GelCompar II 5.0 program (Applied Maths, Kortrijk, Belgium), where gel images were 

normalized and bands were identified. Clonal relationship was analyzed using Dice 

similarity coefficients and the UPGMA clustering method. 

 

2.3.3. Conservation of bacterial isolates 

After the selection of the 152 isolates, a glycerol stock of each of them was 

prepared by growing the colonies in 400 μl of LB medium at 37 °C with aeration. After 

overnight growth, 200 μl of 45% sterile glycerol were added and stored at -80 °C. 

 

2.4. Detection of Salmonella spp. 

The detection of Salmonella spp. was performed according to ISO 6579:2002 

Annex D (International Organization for Standardization, 2007), recommended by the 

European Union Reference Laboratory. The faecal samples diluted in BPW that were 

used for preparing serial dilutions for the isolation of E. coli, were incubated at 37 °C at 

180 rpm. After 20 h of growth, three drops of each culture (100 μL) were inoculated on 
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Modified semisolid Rappaport-Vassiliadis (MSRV; Oxoid) agar plates and grown at 

41.5 °C for 24 h. The plates without or with doubtful growth of Salmonella spp. were 

incubated for an additional 24 h. The samples suspected of Salmonella spp. growth were 

plated on SS agar (Merck) and Xylose Lysine Desoxycholate agar (XLD; Oxoid) and 

incubated at 37 °C for 24 h. In the SS agar, translucent or translucent with black centre 

colonies were selected as Salmonella spp. isolates, whereas in the XLD agar the colonies 

selected were those with red or red with black center. Salmonella Enteritidis ATCC® 

13076™ was used as the positive control. 

 

2.4.1. Amplification of hilA gene 

PCR targeting the hilA gene is one of the several techniques employed for 

genotypic confirmation of Salmonella spp. Thus, to confirm that the selected isolates on 

SS agar and XLD agar belong to Salmonella spp., a PCR targeting this gene was 

performed. During the process of Salmonella infection, the presence of invasive genes 

(such as gene hilA) is required for bacterial entry into host cells, and many of these genes 

are encoded in SPI1 (Salmonella Pathogenicity Island 1). Thus, this method utilizes 

primers against hilA gene which is conserved in all Salmonella serovars, and that is 

absent in Salmonella close relatives (pathogenic and non-pathogenic) (Pathmanathan, 

2003). PCR amplification was performed in a final volume of 12.5 μl containing 3 mM 

MgCl2, 0.2 mM dNTPs, 1X Green Master Mix, 0.3 pmol/μL of each primer (Table 2), 1 μl 

of template DNA, and 0.6U of NZYTaq DNA polymerase. The DNA template was 

prepared by resuspending each colony in 25 μl sterile nuclease free distilled water and 

boiled at 95 °C for 10 min, then the samples were centrifuged at 7300 x g for 5 min and 

the supernatant was used (Marathe et al., 2012). 

The amplification conditions were: initial denaturation at 94 °C for 5 min, followed 

by 30 cycles of 94 °C for 30 sec, 66 °C for 30 sec and 72 °C for 45 sec and a final 

extension step at 72 °C for 5 min. The amplification products were separated by 

electrophoresis in a 1.5% agarose gel at a constant voltage of 120V. The isolates that 

were confirmed as belonging to Salmonella spp. were conserved in the same form that is 

described in Section 2.3.3. 

Table 2: List of primers used in the PCR reactions for amplification of hylA gene. 

Name Sequence (5’->3’) Reference 

hilA forward TTAACATGTCGCCAAACAGC 
(Marathe et al., 2012) 

hilA reverse GCAAACTCCCGACGATGTAT 
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2.5. Screening and selection of STEC isolates 

2.5.1. DNA template preparation for PCR 

The enrichment culture from each sample that was prepared for the screening of 

Salmonella spp. (section 2.4. Detection of Salmonella spp.) was used for this protocol. 1 

mL of this culture was centrifuged for 2 min at 9100 x g. The pellet was resuspended in 1 

mL of sterile nuclease free distilled water and 100 μL of this sample was transferred to a 

0.2 mL tube. Subsequently, the samples were heated to 80 °C for 5 min, followed by 20 

min at 100 °C in a thermocycler. Then, the samples were centrifuged for 10 min at 4600 x 

g to remove cell debris and the supernatant was stored at -80 °C until its use as DNA 

template (Cooley et al., 2013). 

 

2.5.2. Screening of STEC in faecal samples by PCR  

All the samples obtained were screened for the presence of shiga-toxin E. coli 

(O157:H7 and non-O157:H7) by real-time PCR amplification targeting the rfbE, stx1 and 

stx2 genes. Prior to the screening, all the samples were submitted to real-time PCR using 

primers for amplification of 16S rRNA genes (Table 3) to ensure that the sample by itself 

was not inhibiting the reaction. With this approach, it was established that a dilution of 

1:10 should be used in the PCR reactions. The rfbE gene was amplified alone, whereas a 

multiplex was used to detect the stx1 and stx2 genes (Cooley et al., 2013). The E. coli 

E242M (non-O157 STEC: rfbE(-), stx1(+)), and E. coli E176V, (O157:H7 STEC: rfbE(+), 

stx2(+)) strains were kindly provided by Neiker tecnicalia (Spain) and their DNA was used 

as positive control. RT-PCR amplifications were performed in a final volume of 10 μl 

containing 1X SsoFast™ EvaGreen® Supermix, 0.3 pmol/μL of each primer (Table 3), 1 μl 

of template DNA. The parameters of amplification were: incubation at 95 °C for 10 min, 

followed by 40 cycles of 95 °C for 20 min, 60 °C for 45 sec. The samples were considered 

positive if the Ct values for 16S and stx genes were <21 and <40, respectively, and also if 

the melting temperature of the amplicon was in the range of 75.4 ºC - 78.6ºC (rfbE), 77.4 

ºC - 77.8 ºC (stx1) and 77.4 ºC – 81.6 ºC (stx2). 
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Table 3: List of primers used for STEC screening by Real-Time PCR.  

 

Name Sequence (5’->3’) Reference 

stx1_forward  CATCGCGAGTTGCCAGAAT 

(Cooley et al., 

2013) 

stx1_reverse  TCCCACGGACTCTTCCATCT 

stx2abc_forward  GGACCACATCGGTGTCTGTTATT 

stx2abc_reverse CCCTCGTATATCCACAGCAAAAT 

rfbE_forward  TCAAAAGGAAACTATATTCAGAAGTTTGA 
(Sharma, 2006) 

rfbE_reverse  CGATATACCTAACGCTAACAAAGCTAA 

16S rRNA_forward GGGTTGCGCTCGTTGC 
(Zhu et al., 

2013) 16S rRNA_reverse ATG GYT GTC GTC AGC TCG TG 

 

2.5.3. Amplification of rfbE, stx1, stx2, ehx and eae genes in E. coli 

isolates 

The E. coli strains recovered from the faecal samples with a positive result for the 

presence of STEC (according to section 2.5.2) were submitted to PCR targeting the rfbE, 

stx1 and stx2 genes. PCR amplifications were performed in a final volume of 25 μl 

containing 3 mM MgCl2, 0.2 mM dNTPs, 1X Green Master Mix, 0.3 pmol/μL of each 

primer (Table 4), 1 μl of template DNA, and 0.6U of NZYTaq DNA polymerase. The 

parameters of amplification were: initial denaturation at 95 °C for 5 min, followed by 30 

cycles of 95 °C for 30 sec, annealing temperature of 54 ºC (stx1 and rfbE) and 58 ºC 

(stx2) for 30 sec and 72 °C for 45 sec and a final extension step at 72 °C for 5 min. The 

amplification products were separated by electrophoresis in a 1.5% agarose gel at a 

constant voltage of 120V. In the case of positive amplification, the PCR products were 

purified and sent for sequencing reaction. Subsequently, the presence of other virulence 

genes such eae and ehxA was investigated in the E.coli isolates identified as STEC. The 

reaction was performed as abovementioned, where the primers targeting the 16S rRNA, 

eae and ehxA genes (Table 4) were used simultaneously, using the annealing 

temperature of 55 °C. 
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Table 4: List of primers used for the identification of STEC and for other pathogenicity genes in E. coli isolates. 

 

Name Sequence (5’->3’) Reference 

stx1_B_fw  GTTGCGAAGGAATTTACC 
This study 

stx1_B_rv ATTTTATTGTGCGTAATCCC 

stx2_F4  GGCACTGTCTGAAACTGCTCCTGT 

(Persson et al., 2007) stx2_R1 ATTAAACTGCACTTCAGCAAATCC 

stx2_R1e_f TAAACTTCACCTGGGCAAAGCC 

rfbE_fw  CAGGTGAAGGTGGAATGGTTGTC 
(Bertrand & Roig, 2007) 

rfbE_rv  TTAGAATTGAGACCATCCAATAAG 

eae_forward CATTATGGAACGGCAGAGGT 
(Bai et al., 2010) 

eae_reverse ACGGATATCGAAGCCATTTG 

ehxA_forward TCTGTATCTGCGGGAGTTAG 
(Son et al., 2014) 

ehxA_reverse CAACGTGCTCAAACATAGCC- 

 

 

2.6. Antibiotic susceptibility testing 

Antimicrobial susceptibility testing was performed according to European 

Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines, using E. coli 

ATCC® 25922 as quality control (EUCAST, 2013). 

 

2.6.1. Preparation of inoculum  

The isolates were grown in LB medium (Merck) at 37 °C, overnight, with aeration 

at 180 rpm. On the following day the optical density at an absorbance of 625 nm was 

measured, and the cultures were adjusted to a final density of 0.1 in NaCl (0.9%).   

 

2.6.2. Preparation of plates and application of disks 

Preparation of Mueller Hinton Agar (MHA; Merck) plates was performed by pouring 

the medium into sterile Petri dishes (approximately 25 mL in a 90 mm circular plate and 

71 mL in a 150 mm circular plate) to a height of 4 mm +- 0.5 mm. A sterile swab was 

dipped in the previously prepared inoculum and spread in three different directions on the 

MHA plates. Subsequently, the disks of antibiotics were applied with an Oxoid™ 

Antimicrobial Susceptibility 12-Place Disc Dispenser and with an Oxoid™ Antimicrobial 

Susceptibility 8-Place Disc Dispenser. The plates were incubated at 37 °C. After 16-20h of 
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growth, the inhibition diameters were examined and measured. The isolates were 

classified as resistant (R), intermediate resistant (I) or sensitive (S) according to the 

breakpoints established by the EUCAST (Clinical and ECOFFs) or CLSI (Table 5). 

 

Table 5: List of antibiotics used, respective concentration, respective ECOFFs and clinical breakpoints 
according to EUCAST or CLSI. 

 

Antibiotic 
Concentration 

(ug) 
ECOFF (mm) 

Clinical breakpoints (mm) 

S (≥) R(<) 

Ampicillin 10 14 14 14 

Amoxicillin/clavulanic acid 20+10 19 19 19 

Cefoxitin 30 19 19 19 

Cefotaxime 5 23 20 17 

Ceftazidime 10 22 22 19 

Aztreonam 30 26 24 21 

Imipenem 10 24 22 16 

Amikacin 30 18 16 13 

Streptomycin 10 __ 15 (CLSI) 12 (CLSI) 

Nalidixic Acid 30 19 19 (CLSI) 15 (CLSI) 

Ciprofloxacin 5 25 22 19 

Co-trimoxazole 1.25+23.75 16 16 13 

Tetracycline 30 __ 15 (CLSI) 12 (CLSI) 

Chloramphenicol 30 17 17 17 
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3.  Results and Discussion 
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3.1. Isolation and selection of E. coli isolates 

A total of 67 faecal samples were collected from wild ungulates (wild boar, red 

deer and roe deer) inhabiting in the areas of Lousã (76.1%), Idanha-a-Nova (19.4%) and 

Montesinho (4.5%). E. coli was detected in 96% of the samples (n=64) (Figure 10). No 

E. coli isolates were recovered in three of the faecal samples obtained from red deer. 

More specifically, 60.9% of the positive samples were from red deer, followed by 32.8% 

from wild boar and 6.3% from roe deer (Figure 11). In this study, the percentage of faecal 

samples that allowed the isolation of E. coli strains was similar to that obtained with 

Iberian wolf in Portugal where a recovery of 82% was achieved, but considerably higher 

that isolates recovered from wild birds in Azores Archipelago (53%), red foxes from North 

of Portugal (42%) and Iberian lynx from South Spain (60%) (A Gonçalves et al., 2013; 

Alexandre Gonçalves et al., 2013; Radhouani et al., 2013; Santos et al., 2013).  

 

 

Figure 10: Percentage of the faecal samples from which E. coli were isolated. 

 

 

Figure 11: Distribution of the positive faecal samples according to the animal species of origin. 
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A total of 640 randomly selected colonies was subjected to rep-PCR fingerprinting 

with primers targeting the BOX-element (Figure 12). This analysis allowed the selection of 

3, 2 or only 1 genotipically different E. coli isolates in 58%, 22% and 20% of the samples, 

respectively. So, a total of 152 E. coli strains were submitted to antibacterial susceptibility 

testing. From these, 59% were obtained from red deer (n=90), 36% from wild boar (n=55) 

and 5% from roe deer (n=7).  

 

 

Figure 12: Example of a BOX-PCR fingerprint obtained in this study. The first and last lanes contain the DNA 
marker GeneRuler 1000bpplus (Thermo). 

 

 

3.2. Presence of Salmonella spp. 

Healthy wildlife animals can carry potential pathogenic bacteria, such as 

Salmonella spp, to humans over long periods of time (Navarro-Gonzalez et al., 2012). 

Therefore, all the 67 faecal samples of this study were screened for the presence of 

Salmonella spp. After the cultivation in MSRV medium, 22 samples were positive or 

doubtful for this genera. From these, 14 samples presented suspicious colonies in SS and 

XLD agar. However, when these fourteen samples were subjected to PCR amplification, 

only one isolate was positive for the presence of the hilA gene. Accordingly, Salmonella 

spp. was identified in 1.5% (n=1) of the samples. The isolate was obtained from a wild 

boar’s stool collected from the Lousã area. Similar results were obtained in another study 

from wild mammals and birds in North-western Italy (4,3%) (Botti et al., 2010). 

Considering only the wild boar population screened, Salmonella spp. was present in 5% of 

the samples. A similar percentage was reported by Navarro-Gonzalez et al. in a study with 
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wild boars from Barcelona (Nora Navarro-Gonzalez et al., 2013). Yet, this percentage is 

lower than that observed in wild boars from Northeastern Spain (17.5%) and from 

Northern Italy (25%) (Navarro-Gonzalez et al., 2012; Chiari et al., 2013). Wild boars can 

be exposed to innumerous sources of Salmonella spp., including mice and birds (Navarro-

Gonzalez et al., 2012). The isolated strain (J11) showed susceptibility to all of the 

antibiotics tested (considering both clinical breakpoints and the few epidemiological cut-

offs available). In Northeastern Spain a study with wild boar reported low resistance 

values (3%) of Salmonella isolates, exhibiting resistance to ciprofloxacin, nalidixic acid, 

co-trimoxazole, streptomycin and chloramphenicol. 

 

3.3. Antimicrobial susceptibility testing of E. coli isolates 

In this study, the inhibition zone diameters (IZDs) of the 153 isolates (152 from E. 

coli and 1 from Salmonella spp.) were interpreted according to EUCAST clinical 

breakpoint values. However, EUCAST does not provide criteria for streptomycin, nalidixic 

acid and tetracycline. Therefore, for these antibiotics, CLSI breakpoints were used. The 

evaluation of the antibacterial resistance levels exhibited by the E. coli strains collected 

from Portuguese wild ungulates was performed according to i) clinical breakpoints and ii) 

epidemiological cut-offs. This strategy was chosen since the majority of the studies 

available in the literature consider only the clinical breakpoints. However, the application 

of ECOFFs is emerging and will be fundamental for resistance surveillance studies in the 

future. 

 

3.3.1. Clinical Breakpoints 

Our results showed that the majority (83.5%) of the E. coli isolates were 

susceptible to all the antimicrobial agents tested. Consequently, only 16.5% of the strains 

were resistant to at least one of those agents. More specifically, resistance was detected 

for ampicillin (10%), tetracycline (9%), streptomycin (5%), co-trimoxazole (4%), 

amoxicillin/clavulanic acid (2%) and cefoxitin (1%). Moreover, intermediate resistance was 

observed for streptomycin (11%), ceftazidime (6%) and aztreonam (1%). All the isolates 

were susceptible to cefotaxime, imipenem, amikacin, nalidixic acid, ciprofloxacin and 

chloramphenicol (Figure 13). 
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Figure 13: Percentage of resistant and intermediary E. coli isolates identified in this study according to clinical 
breakpoints (considering the total number of isolates). AMP = ampicillin; AMC = amoxicillin/clavulanic acid; 

FOX = cefoxitin; CTX = cefotaxime; CAZ = ceftazidime; ATM = aztreonam; IPM = imipenem; AK = amikacin; S 
= Streptomycin; NA = nalidixic acid; CIP = ciprofloxacin; SXT = co-trimoxazole; TE = tetracycline; C = 

chloramphenicol. 

 

Thus, the isolates collected from the Portuguese wild ungulates were mainly 

resistant to ampicillin, tetracycline, streptomycin and co-trimoxazole. Ampicillin is a β-

lactam antibiotic that is amongst the most clinically important antimicrobial agents in both 

human and veterinary medicine. Additionally, tetracycline is commonly used as a first-line 

antibiotic for many different species of domestic animals. Similar results were found for 

wild small mammals living in a Canadian swine farm, where resistance was found to 

ampicillin, amoxicillin/clavulanic acid, cefoxitin, streptomycin, co-trimoxazole, tetracycline 

and chloramphenicol (Allen et al., 2011). The highest levels of resistance in a study 

involving E. coli strains from various species of wild animals in Portugal were also 

observed for tetracycline (35%), streptomycin (22%), ampicillin (22%) and co-trimoxazole 

(19%) (Costa et al., 2008). The same study described resistance to quinolones and 

chloramphenicol, which was not observed for the strains herein analyzed. Therefore, it 

appears that resistance to ampicillin, tetracycline and streptomycin should be expected 

when analyzing strains isolated from wild animals. However, the resistance levels can be 

distinct. For instance, in the E. coli isolates, which are subject of the present study, the 

percentage of resistance against these three antibiotics was 5 to 2 times lower than the 
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described in the other two studies abovementioned. In a study performed with faecal E. 

coli isolates from Iberian lynx, high percentages of resistance were observed to 

tetracycline (33%), streptomycin (28%), nalidixic acid (28%) and co-trimoxazole (22%), 

but unlike the animals of the present study, antibiotics are given to the Iberian lynx during 

management protocols (Alexandre Gonçalves et al., 2013). 

In theory, wild animals are not in contact with antimicrobial agents, since they are 

not submitted to therapy. However, antibiotics are constantly unloaded into the 

environment, as a result of their use in the treatment of human infections and their wide 

application in the veterinary and agricultural settings (Martínez, 2008). Moreover, 

environmental microorganisms are themselves producers of the majority of the antibiotics 

marketed today. Interestingly, the antibiotics with higher microbial resistance percentages 

identified (tetracyclines, penicillins and aminoglycosides) belong to the three classes of 

compounds with more sales in the Portuguese veterinary field, according to what was 

reported in 2011 by DGAV ((DGAV) Direcção-geral de alimentação Veterinária, 2011). 

Also, and according to the last European Medicine Agency (EMA) report (European 

Medicines Agency, 2013), tetracyclines and penicillins are the classes of antimicrobials 

mostly used for food-producing animals in Europe. 

Considering each of the species, higher levels of resistance were generally 

obtained for wild boar, while the isolates originating from roe deer (n=7) were susceptible 

to all the antimicrobials tested. Specifically, the E. coli strains recovered from wild boar 

(n=55) were resistant to ampicillin (22%), tetracycline (11%), co-trimoxazole (9%), 

streptomycin (7%) and amoxicillin/clavulanic acid (2%). On the other hand, the E. coli 

isolates of red deer showed the highest percentage of resistance to tetracycline (8%) 

followed by ampicillin (3%) and streptomycin (3%). Resistance to amoxicillin/clavulanic 

acid (2%), cefoxitin (1%), and co-trimoxazole (1%) was also identified in the same 

population (Figure 14). The E. coli isolates from wild boar showed higher percentages of 

resistance than the isolates of red deer, except for amoxicillin/clavulanic acid and 

cefoxitin. In our study, 25% of the isolates from wild boar and 12% of the isolates from red 

deer were resistant to at least one of the antibiotics tested. In a wild boar population of 

central Europe, the percentage of strains with this phenotype was lower (6%) (Literak et 

al., 2010). In another study with red deer from Stelvio National Park (Italy), 14% of the 

isolates collected showed resistance to at least one antimicrobial agent (Caprioli et al., 

1991). These last results are more in line with what was observed in the present study. No 

resistant isolates were identified from roe deer. Most likely, this result was due to the small 

sample size (n=4) and small number of isolates analyzed (n=7). In Portugal, the 
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information available for antibacterial resistance in wild ungulates is limited to wild boar in 

the North region of the country. Nonetheless, in that study the focus was in cefotaxime 

resistant E. coli (10% of the population) and the antibacterial resistance profile of the 

susceptible population was not evaluated (Poeta et al., 2009). 

The differences observed in the resistance levels of wild boar and red deer strains 

can probably be explained by their distinct phenology. Wild boars are scavengers 

omnivorous that come close to farms, consuming animal waste and even human garbage, 

while red deer are herbivores adapting their diet to what is available (Nora Navarro-

Gonzalez et al., 2013). Therefore, wild boars are in contact with areas highly influenced by 

anthropogenic activities, which implies a greater exposure to antibacterials as well as to 

bacterial strains of human origin. 

  

 

Figure 14: Percentage of resistant E. coli isolates from wild boar and red deer independently (roe deer was not 
included because no resistant isolates were identified). AMP = ampicillin; AMC = amoxicillin/clavulanic acid; 

FOX = cefoxitin; CTX = cefotaxime; CAZ = ceftazidime; ATM = aztreonam; IPM = imipenem; AK = amikacin; S 
= Streptomycin; NA = nalidixic acid; CIP = ciprofloxacin; SXT = co-trimoxazole; TE = tetracycline; C = 

chloramphenicol. 
  

  

If the geographical area is considered (Figure 15), this study showed that E. coli 

isolates resistant to streptomycin and co-trimoxazole were all recovered from animals 

living in Lousã area. On the other hand, resistance to cefoxitin was only detected in 

isolates with origin in Idanha-a-Nova. The strains isolated from wild ungulates from 

Montesinho only exhibited resistance to tetracycline. The comparison of the resistance 
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levels based on the geographical origin is difficult to perform due to the discrepancy in the 

number of isolates that were analyzed from each region (Lousã: n=110; Idanha-a-Nova: 

n=33; Montesinho n=9).  
  

 

Figure 15: Percentage of resistant E. coli isolates based on their geographical origin. AMP = ampicillin; AMC = 
amoxicillin/clavulanic acid; FOX = cefoxitin; CTX = cefotaxime; CAZ = ceftazidime; ATM = aztreonam; IPM = 
imipenem; AK = amikacin; S = Streptomycin; NA = nalidixic acid; CIP = ciprofloxacin; SXT = co-trimoxazole; 

TE = tetracycline; C = chloramphenicol. 
  

3.3.2. Epidemiological cut-offs (ECOFFs) 

The phenotypic antimicrobial susceptibility testing must have interpretation criteria 

so that the results are qualitative. These qualitative values can be based on clinical criteria 

or microbiological criteria. The last intend to distinguishing isolates with and without 

phenotypically detectable acquired resistance mechanisms and are designated as 

epidemiological cut-off values (ECOFFs) (Sjölund et al., 2009). According to the EUCAST 

definition, a microorganism is defined as wild type (WT) by the absence of acquired and 

mutational resistance mechanisms to a determined antimicrobial. Thus, by application of 

an ECOFF to a bacterial MIC distribution, microorganisms can be classified as wild type 

or non-wild type. In this way, it is considered that ECOFFs are not changed by sampling 

time, source (human, animal, environmental) or geographical origin (Brown, 2011). 

ECOFFs have no obvious relationship to the clinical breakpoints, which are determined by 
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committees to be clinically relevant (Kahlmeter, 2011). Since the samples had no clinical 

but environmental origin, the results were also analyzed according to the ECOFFs. 

For E. coli, there is no definition of these cut-offs for disk diffusion for tetracycline 

and streptomycin and therefore, results for these two antibiotics will be discussed 

separately and later in this document. Thus, 82% of the E. coli isolates showed IZDs 

within the wild type values for all the tested antimicrobials. Non-wild type phenotypes were 

identified for ampicillin (10%), ceftazidime (6%), co-trimoxazole (4%), 

amoxicillin/clavulanic acid (2%) cefotaxime (2%), aztreonam (1%) and cefoxitin (1%) 

(Figure 16). 
  

 

Figure 16: Percentage of non-wild type E. coli isolates according to epidemiological cut-offs, considering the 
total number of isolates. AMP = ampicillin; AMC = amoxicillin/clavulanic acid; FOX = cefoxitin; CTX = 

cefotaxime; CAZ = ceftazidime; ATM = aztreonam; IPM = imipenem; AK = amikacin; NA = nalidixic acid; CIP = 
ciprofloxacin; SXT = co-trimoxazole; C = chloramphenicol. 

 

Focusing on the values obtained for each of the ungulates species (Figure 17), 

only one E. coli from roe deer showed a non-wild type phenotype for the antibiotic 

aztreonam. The percentage of acquired resistance for ampicillin was higher in the wild 

boar isolates (22%) than in the red deer’s (3%). The same trend was observed for 

ceftazidime and co-trimoxazole. Non-wild type phenotype for cefoxitin was detected 

exclusively in one strain, isolated from a red deer from Idanha-a-Nova region. 

Interestingly, this strain was susceptible to all the other β-lactams. A study in an urban 

area in Barcelona with wild boars had reported similar results, having characterized the 

studied population as non-wild type to tetracycline, streptomycin, trimethoprim, 
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sulfamethoxazole and ampicillin (Nora Navarro-Gonzalez et al., 2013). In another study 

involving wild boars inhabiting a National Game Reserve (Spain) it was observed that the 

higher percentage of non-wild type E. coli was obtained for tetracycline, followed by 

ampicillin (N Navarro-Gonzalez et al., 2013). 

 

 

Figure 17: Percentage of non-wild type E. coli isolates according to epidemiological cut-offs, considering the 
isolates collected from wild boar, red deer and roe deer independently. AMP = ampicillin; AMC = 

amoxicillin/clavulanic acid; FOX = cefoxitin; CTX = cefotaxime; CAZ = ceftazidime; ATM = aztreonam; IPM = 
imipenem; AK = amikacin; NA = nalidixic acid; CIP = ciprofloxacin; SXT = co-trimoxazole; C = 

chloramphenicol. 

 

ECOFFs can be employed in populations of bacteria from distinct sources if the 

wild type distributions are independent of the host species (Santos et al., 2013). The 

distribution of IZDs observed for the E. coli strains recovered from wild ungulates was 

analyzed for ampicillin, co-trimoxazole, cefotaxime and ceftazidime (Figure 18). Also, the 

data provided by the EUCAST for the same species and antibiotics was included for 

comparison. It was found that the distribution of IZDs of the strains from wild ungulates 

and the EUCAST strains were highly similar for ampicillin and co-trimoxazole antibiotics. 

However, the same was not observed for cefotaxime and ceftazidime. For these two 

antibiotics, the IZDs obtained in the present study follow the typical Gaussian distribution. 

However, their medians were about 2 to 4 mm smaller than the IZDs of EUCAST for 

cefotaxime and ceftazidime, respectively. These results can be due to the difference in the 
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number of isolates considered, although this factor was not critical for the analysis of the 

other two antibiotics. On the other hand, the results can also indicate that the distribution 

of IZDs is slightly different and in this situation the use of ECOFFs can lead to an 

overestimation of non-wild type phenotypes. This issue should be further investigated 

through the MICs distribution analysis of the 152 isolates presented in this study for both 

cefotaxime and ceftazidime. 
 

 

 

Figure 18: Histograms of distribution of the inhibition zone diameters obtained for the E. coli isolates object of 
the present study and those provided by EUCAST to ampicillin, co-trimoxazole, cefotaxime and ceftazidime. 
The dashed line indicates the epidemiological cut-off value defined for the wild type population by EUCAST. 

 

As abovementioned, the ECOFFs for tetracycline and streptomycin are not defined 

for E. coli by EUCAST, considering disk diffusion testing. Thus, the distribution of the IZDs 

obtained in this study for these two antibiotics were analyzed (Figure 19). According to 

this analysis, the ECOFFs of 13 mm and 19 mm could be proposed for streptomycin and 

tetracycline, respectively. Considering these values, the percentage of non-wild type 

isolates for tetracycline would be 9% and for streptomycin 5%. Yet, this information will 

not be considered to define resistance profiles in the following sections, since it is based 

on non-validated cut-offs. Thus, it would be also important to obtain the tetracycline and 

streptomycin ECOFFs for E. coli based on disk diffusion testing, as it was already 

performed for the broth dilution testing. 
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Figure 19: Histogram of the IZDs obtained for the E. coli isolates object of the present study to a) 
streptomycin and b) tetracycline. The dashed line indicates our proposal to ECOFF for the wild type 
population. 

 

3.3.3. Resistance phenotypes 

According to the clinical breakpoints values, a multiresistance phenotype was 

identified for 5 isolates (3.3%), which showed resistance to ampicillin, streptomycin, co-

trimoxazole and tetracycline (Table 6). Co-resistance of ampicillin with 

amoxicillin/clavulanic acid (n=2) or with co-trimoxazole (n=1) was also observed. Using 

the epidemiological cut-offs the number of isolates possessing a co-resistance phenotype 

was the same (n= 10; Table 7). The multiresistant (n=5; AMPR-SXTR-SR-TER) and the 

AMPR-SXTR (n=1) isolates defined according to the clinical breakpoints matched with the 

6 isolates identified with AMPR-SXTR phenotype defined by the ECOFFs. This was not 

surprising because streptomycin and tetracycline were not herein considered for the 

analysis with epidemiological cut-offs. Five of these isolates were collected from wild boar 

and one from red deer samples, all inhabiting Lousã area. Considering the 5 isolates from 

wild boar, despite the common resistance phenotype, only 2 isolates (J1-6 and J3-12) 

originated a similar banding profile in BOX-PCR analysis, suggesting their clonal 

relationship. The co-resistance to penicillins and cephalosporins was identified only in one 

isolate and according to ECOFFs. The most frequent detected phenotypes with clinical 

breakpoints were AMPR (n=7) and TER (n=6); moreover, the most non-wild type 

phenotypes detected were CAZR (n=7), AMPR (n=6) and AMPR-SXTR (n=6). 

Independently of the system used for the interpretation of IZDs, the multiresistant 

isolates herein identified were mainly recovered from wild boar samples. The phenotype 

of these isolates was characterized by resistance to ampicillin, streptomycin, tetracycline 

and co-trimoxazole. Interestingly, the AMPR-SR-TR has been reported as the most 

abundant non-ESBL resistance phenotype among E. coli of wildlife origin (Guenther et al., 

2011).  In fact, herein, the co-resistance of penicillins and cephalosporins was observed 

a) b) 
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only in one strain, suggesting a very low prevalence of ESBL-producers. In Portugal, the 

percentages of ESBLs detected in wildlife ranged from 10% (in wild boars) to 30% (in 

seagulls) (Poeta et al., 2009; Simões et al., 2010). 

 

Table 6: Resistance phenotypes detected among the 152 E. coli isolates obtained from faecal samples of wild 
ungulates in Portugal, according to clinical breakpoints. 

 

Resistance 

phenotype 

Total of 

isolates 

 Isolates 

 Wild boar Red deer 

AMP-S-SXT-TE 5  J1-6; J2-1; J3-12; J3-5 V2-7 

AMP-AMC 2  J8-8 V19-1 

AMP-SXT 1  J2-4 - 

S-TE 2  - V35-1; V7-3 

AMP 7  
J1-1; J2-5; J7-2; J4-1; J14-10; 

J20-6 
V23-7 

AMC 1  - V28-3 

FOX 1  - V26-7 

TE 6  J3-10; J4-2 V5v-4; V3-5; V33-2; V34-8 

 

Table 7: Resistance phenotypes detected among the 152 E. coli isolates obtained from faecal samples of wild 
ungulates in Portugal, according to epidemiological cut-offs. 

 

Non-wild type 

phenotype 

Number 

of isolates 

 Isolates 

 Wild boar Red deer Roe deer 

AMP-AMC 2  J8-8 V19-1 - 

AMP-CAZ 1  J7-2 - - 

AMP-SXT 6 
 J1-6; J2-1; J2-4; J3-5; 

J3-12 
V2-7 - 

CAZ-CTX 1  J6-1 - - 

AMP 6 
 J1-1; J2-5; J4-1; J14-

10; J20-6 
V23-7 - 

AMC 1  - V28-3 - 

ATM 1  - - V/C-3 

CAZ 7 
 J4-4; J7-5; J9-8; J16-

3; J13-8; J13-9 
V23-8 - 

CTX 2  12-7 V1-10 - 

FOX 1  - V26-7 - 
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3.4. Screening of shiga toxin-producing Escherichia coli 
(STEC) 

3.4.1. Samples 

The 67 faecal samples were screened for the presence of STEC by amplification 

of shiga-toxin genes stx1 and stx2. STEC strains are generally divided in O157:H7 and 

non-O157 serotype. Thus, the same samples were also investigated specifically for the 

presence of the E. coli O157:H7 serotype using the rfbE gene as a marker. The results of 

real-time PCR showed that 19.4% of the samples (n=13) were positive for at least one of 

the shiga-toxin genes (Table 8). Among these, a roe deer’s sample was positive for both 

stx variants under study. Regarding the rfbE gene, it was successfully amplified only in 

one sample (1.5%), from wild boar (Table 8), indicating the presence of E. coli O157:H7 in 

this animal. Considering each species of the wild ungulates under study, STEC-

associated genes were identified in 4.5% of the wild boar samples, 13.4% of the red deer 

and 1.5% of the roe deer. In order to confirm the results, PCR reactions targeting stx1 and 

stx2 individually were performed for the thirteen positive samples. The results obtained 

were in agreement with those obtained with multiplex PCR. Thus, it was determined that 

31% of the positive samples possess the stx1 gene, whereas 77% have the stx2 variant 

(Figure 20). 

 

Table 8: List of positive faecal samples for the shiga-toxin genes amplified in this study by real-time PCR. 
 

Sample ID Source Geographical area Gene amplified  

V2 

Red deer 

Lousã stx2 

V8 Lousã stx2 

V18 Lousã stx2 

V23 Idanha-a-Nova stx2  

V25 Idanha-a-Nova stx2 

V27 Idanha-a-Nova stx2 

V32 Lousã stx2 

V38 Lousã stx1 

V39 Lousã stx1 

J5 

Wild boar 

Lousã stx2 

J7 Lousã stx1 

J21 Idanha-a-Nova stx2; rfbE 

V/C Roe deer Montesinho stx1 and stx2 
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Figure  20: Percentage of stx variants detected in the 13 positive faecal samples. 

 

 

In Spain, an investigation carried out with sheep showed that non-O157 STEC 

strains were present in 35% of the animals, whereas O157:H7 STEC were recovered only 

from 1% (Rey et al., 2003). Other study involving a wild boar population of Spain detected 

STEC in 8% of the sampled animals, in which 3,3% were E. coli O157:H7 and 5,2% were 

non-O157 STEC strains (Sánchez et al., 2010). Consequently, despite some differences, 

the occurrence of non-O157 STEC isolates is generally higher in animals than the 

occurrence of O157:H7 strains. Therefore, our results are in agreement with these 

studies, since the percentage of wild ungulates carrying non-O157 STEC strains should 

be higher than those possessing O157:H7 STEC strains. 

 

3.4.2. E. coli isolates 

The E. coli strains (n=31) isolated from the 13 STEC-positive samples were 

screened for the presence of rfbE, stx1 and stx2 genes. This approach allowed to detect 3 

isolates possessing the stx1 (n=1) and the stx2 (n=2) genes, whereas none of them was 

positive for the rfbE gene (Table 9). These 3 isolates were recovered from red and roe 

deer and are non-O157 STEC. After the sequencing reaction, it was possible to determine 

the subtype of each of the stx genes amplified (Table 9). Some studies suggest that Stx2 

toxin alone can cause symptoms of hemolytic-uremic syndrome (HUS), whereas the 

administration of the same dose of Stx1 does not cause such symptoms (Fuller et al., 

2011). Particularly, the subtypes stx2a, stx2c and stx2d have been linked with severe 

illness in humans (Feng et al., 2011). In this study, only one of these variants (stx2d) was 

identified in the strain V23-9, isolated from red deer inhabiting Idanha-a-Nova. 
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Table 9: List of E. coli isolates positive for stx genes. 

 

Sample ID Isolate Source Geographical area Gene amplified  

V23 V23-9 
Red deer 

Idanha-a-Nova stx2d 

V32 V32-8 Lousã stx2g, ehxA 

V/C V/C-3 Roe deer Montesinho stx1c  

 

 

It is known that STEC strains normally encode other virulence factors in addition to 

stx. One example is the outer membrane protein intimin, encoded by the eae gene. This 

gene is part of a pathogenicity island called locus of enterocyte effacement (LEE). The 

LEE possesses the genetic determinants responsible for the ability of some E. coli 

isolates to cause lesions on intestinal epithelial cells (Blanco et al., 2005). Other important 

virulence factors are the hemolysins, such as the encoded by the plasmid-carried ehxA 

gene (Lorenz et al., 2013). This gene is frequently associated with diarrheal disease in 

humans. Thus, the presence of eae and ehxA in the 3 STEC isolates identified in this 

study was investigated. The strain V32-8, possessing the stx2g gene, was also positive 

for ehxA and none of the isolates amplified the intimin gene. In fact, in wildlife, the 

occurrence of enterohemolysin genes in STEC strains is usually higher than eae 

(Sánchez et al., 2010).  
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4.  Conclusions and Future Perspectives 
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Wildlife is being recognized as a reservoir of pathogenic bacteria such as STEC 

and Salmonella spp. Moreover, the number of studies reporting the occurrence of AMR in 

wildlife is increasing, including resistance towards antibiotics commonly used in human 

therapeutics (Miko et al., 2009; Cristóbal-Azkarate et al., 2014). Thus, in the present 

study, three Portuguese wild ungulates were studied to evaluate the levels of AMR 

present in their E. coli isolates and also to understand their potential as carriers of 

potential harmful bacteria to humans. To achieve this, a total of 67 faecal samples from 

red deer, wild boar and roe deer inhabiting three distinct geographical areas were 

collected and analyzed. 152 E. coli isolates were submitted to antimicrobial susceptibility 

testing and it was found that highest levels of resistance were obtained for β-lactams 

(mainly ampicillin) and tetracyclines. On the other hand, resistance to chloramphenicol 

and to the synthetic antibiotics (quinolones and fluoroquinolones) was not identified. The 

percentage of non-wild type phenotypes detected using ECOFFs was equal to the 

percentage of resistant isolates established with clinical breakpoints for ampicillin, 

amoxicillin/clavulanic acid, cefoxitin and co-trimoxazole. For ceftazidime and azetreonam, 

they corresponded exactly to the percentage of intermediate resistant isolates identified 

with clinical breakpoints. The analysis with ECOFFs allowed the identification of a non-

wild type phenotype for cefotaxime, whereas the population was entirely susceptible to 

this antibiotic from the clinical point of view. Thus, it was possible to identify isolates with 

non-wild type phenotypes towards cephalosporins of third generation. E. coli strains from 

wild boar showed the highest values of resistance, followed by red deer. No resistant 

isolates were identified from roe deer. It was found that 3.3% of the bacteria isolates 

studied are multiresistant, possessing the AMPR-SR-SXTR-TER phenotype. All these 

bacteria were collected from animals living in Lousã. None of the isolates presented a 

resistance phenotype indicating the presence of ESBLs, which hydrolyze β-lactams, 

broad-spectrum cephalosporins and monobactams. Hereafter, it will be important to 

characterize the resistance genes present in the isolates that reveal a resistance 

phenotype. Moreover, it would be interesting to study the presence of mobile genetic 

elements, such as integrons, frequently associated with the recruitment of AMR genes. 

Considering the presence of bacteria potentially pathogenic to humans, a low 

prevalence of Salmonella spp. was observed in the present study. Only one isolate was 

recovered, with susceptibility to all the antibiotics tested. The isolate was not 

characterized, so far, in terms of subspecies and serovar, but that will be performed in the 

future. In forthcoming studies, it would be also interesting to adopt molecular-based 

techniques to complement the cultivation-dependent methods used for the detection of 
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these bacteria. The use of PCR for the identification of STEC allowed to perceive that 

19.4% (n=13) of the wild ungulates included in this study are potential carriers of STEC, 

including the enterohemorrhagic serotype O157:H7. The results obtained suggest that 

stx2 genes are more abundant than stx1 in the positive samples. Also, the E. coli strains 

previously isolated from STEC-positive samples were examined for the presence of shiga-

toxin genes. With this approach it was possible to detect 3 STEC strains, all from different 

samples. Thus, none of the isolates from the remaining 10 samples were STEC. However, 

it should be considered that the selection of E. coli colonies was not performed from 

enriched cultures. These cultures were preserved in order to evaluate the presence of 

STEC using rainbow agar and chromagar STEC. Nevertheless, it is confirmed that at least 

4.5% of the wild ungulates of this study are STEC reservoirs, containing the stx1c, stx2d 

and stx2g variants of shiga-toxin genes. Moreover, one of these isolates also bear the 

enterohemolysin gene ehxA. None of the isolates were positive for eae gene. To the best 

of our knowledge, this is the first report of STEC occurrence in Portuguese red and roe 

deer animals. These isolates should be further characterized mainly regarding their 

serotype and the production of toxins.  

The study herein presented, although at an early stage, reveals that surveillance 

studies are needed and should be continued in the future to follow up the prevalence of 

AMR and human pathogens in wild animals. Moreover, data regarding the emergence and 

dissemination of new or already known AMR genes in these different ecosystems should 

be collected. The three geographical areas chosen for this study are characterized by 

distinct anthropogenic influences. Therefore, it would be important to collect and analyse 

approximately the same number of E. coli isolates from these three regions. This will allow 

to understand if a correlation exists between the proximity to humans and AMR 

prevalence in the wild animals, as suggested by several studies. Nevertheless, our results 

show that common Portuguese wild ungulates can be reservoirs of antibiotic resistant 

bacteria and may act as carriers for their transmission. Furthermore, to prevent the 

occurrence of zoonoses, it is important to identify which populations and animals can be 

the primary source of infection. 

 

In summary, the following major points require further investigation: 

i. Characterization of the antimicrobial resistance genes; 

ii. Characterization of the Salmonella spp. isolate serotype; 

iii. Investigation of the presence of STEC using agar-based techniques and the 

cultures after enrichment;  
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iv. Characterization of the STEC isolates collected in this study regarding their 

serotype, production of toxin and presence of other virulence genes, such  as 

saa (STEC autoagglutinating adhesin); 

v. Determination and analysis of the E. coli phylogenetic groups. 
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Appendix 1. Typical composition of medium (g/litre) 

 

A. 1.1. MacConkey Agar (Merck) 

Peptone from gelatin 17.0; peptone from casein 1.5; peptone from meat 1.5; 

sodium chloride 5.0; lactose 10.0; bile salt mixture 1.5; neutral red 0.03; crystal violet 

0.001; agar-agar 13.5. 

 

A. 1.2. ChromoCult ® Coliform Agar (Merck) 

Peptone 3.0; sodium chloride 5.0; sodium dihydrogen phosphate 2.2; di-sodium 

hydrogen phosphate 2.7; sodium pyruvate 1.0; tryptophan 1.0; agar-agar 10.0; Sorbitol 

1.0; Tergitol® 7 0.15; 6-chloro-3-indoxyl beta-Dgalactopyranoside 0.2; 5-bromo-4-chloro-

3-indoxyl-beta-D-glucuronic acid 0.1; isopropyl-beta Dthiogalactopyranoside 0.1. 

 

A. 1.3. Modified Semi-solid Rappaport Vassiliadis (MSRV; Oxoid) 

Tryptose 4.59; casein hydrolysate 4.59; sodium chloride 7.34; potassium 

dihydrogen phosphate 1.47; magnesium  chloride (anhydrous) 10.93; malachite green 

oxalate 0.037; agar 2.7; pH 5.4 ± 0.2 @ 25°C. Suplement: Novobiocin 10.0 mg. 

 

A. 1.4. Salmonella Shigella Agar (SS agar; Merck) 

Peptones 10.0; lactose 10.0; ox bile 8.5; sodium citrate 10.0; sodium thiosulfate 

8.5; ammonium iron(III) citrate 1.0; brilliant green 0.0003; neutral red 0.025; agar-agar 

12.0. 

 

A. 1.5. Tryptic Soy Agar (TSA) (Merck) 

Peptone from casein 15.0; peptone from soymeal 5.0; sodium chloride 5.0; agar-

agar 15.0. 

 

A. 1.6. Buffered Peptone Water (BPW; Merck) 

Peptone from casein 10.0; sodium chloride 5.0; disodium hydrogen phosphate 

dodecahydrate 9.0; potassium dihydrogen phosphate 1.5. 

 

A. 1.7. Xylose-Lysine-Desoxycholate Agar  (XLD; Oxoid) 

Yeast extract 3.0; L-Lysine HCl 5.0; xylose 3.75; lactose 7.5; sucrose 7.5; sodium 

desoxycholate 1.0; sodium chloride 5.0; sodium thiosulphate 6.8; ferric ammonium citrate 

0.8; phenol red 0.08; agar 12.5; pH 7.4 ± 0.2 @ 25°C. 
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A. 1.8. Luria-Bertani (LB; Merk) 

Tryptone ...................................................................10.0 g 

Yeast Extract .............................................................. 5.0 g 

Sodium Chloride ...................................................... 10.0 g 

 

A. 1.9. Mueller Hinton Agar (MHA; Merck) 

Meat infusion 2.0; casein hydrolysate 17.5; starch 1.5; agar-agar 13.0. 
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Appendix 2. Samples data 

 

A. 2.1. Wild Boar (Sus scrofa) 

Twenty-one faecal samples from wild boars were collected in mounts. The data 

samples are shown in Table 10. 

 

Table 10: List of samples with respective collection date and location. 

 

Sample ID Date of collection Place of collection 

J1 12-10-2013 Lousã 

J2 12-10-2013 Lousã 

J3 12-10-2013 Lousã 

J4 12-10-2013 Lousã 

J5 12-10-2013 Lousã 

J6 18-01-2014 Lousã 

J7 18-01-2014 Lousã 

J8 18-01-2014 Lousã 

J9 18-01-2014 Lousã 

J10 18-01-2014 Lousã 

J11 18-01-2014 Lousã 

J12 25-01-2014 Lousã 

J13 26-01-2014 Penacova 

J14 26-01-2014 Penacova 

J15 22-02-2014 Idanha-a-Nova 

J16 22-02-2014 Idanha-a-Nova 

J17 22-02-2014 Idanha-a-Nova 

J18 22-02-2014 Idanha-a-Nova 

J19 22-02-2014 Idanha-a-Nova 

J20 22-02-2014 Idanha-a-Nova 

J21 22-02-2014 Idanha-a-Nova 
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A. 2.2. Red Deer (Cervus elaphus) 

Thirty-nine faecal samples from red deer were collected. The data samples are 

shown in Table 11. 

 

Table 11: List of samples with respective collection date and location. 

 

Sample ID Date of collection Place of collection 

V1 12-10-2013 Lousã 

V2 12-10-2013 Lousã 

V3 12-10-2013 Lousã 

V4 14-10-2013 Montesinho 

V5v 14-10-2013 Montesinho 

V6 17-01-2014 Lousã 

V7 17-01-2014 Lousã 

V8 17-01-2014 Lousã 

V9 18-01-2014 Lousã 

V10 18-01-2014 Lousã 

V11 18-01-2014 Lousã 

V12 18-01-2014 Lousã 

V13 01-02-2014 Lousã 

V15 31-01-2014 Lousã 

V16 31-01-2014 Lousã 

V17 01-02-2014 Lousã 

V18 01-02-2014 Lousã 

V19 31-01-2014 Lousã 

V20 01-02-2014 Lousã 

V21 01-02-2014 Lousã 

V22 31-01-2014 Lousã 

V23 22-02-2014 Idanha-a-Nova 

V24 22-02-2014 Idanha-a-Nova 

V25 22-02-2014 Idanha-a-Nova 

V26 22-02-2014 Idanha-a-Nova 

V27 22-02-2014 Idanha-a-Nova 

V28 22-02-2014 Idanha-a-Nova 

V30 28-02-2014 Lousã 
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V31 28-02-2014 Lousã 

V32 28-02-2014 Lousã 

V33 05-03-2014 Lousã 

V34 05-04-2014 Lousã 

V35 30-03-2014 Lousã 

V36 05-04-2014 Lousã 

V37 05-04-2014 Lousã 

V39 05-04-2014 Lousã 

V40 05-04-2014 Lousã 

V41 05-04-2014 Lousã 

V42 05-04-2014 Lousã 

 

A. 2.3. Roe Deer (Capreolus capreolus) 

Four faecal samples from red deer were collected. The data samples are shown in 

Table 12. 

 

Table 12: List of samples with respective collection date and location. 

 

Sample ID Date of collection Place of collection 

V/C-1 14-10-2013 Montesinho 

C2-1 18-01-2014 Lousã 

C3-1 18-01-2014 Lousã 

C4-1 31-01-2014 Lousã 

 


