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resumo 
 
 

Nas últimas décadas a redução de emissões de gases poluentes resultantes 
da combustão de combustíveis fósseis tem sido uma preocupação mundial. 
Para tal, a redução de compostos à base de enxofre e a sua substituição por 
biocombustíveis (como o bioetanol, produzido em elevadas quantidades a 
partir de sacarose, amido ou compostos lenhocelulósicos) tem sido estudada e 
aplicada. 
Visando este propósito, uma nova classe de solventes denominada de líquidos 
iónicos (LIs) têm sido estudada visando o desenvolvimento de novos 
processos de separação para a substituição dos solventes orgânicos 
atualmente utilizados. Os LIs podem ser constituídos por diferentes 
combinações de catiões e aniões, conferindo propriedades únicas a estes 
solventes. A capacidade de ajustar estas propriedades para um determinado 
fim ou aplicação é um dos aspetos mais relevantes dos LIs. 
Dado o número elevado de combinações possíveis para os iões constituintes 
dos LIs, é necessário recorrer a abordagens preditivas que permitam avaliar, a 
priori, o potencial dos LIs para uma dada aplicação. Uma abordagem possível 
consiste em técnicas de simulação de dinâmica molecular, baseadas em 
mecânica estatística e nas leis de movimento de Netwon, que permitem a 
reprodução e caracterização de sistemas macroscópicos, pela previsão de 
propriedades e organização estrutural dos átomos nos sistemas em questão. 
No caso dos LIs, a aplicação da dinâmica molecular tem sido amplamente 
usada, com um desafio adicional dada a dinâmica (lenta) característica dos 
LIs, o que requer melhorias nos campos de força atualmente usados, como 
também um acrescido esforço computacional. 
Esta tese aborda diferentes estudos realizados em sistemas representativos 
de linhas de produção dos combustíveis e biocombustíveis, onde são 
estudados os mecanismos de interação estabelecidos pelos LIs, através de 
simulações de dinâmica molecular. Desta forma, sistemas compostos por LIs e 
tiofeno, benzeno, água, etanol, e moléculas de glucose, serão caracterizados e 
avaliados. No caso das moléculas de glucose, será também estudado um 
campo de força recentemente publicado, de forma a avaliar a sua capacidade 
para reproduzir o comportamento dinâmico do sistema em solução aquosa. 
Os resultados obtidos mostram que as interações estabelecidas pelos LIs 
estão relacionadas com as características individuais de cada LI. Em geral, a 
polaridade dos LIs estudados é determinante nas interações estabelecidas. 
Embora seja inquestionável as vantagens de usar simulação de dinâmica 
molecular nestes sistemas, é preciso reconhecer a necessidade de melhorias 
nos campos de força atuais, não só para uma correta descrição dos sistemas 
contendo LIs, mas também para os hidratos de carbono. 
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abstract 
 

For the past decades it has been a worldwide concern to reduce the emission 
of harmful gases released during the combustion of fossil fuels. This goal has 
been addressed through the reduction of sulfur-containing compounds, and the 
replacement of fossil fuels by biofuels, such as bioethanol, produced in large 
scale from biomass. 
For this purpose, a new class of solvents, the Ionic Liquids (ILs), has been 
applied, aiming at developing new processes and replacing common organic 
solvents in the current processes. ILs can be composed by a large number of 
different combinations of cations and anions, which confer unique but desired 
properties to ILs. The ability of fine-tuning the properties of ILs to meet the 
requirements of a specific application range by mixing different cations and 
anions arises as the most relevant aspect for rendering ILs so attractive to 
researchers. 
Nonetheless, due to the huge number of possible combinations between the 
ions it is required the use of cheap predictive approaches for anticipating how 
they will act in a given situation. Molecular dynamics (MD) simulation is a 
statistical mechanics computational approach, based on Newton’s equations of 
motion, which can be used to study macroscopic systems at the atomic level, 
through the prediction of their properties, and other structural information. In the 
case of ILs, MD simulations have been extensively applied. The slow dynamics 
associated to ILs constitutes a challenge for their correct description that 
requires improvements and developments of existent force fields, as well as 
larger computational efforts (longer times of simulation). 
The present document reports studies based on MD simulations devoted to 
disclose the mechanisms of interaction established by ILs in systems 
representative of fuel and biofuels streams, and at biomass pre-treatment 
process. Hence, MD simulations were used to evaluate different systems 
composed of ILs and thiophene, benzene, water, ethanol and also glucose 
molecules. For the latter molecules, it was carried out a study aiming to 
ascertain the performance of a recently proposed force field (GROMOS 
56ACARBO) to reproduce the dynamic behavior of such molecules in aqueous 
solution. 
The results here reported reveal that the interactions established by ILs are 
dependent on the individual characteristics of each IL. Generally, the polar 
character of ILs is deterministic in their propensity to interact with the other 
molecules. Although it is unquestionable the advantage of using MD 
simulations, it is necessary to recognize the need for improvements and 
developments of force fields, not only for a successful description of ILs, but 
also for other relevant compounds such as the carbohydrates. 
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1.1. Scope	  and	  Objectives	  
	  

Unlike the expectations of many, fossil fuels are today, and will remain for long, our main source 

of energy and transport fuel1. Nevertheless, the environmental impact of their continued usage is well 

known by the emission of pollutant gases released during their combustion with concomitant extremely 

severe climatic consequences. Emissions of NOX (nitrogen oxides), SOX (sulfur oxides), CO2, N2O and 

CH4 are some of the most harmful gases responsible for acid rain and greenhouse effects, having also a 

significant negative impact on human health1. For this reason, there is a worldwide concern in reducing 

the high dependence on fossil fuels by replacing them for other alternatives, such as biofuels, as well as 

continuing to develop and improve technologies to reduce the emission of harmful gases from their 

combustion. 

 

 
Figure 1.1 - Primary energy use in the U.S.A since 1980 and projections up to 2040. Energy Information 

Administration (EIA), Monthly Energy Review, September 2013, DOE/EIA-0035 (2013/09).2 

Environmental regulations at different countries have imposed stringent rules, aiming at the 

reduction of SOX emissions (responsible for acid rains and also for poisoning the catalytic activity 

implemented on motor engines), requiring refineries to produce fuels with ultra-low sulfur content of 

10 ppm according to EU and US legislation2,3. At the same time, alternatives to the use of fossil fuels 

have gained an interesting place, with a prediction for concomitant increases in their usage and for 

important investments in the next decades (Figure 1.1). Within the possible alternatives, biofuels seem 

to be one of the most promising options, becoming the object of a significant number of studies 
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devoted to their production, such as bioethanol and biodiesel, through processes based on the 

consumption of biomass (renewable material). Albeit biofuels eliminate the emission of harmful gases, 

their production still requires a lot of attention, either from academia and industry, since they are not 

yet economic and sustainable alternatives.4 

For the last decades, for both fuel improvement and biofuel production processes, a new class of 

solvents named ionic liquids (ILs)5 has been studied and applied. These solvents are molten salts, that 

have attracted a lot of attention from academia and industry due to their unique properties, including a 

fine-tuning ability when combining different cations and anions, aimed for a specific application.6 

Considering the chemical industry, such as fuel and biofuel industries, the ILs have gained an 

interesting role acting as extractive solvents, by presenting attractive physicochemical properties which 

enable optimization of processes, as well as, reduction of operational costs.7 

Predictive approaches, namely, methods based on equations of state (EoS), quantitative structure – 

property/activity relationships (QSPR/QSAR), and computer approaches (e.g. quantum density 

functional and wavefunction method, or classical molecular dynamics or Monte Carlo simulations) 

have been used to understand the behavior of ILs at different working conditions. Molecular dynamics 

(MD) simulation stands out by its ability to reproduce the dynamics of real systems, allowing to 

evaluate and estimate properties at the microscopic level.8 Additionally, the reproduction of systems 

composed of ILs by means of MD simulation is a hot topic in scientific research. High viscosity and 

high ability to solubilize a wide range of compounds are some of the motivations for developments and 

improvements of computer and molecular approaches.7 

Hereafter, this thesis is devoted to investigate the role and the mechanisms of ILs, acting as 

solvent, by means of MD simulations, in systems relevant for fuel and biofuel productions, and at 

biomass pre-treatment processes. With this aim simulations are performed for the characterization of 

binary systems composed of ILs and thiophene, benzene, ethanol or water (compounds of interest in 

fuel or biofuels streams), and also with glucose molecules (reproducing the existent interactions in pre-

treatment processes of lignocellulosic materials for bioethanol production). After characterizing the 

systems, a general discussion is presented on how ILs interact with the various target compounds, 

including the mechanisms, type and strength of those interactions, aiming at an evaluation of their 

applicability in fuels and biofuels streams, as well as, for biomass pre-treatment processes. 

Having defined the main objectives of this thesis, this chapter is going to briefly address the 

following issues: ILs and their main characteristics (Chapter 1.2), desulfurization processes and the 

role of ILs in this topic (Chapter 1.3), and biofuel production, emphasizing the second generation 

biofuels and processes of lignocellulosic material’s pre-treatment (Chapter 1.4). In Chapter 2, it is 
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going to be presented and compared the available computational approaches, highlighting the 

molecular dynamics simulation and its usage in the prediction of ILs’ properties. The Chapter 3 

contains the description of the work performed, namely, the characterization of binary systems 

composed of ILs and thiophene or benzene, ILs and water or ethanol, and finally, glucose-based 

systems. The final chapter of this document will include a general discussion of the results obtained 

and will end with the conclusions. 

1.2. 	  Ionic	  Liquids	  (ILs)	  
 

In the early 20th century, a new generation of molten salts was discovered by Paul Walden5. These 

molten salts are known by different names, such as ionic melts, ionic fluids, or liquid electrolytes but 

the most common and better recognized designation is ionic liquids. 9 These compounds possess at 

least one asymmetric unit comprised of a large organic cation, e.g. derived from imidazolium, 

pyridinium, pyrrolidinium, ammonium or phosphonium, and an organic or inorganic anion, such as 

bis[(trifluoromethyl)sulfonyl]imide, trifluoromethylsulfonate, hexafluorophosphate, or 

tetrafluoroborate. Examples of the structures of common cations and anions are shown in Figure 

1.2.1.9,10 

 

 
Figure 1.2.1 - Common cations and anions found in ionic liquids literature. 

The structural asymmetry makes difficult their crystallization and minimizes the cation-anion 

interaction, which confers unique properties to ILs. They possess low melting point (<100 °C), 
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extremely low vapor pressure, high thermal and chemical stability, high ionic conductivity and good 

solvating capacity for organic and inorganic compounds and even biopolymers (cellulose). 

Furthermore, ILs are in general non-flammable and present a very broad liquidus temperature range. 

Moreover, it is possible to tune their properties by changing their constituting ions, within the large 

number of possible combinations of cations and anions, and by adding specific functional groups in 

order to achieve the desired physicochemical properties intended for a specific application. Given the 

possibility of fine-tuning the properties of ILs, their range of applicability is vast. Separation 

processing, chemical processing, biotechnology, electrochemistry are some of the possible application 

fields where ILs may act, for example, as solvents, lubricants, electrolytes or heat transfer fluids.6,9 

Although ILs appeared to be an alternative to replace common solvents, as for example the volatile 

organic compounds, VOCs, due to their “greener” character when compared with that of the latter, 

parameters such as toxicity and biodegradability have been lately a matter of concern.11–13 Moreover, 

the viscosity of ILs is considered one of the main drawbacks for their application at industrial scale, 

with values reaching 100-1000 cP, i.e., one hundred to one thousand times larger than the viscosity of 

water.14 Polarity and ionization are other topics of interest and importance which are also discussed.10  

The properties of ILs are greatly influenced by the structural specificities of their constituting 

cations and anions. The knowledge of the structure-property relationships of ILs is required for the 

selection or design of an IL for a specific application. Thus, information regarding some properties 

such as densities, viscosities, diffusivities, melting points or electric conductivities of as many ILs as 

possible is needed. However, the considerable number of potential cation/anion combinations makes 

this task daunting by an experimental approach alone. In an attempt to relate structure with property, 

group contribution methods and QSPR/QSAR (quantitative structure – property/activity relationships) 

approaches have been used to predict thermophysical properties, phase behaviors, toxicities, among 

others, of some ILs15–18. A review 19 on these types of methods for the estimation of thermophysical 

and transport properties of ionic liquids has been published. Also for the same purpose, quantum 

methods and statistical mechanics-based molecular approaches are gaining importance in this field 

since they have been helping to better understand, at the molecular level, the structure-property 

relationships and phase behavior of neat IL and IL in mixtures (with one or more compounds).20–24 

Inherent to the nature of each moiety is the nature of its self-organization, and its influence on their 

properties, especially on their performance as solvents, which is a theme of a growing relevance. 

Canongia-Lopes and co-workers25–27 are among the pioneering researchers to show that the bulk liquid 

phase of ILs present a structure characterized by two main domains, a polar (high-charge density part 

composed by a hydrophilic head-group) and a non-polar (low-charge density part composed by a 
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hydrophobic tail) domains, at nanometer scale, which have been widely used to justify different 

behaviors (and properties) of ILs.10 In a different study28, it was possible to conclude that due to this 

unique structure, ILs present a “chameleonic behavior”, a sort of amphiphilic character that allows 

their simultaneous interaction with two compounds of different polarities. The so-called chameleonic 

behavior is just an example of how ILs can be complex solvents and, thus, their characterization 

opened a new and interesting research field. 

In this matter, in the past few years, several works including some extended studies or 

reviews10,29,30 have been addressing the application of computational approaches to model neat ILs and 

also mixtures of ILs. Ab initio methods, Monte Carlo (MC) and molecular dynamics simulations 

employing atomistic or coarse-grained (CG) models, are computer approaches that are being widely 

used to investigate these systems at different time and length scales.31–34 These different approaches are 

going to be briefly introduced in Chapter 2. Furthermore, focusing on MD simulations, an overview of 

methodologies applied to predict properties of neat ILs, namely, density, viscosity, diffusivity, melting 

point, vapor pressure and boiling point, enthalpy of vaporization and surface tension, will be presented. 

1.3. Fossil	  fuels	  improvement	  –	  desulfurization	  processes	  
	  

One way to reduce the emission of pollutant gases is to remove the sulfur-content from petroleum, 

through desulfurization processes. The most common desulfurization process applied on refineries is 

hydrodesulfurization (HDS). In this process, refined petroleum is submitted to high pressures (20 - 100 

bar of H2) and temperatures (300 - 400 oC) conventionally mediated with CoMo and NiMo-based 

catalysts.1,35,36 Refined petroleum includes different aliphatic and aromatic sulfur-based compounds 

where some, like benzothiophene (BT), dibenzothiophene (DBT) and their derivatives, are resistant to 

HDS, due to steric hindrance. Therefore, in order to fulfill the increasing strictness of the 

environmental regulations, the HDS process demands more extreme operation conditions, being a 

disadvantage of its implementation.35 Additionally, another problem associated with the HDS process 

is that some of non-sulfur aliphatic compounds, important for fuel performance, are also removed. 

Another drawback that can be associated with the process is that the presence of sulfur containing 

compounds, along with aromatic and nitrogen-based compounds, can poison the activities of the 

catalysts employed in the HDS process, which is also important to avoid.1  

Several processes have been developed and improved to successfully replace HDS aiming at 

reducing the sulfur content, namely, desulfurization by adsorption, extraction, oxidation and 

biodesulfurization.1,35,37–40  
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Desulfurization by adsorption can be divided in physical and chemical adsorption, or more 

specifically, adsorptive and reactive desulfurization, respectively. As the name indicates, adsorptive 

desulfurization is based on the simple adsorption (van der Walls interactions) of sulfur compounds to 

adsorbents, usually zeolites41,42, Ni-based adsorbents43, CoMo/alumina43 or even metal-organic 

frameworks (MOFs)44,45. As for reactive adsorption46, an adsorbent such as Ni-ZnO has the ability to 

adsorb and convert sulfur compounds to sulfides and hydrocarbons. Sulfides are retained at the 

adsorbent and upon its regeneration SOX species are released. Still, the adsorption capacity of these 

adsorbents can be limited, which also confines the applicability of these methods in fuel streams with 

high content of sulfur compounds.1,35 

Desulfurization by oxidation is a two-step process.1,35,47 The first step is the oxidation of sulfur 

compounds upon contact with an oxidant, usually hydrogen peroxide (H2O2), to form sulfoxides or 

sulfones. The latter compounds possess higher polarities than the sulfur ones present in petroleum, so 

they can be separated through liquid-liquid extraction using acetonitrile, dimethylformamide (DMF) or 

dimethyl sulfoxide (DMSO) as solvents, or alternatively by adsorption. Acetonitrile is the most 

commonly used solvent, owing to its low boiling point that allows its separation from the sulfones by 

simple distillation. Desulfurization by oxidation, however, is able to remove simultaneously olefins, 

requiring the management of a significant amount of the formed sulfone compounds. 

Biodesulfurization is based on the use of microorganisms that selectively oxidize sulfur atoms, in 

the presence of water and oxygen under room temperature and pressure conditions.1,35,48 However, only 

a few number of bacteria species can oxidize BT and just a single specie can deal with thiophene. In 

the case of DBT, it is not possible to achieve the intended sulfur content with biodesulfurization. 

Therefore, this methodology can only be applied as a complementary step of another process. 

Desulfurization by extraction, also known as extractive desulfurization, is used as a complementary 

step to desulfurization by oxidation, or as a single process if low temperature and pressure conditions 

are considered.1,35 This process is based on the high affinity and selectivity of a chosen solvent to 

interact with the sulfur compounds, which should be more soluble in the solvent than in the 

hydrocarbons present in the fuel. After solubilization, the solvent should be easily separated from the 

sulfur compounds by simple distillation, through the difference of the boiling temperatures. To attain 

an efficient process, the choice of the solvent must be adequate. Solvents such as methanol, ethylene 

glycol, acetonitrile, DMF, DMSO and sulfolane can be used or, to enhance the solubility, a mixture of 

solvents. Another alternative is the use of the ILs.1,35–37,40 

ILs have some advantages over conventional solvents, namely their low vapor pressure enhancing 

the separation from sulfur compounds through distillation, their thermal and chemical stability, as well 
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as a liquidus profile in a wide range of temperatures. Composed of a bulky organic cation and an 

organic/inorganic anion, they can be chosen accordingly to their properties to fulfill a specific 

application, as mentioned previously in Chapter 1.1.37 The selective sulfur removal is dependent on the 

size and structure of both cations and anions, as well as their affinity to different sulfur compounds, 

which is mainly made through π-π interactions, originally from their aromatic character. Regarding the 

cation’s families, imidazolium, pyridinium-based ILs and Lewis and Brønsted acidic ILs have been 

studied, where it was recognized a significant efficiency of sulfur removal with the increase of the 

length of alkyl chains. The Lewis and Brønsted acidic ILs, have an enhanced extraction power due to 

their capacity to form sulfur-complexes. Concerning the anions, tetrafluoroborate, 

hexafluorophosphate, octyl sulfate, ethyl sulfate and dimethyl phosphate are usually studied.1,35–37,40 

Nevertheless, ILs of low viscosity that are composed of dicyanamide and thiocyanate anions, were also 

reported to have a good extraction performance, as well as, a significant selectivity under the presence 

of polyaromatic hydrocarbons also extracted from petroleum streams.1,35 Additionally, it has been 

reported that ILs, along with hydrogen peroxide (H2O2) and other catalysts, can achieve sulfur removal 

efficiencies around 98.2 %, proving that a combination of catalytic oxidation with an ionic liquid can 

lead to sulfur compounds content, at ambient conditions and without H2 consumption, in accordance 

with regulations.35  

It is worth noting that, with the increase of petroleum exploration in the world, new sources of 

crude have been found, with significantly higher sulfur content, requiring an adjustment or a 

combination of different methods.1 

1.4. 	  Biofuels	  
	  

In order to replace fossil fuels, the production of biofuels appeared as one of the most promising 

alternatives. Biofuels are classified as first, second and third generation. First generation biofuels are 

those produced from sugar, starch, vegetable oils or animal’s fats, i.e., mainly from food crops and oil 

seeds. Biofuels of second generation are produced from lignocellulosic materials, such as wood 

process wastes, agricultural and forest residues, vegetative grasses and bagasse. Third generation 

biofuels are produced from algae. The two latest generations are non-food feedstocks, avoiding 

problems related to economic and social impacts. Nevertheless, for a sustainable replacement of fossil 

fuels, the production of biofuels should be an economic and sustainable option, with an availability of 

the feedstock as high as possible, and simultaneously be able to produce power and chemicals, which 
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may require high investments not only for the process, but also for storage and delivery of biofuels to 

its final destination.4,49 

Hereafter, it will be emphasized the second generation biofuels production, addressing the 

processes of converting biomass in biofuel, and also the lignocellulosic material’s pre-treatment 

processes. 

For the conversion of biomass into biofuels, two routes are adopted, namely the thermochemical 

and biochemical conversion. Thermochemical conversion processes include liquefaction, pyrolysis and 

gasification.4 Generally, the latter processes are based on a chemical change suffered by the 

lignocelllulosic material when heat is applied, in the absence or presence of oxygen. Changing the 

temperature, pressure, heating rate or time of gas residence, different final products can be obtained, 

from chemicals to hydrocarbons, bioethanol, biodiesel and heat. From gasification is also produced 

fuel gases and syngas (gas rich in H2, CO and CO2) that can be further used in the synthesis of long-

chain hydrocarbons for producing high cetane number fuels (Fischer-Tropsch process).4,49–52 

As for biochemical conversion processes, these are performed at low temperatures and low 

reaction rates, where enzymatic hydrolysis of hemicellulose and cellulose (wood’s constituents) are 

carried, followed by the fermentation of their small molecules that will give origin to biofuel.4,53,54 The 

definition of biochemical conversion process is commonly associated with bioethanol production, 

using lignocellulosic biomass. Nevertheless, the structural organization of lignocellulosic biomass 

compounds (cellulose, hemicellulose and lignin) is complex, which causes difficulties in the 

assessment of enzymes or acids to cellulose and hemicellulose and, consequently, hinders the process 

of fermentation to obtain bioethanol.55,56 To overcome this, pre-treatment processes (chemical, physical 

or biological) are required. The resulting sugars are then fermented and the ethanol produced is used as 

fuel, chemical or product.4 

	  

1.4.1. Lignocellulosic	  materials	  and	  pre-‐treatment	  processes	  	  
	  

Carbohydrates are an amazing and diversified class of biomolecules, characterized by 

a vast heterogeneity of compounds differing on their stereochemistry and functionalization. 

These compounds are essential to many biological functions and are also applied in a wide 

range of industrial processes such as food, textile, pulp and paper, biofuels, and personal 

care/cosmetic industries.55,57,58 

Wood is a renewable source of carbohydrates usually composed of 35-50% of 

cellulose, 35% of hemicelluloses, 5 - 30% of lignin and extractives. Cellulose is the most 
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abundant compound, characterized for being a homopolysaccharide composed of β-D-

glucopyranose units, which are linked together through (1-4)-glycosidic bonds (see Figure 

1.4.1.1) in a linear direction and also by intra and intermolecular hydrogen bonds.56,59 

  

 
	  
Figure 1.4.1.1 - Structure of cellulose.59 

Cellulose molecules aggregate to microfibrils with highly ordered regions (crystalline) 

and less ordered regions (amorphous). Bundles of microfibrils compose fibrils, which comprise 

cellulose fibers. The crystalline region of cellulose can present different polymorphs, 

beginning with the native cellulose, cellulose I (Figure 1.4.1.2), characterized by cellulose 

microfibrils oriented in the same direction (parallel chains) and establishing van der Waals 

interactions between layers. The establishment of three characteristic hydrogen bonds between 

molecules is observed (two intramolecular hydrogen bonds and one intermolecular hydrogen 

bond), responsible for the ordered structure and for the lack of interactions with water and most 

of organic solvents. When cellulose is dissolved and then regenerated, the order of cellulose 

microfibrils is altered and additional hydrogen bonds are established between layers, which are 

now antiparallel chains. In this form, cellulose is usually named cellulose II.59 Other two 

polymorphs can be obtained by heating or chemical treatment, namely cellulose III and IV.59 
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Figure 1.4.1.2 – Projection of the plane in cellulose I, showing the hydrogen bonding network and the 

numbering of the atoms. Each glucose residue forms two intramolecular hydrogen bond (O3-H—05´ and 

O6—H-02´) and one intermolecular bond (O6-H—O3).59 

	  
Contrary to cellulose, hemicellulose is a heteropolysaccharide that can be composed of 

D-xylose, D-mannose, D-glucose or D-galactose monosaccharides connected linearly and/or 

with branches. According to its structure, hemicellulose is characterized by being an 

amorphous polymer, accessible to enzymatic attack, which enables hydrolysis and further 

conversion of its simple sugars. Hemicellulose and cellulose are embedded by another 

compound, lignin. Lignin is a complex, amorphous polymer composed of aromatic alcohols 

units, namely, coniferyl, sinapyl and p-coumaryl alcohols. The composition on wood of each 

of these compounds can vary, depending on the source of the wood.56,59 

Aiming at separating cellulose, hemicellulose and lignin, mainly to obtain their 

monosaccharides for the production of biofuels, different solvents were studied and applied. 

Regarding cellulose dissolution, solvents such as carbon disulfide, LiCl-based solvents60, 

dimethylsulfoxide (DMSO)/paraformaldehyde61 and also N-methylmorpholine-N-oxide 

(NNMO)62 have been used. However, these solvents are volatile, toxic, expensive and difficult 

to recover.56 
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Figure 1.4.1.3 – Mechanism of pretreating lignocellulosic materials63. 

Alternatively, and as mentioned previously, pre-treatment processes can be applied to 

biomass, being divided in biochemical, physical, biological and physicochemical pre-

treatments.4,56,64,65 As Figure 1.4.1.3 illustrates, the aim of pre-treatment processes is to open 

the structure, breaking lignin and disrupting the crystalline structure of cellulose, promoting the 

accessibility of enzymes responsible for the hydrolysis of cellulose into its monosaccharides. 

These processes impose structural changes to the initial lignocellulosic biomass, but there are 

several factors that should be addressed. One factor to take into account is the composition of 

the biomass (in each of its three main constituents) which affects, accordingly, the choice of 

the most adequate pre-treatment process.64,65 Additionally, the process chosen should not 

degrade hemicellulose or cellulose, should not produce toxic compounds nor solid-waste 

residues, it must operate at reduced cost (either in heat and power demands), as well as with 

small enzyme dosages and short reaction times. Moreover, it should be possible to recover 

lignin, enhance fermentation process and finally, obtain high yields of sugars’ conversion.64 

Biological pre-treatments employ microorganisms that will mainly attack 

hemicellulose and lignin, being a reduced cost procedure, with low energy consumption and 

mild operation conditions. However, the sugar conversion yield is usually low.64,65 

Physical pre-treatments such as, extrusion and mechanical procedures can also be 

applied. These are based on the reduction of the particle size through milling or submitting the 

biomass to heat, mixing and shearing (extrusion process), which also disrupt the crystalline 

structure, and destroy fibers of biomass, enabling the enzymatic attack. Nonetheless, these 

processes require high power consumption.64,65 
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The physicochemical pre-treatments include SO2-steam explosion, CO2 explosion, 

liquid hot water, ammonia fibber explosion (AFEX), wet oxidation, among others.64,65 The 

steam explosion is a hydrothermal process where biomass is under a pressurized steam for a 

specific period of time, and then depressurised. This procedure allows high yields of sugar 

content, causing lignin transformation and hemicellulose degradation, requiring lower capital 

investment, as well as, less hazardous operation conditions and chemicals. Nevertheless, the 

degradation of hemicelluloses and the formation of toxic compounds that are inhibitors of 

hydrolysis and fermentation processes are the main disadvantages.64–66 The CO2 explosion 

process64,65,67, similar to the steam explosion process, places the biomass into pressure, but here 

the CO2 is a supercritical fluid, since the gas is compressed at a temperature above the critical 

point being able to penetrate the lignocellulose biomass and to disrupt its structure, promoting 

enzymatic attacks. However, to improve the efficiency of the process, high pressures are 

required. The liquid hot water process operates at high temperature and pressure, without the 

use of catalysts or chemicals. With this procedure, the lignocellulosic biomass suffers 

structural alterations with low degradation of compounds, as well as, formation of small 

amount of hydrolysis and/or fermentation inhibitors. However, high volumes of water and 

significant power consumption are required.64–66 Regarding the AFEX process, biomass is 

placed for a specific period of time to a pressurized environment, followed by the release of 

that pressure, similar to other explosion methods. Here, the biomass is treated with liquid 

anhydrous ammonia, at low temperatures and high pressures, causing the physical disruption of 

fibbers and partial decrystallization of cellulose. Hence, the yield of the enzymatic hydrolysis 

is high and the amount of inhibitors formed is small. Some disadvantages are associated with 

this process, i.e., high costs for the recovery of ammonia and low conversion yields when 

biomass presents high content of lignin.64,65,68 Finally, the wet oxidation process uses oxygen or 

air as catalysts being, essentially, an oxidative process that operates at low temperatures and 

with short times of reaction. This process is efficient in the removal of lignin, it has low 

formation of inhibitors and does not require high demands of energy. Nevertheless, the cost of 

catalyst and oxygen are its main drawbacks.64,69 

Biochemical pre-treatments includes alkali and acid pre-treatments, ozonolysis, 

organosolv and ionic liquids.64 The alkali pre-treatment is based on the use of sodium, 

potassium, calcium or ammonium hydroxides, at room temperatures with reaction times 

ranging from seconds to several days. Common to other processes, it enhances the accessibility 

to cellulose for enzymatic attacks, but formation of inhibitors occurs.64,70 The acid pre-
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treatment can be divided in concentrated and diluted acid, at lower or high temperatures, with 

specific reaction periods of time. Formation of inhibitors to hydrolysis and fermentation are 

also produced, and it must be considered the possibility of corrosion the equipments, 

consequently requiring higher operation costs.64 In the ozonolysis process, biomass is in 

contact with ozone, at room temperature and pressure, with the ability to successfully remove 

lignin and enhance further hydrolysis without formation of inhibitors. The main drawback is 

the amount of ozone required for this process, which is not sustainable.64,65 The organosolv 

pre-treatment employs common organic solvents, such as methanol, ethanol, acetone, ethylene 

glycol and tetrahydrofurfuryl alcohol. Using this process, lignin can be fully recovered without 

degradation, and cellulose enzymatic attack is promoted. Nonetheless, these solvents can also 

act as inhibitors to hydrolysis or fermentation, and thus, they must be removed from the 

reaction medium, imposing higher operation costs.64,65,71 Finally, pre-treatment with ionic 

liquids can also be applied.55,56,64 

As mentioned previously, ionic liquids have excellent properties that are desired for 

different industrial applications, being the pre-treatment of lignocellulosic biomass a good 

example. These solvents have the ability to solubilize simultaneously lignin and the other 

constituents, mainly through the establishment of hydrogen bonds, being able to disrupt the 

crystalline structure of cellulose without degradation of the other compounds. This process 

operates at mild conditions, and due to their low vapor pressure the solvents are easily 

recovered and it has been proved that they can be reused around seven times maintaining their 

initial properties.56,64 Usually, imidazolium, pyridinium and triethylammonium based ILs, with 

short length chain, are the cations with better performance to dissolve cellulose. Regarding the 

anions, those with high polarity, such as the chloride or acetate anions, are good solvents for 

cellulose; nonetheless, the anions dicyanamide and thiocyanate, which present low polarity, are 

also able to successfully dissolve cellulose’s monosaccharide.56 Additionally, knowing that the 

route of interaction occurs via the establishment of hydrogen bonds, the functionalization of 

ILs with the increment of hydroxyl groups on the cations would, in principle, enhance the 

interactions with cellulose. Nevertheless, the cation will compete with cellulose for the anions, 

with a concomitant decrease in the solubility of cellulose in ILs. On the whole, the right 

combination between cations and anions is the key for a successful pre-treatment of 

lignocellulosic biomass. Afterwards, the IL (and cellulose) can be easily recovered with the 

addition of water or ethanol, acting as anti-solvents in the medium.55,56 
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In this chapter, it was introduced the topic ionic liquids and their advantageous role in specific 

applications, such as in the field of fuels and biofuels, acting as solvents. In the following chapters, it 

will be addressed and discussed the advantage of using molecular dynamics simulation for the 

reproduction of systems composed of ILs, as well as, for the capacity of ILs to act as extracting 

solvents, for their further implementation at industry. 
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There are three main categories of computer approaches able to model and characterize ILs, 

namely quantum chemical, atomistic, and mesoscale methods.1 These categories may be distinguished 

by their capacities to handle different length and time scales, as schematically represented in Figure 

2.1. 

 

 

Figure 2.1 - Illustration of the different length and time scales that can be reached by most common 

computational approaches. 

The first category comprising the quantum chemical (QC) methods is at the electronic scale and 

considers the fundamental particles constituting the atoms, i.e., electrons and nuclei which in the field 

of ILs translates into the accurate characterization of a single IL molecule (ion pair) or, less accurately, 

of a small cluster of ILs ions. The electronic structure methods are characterized by requiring large 

computational efforts due to their full electronic details, which limits their application only to systems 

composed of a restricted number of atoms (few tens or few hundreds) and when combined with finite 

temperature dynamics (ab initio molecular dynamics, AIMD2), to very short time scales. The electronic 

structure methods can be divided in methods that formulate the many-electron problem in terms of a 

many-body wavefunction1 (Hartree-Fock, HF, approach or the much more accurate – but demanding 

further computational resources – post-HF methods) or in terms of the electron density3 (density 

functional theory, DFT). When high accuracy is required, higher level ab initio approaches (post-HF 

methods, such as, N-order Moller-Plesset4,5, coupled-cluster6, configuration interaction7 approaches) 
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are used. Nevertheless, these high level methods require large computational efforts limiting their 

application to rather small systems (a few tents of atoms) and are usually employed to refine energies 

(single-point calculations).8,9 The DFT approaches require less computational resources than post-HF 

methods without compromising too much the accuracy of the calculations and they are able to deal, 

chemically speaking, with more interesting molecular systems.8,9 Finally, composite methods such as 

the popular Gaussian-N or Complete Basis Set, CBS, approaches10 combine the results of several 

calculations performed at different levels of theory for correction of the deficiencies, e.g. incomplete 

electron correlation or basis set limited size, in the energy of a system optimized with a standard 

computational approach. 

The second category, the atomistic simulations, considers methods at the microscopic level where 

the constituting particles in the preceding class are now replaced by atoms (all atom (AA) approach) or 

groups of atoms (united atom (UA) approach) that interact through a force field (FF) or intermolecular 

potential energy, obeying to statistical mechanics. 

Since electrons are not being considered in these approaches, the study of chemical reactions (bond 

making and bond breaking) is not possible. Nevertheless, these approaches are quite appealing since 

they enable the description of a larger number of constituting atoms than that is possible with QC 

methods, as well as, to simulate longer times of simulation (nanosecond time scale). This kind of 

simulation usually makes use of periodic boundary conditions (replicas of the central simulation box 

surrounding it on all sides). This category includes, the widely used Monte Carlo (MC) and molecular 

dynamics (MD) simulation approaches. The MC simulation approach is characterized by being a pure 

stochastic technique, composed by simple algorithms11, typically performed on a fixed number of 

molecules, N, placed on a fixed volume, V, and maintained at a constant absolute temperature T, i.e., 

the canonical ensemble (NVT). An initial configuration (positions, orientation angles, among others, 

for the constituting particles) is required and then an atom (or group of atoms) chosen randomly is 

moved or rotated by a random amount to another and new configuration. All random configurations are 

then compiled in a sequence from which equilibrium properties are calculated by average. 9,12,13  In the 

field of ILs, MC simulations have been applied to determine thermodynamic (molar volume, cohesive 

energy density, isothermal compressibility, cubic expansion coefficient, Henry’s law constant, partial 

molar enthalpy of absorption and solubility in water and CO2) and structural properties.8,14–16 

MD simulation is employed in the study of the natural motion of molecules under the effects of 

their own intermolecular forces. In the most natural formulation, the simulations are performed for an 

isolated system (the sum of the molecular kinetic and potential energies yields the total energy, E, 

which is conserved, i.e., it corresponds to an adiabatic process with no heat exchange) on a fixed 
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number of particles, N, and in a fixed volume, V, i.e., the microcanonical (NVE) ensemble. Algorithms 

included in this methodology are more complex and more information is obtained, than those obtained 

through MC simulations, reproducing motions of individual molecules through the determination of 

velocities, positions and orientations over time by numerically solving the Newton's equations of 

motion rather than using a random generator as in Monte Carlo. The forces between the particles and 

the potential energy of the system are defined by a set of mathematical functions (force field, FF) with 

parameters derived from experimental or computational (ab initio) work. The storage of both velocities 

and positions (large trajectories of systems composed by many particles) in MD requires large amounts 

of computer memory/disk. From averaging the trajectories, equilibrium and non-equilibrium properties 

are obtained. In this matter, the MD methods can be divided in two groups, one applied to study 

systems at equilibrium (equilibrium MD, EMD) and another group to study systems away from 

equilibrium (non-equilibrium MD, NEMD). The latter, is recognized to be an excellent alternative to 

EMD for computing transport properties.9,12,13 

MC can be more advantageous than MD simulations for discontinuous phenomena, i.e., for 

systems where molecules interact through discontinuous forces (i.e., perturbation/changes that a system 

can suffer such a slow phase transition, micelle formation or polymer folding) though Liu and co-

workers17  showed that MD can also be used for that purpose. Nevertheless, MD simulations stand out 

due to their ability to describe dynamical behavior and transport properties, e.g., diffusive, convective 

and other motion phenomena at molecular level.9,12,13 

It is important to add that MD simulations can also be formulated for ensembles other than the 

microcanonical one, but it is imperative to make sure that the correct dynamic trajectories are 

preserved. For that, thermostats and barostats can be attached to the system for controlling temperature 

and pressure, respectively. For controlling the temperature, the simplest method is to the rescale 

velocities at periodic intervals such that a desired temperature is maintained. However, this does not 

obey Maxwell-Boltzmann distribution (the equilibrium distribution of velocities) and improvements 

have been made, such as the Andersen18 and the Nosé-Hoover19 thermostats. For controlling the 

pressure, the same limitation is observed, and an extension of Nosé-Hoover thermostat20 can be used as 

barostat by using volume fluctuations. Other barostats such as the Berendsen21 or Parrinello-

Rahman22,23 also exist and can be applied (again the main difference is that the latter can, in theory, 

give a true NPT ensemble). The influence of employing different barostats and thermostats in the 

trajectories, however, is not relevant when the purpose is to obtain static and thermodynamic 

properties, as long as they are able to produce the correct canonical ensemble distribution (NVT), or 

the correct isothermal-isobaric ensemble (NPT).9 
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Standard MD simulations, as well as, MC simulations are performed with fixed charges (this is a 

topic that has been strongly discussed in the past years)8,24–28, affecting directly the quality and 

accuracy of the results coming from the calculations. Variations in charge distribution can be taken into 

account with the so-called polarizable force fields, which are more accurate but demanding more 

computational resources. Thus, the choice of the force field for a specific simulation on a specific 

system is very important: standard CHARMM (Chemistry at HARvard Molecular Mechanics)29, 

OPLS-UA (Optimized Potential for Liquid Simulation – United Atoms)30, OPLS-AA (Optimized 

Potential for Liquid Simulation – All Atoms)31 and AMBER (Assisted Model Building and Energy 

Refinement)32 are some of the existing FFs commonly used for ILs. However, the force fields were 

originally optimized to reproduce the properties of liquids or to handle biomolecular systems and, 

hence, their parameters have to be adjusted for ILs. Moreover, the question of transferability of 

parameters from one force field to another is a very important issue.33 

The speed of computers can also be limiting, especially when the simulation time is one of the 

main requirements to reproduce accurately the properties of the systems of interest (e.g. transport 

properties). In all atom (or even united atom) MD simulations, due to these time limitations, very large 

systems and slow phenomena are beyond the length and time scales permitted. Still, in the field of ILs, 

MD presents enormous advantages over other computationally more expensive approaches (ab initio 

methods) providing reliable structural, thermodynamic and transport properties.8 

The third and last category involves mesoscale methods, such as the coarse-grained (CG) 

approach. This approach considers particles that are used to represent molecules, segments of 

molecules or even clusters of molecules. Additionally, the CG approach can also perform the 

discretization of phase space and representation of the system in terms of groups/sections, rather than 

the description of every atom in the system. In other words, the representation of molecules or groups 

of small molecules is now made by a small number of large particles, reducing the degrees of freedom 

and the number of pair interactions and hence, the computational efforts required for the simulation of 

a specific system.9,34 Thus, with this approach, it is possible to increase the number of particles that can 

be simulated and/or to increase the time scale of the simulations. This can be very convenient in the 

study of large molecules such as polymers (proteins, carbohydrates) or ILs with long side chains 

(butyl, heptyl or decyl), increasing the time scale and the number of particles that can be simulated, or 

even in the simulation of slow phenomena.8,9,34,35 Nonetheless, the price that has to be paid is that the 

local information is lost. In fact, the contribution of atom vibrations is removed, as well as the internal 

degrees of freedom, which promotes a simulation to occur rather faster than the real one, losing the true 

dynamics of the system in study. Due to these limitations, multiscale modelling is usually useful, in the 



________________________________ Chapter 2	   ________________________________	  
	  

[25] 
	  

sense that the information obtained from CG simulations may be used a posteriori in MC or MD 

simulations (combination of information obtained from different level scales).9,34 Recently, Chen and 

co-workers36 reviewed different coarse-grained models and highlighted differences, applications and 

limitations of these computational methodologies. 
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2.1. 	  Prediction	  of	  ILs’	  properties	  through	  MD	  simulations	  
	  

In the forthcoming sub-chapters, it will be reported MD simulation studies for neat ILs, aiming at 

their characterization by the estimation of some common properties. Some computational details 

concerning the MD simulation studies reviewed here are compiled in Table 2.1.1. 

 

Table 2.1.1 - Detailed information concerning the MD simulations in the studies reviewed in this section. 

Author(s) IL paira charges, valueb,c potentialc Ref. 

Alavi and co-workers [patr][Br] 144 NPA, ±1 e AMBER & OPLS-AA & 
GAFF 

37 

Alavi and Thompson [EMIM][PF6] 192 CHelpG , ±1 e AMBER & OPLS-AA 38 

Aparicio and co-workers [EMIM][TOS] 250 ESP, ±1e OPLS-AA 39 

Bhargava and 
Balasubramanian [BMIM][PF6] 256 CHelpG , ±0.80 e AMBER & OPLS-AA 24 

Borodin 

[EMIM][NTf2] 

125-180 
	  

polarizable 40 

[BMIM][NTf2] 

[HMIM][NTf2] 

[BMIM][PF6] 

[BMIM][BF4] 

[BMIM][CF3SO3] 

[N4111][NTf2] 

[pyr14][NTf2] 

Brandés and co-workers 
[Bpy][BF4] 

125 ESP, ±1 e OPLS-AA 41 
[BMpy][BF4] 

Canongia Lopes and co-
workers 

[DMIM][Cl] 192 

CHelpG , ±1 e AMBER & OPLS-AA 42 
[EMIM][Cl] 144 

[EMIM][NO3] 96 

[EMIM][PF6] 192 

Canongia Lopes and 
Pádua 

[Bpy][Cl] 144 

CHelpG , ±1 e OPLS-AA 43 [P 10 10 10 10][Br] 16 

[N 1 1 1 1][DCA] 96 

Chaban [DMIM][NTf2] 128 uniform scaling 
charges AMBER & OPLS-AA 44 

Ghatee and co-workers 

[BMIM][I] 

512 CHelpG,  scaled 
charges OPLS-AA 45 [HMIM][I] 

[OMIM][I] 
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Heggen and co-workers [BMIM][PF6] 512 CHelpG , ±0.80 e AMBER & OPLS-AA 46 

Jayaraman and Maginn [BMIM][Cl] 144 CHelpG , ±1 e 
OPLS-AA 

47 
CHARMM 

Kelkar and co-workers 

[EMIM][NTf2] 

200 CHelpG , ±1 e CHARMM 48 
[BMIM][NTf2] 

[HMIM][NTf2] 

[OMIM][NTf2] 

Klähn and co-workers 

AP-Nd 

500 CHelpG , ±1 e Molecular Mechanics 
(MM) 

49 AP-Ce 

CM-Nf 

Koddermann and co-
workers 

[EMIM][NTf2] 

173 CHelpG , ±1 e AMBER & OPLS-AA 50 
[BMIM][NTf2] 

[HMIM][NTf2] 

[OMIM][NTf2] 

Liu and co-workers 

[BMIM][Pf2] 

200 RESP , ±0.80 e GAFF 51 [BMpyr][NTf2] 

[N4111][NTf2] 

Margulis and co-workers [BMIM][PF6] 256 ESP, ±1 e OPLS-AA 52 

Pensado and co-workers 

[EMIM][BF4] 1024 

CHelpG , ±1 e AMBER & OPLS-AA 53 
[EOHMIM][BF4] 700 

[OMIM][BF4] 700 

[OOHMIM][BF4] 800 

Prado and co-workers [BMIM][BF4] 125 CHelpG , ±1 e OPLS-AA 54 

Santos and co-workers 

[EMIM][NTf2] 

400 CHelpG , ±1 e AMBER/OPLS 55 
[BMIM][NTf2] 

[HMIM][NTf2] 

[OMIM][NTf2] 

Shimizu and co-workers 

[EMIM][NTf2] 

150 CHelpG , ±1 e AMBER/OPLS - AA 56 

[BMIM][NTf2] 

[HMIM][NTf2] 

[OMIM][NTf2] 

[C10MIM][NTf2] 

[C12MIM][NTf2] 

[C14MIM][NTf2] 

[BMIM][PF6] 

[HMIM][PF6] 

[OMIM][PF6] 

[P6 6 6 14][NTf2] 
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[P6 6 6 14][CF3SO3] 

[P6 6 6 14][OAc] 

[BMIM][CF3SO3] 

[BMIM][CH3SO4] 

[BMIM][BF4] 

[BMIM][OAc] 

Shimizu and co-workers 

[PH(C6H5)3][N(SO2F)2] 144 

CHelpG , ±1 e OPLS-AA 57 
[Na][N(SO2C2F5)2] 96 

[K][N(SO2C2F5)2] 128 

[(OCH3)2C1im][PF3(C2F5)3] 144 
Van-Oanh and co-

workers [EMIM][NTf2] 
50 and 

150 CHelpG , ±1 e C: CHARMM & A: OPLS-
AA 

58 

Yan and co-workers [BMIM][NO3] 400 RESP, ±1 e 
non-polarizable 

59 
polarizable 

Zhang and Maginn [BMIM][Cl] 108 CHelpG , ±1 e C: CHARMM ; A: OPLS 60 

Zhang and Maginn 

[BMIM][PF6] 250 

gpFC, ±1 e 

CHARMM 61 

gpSC, ±0.80 e 

AIMD-c, ±0.80 e 

AIMD-1, ±0.85 e 

AIMD-b, ±0.80 e 

[EMIM][PF6] 400 

gpFC, ±1 e 

gpSC, ±0.80 e 

AIMD-c, ±0.80 e 

AIMD-1, ±0.85 e 

AIMD-b, ±0.76 e 

Zhao and co-workers [BMIM][PF6] 768 CHelpG , ±0.80 e OPLS-AA 62 

Zhong and co-workers 

[C10MIM][NTf2] 

150 RESP , ±0.80 e GAFF 63 

[EMIM][NTf2] 

[HMIM][NTf2] 

[OMIM][NTf2] 

[BMIM][CF3CO2] 

[BMIM][CH3CO2] 

[BMIM][PF6] 

[BMIM][NTf2] 
aNumber of anion+cation pairs in the simulation box; 

bESP/RESP and CHelpG are charges based on the fitting of the electrostatic potential on a grid of points according to the 
schemes of Merz-Singh-Kollman64–66 or of Bayly and co-workers67, respectively. NPA and Blöchl stand for charges derived 
from a natural population analysis of the natural bond orbitals approach of the atoms in a molecular system68 or for charges 
calculated using the Blöchl method69. The labels gpFC and gpSC are used to denote full and scaled RESP charges for the 
isolated ions in the gas-phase calculated with Gaussian-type orbitals, AIMD-c is used for ESP charges calculated for the 
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crystalline system using a plane-wave approach while AIMD-l and AIMD-b stand for charges calculated after liquid phase 
simulations employing a plane-wave approach and the ESP or the Blöchl schemes, respectively. Note: 1 e = 1.602176487 x 
10-19 C. 

cC and A stand for cation and for anion, respectively; 

dacyclic pentamethylpropylguanidinium nitrate;  

eacyclic pentamethylpropylguanidinium perchlorate;  

fcyclic tetramethylguanidinium nitrate; 

	  

2.1.1. Density	  
	  

This is one of the most important properties of fluids that is easily measured 

experimentally and is fundamental for the prediction of thermophysical properties required for 

process design purposes or for solution theories of liquids. For ambient pressure and 

temperature conditions, density of common ILs range from 900 to 1500 kg.m-3 70. Available 

data for ILs density, in literature, is impressive and it is well reproduced by MD simulations.71–

73 In Maginn´s review71 on the application of atomistic simulations to the prediction of 

thermodynamic and transport properties of ILs, computed and experimental densities were 

found to differ at most by 1 % to 5 %, depending on the applied force field and on its 

parameterization. Density is essentially a mean-field property that is insensitive to specific 

interactions and energies; yet, it is one of the properties that is widely used to validate force 

fields due to the two factors introduced above, i.e., simplicity of calculation and availability of 

very accurate experimental values74. 

Densities of several different ILs were studied by means of MD simulations. Margulis 

and co-workers52 conducted MD simulations considering the OPLS-AA (optimized potentials 

for liquid simulations developed by Jorgensen and co-workers31 combined with an all atoms 

approach and total charges on the ions equal to unity) force field for at least 200 ps in the NPT 

ensemble, i.e., constant pressure (1 atm, Nosé Hoover thermostat) and constant temperature 

(303 K, Anderson-Hoover barostat), for 1-butyl-3-methylimidazolium hexafluorophosphate 

([BMIM][PF6]), obtaining a density with the value of 1310.0 kg.m-3; Zhong and co-workers 

have considered a different FF and different total charges on the ions (±0.8 e) being able to 

reach a density value for the same IL that matches the experimental result, i.e., 1370.0 kg.m-3 

(Table 2.1.1.1). Prado and co-workers54 using the OPLS-AA force field and charges equal to 

unit performed simulations for at least 5 ns and reached a density value of 1178.0 kg.m-3 for 1-
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butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], also very close to the 

experimental result (Table 2.1.1.1). In these MD simulations, it was found that the density is 

converged for quite short simulation times. Densities of a series of different ILs, 1-alkyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide ([CnMIM][NTf2]) and 1-butyl-3-

methylimidazolium cation ([BMIM]+) with different anions, such as, trifluoroacetate 

([CF3CO2]-), acetate ([CH3CO2]-) or hexafluorophosphate([PF6]-), were obtained at different 

temperatures through NPT MD simulations and considering the general AMBER force field, 

GAFF75, by Zhong and co-workers63. The deviation of the results from experimental data (cited 

in the article63) is less than 1 %. In that work, a linear behavior of the density with the 

temperature was observed for all studied ILs. Furthermore, as expected, the densities of 

different alkyl chain lengths of imidazolium based-ILs with the anion [NTf2]-, decreased with 

the increase of temperature. Similarly, Liu and co-workers51 published a complete study, 

estimating density for [NTf2]--based ILs, obtaining a linear and a decreasing dependence with 

the increase of the temperature. The comparison of their results with published experimental 

data showed that densities are overestimated. For two other families of ILs, namely, 

pyridinium-based ILs and iodide-based ILs studied by Bandrés and co-workers41 (with a 

maximum deviation of 14 % from experimental data) and by Ghatee and co-workers45 (with a 

maximum deviation of 0.8 % from experimental data), respectively, a similar trend with the 

temperature was observed. Shimizu and co-workers56, reported densities for imidazolium-

based ILs and for some phosphonium-based ILs, with deviations not exceeding 4.5 %. 

Densities of 1-ethyl-3-methylimidazolium hexafluorophosphate, [EMIM][PF6], and 1-

N-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], were obtained at 173 K by 

Zhang and Maginn61, through NVT and NPT MD simulations considering the GAFF force 

field. These authors evaluated the influence of five different strategies for the calculation of 

atomic charges, which were incorporated in GAFF FF, on the prediction of static, dynamic and 

thermodynamic properties of [BMIM][PF6] and [EMIM][PF6] ILs by MD simulations. They 

tested the influence of atomic charges derived from periodic DFT/plane-wave calculations, for 

the crystalline and liquid phases, or from quantum chemistry calculations for the isolated ions. 

In the case of the periodic crystalline phase, the total charges calculated with the ESP scheme64 

were +0.80 e on the cation and -0.80 e on the two anions considered. The ESP charges were 

calculated by fitting the electrostatic potential of a molecule on a uniform distribution of points 

in the vicinity of the molecule. In the case of liquid phase, the calculation of the atomic charges 

was based on 50 different configurations taken from an AIMD simulation with 8 IL pairs per 
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unit cell and considering two different schemes, i.e., the Blöchl69 and the ESP65–67,69 schemes. 

The Blöchl method decouples the density of a molecule calculated with a periodic plane-wave 

approach from its periodic images, i.e., by subtracting the electrostatic interaction between 

periodic images of the densities of the isolated molecules. The interaction energy between 

separated densities is expressed in electrostatic multipole moments reproducing the original 

density and are used to fit the partial charges. The total charges in the cation and in the anion 

calculated with the ESP scheme were ±0.85 e for both ILs while those calculated with the 

Blöchl scheme were ±0.80 e for [BMIM][PF6] and ± 0.76 e for [EMIM][PF6] (Table 2.1.1). 

Finally, Zhang and Maginn also considered full atomic charges derived from quantum 

chemistry calculation of isolated ions in vacuum (total charge ±1.0 e for each ion), and charges 

derived from uniform scaling by a factor of 0.8 of the charges of the isolated ions in vacuum. 

As can be seen in Table 2.1.1.1, the densities calculated with the five different sets of charges 

resulted in similar density values presenting a maximum deviation of 6 % from available 

experimental data. Thus, it seems that the value of the total charge in the ions of ILs and the 

strategy used for the calculation of the atomic charges have a small effect on the calculation of 

this property. 

Due to the fact that density is a validation parameter for ascertaining the quality of 

force fields, almost all the MD computational studies in this field present density data, which is 

compared with experimental results or with other published computational data. Nonetheless, 

with all reviewed studies, density presents itself as a property insensitive to specific 

interactions and energies, as well as, independent of the use of polarizable or non-polarizable 

FFs (see Table 2.1.1.1).33 A similar conclusion was reached by Yan and co-workers59, who, in 

an evaluation of the main differences in the application of polarizable and non-polarizable 

force fields in the estimation of properties of 1-ethyl-3-methylimidazolium nitrate, 

[EMIM][NO3], obtained the values of 1177 kg.m-3 and 1174 kg.m-3 from simulations employing 

polarizable and non-polarizable force fields, respectively. These findings are in agreement with 

the results due to Zhang and Maginn61 where total charges in the ions of two ILs ranging from 

±0.76 e to ±1.0 e yielded practically the same densities and have showed that this property is, 

in fact, quite insensitive to the values of the charges considered in the simulations. 
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Table 2.1.1.1 - Estimated densities by means of MD simulations and experimental data, at different 

temperatures. 

Author(s)a IL T / K ρsim/ kg.m-3 ρexp / kg.m-3 

Ghatee and co-workers 

[BMIM][I] 

323 

1414.0 1418.0 

[HMIM][I] 1313.0 1318.0 

[OMIM][I] 1248.0 1240.0 

Liu and co-workers 

[BMIM][NTf2] 

298 

1446.0 1437.068 

[BMIM][Pf2] 1523.0 1517.7 

[BMpyr][NTf2] 1439.0 1406.1 

[N4111][NTf2] 1493.0 1398.4 

Margulis and co-workers [BMIM][PF6] 298 1310.0 1370.076 

Prado and co-workers [BMIM][BF4] 298 1178.0 1170.0 

Shimizu and co-workers 

[EMIM][NTf2] 

298 

1580.0 1515.0 

[BMIM][NTf2] 1150.0 1436.0 

[HMIM][NTf2] 1430.0 1371.0 

[OMIM][NTf2] 1360.0 1319.0 

[C10MIM][NTf2] 1310.0 1278.0 

[C12MIM][NTf2] 1270.0 1245.0 

[C14MIM][NTf2] 1240.0 1201.0 

[BMIM][PF6] 1330.0 1364.0 

[HMIM][PF6] 1250.0 1292.0 

[OMIM][PF6] 1210.0 1234.0 

[P6 6 6 14][NTf2] 1070.0 1065.0 

[P6 6 6 14][CF3SO3] 1000.0 982.0 

[P6 6 6 14][OAc] 910.0 891.0 

[BMIM][CF3SO3] 1340.0 1299.0 

[BMIM][CH3SO4] 1190.0 1211.0 

[BMIM][BF4] 1160.0 1199.0 

[BMIM][OAc] 1080.0 1053.0 

Zhang and Maginn 

[BMIM][PF6] 

173 

1484.0b 

1560.0 

1461.0c 

1475.0d 

1479.0e 

1471.0f 

[EMIM][PF6] 

1615.0b 

1656.0 1578.0c 

1593.0d 
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1599.0e 

1577.0f 

Zhong and co-workers 

[BMIM][PF6] 

298 

1370.0 1370.076 

[BMIM][NTf2] 1445.0 1437.068 

[C10MIM][NTf2] 1578.0 1570.077 

[EMIM][NTf2] 1531.0 1519.2 

[HMIM][NTf2] 1375.0 1371.078 

[OMIM][NTf2] 1324.0 1325.068 

[BMIM][CF3CO2] 1212.0 1210.079 

[BMIM][CH3CO2] 1055.0 1019.280 
 

aCorresponding references and details of each study are compiled at Table 2.1.1. 

bgpFC; cgpSC; dAIMD-c; eAIMD-1; fAIMD-b charges defined in footnotes of Table 2.1.1. 

 

2.1.2. Melting	  point	  
	  

As mentioned previously, a large and asymmetric cation together with an (in)organic 

anion confers to the IL a specific structure that prevents its crystallization, and thus decreases 

its melting point. This is one of the main differences between common molten salts and ILs, 

which also make ILs attractive to be used as replacements of common solvents, and thus, 

applied in a vast range of applications. 

From experimental data81,82 it is known that melting points of ILs decrease with 

changes in the symmetry between cation and anion, in the flexibility of the chains of the anions 

and in the charge dispersion. However, an increase in the length of the alkyl chains of the 

cations (with concomitant increase in the dispersive interactions) will increase the melting 

point.72,83 

For the estimation of melting points, through atomistic methods, two approaches can 

be distinguished, the “direct” and the free-energy based methods. In the direct approaches it is 

included the solid-liquid interface84 methods, the hysteresis method85 (the most common) and 

the void method84,85. In an attempt to reproduce experimental measurements, Alavi and 

Thompson37,38 used the solid-liquid interface method considering constant temperature and 

pressure MD simulations, to estimate melting points for 1-ethyl-3-methylimidazolium 

hexafluorophosphate ([EMIM][PF6]) and for 1-n-butyl-4-amino-1,2,4-trizolium 

bromide([patr][Br]). These simulations were made for the crystal phase at increasing 
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temperature until a melting transition, identified by an abrupt change in density, was observed. 

However, these melting transitions may occur at higher temperatures than the true melting 

point, and hence, cannot be detected in the time scales accessible by MD. To overcome this, 

the void induced melting method systematically introduces voids in the crystal, removing 

atoms or ion pairs from the lattice. At void densities between 6 % and 10 %, the apparent 

melting points level off and this value is taken as the true melting point. Above 10 %, the 

crystal becomes mechanically unstable and results may be unreliable. 

Melting point can be thermodynamically defined as the temperature at which the free 

energy of the liquid becomes equal to that of the solid, and this is the basis for the second 

group, the free-energy based methods. From the first free-energy based method86–88, Jayaraman 

and Maginn47 developed a new one, an extension of pseudo-supercritical path (PSPC) sampling 

procedure, to estimate melting points without the knowledge of fluid and solid reference state 

absolute free energies (Equation 2.1.2.1). 
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This procedure is detailed in the literature47, taking the 1-n-butyl-3-methylimidazolium 

chloride IL ([BMIM][Cl]) as a case study for which melting points were estimated for two 

crystal polymorphs. The calculated results are in good agreement with the experimental ones 

taken from Holbrey and co-workers81. Recently, Zhang and Maginn60 published an extended 

study on different methods that can be used to calculate melting points. By considering 

potential parameters derived from the CHARMM force field, they have estimated the melting 

point for the [BMIM][Cl] IL through three different methods, e.g., interface, voids and pseudo-

supercritical path (PSCP) methods (Table 2.1.2.1). The former method, as mentioned before 

should present a transition in density (or volume), and in this specific IL it was only possible to 

detect a sharp increase in the density in a range between 450 K and 500 K. In the case of the 

second method, three transitions steps were observed, not being possible to determine the 

melting point. Regarding the PSCP method, this have yielded the best result, i.e., it was 

possible to calculate the melting point for a temperature of 320 K, and therefore it seems to be 

a reliable approach for the determination of melting point of complex molecules, such as ILs. 
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The same authors in a subsequent work estimated melting points for [EMIM][PF6] and 

[BMIM][PF6], through NVT and NPT MD simulations considering GAFF force field and 

different methodologies to estimate the atomic charges (see previous section and Table 

2.1.1).61 Taking these two ILs, the best agreement between computed and experimental melting 

points is obtained with the charges calculated from the periodic crystalline phase plane-wave 

calculations, i.e., AIMD-c charges. These results show that, contrary to what was found for the 

density, the strategy followed to compute the atomic point charges has an important influence 

in the quality of the calculated melting points. 

 

Table 2.1.2.1 - Comparison of estimated melting points obtained using different methodologies and MD 

simulations, Tm,sim, with available experimental, Tm,exp, data. 

Author(s)a IL Method Tm,sim / K Tm,exp  / K 

Zhang and co-workers [BMIM][Cl] 

Interface  450~500 

34289 Voids  not possible to identify 

PSCP 320 

Zhang and Maginn 

[BMIM][PF6] PSCP 

292 b 

28490 
245 c 

284 d 

260 e 

308 f 

[EMIM][PF6] PSCP 

382 b 

33891 
297 c 

330 d 

332 e 

289 f 
aCorresponding references and details of each study are compiled at Table 2.1.1. 

bgpFC; cgpSC; dAIMD-c; eAIMD-1; fAIMD-b charges. 

	  

2.1.3. Vapor	  pressure,	  boiling	  point	  and	  enthalpy	  of	  vaporization	  
	  

The volatility of ILs had been initially considered to be negligible.92 ILs were regarded as 

having no measurable vapor pressure and not able to be distilled. However, Earle and co-

workers93 showed that ILs could be distilled under specific temperature and pressure 

conditions. Later, Rebelo94 and Paulechka95 and their co-workers have fully explored the 
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volatility of ILs by demonstrating the potential of vaporizing certain ILs at reduced pressure. 

These findings paved the way for the measurement of vapor pressures for ionic liquids, mainly 

by Knudsen effusion methods.94,96 The experimental measurement of the vapor pressure and 

the enthalpy of vaporization was found to be extremely difficult due to the very low vapor 

pressures and to the competition between vaporization and thermal decomposition (preventing 

the measurement of critical properties) or to the presence of impurities.63,72,83 In a recent review 

by Esperança and co-workers92, the nature of the vapor phase was discussed and the 

approaches used to predict and measure boiling points, vapor pressures and enthalpies of 

vaporization of ILs were analyzed. This particular study, highlights the difficulties in the 

measurement of these properties, and that the accuracy of those data is essential for theoretical 

and practical purposes. 

In simulation, enthalpy of vaporization (∆Hvap) is calculated from the difference between 

the molar internal energy of the gas/vapor (Uvap) and of the liquid (Uliq) phases (Equation 

2.1.3.1). 

 

∆𝐻!"# = 𝑅𝑇 − 𝑈!"# − 𝑈!"#  (2.1.3.1) 

∆𝐻!"# = 𝑈!"!!"#$! + 𝑅𝑇 (2.1.3.2) 

	  
The gas phase is reproduced through a simulation of an isolated ion pair of ILs at the same 

temperature as the liquid phase.97,98 Though the review of Esperança and co-workers92 does the 

survey of MD simulations in the prediction of the enthalpies of vaporization of ILs, it can be 

highlighted some computational works. Santos and co-workers55, estimated enthalpies of 

vaporization of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([CnMIM][NTf2]) according to Equation 2.1.3.1, based on the force field developed by 

Canongia-Lopes, Deschamps and Pádua42. The same ILs were studied by Kelkar and Maginn48, 

but considering a force field developed accordingly to CHARMM parameters. The values 

calculated by the latter authors are compared in Table 2.1.3.1 with those obtained by Shimizu 

and co-workers56 and by Köddermann and co-workers50 from the estimation of the cohesive 

energy (Ucohesive) in accordance to Equation 2.1.3.2. As it can be seen in Table 2.1.3.1, different 

force field parameters and/or different strategies to calculate the enthalpy of vaporization lead 

to enthalpic differences that can be of several tens of kJ·mol-1, being the values calculated by 

Köddermann and co-workers systematically smaller than the experimental results and than 

those calculated by other research groups. In fact, the computational results from these four 
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independent studies differ significantly from the experimental results. Several different authors 

performed computational studies for this family of ILs, also calculating enthalpies of 

vaporization. Results obtained with different sets of computational parameters, are closer to the 

values of Köddermann and co-workers than to those from the other authors listed above. 

Borodin40, and more recently Zhong and co-workers63, estimated enthalpies of vaporization for 

the same family of ILs, presenting underestimated and overestimated values, respectively, 

when compared to results obtained by previously mentioned authors. 

As it can be seen from the values collected in Table 2.1.3.1, a large discrepancy of values 

exists for the same IL, e.g. [EMIM][NTf2] or [BMIM][NTf2], which is a result of different 

computational strategies, i.e., by the different parameters from force fields and different values 

of the total charges in the cation and in the anion for the same ILs. The latter argument is 

supported by the large difference in the enthalpies of vaporization of [EMIM][PF6] and 

[BMIM][PF6] calculated with total charges close to unity or close to ±0.8 e reported by Zhang 

and Maginn61. Nevertheless, values obtained by Koddermann, Borodin and Zhong and their co-

workers are similar, but only for a few cases, the calculated results are in close agreement with 

the experimental data reported until now. Unfortunately, in addition to problems related with 

the choice of the best simulation strategy, difficulties in the experimental measurement of 

enthalpies of vaporization lead to the existence of inaccurate experimental data, and results 

obtained by simulation cannot be fully validated (differences can be up to 50 kJ·mol-1). 

In literature, it is also possible to find values for the enthalpy of vaporization for 

pyridinium-based ILs calculated by Bandrés and co-workers41, with maximum deviation of ~ 

11 % from experimental results, and for guanidinium-based ILs calculated by Khähn and co-

workers49, with maximum deviation of ~13 % from the experimental ones. 

As a final conclusion from the analysis of the enthalpies of vaporization available for some 

families of ILs, it is clear both from the computational and from the experimental studies that 

an increase of the alkyl chain length of the cations leads to an increase of ∆Hvap (Table 2.1.3.1). 

	  
Table 2.1.3.1 - Calculated and Experimental Enthalpies of Vaporization, at T=298 K, for several ILs. 

Author(s)a IL ∆Hvap
sim / kJ·mol-1 ∆Hvap

exp / kJ·mol-1 

Brandés and co-workers 
[Bpy][BF4] 190.6 167.099 

[BMpy][BF4] 180.5 162.1100 

Borodin  
[BMIM][PF6] 150.6 157.0101 

[BMIM][CF3SO3] 142.7  
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[BMIM][BF4] 140.8  
[EMIM][NTf2] 127.7 134.0-141.055,92,99 

[BMIM][NTf2] 133.7 134.0-155.055,90,92 

[HMIM][NTf2] 141.9 139.099, 173.055 

Kelkar and co-workers 

[EMIM][NTf2] 146.0 134.0-141.055,92,99 

[BMIM][NTf2] 151.0 134.0-155.055,92,99 

[HMIM][NTf2] 157.0 139.099, 173.055 

[OMIM][NTf2] 162.0 149.099, 192.055 

Klähn and co-workers 

AP-N 174.5 201.4 

AP-C 189.2 192.4 

CM-N 200.8 218.4 

Koddermann and co-workers 

[EMIM][NTf2] 130.6 134.0-141.055,92,99 

[BMIM][NTf2] 135.1 134.0-155.055,92,99 

[HMIM][NTf2] 143.8 139.099, 173.055 

[OMIM][NTf2] 153.8 149.099, 192.055 

Santos and co-workers 

[EMIM][NTf2] 159.0 134.0-141.055,92,99 

[BMIM][NTf2] 174.0 134.0-155.055,92,99 

[HMIM][NTf2] 184.0 139.099,173.055 

[OMIM][NTf2] 201.0 149.099, 192.055 

Shimizu and co-workers 

[EMIM][NTf2] 173.5 134.0-141.055,92,99 

[BMIM][NTf2] 180.5 134.0-155.055,92,99 

[HMIM][NTf2] 185.5 139.099, 173.055 

[OMIM][NTf2] 189.5 149.099, 192.055 

[C10MIM][NTf2] 199.5  
[C12MIM][NTf2] 207.5  
[C14MIM][NTf2] 217.5  

[BMIM][PF6] 186.5 157.0101 

[HMIM][PF6] 194.5  
[OMIM][PF6] 202.5 169.099 

[P6 6 6 14][NTf2] 269.5  
[P6 6 6 14][CF3SO3] 258.5  

[P6 6 6 14][OAc] 282.5  
[BMIM][CF3SO3] 181.5  
[BMIM][CH3SO4] 201.5  
[BMIM m][BF4] 182.5  
[BMIM][OAc] 281.5  

Zhang and Maginn [BMIM][PF6] 

188.2 b 

157.0101 
145.1 c 

143.0 d 

144.6 e 
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142.6 f 

[EMIM][PF6] 

191.8 b 

160.0101 

144.8 c 

138.7 d 

144.6 e 

128.5 f 

Zhong and co-workers 

[EMIM][NTf2] 142.2 134.0-141.055,92,99 

[BMIM][NTf2] 138.1 134.0-155.055,92,99 

[HMIM][NTf2] 148.5 139.099, 173.055 

[OMIM][NTf2] 156.8 149.099, 192.055 
aCorresponding references and details of each study are compiled at Table 2.1.1. 

bgpFC; bgpSC; dAIMD-c; eAIMD-1; fAIMD-b charges. 

2.1.4. Viscosity	  
	  

Viscosity, η, is a key transport property for industrial purposes, required for the design of 

process units. Its influence is evident on, for example, the behavior of ILs as lubricants and on 

mass and heat transfer processes. ILs present values of viscosity significantly higher than those 

for water or for organic solvents, e.g. at T = 298.15 K, η(water) = 0.89 mPa.s and η(methanol) 

= 0.54 mPa.s, while η([BMIM][SCN]) = 64.81 mPa.s and η([BMIM][DCA]) = 31.80 mPa.s. 

Large viscosities may be considered as disadvantageous for the use of ILs, in processes 

involving pumping and mixing, and processes that involve heat and mass transfer8,72, while 

they may be considered quite appealing when applied as lubricants. Changes in temperature, 

pressure and also in the cation or in the anion that compose the IL will influence directly its 

viscosity. The presence of water was also found to have an important influence on the viscosity 

of ILs and hence, on their performance.72 Though there is still limited available experimental 

data in literature, MD simulations have been performed. Hess102, and more recently Tenney 

and Maginn103, have discussed new strategies based on classical MD simulations for the 

calculation of viscosity. Essentially, viscosities can be estimated by EMD simulations, using a 

Green-Kubo integral (Equation 2.1.4.1) or Einstein relation (Equation 2.1.4.2) to relate 

fluctuations of off-diagonal elements of pressure tensor to viscosity, at specific limit 

conditions, such as in Equation 2.1.4.3. This obliges many simulation steps, i.e., very long 

simulation runs and concomitant storage of large trajectory files, to achieve good statistics. 
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In Equations 2.1.4.1 – 2.1.4.3, V is the volume of the system, kB is the Boltzmann constant, 

T is the temperature, t is the time and P is the pressure tensor. In the case of NEMD 

simulations, the response of the system to an external perturbation (shear strain) is used to 

calculate viscosity through Navier-Stokes equations. The most widely used nonequilibrium 

approach for viscosity calculations at a given shear rate, is the SLLOD algorithm104, which 

imposes a shear strain on the system and measures the resulting steady state stress (Equation 

2.1.4.4).102,103 

 

𝜂 𝛾 = −
𝑃!"
𝛾

 (2.1.4.4) 

	  
Nonetheless, Maginn and co-workers71,105 discussed the use and application of reverse 

nonequilibrium MD (RNEMD) to estimate the viscosity of ILs. The RNEMD method imposes 

the hard-to-measure heat flux and computes the resulting easy-to-measure shear rate or 

velocity profile, promoting the convergence of the viscosity calculation (Equation 2.1.4.5), 

where j is the imposed momentum flux, ptotal is the total exchanged momentum and L defines 

the length of the simulation box along an axis. 

 

𝑗!" 𝑃! =
𝑝!"!#$
2𝑡𝐿!𝐿!

 

(2.1.4.5) 
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The authors were able to conclude that though RNEMD successfully predicts viscosities 

for several ILs, (agreeing well with the SLLOD and EMD results, at low shear), only under 

very specific conditions should it be preferably considered, presenting underestimated 

viscosities at high shear when compared with those calculated with the SLLOD algorithm. 

Yan59, Borodin40, Van Oanh58, Zhong63 and Liu51 and their co-workers, are among those 

who used EMD to calculate the viscosity of imidazolium-based ILs. Ghatee and co-workers45, 

determined viscosities for some iodide-based ILs (with maximum deviation of 37 %). Other 

authors, e.g., Zhao62 or Van Oanh58  and their co-workers, used NEMD approaches for 

calculating viscosities of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 

1-methyl-3-ethylimidazolium bis(trifluoromethane)sulfonamide ([EMIM][N(SO2CF3)2]) and 1-

ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIM][NTf2]). Some of 

these data are compiled in Table 2.1.4.1. From the results therein reported, the trend that stands 

out is that, in general, results from EMD and NEMD simulations were found to overestimate 

the experimental viscosity data and that as the cation alkyl chain length increases, viscosity 

values also increase. Liu and co-workers51 have demonstrated also the dependence of viscosity 

with temperature. As expected, with the increase of temperature the values of the viscosity 

decrease. Finally, adding the systematic overestimation of viscosity values to the great 

computational efforts required for their calculation clearly suggests that improvements of the 

methods to compute viscosity of ILs are still required. 

It was mentioned before that NEMD should be preferably used for the estimation of 

transport properties, but from the analysis of the studies described above, it is perceived that 

acceptable results can be also obtained by using EMD formalism. In fact, as it can be seen in 

Table 2.1.4.1, the viscosities calculated by Van-Oanh and co-workers58 for [EMIM][NTf2] IL 

with the EMD formalism or with the NEMD approach differ by only 0.13 mPa·s at  

T = 500 K.	  

	  
Table 2.1.4.1 - Estimated viscosities, at different temperatures, determined by means of MD simulations. 

	  
Author(s) IL T / K ηsim / mPa·s ηexp / mPa·s 

EMD 
Borodin  

[BMIM][CF3SO3] 

298 

90.0b 84.2106 

[N4111][NTf2] 93.0b 99.0107 

[pyr14][NTf2] 78.0b 75.7107 

[EMIM][NTf2] 31.2b 32.2108 

Ghatee and co-workers [BMIM][I] 298 26.7c 29.0 
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[HMIM][I] 28.2c 40.3 

[OMIM][I] 35.3c 55.7 

Liu and co-workers [BMIM][NTf2] 298 28.0c 5.1 

Van-Oanh and co-workers [EMIM][NTf2] 500 3.5c 	  	  

Yan and co-workers [EMIM][NO3] 400 
4.7b 

4.2 
6.8c 

Zhao and co-workers  [BMIM][PF6] 300 127.0c 	  	  

Zhong and co-workers  

[EMIM][NTf2] 

353 

8.3c 7.7107 

[BMIM][NTf2] 12.6c 9.250 

[HMIM][NTf2] 15.5c 10.8107 

[OMIM][NTf2] 18.5c 12.7107 

NEMD Van-Oanh and co-workers [EMIM][NTf2] 500 3.6c 	  	  

RNEMD Zhao and co-workers [BMIM][PF6] 298 139.6c 228.8106 
a Corresponding references and details of each study are compiled at Table 2.1.1. 

b Polarizable force field  

c Non-polarizable force field 

 

2.1.5.  Diffusion coefficient 

	  
Diffusion coefficient (D) is a transport property, which is important in applications 

involving mass transfer. This is another property that can also be used to validate force fields, 

similar to what is done with density but, in opposition to this, available experimental values of 

diffusion coefficients for ILs are scarce in the literature. The diffusion coefficient may be 

described by the Stokes-Einstein equation, Equation 2.1.5.1, considering mean square 

displacements at very large times, and showing a great dependence on the viscosity. Similarly 

to viscosity, long MD simulations are required to obtain accurate values of D due to the slow 

dynamics that is characteristic of ILs. 

 

𝐷! =
1
6
lim
!→!

𝑑
𝑑𝑡

𝑟! 𝑡 − 𝑟! 0 !  (2.1.5.1) 

 

Margulis52, Aparicio39, Borodin40, Zhong63, Liu51  and their co-workers calculated, using 

MD simulations, the diffusion coefficients for different imidazolium-based ILs, while Klähn 

and co-workers49 calculated for guanidinium-based ILs. Their results are shown in Table 



________________________________ Chapter 2	   ________________________________	  
	  

[43] 
	  

2.1.5.1 and it is demonstrated that the diffusion coefficients for both the cation and anion 

decrease with the increase of alkyl chain length. The temperature dependence of diffusion 

coefficients was predicted by Liu and co-workers51, for the following ILs: 1-butyl-3-

methylimidazolium bis[(perfluoroethyl)sulfonyl]imide ([BMIM][PF2]), 1-butyl-3-

methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM][NTf2]), 1-butyl-1-

methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, ([BMpyr][NTf2]),  and N-butyl-

N,N,N-trimetylammonium bis(trifluoromethanesulfonyl)imide, ([N4111][NTf2]), and was found 

to be well described by the Arrhenius temperature dependence, i.e., there is a linear 

dependence of log D with the inverse of temperature (1/T). 

All mentioned simulations produced values that underestimate the experimental results, 

which were found to be approximately one third of the latter ones. Deviations between 

experimental and simulation results have been suggested to be caused by some inaccuracies of 

force fields. Importantly, it is possible to conclude from the results in Table 2.1.5.1 that the 

simulations conducted by Borodin40 with a polarizable force field, yield values that are closer 

to the experimental ones72,83, than those calculated with a non-polarizable force-field. This 

suggests that polarizable force fields are essential for the calculation of diffusion coefficients 

for ILs. Unfortunately, as mentioned above, clear conclusions are not possible since the 

calibration of the computational procedures suffers from the lack of reliable experimental data 

for this property. 

 

Table 2.1.5.1 - Estimated diffusion constants, at different temperatures, determined by means of MD 

simulations. 

Author(s)a IL T / K D+
sim / m2·s-1 D-

sim / m2·s-1 D+
exp / m2·s-1 D-

exp / m2·s-1 
Aparicio and co-workers [EMIM][TOS] 318 5.82x10-11 2.69x10-11 	  	   	  	  

Borodin 

[BMIM][BF4] 

298 

0.101x10-10 0.105x10-10 0.145x10-10 106 0.134x10-10 106 

[pyr14][NTf2] 0.119x10-10 0.104x10-10 0.177x10-10 0.142x10-10 

[BMIM][PF6] 0.032x10-10 0.028x10-10 0.069x10-10 106 0.052x10-10 106 

[EMIM][NTf2] 0.516x10-10 0.347x10-10 0.495x10-10 109 0.309x10-10 109 

[BMIM][NTf2] 0.289x10-10 0.196x10-10 0.275x10-10 106 0.218x10-10 106 

[HMIM][NTf2] 0.149x10-10 0.144x10-10 0.168x10-10  0.153x10-10 108 

Margulis and co-workers [BMIM][PF6] 298 1.420x10-11 1.280x10-11 6.700x10-11	  109	   5.700x10-11 107	  	  

Klähn and co-workers 
AP-N 

298 
1.300x10-12 2.000x10-12 2.900x10-12 2.900x10-12 

AP-C 0.500x10-12 0.500x10-12 3.600x10-12 4.300x10-12 
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CM-N 0.300x10-12 0.300x10-12 1.300x10-12 1.600x10-12 

Zhong and co-workers 

[BMIM][PF6]  

353 

4.700x10-11  3.200x10-11 6.700x10-11 109  5.700x10-11 107 

[EMIM][NTf2]  18.500x10-11   10.200x10-11 22.000x10-11 109 14.000x10-11 107 

[BMIM][NTf2]  10.900x10-11 7.800x10-11 15.000x10-11 109 13.000x10-11 107 

[HMIM][NTf2]  6.900x10-11 6.200x10-11 12.000x10-11 109 11.000x10-11 107 

[OMIM][NTf2] 4.000x10-11 4.000x10-11 9.000x10-11 109 8.800x10-11 107 
aCorresponding references and details of each study are compiled at Table 2.1.1. 

 

2.1.6. Surface	  tension	  
	  

This is an important property that measures the cohesive forces between liquid molecules 

present at a surface between the coexisting liquid and gas phases, and also allows one to 

explore different types of segregation/orientation that occur at an ionic/molecular level, very 

important in the evaluation of complex molecules, such as ILs.110 It is, then, a property related 

with the mass transfer efficiency for gas-liquid / liquid-liquid extraction processes and 

multiphase homogeneous catalysis, and has scarcely been studied. Similar to what is observed 

for viscosity, the presence of water can affect the surface tension, especially in the case of 

hydrophobic ILs as shown recently by Freire and co-workers111. 

Bhargava and Balasubramanian112 estimated the surface tension for [BMIM][PF6] through 

MD simulations by using the formula of diagonal components of the pressure tensor Pii, as 

demonstrated in Equation 2.1.6.1 where Lz is the length of the simulation box in the z direction. 

 

𝛾 = −
𝐿!
4

𝑃!! + 𝑃!! − 2 𝑃!!  (2.1.6.1) 

 

In their work, it was considered a refined force field with charges on the cation and on the 

anion of ±0.8 e based on the AMBER/OPLS type potential parameters for the intramolecular 

interactions by Canongia-Lopes and co-workers42 (see Table 2.1.1). The authors obtained a 

value for the surface tension of 47 mN.m-1 which is in good agreement with the experimental 

result of 42.3 mN·m-1. Canongia Lopes and co-workers42, considered charges on the cation and 

on the anion of ±1.0 e, and using the same equation they obtained a much higher value (γ =74 

mN·m-1) than that calculated by Bhargava and Balasubramanian. 

Following the same methodology, Heggen and co-workers46 studied the impact on the 

calculated surface tension values for [BMIM][PF6] of running the MD simulations with 
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different simulation packages (YASP113 or GROMACS114), and considering different 

treatments for the electrostatics (particle-mesh Ewald, PME, or reaction field, RF). They found 

that the calculation of surface tension values with bond constraints lead to different results 

when YASP/RF or GROMACS/RF were considered. For instance, at T=300K, the surface 

tensions calculated by these codes are 37.3 and 49.0 mN·m-1, respectively, while the 

experimental result is 43.5 mN·m-1. The results obtained with YASP/RF underestimated 

systematically the experimental values by about 20 % in all range of temperatures studied, 

decreasing as the temperature increase. However, with GROMACS/RF, the calculated results 

overestimate the experimental ones in the order of 13 %. Releasing bond constraints, the 

YASP/RF was able to give a value closer to the experimental result (44.7 mN·m-1, i.e., a slight 

overestimation) while GROMACS/RF, with constraints, and GROMACS/RF, without 

constraints, give practically the same result (49.0 vs 49.3 mN·m-1, respectively). A much better 

value was calculated with GROMACS, γ = 46.4 mN·m-1, but using PME. The latter result is 

almost identical to that calculated by Bhargava and Balasubramanian (see above). 

González-Melchor and co-workers115 computed the surface tension for some ILs by 

running MD simulations with the aim of studying the size effects of the ions in the surface 

tension. Interestingly, it was found that the surface tensions of the ILs, considered in that work, 

decreased with the increase of cation to anion asymmetry. Later, Pensado and co-workers53 

performed MD simulations, based again on the AMBER/OPLS-AA force field, for interpreting 

the effect of the length of the alkyl side chain and the presence of a polar hydroxyl group at the 

end of the side chain on the surface tension, of the following ionic liquids: 1-ethyl-3-

methylimidazolium tetrafluoroborate ([EMIM][BF4]), 1-(2-hydroxyethyl)-3-

methylimidazolium tetrafluoroborate ([EOHMim][BF4]), 1-octyl-3-methylimidazolium 

tetrafluoroborate ([OMIM][BF4]) and 1-(8-hydroxyoctyl)-3-methylimidazolium 

tetrafluoroborate ([OOHMIM][BF4]). The calculated values for these ILs were, respectively, 

39.9 mN·m-1 (against 44 mN·m-1 from experimental work), 55.5 mN·m-1 (against 56.9 mN·m-1 

from experimental work), 35.6 mN·m-1 and 27.2 mN·m-1 (against 24.7 mN·m-1 from 

experimental work). The maximum deviation with respect to the experimental data was only of 

10 %. They concluded also from their results that the increase of the length lowered the values 

calculated for the surface tension but the introduction of the polar hydroxyl group was found to 

have an opposite effect (surface tension values increased), which was related with the increase 

of the electrostatic and repulsion-dispersion contributions. 
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2.1.7. Structural	  characterization	  
	  

MD simulations can be used to successfully predict properties other than transport and 

thermodynamic ones. The structural information of ILs can also be obtained by theoretical 

means and a common way to do this is through the estimation of the radial distribution 

functions (RDFs or g(r)), which gives information concerning the structural organization of a 

system. More specifically, this function gives the probability of finding a particle at the 

distance r from another particle (considered as the reference particle) and it is commonly used 

to aid the interpretation of the experimental results, and for this reason is found in most every 

study where simulation and experimental means complement each other. 

 

𝑔 𝑟 =
𝑛 𝑟

4𝜋𝜌𝑟!𝑑𝑟
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Bhargava and Balasubramanian112, calculated RDFs for anion-anion and cation-anion 

interactions in the 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic 

liquid. The idea was to understand the local structural effects in the IL and also check the 

quality of their refined potential, which was done by comparison with the structural 

information in the liquid obtained from ab initio molecular dynamics (AIMD) simulation. Due 

to the consideration of different force field parameters in the calculations, the positioning and 

the magnitude of the RDF peaks differed visibly from those calculated with the original force 

field introduced by Canongia-Lopes and co-workers42. For the same [BMIM][PF6] IL, 

Margulis and co-workers52 also calculated RDFs between the cation and anions and RDFs were 

computed, as well for 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM][PF6])38, 1-

ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4])54, and 1,3-dimethylimidazolium 

bis(trifluoromethanesulfonyl)imide ([DMIM][NTf2])116. In these studies, it was possible to 

identify interactions established (hydrogen bonds) between the hydrogen atoms from the 

imidazolium cation and the fluorine atoms from the anions that compose the ILs. Though these 

interactions are established by different hydrogen atoms in the imidazolium cation with the 

anion’s atoms, the acidic hydrogen in the ring revealed a higher propensity to interact with the 

halogen atoms from both anions. Simultaneously, it was found higher probability of interaction 

between the acidic carbon of the imidazolium cation and the boron and phosphorous atoms 
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from the anions. In the study of Alavi and co-workers37, the same kind of interactions was 

observed for the anion Br-, from 1-n-butyl-4-amino-1,2,4-triazolium bromide IL.  

It is worthwhile mentioning the work developed by Canongia Lopes and co-workers117 , 

who, through the estimation of RDFs, demonstrated the complex microscopic structure of ILs 

that is characterized by the existence of different domains/regions, with different polarities, 

which has been considered as reference for many studies since then. The RDFs, additionally, 

can have a 3D representation, through the spatial distribution functions (SDFs). The SDFs are a 

three dimensional visualization of regions of high probability of atoms/particles surrounding a 

reference one, allowing a better understanding of the structural atom organization.59,61,118,119  

Furthermore, and complementing the information giving by radial and spatial distributions 

functions, the quantification of the total number of atoms/particles on the surroundings of a 

reference one, can be obtained through the integration of RDFs, usually named as the 

coordination number120,121. 

Molecular dynamics simulation, also allows to evaluate the crystal structure of ILs. The 

crystal structure is defined, accordingly, by dimensions (a, b, c) and director angles (α, β, γ) of 

the unit cell, which have been tentatively predicted by means of MD simulations. Canongia 

Lopes and co-workers42 attempted to predict the crystal structure of several ILs, [C10MIM][Cl], 

[EMIM][Cl], [EMIM][NO3] and [EMIM][PF6], based on the dimensions and occupancy of the 

unit cells of each crystalline structure taken from the Cambridge Structural Database (CSD), 

and considering classical simulations with their developed force field based on 

AMBER/OPLS-AA force fields parameters. The results obtained agreed well with the 

experimental ones, and the highest deviation around 3.5 %, was observed for the value of the β 

vector. In following works43,57, the prediction of the crystal structure was attempted for n-

butylpyridinium chloride ([Bpy][Cl]), tetradecylphosphonium bromide ([P10,10,10,10][Br]), 

tetramethylammonium dicyanamide ([N1,1,1,1][DCA]), triphenylphosphonium 

bis(fluorosulfonyl)amide ([PH(C6H5)3][N(SO2F)2]), sodium trans-bis(perfluoro-n-

butylsulfonyl)amide ([Na][N(SO2C2F5)2]) , potassium trans-bis(perfluoro-n-

butylsulfonyl)amide and potassium cis-bis(perfluoro-n-butylsulfonyl)amide 

([K][N(SO2C2F5)2]) and, finally, for 1,3-dimethoxy-2-ethylimidazolium 

tris(pentafluoroethyl)trifluorophosphate ([(OMe)2MIM][PF3(C2F5)3]). Using the methodology 

applied in previous work42, it was possible to obtain results in good agreement with the 

experimental ones (obtained through X-ray experiments), for cell vector lengths and cell vector 

angles, with deviations ranging from 2 % to 4 %. The prediction of the crystal structure was 



________________________________ Chapter 2	   ________________________________	  
	  

[48] 
	  

considered as a good test to develop and to validate the force fields applied for the different 

ILs. Jayaraman and Maginn47, predicted the crystal structure of [BMIM][Cl] with two different 

potentials, namely, that developed by Canongia Lopes and co-workers42, based on OPLS 

parameters, and that developed by Cadena and Maginn122 based on CHARMM force field. The 

results calculated from the two force fields were found to reproduce well the experimental ones 

with a maximum deviation of 1 %. Nevertheless, when the two possible polymorphs of this IL 

were studied, only the second one was able to reproduce both structures in a stable form. Later, 

Zhang and Maginn61 reported not only densities, enthalpies of vaporization and melting points 

of [EMIM][PF6] and [BMIM][PF6] but also the prediction of their crystal structure. The 

simulations were performed at T = 173 K through NVT and NPT ensembles, considering 

GAFF force field and five different sets of atomic charges. From obtained results, it was found 

that the lattice parameters are not affected by the differences in ILs’ atomic charges, with a 

maximum deviation of 4 % in the case of [BMIM][PF6] and a maximum deviation of 2.5 % in 

the case of [EMIM][PF6]). 

Borodin40 in his extensive study regarding the prediction of thermodynamic, transport and 

structural properties of ILs, was also able to obtain very good results for the crustal structure of 

the ILs studied with deviations not more than 2.5 % from the results obtained through X-ray 

measurements. This author have applied a many-body polarizable force field and performed 

the NPT ensemble to model the [EMIM][NTf2], [pyr13][NTf2], [pyr14][NTf2] and 

[EMIM][CF3SO3] ILs, with initial dimensions and occupancy of the unit cells of each 

crystalline structure taken from the CSD. 
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Summary	  
	  

Most of the works reported in this chapter considered non-polarizable force fields. These force 

fields, in general, produced underestimated diffusion coefficients, overestimated viscosities values and 

present, however, quite good agreement between calculated and experimental results for the densities 

and surface tensions of ILs (Table 2.1.2). The usage of polarizable force fields, in some cases, leads to 

results that are closer to the experimental ones (see Tables 2.1.4.1 and 2.1.5.1) which is probably 

related with the fact that the charges on the ILs’ ions vary with the nature of the charged units 

(species/compounds), with the number and the nature of the surrounding units, and with the fact that 

the total charges of ILs’ ions seem to be often different from unit, which was considered only in some 

of the computational studies reported here. Thus, the point charges seem to have a very important role 

in the quality of the thermodynamic properties calculated with MD simulations. Most of non-

polarizable force fields used in the studies reviewed in this study considered several different strategies 

for calculating the atomic charges used for each IL constituting cation or anion. The methods based on 

the fitting of the electrostatic potential in the vicinity of a molecule (ESP), or restrained electrostatic 

potential (RESP), and the method ESP but using a grid base (CHelpG) are the ones most common 

applied methods (being the latter the most considered in the studies reported in this work). 

Nevertheless, is has been also applied the Blöchl method69,123,124, which derives the partial charges 

under bulk conditions, by fitting the system expressed in multipole moments. In this way, the method 

allows the charge distribution of an IL in the liquid phase assigning the partial charges and showing its 

great capacity to obtained reduced charges in dense systems (liquid phase) and in periodic boundary 

conditions33,124. Chaban and co-workers44, on other hand, determined a charge scaling factor that 

matches experimental properties of ILs. It was also shown that its application in non-polarizable force 

field will improve its quality and the prediction of ILs’ properties. In a recent work, Zhang and 

Maginn61, derived atomic charges using several different strategies and compared the calculated results 

for several properties with experimental data, being able to conclude that the consideration of charges 

resulting from a fitting of the charges in a crystal phase yielded quite good static and dynamic 

properties, and therefore consisting in a simple and reliable methodology. 

Despite all the efforts made in the field of MD simulations, it is possible to realize (especially in 

the case of viscosity) that a lot of improvements need to be made. Along with technology 

improvements, it is important to highlight that a straight line between experimental and theoretical 

procedures must exist. Experimentally, caution is needed in the purification of ILs in order to minimize 
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impurities that affect the determination of their properties. The latter, constitutes a problem for the 

simulations since, without available accurate experimental data, it is quite difficult to calibrate 

computational strategies (e.g. force fields) for the calculation of properties of ILs.  

 

Table 2.1.2 - Accuracy of MD simulations for calculating structural and thermodynamic properties of ILs 

with respect to available experimental results. 

Calculated Property Comparison to Experimental Results 

Density Very Good 

Melting Point Good 

Enthalpy of Vaporization ? a 

Viscosity Overestimated 

Diffusion Coefficients Underestimated 

Surface Tension Overestimated/Underestimated 

Structural Data 
Very Good Complement of Information Retrieved 

from Experimental Work 

aHard to be defined due to several different experimental results determined by different authors 
for the same IL. 
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In this chapter there will be described studies performed with the aim of characterizing binary 

mixtures relevant for the production of fuels and biofuels, namely, ILs and thiophene/benzene, ILs and 

water/ethanol, and glucose with ILs/water. The aim was the evaluation of the role and the magnitude of 

the interactions established by the ILs with the other solvents in the mentioned mixtures and, 

simultaneously, the assessment of the ability of ILs to act as extracting solvents. 

The approach here adopted is primarily based on the use of MD simulations for the assessment of 

the quality of the force fields and also for a more comprehensive understanding of the behavior of the 

systems under study, of the resulting data on the properties measured and calculated, and finally on 

phase equilibria of these mixtures. Accordingly, for benchmarking the calculations, experimental 

measurements of different properties were performed, which are going to be detailed in the following 

chapters along with the results of the MD simulations.  
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3.1. Evaluation	   of	   the	   Liquid-‐Liquid	   Equilibria	   of	   Ionic	   Liquid-‐Based	  
Systems	  for	  Fuel	  Improvement	  
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Motivation	  

As mentioned previously, in the petroleum industry strict regulatory restrictions require the 

reduction of the level of sulfur-based compounds and aliphatic-aromatic compounds content in fuels, 

aiming at the minimization of their environmental impact.1,2 Several aspects involving the 

desulfurization processes have been addressed in a previous chapter (Chapter 1.3). Nonetheless, the 

separation of aromatic from aliphatic hydrocarbons is also a challenging task because these compounds 

have similar boiling points, which lead to the formation of different types of azeotropes that cannot be 

overcome by conventional distillation processes.1 

Extractive distillation, azeotropic distillation and liquid-liquid extraction have been used for the 

removal of those compounds, being the latest the most applied technique.3 Several extractive solvents 

have been tested for the extraction of toluene, benzene, ethylbenzene or xylene from their mixtures 

with, for instance, hexane, heptane and octane. However, the selection of the solvent to be applied in 

the extraction process is a crucial step, affecting the efficiency of the separation. Until recently, 

conventional organic compounds, such as sulfolane, were typically used as extraction solvents, but 

environmental issues and additional operation costs associated to their regeneration have led to the 

search for adequate alternatives.1 

Presenting unique properties, ILs have been identified as advantageous substitutes for conventional 

solvents in separation processes, as well as in oxidative and extractive desulfurization processes. These 

advantages are essentially related to their higher density when compared to common organic solvents, 

low solubility in aliphatic hydrocarbons and high capacity to dissolve aromatic compounds (and 

consequently high selectivity in the separation of aromatics from aliphatic compounds).3–6 

In order to properly design novel separation processes and to choose the most suitable IL to 

perform the extraction, the knowledge of the thermophysical properties of ILs, including density and 

viscosity, as well as, the Liquid-Liquid Equilibrium (LLE) phase diagrams of their binary and ternary 

mixtures, is required.7,8  

Studies devoted to the separation of aromatic from aliphatic compounds using ILs composed by 

different combinations of cations and anions have been extensively reported and reviewed by Ferreira 

et al.5,6. These reviews provide a complete compilation of LLE data for binary and ternary systems 

involving ILs, aromatic and aliphatic hydrocarbons. Moreover, several studies on the application of ILs 

for the removal of sulfur compounds have also been reported in the literature and a large number of ILs 

including imidazolium9–12, pyridinium13–15, Lewis and Brønsted acid and oxidative ILs16,17 have been 

tested as extractive solvents. Anions such as bis[(trifluoromethyl)sulfonyl]imide, hexafluorophosphate, 



________________________________	   Chapter 3	   ________________________________	  
	  

	  
	  

[62] 

tetrafluoroborate, ethylsulfate, acetate and thiocyanate have been considered, with the latest showing 

higher selectivity. 2,18–20 While measuring the binary7,18,19,21,22 and ternary1,2,23,24 phase diagrams of 

systems composed of sulfur compounds and ILs, different LLE behaviors were observed, showing a 

dependence with the anion of the IL. In most cases, these systems present the common upper critical 

solution temperature (UCST) with their mutual miscibilities increasing with temperature, for example, 

1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [BMIM][NTf2], with thiophene, but 

some systems display a lower critical solution temperature (LCST), for instance, 1-butyl-3-

methylimidazolium thiocyanate, [BMIM][SCN], with thiophene and benzene.  

Aiming at the characterization of the systems under consideration, the densities and viscosities of 

the binary systems of [BMIM][SCN] and [BMIM][NTf2] with thiophene, and of [BMIM][SCN], 

[BMIM][CF3SO3] and [EMIM][NTf2] with benzene, were measured at atmospheric pressure and in the 

temperature range 298.15 K to 328.15 K. Attained measured data were further used to calculate excess 

molar volumes and viscosity deviations, which were correlated by the Redlich-Kister polynomial 

expansion, with a purpose of supplying additional information regarding the type and strength of the 

interactions established by ILs. 

 

Figure 3.1.1 - Chemical structures of the aromatic compounds and of the cations and anions of the ILs 

studied in this work, and corresponding atom labelling. 

Furthermore, a special attention was devoted to the systems composed of thiophene and two ILs, 

namely, [BMIM][SCN] and [BMIM][NTf2]. A phase diagram of the binary system composed of 

[BMIM][NTf2] and thiophene was measured, after verifying its absence in the literature. Aiming at 

inferring the differences in the interactions between these two ILs and thiophene presenting UCST and 
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LCST behavior, respectively, 1H and 13C NMR spectroscopy experiments were performed, from which 

chemical shift deviations (Δδ) were then analysed. Moreover, MD simulations were performed for the 

two systems and RDFs were used to investigate the interactions between the constituting species. 

Analysing the atomic local organization, a comprehensive picture of the molecular interactions was 

drawn, explaining the formation of the two types of phase diagrams (UCST and LCST). 
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Methodology	  

Experimental	  Section	  
	  

Materials  

Thiophene was supplied by Acros with a purity of 99.5 wt% and benzene by Merck with a purity 

of 99.7 wt%. The ILs used in this work were supplied by IoLiTec and comprise 1-butyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM][NTf2], mass fraction purity > 99 

%, 1-butyl-3-methylimidazolium thiocyanate, [BMIM][SCN], mass fraction purity > 98 %, 1-

butyl-3-methylimidazolium triflate, [BMIM][CF3SO3], mass fraction purity > 99 %, and 1-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][NTf2], mass fraction purity > 99 

%. Their purities were further confirmed by 1H, 13C and 19F (whenever applicable) NMR. In order 

to reduce the amount of volatile impurities, all samples were dried for at least 48 h under vacuum 

(10-3 Pa) at room temperature before use. After the drying procedure, the water content in the 

samples range from 208 to 324 ppm, measured by Karl–Fischer titration. The molecular structures 

of the compounds studied in this work are presented in Figure 3.1.1. 

 

Experimental Procedure 

Mixtures of thiophene with [BMIM][SCN] and [BMIM][NTf2], as well as mixtures of benzene 

with [BMIM][SCN], [BMIM][CF3SO3] and [EMIM][NTf2] were prepared gravimetrically with an 

uncertainty of ±10-5 g. In order to homogenize the mixtures, they were constantly stirred for at least 

24 h at room temperature. 

 

Liquid-liquid equilibrium 

The phase diagram for the binary system of thiophene and [BMIM][NTf2] was measured by 

turbidimetry. The onset of the liquid-liquid immiscibility (cloud point temperature) was 

determined by visual observation of the phase demixing (turbidity followed by phase 

separation). Mixtures were introduced in Pyrex-glass capillaries with a stirrer, and the 

concentration range studied, 0.15 < xIL < 0.17, was restricted by experimental limitations (the 

visual method was not applicable at mole fractions of the IL out of this range, since the 

experimental setup is limited either for low or high temperatures) and was established on the 

basis of titrations carried out prior to the experiments. The sealed capillaries were placed in a 

thermostated bath and were kept under continuous stirring during the whole experiment. 
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Solutions presenting two phases at ambient temperature were heated into the homogeneous 

region and then slowly cooled until visual detection of phase demixing. The cooling rate was 

about 10 ºC for each 30 minutes. The temperature at which the first sign of turbidity appeared 

upon cooling was taken as the temperature of the liquid-liquid phase transition. For 

monophasic solutions at room temperature, the heating process was suppressed. The 

temperature was controlled with a calibrated U1252A, Handheld Digital Multimeter 4.5-digit 

associated to a calibrated Pt100 temperature sensor immersed in the thermostating liquid. This 

equipment has an uncertainty of ±0.01 K. Three consistent measurements were carried out for 

each solution. 

 

Density and viscosity 

Density and viscosity measurements were performed at atmospheric pressure and in the 

temperature range (283.15 to 333.15) K, using an automated SVM 3000 Anton Paar rotational 

Stabinger viscometer-densimeter. The SVM 3000 Anton Paar rotational Stabinger viscometer-

densimeter uses Peltier elements for fast and efficient thermostatization.  

The viscosimeter is based on a tube filled with the sample in which floats a hollow measuring 

rotor. Due to its low density, the rotor is centred in the heavier liquid by buoyancy forces. 

Consequently, a measuring gap is formed between the rotor and the tube. The rotor is forced to 

rotate by shear stresses in the liquid and is guided axially by a built-in magnet, which interacts 

with a soft iron ring. The rotating magnetic field delivers the speed signal and deduces eddy 

currents in the surrounding copper casing. These eddy currents are proportional to the speed of 

the rotor and exert a retarding torque on the rotor. Two different torques influence the speed of 

the measuring rotor, and at the equilibrium, the two torques are equal and the viscosity can be 

traced back to a single speed measurement.   

The obtained uncertainty in temperature is within ±0.02 K. The relative uncertainty for the 

dynamic viscosity is ±0.35 % and the absolute uncertainty for density is ±0.5 kg.m-3. 

 

NMR measurements 

For the NMR analysis, it was used a stem coaxial capillary tube with acetone-d6 that was 

inserted into 5 mm NMR tubes with the different mixtures composed of IL and thiophene. The 
1H and 13C spectra were recorded using a Bruker Avance 300 spectrometer operating at 300.13 

MHz and 75.47 MHz, respectively. 
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Thermodynamic	  models	  -‐	  Mixture	  Properties 

 

The excess thermodynamic properties are employed to describe the deviation in behavior of a 

mixture from the ideality, giving important information concerning the nature of the molecular 

interactions present in binary systems. The excess molar volumes, VE, were estimated from the 

measured densities according to the following equation, 

 

𝑉! = 𝑥!𝑀!
1

𝜌!"#
−
1
𝜌!

 (3.1.1) 

 

where xi, Mi, and ρi are, respectively, the molar fraction, molar mass, and density for each component 

of the binary system, and ρmix is the density of the mixture. 

Similarly, viscosity deviations were estimated from measured viscosities according to the following 

equation, 

∆𝑙𝑛 𝜂 = 𝑙𝑛 𝜂!"# − 𝑥!𝑙𝑛 𝜂!  (3.1.2) 

 

where xi and ηi are, respectively, the molar fraction and viscosity for each component that composes 

the binary system, and ηmix is the viscosity of the mixture. 

The excess volumes and viscosity deviations were correlated at each temperature with a Redlich-Kister 

polynomial expansion as shown in the following equation, 

 

𝑄 = 𝑥!"#$!%&'   𝑥!" 𝐴! 𝑥!"#$!%&' − 𝑥!" !
!

!!!

 (3.1.3) 

 

where Q represents either the excess molar volume VE, or the viscosity deviations ∆η, xaromatic 

corresponds to the molar fraction of benzene or thiophene, xIL is the molar fraction for all ILs studied, 

Aj are the correlation parameters, and m is the degree of the polynomial expansion. For our systems, a 

second-order polynomial was found to be adequate level for VE, and a first-order polynomial for ∆η. 

 

Computational	  details	  
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The interactions between ILs and thiophene were investigated by molecular dynamics (MD) 

simulations using the GROMACS 4.5.4 computer code27. The simulations were carried out in the 

constant temperature and constant pressure (NPT) ensemble. Constant temperature (298.15 K) was 

maintained by using the Nosé-Hoover28,29 thermostat while the pressure (1 bar) was maintained by 

using the Parrinelo-Rahman30 barostat. All systems (each one considering 80 pairs of IL ions and 40 

molecules of thiophene) were prepared by randomly placing all species in the simulation boxes. In 

each of these simulations, the equations of motion were integrated with the Verlet-Leapfrog31 

algorithm and a time step of 2 fs. A 10 000 step energy minimization was performed and the systems 

were equilibrated (at least 150 000 steps). Furthermore, quite long simulations were carried out, with 

25 000 000 steps for [BMIM][SCN] with thiophene and 50 000 000 steps for [BMIM][NTf2] with 

thiophene (50 ns). The intermolecular interaction energy between pairs of neighboring atoms was 

calculated using a Lennard-Jones potential to describe dispersion/repulsion forces and the point-charge 

Coulomb potential was used for electrostatic interactions. Long-range electrostatic interactions were 

accounted for using the particle-mesh Ewald32 method with a cutoff of 1.0 nm for the real-space part of 

the interactions. A cutoff radius of 1.2 nm was used for the Lennard-Jones potential, and long-range 

dispersion interactions were added to both energy and pressure. Rigid constraints were enforced on all 

bonds lengths. 

The all-atom force field for [BMIM][NTf2] considered the parameters from the works of 

Cadena and Maginn33 and of Canongia Lopes and Pádua34 for the cation and for the anion, 

respectively, as in the work of Tomé et al.35. The charges for the cation and the anion were recalculated 

with the CHelpG scheme36 using an optimized geometry for the BMIM-NTf2 dimer in the gas-phase35. 

The calculations considered the B3LYP/6-311+G(d) approach as included in the Gaussian 03 code37, 

i.e., using the same computational strategy employed by Morrow and Maginn38 for the [BMIM][PF6] 

ionic liquid. The total CHelpG charges on the cation and anion are +0.797 e and -0.797 e, respectively. 

The estimation of partial charges for an IL from calculations of an ion pair in vacuum can be a 

problematic issue as addressed and discussed in other works.39,40 Nevertheless, it has been 

demonstrated that models with total charges on each ion in the range ±0.7 to 0.8 yield a better 

description of both structural and (most noticeably) dynamic properties of ionic liquids.40–42 

Furthermore, we have also performed calculations considering a pair of ions surrounded by other IL 

ions and no significant differences were found in the results obtained. The full set of atomic charges is 

supplied in Appendix A (Tables A.1 to A.3). 

The calculated density and enthalpy of vaporization for [BMIM][NTf2] are 1486 kg.m-3 and 

131.74 kJ.mol-1, respectively, which compare well with the range of experimental results, i.e., [1429; 
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1437.4] kg.m-3 (taken from Huddleston et al.43 and measured in this work, at Table 3.1.1) and 134-155 

kJ.mol-1 44, respectively. In the case of [BMIM][SCN], we have used the all-atom force field from the 

work of Cadena and Maginn33 for the cation and we have adapted standard GROMOS potential 

parameters for the anion (additional details given in Tables A.4 to A.7 in Appendix A). The CHelpG 

total charges on the cation and anion are +0.791 e and -0.791 e, respectively. These values were also 

calculated using a B3LYP/6-311+G(d) optimized geometry (minimum energy from several initial 

configurations) for the BMIM-SCN dimer in the gas-phase. It was quite encouraging to see that the 

charges above are close to those computed for the central cation/anion pair in clusters containing 

several [BMIM][SCN] pairs; for instance, the mean values calculated for the central dimer in different 

clusters containing 13 BMIM-SCN pairs are +0.804 ± 0.020 e and -0.804 ± 0.020 e for the cation and 

the anion, respectively. The calculated density and enthalpy of vaporization for [BMIM][SCN] are 

1082 kg.m-3 and 123.0 kJ.mol-1, respectively. Very encouraging, these results, compare well with the 

range of experimental results for density and enthalpy of vaporization, i.e., [1070; 1069.8] kg.m-3 (taken 

form Domanska and Laskowska45 and measured in this work) and 114.5 - 148 kJ.mol-1 46, respectively. 

The spatial distribution functions (SDF), which can be briefly described as 3D representations of the 

probability of finding a particle at a certain position, were calculated using a bin width of 0.05 nm. 

Results	  and	  Discussion	  
 

Liquid-‐liquid	  equilibrium	  (LLE)	  
	  

Figure 3.1.2 shows the liquid-liquid phase diagram measured in this work for the binary system 

of thiophene and [BMIM][NTf2] (the experimental numerical results are supplied at Appendix 

A, Table A.8), along with the liquid-liquid phase diagrams of mixtures of [BMIM][SCN], and 

[BMIM][CF3SO3] with thiophene, taken from literature18,19. Two distinct types of phase 

behavior are observed, with ([BMIM][NTf2]+thiophene) presenting the UCST-type of liquid-

liquid phase diagram and the two other systems displaying the LCST behavior. 
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Figure 3.1.2 - Liquid-liquid phase diagrams for [BMIM][NTf2] (measured in this work), [BMIM][SCN]18 

and [BMIM][CF3SO3]19 with thiophene. Dashed lines are guides to the eye. 

 

Densities	  and	  viscosities	  (ρ,	  η)	  
	  

The experimental data for the density, ρ, and viscosity, η, obtained in this work are compiled in 

Tables 3.1.1 and 3.1.2. For all studied systems, the density presents a linear dependence with 

temperature, whereas the viscosity presents the expected exponential dependence, in the entire 

range of compositions. The values of both properties decrease with the increase of temperature 

and aromatic compound concentration, with the pure IL presenting the highest values for these 

properties (Appendix A – Figures A.1, A.2 and A.4). The exception is the system of thiophene 

with [BMIM][SCN], for which the density decreases with the increasing of the concentration 

of the IL. In the latter case, densities of the mixtures are higher than that of the pure IL (Figure 

A.3 in Appendix A). 

 

Table 3.1.1 - Experimental density as function of temperature for pure ionic liquids, thiophene, benzene 

and for their mixtures, in different mole fractions and at atmospheric pressure. 
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[BMIM][SCN] + Thiophene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
ρ / g.cm-3a) 

1.000 1.070 1.064 1.058 1.052 
0.897 1.073 1.067 1.061 1.055 
0.857 1.075 1.068 1.062 1.056 
0.754 1.077 1.070 1.064 1.058 
0.390 1.082 1.075 1.068 1.061 
0.299 1.084 1.076 1.069 1.061 
0.000 1.059 1.047 1.034 1.022 

[BMIM][NTf2] + Thiophene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
ρ / g.cm-3 

1.000 1.437 1.428 1.418 1.409 
0.911 1.429 1.420 1.410 1.401 
0.724 1.406 1.396 1.386 1.376 
0.664 1.397 1.387 1.377 1.368 
0.439 1.369 1.359 1.349 1.339 
0.230 1.308 1.298 1.287 1.277 
0.000 1.059 1.047 1.034 1.022 

[BMIM][SCN] + Benzene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
ρ / g.cm-3 

1.0000 1.072 1.066 1.060 1.054 
0.7666 1.053 1.046 1.040 1.034 
0.7420 1.050 1.044 1.038 1.031 
0.6081 1.036 1.029 1.023 1.017 
0.4906 1.019 1.012 1.005 0.999 
0.0000 0.874 0.863 0.852 0.841 

[BMIM][CF3SO3] + Benzene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
ρ / g.cm-3 

1.000 1.300 1.292 1.284 1.276 
0.878 1.280 1.272 1.264 1.256 
0.696 1.246 1.237 1.229 1.221 
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0.647 1.232 1.224 1.216 1.208 
0.427 1.169 1.160 1.152 1.143 
0.000 0.874 0.863 0.852 0.841 

[EMIM][NTf2] + Benzene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
ρ / g.cm-3 

1.000 1.519 1.509 1.499 1.489 
0.865 1.490 1.480 1.469 1.460 
0.661 1.431 1.421 1.411 1.401 
0.529 1.381 1.371 1.360 1.350 
0.508 1.373 1.363 1.352 1.342 
0.000 0.874 0.863 0.852 0.841 

 
a) Standard uncertainties u are u(T) = 0.02 K, u(p) = 10 kPa, and the combined expanded uncertainty Uc  
is Uc(ρ) = 0.5 kg.m-3, with an expanded uncertainty at the 0.95 confidence level ( k ~ 2). 
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Table 3.1.2 - Experimental viscosity data as function of temperature for pure ionic liquids, thiophene, and 

benzene, and also for their mixtures, in different mole fractions and at atmospheric pressure. 

[BMIM][SCN] + Thiophene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
η / mPa.sa) 

1.000 57.396 37.358 25.801 18.697 
0.897 47.236 31.408 22.072 16.222 
0.857 42.880 28.748 20.364 15.071 
0.754 31.952 22.025 15.962 12.024 
0.390 13.355 9.937 7.672 6.103 
0.299 9.926 7.566 5.959 4.834 
0.000 0.655 0.585 0.525 0.470 

[BMIM][NTf2] + Thiophene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
η / mPa.s 

1.000 51.320 34.434 24.353 17.981 
0.911 42.625 29.035 20.805 15.528 
0.724 26.615 18.817 13.903 10.658 
0.664 23.223 16.584 12.367 9.545 
0.439 14.725 10.949 8.449 6.721 
0.230 6.861 5.347 4.288 3.525 
0.000 0.655 0.585 0.525 0.470 

[BMIM][SCN] + Benzene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
η / mPa.s 

1.0000 62.810 40.562 27.836 20.086 
0.7666 32.980 22.508 16.197 12.192 
0.7420 30.691 21.072 15.231 11.518 
0.6081 20.092 14.292 10.641 8.250 
0.4906 12.511 9.269 7.157 5.650 
0.0000 0.605 0.527 0.466 0.363 

[BMIM][CF3SO3] + Benzene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
η / mPa.s 

1.000 87.964 56.429 38.308 27.254 
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0.878 64.295 42.193 29.228 21.168 
0.696 37.168 25.406 18.233 13.621 
0.647 32.799 22.579 16.331 12.299 
0.533 19.811 14.218 10.644 8.200 
0.427 12.622 9.370 7.215 5.715 
0.000 0.605 0.527 0.466 0.363 

[EMIM][NTf2] + Benzene 

	  
T / K 

xIL 298.15 308.15 318.15 328.15 

	  
η / mPa.s 

1.000 33.001 23.663 17.693 13.679 
0.865 25.188 18.438 14.017 10.930 
0.661 15.638 11.755 9.107 7.258 
0.529 11.405 8.654 6.803 5.503 
0.508 10.402 7.979 6.314 5.159 
0.000 0.605 0.527 0.466 0.363 

 
a) standard uncertainties u are u(T) = 0.02 K, u(p) = 10 kPa, and the combined expanded uncertainty Uc  
is Uc(ρ) = 0.35 %, with an expanded uncertainty at the 0.95 confidence level ( k ~ 2). 
 

Excess	  molar	  volumes	  (VE)	  and	  viscosity	  deviations	  (∆η)	  
	  

The estimated excess molar volumes, VE, and viscosity deviations, ∆ln(η), of the binary 

systems composed by the ILs and benzene or ILs and thiophene are depicted in Figures 3.1.3 to 

3.1.6. The corresponding data are provided in Appendix A (Tables A.9 and A.10). The 

Redlich-Kister coefficients obtained in the estimation of VE and ∆ln(η) are compiled in Tables 

3.1.3 and 3.1.4. In general, the Redlich-Kister polynomial expansion correlates successfully the 

data of VE and ∆ln(η), providing a good description of the solution behavior of all the binary 

systems studied.  

Negative excess molar volumes are observed for all considered mixtures, in the entire range of 

composition. The same temperature dependence – a decrease of VE with the increase of 

temperature – is also observed for all systems, as shown in Figure 3.1.3 for mixtures of 

[BMIM][SCN] with benzene. The negative values of VE are indicative of favorable interactions 

between both aromatic compounds and the ILs. Differences in the magnitude of VE values can 

be related to several effects, such as the size and structure of the species and the type/strength 

of the interactions present in the mixture. The first factor influences the effective packing of 
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the solute/solvent molecules, hindering or promoting specific and oriented interactions, while 

the type or strength of the interactions depends on the nature of the compounds. Both benzene 

and thiophene possess an aromatic ring with delocalized π-electrons being, thus, able to 

establish π - π interactions with the imidazolium cation of the IL. However, the lone electron 

pairs on the sulfur atom of thiophene confer a higher polarity to this molecule, and 

consequently, interactions with the IL ions are more likely to take place. 

The benzene-containing systems present negative values of VE in the entire range of 

compositions, and they are very similar to each other, having the maximum VE values ranging 

from -2.35 to -2.85 cm3·mol-1, for [BMIM][SCN] and [BMIM][CF3SO3], respectively. 

Consistently, larger negative VE values are observed for the thiophene-containing systems. The 

[BMIM][NTf2]+thiophene mixtures present negative values of VE which are larger than the 

values obtained for [BMIM][SCN]. That system also shows a different concentration 

dependency when compared to all the other systems studied, with a minimum at lower 

concentrations. Its VE values are also less dependent with temperature. The different behavior 

of this system suggests that a different type of interactions dominates it, which is in agreement 

with the observed differences in the phase diagram behavior. 

As illustrated in Figure 3.1.5 for the [BMIM][SCN]+thiophene mixtures, the values obtained 

for the ∆ln(η) are positive and decrease with temperature for all the systems studied, in the 

entire range of compositions. As shown in Figure 3.1.6, two different behaviors are observed 

for the viscosity deviations. Smaller values of ∆ln(η) are found for the benzene-containing 

mixtures, while the thiophene systems present larger values of ∆ln(η). This pattern can be 

related to the polarity of the aromatic compound, which is higher in the case of thiophene, 

suggesting stronger interactions with the ILs. Slightly lower viscosity deviations are observed 

for the [SCN]--containing systems, suggesting that the dominant effect is the possibility to 

establish more points of contact, which is more probable to occur in the cases of 

[EMIM][NTf2], [BMIM][NTf2] and [BMIM][CF3SO3], than in the case of [BMIM][SCN]. 
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Figure 3.1.3 - Excess molar volumes as a function of the mole fraction of the IL, in mixtures of 

[BMIM][SCN] with benzene, at different temperatures, namely, (u ) 298.15 K, (p ) 308.15 K, (n) 318.15 K 

and (l) 328.15 K. Solid lines represent the corresponding correlation of Redlich-Kister. The dotted line 

corresponds to the limit of miscibility, where at the left is the immiscibility region. 

 
Figure 3.1.4 - Estimated excess molar volumes through Redlich-Kister’s correlation as function of the mole 

fraction of the IL, at 298.15 K. 
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Figure 3.1.5 - Viscosity deviations as a function of the mole fraction of the IL, in mixtures of [BMIM][SCN] 

with thiophene, at different temperatures, namely, (u ) 298.15 K, (p ) 308.15 K, (n) 318.15 K and (l) 

328.15 K. Solid lines represent the corresponding correlation of Redlich-Kister. The dotted line 

corresponds to the limit of miscibility, where at the left is the immiscibility region. 

 
Figure 3.1.6 - Estimated viscosity deviations through Redlich-Kister’s correlation as function of the mole 

fraction of the IL, at 298.15 K. 
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Table 3.1.3 - Coefficients for Redlich-Kister correlations for excess molar volume. 

[BMIM][SCN] + Thiophene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 

Ao -6.541 -7.155 -7.814 -8.660 
A1 -4.087 -4.815 -5.515 -6.269 
A2 -6.778 -7.327 -7.872 -8.309 

[BMIM][NTf2] + Thiophene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 

Ao -10.825 -11.213 -11.704 -12.321 

A1 -24.428 -25.217 -25.910 -26.835 

A2 -16.642 -17.145 -17.670 -18.293 

[BMIM][SCN] + Benzene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 

Ao -7.225 -7.794 -8.528 -9.358 

A1 -2.122 -1.887 -2.789 -3.175 

A2 3.414 4.073 3.117 3.303 

[BMIM][CF3SO3] + Benzene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 

Ao -8.349 -8.851 -9.498 -10.119 

A1 -8.242 -8.515 -8.990 -9.463 

A2 -5.867 -5.692 -5.870 -6.146 

[EMIM][NTf2] + Benzene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 

Ao -7.937 -8.412 -8.936 -9.459 

A1 -7.716 -8.003 -7.921 -8.242 

A2 -4.485 -4.626 -4.079 -4.645 
 
Table 3.1.4 - Coefficients for Redlich-Kister correlations for viscosity deviations. 

[BMIM][SCN] + Thiophene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 
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Ao 4.862 4.639 4.458 4.331 
A1 3.391 3.219 3.078 2.990 

[BMIM][NTf2] + Thiophene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 

Ao 4.660 4.424 4.234 4.100 

A1 4.452 4.217 4.025 3.896 

[BMIM][SCN] + Benzene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 

Ao 3.017 2.948 2.894 3.095 

A1 1.004 1.041 1.080 1.202 

[BMIM][CF3SO3] + Benzene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 

Ao 3.542 3.411 3.301 3.480 

A1 1.010 1.053 1.080 1.285 

[EMIM][NTf2] + Benzene 

 T / K 
RK coeff 298.15 308.15 318.15 328.15 

Ao 3.306 3.175 2.957 3.253 

A1 1.541 1.420 1.731 1.542 
 

 

Chemical	  shift	  deviations	  (Δδ)	  
	  

1H and 13C NMR spectroscopies are widely used to identify the structure of compounds 

through differentiation of the atomic neighborhood of protons and carbons, but they may also 

be powerful techniques to identify favorable of non-favorable interactions among different 

compounds.47,48 Each type of proton or carbon in a different structural/chemical environment 

has a characteristic chemical shift (δi), represented by a peak in the NMR spectrum. The peaks 

are shifted to higher or lower chemical shifts when compared to those in a reference compound 

depending on the type of interactions that a given carbon and/or proton suffer in a mixture. 

Herewith, we are interested in the differences between chemical shifts with respect to pure IL 

for the same atom in a compound inserted in different chemical environments, usually 
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designated by chemical shift deviation (Δδ), which is defined by the following equation, 

 

∆𝛿 = 𝛿!"# − 𝛿!" (3.1.4) 

 

where, δmix is the 1H /13C chemical shift of the IL in mixtures with thiophene, and δIL is related 

to the chemical shift of the pure IL. In general, positive Δδ identify favorable interactions 

involving those nuclei, while negative Δδ values identify atoms with a lower propensity to 

interact. Finally, protons or carbons with Δδ values close to zero are not involved in significant 

and additional interactions. 

Figures 3.1.7 and 3.1.8 represent the 1H and 13C chemical shift deviations (Δδ) for mixtures 

composed of [BMIM][SCN] and thiophene, whereas Figures 3.1.9 and 3.1.10 depict the 1H and 
13C chemical shift deviations (Δδ) for mixtures of [BMIM][NTf2] and thiophene. Detailed 

information regarding the individual chemical shifts is presented in Tables A.11 to A.18 in 

Appendix A. 

For the two evaluated mixtures, the chemical shift deviations of thiophene’s atoms present 

positive values, suggesting favorable interactions with both ILs. Additionally, in the two 

mixtures, the protons of the cation (which is the same for the considered ILs) present negative 

deviations indicating that they are not actively interacting with thiophene. Moreover, these less 

favorable interactions observed at the 1H NMR seem more evident in the mixture containing 

[BMIM][NTf2]. Therefore, there is clear evidence that the favorable interactions of thiophene 

occur with the anions of the IL. This is confirmed by the 13C chemical shift deviations 

presented in Figures 3.1.8 and 3.1.10. In the former figure, it is possible to observe higher 

positive chemical shift deviations for the aromatic thiophene carbons along with the [SCN]- 

carbon, while the carbon atoms of the cation present negative chemical shift deviations. Note 

that, with the exception of the carbon atom of the anion, the other carbon atoms present 

increasing values of the chemical shift deviations with the content of IL. Figure 3.1.10 shows 

that, contrary to what was observed for the [BMIM][SCN], not only the carbon atoms of the 

anion [NTf2]- but also some carbon atoms of the cation [BMIM]+ present positive chemical 

shift deviations, suggesting that both ions of the IL are participating in the interaction with 

thiophene. Therefore, the comparison of the two considered systems suggest that the 

interaction of [BMIM][SCN] and thiophene is a specific interaction established by the anion, 

presenting higher and positive values of chemical shift deviation than the other IL that, 

although interacting through its ions seems to present less propensity to interact (accordingly to 
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the chemical shift deviation values). 

 

 

Figure 3.1.7 - 1H NMR chemical shift deviations for [BMIM][SCN] in the mixture with thiophene. The 

dotted lines represent the hydrogen chemical shifts deviations for thiophene and full lines for the cation 

[BMIM]+. 
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Figure 3.1.8 - 13C NMR chemical shift deviations for [BMIM][SCN] in the mixture with thiophene. The 

dotted lines represent the carbon chemical shifts deviations for thiophene, full lines for the cation [BMIM]+ 

and dashed lines for the anion [SCN]-. 

 

Figure 3.1.9 - 1H NMR chemical shift deviations for [BMIM][NTf2] in the mixture with thiophene. The 

dotted lines represent the hydrogen chemical shifts deviations for thiophene and full lines for the cation 

[BMIM]+. 
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Figure 3.1.10 - 13C NMR chemical shift deviations for [BMIM][NTf2] in the mixture with thiophene. The 

dotted lines represent the carbon chemical shifts deviations for thiophene, full lines for the cation [BMIM]+ 

and dashed lines for the anion [NTf2]-. 

 

Molecular	  dynamics	  simulations	  
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calculated radial distribution functions are depicted in Figures 3.1.11 and 3.1.12, and A.5 to 

A.8 at Appendix A, while collected values of their peak maxima are compiled in Tables A.19 

to A.32 (Appendix A). 
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the carbon C6 from the methyl group, show also significant probabilities to interact with 

thiophene. Since both ILs are composed by the same cation, it is not surprising to observe that 

in the case of [BMIM][NTf2], Figure 3.1.12.a, the radial distribution functions are similar to 

those calculated for [BMIM][SCN], i.e., the interactions involve the same atoms. However, in 

the case of [BMIM][NTf2], the intensities of the S-C(cation) peaks are higher than those 

observed with [BMIM][SCN], suggesting that in the case of the former IL, interactions 

establish by [BMIM]+ and thiophene are more likely to occur.  

RDFs showing interactions established by the cation [BMIM]+ with the carbon atoms of 

thiophene, at the two considered systems are depicted at Figures A.5 and A.6, Appendix A. 

Corresponding collected values for their peak maxima are compiled at Tables A.23 to A.26. 
 

Anion-thiophene interactions 

The RDFs calculated for the interactions involving the [SCN]- and [NTf2]- anions and 

thiophene are displayed in Figures 3.1.11.b and 3.1.12.b (Tables A.21 and A.22), respectively. 

Figure 3.1.11.b shows that the sulfur atom of thiocyanate has higher probability to surround the 

carbon atoms of thiophene (the CS and CC carbons) than to surround the sulfur atom, with 

peak intensity maxima of 1.26 for CS and 1.08 / 1.11 double peak corresponding to CC atoms. 

Additionally, it is demonstrated that for the C and N atoms of [SCN]- there is no visible peak 

intensity maxima (Figure A.7, and Tables A.27 to A.28 in Appendix A) suggesting that S 

atoms are pointing towards the thiophene carbon atoms while the former atoms are rotating in 

a conical shape oriented outwards the thiophene ring. For systems composed of [BMIM][NTf2] 

and thiophene, the RDFs for atoms of [NTf2]- and thiophene show peaks that occur at large 

distances, with g(r) values being close to or lower than unity (Figures 3.1.12.b, A.8 and Tables 

A.29 to A.32, in Appendix A). Nevertheless, in the case of the carbon from the anion (note that 

the anion [NTf2]- is here considered to possess a centre of symmetry at the central nitrogen 

atom), in Figure 3.1.12.b, there is significant interaction between this atom and thiophene 

constituting atoms, which is represented by a double peak (with very similar RDFs shapes for 

the three different atomic species of thiophene). In summary, the RDFs show a more specific 

orientation of the anion [SCN]- around the thiophene moiety, with a preferable orientation 

towards to CS and CC atoms of thiophene suggesting more favorable interactions with the 

latter atoms than with the sulfur atom of thiophene. These specific orientations are not evident 

in the case of the [NTf2]- anion for which similar RDFs were obtained for all the interactions 

with thiophene. 
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MD simulations corroborated the results obtained experimentally, since it was possible to 

identify a specific interaction between [SCN]- and thiophene through a well-defined spatial 

orientation, which is thus responsible for the LCST behavior. For the system composed of 

[BMIM][NTf2] and thiophene the common UCST behavior is observed, which is a typical 

behavior of systems with weaker or less favorable interactions. 

The results here reported confirm the suggestion of Revelli et al.20 that a specific interaction is 

present in the binary system [BMIM][SCN]+thiophene; nevertheless, the molecular picture 

gathered from this work is completely different from that initially proposed. They suggested 

that four thiophene molecules in a pseudo tetrahedron spatial orientation were surrounding the 

[SCN]- anion with its sulfur atom pointing towards the anion. This suggestion is not 

compatible with the results here reported. In fact, both NMR and MD observations presented 

and discussed above show that the anion [SCN]- preferentially surrounds the CS and CC 

carbons of thiophene, as shown in Figures 3.1.13 to 3.1.15. As it can be seen from the spatial 

distribution functions (SDFs), there is clear preference for [SCN]- constituting atoms to be 

located closer to CC and CS atoms than to S atom of thiophene (Figure 3.1.13), while in the 

case of the [NTf2]- species any signs of preferential orientation are unseen (Figure 3.1.14). The 

same figures show that the location of the cation, which is the same in the two ILs considered 

in this work, is similar. 

 

 
Figure 3.1.11 - Radial distribution functions of selected carbon atoms of a) [BMIM]+ around the S atom of 

thiophene, b) thiophene atoms around the S atom of [SCN]-, in the system [BMIM][SCN]+thiophene. 
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Figure 3.1.12 - Radial distribution functions of a) selected carbon atoms of [BMIM]+ around the S atom of 

thiophene and b) thiophene atoms around the C1 atom of [NTf2]-, in the system [BMIM][NTf2]+thiophene. 
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(c) 

Figure 3.1.13 - Spatial distribution functions (SDF) for [SCN]- (a, b) and [BMIM]+ (c) around thiophene 

from MD simulation of the [BMIM][SCN]+thiophene mixture. Yellow and blue regions represent SDF 

(isovalue = 25 particle.nm-3) for S and N atoms from the IL anion, respectively. Mauve, orange and brown 

regions represent SDF (isovalue = 32 particle.nm-3) for C10, C4 and C6 atoms of the IL cation, respectively. 

 

 
(a) 

 
(b) 
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(c) 

Figure 3.1.14 - Spatial distribution functions (SDF) for [NTf2]- (a, b) and [BMIM]+ (c) around thiophene 

from MD simulation of the [BMIM][NTf2]+thiophene mixture. White and red regions represent SDF 

(isovalues are 25 particle.nm-3 in a and 20 particle.nm-3 in b, respectively) for C and O atoms from the IL 

anion, respectively. Blue, orange and brown regions represent SDFs (isovalue = 32 particle.nm-3) for N2, 

C4 and C6 atoms of the IL cation, respectively.  
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(a) 

 
(b) 

 
(c) 

 

Figure 3.1.15 - Atomic hits for SCN-constituting atoms at a) 2.5 Å, b) 3.0 Å and c) 3.5 Å around thiophene 

from MD simulation of the [BMIM][SCN]+thiophene mixture. Yellow, blue, cyan and white spheres stand 

for sulfur, nitrogen, carbon and hydrogen atoms, respectively. 
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Conclusions	  
	  

In this work, experimental density and viscosity data were measured and are reported for 

systems of benzene with [BMIM][SCN], [BMIM][CF3SO3] and [EMIM][NTf2], and for systems of 

thiophene with [BMIM][SCN] and [BMIM][NTf2]. The obtained experimental densities and viscosities 

were further applied to calculate the excess molar volumes and the viscosity deviations of the systems 

in consideration. These data were successfully correlated with the Redlich-Kister polynomial 

expansion, providing a good description of the solution behavior. Additionally, aiming at providing a 

better understanding of different liquid-liquid equilibrium behaviors, systems of [BMIM][SCN] and 

[BMIM][NTf2] with thiophene were investigated by measuring 1H and 13C NMR spectra for further 

estimation of the chemical shift deviations and also through MD simulations for understanding the 

molecular basis of the phenomena observed. For the binary system of thiophene with [BMIM][NTf2] 

the liquid-liquid equilibrium phase diagram was also determined and is here reported. 

The results obtained show a decrease of the density and of the viscosity with temperature and 

with the increase of benzene or thiophene content in the mixture, with the pure ILs presenting the 

highest values. A distinct behavior is found for the system of thiophene with [BMIM][SCN], for which 

the density decreases with the increase of xIL. All the mixtures studied show negative values of VE and 

positive ∆ln(η), in all range of compositions. Factors such as the size, structure and nature of the 

compounds present in the mixtures, and the consequent type and strength of the interactions 

established were considered to explain the behavior of the solutions. A different behavior is observed 

for the [BMIM][NTf2]+thiophene mixtures, with larger values of VE and with a different concentration 

dependency than for all the other systems studied that correlates well with the observed differences in 

the phase diagram behavior. 

Furthermore, from the chemical shift deviations results, high positive chemical shift deviations 

for the carbon atom from the anion [SCN]- obtained for the [BMIM][SCN] systems, suggested the 

presence of a specific interaction between the IL’s anion and thiophene. The MD simulations further 

supported this view. For [BMIM][SCN] it was possible to identify a specific spatial orientation of the 

sulfur atom of the anion with the thiophene’s protons, which is suggested to be responsible for the 

LCST behavior. The interactions of thiophene with other ILs, here represented by the [BMIM][NTf2], 

are of a different nature, being of a dispersive type between the cation alkyl chains and the thiophene, 

leading to the more common UCST type of liquid-liquid phase diagram. 
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Motivation	  
  

 At Chapter 1.2, it was discussed what are ionic liquids and their properties which enable them 

to act as selective solvents for compounds of interest. Additionally, it was also mentioned that the 

presence of water on ILs modifies their properties, such as viscosity1,2 (lowering) or surface tension3 

(increasing) but in fact, water can also change their structure and, above a given concentration, is 

capable of disrupting the ionic interaction between the cation and the anion.4 The knowledge of the 

ILs’ properties in aqueous solution is very important for their design and use in specific applications 

namely, absorption refrigeration, extractive distillation or liquid-liquid extraction.5,6 Furthermore, the 

mechanism of interaction between ILs and water is based on the establishment of hydrogen bonds (H-

bonds), which is related mainly with the nature of the anions, that affects not only their physical and 

chemical properties (as already mentioned), but also their solvation potential, e.g., the dissolution of 

carbohydrates.7 

 In the literature, it is possible to find several experimental works based on infra-red8,9 (IR) and 

nuclear magnetic resonance10,11 (NMR) spectroscopic techniques, or liquid-liquid equilibria12,13 (LLE), 

vapor-liquid equilibria14,15 (VLE), solid-liquid equilibria16 (SLE), and activity coefficients17 

measurements that aimed at a characterization of water-IL systems. Moreover, theoretical approaches 

such as COnductor like Screening MOdel for Real Solvents (COSMO-RS)5,18,19 or classical molecular 

dynamics (MD)20–22 simulations have also been employed to complement the experimental studies and 

were found to provide important insights regarding the interactions involved in those systems. In 

addition, several review articles4,23–25 reporting studies on binary systems composed of water and ILs 

by means of MD simulations were also published. Different factors governing the IL-water 

interactions, such as the nature of the cation, anion or combination of both, the cation’s alkyl chain 

length, formation of aggregates and the dichotomy ion pairs vs. isolated ions, were addressed in those 

studies. It is generally accepted that the anion predominantly establishes interactions with water and 

hence, the chemical nature of the anion assumes a pivotal role in the solvation of ILs.8,25–27 

 Formation of water and/or IL aggregates is observed, and the composition at which it occurs is 

related with the nature/strength of the IL-water interactions. It is important to highlight that ILs have an 

unique structure, with microscopic domains (as mentioned on Chapter 1.2), responsible for their high 

capability to dissolve a variety of compounds.28 These domains are divided into two regions with polar 

and nonpolar character, with the latter being essentially formed by the cation’s alkyl chains. In aqueous 

solution, these chains tend to aggregate into hydrophobic clusters, inducing similarly the formation of 

small clusters of water that, eventually, can become a homogeneous network, disrupting the cation-



___________________________________	   Chapter 3	   ___________________________________	  
	  

	  

[95]	  

anion interactions. However, it should be noted that MD simulations are dependent on the accuracy of 

the applied force field, e.g., the bonded and non-bonded parameters or on the applied atomic charges 

(Chapter 2). From the latter arises the question of the applicability of polarizable force fields which is 

currently a hot topic of discussion.29 Therefore, it is important to develop force fields that can 

reproduce properties of ILs or mixtures containing ILs. In this regard, comparing the predicted physical 

properties, for example, density and viscosity, against experimental data, generally it can be assessed 

the quality of the new developed force field. While densities of ILs are easily reproduced with short 

time computer simulations, longer times are required to obtain accurate viscosities due to their low 

dynamics/high viscosity (Chapter 2). Therefore, as will be shown later, the reliability of the force field 

used in this work is compared with the experimental density data. 

 Within the huge number of possible combinations between cations and anions, the cyano (CN) 

- based ILs are interesting for industrial purposes because they present lower melting points and 

viscosities than most of ILs.30 They have been studied and characterized for specific applications, 

mainly for electrolytes and dye-sensitized solar cells,31,32 but also as extracting solvent for alcohols 

from fermentation broth,33 for aromatic - aliphatic separation,34 as well as for the extraction of added-

value compounds from biomass, such as phenolic compounds,35 carbohydrates36,37 and sugar 

alcohols38. Recently, Neves et al.30 published density and viscosity data for the pure imidazolium-based 

IL with CN-based anions, addressing the effect of the increase of the CN-groups on these properties. 

 In the present Chapter, binary systems composed of water and the ILs based on the 1-butyl-3-

methylimidazolim cation ([BMIM]+) combined with the anion thiocyanate ([SCN]-), dicyanamide 

([DCA]-) or tricyanomethane ([TCN]-), and of water and 1-ethyl-3-methylimidazolim tetracyanoborate 

([EMIM][TCB]) were studied and characterized by means of experimental water activity data and 

computational approaches, namely COSMO-RS and MD simulation. It should be noted that 

[EMIM][TCB] was used due to the unavailability of [BMIM][TCB] from the supplier. Nevertheless, 

previous studies8,39 showed that interactions between water and ILs are established mainly through the 

anion, while the imidazolium cation has a minor contribution. 

 The set of CN-based ILs used in the present work, will allow us to study the effects of the 

number of CN groups in the anion, from 1 in [SCN]- to 4 in [TCB]-, in the interaction of the considered 

ILs with water molecules. As a reliable property to interpret such interactions, activity coefficients 

were estimated from water activity measurements for all these binary mixtures, at 298.2 K, which were 

further evaluated by COSMO-RS. Classical MD simulations were also performed to calculate the 

number of H-bonds given by coordination numbers, and radial and spatial distribution functions for the 

different IL-water systems, from which information regarding the local atomic organization is drawn. 
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Methodology	  
 

Experimental	  Section	  
 

Materials 

The ILs 1-butyl-3-methylimidazolium thiocyanate, [BMIM][SCN] (mass fraction purity > 98 

%), 1-butyl-3-methylimidazolium dicyanamide, [BMIM][DCA] (mass fraction purity > 98 %), 

1-butyl-3-methylimidazolium tricyanomethane, [BMIM][TCN] (mass fraction purity > 98 %), 

were purchased from IoLiTec, while 1-ethyl-3-methylimidazolium tetracyanoborate, 

[EMIM][TCB] (mass fraction purity > 98 %) was kindly supplied by Merck KGaA Germany. 

Figure 3.2.1 depicts the chemical structures of the ions composing the studied ILs. The purities 

were further confirmed by 1H and 13C NMR and found to be in agreement with the purity 

levels given by the suppliers. In order to reduce the amount of volatile impurities, all samples 

were dried for at least 48 h under vacuum (10-3 Pa) at room temperature, before use. After the 

drying procedure, the water content of each sample was determined using a Metrohm 831 Karl 

Fisher coulometer with an associated uncertainty of ±3 µg. The water content was found to be 

less than 290 ppm for all ILs. The analyte used for the coulometric Karl Fisher titration was 

Hydranal – Coulomat AG from Riedel-de Haën. In all experiments, water was double distilled, 

passed by a reverse osmosis system and further treated with a MilliQ plus 185 water 

purification apparatus. 
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Figure 3.2.1 - Chemical structures of the ions composing the studied ILs. 

 

Water activity measurements 

A Novasina hygrometer LabMaster-aw (Switzerland) was used to measure water activities, aw. 

The measuring principle of the instrument is based on resistive-electrolytic method. The 

accuracy of the instrument is 0.001 aw, enabling measurements under controlled chamber 

temperature conditions (±0.15 K), and was previously calibrated with six saturated pure salt 

standard solutions, with aw ranging from 0.330 to 0.973, which were included in the 

instrument. Prior to the measurement, a calibration curve was built using KCl or CaCl2 

aqueous solutions at different salt molalities, depending on the water activity range values to 

be measured. The obtained values were compared to those recommended in the extensive 

reviews by Archer40 for KCl, or Rard and Clegg41 for CaCl2. For each measurement, samples 

ca. 2-3 cm3 were prepared gravimetrically with uncertainties of ±0.0001 g in the entire range of 

solubility of ILs. The samples were then charged in the measuring cells and placed in the air-

tight equilibrium chamber. The exchange of free water took place until the partial pressure of 

water vapor reached the equilibrium, which was confirmed following the aw variation with 

time. The value of water activity was recorded when it reached a constant value. For solutions 

with high concentration of IL, times of up to 8 hours were required for constant water activity. 

At the end, the mole fractions were confirmed by measuring the refractive index (five 
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measurements were performed for each mixture), using an automated Abbemat 500 Anton 

Paar refractometer. Those were carried out at the temperature 298.15 K for all samples, at 

atmospheric pressure. The maximum deviation in temperature is ±0.01 K and the maximum 

uncertainty in the refractive index measurements is ±0.00002. The water activity coefficients, 

γw, were estimated according to the following equation, 

 

𝛾! =
𝑎!
𝑥!

 (3.2.1) 

 

where aw is the water activity and xw the water mole fraction. 

 

Computational	  Section	  
  

COSMO-RS 

The COSMO-RS approach proposed by Klamt and Schuurmann,42 is a unique method for a 

priori prediction of the phase behavior of pure fluids and their mixtures on the basis of 

unimolecular quantum chemical calculations. A comprehensive description of the COSMO-RS 

theory can be found at the original work of Klamt et al.43. An important advantage of COSMO-

RS model is that it can be used to predict the activity coefficient of any component in a mixture 

without using any experimental information. It uses the molecular structure of the 

solute/component as single initial input. Thus, it can be used to predict the water activity 

coefficients in aqueous binary mixtures containing ILs. The reliability of COSMO-RS to 

predict the activity coefficient of a solute in ILs has been shown by us18,19 and others.44,45 

Therefore, in this work, COSMO-RS was used to predict water activity coefficients in the 

binary mixtures with CN-based ILs and to further understand the water-ILs interactions. 

The standard procedure on using COSMO-RS to predict activity coefficients consists of two 

main steps. In the first step, continuum solvation COSMO calculations of electronic density 

and molecular geometry were performed with the TURBOMOLE 6.5 package46 at the BP-

TZVPD-FINE level,47 introduced in 2012. It is based on a Turbomole BP-RI-DFT COSMO 

single point calculation with TZVPD basis set on top of an optimized BP/TZVP/COSMO 

geometry. The COSMO single point calculation considers the TZVPD basis set, TZVP with 

diffuse functions, and a novel type of molecular surface cavity construction (fine grid marching 

tetrahedron cavity, FINE48) which creates a COSMO surface whose segments are more 
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uniform and evenly distributed compared to the standard COSMO cavity. Calculations at the 

same levels of theory are also performed at the gas phase. In the second step, the estimation of 

the water activity coefficient data for each binary mixture was performed with the 

COSMOtherm program using the parameter file BP_TZVPD-FINE_C30_0140 (COSMOlogic 

GmbH & Co KG, Leverkusen, Germany).47 In all calculations, the interaction energies of the 

surface pairs are defined in terms of the screening charge densities σ and σ’ of the respective 

surface segments, with the resulting information being stored in the so-called COSMO files. 

Subsequently, the chemical potential (µs) of a surface segment (σ), the so-called sigma 

potential (σ - potential) is calculated using the following equation, 

 

𝜇! 𝜎 = −
R𝑇
𝑎!""

ln 𝑝! 𝜎! 𝑒𝑥𝑝
𝑎!""
R𝑇

𝜇! 𝜎′ − 𝐸!"#$"% 𝜎,𝜎′ − 𝐸!" 𝜎,𝜎′ 𝑑𝜎′  (3.2.2) 

 

where aeff represents the effective contact area, ps(σ) stands for the surface screening charge 

distribution of the whole system, Emisfit is the electrostatic misfit energy, EHB is the hydrogen-

bonding energy, R is the ideal gas constant and T the absolute temperature. The chemical 

potential of a compound is available from the integration of the σ-potential over the surface of 

the molecule, and it is used for the prediction of thermodynamic properties and phase behavior, 

as it is used on the prediction of the water activity coefficients in systems with ILs using the 

equation below, 45 

 

𝛾!
!! = 𝑒𝑥𝑝

𝜇!
!! − 𝜇!!

!!

𝑅𝑇
 (3.2.3) 

 

where is the activity coefficient of compound Xi in the solvent S, is its chemical 

potential in the solvent S and  is the chemical potential of pure compound Xi. In this work, 

the ILs were always treated as isolated ions at the quantum chemical level. 

Another advantage of using COSMO-RS, is that it can also provide other thermodynamic 

properties to get further insight toward the interaction of water and ILs. For example, the 

excess enthalpies can be used to infer on the strength of water-ILs interaction in the binary 

mixture. The excess enthalpy is defined as the difference between the interaction of IL and 

water in their mixture and pure state, according to the equation 3.2.4, 

iX
Sγ iX

Sµ

i

i

X
Xµ
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𝐻! = 𝐻!,!"# − 𝐻!,!"#$ (3.2.4) 

 

The predicted excess enthalpies can be further analyzed according to the contribution of 

specific interaction of cation, anion and water molecule, according to equations 3.2.5 to 3.2.8, 

 

𝐻! = 𝐻!"#$%&! + 𝐻!"#$"! + 𝐻!"#$%!  (3.2.5) 

 

The total excess enthalpy in the COSMO-RS method arises from summing the three specific 

interactions, namely electrostatic-misfit, HE
MF, hydrogen bonds, HE

HB, and van der Waals 

forces, HE
vdW. Thereafter, each term of equation 3.2.5 can then be written as following, 

 

𝐻!"#$%&! = 𝐻!",!"#$%&! + 𝐻!",!"#$%&! + 𝐻!"#,!"#$%&
!  

 

(3.2.6) 

 

𝐻!"#$"! = 𝐻!",!"#$"! + 𝐻!",!"#$"! + 𝐻!"#,!"#$"
!  

 

(3.2.7) 

 

𝐻!"#$%! = 𝐻!",!"#$%! + 𝐻!",!"#$%! + 𝐻!"#,!"#$%
!  

 

(3.2.8) 

 

 

Therefore, COSMO-RS allows the evaluation of the energetic contributions of all possible 

specific interactions established by each species and their contributions to the total excess 

enthalpy, as well as, their mechanisms of interaction. 

 

Molecular dynamics simulations 

Molecular dynamics simulations were performed with the GROMACS49 code, version 4.5.4, 

for binary aqueous systems, at IL mole fractions of 0.2, 0.4, 0.6 and 0.8, for the following ILs: 

[BMIM][SCN], [BMIM][DCA], [BMIM][TCN] and [EMIM][TCB]. Further details on the 

number of molecules in each system are provided in Table B.1 in the Appendix B. 

For all the systems, after energy minimization and equilibration runs, production runs of 20 ns 

within the isothermal-isobaric (NPT) ensemble were performed using a time step of 2 fs. In 

these simulations, the temperature was maintained constant at 298.15 K using the Nosé-

Hoover50,51 thermostat, and the pressure was kept at 1 bar with the Parrinello-Rahman52 
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barostat. The intermolecular interaction energy between pairs of neighboring atoms was 

calculated using the Lennard-Jones potential to describe dispersion/repulsion forces and the 

point-charge Coulomb potential was used for electrostatic forces. Cutoffs of 1.2 and 1.0 nm 

were set for Lennard-Jones and Coulombic interactions, respectively, and long-range 

corrections for energy and pressure were also applied. Rigid constraints were enforced on all 

bonds lengths. Additionally, for each system, simulations within the canonical ensemble 

(NVT) were also performed for 10 ns, under the same conditions as those considered in the 

NPT simulations. 

The force field parameters for the [BMIM]+ cation were taken from Cadena and Maginn,53 

while those for the [EMIM]+ cation were deduced from the former. The potential parameters 

for the [SCN]- anion were those used in our previous work54 (previous Chapter 3.1), for the 

[DCA]- and [TCN]- anions were considered the OPLS-AA force field55,56 parameters, while 

those for the [TCB]- anion were obtained from the work of Koller et al.57 The atomic charges 

for the IL cations and anions were recalculated in the present work with the CHelpG scheme58 

using an optimized geometry (minimum energy from several configurations) for each IL ion 

pair, in the gas phase as previously performed for other systems involving ILs.54 The 

calculations were performed at the B3LYP/6-311+G(d) level of theory59 with the Gaussian 09 

code.60 The total charges on the cations and anions were ±0.804 e for [BMIM][SCN], ±0.826 e 

for [BMIM][DCA], ±0.880 e for [BMIM][TCN] and ±0.889 e for [EMIM][TCB]. The full sets 

of atomic charges for each IL are compiled in Tables B.2 to B.5 in the Appendix B. Water 

molecules considered the SPCE model.61 To validate the combination of the different force 

fields applied for each cation and anion, densities for each pure IL were estimated, at 298.15 K, 

and are compared with the experimental values recently published by Neves et al.26 in Table 

B.6 in the Appendix B. A very satisfactory agreement between experimental and simulated 

data is observed with relative deviations of 3.2 %, 1.8 %, 1.6 % and 1.2 % in the cases of 

[BMIM][DCA], [EMIM][TCB], [BMIM][TCN] and [BMIM][SCN], respectively. 

In addition, radial and spatial distributions functions, RDFs and SDFs, respectively, as well as 

coordination numbers, Z, were calculated from the MD trajectories. 
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Results	  and	  Discussion	  
	  

Water	  activity	  and	  activity	  coefficients	  
	  

The experimental water activities together with the respective water activity coefficients, 

calculated using equation 3.2.1, are given in Table 3.2.1. Figure 3.2.2 presents a comparison of 

experimental and COSMO-RS water activity coefficients of the ILs. The water activity coefficients of 

([BMIM][SCN]+water) and ([BMIM][DCA]+water) binary mixtures present up to xw = 0.8 values 

lower than unit, which indicates favorable interactions between [BMIM][SCN] or [BMIM][DCA] and 

water molecules. On the other hand, unfavorable interactions between [BMIM][TCN] and 

[EMIM][TCB] with water are observed, being their water activity coefficients higher than unit 

throughout whole composition. It should be stressed that high and positive values of water activity 

coefficients in [EMIM][TCB] and [BMIM][TCN] eventually lead to the formation of two phases, as 

observed experimentally.62 In the case of [BMIM][TCN] the formation of phases occurs at high water 

content, xw=0.80, while for [EMIM][TCB] the phenomenon occurs already at xw = 0.60. For this reason 

the experimental data were carefully measured within the region of complete miscibility for these ILs. 

Accordingly, based on the strength of their interactions with water, the studied cyano-based ILs can be 

ranked in the order [EMIM][TCB] < [BMIM][TCN] < BMIM][SCN] < [BMIM][DCA]. 

Table 3.2.1 - Experimental water activities (aw) and experimental and COSMO-RS water activity 

coefficients (γw) in the binary mixtures at T = 298.2 K. 

 

xw aw γw,exp γw,COSMO ARD%a 

[BMIM][SCN] + H2O     
0.436 0.269 0.617 0.761 23.2 
0.541 0.413 0.763 0.812 6.5 
0.594 0.492 0.829 0.839 1.1 
0.696 0.664 0.954 0.888 6.9 
0.812 0.842 1.037 0.931 10.2 
0.914 0.948 1.038 0.945 9.0 
0.956 0.970 1.015 0.952 6.2 

   AADb 9.0 
[BMIM][DCA] + H2O     

0.323 0.151 0.467 0.505 8.0 
0.429 0.235 0.548 0.544 0.7 
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0.526 0.341 0.648 0.586 9.7 
0.561 0.381 0.679 0.602 11.3 
0.697 0.596 0.856 0.679 20.6 
0.800 0.788 0.985 0.754 23.5 
0.849 0.869 1.023 0.796 22.2 
0.899 0.929 1.034 0.846 18.1 

   AADb 14.3 
[BMIM][TCN] + H2O     

0.296 0.357 1.204 1.294 7.5 
0.390 0.478 1.227 1.278 4.2 
0.493 0.620 1.257 1.254 0.2 
0.534 0.662 1.241 1.243 0.2 
0.593 0.740 1.248 1.223 2.0 
0.720 0.896 1.245 1.165 6.4 
0.808 0.970 1.201 1.106 7.9 

   AADb 4.1 
[EMIM][TCB] + H2O     

0.350 0.698 1.994 2.158 8.2 
0.440 0.799 1.816 2.017 11.1 
0.530 0.881 1.662 1.875 12.8 
0.620 0.948 1.529 1.725 12.8 

   AADb 11.2 
aAverage relative deviation between experimental and COSMO-RS water activity coefficients. 

bAverage absolute deviation between experimental and COSMO-RS water activity coefficients. 
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Figure 3.2.2 - Experimental and predicted water activity coefficients, at 298.2 K. Symbols are representing 

experimental data and full lines the COSMO-RS predictions (●,▬) [BMIM][DCA], (u ,▬) [BMIM][SCN], 

(■,▬) [BMIM][TCN] and (▲,▬) [EMIM][TCB]. The dashed lines for [BMIM][TCN] and [EMIM][TCB] 

indicate the immiscibility region of these ILs in water. 

 

COSMO-‐RS	  Calculations	  
 

From the results shown in Figure 3.2.2, it is evident that the COSMO-RS model predicts 

qualitatively the water activity coefficients of the studied CN-based ILs, with average absolute 

deviations (AAD) varying between 4.1 % for [BMIM][TCN] and 14.3 % for [BMIM][DCA]. It should 

be pointed out that the associated BP_TZVPD_FINE_C30_0140.ctd parameter set, used in this work, 

incorporates the HB2012 hydrogen bonding term and a novel van der Waals dispersion term based on 

the “D3” method of Grimme et al.63. These lead to improved thermodynamic property predictions for 

compound classes. In addition, and since COSMO-RS correctly predicts the experimentally observed 

trend of CN-based ILs interactions with water, this methodology is going to be used for probing the 

interactions of ILs and water, in the following discussion. 

 Figure 3.2.3 (and B.1 in the Appendix B) depicts the σ-profiles and σ–potentials for water and 
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the four ILs (for each anion and cation) addressed in this study. The σ-profiles are obtained by 

converting the 3D distribution of the screening charge density into a surface composition function, 

which can be used to understand the behavior of the molecule in terms of its polarity. 

 

 

 

Figure 3.2.3 - Sigma profile for (▬) water, (▬) [DCA]-, (▬) [SCN]-, (▬) [TCN]-, (▬) [TCB]-, (▬ ▬) 

[BMIM]+ and (▬ ●) [EMIM]+. 

 

 The σ–potentials, obtained from equation 3.2.2, describe the affinities of molecules to interact 

with molecules of the same kind. The two vertical dotted lines in Figure 3.2.3, are the locations of the 

cut off values for the H-bond donor (σHB < -1.0 e·nm-2) and acceptor (σHB > 1.0 e·nm-2) profiles. For 

instance, the σ-profile of water is very broad, spanning throughout negative, positive and neutral areas 

from -2.0 to 2.1 e·nm-2 because of the expected behavior for water to act as H-bond donor or acceptor. 

On the negative area, the peak at -1.6 e·nm-2 is assigned to the two polar hydrogen atoms of water, 

indicating the ability of this molecule to act as H-bond donor. On the positive side, broad peaks 



___________________________________	   Chapter 3	   ___________________________________	  
	  

	  

[106]	  

centered at 1.8 e·nm-2 resulting from the two pairs of electrons belonging to the oxygen atom of the 

water molecule. This peak designates the ability of water to act also as H-bond acceptor through its 

oxygen atom. Hence, water can act either as H-bond donor or H-bond acceptor, depending on the 

behavior of the other molecule in the mixture. Consequently, as displayed by its σ–potential, water 

presents considerable attraction to both H-bond donors and H-bond acceptors. 

Regarding the studied ILs, asymmetries on both σ-profiles and σ–potentials are observed, 

certainly due to an uneven charge distribution along the ILs’ structure. The ILs cations present a 

shoulder-like peak at -0.9 e·nm-2, close to the cut off, attributed to the acidic hydrogen atom in the 

imidazolium ring that could act as a weak H-bond donor. Meanwhile, the anions present a peak within 

the positive area indicating their potential as H-bond acceptors. The weak H-bond donor ability of the 

IL cation is surpassed by the high H-bond acceptor characteristics of the anions, and the studied CN-

based ILs as a whole present enhanced interactions with other molecules displaying H-bond donor 

features, as depicted by their σ–potentials. 

It is interesting to observe the shifting of the anion peaks into the positive region. Going from 

[SCN]- to [DCA]-, the peak moves to a more positive area, indicating that the latter anion is more 

electronegative43. This shifting is indicative of a stronger ability of [DCA]- to act as H-bond acceptor 

when compared to the [SCN]- anion. Interestingly, further increasing the number of CN-groups into the 

anion, as in the cases of [TCN]- and [TCB]-, significantly shifts the peak towards the neutral area, with 

the latter anion shifting the most. Thus, it indicates that, while increasing the number of CN-groups 

from thiocyanate to dicyanamide the H-bond acceptor character is increased, a further increase of the 

number of CN-groups from dicyanamide to tetracyanoborate decreases their ability to act as H-bond 

acceptor. As a consequence, it is expected that [DCA]- will have the strongest interaction with water, 

followed by [SCN]-, [TCN]-, and at last [TCB]-. 
Afterwards, the contributions of the electrostatic misfit, hydrogen bonding and van der Waals 

interactions to the total excess enthalpy of IL and water at equimolar composition, xw = 0.5, estimated 

through equations 3.2.4 to 3.2.8, are depicted in Figure 3.2.4. 
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Figure 3.2.4 - Contribution of specific interaction to the total excess enthalpy, at xw  = 0.5 and T = 298.15 K. 

The contribution of excess enthalpies from electrostatic/misfit is represented by the blue bars, hydrogen 

bonding through the red bars, van der Waals through the green bars, and total excess enthalpies of the 

mixtures by the purple bars. 

 

Negative total excess enthalpies are observed for the aqueous binary mixtures of 

[BMIM][SCN] or [BMIM][DCA], where electrostatic misfit interactions and hydrogen bonding are the 

main contributions for the exothermic process, while positive total excess enthalpies (endothermic 

processes) are found for aqueous binary mixtures of [BMIM][TCN] and [EMIM][TCB]. The results 

demonstrate that the hydrogen bonding between anion and water plays a crucial role and determines 

the enthalpic nature of the mixtures, albeit the electrostatic misfit has a minor contribution to 

exothermicity of the mixture, while the van der Waals contribution is always found to be positive. The 

combination of all these contributions lead to the following behavior with the increase of the number of 

CN-groups in the anion: from thiocyanate to dicyanamide the total excess enthalpies become more 

negative while from the latter anion to tetracyanoborate, the sign of the total excess enthalpy is 

reversed and becomes more positive. In other words, the hydrogen bonding becomes weaker with 

increasing number of CN-groups in the anion, which is in close agreement with the extended series of 
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hydrogen bonding basicity taken from the solvatochromic parameter.64 The solvatochromic parameter 

β, measures the hydrogen-accepting ability of an ion/compound, and it was measured for several 

ILs.26,65–68 In a recent work64, it was possible to estimate the solvatochromic parameter β for the studied 

ILs which are, 0.671, 0.762, 0.666 and 0.598 for [BMIM][SCN], [BMIM][DCA], [BMIM][TCN] and 

[EMIM][TCB], respectively, suggesting that the ability to establish H-bonds increases from 

[BMIM][SCN] to [BMIM][DCA], and afterwards it decreases with an increase of the CN-groups in the 

anion. 

 

Molecular	  dynamics	  simulations	  
	  

 Radial distribution functions and coordination numbers 

Radial distribution function, g(r) or RDF, gives the probability of finding a particle at the 

distance r, from another particle (considered as the reference) and will be here used to describe 

the local structural organization of the mixtures studied in this work. The RDF values provide a 

quantitative description of enhancement (values above than one) or depletion (values below 

than one) of densities of atoms, or groups of atoms, around a selected moiety with respect to 

bulk values. Moreover, the local environment around the reference atom can be accurately 

represented by the coordination number (Z), which is the average number of atoms of one type 

surrounding the reference atom within a cut off, rZ, given by the integral of the RDF. 

 

𝑍 𝑟 = 4×𝜋×𝜌!× 𝑟!𝑔 𝑟
!!

!
∙ 𝑑𝑡	   (3.2.9) 

 

The cutoff is usually chosen to be the first local minimum of the corresponding RDF. Figures 

3.2.5 and 3.2.6 present the RDFs and Table 3.2.2 compiles the coordination numbers obtained 

for all systems under study. The analyses of the anion-solvent, cation-solvent, cation-anion and 

solvent-solvent interactions are based on the RDFs obtained for the N-HW, H1-OW, H1-N and 

OW-OW pairs, respectively, where N is the nitrogen atom of the cyano group(s) in the anion, 

H1 is the acidic proton of the cation, and HW and OW stand for proton and oxygen atoms in 

water. 
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Figure 3.2.5. Radial distributions functions (RDFs) for mixtures of [BMIM][SCN] and water, at different 

mole fractions of IL and 298.15 K. RDFs for interaction of cation-water (H1-OW, ▬), anion-water (N-

HW, ▬), cation-anion (H1-N, ▬) and solvent-solvent (OW-OW, ▬) are represented in each panel. 

 

 

Common to all IL systems and similar to what was inferred from the COSMO-RS σ-profiles, 

the RDFs in Figures 3.2.5 and 3.2.6, and Figures B.2 to B.4 in the Appendix B, show that the 

primary interaction with water occurs with the anion, through N-HW atoms, while cation-water 

interactions are observed at the next solvation shell, suggesting that the latter is weaker than 

the former interaction. Moreover, as expected, interactions established among water molecules 

also present high values of g(r). The latter interactions seem to be competing with anion-water 

ones being observed that water-water interactions are predominant in the case of 
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[EMIM][TCB], for all composition range (see Figure B.4 in Appendix B). In general, all these 

interactions are enhanced as the content of IL increases in the mixture, which is in agreement 

with published studies23 and suggests the formation of water aggregates. 

Notice that we performed MD simulations for the systems of water with [BMIM][TCN] and 

[EMIM][TCB] starting from random configurations and in the time lengths of the simulations 

phase separation was not observed. For that reason, RDFs and Z values for the system 

[EMIM][TCB] and water at 20 % of IL’s content are also reported. 

 

 

Figure 3.2.6. Radial distributions functions (RDFs) for a) anion-water, b) cation-water, c) cation-anion and 

d) water-water interactions, at 80IL:20W and 298.15 K. RDFs for [BMIM][SCN] (▬), [BMIM][DCA] (▬), 

[BMIM][TCN] (▬) and [EMIM][TCB] (▬) are represented in each panel. 

 

a) b) 

d) c) 
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The RDFs presented, can give us additional information concerning the establishment of 

hydrogen bonds in a mixture. In concordance with the geometric criteria, in the case of water-

water interactions, it is recognized formation of a H-bond when a site-to-site RDF O—O (or 

O—H) presents a first minimum (rz) in a distance smaller than 0.35 nm (or 0.26 nm) along 

with an angle of 30º.69 

In our systems, the primary interactions are anion-water contacts that are mediated through the 

nitrogen atoms from the IL’s anion with the water’s hydrogen atoms. The rz for all considered 

systems, for this type of interaction, was found to be 0.26 nm, which is consistent with the 

establishment of a H-bond. For water-water interactions, 0.35 nm was also found to be the rz 

for O—O site-to-site RDFs, confirming the establishment of H-bonds. In Figure 3.2.6.a are 

shown the RDFs corresponding to anion-water interactions, for all systems addressed, with IL 

molar percentage of 80 %. The cyano group in the system with the anion [SCN]- presents 

higher probability of being surrounded by water than the cyano groups in the other anions, and 

the RDF presents two well-defined peaks suggesting the presence of two solvation shells. The 

shapes of the RDFs corresponding to the anion-water interactions are similar but the heights of 

the peaks decrease from systems having the [SCN]- anion to [DCA]- to [TCN]- and, finally, to 

[TCB]-. This trend is the opposite of that verified for water-water interactions in the four 

systems considered, Figure 3.2.6.d, suggesting that segregation of water decreases in the 

following order [TCB]- > [TCN]- > [DCA]- > [SCN]-. In the case of the cation-solvent 

interactions, Figure 3.2.6.b, all ILs have similar interactions with water, though the RDF for 

[BMIM][SCN] is slightly more pronounced than the corresponding interaction in the other 

studied ILs. Plots similar to those displayed in Figure 3.2.6, for IL mole fractions of 20 %, 40 

% and 60 % are provided in the Appendix B (Figures B.5 to B.7) and trends are identical to 

those described for the 80 % solutions. An exception, however, can be found in the ordering 

for the cation-solvent interactions, where [BMIM][TCN] presents higher probability of 

interaction with water. For further analyses, the mixture composed by 80 % of IL and 20 % of 

water, on molar basis, will be referred as 80IL:20W. 

Additional information regarding the interactions involved in the ILs-water solutions can be 

obtained from the coordination numbers that are reported in Table 3.2.2. These numbers allow 

to quantify the number of H-bonds that are established between the species, by taking into 

account not only the heights of the first peaks in the RDFs, but also their widths and the 

densities of the different systems. Apparent discrepancies with the analyses of the heights of 

the RDF peaks result from differences in the number of cyano groups in the anions and also 
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from differences in the density of each composition as a consequence of different contents of 

each compound. 

 

Table 3.2.2. Coordination number (Z) from the RDF peaks at distance below rZ nm for anion-solvent, 

cation-solvent, cation-anion and solvent-solvent interaction, at each considered system and different IL 

mole fraction.  

 [BMIM][SCN]+H2O 

 anion-solvent cation-solvent cation-anion solvent-solvent IL-solvent 
xIL  rZ Z rZ Z rZ Z rZ Z Z(total) 
0.2 0.26 2.0 0.40 2.1 0.35 0.5 0.34 2.6 4.1 
0.4 0.26 1.4 0.40 1.2 0.35 0.8 0.34 1.7 2.6 
0.6 0.26 0.9 0.40 0.7 0.35 1.0 0.34 0.9 1.6 
0.8 0.26 0.4 0.40 0.3 0.35 1.1 0.34 0.2 0.7 

 [BMIM][DCA]+H2O 

 anion-solvent cation-solvent cation-anion solvent-solvent IL-solvent 
xIL  rZ Z rZ Z rZ Z rZ Z Z(total) 
0.2 0.26 3.2 0.40 2.2 0.35 0.8 0.34 2.4 5.4 
0.4 0.26 1.9 0.40 1.2 0.35 1.2 0.34 1.3 3.1 
0.6 0.26 1.1 0.40 0.6 0.35 1.4 0.34 0.7 1.7 
0.8 0.26 0.5 0.40 0.2 0.35 1.5 0.34 0.3 0.7 

 [BMIM][TCN]+H2O 

 anion-solvent cation-solvent cation-anion solvent-solvent IL-solvent 
xIL  rZ Z rZ Z rZ Z rZ Z Z(total) 
0.2 0.26 3.4 0.40 2.0 0.35 1.0 0.34 2.3 5.4 
0.4 0.26 1.9 0.40 1.0 0.35 1.4 0.34 1.4 2.9 
0.6 0.26 1.0 0.40 0.5 0.35 1.6 0.34 0.8 1.5 
0.8 0.26 0.4 0.40 0.2 0.35 1.7 0.34 0.5 0.6 

 [EMIM][TCB]+H2O 

 anion-solvent cation-solvent cation-anion solvent-solvent IL-solvent 
xIL  rZ Z rZ Z rZ Z rZ Z Z(total) 
0.2 0.26 3.0 0.40 1.7 0.35 1.4 0.34 2.7 4.7 
0.4 0.26 1.6 0.40 0.8 0.35 1.8 0.34 2.0 2.4 
0.6 0.26 0.9 0.40 0.4 0.35 1.9 0.34 1.4 1.3 
0.8 0.26 0.4 0.40 0.2 0.35 2.1 0.34 0.9 0.6 

 

Results in Table 3.2.2 demonstrate that the largest values concerning the IL-water interactions, 

i.e., obtained by adding the cation-water and anion-water interactions in all range of 
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composition, are found for the system with the anion [DCA]-, suggesting more favorable 

interactions with water, which is in close agreement with the experimental findings from the 

present study. At 20 % and 40 % of IL, [DCA]- is followed by (or is nearly equal to) the 

system with the anion [TCN]-, then by [TCB]- and finally by [SCN]-. This trend is not 

obtained, however, for 60 % and 80 % of IL, where it is found that the IL-water coordination 

numbers for the system with the anion [DCA]- are still the largest but the ordering of the 

remaining systems is reversed, i.e., second largest is the system composed by [SCN]-, then 

[TCN]- and last  

[TCB]-. The latter ordering is the same as that obtained for the experimental water activity 

coefficient data and for the COSMO-RS predictions. The Z values for cation-anion interactions 

are increasing with the content of IL in the system, contrary to the trends observed for the 

interactions with water. Regarding water-water interactions, they decrease less dramatically 

with the content of IL from the system containing the anion [SCN]-, through [DCA]-, [TCN]- 

and [TCB]-. As mentioned previously, this trend is accompanied by an increase of cation-anion 

interactions, suggesting that the systems are gradually losing the propensity to interact with 

water as the number of CN-groups increase in the IL’s anion. 

Similar to what was discussed previously, the capacity of these ILs to establish H-bonds can be 

supported by the solvatochromic parameter β. Moreover, the CHelpG charges calculated at the 

B3LYP/6-311+G(d) level of theory can also give us some insights regarding the obtained 

results. Aiming this, and since results have demonstrated that the anions are the mediators of 

the interactions with water through their nitrogen atoms, atomic charges for all nitrogen atoms 

in the cyano groups of the anions are reported in Tables B.2 to B.5 (Appendix B). As it can be 

observed, charges of the nitrogen atoms become less negative in the order [DCA]- > [SCN]- > 

[TCN]- > [TCB]- with values of -0.723 e, -0.658 e, -0.638 e and -0.487 e. Notice that the 

ordering of the partial charges in the nitrogen atoms of the cyano group differ slightly from the 

ordering of the total charge in the anions which becomes less negative in the order [SCN]- > 

[DCA]- > [TCN]- > [TCB]-. 

The differences found in the partial atomic charges of the cyano nitrogen atoms are due to the 

presence of different central atoms in each anion, i.e., sulfur ([SCN]-), nitrogen ([DCA]-), 

carbon ([TCN]-) and boron ([TCB]-), which lead to different charge delocalization. Such 

differences confer different abilities of the anions to establish H-bonds with water molecules 

with consequences in the properties of the ILs, for instance, in the anomalous behavior of 

viscosity30. Interestingly, the ordering of the partial charges in the nitrogen atoms from the CN-
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groups in the anions of the ILs agrees with the ordering of the experimental and predicted 

water activity coefficients. Nevertheless, it is unquestionable that MD simulations allowed to 

recognize that an increase of CN-groups on ILs’ anion hinders the ability of these CN-based 

ILs to interact favorably with water, generally on the same order as observed from water 

activity coefficient data. 

 

Solvent accessible surface areas and spatial distribution functions 

Aiming at a tri-dimensional visualization of how each anion interacts with water, i.e. the most 

important interaction type on these systems, the solvent accessible surface areas (sasa, the 

surface area of one molecule that is accessible to a solvent) and the spatial distribution 

functions (SDFs, a 3D representation of the probability of finding a particle at a certain 

position) were calculated for solutions 80IL:20W. The sasa surfaces were obtained as 

Connolly surfaces70 consisting of all points at which a solvent sphere can reach based on the 

van der Waals radii. Figure B.8 in the Appendix B shows the sasa surfaces for each anion 

under study. The nodes are represented as atoms and the vertices joining the nearest nodes as 

connect records. Results demonstrate that water connects preferentially to all nitrogen atoms 

that are sterically available, becoming a specific interaction in the case of [SCN]-. 

The SDFs were built and analyzed with the TRAVIS71 utility considering isosurfaces with 

values of 6.56 particles·nm-3 for the [BMIM]+ and [EMIM]+ cations (red surfaces, Figure B.9 

in Appendix B) and of 1.24 particles·nm-3 for water (blue surfaces, Figure 3.2.7 and Figure B.9 

in Appendix B), around the ILs anions in solutions 80IL:20W. As a common characteristic to 

all ILs, and in agreement to what was observed above in the analysis of the RDFs, water 

molecules preferentially interact with the nitrogen atoms of the cyano groups from the anions. 

Moreover, SDFs for the anion-water interaction clearly show the existence of two solvation 

shells (Figure 3.2.7). The SDFs for the anion-water and cation-anion interactions (Figure B.9 

in Appendix B) suggest a competition between water molecules and cations for the anions 

since regions concerning the two interaction types are found at similar distances. Furthermore, 

in the cases of the [SCN]- and [DCA]- anions, the SDFs for the cation-anion interactions 

(Figure B.9) show that the cations not only interact with nitrogen atoms from CN-groups but 

also with the sulfur atom of [SCN]- and with the core of [DCA]-. Additionally, the volume of 

the SDFs for water interacting with the different anions (Figure 3.2.7) decrease with the 

increase of the hydrophobicity of the anion, suggesting that the interaction is more likely in the 
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case of the anions with less CN-groups, which is consistent with conclusions arising from all 

the other analyses developed in this work. 

 

Figure 3.2.7 - Spatial distribution functions (SDF) obtained by TRAVIS71, for the mixture [BMIM][SCN] 

(above, left side), [BMIM][DCA] (above, right side), [BMIM][TCN] (down, left side) and [EMIM][TCB] 

(down, right side) and water, at 80IL:20W. Each anion is the center element, surrounded by oxygen atoms 

of water (blue surface). 
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Conclusions	  
	  

Aiming to study water–ILs interaction, aqueous solutions of [BMIM][SCN], [BMIM][DCA], 

[BMIM][TCN] and [EMIM][TCB] were studied and characterized by means of experimental and 

computational techniques. 

Experimental water activity and the corresponding water activity coefficients suggest that 

[BMIM][SCN], [BMIM][DCA] are able to establish favorable interactions with water molecules as 

given by the negative deviations to ideality. On the contrary, [BMIM][TCN] and [EMIM][TCB] 

present positive deviations to ideality, indicating non-favorable or weak interactions with water. 

Moreover, COSMO-RS is shown to be able to quantitatively predict the water activity coefficients, 

presenting average absolute deviations varying from 4.1 to 14.3 % for the aqueous systems with 

[BMIM][TCN] and [BMIM][DCA], respectively. According to the sigma profile, generated using 

COSMO-RS, the electronegativity of the anions plays a crucial role toward their interaction with water 

molecules. The increasing of the number of CN-groups from [SCN]- to [DCA]-, slightly increases the 

electronegativity, improving interactions with water molecules. However, increasing the number of 

CN-groups from [DCA]- to [TCB]- it is observed a decrease of the electronegativity, as well as their 

ability to act as H-bond acceptors. 

Information at the atomic level was retrieved from DFT calculated partial atomic charges, and 

from the analyses of RDFs, coordination numbers, SDFs and sasa surfaces based on the trajectories 

obtained from MD simulation. They support the trend of IL-water and water-water interactions inferred 

from the activity coefficients results. According to the partial atomic charges, not only it was possible 

to infer that the anions establish important interactions with water through the nitrogen atoms of the 

CN-groups but also that the central atom has a deterministic impact on the charge delocalization of the 

anion. Due to the latter factor, together with the increasing number of CN-groups, the propensity of 

interaction with water decreases. Additionally, due to the high ionic interaction between cation and 

anion, the cations seem to establish some important H-bond contacts with water molecules that should 

not be neglected, though they seem to be have less effect than those involving the anions. Hence, the 

propensity for formation of ILs aggregates is expected to be smaller in the case of [BMIM][SCN] and 

[BMIM][DCA]. 

In general, the information retrieved from the experimental and computational results shows 

that the anion governs the interaction between ILs and water. The increase of the number of CN-groups 

in the ILs’ anion from thiocyanate to dicyanamide is accompanied by an increase in the ability of the 
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anion to establish H-bonds with water, while from dicyanamide to tricyanomethane to tetracyanoborate 

it is found that the H-bond propensity decreases. 
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Motivation	  
	  

 In the previous chapter, it was evaluated the mechanism of interaction with water of a specific 

class of ionic liquids (ILs) bearing cyano groups. It was possible to infer how they perform in a 

biomass pre-treatment process, where it is required the establishment of hydrogen bonds with glucose, 

aiming at its acquirement from the lignocellulosic net. Afterwards, glucose is fermented and it will 

give rise to the product of interest (bioethanol) in aqueous medium. The step that follows is the 

separation of bioethanol from water, which is made by distillation. However, there is the formation of 

an azeotrope ethanol-water at ethanol concentrations above 90 %1, which hinders the separation of the 

two compounds by simple distillation. In this regard, extractive distillation is the most common 

method, applied for the separation of azeotropic or close-boiling mixtures. This process is based on the 

addition of another solvent, the separating agent or entrainer, with high boiling point which alters the 

relative volatility of the components enabling their separation.2–4 The search of the best entrainer for 

ethanol-water azeotropic mixture has been the focus of several works.1,4,5 The use of ILs in other 

azeotropic mixtures has also been addressed such as the acetic acid-water6, aromatic-aliphatic7,8 or 

tetrahydrofuran-water9. 

 Common to all azeotropic mixtures, ILs have gained importance as entrainers, by recognition 

of their advantages over common organic compounds.2–4,10 As mentioned in the first chapter of this 

thesis, ILs possess good solvation capacity to dissolve a broad variety of compounds, they present a 

wide liquidus temperature range, extremely low vapor pressures and the ability of fine-tune their 

properties.11 These characteristics, together with their easy recovery and reuse, has categorized ILs as 

feasible candidates to successfully replace common volatile organic compounds in different separation 

processes.2–4,9 

 The assessment of the applicability of a certain IL to act as entrainer, in different azeotropic 

systems is usually made through vapor pressure, boiling temperature or through activity coefficient 

experimental data. Vapor–Liquid Equilibria (VLE) along with activity coefficient data, are means to 

evaluate the potential of molar excess Gibbs energy (GE) models, widely used for the description of the 

non-ideal behavior of the systems. Hence, the possibility of two-phase formation and the type/strength 

of the interactions established between the IL and water/ethanol can be gauged and a separation 

process designed.2,4,12 

 Although object of interest during the last decade, only a few studies on VLE with ILs as 

entrainers for azeotropic separations have been reported.4 Seiler et al.9, Jorke et al.13, Beste et al.14 and 
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Lei et al.15 were among the first to show the use of ILs for separation of azeotropic mixtures. Revelli et 

al.16 reported some binary mixtures containing imidazolium-based ILs with light alcohols. In the open 

literature, there are several imidazolium-based ILs investigated for the extractive distillation of ethanol-

water mixtures17–28. These studies focused on showing that the ILs may allow breaking the azeotrope, 

and on validating different procedures to measure VLE data with ILs. Among them, Ge et al.18 and 

Orchillés et al.29 compared and discussed the performance of the anions [Cl]-, [Ac]-, [DCA]- and [BF4]- 

as they have been found as the most suitable for an effective extractive distillation, according to the 

effect that they induce in the relative volatility of the system, which is also discussed in detail in the 

paper of Pereiro et al.4. The ILs with the anions [Ac]- and [DCA]- stand as the best candidates, not only 

due to their high propensity to interact favorably with water/ethanol, but also due to their lower 

viscosity (when comparing with the IL with the anion chloride), which enhance the mass transfer 

efficiency of the extractive distillation30 or the thermal stability when compared with [BF4]- 31. The 

strong effect of water upon the viscosity of the ILs may further enhance this aspect and, therefore, it 

must be taken into account in the design of extraction processes.32 

 The experimental determination of VLE data, aiming at disclosing the ILs activity-structure 

relationship, is an impractical task if one takes into account the large number of potential ILs that can 

be prepared by the combination of available cations and anions. To overcome this difficulty, group 

contribution methods (UNIQUAC10, UNIFAC33), other activity coefficient models (NRTL10,18,34–36) or 

equations of state (for example, The Perturbed-Chain Statistical Association Theory (PC-SAFT)21) are 

commonly applied to correlate experimental data aiming at predicting other systems not previously 

studied, or predictive models such as COSMO-RS12,37–40 have been used to scan the ILs in the quest for 

the best entrainers. Process simulators, such as Aspen Plus, can then be applied for an evaluation of the 

process and its optimization2,30. 

 Additionally, the use of molecular dynamics (MD) simulations has also been reported.41,42 This 

computational approach allows the description of real systems at the atomic level, providing an 

understanding of the molecular interactions that take place.43 This approach has the advantage of being 

capable of describing the dynamic behavior of systems, as well as, to predict its thermodynamic and 

transport properties.44 

 Regarding the large variety of ILs, cyano-based ILs present a set of properties of great interest 

like low melting points and reduced viscosities45 and a surprisingly wide hydrogen bond ability 

presenting themselves either as good solvents for carbohydrates (e.g., when the IL anion is [DCA]-), or 

as water immiscible (e.g., when the IL anion is [TCB]-). They have been studied for many specific 

applications, such as their extracting solvent ability for a variety of compounds, e.g., compounds in 
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biomass (phenolic compounds,46 carbohydrates47,48 and sugar alcohols49), aromatic-aliphatic 

compounds12, and were also shown to successfully extract alcohols from fermentation broth12,18,50. 

 In the present chapter, aiming at complementing the study of the binary systems composed of 

CN-based ILs with water, a systematic study on isobaric VLE binary system of water and ethanol with 

the same ILs is performed at pressures ranging from 0.05 to 0.1 MPa. The experimental data will be 

further compared and discussed, inferring the existent interactions (type/strength) and mechanisms, as 

well as the influence of increasing number of CN-groups in the anion, with those estimated from 

activity coefficients data, COSMO-RS and MD simulations. The MD simulations address only the 

systems composed of ethanol and ILs, but the calculated results are compared with those obtained for 

water-ILs systems and further discussed. 
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Methodology	  
 

Experimental	  Section	  
 

Materials 

Four imidazolium-based ILs containing cyano anions were studied, namely 1-butyl-3-

methylimidazolium thiocyanate, [BMIM][SCN], 1-butyl-3-methylimidazolium dicyanamide, 

[BMIM][DCA], 1-butyl-3-methylimidazolium tricyanomethane, [BMIM][TCN] that were 

acquired from IoLiTec (Germany) and 1-ethyl-3-methylimidazolium tetracyanoborate, 

[EMIM][TCB], from Merck KGaA Germany, all with mass fraction purities higher than 98 %. 

To reduce to negligible values the contents of both water and volatile compounds, high 

vacuum (10-5 mbar), stirring, and moderate temperature (303 K) for a period of at least 48 h 

were applied prior to the measurements. The final IL water content was determined with a 

Metrohm 831 Karl Fisher coulometer with an associated uncertainty of  

±3 µg, using the analyte Hydranal – Coulomat AG from Riedel-de Haën), indicating a water 

mass fraction lower than 30×10-6. The purities of each ionic liquid were further checked by 1H 

and 13C NMR. The ethanol used was obtained from Merck with mass fraction purity higher 

than 99.8 %. Being highly hygroscopic, the ethanol was kept immersed in molecular sieves to 

assure low water content. Furthermore, between new samples, the ionic liquid was kept under 

low vacuum (10-2 mbar). In all experiments, water was double distilled, passed by a reverse 

osmosis system and further treated with a MilliQ plus 185 water purification apparatus. 

 

VLE measurement - Apparatus and Procedures 

VLE measurements were made with an isobaric microebulliometer at different pressures: 0.05, 

0.07, and 0.1 MPa. The apparatus used here and the methodology adopted has been previously 

described in detail17. The equilibrium temperature of the liquid phase was measured, with an 

uncertainty of 0.2 K, with a fast response glass-sealed Pt100 class 1/10, which was calibrated 

prior to the measurements by comparison with a NIST-certified Fluke RTD25 standard 

thermometer, with an uncertainty less than 2 × 10-2 K. The internal pressure of the ebulliometer 

was kept constant through a vacuum pump Buchi V-700 and a V-850 Buchi pressure 

monitoring and controller unit. The system pressure was monitored by a MKS, model 728A, 

Baratron type capacitance manometer, with temperature regulation at 100 ºC to avoid solvent 
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condensation and with an accuracy of 0.5 %. Only when the equilibrium temperature was 

constant for a period of at least 30 min, the equilibrium conditions were assumed. The mixture 

composition was determined through an Anton Paar Abbemat 500 Refractometer, with an 

uncertainty of 2×10-5 nD, using a calibration curve previously established. The adequacy of the 

apparatus to measure this type of systems was previously confirmed.15 Additionally, to test the 

apparatus, measurements of the VLE of pure compounds (ethanol, water, p-xylene, and 

decane) covering the temperature range of interest for the water+IL and ethanol+IL systems 

studied in this work were carried out. It was observed an uncertainty in the boiling 

temperatures of 0.2 K.	  

	  

Density measurements (Ethanol + IL systems) 

In this work, mixtures of [BMIM][SCN], [BMIM][DCA], [BMIM][TCN] and [EMIM][TCB] 

with ethanol were prepared gravimetrically, with an uncertainty of ±10-5 g, for subsequent 

measurement of density. In order to guarantee homogenization, mixtures were kept at constant 

stirring for 24 h, at room temperature in closed vials to minimize moisture absorption. 

An automated SVM 3000 Anton Paar rotational Stabinger viscosimeter-densimeter was used to 

measure density data, at atmospheric pressure and at the temperature of 298.15 K. The 

viscosimeter-densimeter equipment uses Peltier elements for fast and efficient 

thermostatization, which has been detailed in Chapter 3.1. The uncertainty in temperature is 

within ± 0.02 K and the absolute uncertainty for density is ±0.5 kg·m-3. Obtained density data 

are compiled in Table C.1 at Appendix C. 

 

Computational	  Section	  
 

COSMO-RS 

The COSMO-RS is a unique tool for predicting the thermodynamic properties of mixtures on 

the basis of unimolecular quantum chemical calculations for the individual molecules51. 

COSMO-RS combines the electrostatic advantages and the computational efficiency of the 

quantum chemical dielectric continuum solvation model COSMO with a statistical 

thermodynamics approach, based on the results of the quantum chemical calculations.51,52 The 
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standard procedure of COSMO-RS calculations consists of two steps: quantum chemical 

COSMO calculations for all the molecular species involved, and COSMO-RS calculations.51,52 

Following the two-step procedure, COSMO-RS models have been applied and proved to be an 

excellent tool to evaluate qualitatively the strength of the interactions established by ILs with 

other compounds (binary or ternary systems), and consequently to predict their VLE37,40,53,54, 

activity coefficients55–58, liquid-liquid equilibria (LLE)7,8,59, among other properties60. 

Therefore, COSMO-RS is going to be applied to our experimental VLE data, and used to 

further understand the molecular level interactions as discussed below. 

 

Molecular dynamics simulations 

Molecular dynamics simulations were performed with the GROMACS61 code, version 4.5.4, 

for the binary mixtures composed of ethanol and [BMIM][SCN], [BMIM][DCA], 

[BMIM][TCN] and [EMIM][TCB], at IL mole fraction of 0.2, 0.4, 0.6 and 0.8. 

For all considered systems, after energy minimization and equilibration runs (10ns) within the 

canonical ensemble (NVT), followed by a production run of 20 ns, within the isothermal-

isobaric (NPT) ensemble. The latter considered a constant temperature of 298.15 K, 

maintained using the Nosé-Hoover62,63 thermostat, and a constant pressure kept at 1 bar with 

the Parrinello-Rahman64 barostat. The intermolecular interaction energy between pairs of 

neighboring atoms was calculated using the Lennard-Jones and the point-charge Coulomb 

potentials for describing dispersion/repulsion and electrostatic forces, respectively. Lennard-

Jones and Coulombic interactions were defined setting the cutoffs to 1.2 and 1.0 nm, 

respectively, and long-range corrections for energy and pressure were also applied. Rigid 

constraints were enforced on all bonds lengths. 

The force field parameters for the [BMIM]+ and [EMIM]+ cations, as well as for the [SCN]- 

anion are those discussed in Chapter 3.1 and published in our previous work65. The potential 

parameters for the [DCA]- and [TCN]- anions were taken from the OPLS-AA force field66,67, 

and the [TCB]- anion were taken from the work of Koller et al.68. The atomic charges for the IL 

cations and anions were recalculated with the CHelpG scheme69 using a geometry optimized 

with DFT (minimum energy among different configurations), for each IL ion pair, in the gas 

phase as performed previously for other systems involving ILs.44,65 The DFT calculations were 

performed at the B3LYP/6-311+G(d) level of theory70 with the Gaussian 09 code.71 The total 

charges on the cations and anions were ±0.804 e for [BMIM][SCN], ±0.826 e for 
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[BMIM][DCA], ±0.882 e for [BMIM][TCN] and ±0.889 e for [EMIM][TCB]. The full sets of 

atomic charges for each IL are compiled in Tables B.2 to B.5 in the Appendix B (related to 

previous chapter), where the combination of the different force fields applied for each cation 

and anion. For the ethanol molecules, the force field parameters were taken from the OPLS-

AA force field.66,67 

For validation of the applied force field, density and enthalpy of vaporization were calculated. 

The latter was obtained according to equation 3.3.1, 

 

∆𝐻!"# = 𝑅𝑇 − 𝑈!"# − 𝑈!"#  (3.3.1) 
 

where ∆Hvap is the enthalpy of vaporization, R is the ideal gas constant, T is the temperature, 

Uvap and Uliq are the molar internal energies of the vapor/gas and of the liquid phases, 

respectively. To reproduce the gas phase, isolated IL ion pairs were considered and simulations 

were performed at the same temperature of the liquid phase. 

In addition, density, radial and spatial distributions functions, and coordination numbers were 

estimated from the MD trajectories for all mixtures considered. 

 

Results	  and	  Discussion	  
	  

VLE	  measurements	  and	  COSMO-‐RS	  predictions	  
	  

Isobaric VLE data of the binary systems [BMIM][SCN], [BMIM][DCA], [BMIM][TCN] and 

[EMIM][TCB] with water and ethanol were measured at 0.1, 0.07 and 0.05 MPa, and are reported in 

Tables 3.3.1 to 3.3.8 and depicted in Figures 3.3.1 and 3.3.2 along with COSMO-RS predictions. The 

experimental boiling temperature is represented as function of the mole fraction of water/ethanol and 

compared with the COSMO-RS predictions, in the region of complete miscibility. The COSMO-RS 

prediction for the binary system [[BMIM][SCN], [BMIM][DCA], [BMIM][TCN] and [EMIM][TCB] 

with water and ethanol are found to be in close agreement with the experimental boiling points only for 

water/ethanol mole fractions higher than 0.8. Afterwards, the quality of the predictions degrades with 

the ILs concentration, for which only a qualitative prediction is achieved, as observed in previous 

works55,72. 
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Figure 3.3.1 - Isobaric temperature-composition diagram of (a) [BMIM][SCN]+water, (b) 

[BMIM][DCA]+water, (c) [BMIM][TCN]+water, (d) [EMIM][TCB]+water. The solid lines 

represent COSMO-RS predictions. 

	  

For the studied systems, and to the best of our knowledge, the VLE data is here reported for 

the first time. Orchilles et al.28 reported VLE data for the binary mixture for [BMIM][DCA] with water 

and ethanol that, in comparison with that of [BMIM][DCA], denotes the well-established weak cation 

influence on the systems boiling temperatures, within the range of mole fraction investigated, as 

depicted in Figure C.1 and C.2 at Appendix C. The isobaric VLE data for [BMIM][SCN]+water at 0.01 

MPa was previously reported21 but is included here for comparison with the other CN-based ILs. 

Figures 3.3.1 and 3.3.2 report the VLE of the studied systems as a function of composition, 

temperature and pressure. It can be seen that pressure does not have a strong influence on the boiling-

point elevation dependency with the concentration, as shown by the parallel behavior of the 

temperature-composition equilibrium curves at the different pressures (effects on activity coefficients 

can be observed in Figure C.3). 
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Figure 3.3.2 - Isobaric temperature-composition diagram of (a) [BMIM][SCN]+ethanol, (b) 

[BMIM][DCA]+ethanol, (c) [BMIM][TCN]+ethanol, (d) [EMIM][TCB]+ethanol. The solid lines 

represent COSMO-RS prediction. 

 

The measured boiling temperatures decrease with increasing solvent concentration at all 

pressures investigated, as shown in Figures 3.3.1 and 3.3.2, and the influence of ILs in the boiling 

temperature of both water and ethanol results in the following trend, [BMIM][DCA] < [BMIM][SCN] 

< [BMIM][TCN] < [EMIM][TCB], which is identical to the trend of mutual solubility of water and 

[BMpyr]+ cation-based ILs found and reported by Królikowska et al.73 ([DCA]- < [TCN]- < [TCB]-). 

Generally, as it is well established, the anion plays a primordial role in the IL interaction with 

water.74,75 Regarding the studied ILs, the imidazolium cation was fixed with the aim of studying the 

anion interactions with water or ethanol. The hydrogen bonding capability of the cyano group with 

water/ ethanol could be expected to increase with the number of cyano groups in the anion. However, 

although the expected increased interaction is actually observed from [BMIM][SCN] to 

[BMIM][DCA], a reversed behavior is observed for the other two compounds displaying further 

increase in the number of cyano groups. As shown in Chapter 3.2, using COSMO-RS (sigma profile 

and potential), the anion [DCA]- is more polar than [SCN]-, which suggests that the former will have 

higher propensity to establish hydrogen bonds with H-bond donors than [SCN]-. It was found also that 
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by increasing the number of cyano groups from [DCA]- to [TCN]- and to [TCB]-, the ability of these 

anions to act as H-bond acceptors decrease. As a consequence, it is expected that [DCA]- presents 

stronger interactions with water/ethanol than [SCN]-, [TCN]- and [TCB]-. 

 

Thermodynamic	  Modeling	  
	  

The effect of IL on the non-ideality of a solution can be expressed by the activity coefficient of 

component i, 𝛾!, which can be estimated from the vapor liquid equilibrium data by the equation, 

 

𝛾! =
𝑦!∅!𝑝
𝑥!∅!!𝑝!!

 (3.3.2) 

 

where 𝑝 and 𝑝!! are the pressure of the system and the saturation pressure of the pure component i at 

the system temperature,   𝑦! and 𝑥!  represent the mole fractions of component i in the vapor and liquid 

phases, respectively, ∅! is the fugacity coefficient of component i in the vapor phase, while ∅!! is the 

fugacity coefficient of component i in its saturated state. The fugacity coefficients ∅!   and ∅!! are close 

to unity at the pressures used in this study and, since the IL is non-volatile, the vapor phase is only 

composed of solvent, which leads to  𝑦! equal to unity. Thus, the activity coefficient of solvent in 

solution can be simplified as, 

 

𝛾! =
𝑝

𝑥!𝑝!!
 (3.3.3) 

 

where subscript S refers to solvents such as water or ethanol. The pure component saturation pressure 

𝑝!!, of water and ethanol were estimated using correlations obtained from DIPPR’s database76. 

The activity coefficient estimated for the studied systems are given in Tables 3.3.1 to 3.3.8 and 

depicted in Figure C.3 at system pressures of 0.1, 0.07 and 0.05 MPa. The deviations to ideality follow, 

as expected, the trend: [BMIM][DCA] < [BMIM][SCN] < [BMIM][TCN] < [EMIM][TCB]. For the 

ethanol containing mixtures the activity coefficient data suggest that the interactions are similar to 

those present in aqueous systems with the deviation to ideality following the trend [BMIM][DCA] < 

[BMIM][SCN] < [BMIM][TCN] < [EMIM][TCB], although the differences between [BMIM][DCA] 
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and [BMIM][SCN], as well as between [BMIM][TCN] and [EMIM][TCB], are not as clear as in 

aqueous systems where the hydrogen bonding is more intense. 

	  

Table 3.3.1. Experimental isobaric VLE data for the system [BMIM][SCN] (1) + water (2) at 

temperature T, liquid mole fraction x, and system pressures 0.1, 0.07 and 0.05 MPa. 

𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 
0.1 MPa 0.07 MPa 0.05 MPa 

0.9957 372.67 1.0100 0.9954 363.46 0.9944 0.9956 354.69 1.0004 
0.9891 373.38 0.9913 0.9889 363.79 0.9886 0.9886 355.14 0.9896 
0.9809 373.66 0.9887 0.9808 363.87 0.9909 0.9808 355.19 0.9935 
0.9715 373.93 0.9887 0.9680 364.09 0.9957 0.9687 355.25 1.0035 
0.9553 374.30 0.9924 0.9505 364.47 0.9995 0.9508 355.70 1.0042 
0.9368 375.11 0.9844 0.9220 365.71 0.9822 0.9293 356.85 0.9836 
0.9209 375.67 0.9819 0.9027 366.16 0.9865 0.9174 357.11 0.9862 
0.8961 376.35 0.9823 0.8910 366.70 0.9796 0.8963 357.61 0.9858 
0.8596 378.30 0.9607 0.8601 368.15 0.9633 0.8695 358.75 0.9718 
0.8416 378.89 0.9615 0.8295 369.3 0.9576 0.8411 359.68 0.9708 
0.8041 381.69 0.9119 0.7925 371.14 0.9375 0.8110 360.61 0.9713 
0.7946 382.27 0.9030 0.7727 372.30 0.9223 0.7833 362.25 0.9406 
0.7107 387.36 0.8534 0.7173 377.41 0.8296 0.7187 366.03 0.8907 
0.6690 390.87 0.8107 0.6581 380.87 0.8027 0.6607 370.29 0.8284 
0.6088 395.48 0.7706 0.6046 385.26 0.7540 0.6089 373.87 0.7905 

         

 

Table 3.3.2. Experimental isobaric VLE data for the system [BMIM][DCA] (1) + water (2) at 

temperature T, liquid mole fraction x, and system pressures 0.1, 0.07 and 0.05 MPa. 

𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 
0.1 MPa 0.07 MPa 0.05 MPa 

0.9982 373.07 0.9941 0.9993 363.97 0.9689 0.9993 355.39 0.9674 
0.9973 373.08 0.9937 0.9993 364.09 0.9631 0.9971 355.63 0.9603 
0.9830 373.52 0.9935 0.9957 364.2 0.9640 0.9952 355.71 0.9590 
0.9745 373.84 0.9918 0.9878 364.37 0.9654 0.9871 355.87 0.9608 
0.9662 374.16 0.9880 0.9716 364.58 0.9738 0.9707 355.97 0.9732 
0.9553 374.45 0.9901 0.9627 364.75 0.9765 0.9526 356.14 0.9850 
0.9477 374.75 0.9884 0.9540 364.95 0.9767 0.9805 356.31 0.9524 
0.9440 374.84 0.9863 0.9473 365.17 0.9783 0.9278 356.69 0.9875 
0.9373 375.17 0.9818 0.9433 365.30 0.9763 0.9487 356.78 0.9642 
0.9329 375.22 0.9837 0.9400 365.34 0.9796 0.9319 356.83 0.9816 
0.9310 375.24 0.9841 0.9349 365.42 0.9793 0.9647 356.91 0.9434 
0.9209 375.83 0.9735 0.9288 365.62 0.9798 0.9154 357.08 0.9876 
0.9068 376.28 0.9780 0.9236 365.92 0.9742 0.9106 357.24 0.9866 
0.9059 376.43 0.9710 0.9077 366.31 0.9757 0.8941 357.30 1.0023 
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0.8896 377.16 0.9668 0.8897 366.92 0.9746 0.8865 357.92 0.9866 
0.8792 377.61 0.9591 0.8798 367.36 0.9696 0.8555 358.04 1.0176 
0.8644 378.41 0.9508 0.8579 368.45 0.9552 0.8684 358.26 0.9939 
0.8524 379.25 0.9348 0.8494 368.79 0.9527 0.8402 359.46 0.9822 
0.8320 380.41 0.9232 0.8233 369.98 0.9412 0.8283 360.39 0.9610 
0.8157 381.52 0.9077 0.8053 370.69 0.9377 0.8089 361.29 0.9505 
0.8073 382.04 0.9011 0.7916 372.19 0.9038 0.7963 362.39 0.9276 
0.7859 383.73 0.8736 0.7813 372.39 0.9092 0.7829 362.87 0.9227 
0.7610 385.60 0.8453 0.7579 374.41 0.8722 0.7558 364.39 0.9060 
0.7580 385.82 0.8450 0.7510 375.20 0.8560 0.7509 365.22 0.8804 
0.7155 389.97 0.7818 0.7252 377.63 0.8142 0.7174 367.28 0.8586 
0.7165 389.99 0.7817 0.7035 379.30 0.7923 0.7047 368.53 0.8298 
0.6829 392.96 0.7445 0.6806 380.94 0.7743 0.6814 370.26 0.8041 
0.6790 393.11 0.7459 0.6766 381.08 0.7764 0.6778 370.75 0.7957 
0.6612 394.88 0.7238 0.6560 382.75 0.7556 0.6695 371.28 0.7950 
0.6453 396.41 0.7070 0.6412 384.27 0.7347 0.6480 373.12 0.7643 
0.6313 398.25 0.6835 0.6246 386.05 0.7110 0.6324 374.91 0.7365 
0.6123 400.16 0.6639 0.6100 388.19 0.6787 0.6169 376.41 0.7148 
0.5858 403.87 0.6208 0.5662 392.26 0.6414 0.5752 379.34 0.6926 
0.5624 406.78 0.5933 0.5614 392.82 0.6355 0.5668 380.54 0.6747 
0.5451 408.85 0.5757 0.5272 396.16 0.6092 0.5312 383.99 0.6420 
0.5087 416.61 0.4960 0.4943 400.88 0.5622 0.4941 389.87 0.5678 
0.4729 425.31 0.4215 0.4620 404.36 0.5418 0.4618 393.60 0.5383 

         

 

Table 3.3.3. Experimental isobaric VLE data for the system [BMIM][TCN] (1) + water (2) at 

temperature T, liquid mole fraction x, and system pressures 0.1, 0.07 and 0.05 MPa. 

𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 
0.1 MPa 0.07 MPa 0.05 MPa 

0.8279 376.55 1.0590 0.8175 366.62 1.0709 0.8246 357.52 1.0774 
0.7797 378.38 1.0552 0.7780 368.06 1.0669 0.8092 357.93 1.0847 
0.7385 380.85 1.0236 0.7406 369.83 1.0506 0.7402 360.37 1.0720 
0.7197 381.98 1.0109 0.7283 370.35 1.0497 0.7275 361.25 1.0544 
0.7028 382.84 1.0055 0.7076 371.23 1.0451 0.7142 361.56 1.0613 
0.6905 383.65 0.9941 0.6829 372.39 1.0387 0.6957 362.29 1.0596 
0.6627 385.21 0.9843 0.6720 373.37 1.0206 0.6751 362.99 1.0631 
0.6427 386.56 0.9707 0.6564 374.14 1.0167 0.6632 363.63 1.0562 
0.6205 387.86 0.9626 0.6453 374.90 1.0053 0.6485 364.41 1.0531 
0.6059 389.35 0.9391 0.6163 377.22 0.9719 0.6297 365.69 1.0295 
0.5945 390.39 0.9254 0.5817 379.35 0.9552 0.6132 366.80 1.0144 
0.5806 391.73 0.9106 0.5525 381.30 0.9422 0.5966 367.81 1.0045 
0.5568 393.62 0.8933 0.5389 382.62 0.9239 0.5642 370.30 0.9698 
0.5520 394.48 0.8769 0.5295 383.35 0.9174 0.5484 372.14 0.9336 
0.5322 396.25 0.8615 0.5256 384.16 0.8996 0.4886 375.77 0.9211 
0.5000 399.35 0.8334 0.4944 386.63 0.8812 0.4725 376.89 0.9159 
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0.4813 401.16 0.8194 0.4838 387.43 0.8772 0.4503 377.76 0.9325 
0.4654 402.97 0.8017 0.4808 387.55 0.8792 0.4415 378.81 0.9171 
0.4382 405.71 0.7849 0.4815 387.99 0.8654 0.4330 381.49 0.8534 
0.4207 408.27 0.7586 0.4496 390.10 0.8655 0.4193 382.68 0.8465 
0.4057 410.22 0.7436 0.4252 393.07 0.8324 0.4192 383.07 0.8355 
0.3891 412.43 0.7279 0.4179 394.13 0.8190 0.4386 380.66 0.8665 
0.3846 413.66 0.7111 0.4125 395.17 0.8031 0.4035 385.82 0.7920 
0.3739 414.83 0.7072 0.3756 400.51 0.7482 0.4441 379.50 0.8903 
0.3697 415.15 0.7095 0.3702 402.15 0.7224 0.4212 382.15 0.8596 

         
	  

Table 3.3.4. Experimental isobaric VLE data for the system [EMIM][TCB] (1) + water (2) at 

temperature T, liquid mole fraction x, and system pressures 0.1, 0.07 and 0.05 MPa. 

𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 
0.1 MPa 0.07 MPa 0.05 MPa 

0.2374 419.61 0.9747 0.2774 404.15 0.9095 0.2366 395.15 1.0007 
0.3132 408.07 1.0229 0.3337 392.21 1.0916 0.2887 385.60 1.1175 
0.3535 402.87 1.0566 0.3678 387.66 1.1467 0.3200 380.38 1.2012 
0.3758 400.36 1.0722 0.3758 385.42 1.2083 0.3329 378.36 1.2379 
0.3911 397.97 1.1082 0.3958 383.26 1.2329 0.3465 376.16 1.2840 
0.4083 395.15 1.1586 0.4116 381.98 1.2378 0.3798 371.55 1.3796 
0.4231 392.87 1.2013 0.4266 378.58 1.3414 0.4067 368.55 1.4367 
0.4453 390.55 1.2304 0.4396 378.06 1.3254 0.4353 365.29 1.5148 
0.4524 389.26 1.2640 0.4649 374.93 1.3979 0.4596 361.55 1.6531 
0.4652 388.17 1.2734 0.4747 374.03 1.4133 0.4938 359.46 1.6677 
0.4827 386.18 1.3100 0.4847 372.36 1.4691 0.5204 357.29 1.7229 
0.5092 384.71 1.3036 0.5244 369.86 1.4863 0.5416 356.46 1.7105 
0.5349 382.40 1.3409 0.5585 367.18 1.5397 0.5577 355.63 1.7167 
0.5800 380.17 1.3340 0.5882 365.27 1.5697 0.6061 354.87 1.6284 
0.6011 379.23 1.3293 0.5948 364.82 1.5788 0.6266 354.47 1.6006 
0.6200 378.38 1.3256 0.6008 364.58 1.5770 0.6451 354.18 1.5728 

         
	  

Table 3.3.5. Experimental isobaric VLE data for the system [BMIM][SCN] (1) + ethanol (2) at 

temperature T, liquid mole fraction x, and system pressures 0.1, 0.07 and 0.05 MPa. 

𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 
0.1 MPa 0.07 MPa 0.05 MPa 

0.9823 350.98 1.0157 0.9810 342.71 1.0057 0.9821 334.98 0.9963 
0.9806 350.49 1.0374 0.9795 342.93 0.9966 0.9797 335.22 0.9903 
0.9626 350.98 1.0366 0.9629 343.24 1.0007 0.9628 335.60 0.9910 
0.9430 351.27 1.0460 0.9433 343.15 1.0254 0.9371 336.66 0.9721 
0.9211 352.17 1.0337 0.9192 344.15 1.0095 0.9188 337.14 0.9709 
0.8924 353.21 1.0307 0.8966 344.82 1.0067 0.8974 337.43 0.9817 
0.8703 353.68 1.0377 0.8495 346.60 0.9878 0.8707 338.37 0.9715 
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0.8405 355.11 1.0168 0.8321 347.44 0.9747 0.8403 339.41 0.9628 
0.7941 356.66 1.0143 0.8072 348.72 0.9543 0.7952 341.42 0.9341 
0.7807 357.37 0.9972 0.7901 349.53 0.9453 0.7816 342.53 0.9071 
0.7705 358.47 0.9694 0.7700 350.74 0.9230 0.7711 343.40 0.8867 
0.6934 362.16 0.9384 0.6902 355.36 0.8602 0.6932 346.71 0.8608 
0.6807 363.18 0.9172 0.6814 355.80 0.8567 0.6806 347.91 0.8352 
0.6284 365.82 0.9031 0.6232 358.92 0.8324 0.6283 350.64 0.8112 
0.5931 368.11 0.8919 0.5844 361.00 0.8216 0.5949 352.53 0.7954 
0.5704 369.93 0.8701 0.5717 362.18 0.8042 0.5701 354.33 0.7739 
0.5314 372.21 0.8647 0.5231 365.63 0.7755 0.5305 356.71 0.7593 
0.4962 374.13 0.8673 0.4162 372.71 0.7605 0.4965 359.18 0.7392 
0.4065 381.58 0.8269 0.3987 374.88 0.7373 0.4044 363.75 0.7668 
0.3380 388.01 0.8108 0.3499 378.50 0.7445 0.3378 370.45 0.7237 
0.3128 391.58 0.7848 0.3269 382.06 0.7095 0.3219 373.45 0.6848 
0.2411 401.58 0.7576 0.2430 389.97 0.7438 0.2413 379.45 0.7473 

         
	  

Table 3.3.6. Experimental isobaric VLE data for the system [BMIM][DCA] (1) + ethanol (2) at 

temperature T, liquid mole fraction x, and system pressures 0.1, 0.07 and 0.05 MPa. 

𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 
0.1 MPa 0.07 MPa 0.05 MPa 

0.9836 351.72 0.9932 0.9844 342.81 0.9980 0.9848 334.88 1.0000 
0.9477 352.61 0.9985 0.9537 343.47 1.0008 0.9625 335.67 0.9882 
0.9397 352.80 0.9985 0.9459 343.53 1.0065 0.9539 335.81 0.9910 
0.9040 353.92 0.9937 0.9213 344.69 0.9850 0.9200 336.87 0.9811 
0.8751 354.84 0.9897 0.8929 345.68 0.9744 0.9016 337.36 0.9800 
0.8652 355.16 0.9908 0.8888 346.08 0.9644 0.8873 337.97 0.9699 
0.8599 355.42 0.9861 0.8787 346.42 0.9621 0.8522 339.10 0.9619 
0.8431 356.11 0.9776 0.8615 347.24 0.9491 0.8340 340.31 0.9335 
0.8126 357.35 0.9685 0.8322 349.06 0.9131 0.8228 340.70 0.9306 
0.8007 357.81 0.9679 0.8211 349.34 0.9151 0.8310 340.56 0.9269 
0.7830 358.74 0.9538 0.8064 350.07 0.9051 0.7898 342.26 0.9079 
0.7595 359.83 0.9441 0.7900 350.94 0.8926 0.7889 342.38 0.9043 
0.7514 360.23 0.9402 0.7862 351.17 0.8888 0.7383 345.65 0.8439 
0.7420 360.73 0.9356 0.7737 351.54 0.8901 0.7338 345.69 0.8478 
0.7158 362.18 0.9184 0.7304 354.20 0.8500 0.7250 346.73 0.8224 
0.6948 363.31 0.9088 0.7195 354.97 0.8376 0.7101 347.79 0.8060 
0.6555 365.36 0.8954 0.6953 356.31 0.8247 0.6750 349.31 0.7962 
0.6341 366.77 0.8792 0.6737 357.28 0.8190 0.6411 351.19 0.7780 
0.6104 368.24 0.8679 0.6374 359.69 0.7920 0.6368 351.49 0.7741 
0.6009 368.77 0.8627 0.6334 360.12 0.7831 0.6256 352.15 0.7692 
0.5958 368.99 0.8652 0.6159 361.21 0.7746 0.6130 352.91 0.7605 
0.5849 369.49 0.8642 0.6043 361.96 0.7669 0.6127 353.10 0.7553 
0.5402 372.80 0.8370 0.5926 362.64 0.7628 0.5693 356.02 0.7263 
0.5312 373.14 0.8414 0.5748 363.91 0.7510 0.5590 356.71 0.7206 
0.4999 375.14 0.8337 0.5233 367.12 0.7351 0.5364 358.02 0.7160 



___________________________________ Chapter 3	   ___________________________________	  
	  

	  
	  

[138] 

0.4857 376.18 0.8277 0.4978 369.42 0.7126 0.4912 360.51 0.7109 
0.4660 377.84 0.8180 0.4897 370.04 0.7078 0.4654 362.56 0.6959 
0.4476 379.78 0.7988 0.4640 372.03 0.6982 0.4646 362.82 0.6905 
0.4405 380.56 0.7911 0.4519 373.36 0.6851 0.4484 363.99 0.6855 
0.4266 381.72 0.7867 0.4263 375.66 0.6717 0.4340 365.43 0.6725 
0.4032 384.85 0.7529 0.4026 378.38 0.6497 0.4137 368.09 0.6431 
0.3863 387.47 0.7223 0.3709 381.51 0.6347 0.3771 372.43 0.6054 
0.3632 390.44 0.7027 0.3691 381.66 0.6365 0.3704 372.80 0.6086 
0.3537 391.74 0.6915 0.3568 383.24 0.6258 0.3691 373.39 0.5985 
0.3419 393.38 0.6820 0.3372 385.43 0.6176 0.3383 377.27 0.5729 
0.3396 393.56 0.6823 0.3188 387.72 0.6078 0.3296 379.34 0.5492 
0.3127 397.26 0.6643 0.2990 390.54 0.5923 0.3076 382.19 0.5363 
0.3059 398.51 0.6527 0.2858 392.96 0.5772 0.3049 383.14 0.5247 
0.2927 401.72 0.6235 0.2777 394.74 0.5631 0.2996 384.79 0.5066 
0.2853 404.86 0.5851 0.2617 397.08 0.5574 0.2942 385.45 0.5053 

         
	  

Table 3.3.7. Experimental isobaric VLE data for the system [BMIM][TCN] (1) + ethanol (2) at 

temperature T, liquid mole fraction x, and system pressures 0.1, 0.07 and 0.05 MPa. 

𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 
0.1 MPa 0.07 MPa 0.05 MPa 

0.9965 349.60 1.0672 0.9961 342.68 0.9888 0.9962 335.05 0.9812 
0.9631 349.38 1.1162 0.9618 343.01 1.0100 0.9603 335.35 1.0045 
0.9466 349.73 1.1199 0.9475 343.22 1.0164 0.9413 335.80 1.0048 
0.9294 350.21 1.1168 0.9303 343.24 1.0343 0.9269 336.21 1.0022 
0.9090 350.66 1.1228 0.9087 343.82 1.0337 0.9070 336.65 1.0047 
0.8779 351.79 1.1108 0.8812 344.73 1.0266 0.8795 337.65 0.9942 
0.8565 352.57 1.1044 0.8604 345.41 1.0224 0.8543 338.29 0.9936 
0.8339 353.23 1.1055 0.8378 346.35 1.0119 0.8380 338.98 0.9853 
0.8035 354.46 1.0949 0.8080 347.96 0.9802 0.8049 339.82 0.9896 
0.7883 355.42 1.0756 0.7839 348.64 0.9830 0.7839 340.80 0.9746 
0.7727 355.71 1.0852 0.7681 349.82 0.9570 0.7681 341.62 0.9609 
0.7532 356.58 1.0737 0.7493 350.61 0.9508 0.7574 342.49 0.9377 
0.7381 357.69 1.0506 0.7355 351.16 0.9478 0.7344 343.33 0.9337 
0.7198 359.01 1.0251 0.7248 351.75 0.9396 0.7173 344.06 0.9275 
0.7008 360.27 1.0056 0.7062 352.73 0.9281 0.6990 344.91 0.9190 
0.6714 361.82 0.9911 0.6749 354.67 0.9007 0.6738 346.32 0.8999 
0.6487 363.46 0.9662 0.6449 356.42 0.8854 0.6438 347.50 0.8976 
0.6268 364.66 0.9594 0.6177 357.82 0.8741 0.6178 348.86 0.8856 
0.6033 366.62 0.9290 0.5889 359.43 0.8631 0.5899 350.12 0.8820 
0.5626 368.36 0.9359 0.5593 361.58 0.8379 0.5602 352.10 0.8590 
0.5424 369.02 0.9484 0.5390 362.98 0.8260 0.5293 353.64 0.8561 
0.5179 370.77 0.9345 0.5071 365.19 0.8104 0.5038 354.42 0.9812 
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Table 3.3.8. Experimental isobaric VLE data for the system [EMIM][TCB] (1) + ethanol (2) at 

temperature T, liquid mole fraction x, and system pressures 0.1, 0.07 and 0.05 MPa. 

𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 𝑥! T/K 𝛾! 
0.1 MPa 0.07 MPa 0.05 MPa 

0.9851 349.21 1.0932 0.9804 342.29 1.0241 0.9806 333.95 1.0381 
0.9752 349.30 1.1003 0.9720 342.46 1.0256 0.9721 334.23 1.0405 
0.9642 349.42 1.1076 0.9632 342.60 1.0289 0.9627 334.41 1.0382 
0.9498 349.53 1.1194 0.9439 342.80 1.0413 0.9440 334.93 1.0388 
0.9334 349.66 1.1332 0.9218 343.04 1.0556 0.9215 335.53 1.0427 
0.9181 349.76 1.1441 0.9010 343.37 1.0652 0.9020 335.57 1.0570 
0.9119 349.87 1.1469 0.8939 343.60 1.0635 0.8912 335.87 1.0538 
0.9034 349.99 1.1521 0.8863 343.84 1.0620 0.8796 336.21 1.0519 
0.8879 350.34 1.1560 0.8704 344.16 1.0671 0.8540 336.81 1.0533 
0.8810 350.71 1.1482 0.8616 344.75 1.0520 0.8492 337.05 1.0525 
0.8657 351.18 1.1469 0.8519 344.75 1.0640 0.8442 337.27 1.0486 
0.8537 351.60 1.1509 0.8418 345.16 1.0604 0.8391 337.42 1.0482 
0.8408 352.02 1.1495 0.8310 345.61 1.0544 0.8338 337.63 1.0474 
0.8192 352.57 1.1535 0.8108 346.26 1.0554 0.8178 338.06 1.0503 
0.7944 353.29 1.1565 0.7805 347.12 1.0572 0.7815 338.57 1.0645 
0.7830 353.90 1.1460 0.7658 347.67 1.0553 0.7720 338.94 1.0649 
0.7700 354.36 1.1448 0.7498 348.16 1.0552 0.7622 339.34 1.0625 
0.7419 355.30 1.1458 0.7136 349.38 1.0559 0.7259 340.47 1.0653 
0.7249 356.12 1.1364 0.7059 349.56 1.0583 0.7188 340.67 1.0646 
0.6971 356.99 1.1434 0.6975 349.78 1.0601 0.7122 341.06 1.0611 
0.6736 358.30 1.1261 0.6878 350.38 1.0513 0.7008 341.47 1.0599 
0.6231 359.82 1.1431 0.6693 350.83 1.0627 0.6835 341.86 1.0626 
0.5979 361.76 1.1154 0.6458 352.16 1.0393 0.6460 343.71 1.0470 
0.5781 362.69 1.1151 0.6330 352.48 1.0500 0.6296 344.60 1.0354 
0.5586 364.23 1.0912 0.6188 353.71 1.0239 0.6112 345.71 1.0191 
0.5442 365.07 1.0855 0.5872 355.47 1.0097 0.5768 347.27 1.0012 
0.5224 366.01 1.0933 0.5586 357.45 0.9843 0.5381 349.64 0.9778 

         
	  

Molecular	  dynamics	  simulations	  
 

Experimental and computational density of mixture comparison 

In addition and for complementing the experimental part of this study, MD simulations were 

performed for the systems containing the CN-based ILs and ethanol. For the aqueous systems 

containing the same ILs, MD simulations were performed and discussed above (Chapter 3.2). 

The density of a system is usually employed to ascertain the quality of a force field to 

reproduce such system.77 As mentioned in the computational detail section, other properties are 

also used to certify the force fields. Herewith, the experimental densities and enthalpies of 
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vaporization for pure ILs have been considered and, as can be seen in Table C.2 of Appendix 

C, the corresponding simulated densities are in very good agreement with the experimental 

ones, but in the case of the enthalpies the agreement is satisfactory only, very probably due to 

the lack of accuracy of the experimental results caused by difficulties associated to the 

experimental determination of this property.44 Furthermore, and making use of density data 

measured in this study for mixtures of CN-based ILs and ethanol, a comparison between 

experimental data and density values obtained from our simulations was also made, as 

compiled in Table C.1 of Appendix C. The maximum deviation obtained was of 3.14 %, 

suggesting that the force fields adopted provide a good structural description of the mixtures 

with ethanol, which is the relevant information from the MD simulations that is used to 

interpret the experimental findings. 

 

Radial distribution function and coordination numbers 

Radial distribution function, g(r) or RDF, and coordination numbers (Z) are commonly used in 

MD simulations to evaluate and describe the atomic local structural organization of mixtures. The 

first gives the probability of finding a particle at the distance r, from another particle (considered 

as the reference), providing a quantitative description of enhancement or depletion of densities of 

atoms, or groups of atoms, around a selected moiety with respect to bulk values. The second, the 

coordination number, is the average number of atoms of one type surrounding the reference atom 

within a cutoff, rZ, given by the integral of RDF. The cutoff is usually chosen to be the first local 

minimum of the corresponding RDF. Figures 3.3.3 and C.4 show all the RDFs for the mixtures 

considered while the Z numbers calculated for all mixtures and type of interactions are compiled 

in Table 3.3.9. 
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Figure 3.3.3 - Radial distributions functions (RDFs) for a) [BMIM][SCN], b) [BMIM][DCA], c) 

[BMIM][TCN] and d) [EMIM][TCB], at 0.20 (on the left side) and 0.40 (on the right side) mole 

fraction of IL and 298.15 K. In each picture is represented all types of interaction, namely RDFs 

for anion-ethanol (▬), cation-ethanol (▬), cation-anion (▬) and ethanol-ethanol (▬) interactions. 

 

The analyses of the anion-solvent, cation-solvent, cation-anion and solvent-solvent interactions 

were based on the site-to-site RDFs obtained for the N-HO, H1-OH, H1-N and OH-HO pairs, 

respectively, where N is the nitrogen atom of each anion, H1 is the acidic proton of the cation, HO 

and OH stands for protons and oxygen atoms in the water molecule, respectively. 

The first important feature that can be highlighted is the possibility to verify through the obtained 

RDFs the mechanism of these interactions, which is the establishment of hydrogen bonds, similar 

to those occurring in the aqueous systems described in Chapter 3.2. Generally, strong H-bonds are 

defined when the RDF for a site-to-site Y—H-X interaction, where Y is an oxygen or nitrogen 

atom and X is an oxygen atom, presents a first minimum (rz) in a distance smaller than 0.26 nm, 

while weak H-bonds are defined when the RDF for a site-to-site Y—H-X interaction, where Y is 

an oxygen or nitrogen atom and X a carbon atom, displays the first minimum in a distance smaller 

than 0.40 nm.78 In the systems studied here, the first minimum for anion-solvent and solvent-

solvent interactions was found at 0.26 nm while in the case of cation-solvent and cation-anion 

interactions the first minimum appeared at 0.35 nm. As mentioned previously, this first minimum 

was used to define the uppermost limit used in the calculation of the coordination numbers 

reported in Table 3.3.9. 

Additionally, Figure 3.3.3 shows that the anion-solvent interaction has a primary role in the 

interaction occurring between IL and ethanol, which was expected to be common for all CN-based 

ILs (also observed for aqueous systems), presenting the highest values for the system containing 
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the anion thiocyanate, followed by [DCA]-, [TCN]- and finally [TCB]-. Ensuing the anion-solvent 

interaction and in the same solvation shell, the solvent-solvent interactions occur, being 

predominant in systems containing the anion [TCB]-. It is worth noting that the RDFs 

corresponding to the solvent-solvent interactions show a double peak, suggesting the formation of 

two ethanol solvation shells in all the IL+ethanol systems. In general, the double peak is more 

pronounced in the system with the anion tetracyanoborate, followed by [TCN]- > [SCN]- > [DCA]-

. This last trend is also observed for the cation-anion interactions occurring at the second solvation 

shell. These two latter interactions present the trend that is consistent with the VLE measurements 

and non-ideality as estimated from the activity coefficients. Simultaneously, at contrary to what 

has been observed for aqueous systems (Chapter 3.2), the values of g(r) corresponding to the 

interactions established between cation and the solvent suggest that in the case of IL+ethanol 

systems they are non-negligible. 

A more exhaustive comparison between the different systems is possible by the analysis of the 

coordination numbers, Z, since their values are obtained by taking into account not only the 

heights of the first peaks in the RDFs, but also their widths and the densities of the different 

systems. Thus, the values of Z help to clarify the interaction trend within the CN-based ILs and 

ethanol, providing important additional information concerning the mechanism of interaction 

between compounds. Table 3.3.9 compiles the calculated coordination numbers for the 

interactions anion-solvent, cation-solvent, cation-anion, solvent-solvent and finally, IL-solvent. 

The latter interaction is the sum of the cation-ethanol and anion-ethanol interactions in all range of 

concentration, enabling to infer general trends of all involved interactions. The first information 

that can be taken is the dependence of Z with the mole fraction of IL. Results show that, with the 

exception of cation-anion interactions, with the increase of IL’s mole fraction the interaction of 

type anion-solvent, cation-solvent and solvent-solvent decrease, as shown by a decrease of the 

respective Z values. Although these results are a consequence of different densities in each 

system, they suggest that, with the increase of IL’s mole fraction, the frequency of cation-anion 

interactions also increase, hindering the interaction with ethanol. 

From the analysis of the Z values obtained for the IL-ethanol interactions, it arises that the highest 

values are found for the system with the anion [DCA]-, suggesting more favorable interactions 

with ethanol, which is in close agreement with the activity coefficients reported in the present 

study (this was also observed for the aqueous systems with the same ILs). Moreover, with the 

exception of the anion thiocyanate, the propensity to interact with ethanol suggested from the 

height of the first peak in the RDFs and by the Z values is [DCA]- > [TCN]- > [TCB]-. A similar 
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trend was observed for the aqueous systems, suggesting that an increase of CN-groups in the 

anion hinders the interaction with polar solvents (water and ethanol), consistent with the non-

ideality observed in these systems. Additionally, these results are consistent with the CHelpG 

atomic charges calculated for the nitrogen atoms in the CN groups (the mediators of the 

interactions between the anion and water or ethanol) which become less negative in the order 

[DCA]- > [SCN]- > [TCN]- > [TCB]-, respectively, with values of -0.723 e, -0.658 e, -0.638 e and 

-0.487 e. The differences in the CHelpG charges are directly related with the symmetry of the 

anion and with the presence of different central atoms in each anion, i.e., sulfur ([SCN]-), nitrogen 

([DCA]-), carbon ([TCN]-) and boron ([TCB]-), which lead to different charge delocalization, and 

hence, different abilities of the anions to establish H-bonds with water or ethanol molecules. 

Remarkably, the ordering of the partial charges in the nitrogen atoms from the CN-groups in the 

anions of the ILs agrees with the ordering obtained for VLE and activity coefficient information 

suggesting a strong relationship between these two parameters. 

Table 3.3.9. Coordination numbers (Z) from the RDF peaks at distance below rZ nm, for anion-

ethanol, cation-ethanol, cation-anion and ethanol-ethanol interactions, at each system and 

different IL mole fraction, addressed in this study. 

 [BMIM][SCN]+CH3CH2OH 

 anion-solvent cation-solvent cation-anion solvent-solvent IL-solvent 
xIL rz Z rZ Z rZ Z rZ Z Z(total) 
0.2 0.26 1.44 0.35 1.08 0.35 0.55 0.26 0.46 2.52 
0.4 0.26 0.91 0.35 0.57 0.35 0.84 0.26 0.22 1.48 
0.6 0.26 0.48 0.35 0.29 0.35 1.04 0.26 0.10 0.77 
0.8 0.26 0.20 0.35 0.10 0.35 1.21 0.26 0.03 0.20 

 [BMIM][DCA]+CH3CH2OH 

 anion-solvent cation-solvent cation-anion solvent-solvent IL-solvent 
xIL rZ Z rZ Z rZ Z rZ Z Z(total) 
0.2 0.26 2.08 0.35 1.04 0.35 0.75 0.26 0.41 3.12 
0.4 0.26 1.13 0.35 0.55 0.35 1.17 0.26 0.20 1.68 
0.6 0.26 0.58 0.35 0.28 0.35 1.39 0.26 0.09 0.86 
0.8 0.26 0.23 0.35 0.11 0.35 1.53 0.26 0.02 0.34 

 [BMIM][TCN]+CH3CH2OH 

 anion-solvent cation-solvent cation-anion solvent-solvent IL-solvent 
xIL rZ Z rZ Z rZ Z rZ Z Z(total) 
0.2 0.26 1.95 0.35 0.90 0.35 0.87 0.26 0.43 2.85 
0.4 0.26 1.08 0.35 0.50 0.35 1.32 0.26 0.23 1.59 
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0.6 0.26 0.56 0.35 0.25 0.35 1.57 0.26 0.11 0.81 
0.8 0.26 0.23 0.35 0.10 0.35 1.72 0.26 0.05 0.33 

 [EMIM][TCB]+CH3CH2OH 

 anion-solvent cation-solvent cation-anion solvent-solvent IL-solvent 
xIL rZ Z rZ Z rZ Z rZ Z Z(total) 
0.2 0.26 1.54 0.35 0.95 0.35 1.01 0.26 0.53 2.49 
0.4 0.26 0.89 0.35 0.53 0.35 1.52 0.26 0.33 1.42 
0.6 0.26 0.48 0.35 0.28 0.35 1.82 0.26 0.20 0.77 
0.8 0.26 0.21 0.35 0.11 0.35 2.02 0.26 0.09 0.32 

 

 

Spatial distribution function 

For attaining a tri-dimensional (3D) visualization of how each anion interacts with ethanol, the 

spatial distribution functions (SDFs, a 3D representation of the probability of finding a particle at 

a certain position) were calculated for all considered mixtures and are depicted, by mole fraction 

of IL, in Figure 3.3.4. The SDFs were built and analyzed with the TRAVIS (trajectory analyzer 

and visualizer) computer program79 considering only the hydrogen atom from the hydroxyl group 

of ethanol molecules surrounding each anion of the different ILs considered in this study. 

Isosurfaces for ethanol (iceblue wired surfaces) were obtained with an isovalue of 8 particles·nm-3 

at 0.2 mole fraction of IL. 

Recognizable at all mole fraction of IL, interactions of ethanol with the anions [SCN]- and [DCA]- 

are established preferentially with the nitrogen atoms of the cyanide groups from the anions 

(excluding the nitrogen atom of the core of [DCA]- but also with the sulfur atom of [SCN]-). 

Nevertheless, the volume of the SDFs for ethanol interacting with the different anions (Figure ) 

decreases with the increase of the number of CN-groups in the anion, suggesting that in the case 

of the anions with less CN-groups, the interaction is more likely to occur, which is consistent with 

the analyses made throughout this chapter. 

In conclusion, the results from the MD simulations suggest that the increase of the number of CN-

groups leads to a decrease of the interactions with ethanol, which is related to the increasing 

hydrophobicity of the anions. This behavior is similar to that observed for the aqueous systems 

and supports the non-ideality observed in the VLE and the activity coefficients. 
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Figure 3.3.4 - Spatial distribution functions (SDFs) for the mixture [BMIM][SCN] (above, left 

side), [BMIM][DCA] (above, right side), [BMIM][TCN] (down, left side) and [EMIM][TCB] 

(down, right side) and ethanol, at 0.20 mole fraction of IL. Each anion is the center element, 

surrounded by hydrogen atoms from the hydroxyl group of ethanol molecules (iceblue wired 

surface). Color code for spheres is: Cyan is carbon; blue is nitrogen; yellow is sulfur; and pink is 

boron. 
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Conclusions	  
	  

Isobaric VLE data for seven water/ethanol + imidazolium based IL systems containing cyano 

group at three different pressures were measured and reported in this chapter. Results indicate that the 

imidazolium-based ILs studied cause boiling-point elevations of different degrees according to the 

interaction strengths between water/ethanol and the IL. Using the VLE data, activity coefficients were 

estimated aiming at evaluating the non-ideality of the systems considered in this study. The results 

obtained suggest that, for both water and ethanol systems, the ability of the anions to interact with the 

solvent decreases with increasing number of cyano groups, with the system containing the anion 

[DCA]- presenting the highest ability to establish favorable interactions. 

MD simulations were performed for systems composed of ethanol and four different ILs having the 

an imidazolium-based cation but different anion. The MD trajectories were used to calculate radial and 

spatial distribution functions and also coordination numbers, which were used to infer the mechanism 

of interaction established between ethanol and the ILs. Although presenting slightly different trends, all 

the calculated properties, along with activity coefficients data, seem to agree and support the 

experimental findings, where an increase of the number of CN-groups in the ILs’ anion leads to a 

decrease in the propensity to interact with polar solvents with a concomitant increase of the 

hydrophobicity of the anions. 

Finally, from the tested ILs, the IL with the anion [DCA]- arises as the most appropriate 

solvent for polar systems having hydrogen bonds. 
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The previous chapters reported studies regarding the characterization of the interactions 

between some ionic liquids (ILs) with water and ethanol, aiming at understanding the behavior of 

systems relevant for the distillation of bioethanol. The following chapters will discuss the interaction 

between the glucose, relevant in the 2nd generation biofuels as the monomer of cellulose, water and the 

ionic liquids that could be used in the pre-treatment of biomass. The major issue in the adequate 

description of glucose in MD simulations is the absence of adequate force fields to describe this 

compound. In the following chapter a new force field for the description of glucose will be evaluated.  
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Motivation	  
 

As mentioned in Chapter 1, carbohydrates are an important and diverse class of biomolecules, 

characterized by a vast heterogeneity of compounds differing in their stereochemistry and 

functionalization. These compounds are essential to many biological functions and are also important 

in a wide range of industries including food, textile, pulp and paper, biofuels and personal care.1–3 

One particularly important carbohydrate is D-glucose, a hexopyranose with two stereoisomers, 

namely α-D-glucopyranose and β-D-glucopyranose, with the latter being the dominant isomer in 

aqueous solution, in a proportion of 36:64.4 Glucose is the monomer of cellulose, the most abundant 

biopolymer, which is being considered as a feedstock for the renewable production of fuels and 

chemicals.1–3,5,6 Most biological and industrial processes involving glucose are carried out in aqueous 

media, so it is important to understand the structural, volumetric and dynamic properties of aqueous 

glucose solutions. The most common experimental technique used to study the crystalline structure of 

glucose is X-ray diffraction, while techniques such as NMR and IR are commonly used to characterize 

aqueous solutions.1–3 To help in the interpretation of the spectroscopic data, atomistic-level molecular 

dynamics (MD) simulations have also been performed, providing further understanding of the 

molecular interactions that take place in these systems.2 As mentioned and reviewed in Chapter 2, MD 

simulations can also be used to predict macroscopic thermodynamic and transport properties of liquids. 

A key requirement for these simulations is an accurate description of the inter and 

intramolecular interactions, which are treated using a classical potential energy expression or “force 

field” (FF).7 Several FFs have been developed for carbohydrates, including OPLS,8,9 AMBER,10,11 

CHARMM,12,13 GLYCAM,14,15 and GROMOS.16,17 Within these, some were optimized and validated 

for hexopyranoses or systems composed of glucose.18–21 For carbohydrates in aqueous solution, the 

different FFs have utilized different models for water and have been developed to capture different 

physical phenomena.1,2 One of the most difficult features for a FF to capture for aqueous glucose 

solutions is epimerization or anomerization, i.e., the interconversion between the α-D-glucoyranose 

and β-D-glucopyranose (also called mutarotation). This phenomenon and other structural transitions 

occur due to a complex interplay between the steric, electrostatic, hydrogen bonding and solvation 

effects present in the system, which is a difficult task for FFs to adequately reproduce and to take into 

account. Additionally, many of these processes occur over timescales that are long compared to MD 

simulation times, making their observation difficult without extremely long simulations.1–3 

One of the key interactions between glucose and water are hydrogen bonds (H-bonds), which 

occur via the hydroxyl groups of glucose. The establishment of H-bonds is affected by the orientation 
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of each hydroxyl and hydroxymethyl group in glucose, which in turn is affected by the anomeric effect, 

1-3-syn-diaxial repulsions and solvation effects, each of which affects the stability of a given 

conformer.22,23 It is thus clear that the study of the orientation of the hydroxyl groups in glucose is 

fundamental for understanding the interactions between glucose and water. For this reason, the 

orientation and angles of the hydroxymethyl group (O5-C5-C6-O6, see Figure 3.4.1) and also the free 

lactol group (C1-O1, Figure 3.4.1) are commonly studied to evaluate if a given solvent is able to 

favorably interact with glucose.24 

 

Figure 3.4.1 - Atom labels used in this work for glucose. 
 

The newest version of the GROMOS carbohydrate FF, 56ACARBO
3, is adopted in the present 

chapter to study the mechanisms of glucose and water interactions and the dynamical behavior of this 

system. This FF is a optimization of the GROMOS 53A6 FF,25 and fixes a number of shortcomings, 

including the rotational preferences of the free lactol group and of the hydroxymethyl group. This was 

done by the introduction of specific Lennard-Jones interaction parameters to account for special 

intramolecular interactions that are specific for six-membered ring compounds and are responsible for 

the stability of conformations. The FF was validated by reproducing free energies of ring conformers, 

anomers, epimers, hydroxymethyl rotamers and glycosidic linkages under dilute aqueous conditions.3 
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While the 56ACARBO force field appears to yield good dilute solution properties, we are 

interested in modeling aqueous glucose solutions at finite concentrations relevant to applications such 

as fermentation for bioethanol production. Therefore, the main goal of the present study is to test the 

accuracy of the GROMOS 56ACARBO force field at reproducing the volumetric, dynamic and structural 

properties of aqueous glucose mixtures at finite concentrations. Six mixtures of β-D-glucopyranose and 

water at different concentrations were simulated using the GROMOS 56ACARBO FF for β-D-

glucopyranose and the extended simple point charge (SPC/E) water model26. Densities, viscosities, and 

self-diffusivities were computed and compared with available experimental data. The structure of the 

solutions was examined by conducting a hydrogen bonding analysis and by computing radial and 

spatial distribution functions. 
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Methodology	  
	  

MD simulations were performed for six systems composed of glucose and water using the 

GROMACS code version 4.5.527. The systems contained 170 water molecules and 6, 9, 14, 20, 29 or 

42 glucose molecules yielding solutions with glucose mole fractions of 0.034, 0.050, 0.076, 0.110, 

0.150 and 0.200, respectively. Each box was built with the PACKMOL package28, with a random 

distribution of the molecules and imposing a distance of 2.5 Å between molecules to ensure that no 

atomic overlapping occurs. Water and glucose molecules were described by means of the SPCE 

model26 and the GROMOS 56ACARBO force field3, respectively. 

Starting configurations were subjected to energy minimization followed by a 20 ns 

equilibration in the isothermal-isobaric (NPT) ensemble. During this period, the temperature was 

maintained at 303.15 K via a Nosé-Hoover thermostat29,30 while the pressure was held at 1 bar with a 

Parrinello-Rahman barostat.31 A cutoff of 0.9 nm was applied for nonbonded interactions, and 

corrections for long-range interactions were taken into account. The time step was 2 fs, and the 

SHAKE algorithm was employed to constrain all bonds. The same procedure was performed for three 

independent configurations, and densities were estimated from the average of the three simulations. 

Using the densities obtained from the NPT simulations, a configuration of the system at the 

average density for each considered mixture was taken and simulations were then run in the canonical 

(NVT) ensemble. The system was equilibrated by running an annealing schedule for 15 ns from 298.15 

to 500.15 K and then finally to 313.15 K. Production runs were then carried out for an additional 65 ns 

time interval at 313.15 K. A time step of 1 fs was used, with energies recorded every 10 fs. Once again, 

the SHAKE algorithm was employed to constrain all bonds, a cutoff of 0.9 nm was applied for non-

bonded interactions, and corrections for long-range interactions were taken into account. Additionally, 

three independent NVT simulations of 20 ns duration were performed in order to estimate 

uncertainties. For these simulations, a time step of 2 fs was used. The independent trajectories were 

generated by assigning different initial velocity distributions to a given equilibrated configuration. All 

other conditions were the same as in the previous NVT runs. 
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Results	  and	  Discussion	  
 

Conformational Analysis 

As previously mentioned, the study of the different angle conformations of specific groups can 

help to infer the types of interactions that glucose is able to establish. The orientation of the 

hydroxymethyl group is impacted by the conformation of the dihedral angle (O5-C5-C6-O6, 

see Figure 3.4.1).1,3 There are three known conformations for this dihedral angle: gauche-

gauche (gg), where the angle is nominally -60º; trans-gauche (tg), with an angle of 180º; and 

gauche-trans (gt), with an angle of 60º (see Figure 3.4.2). This analysis was previously applied 

to a system composed of cellulose and water.32 It is well known that in the case of the 

crystalline structure of cellulose the tg conformation is predominant, while in aqueous solution 

the gg conformation becomes far more populated, followed by gt and tg.33,34 For this reason, 

the conformation tg is associated with a crystalline-like state of glucose and the conformation 

gg is associated with an amorphous state of glucose in water. In the presence of other solvents, 

for example ionic liquids, the gt conformation is the most populated state.32,35 

 

 
Figure 3.4.2 - Probability distribution of the hydroxymethyl group angle in glucose as a function of 

concentration. 

 

The computed distribution of the hydroxymethyl group as a function of glucose concentration 

is shown in Figure 3.4.2. The results show that the predominant conformations are gg and gt, 
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indicative of an amorphous structure for glucose when interacting with water. These results are 

similar for all six mixtures examined. 

 

Density 

Values of the densities for each mixture were used to evaluate the ability of the 56ACARBO force 

field for reproducing systems composed of glucose and water by comparison with 

experimental densities taken from Comesaña et al..36 As can be seen in Figure 3.4.3, 

experimental and calculated densities become larger with the increase of the glucose mole 

fraction in the mixtures. The calculated densities overestimate the experimental ones in the 

entire glucose mole fraction range considered in this study. Good agreement is found for the 

solution with the smallest glucose mole fraction, but the difference reaches a maximum of 6.93 

% for 0.2 mole fraction (Table 3.4.1). 

 

 
Figure 3.4.3 - Comparison of experimental36 and simulation density values at 303.15 K. 

 

In order to understand if the consistent overestimation of the densities of the glucose aqueous 

solutions was due to deficiencies in the SPC/E or the 56ACARBO force fields, two new sets of 

MD simulations were performed using: i) 56ACARBO force field for glucose and TIP3P model37 

for water, and ii) OPLS9 force field for glucose and SPC/E for water. Both water models are 

known to do a reasonable job modelling pure water properties. Glucose mole fractions were 
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0.034, 0.076 and 0.200 for case i) and 0.034 and 0.050 for case ii). Results are compared in 

Table D.1 of Appendix D with those obtained with SPC/E and 56ACARBO models for water and 

glucose, respectively. The computed and experimental densities are similar in both cases at low 

glucose concentrations. At higher glucose concentrations, densities are overestimated by both 

the OPLS and 56ACARBO models, being the overestimation more pronounced when the former 

force field is considered. This suggests that the water model is not the origin of the 

discrepancies between the experimental and calculated densities, but that instead the problem 

lies in the glucose models (and the way they interact with water). These results highlight the 

limitations of currently available force fields for the description of glucose at finite 

concentrations. Despite the problems in matching experimental solution densities, other 

properties were computed to assess the overall performance of the glucose model. 

 

Table 3.4.1 - Experimental36 and computational densities (ρ) for different glucose+water mixtures at 
303.15 K. Values in parentheses denote the uncertainties (the standard deviation) estimated with the 
calculated results. AAD represents the absolute deviations of the simulated data from the experimental 
values. 

xglucose ρexp / kg·m-3 ρsim / kg·m-3 AADa) % 
0.034 1081.8 1084.0(±0.1) 0.20 
0.050 1105.0 1114.9(±0.1) 0.89 
0.076 1125.7 1154.6(±0.1) 2.57 
0.110 1144.6 1189.3(±0.4) 3.91 
0.150 1161.9 1225.4(±0.2) 5.47 
0.200 1177.7 1259.4(±0.5) 6.93 

a) AAD = ABS((ρexp - ρsim)/ ρexp)*100 
 

Viscosity 

Shear viscosity is an important transport property that can be determined from MD simulations 

via the following Green-Kubo relation, 

 

𝜂 =
𝑉
𝑘!𝑇

𝑃!" 𝑡! + 𝑡 ∙ 𝑃!" 𝑡! 𝑑𝑡
!

!

 (3.4.1) 

 

where the brackets indicate an ensemble average, V is the volume of the system, T is the 

temperature and kB is the Boltzmann constant. Inside the brackets, Pαβ is the off-diagonal 
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components of the pressure tensor. To achieve good statistics, very long simulations are 

required. Numerical integration of equation 3.4.1 can lead to large errors, especially due to 

noise at long times. Following the work of Rey-Castro and Vega38, the numerical integral 

obtained via equation 3.4.1 was fit to a double exponential of the following form, 

 

𝜂 𝑡 = 𝐴𝛼𝜏! 1 − 𝑒
!! !! + 𝐴 1 − 𝛼 𝜏! 1 − 𝑒

!! !!  (3.4.2) 

 

where A and α are empirical fitting parameters, 0 < α < 1, and τ1, τ2 are characteristic decay 

times that differ by an order of magnitude. These parameters were obtained from a least-

squares fit of equation 3.4.1 to the simulation results. The shear viscosity was estimated from 

equation 3.4.2 by taking the limit as t goes to infinity. The uncertainty ∆𝜂 was estimated via 

the following relation 

 

∆𝜂 =
2𝐴 𝛼𝜏! + 1 − 𝛼 𝜏!

𝑡!"#
 (3.4.3) 

 

where tmax is the maximum decay time considered in the calculation of the autocorrelation 

function. The values of the fitting parameters used in equation 3.4.2 are compiled at Table D.2 

of Appendix D, as a function of glucose mole fraction. Typical values of tmax ranged from 80 ns 

to 120 ns, depending on the viscosity of the solution. Viscosity results at a temperature of 

313.15 K are depicted in Figure 3.4.4 along with experimental data taken from Comesaña et 

al.36. Figure 3.4.4 shows that simulated viscosities are significantly higher than the 

experimental data above a glucose mole fraction of 0.11. At lower glucose concentrations, 

agreement with experimental data is good, with a maximum deviation around 10 % (see Table 

3.4.2). This result is consistent with the density data, since overestimation of density should 

lead to slower dynamics and higher viscosities. 

 

 



___________________________________	   Chapter 3	   ___________________________________	  

	  
	  

[163]	  

 
Figure 3.4.4. Comparison of experimental36 and simulation viscosity values at 313.15 K. 
 

As with the densities, a comparison was made between the viscosities obtained using the 

56ACARBO force field and the OPLS glucose force field. In both cases, water was modeled with 

the SPC/E force field at glucose mole fractions of 0.036 and 0.05. The results are reported in 

Table D.3 at Appendix D and show that the OPLS force field also significantly overestimates 

the viscosity, especially at higher glucose concentrations. 

 

Table 3.4.2 - Experimental36 and calculated viscosities (η) at 313.15 K. Values in parentheses denote 
uncertainties estimated accordingly to equation 3.4.3. AAD represents the absolute deviations of the 
simulated data from the experimental values. 

xglucose ηexp / mPa.s ηsim / mPa.s AADa) % 
0.034 1.205 1.085 (±0.134) 9.97 
0.050 1.475 1.571 (±0.198) 6.50 
0.076 1.804 1.945 (±0.441) 7.83 
0.110 2.182 5.195 (±0.360) 138.09 
0.150 2.660 11.697 (±0.541) 339.75 
0.200 3.175 22.541 (±0.751) 609.94 

a) AAD = ABS((ρexp - ρsim)/ ρexp)*100 
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Self-diffusion coefficients 

As mentioned at the chapter 2.1.5, self-diffusion is another important transport property from 

the application point of view since it is related with mass transfer. Self-diffusion coefficients of 

water and glucose were computed via the following Einstein relation, 

 

𝐷! =
1
6
lim
!→!

𝑑
𝑑𝑡

𝑟! 𝑡 − 𝑟! 0
!

 (3.4.4) 

 

where the term in brackets is the mean squared displacement. The slope of the mean square 

displacement gives the value of Di. In this work, slopes were determined over time intervals of 

7500 to 10000 ps for glucose and 7500 and 12500 ps for water. The results are given in Table 

3.4.3. As expected, water has a larger self-diffusion coefficient than glucose, and water 

mobility decreases with increasing glucose concentration. We are unaware of any experimental 

diffusivity data for the concentrations studied here, but the simulation values are of the same 

magnitude as those measured experimentally by Ribeiro et al.39 under different concentrations. 

 

Table 3.4.3 - Computed self-diffusion coefficients at 313.15 K. Values in parentheses denote uncertainty 
(the standard deviation) associated with the calculated data. 
 

xglucose Dwater / (1E-5 cm2/s) Dglucose / (1E-5 cm2/s) 
0.034 6.151(±0.263) 1.200(±0.735) 
0.050 5.044(±0.141) 0.792(±0.485) 
0.076 3.816(±0.288) 0.756(±0.217) 
0.110 3.205(±0.181) 0.508(±0.221) 
0.150 2.629(±0.126) 0.459(±0.094) 
0.200 1.461(±0.105) 0.203(±0.071) 

 

 

Radial distributions functions and coordination numbers 

To probe the underlying structure of the solutions, radial distribution functions (g(r) or RDF) 

were computed for various sites on glucose and water. Specifically, RDFs between glucose 

atoms O1, O2, O3, O4, O5 and O6 were computed with water oxygen atoms (OW). In 

addition, water-water (OW - OW) and glucose-glucose (O1 with HO3, HO4 and HO6) RDFs 

where computed. Coordination numbers (Z) for these pairs were obtained by integrating the 
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RDFs out to a radial cutoff rZ. This cutoff distance was chosen to be the first local minimum of 

the corresponding RDF. 

As mentioned previously, the mechanism of interaction between glucose and water is mediated 

through hydrogen bonds. RDFs can provide information concerning the establishment of H-

bonds in a mixture. According to geometric criteria, in the case of water-water interactions, a 

H-bond can be considered to exist when a site-to-site RDF O—O has a first minimum at a 

distance less than 0.35 nm (or an O—H distance is less than 0.26 nm).40 These values were 

used for rZ to determine H-bonding interactions between glucose-water, glucose-glucose and 

water-water. Results are shown in Figure 3.4.5 and also in Figures D.1 and D.2 of Appendix D. 

It is possible to observe in Figure 3.4.5 that with increasing glucose content, the heights of the 

peaks related with the water oxygen atoms surrounding the oxygen atoms of glucose increase. 

The peaks also become sharper, suggesting that the number of water molecules surrounding 

glucose is reduced and only a few strongly bound water molecules remain in the vicinity of 

glucose. This analysis is supported by the values of the coordination numbers, as discussed 

below. From the RDF heights it can be understood that three types of atoms in glucose have an 

affinity towards water. Atoms O6 and O1 have the highest affinity for water, followed by 

atoms O2, O3 and O4. Atom O5 presents the lowest affinity for water and from the RDF 

profile showing g(r) values lower than one it is suggested that O5 is not establishing direct 

contacts with water molecules. This is presumably due to a steric hindrance effect. The results 

for atoms O6 and O1 agree with those reported in previous studies22,23 where it was shown that 

these hydroxyl groups can interact with water as hydrogen bond acceptors. For water-water 

interactions, Figure D.1 shows that the first water-water RDF peak becomes sharper as the 

concentration of glucose increases in the mixture. As is the case with the first peak in the 

water-glucose RDF, this is due to the fact that at high glucose concentrations water has only a 

few strongly associated neighboring water molecules. 

Not surprisingly, glucose-glucose interactions increase with increasing concentrations of 

glucose. This can be seen in Figure D.2, which shows various site-site RDFs for glucose-

glucose interactions. The first peak occurs around 0.18 nm and is weak, with values of g(r) 

below one at the lowest glucose concentration. As glucose concentration increases, this first 

peak approaches a value of 1.5. For all mixtures considered, the O1 atom of glucose interacts 

preferentially with HO6, which can be understood from a balance of steric effects. 
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Figure 3.4.5 - Radial distributions functions (RDFs) for glucose-water interactions, at six different glucose 

mole fraction and a temperature of 313.15 K. RDFs for interaction between O1-OW(▬), O2-OW(▬), O3-

OW(▬), O4-OW (▬), O5-OW (▬) and O6-OW (▬) are represented in each panel. 

 

xglucose= 0.034 xglucose= 0.050 

xglucose= 0.076 xglucose= 0.110 

xglucose= 0.200 xglucose= 0.150 
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The results for the coordination numbers are compiled in Table 3.4.4, as well as in Tables D.3 

and D.4 of Appendix D. Confirming the observations made from the RDFs, there is a 

consistent decrease of the Z values for interactions between oxygen atoms in glucose and water 

oxygen atoms (OW) with increasing glucose concentration. Additionally, the Z values for O1-

OW and O6-OW interactions are larger than those corresponding to the remaining glucose 

oxygen atoms. The Z values calculated for the water-water and glucose-glucose interactions, 

Tables D.4 and D.5, show a decrease in the former case and a slight increase in the latter case 

with increasing glucose concentration. 

 

Table 3.4.4 - Coordination number (Z) from the RDF peaks for glucose-water interactions, at each mixture 
considered. 
 

xglucose 
reference atoms 

Z 
glucose water 

0.034 

O1 

OW 

2.54 
O2 2.33 
O3 2.38 
O4 2.13 
O5 - 
O6 2.57 

0.050 

O1 

OW 

2.42 
O2 2.21 
O3 2.23 
O4 2.01 
O5 - 
O6 2.42 

0.076 

O1 

OW 

2.21 
O2 2.03 
O3 2.07 
O4 1.85 
O5 - 
O6 2.19 

0.110 

O1 

OW 

2.06 
O2 1.86 
O3 1.87 
O4 1.69 
O5 - 
O6 2.01 
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0.150 

O1 

OW 

1.82 
O2 1.62 
O3 1.66 
O4 1.48 
O5 - 
O6 1.78 

0.200 

O1 

OW 

1.57 
O2 1.40 
O3 1.43 
O4 1.29 
O5 - 
O6 1.57 

 

The results suggest that at low glucose content, glucose is interacting predominantly with 

water, and water with itself. As the number of glucose molecules increase in the system, 

glucose begins to self-associate. This self-association is likely overestimated in the 

simulations, which is why the density and transport properties do not agree with experiment at 

higher glucose concentrations. Improvements in the glucose force field will need to be made to 

modulate the degree of glucose self-association. Some strategies will be outlined below. 

 

Spatial Distribution Functions 

Figure 3.4.6 shows three-dimensional spatial distribution functions (SDFs) for water around 

glucose. These plots were generated using the TRAVIS package41. Consistent with the RDFs 

and Z values, the SDFs show that at low glucose concentrations, each glucose molecule is 

essentially surrounded by water. As the glucose concentration increases, other glucose 

molecules displace water, such that the glucose molecules are not completely solvated by 

water. 
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Figure 3.4.6 - Spatial distribution functions (SDFs) as a function of glucose concentration. A glucose 
molecule is the central element, surrounded by oxygen atoms of water (red surfaces with isovalues of 52 
particle.nm-3). Color code for spheres: Cyan is carbon; red is oxygen; and white is hydrogen. 

	  

Hydrogen bonds 

The definition of a hydrogen bond can be based on different criteria but, due to its simplicity, a 

geometric criterion is usually chosen, based on the distance of between hydrogen and an 

acceptor (H—A) and the angle of H-O—A. The former is defined and chosen from the 

intermolecular site-to-site radial distribution functions and the latter can be defined as 30º for 

intermolecular H-bonds and 60º for intramolecular H-bonds.22 The definition for H-bonds 

established with water is that the distance of H-O is smaller than 0.26 nm (or the distance of O-

O is smaller than 0.35 nm), and the angle H-O—O is smaller than 30º.42,43 These criteria are 

also adopted here. 

Figure 3.4.7 depicts the number of hydrogen bonds established between glucose and water per 

glucose molecule basis (red series) and between water molecules per water molecule basis 

(blue series). Numerical values are given in Table D.6 of Appendix D. As expected, and in 

agreement with previous results, the number of H-bonds established between glucose and 

xglucose= 0.034 xglucose= 0.050 xglucose= 0.076 

xglucose= 0.110 xglucose= 0.150 xglucose= 0.200 
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water decreases with increasing glucose concentration, as does the number of water-water H-

bonds. 

 

 
 
Figure 3.4.7 - The number of hydrogen bonds between glucose and water molecules (red, right axis) and 
water with water molecules (blue, left axis) as function of glucose concentration, at 313.15 K. 
 
 

Strategy	  to	  refine	  the	  glucose	  force	  field	  for	  mixtures	  with	  water	  
 

Several works are found in the literature aiming at the improvement of force fields to 

reproduce properties of different systems, such as viscosity and diffusivity.44–47 These 

improvements are based on the usage of different strategies to estimate atomic partial charges (e.g., 

CHelpG48, Blöchl49, NPA50,51), or on the consideration of polarizable force fields with the 

introduction, for example, of Drude oscillators52 (for ionic liquids, see Chapter 2). The 

consideration of different approaches (e.g. CHelpG, NPA) for calculating the atomic charges leads 

to different sets of values. The magnitude of the charges is found to have direct influence in the 

properties calculated for a specific system.44,53,54 Thus, rescaling atomic charges arises as a simple 

way to improve the description of a system under study and to obtain properties that are in 

satisfactory agreement with the experimental ones (e.g. transport properties of systems composed 

of ionic liquids53,55–57). 
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Hence, recognizing the lack of ability of the GROMOS carbohydrate FF, 56ACARBO
3, to 

reproduce experimental values of density and viscosity at glucose mole fractions above ~0.1, it was 

applied the factor of 0.8 to the atomic charges of glucose, which was chosen after some tests with 

different scaling factors for the system with the highest glucose concentration. Simulations using 

the rescaled charges, without changing the other simulation parameters, were repeated for systems 

with glucose mole fractions of 0.034, 0.050, 0.076, 0.110, 0.150 and 0.200. New density and 

viscosity values are depicted in Figures 3.4.8 and 3.4.9 while Tables D.7 and D.8 contain their 

numerical values. The experimental values (straight line series), and previous predicted values 

(with no rescaling charges, dotted-line series) are also included in these figures. The obtained 

results present now a maximum deviation of 1.6 % for the density (against 7 % in the simulations 

with original glucose atomic charges), and of 35 % for the viscosity (against ~600 % in the 

simulations with original glucose atomic charges). The improvement in these properties is 

notorious, especially for the systems with glucose mole fraction above 0.1. For systems with 

glucose mole fraction below 0.1, predicted new values are underestimating experimental values 

(either for density and viscosity), presenting higher deviations than previously obtained, suggesting 

that in this concentration range intermediate values between original and rescaled charges would 

provide a better description of the systems. 

On the whole, results suggest that the rescaling charges methodology yields density and 

viscosity values in very good agreement with the experimental ones. A significant decrease in the 

deviations to the experimental data is found for both properties but it is much more pronounced in 

the case of viscosity (Tables D.7 and D.8). However, this improvement was only attained where 

the GROMOS 56ACARBO FF fails to predict density and viscosity values (i.e., at glucose mole 

fractions above 0.1). For continuous improvement, the use of polarizable force fields, such as that 

recently proposed by Patel et al.52, may constitute an alternative solution. 
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Figure 3.4.8. Comparison of experimental36 (line series) and simulation density values estimated with 
scaled charges (dot series) and with the original charges (dotted-line series) at 313.15 K. 
 

 
 
Figure 3.4.9. Comparison of experimental36 (line series) and simulation viscosity values estimated with 
scaled charges (dotted series) and with the original charges (dotted-line series) at 313.15 K. 
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Conclusions	  
 

A molecular dynamics simulation study was carried out to determine the properties of aqueous 

solutions of D-glucose as a function of glucose concentration. The newest version of the GROMOS 

force field, the 56ACARBO, was selected to model glucose, and the SPC/E model was used for water. 

The glucose force field has been well tested under infinite dilution aqueous conditions, but has not 

been evaluated so far for its ability to model properties under finite glucose concentrations. In the 

present work, densities, viscosities, and self-diffusivities were computed and compared to available 

experimental data. The structure of each solution was characterized via hydrogen bond analysis, radial 

and spatial distributions functions, and coordination numbers. 

The computed densities and viscosities showed reasonable agreement with experiment below a 

glucose mole fraction of 0.15, but deviations became significant at higher concentrations. Specifically, 

computed densities were over 5 % too large at high concentrations, while viscosities were 

overestimated by more than 100 %. At the lowest concentrations studied (where the properties are 

dominated by water-water interactions), the densities and viscosities agreed well with experimental 

data. A small number of tests were run with an alternative glucose force field (OPLS) and a different 

water model (TIP3P). The OPLS force field performed slightly worse than the 56ACARBO force field at 

reproducing experimental densities and viscosities. Still, it should be noted that the force fields tested 

despite providing a poor quantitative description of these properties at high concentrations, they impart 

qualitative correct trends with concentration increase. Self-diffusivities were also computed with the 

56ACARBO force field, and while there are no experimental data under the conditions of the simulations, 

it is expected that the simulated self-diffusivities are also low, given the trend with viscosity. 

By examining hydrogen bond formation, coordination numbers, and spatial / radial distribution 

functions, it was determined that the glucose molecules tend to self-associate at finite concentrations. 

In essence, water does not fully hydrate the glucose molecules at higher concentrations, which leads to 

the overestimation of density and viscosity. The results suggest that improved glucose force fields 

could be developed if modifications are made that attenuate these self-interactions between glucose 

molecules and that promote better water solvation. 

Preliminary studies using a modified version of the 56ACARBO force field, obtained by scaling 

the atomic charges of glucose by a factor of 0.8, leads to significant improvements in the values of the 

calculated densities and viscosities at glucose mole fractions in the range of 0.034 to 0.200, without 

decreasing too much the quality of the results at diluted mole fractions. 
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Motivation	  

 

The carbohydrate D-glucose, a hexopyranose with two stereoisomers (α-D-glucopyranose and 

β-D-glucopyranose), is the monomer of cellulose, the most abundant biopolymer found in wood.1 D-

glucose is an essential compound to many biological functions and for different chemical industries, 

highlighting its role as a renewable feedstock in the production of biofuel.2–4 In fact, one of the main 

goals of biorefineries is to recover cellulose from wood, and further proceed to its hydrolysis in order 

to obtain glucose, which upon fermentation will produce bioethanol.5–8 Several alternatives for the 

recovery of cellulose from wood were discussed already in Chapter 1.4 and, therefore, only some 

important remarks are provided below. It is known that common solvents, such as water, are not able to 

dissolve cellulose, which has lead to the use of different solvents. Nevertheless, the tested solvents 

(carbon disulfide, LiCl-based solvents9, dimethylsulfoxide (DMSO)/paraformaldehyde10 and also N-

methylmorpholine-N-oxide (NNMO)11) are either volatile, toxic, expensive or difficult to recover.12 

Among the alternatives to be used as solvents, ionic liquids have been proposed and 

extensively studied. For instance, in the past decade, it has been reported the use of ILs as solvent for 

the pre-treatment and dissolution of wood and cellulose.4,12,13 However, for an effective dissolution, it 

is required to choose a proper ionic liquid, with specific properties. A good solvent should have low 

melting point, reduced viscosity, should be non-toxic or corrosive and easy to recover, storable and 

stable, and should not decompose the lignocellulosic constituents. If these properties are achieved, the 

use of ILs will allow an effective dissolution and promote a “greener” and sustainable process of 

biofuel production.4,12 

Among the huge number of possible combinations between cations and anions that can 

compose an IL, the task of finding those that fulfill the previous requirements is a very difficult one to 

be performed merely through experimental means. Nevertheless, in studies published by Pinkert et 

al.13, Mäki-Arvela et al.12 several experimental works applying different ILs to dissolve cellulose, 

lignin and wood are referenced. Complementing the previous studies, Holm and Lassi4 published their 

perspective on the application and performance of different ILs as cellulose solvents. The authors 

showed that the dissolution proceed by the establishment of hydrogen bonds, similar to those existent 

between glucose molecules that are responsible for the crystalline structure of cellulose. Accordingly, 

the authors state that small cations, with functionalized groups, and anions with a high ability to 

establish hydrogen bonds are the best ions to interact with cellulose. 



___________________________________	   Chapter 3	   ___________________________________	  

	  
	  

[179] 
	  

In respect to the identification of the best anions, the hydrogen bond basicity parameter, β, can 

be applied.12,14,15 This parameter allows the identification of the anions with higher ability to establish 

hydrogen bonds with glucose, as a consequence of their polarity. Therefore, chloride, acetate, formate 

and phosphate anions arise as anions that can promote effectively the dissolution of cellulose. 

However, the adequate combination between cations and anions is the key for a successful pre-

treatment of lignocellulosic biomass and/or cellulose dissolution16,17. 

Moreover, aiming at a broader screening of the best solvent for cellulose (and lignin), Casas et 

al.18 simulated the solubility of a cellulose oligomer in 750 different ILs by using the COSMO-RS 

approach, according to a specific methodology, which allowed the evaluation of the type/strength of 

interaction through the estimation of activity coefficients and, in a separate study19 also with excess 

enthalpies. Common to the experimental studies, the 1-ethyl-3-methylimidazolium acetate (or chloride) 

were shown to be excellent candidates to act as cellulose solvents. Before Casas and co-workers, 

Kahlen et al.20 have also used COSMO-RS to estimate the solubility of cellulose (represented by 

cellotriose) in 2000 ILs, and have proposed new ILs for cellulose dissolution. 

Although it is well known that is through the establishment of hydrogen bonds that ILs and 

cellulose interact, the H-bond mechanisms for different ILs with cellulose are still not well known.16 

With the purpose of disclosing the existent interactions, computational approaches have been 

applied.21–24 Among the various computational approaches (Chapter 2), molecular dynamics 

simulations present advantages, being able to estimate macroscopic thermophysical properties 

including transport ones, such as viscosity and diffusivity.25 Furthermore, most of the available force 

fields developed to reproduce proteins or carbohydrates, including OPLS,26,27 AMBER,28,29 

CHARMM,30,31 GLYCAM,32,33 and GROMOS34,35 have received improvements in the past few years. 

The main difficulties of the force fields in the reproduction of systems composed of carbohydrates are 

related to the high heterogeneity of compounds, which differ in their stereochemistry and 

functionalization.2,36 The heterogeneity of compounds can be observed when glucose is placed in an 

aqueous medium. Here, different conformations can co-exist due an interconversion of both glucose 

conformers, caused by a complex interplay between the steric, electrostatic, hydrogen bonding and 

solvation effects present in the system. These phenomena are barely taken into account by FFs, 

hindering their quality to adequately reproduce these systems. Additionally, the structural transitions 

occur over timescales that are too long when compared to practical MD simulation times, making their 

observation difficult without performing extremely long simulations.2,36,37 

A recent publication by Gupta and Jiang38 reviews computational MD works devoted to the 

study of the cellulose dissolution in ILs (mainly composed of imidazolium-based cations and 
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chloride/acetate anions). In those studies, different representations/models of cellulose were used, such 

as, glucose derivatives, cellobiose, oligomers, microfibrils or Iβ crystalline structure, and finally, 

glucose molecules. Through these MD simulations, it was evaluated the solubility of cellulose in ILs 

according to the solubility parameters39,40, structural and energetic41–43 properties, including the study 

of the effect of different ILs’ cations and anions, and their impact in the establishment of hydrogen 

bonds. 

The collected studies were able to provide some insights regarding the interactions conducing 

to the cellulose dissolution. It was observed that the anion of the IL establishes the primary and 

stronger interaction with cellulose, by disrupting the hydrogen bonds of cellulose (i.e., those 

established between glucose monomers38), while a secondary role was proposed for the cation which 

establishes only weak van der Walls interactions41 or H-bonds, through the acidic proton of the 

imidazolium cation23 with cellulose. Nevertheless, the cation was also suggested as having an 

indispensable role in the initial breakup of H-bonds, when, strongly connected with the anion, is also 

able to break cellulose chains that are apart and at short distance.38,44 

Other studies addressed the addition of water to the system of IL+glucose, the former also seen 

as an impurity.13 The introduction of water will reduce the interactions initially formed by the anion 

and glucose, which will be replaced by glucose-glucose and water-anion interactions, according to the 

higher affinity of the anion with water. This phenomenon can be used to achieve the cellulose 

regeneration, with the precipitation of cellulose/glucose using water as anti-solvent.45–47 Not only water 

but also other compounds such as acetone and ethanol were evaluated as anti-solvents.46,48,49 Water 

presents the highest ability as anti-solvent, followed by ethanol and acetone, according to a decrease of 

the propensity to interact with the selected IL’s anion. The regenerated cellulose is of type II, i.e, 

amorphous cellulose, as suggested by the torsion angles of the hydroxymethyl group of glucose.40,50 

Additionally, some other studies were published aiming at disclosing the differences in the 

ability to dissolve cellulose/glucose between the common solvents (water and methanol/ethanol) and 

ILs.41,51 Both from the estimation of interaction energies41 and potential mean forces42,43, ILs were 

found to present the best capacities as cellulose solvents. This ability has been explained by a reduction 

of solvent entropy (when in process of cellulose dissolution) that is lower in the case of ILs and 

favorable to dissolution, which is also supported by the favorable values obtained when estimating the 

interaction energies. 

The present chapter is dedicated to understand the differences in the interactions between 

glucose and water and between glucose and some ILs aiming at the understanding of the enhanced 

ability of some ILs to dissolve carbohydrates. 
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The molecule of glucose will be here used as a model species dispersed in water or in ILs 

composed of the cation 1-ethyl-3-methylimidazolium with the anions thiocyanate, dicyanamide, 

tricyanomethane, tetracyanoborate and acetate. 

This chapter is divided into four sections. The first section reports the experimental solubility 

of D-glucose in water and the four CN-based ILs previously mentioned plus, for alkyl chain length 

effect evaluation, 1-butyl-3-methylimidazolium thiocyanate/dicyanamide. Afterwards, MD simulations 

are performed with three distinct objectives. Firstly, it is addressed the comparison between systems 

composed of glucose and water with others composed of ILs with the anion thiocyanate and 

dicyanamide. Then, after evaluating the propensity of ILs with the anion thiocyanate and dicyanamide, 

it is evaluated the impact of ILs’ anion bearing different number of cyano groups (from 1 to 4) in 

glucose dissolution. Structural information at the atomic level gathered from the interaction of the four 

CN-based ILs with a single glucose molecule is then transposed to the microscopic level. Ultimately, 

the interactions occurring between glucose and the thiocyanate and dicyanamide based ILs will also be 

compared with those determined for another IL that is being considered as a good candidate to dissolve 

cellulose, i.e., the 1-ethyl-3-methylimidazolium acetate, as an attempt to understand the differences 

among the interactions established between the ILs and glucose. 

 

 

Methodology	  

Experimental	  Section	  

 

Materials 

The monosaccharide evaluated in this study was D-(+)-glucose (purity of > 99 wt%) acquired 

from Scharlau. Regarding the ILs used, 1-ethyl-3-methylimidazolium thiocyanate, 

[EMIM][SCN] (mass fraction purity > 98 %), 1-ethyl-3-methylimidazolium dicyanamide, 

[EMIM][DCA] (mass fraction purity > 99.5 %), 1-butyl-3-methylimidazolium thiocyanate, 

[BMIM][SCN] (mass fraction purity > 98 %), 1-butyl-3-methylimidazolium dicyanamide, 

[BMIM][DCA] (mass fraction purity > 98 %), were purchased from IoLiTec, while 1-ethyl-3-

methylimidazolium tricyanomethane, [EMIM][TCN] (mass fraction purity > 98 %), 1-ethyl-3-

methylimidazolium tetracyanoborate, [EMIM][TCB] (mass fraction purity > 98 %) were 

supplied by Merck KGaA Germany. The purities were further confirmed by 1H and 13C NMR 
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and found to be in agreement with the purity levels given by the suppliers. In order to reduce 

the amount of volatile impurities, all ILs and D-(+)-glucose samples were dried for at least  

48 h under vacuum (10-3 Pa) at room temperature, before use. After the drying procedure, the 

water content of each sample was determined using a Metrohm 831 Karl Fisher coulometer 

with an associated uncertainty of ±3 µg. The water content was found to be < 0.091 wt% for all 

samples. The analyte used for the coulometric Karl Fisher titration was Hydranal – Coulomat 

AG from Riedel-de Haën. 

Solubility measurements 

Prior to measurements, it was recognized that all ILs have complete miscibility with water, 

with the exception of 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIM][TCB], as 

mentioned in Chapter 3.2. For this reason, two procedures were applied to measure the 

solubility of glucose in these ILs, according to the nature of the IL (hydrophilic or 

hydrophobic). 

The first methodology is applied to the hydrophilic ILs (having a complete miscibility with 

water). To vials containing ca. 3 cm3 of each IL, it was added an amount of glucose in excess. 

The mixtures were left under constant stirring for at least 72 h, at the temperature of interest, in 

order to achieve the equilibrium. The temperature was kept constant using a thermostatized 

bath, Jubalo F12, maintaining temperature with an uncertainty of ±0.01 K. After the 

equilibration, and aiming at the separation of the phases, the samples were centrifuged during 

20 minutes, at 4500 rpm, in an Eppendorf 5804 centrifuge. Afterwards, the vial was placed 

again in the thermostatized bath, around 30 minutes. Then, approximately 1 g (gravimetrically 

weighted with the uncertainty of ±0.0001 g) of the IL rich phase was taken, and diluted in 

distilled water in a volumetric ratio previously defined. The quantification of the content of 

glucose in this sample was determined through the DNS (3,5-dinitrosalycilic acid) method.52 

This method is based on a reduction-oxidation reaction when adding the DNS to a 

carbohydrate solution. Here, the sugar (the carbonyl groups) will be oxidized and the DNS will 

be reduced to 3-amino-5-nitrisalicylate acid. After this reaction, the reducing sugars are easily 

determined using UV spectroscopy at a wavelength of 540 nm. Accordingly, to a 1 cm3 of the 

aqueous solution with an IL previously prepared, it was added 1 cm3 of a standard DNS 

solution. This mixture was placed in the thermostatized bath, at a temperature of 373 K, for 10 

minutes. The following step consisted in placing the samples for a few minutes into ice, and 
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again diluted in 10 cm3 of distilled water. The quantification of glucose was made using a UV-

Vis spectrophotometer, the Shimadzu UV-1700 Pharma-Spec, at the wavelength of 540 nm. 

The second method, applied to [EMIM][TCB] (the hydrophobic IL), is similar to that 

previously described. After the equilibration step and the centrifugation of all the samples, 

approximately 1 g of the IL rich phase was weighted and registered. To this solution it was 

added 3 cm3 of dichloromethane, an anti-solvent, promoting the precipitation of glucose. The 

following step was the filtration of the previous solution and further washing with 

dichloromethane to ensure the removal of IL’s traces. Here, the quantification of sugar was 

determined by weight, with an uncertainty of ±0.0001 g. All solubility measurements were 

carried at least three times. 

 

Density and viscosity measurements 

The density and viscosity of systems composed of glucose and [EMIM][SCN]/[EMIM][DCA] 

were experimentally measured for direct comparison with values from MD simulations in 

order to check if the latter were able to reproduce real systems composed of glucose and ILs. 

For these measurements, amounts of D-(+)-glucose were dried in an oven at 378 K and the ILs 

were also dried for at least 48 h under vacuum (10-3 Pa), at room temperature. The water 

content of each IL and glucose, after the drying step, was determined by Karl Fischer titration 

using a Metrohm 831 Karl Fischer coulometer. The average water content of [EMIM][DCA], 

[EMIM][SCN] and glucose were 0.17, 0.11 and 1.14 %, respectively. 

Glucose and ILs mixtures were then prepared at the following mole fractions: 0.004, 0.034, 

0.060 and 0.100. Using an automated SVM 300 Anton Paar rotational Stabinger viscometer-

densimeter, density and viscosity measurements were performed, at the temperature range of 

(308.15 to 333.15) K, with an uncertainty of ±0.02 K, and at atmospheric pressure  

(≈ 0.1 MPa). The absolute uncertainty in density is ±5×10-4 g·cm3 and the relative uncertainty 

in dynamic viscosity is ±0.35 %. Further details on the equipment have been addressed in 

Chapter 3.1. 
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Computational	  Section	  

  

 Molecular dynamics simulations 

MD simulations were performed for systems composed of glucose and water and different ILs 

using the version 4.5.5 of the GROMACS code53. For this study, the chosen ILs were 

[EMIM][SCN], [EMIM][DCA], [EMIM][TCN], [EMIM][TCB] and 1-ethyl-3-

methylimidazolium acetate ([EMIM][Ac]). Regarding the systems composed of glucose and 

water, [EMIM][SCN], [EMIM][DCA] and [EMIM][Ac], simulations were performed for 

systems containing 170 water/ILs molecules and 6, 11 or 20 glucose molecules yielding 

solutions with glucose mole fractions of 0.034, 0.060 and 0.100, respectively. Each box was 

built with the PACKMOL package54, with a random distribution of the molecules and 

imposing a distance of 2.5 Å between the molecules to ensure that no atomic overlapping 

occurs. Additionally, simulations were also performed for systems composed by 250 molecules 

of each of the CN-based ILs and a single glucose molecule, which correspond to 0.004 glucose 

mole fractions. 

Water and glucose molecules were described by means of the SPCE model55 and the OPLS27 

force field (an all-atom approach), respectively. The force field parameters for the [EMIM]+ 

cation and the anions [SCN]-, [DCA]-, [TCN]- and [TCB]- were described in detail in previous 

chapters (namely, Chapters 3.1 and 3.2). For the anion [Ac]-, the force field parameters were 

based on the OPLS-AA force field56 as used by Chandran et al.57. The atomic charges for the 

IL cation and anions were recalculated in the present work with the CHelpG scheme58, using an 

optimized DFT geometry (minimum energy from several configurations) for each IL ion pair, 

in the gas phase as performed previously for other systems involving ILs (Chapters 3.1 and 

3.2). The DFT calculations were performed at the B3LYP/6-311+G(d,p) level of theory59 with 

the Gaussian 09 code.60 The total charges on the cations and anions were ±0.775 e for 

[EMIM][SCN], ±0.824 e for [EMIM][DCA], ±0.858 e for [EMIM][TCN], ±0.887 e for 

[EMIM][TCB], and ±0.887 e for [EMIM][Ac]. The full sets of atomic charges for each IL are 

compiled in Tables E.1 to E.5 of the Appendix E. To validate the applied force fields for each 

system considered, densities for each pure IL were estimated, at 298.15 K, and are compared 

with the experimental values recently published by Neves et al.26 in Table E.6 of the Appendix 

E. A satisfactory agreement between experimental and simulated data is observed with relative 

deviations of 4.1 %, 4.0 %, 3.9 %, 2.2 % and 2.1 % in the cases of [EMIM][SCN], 

[EMIM][Ac], [EMIM][DCA], [EMIM][TCB] and [EMIM][TCN], respectively. Note that, 
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slight differences in the atomic charges when compared with those used in previous studies 

result from the consideration of a different level of theory during the estimation of the charges 

according to the CHelpG scheme. Enthalpies at T = 313.15 K corresponding to the interactions 

between the glucose monomer and water, and between the glucose monomer and the anions 

(species X in equation 3.5.1) thiocyanate, dicyanamide and acetate, were computed at the 

B3LYP/6-311+G(d,p) level of theory as: 

 

∆𝐻!"# = 𝐻!"#$%!"!! − 𝐻!"#$%&' − 𝐻! (3.5.1) 

 

In the calculation of the enthalpies, a scale factor of 0.988761 was used to correct the 

frequencies. These enthalpies include also the corrections for the zero-point vibration energy 

(ZPVE) and for the basis set superposition error (BSSE, obtained with the Counterpoise 

method62).  

For all mixtures considered, starting configurations were subjected to energy minimization 

followed by a 20 ns equilibration in the isothermal-isobaric (NPT) ensemble. During this 

period, the temperature was maintained at 313.15 K via a Nosé-Hoover thermostat63,64 while 

the pressure was held at 1 bar with a Parrinello-Rahman barostat.65 A cutoff of 0.9 nm was 

applied for non-bonded interactions for the aqueous system and for systems composed of ILs 

cutoffs of 1.2 and 1.0 nm were set for Lennard-Jones and Coulombic interactions. Corrections 

for long-range interactions were also taken into account. The time step was 2 fs, and all bonds 

were constrained. The same procedure was performed for three independent configurations, 

and densities were estimated from the average of the three simulations. 

Using the densities obtained from the NPT simulations, a configuration of the system at the 

average density for each considered mixture was taken and simulations were then run in the 

canonical (NVT) ensemble. The system was equilibrated by running an annealing schedule for 

15 ns from 298.15 to 500.15 K and then finally to 313.15 K. Production runs were then carried 

out for additional 65 ns (minimum time length) at 313.15 K. A time step of 1 fs was used, with 

energies recorded every 10 fs. Once again, a cutoff of 0.9 nm was applied for non-bonded 

interactions for the aqueous systems, while for those composed of ILs, cutoffs of 1.2 and 1.0 

nm were set for Lennard-Jones and Coulombic interactions, respectively. Corrections for long-

range interactions were also taken into account. 



___________________________________	   Chapter 3	   ___________________________________	  

	  
	  

[186] 
	  

Results	  and	  Discussion	  
 

Solubility	  measurements	  

 Figure 3.5.1 depicts the results obtained from the experimental measurement of the solubility 

of glucose in the ILs composed of the cation 1-ethyl-3-methylimidazolium and 1-butyl-3-

methylimidazolium with the anions thiocyanate, dicyanamide, and in the ILs 1-ethyl-3-

methylimidazolium tricyanomethane and 1-ethyl-3-methylimidazolium tetracyanoborate. Additionally, 

by applying the DNS method, an extra measurement was performed to attain the solubility of glucose 

in water, which is also represented in Figure 3.5.1. The corresponding values are compiled in Table E.7 

(Appendix E). 

 

Figure 3.5.1 – The solubility of glucose in water, [EMIM][SCN], [EMIM][DCA], [EMIM][TCN] and 

[EMIM][TCB], in a temperature range of (283.15 – 333.15) K. 
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Figure 3.5.2 – Effect of different alkyl chain length of IL’s cation on glucose solubility, in a temperature 

range of (283.15 – 333.15) K. 

 

From the results depicted in Figure 3.5.1, it is possible to recognize that some of the chosen 

ILs have higher dissolution power than water, namely, [EMIM][SCN] and [EMIM][DCA]. However, 

the other CN-based ILs, with higher number of cyano groups in the ILs’ anion, have a lower capacity 

to dissolve glucose. Additionally, it is worth noticing the minor differences in the values of the 

solubility of glucose in [EMIM][SCN] and [EMIM][DCA]. At low temperatures, the [EMIM][SCN] 

seems to present a higher ability to dissolve glucose, but with the increase of temperature, 

[EMIM][DCA] becomes the most efficient (Figure 3.5.1). Moreover, for thiocyanate and dicyanamide 

based ILs, it was evaluated the effect of changing the alkyl chain length of the IL’s cation (Figure 

3.5.2). The observations above are shared by the latter ILs but, as it can be understood from Figure 

3.5.2, systems composed by cations with shorter alkyl chains show higher capacity to dissolve glucose, 

being this difference more noticeable with the increase of temperature. The latter observations and the 

good solubility capacity of thiocyanate and dicyanamide based ILs were already discussed 

elsewhere3,4,66. It is important to highlight that these solubility results are able to demonstrate that the 

anion has more influence in the dissolution of the sugar than the cation, as visible by the significant 

differences on the solubility of glucose on the various ILs (Figures 3.5.1 and 3.5.2). For this reason, the 

following sections will report the molecular dynamics simulation results for systems composed of 

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

280 290 300 310 320 330 340

L
n(
x g

lu
co

se
)

T / K

[EMIM][SCN]

[EMIM][DCA]

[BMIM][SCN]

[BMIM][DCA]



___________________________________	   Chapter 3	   ___________________________________	  

	  
	  

[188] 
	  

glucose and ILs with the cation 1-ethyl-3-methylimidazolium and with four CN-based anions, with the 

aim of understanding their capacity to dissolve glucose. 

 

Molecular	  dynamics	  simulations	  

 

Why	  do	  ionic	  liquids	  are	  better	  glucose	  solvents	  than	  water?	  

 

Calculated density and viscosity 

 Values of density and viscosity calculated from MD simulations, and their comparison with 

experimental values measured in this study are presented in Figures 3.5.3 and 3.5.4 for the 

binary systems composed of glucose and [EMIM][SCN] and [EMIM][DCA], with the 

corresponding numerical values provided in Tables E.8 and E.9 of the Appendix E. The results 

show that, in general, our simulations slightly underestimate densities and viscosities. 

Deviations from experimental values are larger in the case of binary systems composed of 

[EMIM][SCN], but differences can be considered acceptable67 and similar to what was 

obtained in a study performed by Jahn et al.68. However, for the systems containing 

[EMIM][DCA], a very good agreement with experimental densities and viscosities was 

attained. It is worth to note that, as mentioned in detail in Chapter 2, the viscosity of ILs is one 

of the most difficult properties to be reproduced through MD simulations. Viscosities were 

calculated here according to the Green-Kubo relation and to the methodology applied by Rey-

Castro and Vega69 (Chapter 3.4), and a satisfactory agreement with the experimental values 

was attained (numerical values of the fitting parameters employed can be found in Table E.10). 

These results suggest that the chosen force fields are acceptable for reproducing the binary 

systems composed of glucose and differences can be related to the set of atomic charges used 

in the simulations. In fact, some differences were already observed for the density values of the 

pure compounds (Tables E.1 and E.2, Appendix E). 
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Figure 3.5.3 – Comparison of experimental and computed density, for systems composed of glucose and 

[EMIM][SCN] and [EMIM][DCA], at 313.15 K. 

 

 
Figure 3.5.4 – Comparison of experimental and computed viscosity, for systems composed of glucose and 

[EMIM][SCN] and [EMIM][DCA], at 313.15 K. 
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Values of density and viscosity obtained for systems composed of water and glucose were 

already mentioned and discussed in Chapter 3.4 (namely, Tables D.1 and D.3, Appendix D). 

For those, although producing overestimated values, a good agreement with experimental 

densities and viscosities is also found when considering mole fraction of glucose above 0.1. 

 

Radial distribution functions and coordination numbers 

To disclose the underlying interactions, the structural arrangement was evaluated by 

computing radial distribution functions (g(r) or RDF) for various sites on glucose and 

water/ILs. 

Specifically for this study, interactions established through the cation and the anion of ILs and 

water were addressed by computing RDFs for the atoms H1 (acidic proton of imidazolium 

ring), N (of cyano groups) and Hw, Ow, respectively, with oxygen and hydrogen atoms of all 

hydroxyl groups of glucose (see Figures 3.5.5, 3.5.6 and E.1). Coordination numbers (Z) for 

these pairs were also computed by integrating the RDFs using a radial cutoff rZ. This cutoff 

distance was chosen to be the first local minimum of the corresponding RDF, as performed in 

previous chapters. 

As mentioned, the interactions established by glucose are made through their hydroxyl groups, 

by means of hydrogen bonds. Fortunately, RDFs have the capability of providing information 

regarding the establishment of H-bonds. Strong H-bonds are recognizable by the presence of a 

RDF for a site-to-site Y—H-X interaction, where Y is an oxygen or nitrogen atom and X an 

oxygen atom, with a first minimum (rz) at a distance smaller than 0.26 nm, whereas weak H-

bonds show a RDF for a site-to-site Y—H-X interaction, where Y is an oxygen or nitrogen 

atom and X a carbon atom, with the first minimum at a distance smaller than 0.40 nm70. A 

clear observation in Figures 3.5.6 and E.1 is the appearance of the first minimum of the site-to-

site interactions in the anion-glucose and water-glucose RDFs at a distance smaller or equal to 

0.26 nm (strong H-bonds). For cation-glucose interactions (Figure E.1), RDFs present a 

minimum at a distance equal to 0.32 nm, i.e., suggesting weaker H-bonds. 
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Figure 3.5.5 – Atom labels used in this study for glucose. 

 

It is possible to perceive in Figure 3.5.6 that the profiles calculated for the anion-glucose and 

water-glucose (Ow-Hglucose) interactions are similar for the various ILs, while water presents a 

specific interaction profile. The latter is characterized by a presence of a double peak, 

suggesting the existence of interactions at two solvation shells. However, both peaks present 

small values of g(r), in particular the second peak, suggesting a low probability to occur. 

Overall, in the entire range of composition, the IL containing the anion [SCN]- shows a higher 

probability of interacting with glucose molecules given by the highest values of g(r), followed 

by the anion [DCA]- and water (note that the scale used in the graphical representation of the 

RDFs is different for each system). Nevertheless, the proton atom HO2 of glucose (Figure 

3.5.5) presents itself as the mediator of those interactions since, for all solvents, it shows a 

higher probability to interact than the other hydrogen atoms of glucose’s hydroxyl groups. 

The analysis of the RDFs corresponding to the cation-glucose (H1-Oglucose) and water-glucose 

(HW-Oglucose) interactions in Figure E.1, shows once more that the ILs present a higher 

probability to interact with glucose. Here, and for all solvents, the mediator is the oxygen atom 

OH3 (Figure 3.5.5). Although the cation evaluated in this section is the same for the two ILs 

studied, the cation in [EMIM][DCA] presents higher values of g(r), followed by the cation of 

[EMIM][SCN] and water. The latter solvent, by presenting the lowest values of g(r) acting 

either as a H-bond acceptor or donor, supports the experimental findings, i.e., the selected ILs 

have higher ability to dissolve glucose than water. 

Concerning the interactions established by glucose and water, another information could be 

extracted. In Chapter 3.4, the oxygen atom OS5 of glucose was found to not establish 

interactions with water molecules, due to a steric hindrance (the neighbor atoms had the 
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highest propensity to interact with water). Herewith, despite the molecule of glucose is 

described with another force field (an all-atom approach), the same behavior is observed. 

However, in the systems with ILs, interactions with OS5 seem to occur, suggesting that the 

preferential orientation of OS5 neighboring groups in the glucose molecule are different 

systems with water and with ILs. 



 
Figure 3.5.6 - Radial distributions functions (RDFs) for glucose-water (above row), glucose-[EMIM][SCN] (middle row) and glucose-

[EMIM][DCA] (bottom row) interactions, at three different glucose mole fraction and a temperature of 313.15 K. DFs for interaction between 

OW/N-HO12(▬), OW/N-HO8(▬), OW/N-HO6(▬), OW/N-HO4(▬), OW/N-HO2 (▬) are represented in this figure.
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Table 3.5.1 – Coordination numbers (Z) from the RDFs peaks for glucose-water (OW-HOglucose) and anion-

glucose, at each mixture considered. 

WATER 

xglucose=0.034 xglucose=0.060 xglucose=0.100 

Water Glucose Z rZ Water Glucose Z r Z Water Glucose Z r Z 

OW 

HO12 0.82 0.25 

OW 

HO12 0.75 0.25 

OW 

HO12 0.67 0.25 

HO8 0.83 0.25 HO8 0.75 0.25 HO8 0.66 0.25 

HO6 0.81 0.25 HO6 0.72 0.25 HO6 0.62 0.25 

HO4 0.68 0.25 HO4 0.61 0.25 HO4 0.52 0.25 

HO2 0.86 0.25 HO2 0.75 0.25 HO2 0.62 0.25 

[EMIM][SCN] 

xglucose=0.034 xglucose=0.060 xglucose=0.100 

Anion Glucose Z r Z Anion Glucose Z r Z Anion Glucose Z r Z 

N 

HO12 0.71   0.26   

N 

HO12 0.67   0.26   

N 

HO12 0.69   0.26 

HO8 0.70   0.26   HO8 0.66   0.26   HO8 0.67   0.26 

HO6 0.64   0.26   HO6 0.63   0.26   HO6 0.58   0.26 

HO4 0.57   0.26   HO4 0.53   0.26   HO4 0.46   0.26 

HO2 0.88   0.26   HO2 0.83   0.26   HO2 0.68   0.26 

[EMIM][DCA] 

xglucose=0.034 xglucose=0.060 xglucose=0.100 

Anion Glucose Z r Z Anion Glucose Z r Z Anion Glucose Z r Z 

N 

HO12 0.92 0.26 

N 

HO12 0.91 0.26 

N 

HO12 0.87 0.26 

HO8 0.89 0.26 HO8 0.90 0.26 HO8 0.86 0.26 

HO6 0.90 0.26 HO6 0.88 0.26 HO6 0.81 0.26 

HO4 0.74 0.26 HO4 0.73 0.26 HO4 0.71 0.26 

HO2 0.98 0.26 HO2 0.95 0.26 HO2 0.94 0.26 

 

 

To complement the analysis from RDFs, coordination numbers (Z) were calculated and values 

are compiled in Tables 3.5.1 and E.11. It is worth mentioning that coordination numbers are 

the quantification of the peaks of RDFs, giving an estimate (in this study computed from site-

to-site RDFs) of how many atoms are at the vicinity of the atom of reference. The calculation 
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takes into account the heights and widths of the peaks of RDFs and also the density of the 

system, thus providing a numerical meaning to RDFs. 

Table 3.5.1 presents the Z values for anion-glucose and water-glucose (Ow-Hglucose) 

interactions. From this table it is possible to verify that with the increase of glucose content in 

the system the values of Z decrease for all solvents; however this decrease is more evident for 

water-glucose interactions. Supporting the findings extracted from RDFs, the hydrogen atom 

HO2 is that presenting the highest Z values, and although common to all systems, interactions 

with the anion [DCA]- have more probability to occur, followed by the anion [SCN]- and then 

water. When comparing the anion [SCN]- and water, higher values of Z are determined for 

interactions between water and the remaining hydrogen atoms of glucose’s hydroxyl groups. 

Regarding the interactions cation-glucose and water acting as a H-bond donor (Table E.11), a 

decrease of Z values is seen with the increase of glucose concentration. The oxygen atom OH3, 

is the atom presenting higher Z values, supporting the information taken from RDFs. From the 

quantification of RDFs for water-glucose interactions (HW-Oglucose) significant higher values of 

Z are obtained, suggesting that water predominantly interacts with glucose as a H-bond donor, 

rather than what was observed at RDFs. 

Additionally, the coordination numbers for water-water (OW-HW) and cation-anion (H1-N) 

interactions were also computed (Table E.10). The obtained results present, as expected, a 

decrease of interaction with the content of glucose in the system. 

 

Spatial distribution functions 

Figure 3.5.7 shows spatial distribution functions (SDFs) obtained with the TRAVIS71 package 

for glucose surrounded by water, the cation [EMIM]+, and by the anion [SCN]- and [DCA]-.  

The SDFs were obtained with the a fixed radius of solvation with value 1.8 nm but different 

isovalues were used for the atoms in the water molecules (36 particle nm-3) and in the cations 

and anions of the ILs (7 particle nm-3). Atoms of water are represented by red surfaces, atoms 

from the ILs’ anions and cations by blue and mauve surfaces, respectively. Consistent with the 

RDFs and Z values, the SDFs show a decrease of solvent molecules surrounding glucose with 

the content of glucose. This effect is more pronounced in aqueous systems than in systems 

composed by ILs, where the difference is practically undetectable. 
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Figure 3.5.7 - Spatial distributions functions (SDFs) for glucose-water and glucose-anion/cation 

interactions, at three different glucose mole fraction and a temperature of 313.15 K. The central molecule 

is glucose, surrounded by water molecules (red surfaces), cations of IL (mauve surfaces) and anions of IL 

(blue surface). Isovalues for atoms in water and ILs are 36 and 7 particle·nm-3, respectively. 

 

Hydrogen Bonds 

Table 3.5.2 compiles the number of hydrogen bonds per glucose molecule established between 

glucose and water, [EMIM][SCN] and [EMIM][DCA], at two different concentrations. These 

H-bonds were calculated using the g_hbond tool in the GROMACS code. All possible H-bond 

donors and acceptors in the systems were considered. The geometric criteria were 0.26 nm for 

the H-O distance (0.35 nm for the O-O distance), and 30º for the angle H-O—O. The 

comparison of the number of H-bonds established by water, [EMIM][SCN] or [EMIM][DCA] 

solvents with glucose shows that the highest number of H-bonds occurs in the latter solvent at 

both concentrations analyzed. Curiously, at the lowest concentration, water has the ability to 
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establish more hydrogen bonds with glucose than [EMIN][SCN], but this ordering is reversed 

when xglucose is equal to 0.100. 

 

Table 3.5.2 – Number of hydrogen bonds established between glucose and water, [EMIM][SCN], 

[EMIM][DCA] and [EMIM][Ac], at two different glucose concentrations, at 313.15 K. 

 
H-bond per glucose  

	  xglucose Water [EMIM][SCN] [EMIM][DCA] [EMIM][Ac] 

0.034 3.6 3.3 4.2 4.8 

0.100 2.8 3.0 4.0 4.8 

 

 

To understand the experimental observations where [EMIM][SCN] and [EMIM][DCA] show 

better ability than water to dissolve glucose, further computer simulations were performed with 

the Gaussian 09 code60 for estimating the strength of the H-bond interactions between the three 

solvents and glucose. These calculations were performed with the B3LYP/6-311+G(d,p) 

approach and considered structural models in vacuum consisting of a single glucose molecule 

interacting with a single water molecule, and glucose interacting separately with the anions 

[SCN]- or [DCA]- (similar calculations were made for the anion acetate, also included in Table 

3.5.3, but results are going to be discussed and compared with the CN-based anions in a later 

section). From the RDFs it is clear that the most relevant solvent-glucose interactions occur 

with the atoms HO2 and OH1 (Figure 3.5.5). The interaction enthalpies calculated for the most 

stable configurations obtained by full optimization of the atomic positions of water, [SCN]-, 

and [DCA]- in the vicinity of these bonds are compiled in Table 3.5.3. 
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Table 3.5.3 – Enthalpies calculated with the B3LYP/6-311+G(d,p) approach and at T = 313.15 K 

for glucose interactions with water, thiocyanate, dicyanamide and acetate. 

 

	  
Interaction Enthalpy (kJ.mol-1) 

Glucose-water -25.1 
Glucose-SCN -111.2 
Glucose-DCA -94.7 
Glucose-Ac -153.9 

 

 

The calculated enthalpies are -25.1, -111.2 and -94.7 kJ·mol-1 for interactions between glucose 

and water, [SCN]-, and [DCA]-, respectively. Thus, despite the complexity of the molecular 

systems was significantly reduced, the data in Table 3.5.3 suggest that the glucose molecules 

establish more favorable interactions with the ILs than with water. These findings support the 

experimental observations and the results from the MD simulations. 

 

Evaluation	  of	  the	  CN-‐based	  ionic	  liquids’	  ability	  to	  dissolve	  glucose	  

 

 The data above suggest that when fixing the cation, the [DCA]- anion presents better capacity 

to dissolve glucose than when the anion is [SCN]-. Since the interactions with glucose involve 

the cyano moieties of these two anions, it would be interesting to understand what would be the 

effect of increasing the number of cyano groups in the strength of the interactions with glucose, 

and, indirectly, in the solubility of glucose. Experimental findings demonstrated that on going 

from anions with two to four cyano groups, the solubility of glucose in the corresponding ILs 

is reduced. These results are somewhat intriguing and to shed light upon it MD simulations 

were carried out, and RDFs and SDFs were computed aiming at further understanding the 

interactions between these cyano containing anions and glucose. 
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Figure 3.5.8 - Radial distributions functions (RDFs) and spatial distribution functions (SDFs) for glucose-

anion interactions for the anions of CN-based ILs, at infinite dilution and a temperature of 313.15 K. 

Black, red, green and blue lines are used for RDFs corresponding to the interactions between 

[EMIM][SCN], [EMIM][DCA], [EMIM][TCN] and [EMIM][TCB] and glucose, while mauve and blue 

surfaces are used for SDFs concerning the glucose interactions with the cations and the anions, 

respectively. 

 

Figure 3.5.8 depicts SDFs and RDFs concerning the interactions between four different ILs and 

glucose. The results obtained are in good agreement with the solubility measurements when, in 

general, an increase of the number of CN-groups in the anion decreases their ability to 

establish H-bonds. These differences were addressed previously in Chapters 3.2 and 3.3. The 

capacity of these CN-based ILs to interact successfully with glucose is highly correlated with 

their capacity to establish H-bonds as previously discussed. Interestingly, the strength of the 

interactions between the cyano groups from the anions and the hydroxyl groups from glucose 

seems to be correlated with the value of the atomic charges in the nitrogen atoms of the cyano 
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group in the each anions, which become less negative in the order of [DCA]- > [SCN]- > 

[TCN]- > [TCB]-. The numeric values of the charges are -0.721 e, -0.666 e, -0.641 e and -0.486 

e, respectively. The different charges in the cyano groups together with the different group 

symmetries of the anions induces different charge delocalization, and thus different polarities. 

The [EMIM][DCA], being the most polar IL among the CN-based ILs considered in this study, 

is that presenting the highest propensity to establish H-bonds with glucose, i.e., it arises has the 

best solvent to dissolve glucose. 

 

Performance	  of	  [EMIM][SCN]	  and	  [EMIM][DCA]	  vs	  [EMIM][Ac]:	  comparison	  to	  one	  of	  the	  best	  

glucose	  solvents	  

 

This final section is dedicated to the comparison of one of the best ILs known to dissolve 

cellulose, and thus glucose, namely 1-ethyl-3-methylimidazolium acetate12,18,70, [EMIM][Ac], 

with [EMIM][SCN] and [EMIM][DCA]. In the literature, it can be found solubility values of 

39.41, 18.59 and 10.6 wt% for [BMIM][Ac]71, [BMIM][DCA]71 and [BMIM][SCN]72, 

respectively, at approximately ≈ 40 ºC. Since the cation is the same in these three ILs, the 

values of the solubilities suggest that the anion acetate has a very important propensity to 

interact with glucose, expectedly much higher than those found for the CN-based anions 

analysed above. Thus, it seems natural to compare directly the data reported above for the CN-

based anions with the results from additional MD simulations concerning the structural 

arrangement of acetate around glucose molecules (e.g. RDFs, SDFs, and coordination 

numbers) and the results from B3LYP calculations regarding the strength of the hydrogen 

bonds established. 

The computed RDFs and SDFs for three different glucose concentrations are found in Figure 

3.5.9. The height of the peaks in the RDFs calculated for glucose interactions with 

[EMIM][SCN] are higher than those obtained for [EMIM][DCA], while those concerning the 

interactions with the [EMIM][Ac] stand between the two calculated for the two former ILs. At 

the lowest glucose concentration, the height of the RDF peak for [EMIM][Ac] is more similar 

to that of [EMIM][DCA] while upon the increase in the glucose concentration the RDF peak 

for [EMIM][Ac] becomes closer to that calculated for [EMIM][SCN]. Importantly, despite the 

differences are small, the maximum of the peak for the [EMIM][Ac] solvent occurs at smaller 
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rZ values than those for [EMIM][DCA] and [EMIM][SCN]. This suggests that the interactions 

between glucose and the former solvent are more important than those with the CN-based ILs. 

The calculated SDFs for glucose-acetate interactions (Figure 3.5.9) seem to confirm the latter 

hypothesis. In fact, from comparison of the SDFs in Figures 3.5.7 (for [EMIM][DCA] and 

[EMIM][SCN]) and 3.5.9 ([EMIM][Ac]) it is found that the anion [Ac]- is also surrounding the 

hydroxyl groups of glucose, but the surfaces are denser than those for the cyano-based ILs, 

which suggests that the interactions are more specific and more localized. The coordination 

numbers reported in Table E.11 are in favor of these conclusions, i.e., their values are larger 

when the solvent is [EMIM][Ac] than when the solvent is [EMIM][DCA] or [EMIM][SCN]. It 

is worth mentioning that an increase of the content of glucose in the system, has the same 

effect on the interactions as for [SCN]- and [DCA]-, being almost undetectable. 

The number of H-bonds established between glucose and the acetate anion and their energies 

of interaction in the gas phase are reported in Tables 3.5.2 and 3.5.3, respectively. As it can be 

seen, their values are larger than those calculated for the other solvents studied here, which are 

supporting the idea that the ability to dissolve glucose is correlated with the number and 

strength of the hydrogen bonds established with the glucose molecules. This ability can also be 

sustained by the polarity of the solvent, which can be given by the β solvatochromic parameter. 

The latter measures the hydrogen-accepting ability of an ion/compound and is considered a 

good indicator for determining glucose solvents. The β solvatochromic parameter for 

[EMIM][Ac] has a value of 0.85,73 which is significantly higher than the values 0.76215 and 

0.67115 reported for the anions dicyanamide and thiocyanate, respectively. This demonstrates 

the polar character of the anion acetate, and then its propensity to establish H-bonds with 

glucose/cellulose. 

 



 
Figure 3.5.9 - Radial distributions functions (RDFs) and Spatial distribution functions for glucose-anion interactions for the anions of CN-based 

ILs and [EMIM][Ac], at different glucose concentrations and a temperature of 313.15 K. RDFs for interaction between [EMIM][SCN](▬), 

[EMIM][DCA](▬), and [EMIM][Ac](▬) with glucose are represented in this figure. Additionally, at SDFs, the blue surfaces represent the 

acetate anion surrounding a glucose molecule. 

xglucose=0.034 xglucose=0.060 xglucose=0.100 
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Conclusions	  
 

In this study, the solubility of glucose in water and in different ILs was evaluated by means of 

experimental and computational techniques. The chosen ILs were composed by the 1-ethyl-3-

methylimidazolium cation and the thiocyanate, dicyanamide, tricyanomethane and tetracyanoborate 

anions, often referred as the CN-based ILs. Additionally, for a more complete characterization of these 

systems, other ILs were also studied, namely 1-butyl-3-methylimidazolium thiocyanate, 1-butyl-3-

methylimidazolium dicyanamide and 1-ethyl-3-methylimidazolium acetate. 

The experimental measurements of glucose allowed to recognize that [EMIM][SCN] and 

[EMIM][DCA] have higher dissolution power than water. However, the two other CN-based ILs, 

presenting three and four of cyano groups in the ILs’ anion, have lower capacity to dissolve glucose. 

Moreover, as expected, the solubility results showed that the anion has more influence in the 

dissolution of the sugar than the cation. 

Information retrieved from computational results supports the experimental findings. On the 

whole, it was possible to observe and conclude that the interactions between glucose and ILs are 

mediated by the anion with the establishment of H-bonds. The propensity of the IL’s anion to interact 

with glucose is, however, determined by its polarity that, on its turn, influences the strength/ability of 

those interactions. Therefore, the [EMIM][DCA] is the CN-based IL with the highest ability to dissolve 

glucose, followed by [EMIM][SCN]. The CN-based ILs with three and four cyano groups in its anion 

are less polar compounds, hindering their ability to establish H-bonds. However, when evaluating the 

ability of the CN-based ILs, water and [EMIM][Ac] (the latter being considered one of the best 

solvents for glucose dissolution) to establish H-bonds, it is recognized that water is establishing less H-

bonds with glucose, followed by [EMIM][SCN], [EMIM][DCA] and, finally, [EMIM][Ac]. From the 

interaction enthalpies calculated in the gas phase with the hybrid B3LYP approach, it was possible to 

support that glucose is establishing more favorable interactions with the ILs rather than water. 

Additionally, it was observed that the [EMIM][Ac] not only is the IL establishing the most favorable 

H-bonds (as well as in number) with glucose, but that its interactions with glucose seems to be more 

specific and local than in the case of the other ILs. 

Finally, the trends gathered from the different properties computed in this work are well 

correlated with the capacities of the different solvents to dissolve glucose. 
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The emerging stringent environmental worldwide regulations impelled the development of 

several processes aiming at the improvement of fuels with the reduction of sulfur compounds, as well 

as, the development of new, “greener” alternatives, such as the production of biofuels. 

In this matter, a new class of solvents, the ionic liquids, have gained a special importance due 

to their unique properties that enable and encourage their use on different areas as extracting solvents, 

such as in the case of desulfurization processes and at biochemical processes of conversion of 

lignocellulosic compounds to biofuels (more specifically on the pre-treatment of lignocellulosic 

materials). 

Being composed of bulky and poorly coordinated organic cations and inorganic/organic 

anions, the number of possible combinations is very large and the characterization of these fascinating 

systems by experimental laboratorial work only is an impossible task. Computational approaches have 

been used for complementing experimental studies and to obtain new data. Within the different types 

of computational approaches that can be used to study systems composed by pure ionic liquids or by 

mixtures of ionic liquids and other compounds (briefly described in Chapter 2), classical MD 

simulations anchored on force fields developed with the aid of ab initio approaches have been shown 

to be appropriate for calculating several properties of ionic liquids (Chapter 2). From a concise review 

of the application of MD simulations in the prediction of ILs’ properties it was found that is 

unquestionable the importance of the usage of MD as a reliable complement to experimental 

procedures, achieving good reproduction of densities, melting points and structural atomic 

organization. However, viscosities and diffusion coefficients are over and underestimated, respectively, 

requiring longer times of simulation. Though a lot of improvements have to be made, MD simulations 

can provide important information regarding mechanisms occurring at the atomic level, helping to 

disclose phenomena that usually are difficult to be explained. 

Aiming at evaluating the performance of ILs as extracting solvents, different studies were 

carried out by experimental and computational means. To evaluate the capacity of ILs, systems 

composed of ILs and thiophene/benzene, ILs and water/ethanol, and glucose with ILs and water were 

chosen. The goal was to identify the mechanisms of interactions established by ILs, for further 

application in desulfurization processes and pre-treatment of lignocellulosic biomass (enabling the 

evaluation/design of the most suitable IL). Results revealed that, as expected, interactions with sulfur 

compounds are promoted through π-π interaction, originally from the aromatic character of ILs. These 

interactions can, however, produce different phase behaviors (LCST or UCST), depending on the 

individual characteristics of each IL and their interaction mechanism (Chapter 3.1). Having in mind 

that viscosity is one of the main drawbacks for the use of ILs at an industrial field, CN-based ILs were 
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studied. Characterized by low melting points and viscosities, these ILs are interesting for industrial 

purposes, e.g. as solvents for the production of biofuels. By studying ILs with one to four CN groups at 

the IL’s anion, namely, thiocyanate, dicyanamide, tricyanomethane and tetracyanoborate anions, it was 

possible to show that their capacity to establish hydrogen bonds with polar solvents (water or ethanol) 

is not enhanced with the increase of CN groups in the anion but, instead, such capacity is strongly 

determined by the polarity of the anion (Chapter 3.2 and 3.3). 

Regarding interactions established by glucose, the chosen system was primarily glucose with 

water, to infer on their mechanism of interaction and to evaluate their dynamic behavior. The ability of 

the new force field GROMOS 56ACARBO for glucose molecules was evaluated to model properties of 

aqueous solutions of glucose. Obtained results are quite good for diluted solutions but as the 

concentration increases the glucose molecules tend to self-associate leading to the overestimation of 

properties.  However, modifying the original force field by scaling the atomic charges of glucose by a 

factor of 0.8, leads to significant improvements in the values of the calculated densities and viscosities 

at glucose mole fractions in the range of 0.034 to 0.200, without decreasing too much the quality of the 

results at diluted mole fractions. Nonetheless, after a comparison of these results with those obtained 

with another force field, it was clear that improvements on the actual force fields, as well as the 

development from scratch of new force fields, able to successfully describe concentrated carbohydrate 

systems are necessary (Chapter 3.4).  

As mentioned and detailed at Chapter 1.4.1, ILs can be applied to pre-treat and dissolve wood, 

cellulose and its simple sugars. Accordingly, Chapter 3.5 was devoted to the study of the performance 

of CN-based ILs to dissolve glucose either employing experimental and computational techniques. 

Moreover, this study evaluated and compared the CN-based ILs with an organic solvent, water, and 

one of the best cellulose solvents, the 1-ethyl-3-methylimidazolium acetate. The results obtained, agree 

with the conclusions extracted from previous chapters. The polarity of ILs is determinant in their 

ability to establish H-bonds and then, to interact successfully with glucose. Although computational 

results underestimated the values of some thermophysical properties determined experimentally for 

CN-based ILs, the conclusions arising from the computational work and from the experimental 

measurements are the same. The [EMIM][DCA] is the best glucose solvent among CN-based ILs, 

establishing stronger H-bonds with glucose than water. 

For future work, aiming at the continued improvement of the processes of biofuels production 

and the implementation of ionic liquids in this field, it is suggested the utilization of this kind of 

computational approaches for the screening of other neat ionic liquids, or of a mixture of ionic liquids, 

with characteristics desired for biofuel production, namely high chemical and thermal stability, low 
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vapor pressure and melting point, and reduced viscosity. The screening would be improved with the 

use of a polarizable force field, which definitely affects (and improves) the prediction of properties by 

means of molecular dynamics simulations. Moreover, it has been reported that the use of a co-solvent 

in a mixture of IL and cellulose/glucose enables the dissolution of the carbohydrate. This co-solvent 

can be a common organic solvent, or even another ionic liquid. This could be considered an open issue 

of research, with characteristics to be investigated by computational approaches. 
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Appendix	  A	  
 

Tables 
 
Table A.1 - CHelpG charges for [BMIM][SCN]. Atom labeling corresponds to Figure 3.1.1. 

[BMIM][SCN] atomic charge / e 

 

H(7) 0.0478 
H(8) 0.0044 
H(4) 0.0693 

H(12) -0.0424 
C(7) -0.0529 
C(9) 0.0234 
H(1) 0.1743 
H(5) 0.0452 
N(1) 0.0931 
C(2) 0.0809 

H(14) 0.0168 
H(3) 0.1461 
C(8) 0.3325 
C(5) -0.2096 

C(10) -0.1093 
N(2) 0.0775 
C(6) 0.0068 
H(9) -0.0830 
C(4) -0.1369 
H(2) 0.2044 

H(10) -0.0899 
H(4) 0.0790 

H(13) 0.0272 
H(15) 0.0255 
H(6) 0.0608 

N -0.6514 
C 0.3836 
S -0.5234 

 

  

H1 
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H8 
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Table A.2 - CHelpG charges for [BMIM][NTf2]. Atom labeling corresponds to Figure  3.1.1. 

[BMIM][NTf2] atomic charge/ e 

 

H(7) 0.0830 
H(8) 0.0640 
H(4) -0.0250 

H(12) -0.0450 
C(7) -0.0940 
C(9) 0.2180 
H(1) 0.0760 
H(5) 0.1480 
N(1) 0.1310 
C(2) 0.0890 

H(14) 0.0470 
H(3) 0.2160 
C(8) 0.2090 
C(5) -0.2240 

C(10) -0.2640 
N(2) 0.0870 
C(6) -0.1280 
H(9) -0.0170 
C(4) -0.1380 
H(2) 0.1840 

H(10) -0.0360 
H(4) 0.0890 

H(13) 0.0640 
H(15) 0.0700 
H(6) 0.0930 
O(1) -0.5170 
F(1) -0.1960 
F(2) -0.2200 
O(4) -0.5170 
C(1) 0.5550 
O(3) -0.5170 
S(1) 0.9530 
S(2) 0.9530 
O(2) -0.5170 
N(1) -0.5870 
F(3) -0.1630 
F(4) -0.1960 

H1 

H7 
H8 

C7 C8 

C9 C10 C6 
C2 

C5 

C4 

H3 
H2 

H9 
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H4 
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H6 

N1 

N2 
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C(2) 0.5550 
F(5) -0.2200 
F(6) -0.1630 

 

 

Table A.3 - CHelpG charges for thiophene. Atom labeling as in Figure 3.1.1. 

Thiophene atomic charge / e 
CS -0.0700 

HCS 0.0930 
CC -0.2050 

HCC 0.1680 
S 0.0280 

 
 

Table A.4 - Lennard-Jones parameters for the cation [BMIM]+. 

[BMIM]+ σ / Å ε / kJ.mol-1 
C(ring) 0.3207 0.2093 
N(ring) 0.3296 0.8374 

H(1) 0.2616 0.0327 
H(2 and 3) 0.1604 0.1926 
C(chain) 0.4054 0.0837 
H(chain) 0.2352 0.0921 

C(terminal) 0.3875 0.2303 
 

Table A.5 - Lennard-Jones parameters for the anion [NTf2]-. 

[NTf2]- σ / Å ε / kJ.mol-1 
S 0.3550 1.0460 
O 0.2960 0.8786 
N 0.3250 0.7113 
C 0.3500 0.2761 
F 0.2950 0.2218 

 

Table A.6 - Lennard-Jones parameters for the anion [SCN]-.  
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[SCN]- σ / Å ε / kJ.mol-1 
N 0.2976 0.8767 
C 0.3361 0.4058 
S 0.3308 1.9056 

 

Table A.7 - Lennard-Jones parameters for thiophene. 

thiophene σ / Å ε / kJ.mol-1 
S 0.3550 1.0460 

CC 0.3550 0.3200 
CS 0.3750 0.3400 
H 0.2420 0.1255 

 

Table A.8 – Experimental LLE in the ([BMIM][NTf2]+thiophene) binary system 

T / K  xIL 
272.2 0.511 
288.0 0.500 
290.6 0.496 
300.3 0.490 
303.4 0.487 
336.5 0.471 

 

Table A.9 - Excess molar volumes obtained for the different systems of ILs and thiophene/benzene, at 

different temperatures.  

[BMIM][SCN] + Thiophene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
VE / cm3.mol-1 

1.000 0.000 0.000 0.000 0.000 
0.897 -0.691 -0.691 -0.732 -0.782 
0.857 -0.920 -0.920 -0.968 -1.044 
0.754 -1.260 -1.260 -1.348 -1.443 
0.390 -1.998 -1.998 -2.192 -2.449 
0.299 -2.184 -2.184 -2.404 -2.651 
0.000 0.000 0.000 0.000 0.000 
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[BMIM][NTf2] + Thiophene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
VE / cm3.mol-1 

1.000 0.000 0.000 0.000 0.000 
0.911 -0.333 -0.340 -0.367 -0.382 
0.724 -0.631 -0.655 -0.716 -0.783 
0.664 -0.842 -0.886 -0.949 -1.041 
0.439 -3.653 -3.773 -3.923 -4.097 
0.230 -5.015 -5.185 -5.363 -5.597 
0.000 0.000 0.000 0.000 0.000 

[BMIM][SCN] + Benzene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
VE / cm3.mol-1 

1.0000 0.000 0.000 0.000 0.000 
0.7666 -0.927 -1.023 -1.120 -1.220 
0.7420 -1.021 -1.116 -1.212 -1.329 
0.6081 -1.578 -1.720 -1.860 -2.035 
0.4906 -1.814 -1.955 -2.142 -2.352 
0.0000 0.000 0.000 0.000 0.000 

[BMIM][CF3SO3] + Benzene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
VE / cm3.mol-1 

1.000 0.000 0.000 0.000 0.000 
0.878 -0.553 -0.572 -0.615 -0.659 
0.696 -1.415 -1.499 -1.601 -1.706 
0.647 -1.345 -1.432 -1.554 -1.665 
0.427 -2.380 -2.512 -2.688 -2.859 
0.000 0.000 0.000 0.000 0.000 

[EMIM][NTf2] + Benzene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
VE / cm3.mol-1 

1.000 0.000 0.000 0.000 0.000 
0.865 -0.543 -0.581 -0.613 -0.678 
0.661 -1.338 -1.431 -1.548 -1.667 
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0.529 -1.822 -1.921 -2.026 -2.105 
0.508 -1.990 -2.120 -2.273 -2.440 
0.000 0.000 0.000 0.000 0.000 

 

Table A.10 – Viscosity deviations obtained for the different systems of ILs and thiophene/benzene, at 

different temperatures. 

[BMIM][SCN] + Thiophene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
∆ln(η)  

1.000 0.000 0.000 0.000 0.000 
0.897 0.267 0.256 0.246 0.238 
0.857 0.349 0.333 0.321 0.312 
0.754 0.517 0.496 0.479 0.466 
0.390 1.269 1.210 1.161 1.126 
0.299 1.380 1.315 1.263 1.228 
0.000 0.000 0.000 0.000 0.000 

[BMIM][NTf2] + Thiophene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
∆ln(η)  

1.000 0.000 0.000 0.000 0.000 
0.911 0.203 0.193 0.185 0.178 
0.724 0.549 0.522 0.500 0.484 
0.664 0.674 0.640 0.612 0.592 
0.439 1.197 1.139 1.093 1.060 
0.230 1.346 1.275 1.217 1.177 
0.000 0.000 0.000 0.000 0.000 

[BMIM][SCN] + Benzene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
∆ln(η)  

1.0000 0.000 0.000 0.000 0.000 
0.7666 0.752 0.736 0.725 0.776 
0.7420 0.680 0.659 0.641 0.683 
0.6081 0.482 0.466 0.452 0.479 
0.4906 0.440 0.425 0.413 0.437 
0.0000 0.000 0.000 0.000 0.000 
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[BMIM][CF3SO3] + Benzene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
∆ln(η)  

1.000 0.000 0.000 0.000 0.000 
0.878 0.914 0.884 0.858 0.914 
0.696 0.836 0.805 0.779 0.816 
0.647 0.772 0.735 0.704 0.729 
0.533 0.655 0.625 0.599 0.621 
0.427 0.296 0.281 0.269 0.276 
0.000 0.000 0.000 0.000 0.000 

[EMIM][NTf2] + Benzene 

 
T / K 

xIL 298.15 308.15 318.15 328.15 

 
∆ln(η)  

1.000 0.000 0.000 0.000 0.000 
0.865 0.812 0.784 0.784 0.757 
0.661 0.820 0.785 0.785 0.756 
0.529 0.610 0.590 0.590 0.569 
0.508 0.268 0.262 0.262 0.256 
0.000 0.000 0.000 0.000 0.000 

 

 

Table A.11 - 1H NMR chemical shift deviations for the protons of [BMIM][SCN], estimated trough 
the difference between [BMIM][SCN] with thiophene (for different compositions) and pure 
[BMIM][SCN]. 
 

atom identification xIL  ∆δ / ppm atom identification xIL  ∆δ / ppm 

H(2) 

0.17 -0.4225 

H(5) 

0.17 -0.5644 
0.22 -0.4407 0.22 -0.6135 
0.30 -0.3880 0.30 -0.4972 
0.39 -0.3181 0.39 -0.3852 
0.63 -0.1511 0.63 -0.1681 

H(7) 

0.17 -0.4572 

H(6) 

0.17 -0.5155 
0.22 -0.4918 0.22 -0.5566 
0.30 -0.4114 0.30 -0.4622 
0.39 -0.3273 0.39 -0.3630 
0.63 -0.1533 0.63 -0.1645 

H(4) 0.17 -0.5882 H(8) 0.17 -0.3451 
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0.22 -- 0.22 -0.3711 
0.30 -- 0.30 -0.3103 
0.39 -0.4047 0.39 -0.2476 
0.63 -0.1750 0.63 -0.1187 

H(9) 

0.17 -0.2328 

H(10) 

0.17 -0.1552 
0.22 -0.2491 0.22 -0.1127 
0.30 -0.2110 0.30 -0.0887 
0.39 -0.1700 0.39 -0.0710 
0.63 -0.0836 0.63 -0.0229 

 

 

Table A.12 - 1H NMR chemical shift deviations for the protons of thiophene, estimated trough the 
difference between [BMIM][SCN] with thiophene (for different compositions) and pure 
[BMIM][SCN]. 

atom identification xIL  ∆δ / ppm 

H(C-S) 

0.17 0.3760 
0.22 0.3319 
0.30 0.4236 
0.39 0.4930 
0.63 0.6036 

H(C-C) 

0.17 0.1870 
0.22 0.1618 
0.30 0.2136 
0.39 0.2563 
0.63 0.3291 

 

 

Table A.13 - 1H NMR chemical shift deviations for the protons of [BMIM][NTf2], estimated trough 
the difference between [BMIM][NTf2] with thiophene (for different compositions) and pure 
[BMIM][NTf2]. 

atom identification xIL  ∆δ / ppm atom identification xIL  ∆δ / ppm 

H(2) 

0.22 -0.5826 

H(5) 

0.22 -0.5785 
0.26 -0.7045 0.26 -0.7083 
0.39 -0.4678 0.39 -0.4566 
0.63 -0.2101 0.63 -0.2003 

H(4) 0.22 -0.5854 H(7) 0.22 -0.4528 
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0.26 -0.7213 0.26 -0.5537 
0.39 -0.4635 0.39 -0.3585 
0.63 -0.2030 0.63 -0.1591 

H(6) 

0.22 -0.4734 

H(8) 

0.22 -0.3460 
0.26 -0.5910 0.26 -0.4269 
0.39 -0.3683 0.39 -0.2731 
0.63 -0.1582 0.63 -0.1208 

H(9) 

0.22 -0.2395 

H(10) 

0.22 -0.1444 
0.26 -0.2983 0.26 -0.1275 
0.39 -0.1870 0.39 -0.0705 
0.63 -0.0829 0.63 -0.0059 

 

Table A.14 - 1H NMR chemical shift deviations for the protons of thiophene, estimated through the 
difference between [BMIM][NTf2] with thiophene (for different compositions) and pure 
[BMIM][NTf2]. 

atom identification xIL  ∆δ / ppm 

H(C-S) 

0.22 -0.0189 
0.26 -0.0854 
0.39 0.0274 
0.63 0.1100 

H(C-C) 

0.22 0.1877 
0.26 0.1428 
0.39 0.1720 
0.63 0.2822 

 

Table A.15 - 13C NMR chemical shift deviations for the protons of [BMIM][SCN], estimated trough 
the difference between [BMIM][SCN] with thiophene (for different compositions) and pure 
[BMIM][SCN]. 

atom identification xIL  ∆δ / ppm atom identification xIL  ∆δ / ppm 

C(2) 

0.17 -0.9170 

C(4) 

0.17 -0.3450 
0.22 -0.9620 0.22 -0.3690 
0.30 -0.8370 0.30 -0.3130 
0.39 -0.6820 0.39 -0.2520 
0.63 -0.3220 0.63 -0.1210 

C(11) 
0.17 0.4620 

C(5) 
0.17 -0.3200 

0.22 0.5020 0.22 -0.3520 
0.30 0.4010 0.30 -0.2790 
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0.39 0.3230 0.39 -0.2140 
0.63 0.1600 0.63 -0.0940 

C(7) 

0.17 -0.2470 

C(6) 

0.17 -0.6540 
0.22 -0.2670 0.22 -0.7030 
0.30 -0.2220 0.30 -0.5880 
0.39 -0.1750 0.39 -0.4680 
0.63 -0.0800 0.63 -0.2200 

C(8) 

0.17 -0.2230 

C(9) 

0.17 -0.1080 
0.22 -0.2410 0.22 -0.1160 
0.30 -0.1990 0.30 -0.0980 
0.39 -0.1570 0.39 -0.0760 
0.63 -0.0730 0.63 -0.0340 

C(10) 

0.17 --       
0.22 -0.0080    
0.30 0.0080    
0.39 0.0170    
0.63 0.0170       

 

Table A.16 - 13C NMR chemical shift deviations for the protons of thiophene, estimated trough the 
difference between [BMIM][SCN] with thiophene (for different compositions) and pure 
[BMIM][SCN]. 

atom identification xIL  ∆δ / ppm 

C(C-S) 

0.17 0.3300 
0.22 0.3290 
0.30 0.3650 
0.39 0.4110 
0.63 0.4700 

C(C-C) 

0.17 0.5900 
0.22 0.5160 
0.30 0.6770 
0.39 0.7910 
0.63 0.9670 

 

Table A.17 - 13C NMR chemical shift deviations for the protons of [BMIM][NTf2], estimated trough 
the difference between [BMIM][NTf2] with thiophene (for different compositions) and pure 
[BMIM][NTf2]. 

atom identification xIL  ∆δ / ppm atom identification xIL  ∆δ / ppm 
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C(2) 

0.22 -0.8720 

C(5) 

0.22 -0.3280 
0.26 -1.0360 0.26 -0.4120 
0.39 -0.7100 0.39 -0.2560 
0.63 -0.3240 0.63 -0.1070 

C(4) 

0.22 -0.2880 

C(NTf2) 

0.22 0.2030 
0.26 -0.3540 0.26 0.2815 
0.39 -0.2300 0.39 0.1620 
0.63 -0.0990 0.63 0.1635 

C(6) 

0.22 -0.2880 

C(7) 

0.22 -0.1780 
0.26 -0.3580 0.26 -0.2200 
0.39 -0.2250 0.39 -0.1380 
0.63 -0.0950 0.63 -0.0590 

C(8) 

0.22 -0.1500 

C(9) 

0.22 0.0500 
0.26 -0.1830 0.26 0.0640 
0.39 -0.1180 0.39 0.0430 
0.63 -0.0500 0.63 0.0230 

C(10) 

0.22 0.3160 	  	   	  	   	  	  
0.26 0.3860 

	   	   	  0.39 0.2580 
	   	   	  0.63 0.1210 	  	   	  	   	  	  

 

Table A.18 - 13C NMR chemical shift deviations for the protons of thiophene, estimated trough the 
difference between [BMIM][NTf2] with thiophene (for different compositions) and pure 
[BMIM][NTf2]. 

atom identification xIL  ∆δ / ppm 

C(C-S) 

0.22 0.2210 
0.26 0.2030 
0.39 0.2270 
0.63 0.2180 

C(C-C) 

0.22 0.1440 
0.26 0.1050 
0.39 0.1670 
0.63 0.1820 

 

 

Table A.19 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
sulfur atom from thiophene with selected carbons atoms from the cation of [BMIM][SCN], represented 
at Figure 3.1.11.a. 
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  r / nm g(r) r / nm g(r) 
S(TP)_X([BMIM][SCN]) 1st solvation shell others solvation shells 

S_C10 0.3953 1.7353 
  S_C2 

  
0.5939 1.1331 

S_C4 0.3782 1.1471 
  S_C5 0.3819 1.2626 
  S_C6 0.3880 1.2731 
  S_C9 

  
0.4995 1.3957 

 

Table A.20 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
sulfur atom from thiophene with selected carbons atoms from the cation of [BMIM][NTf2], represented 
at Figure 3.1.12.a. 

  r / nm g(r) r / nm g(r) 
S(TP)_X([BMIM][NTf2]) 1st solvation shell others solvation shells 

S_C10 0.3880 1.7108 
  S_C2 0.3782 0.8214 0.5841 1.2206 

S_C4 0.3831 1.3571 
  S_C5 0.3831 1.3571 
  S_C6 0.3966 1.6548 
  S_C9 

  
0.5007 1.3186 

 

Table A.21 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
sulfur atom from [SCN]- with thiophene, represented at Figure 3.1.11.b. 

  r / nm g(r) r / nm g(r) 
S(SCN)_TP 1st solvation shell others solvation shells 

S_CC 0.3868 1.0776 0.4848 1.1085 
S_CS 0.3733 1.2626 

  S_S 0.3999 0.8424 0.5118 1.1120 
 

Table A.22 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
carbon atom, C(1), from [NTf2]- with thiophene, represented at Figure 3.1.12.b. 

  r / nm g(r) r / nm g(r) 
C(NTf2)_TP 1st solvation shell others solvation shells 

C_CC 0.4493 1.2525 0.5681 1.2311 
C_CS 0.4419 1.2311 0.5706 1.2171 
C_S 0.4284 1.1821 0.5816 1.1366 
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Table A.23 - Position and intensities of the RDF peak maxima corresponding to the interactions of CC 
atom from thiophene with selected carbons atoms from the cation of [BMIM][SCN], represented at 
Figure A.5.a. 

  r / nm g(r) r / nm g(r) 
CC(TP)_X([BMIM][SCN]) 1st solvation shell others solvation shells 

CC_C10 0.4100 1.5987 
  CC_C2 

  
0.6037 1.1436 

CC_C4 0.3904 1.0910 
  CC_C5 0.3966 1.1786 
  CC_C6 0.4027 1.1891 
  CC_C9 

  
0.5130 1.4552 

 

Table A.24 - Position and intensities of the RDF peak maxima corresponding to the interactions of CS 
atom from thiophene with selected carbons atoms from the cation of [BMIM][SCN], represented at 
Figure A.5.b. 

  r / nm g(r) r / nm g(r) 
CS(TP)_X([BMIM][SCN]) 1st solvation shell others solvation shells 

CS_C10 0.4100 1.4937 0.5142 1.4482 
CS_C2 

  
0.6074 1.1261 

CS_C4 0.3966 1.0315 
  CS_C5 0.4027 1.1191 
  CS_C6 0.4027 1.1191 
  CS_C9 0.5154 1.4587 
   

Table A.25 - Position and intensities of the RDF peak maxima corresponding to the interactions of CC 
atom from thiophene with selected carbons atoms from the cation of [BMIM][NTf2], represented at 
Figure A.6.a. 

  r / nm g(r) r / nm g(r) 
CC(TP)_X([BMIM][NTf2]) 1st solvation shell others solvation shells 

CC_C10 0.4125 1.5567 0.5081 1.4307 
CC_C2 0.4137 0.8074 0.5951 1.2066 
CC_C4 0.3941 1.2521 

  CC_C5 0.4002 1.0840 
  CC_C6 0.4015 1.3501 
  CC_C9 

  
0.5203 1.4097 
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Table A.26 - Position and intensities of the RDF peak maxima corresponding to the interactions of CS 
atom from thiophene with selected carbons atoms from the cation of [BMIM][NTf2], represented at 
Figure A.6.b. 

  r / nm g(r) r / nm g(r) 
CS(TP)_X([BMIM][NTf2]) 1st solvation shell others solvation shells 

CS_C10 0.4076 1.4622 0.5154 1.4447 
CS_C2 0.4174 0.8249 0.5926 1.1821 
CS_C4 0.3953 1.2031 

  CS_C5 0.3966 1.0770 
  CS_C6 0.4113 1.2101 0.5069 1.1541 

CS_C9 
  

0.5020 1.3852 
 

Table A.27 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
carbon atom from [SCN]- with thiophene, represented at Figure A.7.a. 

  r / nm g(r) r / nm g(r) 
C(SCN)_TP 1st solvation shell others solvation shells 

C_CC 0.3941 0.7549 0.5044 1.0070 
C_CS 0.3819 0.8494 0.5167 0.8634 
C_S 

  
0.5252 1.0350 

 

 

Table A.28 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
nitrogen atom from [SCN]- with thiophene, represented at Figure A.7.b. 

 

  r / nm g(r) r / nm g(r) 
N(SCN)_TP 1st solvation shell others solvation shells 

N_CC 0.3794 0.6464 0.4701 0.8214 
N_CS 0.3598 0.7479 

  N_S 0.4971 0.8634 0.6135 0.9300 
 

Table A.29 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
S(1) atom from [NTf2]- with thiophene, represented at Figure A.8.a. 

  r / nm g(r) r / nm g(r) 
S(NTf2)_TP 1st solvation shell others solvation shells 

S_CC 
  

0.5755 1.2871 
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S_CS 0.4664 0.9440 0.5841 1.1856 
S_S 

  
0.5767 1.2451 

 

Table A.30 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
N(1) atom from [NTf2]- with thiophene, represented at Figure A.8.b. 

  r / nm g(r) 
N(NTf2)_TP 1st solvation shell 

N_CC 0.6012 1.4307 
N_CS 0.5890 1.3782 
N_S 0.6037 1.4027 

 

Table A.31 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
F(1) atom from [NTf2]- with thiophene, represented at Figure A.8.c. 

  r / nm g(r) r / nm g(r) 
F(NTf2)_TP 1st solvation shell others solvation shells 

F_CC 0.3598 0.9650 0.4640 1.0280 
F_CS 0.3561 0.9335 0.5363 1.0875 
F_S 0.3426 0.9685 0.5056 1.0455 

 

Table A.32 - Position and intensities of the RDF peak maxima corresponding to the interactions of 
O(1) atom from [NTf2]- with thiophene, represented at Figure A.8.d. 

  r / nm g(r) r / nm g(r) 
O(NTf2)_TP 1st solvation shell others solvation shells 

O_CC 0.3525 0.8634 0.5890 1.1156 
O_CS 0.3635 0.7759 0.4689 0.8740 
O_S 0.3635 0.6814 0.4995 0.8985 
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Figures 

 

Figure A.1 – Density as a function of temperature, for different mole fraction of [BMIM][CF3SO3] in 

binary mixtures with benzene.  

 

 

Figure A.2 – Viscosity as a function of temperature, for different mole fraction of [BMIM][CF3SO3] in 

the binary mixture with benzene. 
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[230] 

 

Figure A.3 - Density as a function of temperature, for different mole fraction of [BMIM][SCN] in 

binary mixtures with thiophene. 

 

 

Figure A.4 - Viscosity as a function of temperature, for different mole fraction of [BMIM][SCN] in 
binary mixtures with thiophene. 
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a) 

b) 

 

Figure A.5 - Radial distribution functions of the cation [BMIM]+ around atoms of thiophene, a) the CC 

atom and b) the CS atom, in the system [BMIM][SCN] with thiophene.  
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a) 

b) 

 

Figure A.6 - Radial distribution functions of the cation [BMIM]+ around atoms of thiophene, a) the CC 

atom and b) the CS atom, in the system [BMIM][NTf2] with thiophene. 

 



___________________________________ Appendixes ___________________________________ 
 

 
 

[233] 

a) 

b) 

Figure A.7 - Radial distribution functions of thiophene around atoms of the anion [SCN]-, a) the C 

atom; b) the N atom, in the system [BMIM][SCN] with thiophene.  
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a) 

b) 
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c) 

d) 

Figure A.8 - Radial distribution functions of thiophene around atoms of the anion [NTf2]-, a) the S1 

atom; b) the N1 atom; c) the F1 atom and d) the O1 atom, in the system [BMIM][NTf2] with thiophene. 
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Appendix	  B	  
 

Tables 
 
Table B.1 - Number of water molecules and IL pairs in each simulation box. 

system number of 
molecules 

xIL  water IL 
0.2 160 40 
0.4 120 80 
0.6 40 60 
0.8 20 80 

 

Table B.2 - Atomic charges for [BMIM][SCN]. 

[BMIM][SCN] 

 

atom charge / e 
H1 0.17 
H2 0.21 
H3 0.15 
H4 0.06 
H5 0.06 
H6 0.06 
H7 0.03 
H8 0.03 
H9 -0.09 

H10 -0.09 
H11 0.02 
H12 0.02 
H13 0.02 
H14 0.02 
H15 0.02 
N1 0.09 
N3 0.08 
C2 0.08 
C4 -0.14 
C5 -0.21 
C6 0.01 
C7 -0.05 
C8 0.33 
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C9 0.02 
C10 -0.11 
N -0.658 
C 0.384 
S -0.530 

 

Table B.3 - Atomic charges for [BMIM][DCA]. 

[BMIM][DCA] 

 

atom charge / e 
H1 0.176 
H2 0.188 
H3 0.202 
H4 0.097 
H5 0.097 
H6 0.097 
H7 0.069 
H8 0.069 
H9 -0.039 

H10 -0.039 
H11 -0.048 
H12 -0.048 
H13 0.052 
H14 0.052 
H15 0.052 
N1 0.135 
N3 0.089 
C2 -0.005 
C4 -0.131 
C5 -0.192 
C6 -0.102 
C7 -0.072 
C8 0.109 
C9 0.267 

C10 -0.249 
N_1 -0.694 

C 0.657 
N_2 -0.723 
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Table B.4 - Atomic charges for [BMIM][TCN]. 

[BMIM][TCN] 

 

atom charge / e 
H1 0.228 
H2 0.196 
H3 0.229 
H4 0.117 
H5 0.117 
H6 0.117 
H7 0.142 
H8 0.142 
H9 -0.016 

H10 -0.016 
H11 -0.061 
H12 -0.061 
H13 0.048 
H14 0.048 
H15 0.048 
N1 0.281 
N3 0.139 
C2 -0.139 
C4 -0.135 
C5 -0.233 
C6 -0.174 
C7 -0.251 
C8 0.024 
C9 0.326 

C10 -0.236 
C -0.624 

C_1 0.552 
N_1 -0.638 
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Table B.5 - Atomic charges for [EMIM][TCB]. 

[EMIM][TCB] 

 

atom charge / e 
H1 0.213 
H2 0.190 
H3 0.207 
H4 0.096 
H5 0.096 
H6 0.096 
H7 0.052 
H8 0.052 
H9 0.060 

H10 0.060 
H11 0.060 
N1 0.129 
N3 0.114 
C2 -0.098 
C4 -0.127 
C5 -0.163 
C6 -0.099 
C7 0.152 
C8 -0.201 
B 0.143 
C 0.229 
N -0.487 

 

Table B.6 - Experimental and computational density values for each pure IL addressed in this study, at 
298.15 K. Values in parentheses denote the relative deviations of simulated values from experimental 
ones. 
 

IL ρexp 
a / kg·m-3 ρsim / kg·m-3 

[BMIM][SCN] 1069.5  1082.0 (1.2 %) 
[BMIM][DCA] 1060.3  1026.5 (3.2 %) 
[BMIM][TCN] 1047.5  1030.6 (1.6 %) 
[EMIM][TCB] 1036.1  1054.8 (1.8 %) 

 

a Taken from C. M. S. S. Neves, K. A. Kurnia, J. A. P. Coutinho, I. M. Marrucho, J. N. C. Lopes, M. G. Freire, and L. P. N. Rebelo, J. Phys. 
Chem. B, 2013, 117, 10271–10283. 
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Figures 

 

 

 
 
Figure B.1 - Sigma potential for (▬) water, (▬) [BMIM][DCA], (▬)[BMIM][SCN], 

(▬)[BMIM][TCN] and (▬) [BMIM][TCB].   
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Figure B.2 - Radial distributions functions (RDFs) regarding the mixture [BMIM][DCA] and water, 
for different mole fractions of IL, at 298.15 K. RDFs for interaction of cation-water (H1-OW, ▬), 
anion-water (N-HW, ▬), cation-anion (H1-N, ▬) and solvent-solvent (OW-OW, ▬) are represented 
in each picture. 
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Figure B.3 - Radial distributions functions (RDFs) regarding the mixture [BMIM][TCN] and water, 
for different mole fractions of IL , at 298.15 K. RDFs for interaction of cation-water (H1-OW, ▬), 
anion-water (N-HW, ▬), cation-anion (H1-N, ▬) and solvent-solvent (OW-OW, ▬) are represented 
in each picture. 
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Figure B.4 - Radial distributions functions (RDFs) regarding the mixture [EMIM][TCB] and water, for 
different mole fractions of  IL, at 298.15 K. RDFs for interaction of cation-water (H1-OW, ▬), anion-
water (N-HW, ▬), cation-anion (H1-N, ▬) and solvent-solvent (OW-OW, ▬) are represented in each 
picture. 
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Figure B.5 - RDFs for anion-water (above, left side), cation-water (above, right side), cation-anion 
(down, left side) and water-water interactions (down, right side), at 0.20 IL mole fraction and at the 
temperature of 298.15 K. RDFs for [BMIM][SCN] (▬), [BMIM][DCA] (▬) and [BMIM][TCN] (▬) 
are represented in each picture. 
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Figure B.6 - RDFs for anion-water (above, left side), cation-water (above, right side), cation-anion 
(down, left side) and water-water interactions (down, right side), at 0.40 IL mole fraction and at the 
temperature of 298.15 K. RDFs for [BMIM][SCN] (▬), [BMIM][DCA] (▬), [BMIM][TCN] (▬) and 
[EMIM][TCB] (▬) are represented in each picture. 
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Figure B.7 - RDFs for anion-water (above, left side), cation-water (above, right side), cation-anion 
(down, left side) and water-water interactions (down, right side), at 0.60 IL mole fraction and at the 
temperature of 298.15 K. RDFs for [BMIM][SCN] (▬), [BMIM][DCA] (▬), [BMIM][TCN] (▬) and 
[EMIM][TCB] (▬) are represented in each picture. 
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Figure B.8 - Solvent accessible surface area for each IL’s anion under study, at 80IL:20W. 
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Figure B.9 - SDF for the mixtures [BMIM][SCN] (above, left side), [BMIM][DCA] (above, right 
side), [EMIM][TCB] (down, left side) and [BMIM][TCN] (down, right side) and water, at 80IL:20W. 
Each anion is the centre element, surrounded by oxygen atoms of water (blue surface) and the H1 
proton of the cation [BMIM]+ or [EMIM]+. 
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Appendix	  C	  
 

Figures 

 

Figure C.1 - Isobaric temperature-composition diagram of [BMIM][SCN] (green triangle), 

[BMIM][DCA] (blue diamond), [BMIM][TCN] (red square) and [BMIM][TCB] (orange circle); (a) & 

(c) water; (b) & (d) ethanol at 0.07 and 0.05 MPa respectively. 
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Figure C.2 - Isobaric temperature-composition diagram of [BMIM][SCN] (green triangle), 

[BMIM][DCA] (blue diamond), [BMIM][TCN] (red square) and [EMIM][TCN] (orange circle) + 

(a) water; (b) ethanol at 0.1 MPa. The solid lines represents the Orchilles et al.28 data for 

[EMIM][DCA]. 
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Figure C.3 - Activity coefficients of [BMIM][SCN] (green triangle), [BMIM][DCA] (blue diamond), 

[BMIM][TCN] (red square) and [EMIM][TCB] (orange circle) as function of (a) & (c) water, (b) & (d) 

ethanol mole fractions, at 0.1 (first row), 0.07 (middle row) and 0.05 (last row) MPa. 
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Figure C.4 - Radial distributions functions (RDFs) for a) [BMIM][SCN], b) [BMIM][DCA], c) 
[BMIM][TCN] and d) [EMIM][TCB], at 0.60 (on the left side) and 0.80 (on the right side) mole 
fraction of IL and 298.15 K. In each picture is represented all types of interaction, namely RDFs for 
anion-ethanol (▬), cation-ethanol (▬), cation-anion (▬) and ethanol-ethanol (▬) interactions. 
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Tables 
 
Table C.1 – Comparison between experimental and simulated density values, obtained for different 
mole fractions of CN-based ILs, at 298.15 K. 

[BMIM][SCN] + Ethanol 
experimental simulation 

 xIL ρexp / (g.cm-3) xIL ρsim / (g.cm-3) AAD 
0.20 0.925 0.2 0.931 0.66 
0.40 0.991 0.4 1.001 1.01 
0.59 1.026 0.6 1.042 1.53 
0.80 1.053 0.8 1.068 1.44 

[BMIM][DCA] + Ethanol 
experimental simulation 

 xIL ρexp / (g.cm-3) xIL ρsim / (g.cm-3) AAD 
0.19 0.917 0.20 0.914 0.31 
0.40 0.983 0.40 0.967 1.63 
0.63 1.023 0.60 0.998 2.46 
0.83 1.045 0.80 1.017 2.75 

[BMIM][TCN]  + Ethanol 
experimental simulation 

 xIL ρexp / (g.cm-3) xIL ρsim / (g.cm-3) AAD 
0.26 0.944 0.20 0.914 3.14 
0.47 0.992 0.40 0.967 2.55 
0.65 1.017 0.60 0.998 1.92 
0.83 1.035 0.80 1.017 1.75 

[EMIM][TCB] + Ethanol 
experimental simulation 

 xIL ρexp / (g.cm-3) xIL ρsim / (g.cm-3) AAD 
0.20 0.914 0.20 0.922 0.88 
0.40 0.969 0.40 0.984 1.57 
0.60 1.001 0.60 1.020 1.98 
0.80 1.022 0.80 1.044 2.23 
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Table C.2 – Comparison between experimental and simulated density and enthalpies of vaporization 
values, obtained for different CN-based ILs, at 298.15 K. 
 

IL ρexp 
a / kg·m-3 ρsim / kg·m-3 ΔHvap

sim / kJ·mol-1 ΔHvap
exp / kJ·mol-1 

[BMIM][SCN] 1069.5  1082.0 123.0 114.5 - 148 b) 
[BMIM][DCA] 1060.3  1026.5 125.3 157.2 c) 
[BMIM][TCN] 1047.5  1030.6 140.4 155.6 d) 
[EMIM][TCB] 1036.1  1054.8 133.4 137.5 e) 

 
a) Taken from C. M. S. S. Neves et al., J. Phys. Chem. B, 2013, 117, 10271–10283. 
b) Taken from A. Marciniak et al., Int. J. Mol. Sci., 2010, 11, 1973-1990. 
c) Taken from V. N. Emel’yanenko et al., J. Am. Chem. Soc., 2007, 129, 3930-3937. 
d) Taken from S. P. Verevkin et al., Angew. Chem., 2008, 120, 5149–5152. 
e) Taken from K. Fumino et al., Chem.Phys,Chem, 2010, 11, 1623-1626. 
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Appendix	  D	  
 

Tables 

Table D.1 - Computed density as a function of glucose concentration estimated using TIP3P water 
model, and with OPLS FF for some selected glucose mole fractions, at 303.15 K. Values in 
parentheses denote uncertainty related to the computational estimation. 
 

xglucose ρexp a)/ kg.m-3 ρTIP3P b)/ kg.m-3 AAD % 
0.034 1081.8 1071.5 0.95 
0.076 1125.7 1144.9 1.71 
0.200 1177.7 1252.7 6.36 
xglucose ρexp a)/ kg.m-3 ρOPLS

 c) / kg.m-3 AAD % 
0.034 1081.8 1110.2(±0.2) 2.62 
0.050 1105.0 1151.4(±0.4) 4.20 

 
a) Comesaña et al., J. Chem. Eng. Data, 2003, 362-366 
b) Jorgensen et al., J. Chem. Phys., 1983, 79, 926–935 
c) Damm et al., J. Comput. Chem., 1997, 18, 1955–1970 

Table D.2 – Fitting parameters and decay times obtained using equation 3.4.2 of the Chapter 3.4. 
 

xglucose A α τ1 τ2 
0.034 1540.42 2.39E-03 3.73E-02 6.17E-04 
0.050 1240.70 2.11E-03 8.83E-02 1.08E-03 
0.076 986.376 4.42E-02 9.38E-03 1.63E-03 
0.110 1249.15 4.47E-02 3.83E-02 2.56E-03 
0.150 1245.33 8.42E-02 5.25E-02 5.43E-03 
0.200 1649.77 1.75E-01 5.67E-02 4.53E-03 

 
 
Table D.3 - Experimental and computational viscosity values estimated using OPLS FF for some 
selected glucose mole fractions, at 313.15 K. Values in parentheses denote uncertainty related to the 
computational estimation. 
 

xglucose ηexp
 a)/ mPa.s ηOPLS

b)/ mPa.s AAD % 
0.034 1.205 1.308(±0.181) 8.55 
0.050 1.475 1.980(±0.230) 34.24 

a) Comesaña et al., J. Chem. Eng. Data, 2003, 362-366 
b) Damm et al., J. Comput. Chem., 1997, 18, 1955–1970 

Table D.4 - Coordination number (Z) from the RDF peaks for water-water interactions, at each 
mixture considered. 
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xglucose reference_atom atom2 Z 
0.034 

OW OW 

4.78 
0.050 4.51 
0.076 4.19 
0.110 3.88 
0.150 3.36 
0.200 2.99 

 

Table D.5 - Coordination number (Z) from the RDF peaks for glucose-glucose interactions, at each 
mixture considered. 

xglucose reference_atom atom2 Z 

0.034 O1 
HO3 0.02 
HO6 0.02 
HO4 0.02 

0.050 O1 
HO3 0.02 
HO6 0.03 
HO4 0.03 

0.076 O1 
HO3 0.04 
HO6 0.05 
HO4 0.04 

0.110 O1 
HO3 0.05 
HO6 0.05 
HO4 0.05 

0.150 O1 
HO3 0.07 
HO6 0.07 
HO4 0.07 

0.200 O1 
HO3 0.09 
HO6 0.09 
HO4 0.08 

 

Table D.6 – Values for the hydrogen bonds established between glucose and water molecules and for 
water with water molecules. 

xglucose 
H-Bonds water-

water 
(per water basis) 

H-Bonds glucose-
water 

(per glucose basis) 
0.034 1.49 8.04 
0.050 1.43 7.58 
0.076 1.36 7.19 
0.110 1.23 6.45 
0.150 1.18 6.12 
0.200 0.96 5.00 
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Table D.7 – Experimental and computational densities (ρ) for different glucose+water mixtures at 
303.15 K. Values in parentheses denote the uncertainties (the standard deviation) estimated with the 
calculated results applying the scaling factor 0.8 to atomic charges. AAD represents the absolute 
deviations of the simulated data from the experimental values. 

xglucose ρexp
a)/ kg.m-3 ρsim / kg.m-3 AAD % 

0.034 1081.8 1068.1 1.27 
0.050 1105.0 1091.7 1.20 
0.076 1125.7 1121.4 0.39 
0.110 1144.6 1145.9 0.11 
0.150 1161.9 1172.2 0.89 
0.200 1177.7 1196.1 1.56 

 
a) Comesaña et al., J. Chem. Eng. Data, 2003, 362-366 

Table D.8 – Experimental and calculated viscosities (η) by applying the scaling factor 0.8 to atomic 
charges, at 313.15 K. Values in parentheses denote uncertainties estimated accordingly to equation 
3.4.3. AAD represents the absolute deviations of the simulated data from the experimental values. 

xglucose ηexp
a)/ mPa.s ηsim/ mPa.s AAD % 

0.034 1.205 0.781 35.20 
0.050 1.475 1.075 27.11 
0.076 1.804 1.412 21.71 
0.110 2.182 2.371 8.68 
0.150 2.660 2.716 2.09 
0.200 3.175 4.030 26.93 

 
a) Comesaña et al., J. Chem. Eng. Data, 2003, 362-366 

Figures 
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Figure D.1 - Radial distributions functions (RDFs) for water-water interactions, at six different 
glucose mole fractions and temperature of 313.15 K. RDFs for the systems composed of 6 glucose 
molecules (▬), 9 glucose molecules (▬), 14 glucose molecules (▬), 20 glucose molecules (▬), 29 
glucose molecules (▬) and 42 glucose molecules (▬) are represented in this figure.  

 

Figure D.2 - Radial distributions functions (RDFs) for glucose-glucose interactions, at six different 
glucose mole fractions and temperature of 313.15 K. RDFs for systems composed of 6 glucose 
molecules (▬), 9 glucose molecules (▬), 14 glucose molecules (▬), 20 glucose molecules (▬), 29 
glucose molecules (▬) and 42 glucose molecules (▬).  RDFs for O1-HO3, O1-HO4 and O1-HO6 
interactions are represented in this figure. 
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Appendix	  E	  
 

Table E.1 - Atomic charges for [EMIM][SCN]. 

[EMIM][SCN] 

 

atom charge / e 
C4 -0.17967 
N1 0.09864 
C2 0.08288 
N3 -0.05516 
C5 -0.12135 
C6 -0.04704 
C7 0.25101 
H2 0.17728 
H3 0.18593 
H1 0.14445 
H6 0.07377 
H8 -0.00559 
H7 -0.00559 
H5 0.07377 
H4 0.07377 
C8 0.04155 

H10 -0.00445 
H11 -0.00445 
H9 -0.00445 
S -0.53746 
C 0.42796 
N -0.6658 

 

  

H1 

C6 C2 

C5 C4 

H3 H2 

H4 

H5 

H6 N1 N3 

H7 

H8 

C7 
C8 

H9 

H10 

H11 

N C 
S 



___________________________________ Appendixes ___________________________________ 
 

 
 

[261] 

Table E.2 - Atomic charges for [EMIM][DCA]. 

[EMIM][DCA] 

 

atom charge / e 
C4 -0.13321 
N1 0.08405 
C2 0.04292 
N3 -0.00529 
C5 -0.14042 
C6 -0.09034 
C7 0.23065 
H2 0.18286 
H3 0.18509 
H1 0.15955 
H6 0.09453 
H8 0.01502 
H7 0.01502 
H5 0.09453 
H4 0.09453 
C8 -0.10889 

H10 0.03440 
H11 0.03440 
H9 0.03440 

N_1 -0.68818 
C_1 0.65334 
N_2 -0.72115 
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Table E.3 - Atomic charges for [EMIM][TCN]. 

[EMIM][TCN] 

 

atom charge / e 
C4 -0.15202 
N1 0.16614 
C2 -0.08743 
N3 0.06418 
C5 -0.14453 
C6 -0.1517 
C7 0.08452 
H2 0.18617 
H3 0.19177 
H1 0.21125 
H6 0.11338 
H8 0.04461 
H7 0.04461 
H5 0.11338 
H4 0.11338 
C8 -0.03404 

H10 0.03131 
H11 0.03131 
H9 0.03131 

C_3 -0.69743 
C_1 0.58754 
N_1 -0.64093 
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Table E.4 - Atomic charges for [EMIM][TCB]. 

[EMIM][TCB] 

 

atom charge / e 
C4 -0.11805 
N1 0.10915 
C2 -0.09005 
N3 0.12574 
C5 -0.16698 
C6 -0.05765 
C7 0.11606 
H2 0.18534 
H3 0.20587 
H1 0.20803 
H6 0.08597 
H8 0.06102 
H7 0.06102 
H5 0.08597 
H4 0.08597 
C8 -0.18562 

H10 0.05837 
H11 0.05837 
H9 0.05837 
B 0.14410 
C 0.22857 
N -0.48632 
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Table E.5 - Atomic charges for [EMIM][Ac]. 

[EMIM][Ac] 

 

atom charge / e 
C4 -0.14278 
N1 0.14751 
C2 -0.02435 
N3 0.05208 
C5 -0.20946 
C6 -0.1634 
C7 0.16798 
H2 0.16331 
H3 0.19426 
H1 0.23379 
H6 0.11395 
H8 0.02647 
H7 0.02647 
H5 0.11395 
H4 0.11395 
C8 -0.04468 

H10 0.02175 
H11 0.02175 
H9 0.02175 
CO 0.95231 
O1 -0.82463 
O2 -0.82463 
CC -0.30958 

HC1 0.05741 
HC2 0.05741 
HC3 0.05741 

 

Table E.6 – Experimental and computational density values for each pure IL addressed in this study, at 
298.15 K. Values in parentheses denote the relative deviations of simulated values from experimental 
values, respectively. 

IL ρexp / kg·m-3 ρsim / kg·m-3 
[EMIM][SCN] 1117.0a 1071.040 (4.1%) 
[EMIM][DCA] 1104.0a 1061.093 (3.9%) 
[EMIM][TCN] 1081.9a 1058.913 (2.1%) 
[EMIM][TCB] 1036.1a 1059.560 (2.2%) 
[EMIM][Ac] 1099.3b 1055.0 (4.0%) 

a Taken from C. M. S. S. Neves et at., J. Phys. Chem. B, 2013, 117, 10271–10283. 
b Taken from M.G. Freire et al., J. Chem. Eng. Data, 2011, 56, 4813-4822.  
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Table E.7 – Experimental values for glucose solubility in different ILs and water, in a temperature 
range of (283.15 – 333.15) K.  

[EMIM][SCN] 
T / K (1/T) / K-1 xglu ln(xglu) 

288.25 0.00347 0.1720 -1.76 
298.15 0.00335 0.1950 -1.63 
318.15 0.00314 0.2390 -1.43 
328.15 0.00305 0.2620 -1.34 

[EMIM][DCA] 
T / K (1/T) / K-1 xglu ln(xglu) 

288.15 0.00347 0.1450 -1.93 
298.15 0.00335 0.1830 -1.70 
318.15 0.00314 0.2700 -1.31 
328.15 0.00305 0.2980 -1.21 

[EMIM][TCN] 
T / K (1/T) / K-1 xglu ln(xglu) 

288.15 0.00347 0.0340 -3.38 
298.15 0.00335 0.0430 -3.16 
318.15 0.00314 0.0590 -2.83 
328.15 0.00305 0.0620 -2.78 

[EMIM][TCB] 
T / K (1/T) / K-1 xglu ln(xglu) 

288.15 0.00347 0.0029 -5.90 
298.15 0.00335 0.0034 -5.70 
318.15 0.00314 0.0042 -5.50 
328.15 0.00305 0.0042 -5.50 

Water 
T / K (1/T) / K-1 xglu ln(xglu) 

283.15 0.00353 0.0648 -2.74 
293.15 0.00341 0.0843 -2.47 
303.15 0.00330 0.1075 -2.23 
313.15 0.00319 0.1446 -1.93 
318.15 0.00314 0.1631 -1.81 
333.15 0.00300 0.2188 -1.52 

[BMIM][SCN] 
T / K (1/T) / K-1 xglu ln(xglu) 

288.15 0.00347 0.1450 -1.93 
298.15 0.00335 0.1700 -1.77 
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318.15 0.00314 0.2090 -1.57 
328.15 0.00305 0.216  -1.53 

[BMIM][DCA] 
T / K (1/T) / K-1 xglu ln(xglu) 

288.15 0.00347 0.1220 -2.11 
298.15 0.00335 0.1470 -1.92 
318.15 0.00314 0.2200 -1.51 
328.15 0.00305 0.2410 -1.42 

 

Table E.8 – Experimental and computational values of density for the mixtures composed of glucose 
and ionic liquids, at 313.15 K. Values in parentheses denote uncertainty related to the computational 
estimation. 

[EMIM][SCN]+Glucose 
xglucose ρexp / kg·m-3 ρsim / kg·m-3 AAD% 
0.004 1110.6  1055.7 (±0.1) 4.56 
0.034 1119.7  1068.6 (±0.1) 4.30 
0.06 1127.3  1078.8 (±0.8) 4.14 
0.1 1143.1  1095.8 (±0.4) 4.94 

[EMIM][DCA]+Glucose 
xglucose ρexp / kg·m-3 ρsim / kg·m-3 AAD% 
0.004 1081.0  1048.4 (±0.5) 2.75 
0.034 1090.3  1060.3 (±0.4) 3.44 
0.06 1109.4  1071.2 (±0.3) 3.21 
0.1 1125.2  1089.0 (±0.2) 3.02 

 

Table E.9 – Experimental and computational values of viscosity for the mixtures composed of glucose 
and ionic liquids, at 313.15 K. Values in parentheses denote uncertainty related to the experimental 
measurements and computational estimation. 

[EMIM][SCN]+Glucose 
xglucose ηexp / mPa.s ηsim / mPa.s AAD% 
0.004 15.065 8.377 (±0.455) 33.57 
0.034 18.667 12.400 (±0.650) 30.08 
0.06 24.132 16.874 (±0.876) 11.08 
0.1 34.482 30.662 (±0.458) 44.40 

[EMIM][DCA]+Glucose 
xglucose ηexp / mPa.s ηsim / mPa.s AAD% 
0.004 5.396 8.291 (±0.549) 92.42 
0.034 6.232 11.990 (±0.586) 1.49 
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0.06 13.964 13.755 (±0.547) 5.94 
0.1 19.107 17.973 (±0.462) 53.65 

 

Table E.10 – Fitting parameters and decay times obtained using equation 3.4.2 of the Chapter 3.4. 

	  
[EMIM][SCN]+Glucose 

xglucose A α τ1 τ2 
0.004 170.46 1.26E-01 7.82E-02 4.50E-02 
0.034 519.63 1.58E-01 1.00E-01 9.49E-03 
0.06 433.69 1.27E-01 1.82E-01 1.82E-02 
0.1 440.34 1.64E-01 2.87E-01 2.73E-02 

  [EMIM][DCA]+Glucose 
xglucose A α τ1 τ2 
0.004 439.44 1.15E-01 9.25E-02 9.97E-03 
0.034 279.01 2.88E-02 4.68E-01 3.06E-02 
0.06 585.59 1.68E-01 1.00E-01 7.99E-03 
0.1 610.15 2.01E-01 1.07E-01 9.83E-03 

 

Table E.11 – Coordination numbers (Z) for the systems composed of glucose with water and 
[EMIM][SCN], [EMIM][DCA] and [EMIM][Ac]. 

WATER 

xglucose=0.034 xglucose=0.060 xglucose=0.100 

Water Water Z r Z Water Water Z r Z Water Water Z r Z 

OW HW 1.75 0.25 OW HW 1.63 0.25 OW HW 1.48 0.25 
                        

Water Glucose Z r Z Water Glucose Z r Z Water Glucose Z r Z 

HW 

OS5     

HW 

OS5     

HW 

OS5     

OH1 1.13 0.25 OH1 0.99 0.25 OH1 0.85 0.25 

OH2 1.16   OH2 1.06   OH2 0.90   

OH3 1.19   OH3 1.09   OH3 0.95   

OH4 1.02   OH4 0.93   OH4 0.83   

OH6 1.35   OH6 1.22   OH6 1.06   
[EMIM][SCN] 

xglucose=0.034 xglucose=0.060 xglucose=0.100 

Anion Cation Z r Z Anion Cation Z r Z Anion Cation Z r Z 

N H1 1.22 0.4 N H1 1.18 0.4 N H1 1.13 0.4 
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Cation Glucose Z r Z Cation Glucose Z r Z Cation Glucose Z r Z 

H1 

OS5 0.49 0.32 

H1 

OS5 0.46 0.32 

H1 

OS5 0.44 0.32 

OH1   0.32 OH1   0.32 OH1   0.32 

OH2 0.48 0.32 OH2 0.50 0.32 OH2 0.44 0.32 

OH3 0.62 0.32 OH3 0.59 0.32 OH3 0.55 0.32 

OH4 0.38 0.32 OH4 0.35 0.32 OH4 0.33 0.32 

OH6 0.53 0.32 OH6 0.51 0.32 OH6 0.49 0.32 
[EMIM][DCA] 

xglucose=0.034 xglucose=0.060 xglucose=0.100 

Anion Cation Z r Z Anion Cation Z r Z Anion Cation Z r Z 

N H1 1.95 0.4 N H1 1.89 0.4 N H1 1.83 0.4 
                        

Cation Glucose Z r Z Cation Glucose Z r Z Cation Glucose Z r Z 

H1 

OS5 0.48 0.32 

H1 

OS5 0.50 0.32 

H1 

OS5 0.46 0.32 

OH1   0.32 OH1   0.32 OH1   0.32 

OH2 0.54 0.32 OH2 0.52 0.32 OH2 0.50 0.32 

OH3 0.65 0.32 OH3 0.61 0.32 OH3 0.56 0.32 

OH4 0.35 0.32 OH4 0.36 0.32 OH4 0.31 0.32 

OH6 0.51 0.32 OH6 0.51 0.32 OH6 0.49 0.32 
[EMIM][Ac] 

xglucose=0.034 xglucose=0.060 xglucose=0.100 

Anion Cation Z r Z Anion Cation Z r Z Anion Cation Z r Z 

O1 H1 2.38 0.4 O1 H1 2.35 0.4 O1 H1 2.28 0.4 
                        

Cation Glucose Z r Z Cation Glucose Z r Z Cation Glucose Z r Z 

H1 

OS5 0.25 0.32 

H1 

OS5 0.20 0.32 

H1 

OS5 0.23 0.32 

OH1   0.32 OH1   0.32 OH1   0.32 

OH2 0.46 0.32 OH2 0.50 0.32 OH2 0.45 0.32 

OH3 0.63 0.32 OH3 0.68 0.32 OH3 0.61 0.32 

OH4 0.34 0.32 OH4 0.41 0.32 OH4 0.34 0.32 

OH6 0.36 0.32 OH6 0.35 0.32 OH6 0.35 0.32 
	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

Anion Glucose Z r Z Anion Glucose Z r Z Anion Glucose Z r Z 

O1 

HO12 1.87 0.26 

O1 

HO12 1.97 0.26 

O1 

HO12 1.89 0.26 

HO8 2.15 0.26 HO8 2.17 0.26 HO8 2.06 0.26 

HO6 1.87 0.26 HO6 1.85 0.26 HO6 1.90 0.26 

HO4 1.93 0.26 HO4 1.95 0.26 HO4 1.85 0.26 
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HO2 2.47 0.26 HO2 2.45 0.26 HO2 2.38 0.26 

 

Figures 

 

Figure E.1 – Radial distributions functions (RDFs) for glucose-water (above row), glucose-
[EMIM][SCN] (middle row) and glucose-[EMIM][DCA] (bottom row) interactions at three 
different glucose mole fraction and a temperature of 313.15 K. RDFs for interaction between 
HW/H1-OS5(▬), HW/H1-OH1(▬), HW/H1-OH2(▬), HW/H1-OH3(▬), HW/H1-OH4(▬),HW/H1-
OH4(▬) are represented in this figure. 
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