
 

Universidade de Aveiro 

2015  

Departamento de Química 

MICKAEL DA COSTA 
SANTOS 
 

ESTUDO DA INFLUÊNCIA DE ALTA PRESSÃO 
HIDROSTÁTICA NAS CARACTERÍSTICAS 
QUÍMICAS E SENSORIAIS DE VINHO 
 
STUDY OF THE INFLUENCE OF HIGH 
HYDROSTATIC PRESSURE ON WINE CHEMICAL 
AND SENSORIAL CHARACTERISTICS  

 

 



   



 

 

Universidade de Aveiro 

2015 

Departamento de Química 

MICKAEL DA COSTA 
SANTOS 
 
 

ESTUDO DA INFLUÊNCIA DE ALTA PRESSÃO 
HIDROSTÁTICA NAS CARACTERÍSTICAS QUÍMICAS 
E SENSORIAIS DE VINHO 
 
STUDY OF THE INFLUENCE OF HIGH HYDROSTATIC 
PRESSURE ON WINE CHEMICAL AND SENSORIAL 
CHARACTERISTICS  
 
 
 

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos 
necessários à obtenção do grau de Doutor em Química, realizada sob a 
orientação científica do Doutor Manuel António Coimbra Rodrigues da Silva, 
Professor Associado com agregação do Departamento de Química da 
Universidade de Aveiro, do Doutor Jorge Manuel Alexandre Saraiva, 
Investigador Auxiliar do Departamento de Química da Universidade de Aveiro e 
da Doutora Cláudia Sofia Cordeiro Nunes, Pós-doutoranda do Departamento 
de Química da Universidade de Aveiro  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Apoio financeiro da Fundação para a 
Ciência e Tecnologia e do Fundo 
Social Europeu no âmbito do III Quadro 
Comunitário de Apoio (Bolsa de 
Doutoramento SFRH/BD/70066/2010).  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Esta dissertação é dedicada aos meus pais, ao meu irmão e à Sónia 

 

 

 

 

 

 

“Tira a mão do queixo não penses mais nisso 

O que lá vai já deu o que tinha a dar 

Quem ganhou ganhou e usou-se disso 

Quem perdeu há-de ter mais cartas pra dar 

E enquanto alguns fazem figura 

Outros sucumbem à batota 

Chega a onde tu quiseres 

Mas goza bem a tua rota 

 

Enquanto houver estrada pra andar 

A gente vai continuar 

Enquanto houver estrada pra andar 

Enquanto houver ventos e mar 

A gente não vai parar 

Enquanto houver ventos e mar 

 

Todos nós pagamos por tudo o que usamos 

O sistema é antigo e não poupa ninguém 

Somos todos escravos do que precisamos 

Reduz as necessidades se queres passar bem 

Que a dependência é uma besta 

Que dá cabo do desejo 

A liberdade é uma maluca 

Que sabe quanto vale um beijo 

 

Enquanto houver estrada pra andar 

A gente vai continuar 

Enquanto houver estrada pra andar 

Enquanto houver ventos e mar 

A gente não vai parar 

Enquanto houver ventos e mar” 

  
 

                                                                             “A gente vai continuar” by Jorge Palma 
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palavras-chave 

 

Alta pressão hidrostática, vinhos tintos e brancos,  propriedades físico-
químicas e sensoriais, conservação, soluções modelo de vinho, compostos 
fenólicos, compostos voláteis, reação de Maillard, envelhecimento do vinho. 

resumo 
 

 

Durante os últimos anos, o uso de alta pressão hidrostática (APH) como 
tecnologia não-térmica para a preservação ou envelhecimento de vinho tem 
aumentado substancialmente na comunidade académica. No entanto, os 
vinhos tratados por APH têm sido analisados após o tratamento de pressão, 
não havendo referências sobre as suas propriedades durante o 
armazenamento. Os resultados apresentados nesta tese mostram que a 
aplicação de tratamentos de APH altera as propriedades químicas e sensoriais 
de vinhos ao longo do armazenamento. 
Os tratamentos de alta pressão hidrostática foram aplicados na vinificação 
para a preservação de vinho, como alternativa ao dióxido de enxofre, sendo o 
seu efeito avaliado nas propriedades físico-químicas e sensoriais de vinhos 
tintos e brancos durante o armazenamento em garrafa. Os tratamentos de alta 
pressão com 5 min de processamento e pressões de 425 e 500 MPa 
mostraram influenciar as características físico-químicas e sensoriais de vinhos 
tintos e brancos. No entanto, o efeito foi apenas percetível após pelo menos 6 
meses de armazenamento. As alterações que ocorreram nas características 
do vinho tinto pressurizado, tais como a cor mais laranja-vermelho, menor 
atividade antioxidante (menos 15 a 27%), menor conteúdo de compostos 
fenólicos totais (menos 9%) e menor teor de antocianinas (menos 45-61%), 
foram devidas a um aumento das reacções de condensação de compostos 
fenólicos. O aumento destas reações de condensação levou à formação de 
compostos com maior grau de polimerização que se tornaram insolúveis no 
vinho ao longo do armazenamento, aumentando consequentemente a 
quantidade de depósito nos vinhos pressurizados. Em relação ao vinho 
branco, os vinhos pressurizados mostraram, depois de um ano de 
armazenamento, uma cor mais acastanhada, menor atividade antioxidante 
(menos 15%) e menor teor de compostos fenólicos totais (menos 10%) 
comparando com os vinhos não pressurizados. Estes resultados, juntamente 
com o baixo teor de aminoácidos livres (menos 15 a 20%) e um maior teor de 
furanos (até 70% mais) para os vinhos pressurizados após nove meses de 
armazenamento, levam a propor que os tratamentos de APH aceleraram as 
reações de Maillard que ocorrem durante o período de armazenamento do 
vinho.  
No entanto, ao contrário dos vinhos tintos pressurizados, os vinho brancos 
pressurizados não foram considerados adequados para comercialização como 
vinhos de mesa, visto que apresentavam uma cor acastanhada e um elevado 
aroma a fruta cozida, características estas de vinhos envelhecidos ou tratados 
termicamente. 
 
 

 



 



 

 

 
 
 

 

 
Adicionalmente, foi avaliado o impacto dos tratamentos de APH sobre a 
composição volátil dos vinhos tintos e brancos sem dióxido de enxofre durante 
o armazenamento em garrafas. Mais de 160 compostos voláteis, distribuídos 
por 12 grupos químicos, foram identificados em ambos os vinhos. No final do 
armazenamento, os vinhos pressurizados apresentaram um teor mais elevado 
de furanos, aldeídos, cetonas e acetais quando comparados com os vinhos 
não pressurizados. Estes resultados indicam que os tratamentos de APH 
influenciam a composição volátil de vinhos brancos e tintos, , sendo mais 
evidente em longos períodos de armazenamento. As mudanças na 
composição volátil dos vinhos indicaram que os tratamentos de APH 
aceleraram as reações de Maillard e também a oxidação de álcoois e ácidos 
gordos, originando vinhos com uma composição volátil próxima de vinhos com 
envelhecimento acelerado ou tratados termicamente. 
A aceleração das reações de Maillard e de polimerização dos compostos 
fénolicos causada pelos tratamentos de APH foi também estudada em 
soluções modelo de vinho (solução hidroalcoólica com pH ácido). Os 
resultados mostraram que o tratamento de APH acelera a reação de Maillard , 
sendo este efeito quantificado, apenas, após 6 meses de armazenamento. As 
soluções modelo de vinho pressurizadas apresentaram concentrações mais 
elevadas de 2-furfuraldeído, fenilacetaldeído e benzaldeído, em comparação 
com os controlos. Em termos de polimerização dos compostos fénolicos, as 
soluções modelo pressurizadas não apresentaram diferenças relevantes, em 
comparação com os controlos. Por conseguinte, os tratamentos de APH 
aparentem ter mais impacto em termos de modificações nas cineticas de 
reação do que na formação de novos compostos. 
Por último, a aplicação de tratamentos de APH foi estudada para melhorar as 
propriedades de vinhos jovens. Para este propósito, o efeito de tratamentos de 
APH na composição fenólica de um vinho tinto foi estudado e comparado com 
o efeito de diferentes práticas enológicas. Vinhos pressurizados a 500 MPa 
durante 5 min e a 600 MPa durante 20 min, a 20 ºC, mostraram depois de 5 
meses de armazenamento um menor teor de antocianinas monoméricas (8-
14%), ácidos fenólicos (8-11%) e flavonóis (14 -22%), quando comparados 
com os vinhos não-pressurizados. O vinho pressurizado a 500 MPa 
apresentou um teor de flavonóis e um grau de polimerização de taninos muito 
semelhante aos vinhos tratados por processos de envelhecimento tradicionais. 
Em termos de propriedades sensoriais, os tratamentos de pressão 
aumentaram o aroma de fruta cozida e diminuiram os aromas florais e 
frutados, tendo no caso do tratamento de 600 MPa sido verificado também um 
aumento da amargura. Assim sendo, os tratamentos de APH parecem 
promover reações que são semelhantes às observadas em vinhos tratados 
com processos de envelhecimento em madeira. 
Em conclusão, os resultados apresentados nesta tese mostram que a 
aplicação de tratamentos de APH acelera as reações de Maillard e a 
polimerização dos compostos fenólicos presentes no vinho, ao longo do 
armazenamento, alterando assim as propriedades químicas e sensoriais dos 
vinhos. A APH pode ser potencialmente utilizada para preservar ou acelerar o 
processo de envelhecimento de vinho tinto produzindo vinhos com 
características agradáveis e distintas. 
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abstract 
 

During the last years, the use of high hydrostatic pressure (HHP) as a non-
thermal technology for preservation or aging of wine has increased 
substantially in the academic community. However, HHP treated wine has been 
only analysed after the pressure treatment, with no knowledge available on the 
effects of HHP during subsequent storage. The results presented in this thesis 
showed that HHP treatments influence the chemical and sensorial properties of 
wine during storage. 
The application of high hydrostatic pressure treatments in winemaking for wine 
preservation, as an alternative to sulphur dioxide, was evaluated studying the 
effect of HHP in the physicochemical and sensorial properties of red and white 
wines during bottle storage. High pressure treatments with 5 min of processing 
time and pressures of 425 and 500 MPa were shown to influence on both red 
and white wine physicochemical and sensorial characteristics. However, the 
effects were only perceptible after, at least, 6 months of storage. The 
alterations that occurred on the pressurized red wine characteristics, such as 
the more orange-red colour and the lower antioxidant activity (15-27% less), 
total phenolic content (9% less), and anthocyanins content (45–61% less), 
were due to an increase of condensation reactions of phenolic compounds. The 
increase of these condensation reactions lead to the formation of compounds 
with higher degree of polymerisation that became insoluble along storage, 
increasing consequently the amount of wine deposits in the pressurized wines. 
In terms of white wines, pressurized wines showed, after one year of storage, a 
more brownish colour and a lower antioxidant activity (15% less) and total 
content of phenolic compounds (10% less) when compared to the 
unpressurized wines. These results, together with the lower content of free 
amino acids (15-20% less) and higher content of furans (up to 70% more), 
present in the pressurized wines after nine months of storage, led to propose 
an effect of HHP treatments in the acceleration of Maillard reactions that occur 
during the wine storage period. Therefore, contrary to the pressurized sulphur 
dioxide-free red wine, the pressurized white wines were not considered suitable 
for commercialization as table wines due to the higher brownish colour and 
cooked fruit aroma, characteristics of an aged or thermally treated wine. 





 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 
 

 

Additionally, the impact of the pressure treatments on the volatile composition 
of sulphur dioxide-free red and white wines, during bottle storage, was 
evaluated. More than 160 volatile compounds, distributed by 12 chemical 
groups, were identified in both wines. At the end of storage, the pressurized 
wines presented a higher content of furans, aldehydes, ketones, and acetals 
when compared to the unpressurized wines. These results indicate that 
pressure influences the white and red wine long term volatile composition, 
being this particularly evident for longer storage periods. The changes on the 
volatile composition of the pressurized wines, indicated that the HHP 
treatments accelerate the Maillard reactions, and the oxidation of alcohols and 
fatty acids, leading to wines with a volatile composition network approaching 
the characteristic of faster aged and/or thermally treated wines. 
The acceleration of Maillard reactions and phenolic compounds condensation 
by HHP treatments was also studied in model wine solutions (hydro alcoholic 
solution at acidic pH). The results showed that the high pressure treatment 
accelerated the Maillard reaction and this effect was quantifiable, mainly, after 
6 months of storage. Pressurized model solutions presented higher 
concentration of 2-furfural, phenylacetaldehyde and benzaldehyde, when 
compared to the controls. In terms of phenolic compounds condensation 
reactions, the pressurized model wine solutions showed no relevant 
differences, when compared to controls. Therefore, it seems that the pressure 
treatment had a higher impact in terms of kineticks of reactions and in less 
extent in terms of different compounds formed. 
Lastly, the application of HHP treatments in winemaking to improve the 
properties of young wines was evaluated. For this propose, the effect of HHP 
treatments in the phenolic composition of a red wine was studied and 
compared with the effect of different oenological practices. Wines pressurized 
at 500 MPa for 5 min, and 600 MPa for 20 min, at 20 ºC, showed, after 5 
months of storage, a lower monomeric anthocyanins (8-14%), phenolic acids 
(8-11%) and flavonols (14-22%) content, when compared to the unpressurized 
ones. The wine pressurized at 500 MPa presented a flavanols content and a 
degree of polymerization very similar to the wines treated by traditional aging 
processes. In terms of sensorial properties, the pressure treatments increased 
the cooked fruit aroma and decreased the floral and fruit odours and, in the 
case of the 600 MPa treatment, increased the bitterness. Therefore, the HHP 
treatments seem to promote reactions that are similar to those observed in 
wines treated with wood aging processes.  
In conclusion, the results presented in this thesis showed that HHP treatments 
accelerated the Maillard reaction and the polymerization reactions between 
phenolic compounds present in the wine, influencing the chemical and 
sensorial properties of wine. HHP can be potentially used to preserve or 
accelerate the wine aging process, producing wines with pleasant and distinct 
characteristics.  
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Heated Sample heated at 60 ºC during 5 minutes 
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process 
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Glx Glutamic acid + glutamine 
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Leu Leucine 

Lys Lysine 

Phe Phenylalanine 

Pro Proline 

Ser Serine 

Thr Threonine 

Tyr Tyrosine 

Val Valine 
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Anthocyanins  

Cy3AcGlc Cyanidin-3-O-(6-O-acetyl)-glucoside 

Cy3Glc Cyanidin-3-O-glucoside 

Dp3AcGlc Delphinidin-3-O-(6-O-acetyl)-glucoside, 

Dp3Glc Delphinidin-3-O-glucoside 

Mv3AcGlc Malvidin-3-O-(6-O-acetyl)-glucoside 

Mv3CmGlc Malvidin-3-O-(6-O-p-coumaryl)-glucoside 

Mv3Glc Malvidin-3-O-glucoside 

Pn3AcGlc Peonidin -3-O-(6-O-acetyl)-glucoside 

Pn3CmGlc Peonidin-3-O-(6-O-p-coumaryl)-glucoside 

Pn3Glc Peonidin-3-O-glucoside 

Pt3AcGlc- Petunidin-3-O-(6-O-acetyl)-glucoside 

Pt3Glc Petunidin-3-O-glucoside 

Other abbreviations used  

ΔE* Colour differences between two samples 

ΔV Volume change of the process (cm3.mol-1) 

%P Percentage of prodelphinidins 

%PP Percentage of polymerized pigments 

1tR Retention time for first dimension 

2tR Retention time for second dimension 

a* Red-green value 

Anth Anthocyanins 

AOA Antioxidant activity 

a. u. Arbitrary units 

b* Yellow-blue value 

Bl% Contribution of blue coloration to the overall colour of wine 

BHT 3,5-di-tert-butyl-4-hydroxytoluene 
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C*ab Chroma 

CI Colour intensity 

dA% 
Coloration produced by free and bound anthocyanins under 

their flavylium cations form 

DVB/CAR/PDMS Divinylbenzene/carboxen/polydimethylsiloxane 

e.g exempli gratia/for example 

et al et alii/and others 

EGC (-)-Epigallocatechin 

ESI-MS Electrospray ionization mass spectrometry  

ESI-MSn Electrospray ionization tandem-mass spectrometry  

FID Flame ionisation detector 

GC Gas chromatography 

GC x GC-ToFMS 
Comprehensive two dimensional gas chromatography–time-

of-flight mass spectrometry 

hab Hue 

HHP High hydrostatic pressure 

HPLC High Performance Liquid Chromatography 

HS-SPME Headspace solid phase microextraction 

IEC Ion extraction chromatography 

L* Lightness 

LAB Lactic acid bactéria 

MA Monomeric anthocyanins 

mDP Mean degree of polymerization 

min Minute/ minutes 

MVC Maillard derived volatile compounds 

MS Mass spectrometry 

m/z Mass-to-charge ratio 

PCA Principal component analysis 
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PPO Polyphenoloxidase 

Rd% Contribution of red coloration to the overall colour of wine 

RI Retention index 

RSD Relative standard deviation 

SIM Selected ion monitoring 

SPME Solid-phase microextraction 

TDN 1,1,6-trimethyl-1,2-dihydronaphthalene 

TEAC Trolox equivalent antioxidant capacity 

TIC Total ion chromatograms 
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I.1 High pressure as a food processing technology 
 

Consumers demand high quality and convenient products with the natural flavour, 

taste and appearance of minimally processed food. Besides, they look for safe and natural 

products without additives, such as preservatives and water activity depressors. In order 

to harmonize or blend all these demands without compromising the safety of the products, 

it is necessary to implement novel preservation technologies in the food industry (Rastogi 

et al., 2007). 

Therefore, several alternatives or novel food processing technologies, without the 

use of heat, are being explored in order to provide safe, fresh-tasting, and nutritive foods. 

The most used non-thermal processing technologies are presented in Table I.1. 

 

Table I.1. Non-thermal food processing methods, adapted from Welti-Chanes et al., (2002). 

Process Description Mechanism of inactivation 

Ultrasound 
Energy generated by sound waves of 20,000 Hz or 

more. 

Intracellular cavitation (disruption 

of cellular structure and functional 

components up cell lysis). 

UV-light/pulsed 

light 

Intense and short-duration pulses of broad spectrum 

(ultraviolet to the near infrared region); UV radiant 

exposure, at least 400 J/m2. 

DNA mutations. 

Pulsed electric 

field (PEF) 

High voltage pulses between two electrodes (<1 s; 

20–80 kV/cm; exponentially decaying, square wave, 

bipolar, or oscillatory pulses at ambient, sub-ambient, 

or above ambient temperature). 

Electroporation of cell membranes 

and increase in permeability. 

High pressure 

processing  

Pressurization  at 100–1000 MPa, below 0 ºC to >100 

ºC, from a few seconds to over 20 min. 

Breakdown of biological 

membranes; denaturation of 

enzymes and proteins; cellular mass 

transfer affected. 

 

 One emerging technology receiving a great deal of attention is high hydrostatic 

pressure (HHP), not only because of its food preservation capability, but also because of 

its potential to achieve interesting functional effects. Particularly for certain products, the 

application of HHP processing has shown considerable potential as an alternative 
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technology to heat treatments, in terms of assuring quality attributes in minimally 

processed food products (Welti-Chanes et al., 2002).  

Studies examining the effects of high pressure on foods date back to beginning of 

the twenty century. Hite et al., (1914) were the first to report the effects of HHP on food 

microorganisms by subjecting milk to pressures of 650 MPa, obtaining a decrease in the 

viable number of microorganisms. However, the use of high pressure in food processing 

is an extension of a technology that is commonly employed in many other industrial 

processes, notably in the manufacturing of ceramics, diamonds, super-alloys, simulators, 

and sheet metal forming (Yaldagard et al., 2008). The advances achieved in ceramics and 

metallurgical industries in the use of HHP techniques during the 1970s and 1980s has led 

to the possibility of treating food by this method at industrial level (Yaldagard et al., 

2008).  

The preservation of food by high pressure only became a commercial reality in 

the last 20 years. The commercial interest of the food industry has occurred first in Japan, 

in April 1990, with the introduction on the Japanese retail market of a high-acid jam. In 

1991, yogurts, fruit jellies, salad dressings, and fruit sauces were also introduced. Also, 

two Japanese fruit juice industries installed a semi-continuous high pressure equipment 

for citrus juice bulk processing. Only 5 years later, started appearing pressurized food 

products in the Europe and United States market (Enrique et al. 2007; Tewari 2003).  

From its early beginnings, revenues from high pressure processed foods are 

evaluated as more than $2 billion annually. Today, the range of commercially available 

foods includes various fruit juices and meats in Europe, guacamole and oysters in the 

USA, and an extensive range of products in Japan, including rice cakes and fruit juices 

amongst a growing number of other products (Schaschke 2011). 

 Therefore, recent equipment advances, successful commercialization of high 

pressure products, and a consumer demand for minimally processed, high quality, and 

safe foods, lead to the research interest in high pressure technology has increased in the 

last years. This interest allowed a more detailed knowledge of the effect of high pressure 

on the food constituents and its influence on food quality parameters.This knowledge lead 

to the optimization of process parameters and, at the same time, the production of food 

products with better quality (Castro 2007). 
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I.1.1 High pressure principles and equipment  

There are two principles that describe the effect of high pressure: one is based on 

the Le Chatelier’s principle and the other on the isostatic principle.  

The one based on the Le Chatelier’s principle states that any phenomenon in 

equilibrium (chemical reaction, phase transition, and change in molecular configuration), 

accompanied by a decrease in volume, can be enhanced by pressure (Ramirez et al. 2009). 

The effect of pressure on a physicochemical process at equilibrium is governed by the 

volume change of the process (ΔV, cm3.mol-1). The volume change (ΔV) can be related 

to the reaction equilibrium constant K as follows: 

  

Δ𝑉 = −RT (
∂lnK

∂P
)

T
 

where P the pressure applied (MPa); T the absolute temperature (K); R the universal gas 

constant (8.314 cm3.MPa.mol-1.K-1) and K, the equilibrium constant. The subscript T 

means that the process occurs at constant temperature. So, the application of high pressure 

favors reactions that generate a decrease in volume and generally retard reactions that 

involve volume increases. Most of the biochemical reactions result in changes in volume; 

consequently, biological processes are influenced by the application of pressure. The 

reactions strongly affected by pressure generally include reactants and products that differ 

in the number of groups that can be ionized. When the charge number does not change, 

the reaction is basically independent of pressure. In aqueous systems, a decrease in 

volume is generally a factor when the dissociation reactions yield an increase in the 

number of groups that can be ionized. This is generally caused by the electrostriction of 

water near the ions. Pressure tends to dissociate electrostatic interactions in such a way 

that more ions are exposed to water (Welti-Chanes et al., 2005).  

The HHP affects substantially non-covalent bonds (hydrogen, ionic, and 

hydrophobic bonds), which means that low molecular weight food components 

(responsible for nutritional and sensory characteristics) are normally less affected, 

whereas high molecular weight components (since tertiary structure is important for 

functionality) are sensitive to HHP (Tewari 2003). 

The isostatic principle describes that the transmittance of pressure through the 

food is uniform and instantaneous, independently of the size and geometry of food 

(Tewari 2003). This is the major advantage of processing by HHP in relation to heat 

(1) 
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treatment, in which the distribution of temperature is not uniform and it is necessary to 

increase the temperature treatment to achieve the desirable temperature inside the food, 

causing quality loss on the final product. The increase of pressure during processing leads 

to a uniform increase of food temperature due to adiabatic heating. The magnitude of this 

temperature increase depends on the initial temperature of the product and its 

composition. Water increases about 3 ºC for an increase of 100 MPa, whereas for greasy 

food the temperature can increase 6 ºC per 100 MPa (Balasubramanian and 

Balasubramaniam, 2003).  

 High pressure can be generated by direct or indirect compression. Direct 

compression is generated by pressurizing a medium with the small diameter end of a 

piston. The large diameter end of the piston is driven by a low-pressure pump. This 

method allows very fast compression (Enrique et al., 2007). 

 Indirect compression uses a high-pressure intensifier to pump a pressure medium 

from a reservoir into a closed high-pressure vessel until the desired pressure is reached 

(Figure I.1) (Singh 2001). Generally, the level of pressure ranges from 100 to 1000 MPa 

and the pressure-transmitting medium is water, usually combined with mineral or 

vegetable oil for lubrication, with anticorrosive aims (Welti-Chanes et al., 2005). Once 

the desired pressure is reached, it is maintained at that level and does not require more 

energy. After the required time has elapsed, the system is depressurized, the vessel opened 

and the product unloaded. The temperature inside the chamber can be controlled using 

cooling jackets or an internal heat exchanger in the pressure vessel or by recirculation of 

the cooling/heating medium (Welti-Chanes et al., 2005).  

As far as it concerns the industrial high pressure treatment, it can be applied as 

batch or as semi-continuous process. The selection of equipment depends on the kind of 

food product to be processed. Solid food products or food with large solid particles can 

only be treated in a batch mode. Liquids, slurries or other pumpable products have the 

additional option of semi-continuous production (Welti-Chanes et al., 2005). In batch 

process, the risk of food contamination with the equipment is eliminated because the 

product is placed inside plastic containers, and once the treatment is finished, the 

containers are removed and the equipment does not require cleaning (Zimmerman and 

Bergman, 1993).  



CHAPTER I.  
  

7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 HHP processing requires airtight packages that can withstand a change in volume 

corresponding to the compressibility of the product, as foods decrease in volume as a 

function of the pressure applied, while an equal expansion occurs on decompression 

(Hugas et al., 2002). For this reason, the packaging used for HHP treated foods must be 

able to accommodate up to a 15 % reduction in volume and return to its original volume 

without loss of seal integrity or barrier properties (Norton and Sun, 2007). 

  

I.1.2 Effect of high pressure on microorganisms  

The effectiveness of any food preservation technique is primarily evaluated on the 

basis of its ability to eradicate pathogenic microorganisms present, enhancing the product 

safety. The secondary objective is inactivation of spoilage microorganisms to improve 

the shelf-life of the food (McClements et al., 2001). The growth of microorganisms in 

foods can cause spoilage by producing unacceptable changes in taste, flavour, 

appearance, and texture. As a food preservation method, the effectiveness of HHP in 

destroying foodborne microorganisms depends on a number of intrinsic and extrinsic 

factors that must be taken into account when optimizing pressure treatments for particular 

foods (Patterson et al., 2007).  

 

Heating/Cooling 

Pre-packed products 

Pressure enclosure 

water inlet 

water outlet 

Pressure releasing 

valves 

HP pump 

LP pump 

Pressure 

vessel 

Figure I.1- Typical high-pressure processing system, with indirect compression for treating 

pre-packaged foods, adapted from Fernández de Simón et al., (2014); Sun et al., (2013). 
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The patterns of HHP inactivation kinetics observed for different microorganisms 

are quite variable. Some authors observed a change in the slope and a two phase 

inactivation phenomenon, the first fraction of the population being quickly inactivated, 

whereas the second fraction appears to be much more resistant (Enrique et al., 2007; 

Erkmen 2009). In general, the pressure resistance increases from bacterial vegetative cells 

< yeasts < ascospores < bacterial spores (Patterson et al., 2007). The nature of food is 

also important, as it may contain substances which might protect the microorganism from 

pressure damage. Microbial inactivation by high pressure has been extensively studied 

and has been concluded to be the result of a combination of factors.  

In the inactivation of microorganisms by high pressure, the membrane is the most 

probable site of disruption. It was suggested that the structural impact of the HHP on yeast 

cells occurred directly in the membrane system, particularly in the nuclear membrane 

(Shimada et al., 1993). High pressure seems to damage the molecular organization of the 

lipid-peptide complex by disrupting the phospholipidic acid bilayer membrane structure. 

Intracellular fluid compounds have been found in the cell suspending fluid after high 

pressure treatment demonstrating that leaks occur when cells are held under pressure 

(Perrier-Cornet et al., 1999; Shimada et al., 1993). Some functionalities of the membrane 

such as active transport or passive permeability can suffer alteration with the membrane 

damage and, therefore, perturb the physicochemical balance of the cell (Perrier-Cornet et 

al., 1995). Besides membrane damage, a decrease in pH due to the enhancement of the 

ionic dissociation occur due to electrostriction during high pressure treatments (Yuste et 

al., 2001). Other structures inside the cell have also been proposed as potential key targets 

for inactivation by high pressure, since many organelles such as the nucleous, 

mitochondria, endoplasmatic reticulum, Golgi apparatus, and lysosomes or vacuoles are 

all enveloped by membranes (Rendueles et al., 2011). However, inactivation of key 

enzymes, including those involved in DNA replication and transcription, is also 

mentioned as a possible inactivation mechanism (Patterson 2005). 

Treating food samples using HHP can destroy both pathogenic and spoilage 

microorganisms. However, there is a large variation in the pressure resistance of different 

bacterial strains and the nature of the medium can also affect the response of 

microorganisms to pressure (Rendueles et al., 2011). The stage of growth of the bacteria 

is also important in determining pressure resistance, with cells in the stationary phase 

being more resistant than those in the exponential phase (McClements et al., 2001). Also, 
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Gram-positive and Gram-negative bacteria differ significantly in terms of the chemical 

structure of their cell walls. The cell walls of Gram-negative bacteria are significantly 

weaker and consequently tend to be more pressure-sensitive than Gram-positive bacteria 

(Rendueles et al., 2011). The elimination of bacterial endospores from food represents, 

probably, the greatest food processing and food-safety challenge to the industry. It is well 

established that spores are the most pressure-resistant life forms known, and so, only very 

high pressures (>800MPa) can eliminate bacterial spores at ambient temperatures 

(Eamonn et al., 2005).  

Yeasts are generally relatively sensitive to pressure, therefore treatment at 

pressures less than 400 MPa for a few minutes is sufficient to inactivate most yeasts. 

However, some strains within species have exhibited a lower rate at pressures of 500 MPa 

(Eamonn et al., 2005; Patterson 2005). Smelt (1998) reported that, at about 100 MPa, the 

nuclear membrane of yeasts was affected and more than 400–600 MPa further alteration 

occurred in the mitochondria and the cytoplasm.  

 

I.1.2.1 Factors influencing microbial sensitivity to high pressure  

As stated, the pressure resistance of microorganisms varies considerably, 

depending on factors such as species, strain, stage of growth, and food composition. The 

factors that can affect the response of microorganisms to pressure must be considered,in 

order to optimize the treatments to assure microbiological safety (Eamonn et al., 2005). 

Many food constituents appear to protect microorganisms from the effects of high 

pressure (Matser et al., 2004; Rendueles et al., 2011; Van Opstal et al., 2004). Therefore, 

it is important to evaluate HHP treatments for each case.  

 

pH  

The pH of the food is one of the main factors affecting the growth and survival of 

microorganisms, therefore all microorganisms have a pH range in which they can grow 

and an optimum pH at which they grow quicker (Eamonn et al., 2005). Bacterial spores 

are generally most resistant to the direct effects of pressure treatment at neutral pH (Smelt 

1998). At acidic pH values, for most species, the extent of pressure-induced inactivation 

will generally be enhanced and the recovery of injured cells inhibited. Compression of 

foods during HHP treatment may shift the pH of the food as a function of the applied 



 CHAPTER I.   

  
 

10 
 

pressure, and so the direction of pH shift and its magnitude must be taken into account 

for each food treatment process (Matser et al., 2004; Norton and Sun, 2007).  

 

Water activity (aw)  

Water in the liquid state is essential for the existence of all living organisms. 

Lowering the water activity (aw) of food can significantly influence the growth of food 

spoilage or food-poisoning organisms that may be present in the raw materials or 

introduced during processing (Eamonn et al., 2005).  

The decrease of aw appears to protect microorganisms against inactivation by 

HHP. The resistance to inhibition at low aw values may be attributed to cell shrinkage, 

which probably causes a thickening in the cell membrane that reduces membrane 

permeability and fluidity (Linton et al., 2000). The increased baroresistance of 

microorganisms at low aw may also be attributed to partial cell dehydration due to the 

osmotic pressure gradients between the internal and external fluids, which may result in 

smaller cells and thicker membranes, and an increased pressure resistance (Palou et al. 

1997). However, recovery of sub-lethally injured cells can be inhibited by low aw (Smelt 

1998). Consequently, the net effect of water activity on microbial inactivation by HHP 

treatment may be difficult to predict.  

 

Temperature  

Increasing temperature will generally increase the number of microorganisms 

inactivated. While many HHP processes are performed at ambient temperature, 

increasing or, to a lesser extent, decreasing temperature has been found to increase the 

inactivation rate of microorganisms during high pressure treatment (Knorr 1993). 

Temperatures above 45–50°C increase the rate of HHP inactivation of food pathogens 

and spoilage microbes (Welti-Chanes et al., 2005). Hashizume et al., (2014)  reported 

that S. cerevisiae cells were more effectively inactivated by high-pressure treatments at 

elevated (40°C) or subzero (0°C and -20°C) temperatures. The decrease in resistance to 

pressure by vegetative cells at low temperatures (-5°C) may be due to changes in the 

membrane structure and fluidity, weakening of hydrophobic interactions, and 

crystallization of phospholipids (Rendueles et al., 2011).  
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Pressure and holding time  

Generally, an increase in pressure increases microbial inactivation. However, 

increasing the duration of the treatment does not necessarily increase the lethal effect. 

Above 200–300 MPa, the inactivation ratio of vegetative cells increases with process time 

(Rendueles et al., 2011).  

As mentioned before, the microbial response to high pressure treatments depends 

on the type of microorganism. Welti-Chanes et al., (2005) reported several examples of 

microorganisms that demonstrated different resistances to pressure. For example, to 

achieve four decimal reductions with 10 min of treatment, S. cerevisiae and Aspergillus 

awamori required 250 MPa, whereas Aspergillus niger required 400 MPa in the same 

medium (mandarin juice). For each microorganism, there is a pressure-level threshold 

beyond which no effects are detected by increasing the exposure time.  

There is a minimum critical pressure below which microbial inactivation by high 

pressure will not take place regardless of process time. Important processing parameters 

to be considered in HHP are the come-up times (period necessary to reach the treatment 

pressure) and pressure-release times (Eamonn et al., 2005).  

 

I.1.3 Effect of high pressure on proteins and enzymes  

Proteins are usually denatured by high pressure. However the protein type, 

processing conditions and pressures applied are all important considerations. Generally, 

at low protein concentrations and low pressures (<300 MPa), reversible pressure-induced 

denaturation occurs, while higher pressures (>300 MPa) induce irreversible and extensive 

effects on proteins (Guerrero-Beltrán et al., 2005). Denaturation may be due to the 

destruction of hydrophobic and ion pair bonds, and unfolding of molecules. At higher 

pressures, oligomeric proteins tend to dissociate into subunits that become vulnerable to 

proteolysis (Barba et al., 2012). High pressure effects on proteins are related to the rupture 

of non-covalent interactions within protein molecules, and to the subsequent reformation 

of intra and inter molecular bonds within or between the molecules. Different types of 

interactions contribute to the secondary, tertiary, and quaternary structure of proteins, and 

the quaternary structure is mainly held by hydrophobic interactions that are very sensitive 

to pressure. However, significant changes in the tertiary structure are also observed 

beyond 200 MPa (Gamlath and Wakeling, 2011; Rastogi et al., 2007)  
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Enzymes are a special class of proteins in which biological activity arises from 

active sites, brought together by the three-dimensional configuration of the molecule 

(Gamlath and Wakeling, 2011). Explanations for pressure-induced changes in the rate of 

enzyme-catalyzed reactions can be classified into: (1) direct changes in the structure of 

an enzyme, (2) changes in the reaction mechanisms (for example, a change in the rate-

limiting step), and (3) changes in the substrate or solvent physical properties (e.g. pH, 

density, viscosity, phase) that affect enzyme structure or the rate-limiting step (Rastogi et 

al., 2007; Welti-Chanes et al., 2005).  

HHP is most commonly used to inactivate food deleterious enzymes (such as 

polyphenoloxidase and lipoxygenase), thereby ensuring the maintenance of the high 

quality characteristics of the food (Eisenmenger and Reyes-De-Corcuera, 2009). 

Depending on the high pressure treatment, the same enzyme can be activated or 

deactivated. Cano et al., (1997) studied the effect of HHP (50–400 MPa) in orange juice 

and strawberry puree for inactivation of some enzymes. Pectin methylesterase activation 

was observed in orange juice when treated between 200 and 400 MPa at room 

temperature. However, combinations of pressures lower than 200 MPa and mild 

temperatures inactivated the enzyme in juice. In strawberry puree it was observed that the 

peroxidase activity was reduced as pressure increased up to 300 MPa, but at pressures 

higher than 300 MPa an activation of peroxidase was observed.  

Some enzymes are found to be pressure resistant, since the pressure level required 

to inactivate these enzymes surpasses the one needed to inactivate microbial vegetative 

cells. Besides, different sources show different pressure-temperature behaviours. For 

example, inactivation of polyphenoloxidase from apple, grape, avocado, and pear at room 

temperature (25 ºC) became noticeable at approximately 600, 700, 800, and 900 MPa, 

respectively, and followed first-order kinetics (Rastogi et al., 2007).  

The changes in enzymes activity tend to have low effect on the nutritional content 

of the food, but are important with respect to food quality especially in relation to colour 

(polyphenoloxidase) and texture of food (pectic enzymes), plus some influence in lipid 

oxidation (lipase and lipoxygenase) (Sulaiman and Silva, 2013; Welti-Chanes et al., 

2005).  
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I.1.4 Effect of high pressure in quality related parameters  
 

An important aspect of high pressure processing of foods concerns the physical 

and chemical nature of food structure and taste. The properties and quality of foods, which 

affect acceptability by consumers, are referred as organoleptic properties.  

In order to select the most suitable processing conditions for a particular food 

product, sensory characteristics must be taken into account (Polydera et al., 2004). 

Increasing treatment pressures will generally increase microbial inactivation in shorter 

times, but higher pressures may also cause detrimental changes in food quality that could 

affect negatively the appearance and some properties of the food, compared to the 

unprocessed product (Eamonn et al., 2005).  

Colour and flavour are important quality characteristics of liquid food and major 

factors affecting sensory perception and consumer acceptance of foods. HHP processing 

could preserve nutritional value and sensory properties of foods due to its limited effect 

on the covalent bonds of low molecular-mass compounds such the compounds 

responsible for colour and flavour. However, food is a complex system and the 

compounds responsible for sensory properties coexist with enzymes, metal ions, etc (Oey 

et al., 2008a).  

During high pressure processing (100-1000 MPa at 20 ºC – 60 ºC) can occur at 

the same time (i) cell wall and membrane disruption; (ii) enzyme catalyzed conversion 

processes; (iii) chemical reactions; and (iv) modification of biopolymers including 

enzyme inactivation, protein denaturation, and gel formation (Eisenmenger and Reyes-

De-Corcuera, 2009; Enrique et al., 2007; Oey et al., 2008b). Therefore, different pressure 

and temperature combinations can be used to achieve desired effects on texture, colour 

and flavour of foods. The quality of high pressure processed foods can, however, change 

during storage due to coexisting chemical reactions, such as oxidation, and biochemical 

reactions when endogenous enzymes or microorganisms are incompletely inactivated 

(Oey et al., 2008b).  

 

I.1.4.1 Colour  
 

HHP treatment (at low and moderate temperatures) has been reported to have a 

limited effect on the compounds responsible for the colour of fruits and vegetables (e.g. 

chlorophyll, carotenoids, anthocyanins, etc.). The colour compounds of HHP processed 
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fruits and vegetables can, however, change during storage due to incomplete inactivation 

of enzymes and microorganisms, which can result in undesired chemical reactions (both 

enzymatic and non-enzymatic) in the food matrix (Oey et al., 2008a).  

Chlorophyll is a green compound found in the leaves and green stems of plants. 

Chlorophylls a and b have different stabilities towards pressure and temperature. At room 

temperature, chlorophylls a and b exhibit extreme pressure stability but at temperatures 

higher than 50 ºC, high pressure treatment affects their stability (Butz et al., 2002). For 

example, increasing pressure from 200 to 800 MPa at 70 ºC accelerates the degradation 

of chlorophyll a and b of broccoli by 19.4% and 68.4%, respectively (Van Loey et al., 

1998).  

HHP treatment at ambient and moderate temperatures results in limited colour 

change of green vegetables. In many cases, the green colour of vegetables becomes even 

more intense (Matser et al., 2004). This might be caused by cell disruption during HHP 

treatment resulting in the leakage of chlorophyll into the intercellular space yielding a 

more intense bright green colour on the vegetable surface (Krebbers et al., 2002). During 

storage, the green colour of the vegetables HHP treated at room temperature turned into 

a pale yellow colour probably due to chemical reactions such as oxidation. By 

comparison, the vegetables pressurized at elevated temperatures, which results in 

inactivation of some enzymes, showed no further colour change during storage (Oey et 

al., 2008a).  

Carotenoids are important for the orange, yellow and red appearance of fruits and 

vegetables. HHP treatment has shown remarkable benefits in retaining or increasing the 

levels of total carotenoids in foods (Barba et al., 2012). A significant increase in all types 

of carotenoids has been observed in tomato puree and orange juice (Sánchez-Moreno et 

al., 2005) and melon (Wolbang et al., 2008) around pressures of 400-600 MPa. Lycopene 

from tomato puree and lutein from broccoli and green beans also showed very high 

stability (100% retention) after HHP (Gamlath and Wakeling, 2011).  

Anthocyanins are water-soluble vacuolar flavonoid pigments responsible for the 

red to blue colour of fruits and vegetables. Anthocyanins are normally stable during HHP 

treatment at moderate temperature (Barba et al., 2012). However, anthocyanins in 

pressure-treated vegetables and fruits were not stable during storage (González-Cebrino 

et al., 2013). There are various hypotheses on the degradation mechanism of anthocyanins 

in pressurized fruits during storage. The first hypothesis of anthocyanin degradation is a 
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reaction caused by incomplete enzyme inactivation. A link between enzyme inactivation 

(β-glucosidase, peroxidase and polyphenoloxidase) and anthocyanin stability has been 

found in several fruits (Altuner and Tokuşoğlu, 2013; Ferrari et al., 2011). Suthanthangjai 

et al., (2005) showed that cyanidin-3-glucoside and cyanidin-3-sophorosides (the major 

pigments in raspberry) had the highest stability during 9 days of storage at 4 ºC after 

pressurization at 200 or 800 MPa compared with pressure treatment at 400 or 600 MPa. 

A high loss of both pigments after HHP treatment at 400 and 600 MPa has been reported 

to be probably due to a lower degree of inactivation of β-glucosidase, peroxidase and 

polyphenoloxidase. Enzymatic degradation of anthocyanins by β-glucosidase is mainly 

due to the loss of glycosidic moiety leading to the formation of anthocyanidin and 

consequently affecting juice colour (Garcia-Palazon et al., 2004). Specificity of β-

glucosidase is another cause for selective degradation of anthocyanins present in fruit. 

For example a higher reduction in pelargonidin-3-glucoside, compared to pelargonidin-

3-rutinoside in HHP processed strawberries during storage under similar processing 

conditions was reported by Zabetakis et al., (2000), because β-glucosidase has a greater 

affinity towards glucose compared to rutinose. However, it must be noted that the effect 

of HHP processing parameters, such as pressure, temperature, and time in addition to 

physicochemical properties of fruit, such as total soluble solids and pH, have varying 

effects on the enzymes responsible for anthocyanins stability in HHP processed fruit 

products (Garcia-Palazon et al., 2004; Suthanthangjai et al., 2005; Zabetakis et al., 2000). 

Some anthocyanin degradation in HHP processed juice combined with heat could be due 

to condensation reactions involving the covalent association of anthocyanins with other 

flavanols or organic acids present in fruit juices (Tiwari et al., 2009). Corrales et al., 

(2008) reported an insignificant decrease in cyanidin-3-glucoside in a model solution at 

processing conditions of 600 MPa at 20 ºC during 30 min. They also reported a 25% loss 

at 600 MPa, 70 ºC for 30 min compared to a 5% loss at 70 ºC for 30 min, indicating that 

HHP accelerates the decrease of anthocyanin content at elevated temperatures. This is 

due to condensation reactions involving covalent association of anthocyanins with 

pyruvic acid present in fruit juices leading to the formation of a new pyran ring by 

cycloaddition. Chemical compounds derived from these condensation reactions are 

responsible for changes in the colour of red wine towards brown or orange (Corrales et 

al., 2008).  
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I.1.4.2 Flavour  
 

Flavour is the sensory impression of a food that is determined mainly by the 

chemical senses of taste and smell. The human tongue can distinguish only among five 

distinct qualities of taste, of which sourness, sweetness and bitterness are the most 

important ones regarding the flavour of fruits and vegetables. The human nose, on the 

other hand, can distinguish among a vast number of volatile compounds, even in lower 

quantities. Any changes in the compounds responsible for the sourness, sweetness, 

bitterness or odour of fruits and vegetables may result in changes in their flavour (Oey, et 

al., 2008a).  

It is generally assumed that the flavour of fruits and vegetables is not altered by 

HP processing, since the structure of low molecular weight flavour compounds is not 

directly affected by high pressure. This has been observed by means of both chemical and 

sensory analysis, in a number of studies where fruit juices and purees have been treated 

at pressures of 200-600 MPa combined with ambient temperature (Bermúdez-Aguirre 

and Barbosa-Cánovas, 2010; Butz et al., 2002; Lambert et al., 1999). The sensory 

properties of many HHP treated fruit and vegetable products are still better than those of 

products preserved in the traditional way by heat treatment, but are not always better that 

unprocessed products. Based on sensory evaluation, the flavour of HHP treated (500–800 

MPa during 5 min at ambient temperature) orange juice was not as fresh as the flavour of 

untreated orange juice (Fernández García et al., 2001). As high pressure processing can 

enhance or inhibit enzymatic and chemical reactions, it could indirectly alter the content 

of some flavor compounds. However, it is difficult to evaluate how HHP induce changes 

in volatile compounds affecting the overall flavour of fruits and vegetables (Oey et al., 

2008a).  

Hexanal is a volatile compound associated with the aroma of foliage and grass. 

Some changes have been reported in hexanal content in strawberries, onions, and tomato 

juice treated by HHP (Bermúdez-Aguirre and Barbosa-Cánovas, 2010). The increased 

concentration of hexanal (higher concentrations impart a rancid flavour) was considered 

to be a result of HHP induced oxidation of free fatty acids, such as linoleic and linolenic 

acid. Lipooxygenase and hydroperoxide lyase, which are naturally present in tomato, are 

partly responsible for the development of the rancid taste as they catalyse the oxidation 

of polyunsaturated fatty acids (Oey et al., 2008a). Additionally, new compounds were 

found after HHP processing, enhancing the characteristic flavour of the fruit. Navarro et 
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al., (2002) reported that when HHP treated (400 MPa at ambient temperature during 20 

min) strawberry puree was stored for 30 days at 4 ºC, increases in the contents of methyl 

butyrate, 2-methyl butyric acid, hexanoic acid, ethyl butyrate, ethyl hexanoate, 1-hexanol, 

and linalool were observed. Another study showed that the sweetness and acidity of the 

HHP treated (500 MPa at 2 ºC during 10 min) grape juice were maintained for 60 days 

during storage at 4 ºC but fresh fruit and grass aroma were slightly lower during storage 

(Daoudi et al., 2002). Similar results were observed for HHP treated guava juices (Yen 

and Lin, 1999). The volatile flavour compounds in pressurized guava juice (600 MPa at 

25 ºC during 15 min) remained stable during 30 days of storage at 4 ºC, but changes in 

the concentrations of volatiles were observed after 60 days of storage. The concentrations 

of methanol and ethanol increased and the concentrations of many ester and aldehyde 

compounds decreased, probably due to residual enzyme activity (Yen and Lin, 1999). 

 

I.1.4.3 Other quality parameters  
 

Food commodities or ingredients that provide health-related benefits beyond their 

basic nutrient supply have gained wide spread acceptance by consumers. There is a vast 

range of functional foods in terms of their chemical nature, target biomarker, and target 

health benefit. The beneficial effects of foods are associated with the bioactive 

components present, including phenolic compounds. Current trends in the functional food 

area are towards retaining the maximum level of bioactive components while maintaining 

fresh-like qualities of foods (Gamlath and Wakeling, 2011).  

Phenolic compounds such as phenolic acids and flavonoids seem highly stable 

during HHP. A significant increase in the amount of total phenolics has been reported in 

strawberry (9%) and blackberry (5%) (Patras et al., 2009b), and onion (12%) (Roldán-

Marín et al., 2009), while litchi had no significant changes (Prasad et al., 2009). High 

pressure enhances mass transfer rates which increase cell permeability leading to an 

increased extraction of cellular components and increasing levels of pigments in 

vegetable and food products (Casquete et al., 2014).  

A study on the effect of HHP on isoflavones (complex glucosides and bioavailable 

forms of aglycone) in soybean seeds and soymilk reported insignificant changes to total 

isoflavone content and better retention of isoflavones compared with conventional 

thermal processing (Jung et al., 2008). Pressurized (400 MPa at 40 °C during 1 min) 

orange juice, which is a very rich source of flavanone glycosides (degraded to aglycones 
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by human intestinal flora after ingestion), showed an increase in levels of naringenin 

(20%) and hesperetin (39%), but insignificant changes at 4 ºC for 10 days storage. It is 

suggested that at around 400 MPa some structural changes in the cell walls of the orange 

juice sacs may have led to an increase in the extraction of flavanones (Sánchez-Moreno 

et al., 2005). As a consequence, changes in antioxidant capacity could also occur during 

HHP treatment. In general, the effect of HHP on the antioxidant activity depends on the 

vitamin and phenolic compounds stability, quality related enzymes, such as PPO levels, 

and pH conditions of the matrices (Gamlath and Wakeling, 2011). Orange juice showed 

also a good retention of ascorbic acid after HHP around 500-800 MPa at room 

temperature and for shorter periods (5 min). However, a slight reduction (10-15%) has 

been reported during three weeks storage at 4 °C. As the exposure time increased (90 

min) the reduction of ascorbic acid accelerated at higher pressures (Indrawati et al., 2004). 

The decrease of antioxidant capacity in orange juice during HHP processing is mainly 

caused by ascorbic acid degradation. Antioxidant content of HHP processed smoothies 

(450 MPa at ambient temperature during 1-5 min) decreased during storage and the level 

of reduction was greater than in thermally treated samples (70 ºC during 2 min) indicating 

that enzymatic degradation systems were not inactivated by the HHP conditions applied 

(Keenan et al., 2010). However, some studies demonstrated that HHP processed fruit and 

vegetables purees had significantly higher antioxidant capacities when compared to 

thermally treated samples. Patras et al., (2009a) showed that high pressure processed 

(400-600 MPa at 20 ºC during 15 min) tomato and carrot purees presented an antioxidant 

capacity 66% higher than thermally treated purees (70 ºC during 2 min). This was 

reflected in better retention of ascorbic acid (up to 90%) in high pressure treated samples.  

The Maillard reaction is one of the most important and complex processes in food 

chemistry due to the large number of components able to participate through different 

pathways that give rise to a complex mixture of products, being a common reaction in 

foods which undergo thermal processing. Briefly, this reaction is initiated by a 

condensation between the carbonyl group of a reducing sugar and an amino compound 

(e.g. amino acids), giving rise to different compounds that include reductones, furfurals, 

and a variety of other substances (van Boekel 2006). Desired consequences like the 

formation of flavour and brown colour of some cooked foods but also the destruction of 

essential amino acids and the production of anti-nutritive compounds require the 

consideration of the Maillard reaction and relevant mechanisms for its control (Jaeger et 
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al., 2010). As chemical reactions are influenced by pressure according to the principe of 

Le Chatelier, the Maillard reaction must be taken into consideration while processing 

food (Tamaoka et al., 1991). The influence of high hydrostatic pressure up to 600 MPa 

on the Maillard reaction was studied in model systems containing amino acids or ß-caein 

and sugars by Schwarzenbolz et al., (2002). The formation of the amino acid derivate 

pentosidine was found to be increased by increasing the pressure whereas the formation 

of pyralline was reduced (Schwarzenbolz and Henle, 2010). Other studies found the 

acceleration of early Maillard reaction pathways with pressure, e.g. reaction products 

formed from tryptophan and glucose or xylose, and the slowdown of subsequent reaction 

steps (Hill et al., 1999). High-pressure effects on the Maillard reaction between glucose 

and lysine were investigated by Moreno et al., (2003) and the pressure-induced changes 

in pH were found to strongly influence the HP effects of different stages of the Maillard 

reaction. The formation and subsequent degradation of Amadori rearrangement products 

was accelerated by HHP (400 MPa, 60 ºC) and resulted in increased levels of intermediate 

and advanced reaction products, leading to higher brown colour. Similar results have been 

reported by Hill et al., (1996) for the same glucose-lysine system. Therefore, the use of 

HHP at moderate temperatures (30- 60 °C) may promote the Maillard reaction altering 

the flavour, colour, and nutritional value of foods. However, since few studies have 

evaluated the effects of pressure on the Maillard reaction, the occurrence of this reaction 

through food storage is unknown. 

 

I.2 Chemical constituents of Wine 
 

Due to the mode of HHP technology application and operation, previously 

described in Chapter I.1.1, and its successful use in food industry to destroy 

microorganisms and inactivate enzymes, with minimal effects on sensorial and nutritional 

food quality,  its seems to be a potential technology to be used in winemaking, e.g as an 

alternative to sulphur dioxide (SO2). However, there are no references to the effect of 

high pressure on the chemical characteristics of a sulphur-free wine, in particular, those 

that may influence their antioxidant capacity and volatile characteristics. More than 500 

compounds have been isolated and identified from various wines. Most of these 

compounds occur at concentrations between 10-4 to 10-9 grams per litre. At these levels, 

most are below the limit of human sensory perception. The vast majority of chemicals 
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found in wine are metabolic by-products of yeast activity during fermentation. By 

comparison, the number of aroma compounds derived from grapes are comparatively 

few. Nevertheless, these often constitute the compounds that make one wine distinct from 

another (Jackson 2000).  

For an effective interpretation of the possible effect of high pressure technology 

in wine chemical constituents is required to know the chemical composition of the wine 

and the concentrations of the compounds normally found in this matrix. 

I.2.1 Aliphatic acids  
 

The most abundant aliphatic acid is the acetic acid, the essential component of 

volatile acidity. Its concentration, limited by legislation, indicates the extent of bacterial 

activity and the resulting spoilage of the wine. Other C3 (propanoic acid) and C4 acids 

(butanoic acid) are also associated with bacterial spoilage. The C6, C8 and C10 fatty acids 

can also be formed by yeasts. These acids are fermentation inhibitors at concentrations of 

only a few milligrams per liter, being responsible for stuck fermentations (Jackson 2000; 

Ribéreau-Gayon et al., 2006).  

Propanoic, 2-methyl-propanoic (isobutyric), 2-methyl-butanoic, 3-methyl-

butanoic (isovaleric) and 2-phenylacetic acids are formed from α-ketoacids (products of 

transamination of amino acids) by decarboxylation. Isobutyric and isopentenoic acids 

come from valine and leucine, respectively. Other acids, such hexanoic (caproic), 

octanoic (caprilic) and, decanoic (capric) are formed by oxidation of fatty acids (Olivero 

and Trujillo, 2011).  

 

I.2.2 Alcohols  
 

Ethanol is indisputably the most important alcohol in wine. Although small 

quantities are produced in grape cells during carbonic maceration, the primary source of 

ethanol in wine is yeast fermentation. The prime factors controlling ethanol production 

are the sugar content, temperature, and yeast strain. The concentration of ethanol in wine 

is generally 100 g/L (12.6 % vol), although it may exceptionally be as high as 136 g/ L. 

(16% vol) (Jackson 2000). Ethanol acts as an important solvent in the extraction of 

pigments and tannins during red wine vinification. By affecting the metabolic activity of 

yeasts, ethanol also influences the type and amounts of aromatic compounds produced. 
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Furthermore, ethanol acts as an essential reactant in the formation of volatile compounds 

and adds its own distinctive odour (Ribéreau-Gayon et al., 2006).  

Higher alcohols, defined as compounds with more than two carbon atoms with 

just one alcohol function, occur in wines in concentrations between 150 and 550 mg/L. 

In spite of being present in lower amounts than ethanol, the higher alcohols can play an 

important role in wine aroma. They are formed during fermentation, resulting mainly 

from the metabolic activity of yeasts. The main higher alcohols from fermentative origin 

are 2-methyl-propanol (isobutyl alcohol) (9-174 mg/L), 2-methyl-butanol (amyl alcohol) 

(87-564 mg/L) and 3-methylbutanol (isoamyl alcohol) (87-564 mg/L) (Ribéreau-Gayon 

et al., 2006). In general, factors that increase the fermentation rate (yeast biomass, 

oxygenation, high temperature, and the presence of matter) also increase the formation of 

higher alcohols (Ribéreau-Gayon et al., 2006). Higher alcohols, during fermentation, can 

be formed by amino acids degradation (catabolic pathway), following mechanisms like 

deamination, decarboxylation and reduction or from sugars metabolism by pyruvate 

pathway, having α-ketoacids as intermediates (anabolic pathway) (Longo et al., 1992).  

Glycerol (a polyalcohol) is probably the chemical compound with the highest 

concentration in wine after water and ethanol. The minimum glycerol concentration in 

wine is 5 g/L, but it may reach values as high as 15–20 g/L, depending on the fermentation 

conditions (Ribéreau-Gayon et al., 2006). The 2-phenylethanol and benzyl alcohols are 

the main aromatic alcohols found in wines. These compounds are responsible for 

important sensory marks (flower and sweet aroma). During fermentation, the 2- 

phenylethanol is formed in considerable amounts (up to 80 mg/L), being one of the main 

flavour compounds involved in wine aroma (Jackson 2000).  

 

I.2.3 Acetals 
 

 An acetal is formed when an aldehyde comes into contact and reacts with two 

alcohol molecules. Acetals are formed during fermentation, but their content increase 

significantly during the oxidative conditions of aging process (Perestrelo et al., 2011). 

The high acetaldehyde content in wine contributes to the acetalization reaction with 

glycerol, which is favoured at higher pH values, leading to four heterocyclic acetal 

alcohol formation: cis- and trans-5-hydroxy-2-methyl-1,3-dioxane, and cis- and trans-4-

hydroxymethyl-2-methyl-1,3-dioxalane. Heterocyclic acetal alcohols were identified and 

reported as potential age markers of Porto (da Silva Ferreira et al., 2002) and Madeira 
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wines (Câmara et al., 2006). Other acetals, such as 1,1-diethoxyethane,  that result from 

a reaction between acetaldehyde and ethanol (Figure I.2), and 2,4,5-trimethyldioxolane, 

were also detected in table wines (Weldegergis et al., 2011b). 

 
 

 

Figure I.2. Acetalization of ethanal and formation of 1,1-diethoxyethane. 

 

 

I.2.4 Esters  
 

Esters are considered the main chemical group of the volatile fraction of wine. 

There are a large number of different alcohols and acids in wine, so the number of possible 

esters is also very large. Ethyl acetate is the most common for kinetic reasons, i.e. the 

large quantities of ethanol present and the fact that primary alcohols are the most reactive. 

Esters in wine have two distinct origins: enzymatic esterification during the fermentation 

process and chemical esterification during long-term aging. The same esters may be 

synthesized by both ways (Ribéreau-Gayon et al., 2006). Several factors affect the esters 

formation (formed by both chemical and enzymatic pathways): wine composition, must 

acidity, defecation, clarification, airing, fermentation temperature, and wine age. The 

absence of oxygen, low temperatures and must clarification lead to a decreased/difficulty 

in the esters formation (Ancín-Azpilicueta et al., 2009).  

The esters play an important role on the aroma composition of wine because 

usually the larger the amount of esters present more accentuated the floral and fruity 

aroma will be (Jackson 2000). During wine aging, the ester composition changes due to 

shifts toward chemical equilibrium. These changes are influenced by wine pH, storage 

type (in bottle or barrel) and temperature (Garde-Cerdán and Ancín-Azpilicueta 2006). 

The concentrations of acetate esters of higher alcohols, such as 2-phenylethyl acetate, 

decrease during wine ageing. These compounds are produced by enzymatic reactions in 

excess of their equilibrium concentrations, consequently, they gradually hydrolyse during 

storage until the equilibrium with their corresponding acids and alcohols is reached 

(Ancín-Azpilicueta et al. 2009; Câmara et al. 2006). Also, during wine aging, fatty acid 

ethyl esters can interact with the lees present in barrels, and so the concentrations of these 
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compounds can decrease during wine aging. Contrarily, the ethyl esters of organic acids, 

such as dimethyl succinate, increase significantly with time of storage, (in barrel as well 

as bottle) due the chemical esterification during the course of aging (Câmara et al. 2006).  

In Table I.2 are represented the most abuntant esters and the concentrations 

normally found in wine. 

 Table I.2. Some esters identified in wine (adapted from Ribéreau-Gayon et al., 2006). 

Structure formula Ester name 
Concentration 

in wine (mg/L) 

CH3 O
CH3

OH

O

 

Ethyl lactate 0.5-400 

CH3 O CH3

O

 
Ethyl acetate 0.15-300 

CH3
O

O

O
CH3

O  

Dimethyl 

succinate 
0.5-30 

O CH3

O

 

2-phenylethyl 

acetate 
0.05-18.5 

CH3 O

O

CH3 

Ethyl 

decanoate 
0.05-5 

 

 

I.2.5 Lactones 
 

Lactones are formed by an esterification reaction between an acid function and an 

alcohol function in the same molecule. This reaction produces an oxygen heterocycle. As 

other chemical groups, lactones can appear in grapes or may be formed during 

winemaking or during the evolution and wine aging (Pérez-Olivero et al., 2014). Volatile 

lactones, produced during fermentation, are likely to contribute to wine aroma, since they 

are responsible for fruity and caramel aromas (Câmara et al., 2006; Oliveira e Silva et al., 

2008; Perestrelo et al., 2011). 
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The γ- and δ-lactones result from the cyclization of the hydroxy acids in the 4 or 

5 position, respectively (Figure I.3). In wines, the γ-lactones are more frequent and are 

formed from γ-ketoacids that come from the carbonated chain along of the fatty acids 

synthesis or from the deamination of amino acids during the fermentation process. 

 

 

Figure I.3. General structure of γ- and δ-lactones (R-lateral chain) and some lactones identified 

in wines. 

The most abundant lactone is the γ-butyrolactone, that is present in wine at 

concentrations of few mg/L, resulting from the lactonization of the γ-hydroxybutyric acid, 

an unstable molecule produced by deamination and decarboxylation of glutamic acid, 

according to the Ehrlich reaction (Giaccio et al., 2010) (Figure I.4). The 4 

ethoxycarbonyl-γ-butyrolactone and 4-ethoxy-γ-butyrolactone are found in 

concentrations from a few to some tens of µg/L (Bayonove et al., 1998b). Also, it is 

possible to found some δ-lactones in wines such δ-octalactone, δ-nonalactone, and δ–

decalactone. 

Figure I.4. Formation of γ-butyrolactone (adapted from Ribéreau-Gayon et al., 2006). 
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I.2.6 Terpenes and Oxygenated Derivatives 

A large proportion of terpenes (around 90%) are present as non-volatile glycosides 

in the grape. This compounds can be hydrolysed (enzymatically or chemically) to the 

corresponding free forms during fermentation and ageing (Weldegergis, Villiers, et al. 

2011). Terpenoids can be found in grapes, musts and wines and, according to the number 

of combined isoprene units, they can be classified into mono- (C10) and sesquiterpenoids 

(C15) (Ebeler 2001). These compounds are important varietal aroma compounds and can 

exist in concentrations in the order of 100 to 1000 mg/L in wines (Ribéreau-Gayon et al., 

2006). 

The monoterpenoids, constituted by two isoprenic base units, can occur in both 

free and glycosidically-linked forms. The most dominant monoterpenoids are linalool, 

geraniol, nerol, α-terpeniol, hotrienol, and citronellol (Luan et al., 2004). Oxidative 

pathways are active in Vitis vinifera L., converting terpenoid constituents of grapes into 

oxygenated derivatives that accumulate in glycosidically-linked forms. Although the 

glycoconjugates themselves are odourless, they are easily transformed under pH 

conditions of wine into volatile constituents, some of which have significant sensory 

properties (Coutinho 2007). Linalool, for example, in an aqueous acid medium, can 

originate hydroxylinalool through hydration in the C7 position, α-terpineol by cyclization 

and also, geraniol and nerol by isomerization during the wine conservation and aging 

(Ribéreau-Gayon et al., 2006) (Figure I.5). Besides linalool, geraniol and nerol, several  

Figure I.5. Possible reactions of monoterpenols in acid medium during conservation and 

evolution of wine (adapted from Coutinho, 2007). 

 



 CHAPTER I.   

  
 

26 
 

highly odouriferous cyclic ethers and lactones have been identified as key compounds 

that are generated by cyclization of oxygenated products from monoterpene alcohols in 

musts (Figure I.6) (Ebeler 2001; Luan et al., 2004).  

 

 

 

Figure I.6. Oxygenation reactions products of linalool (adapted from Luan et al. 2004). 

 

The sesquiterpenic compounds present in wines may arise directly from grape 

and/or may have their origin on the rearrangement processes during winemaking process 

and/or aging (Petronilho et al., 2014). These secondary metabolites are predominantly 

formed from farnesyl pyrophosphate or nerolidyl pyrophosphate (Rocha et al., 2006). 

After losing the pyrophosphate residue, different ways of cyclisations are followed 

(Petronilho et al., 2014). Skeletal rearrangement via carbocation intermediates with 

hydride or methyl group migration at low pH or temperature conditions can give rise to 

an enormous type of structures (Bülow and König, 2000) (Figure I.7). 
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Figure I.7. Sesquiterpenic compounds identified in grapevine related matrices, representing the 

four detected chemical families: hydrocarbons, ketones, oxides, and alcohols. (adapted from 

Petronilho et al., 2014). 

 

I.2.7 C13 norisoprenoids 

C13 norisoprenoids have been associated with high quality wine characteristics 

due to their low odour threshold (µg L−1) and pleasant odour descriptors related to tea, 

violet, exotic flowers, stewed apple, eucalyptus, and camphor (Genovese et al., 2007; 

Vinholes et al., 2009). These compounds can represent 0.07 to 1.50 % of the total volatile 

composition of wines in concentrations ranging ng L−1 and mg L−1 (Baumes et al., 2002; 

Genovese et al., 2007).  The C13 norisoprenoid compounds can be classified in two main 

groups, megastigmanes and non-megastigmanes. The megastigmane group has a sub-

classification that differs according to the position of the oxygen functional group: i) 

Damascones -oxygen at carbon 7, like β-damascone and, ii) Ionones -oxygen at carbon 9 

as observed for β-ionone (Figure I.8). The non-megastigmane forms are all the other C13 

norisoprenoids derivatives (Ribéreau-Gayon et al., 2006). Some C13 norisoprenoids, such 

as β-damascenone, β-ionone, 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) and 

vitispirane isomers have been frequently found in wines (Vinholes et al., 2009; 

Weldegergis et al., 2011a; Weldegergis et al., 2011b). These compounds are products of 
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direct degradation of carotenoid molecules such as β-carotene, lutein, neoxanthin, and 

violaxanthin or they can also be released after hydrolysis of glycoside molecules during 

the wine making or ageing processes (Lloyd et al., 2011; Rodríguez-Bustamante and 

Sánchez, 2007). TDN, for instance, has been described as coming from direct degradation 

of β-carotene and other compounds, namely the aglycones megastigme-4,7-dien-3,6,9-

triol and 2,6,10,10-tetramethyl-1-oxaspiro[4,5]dec-6-ene-2,8-diol have also been 

reported as its precursor (Vinholes et al., 2009). 

 

 

 

 

 

 

 

 

 

Figure I.8. Main families of C13 norisoprenoid derivatives in grapes and wine (adapted from 

Ribéreau-Gayon et al., 2006). 

 

 

I.2.8. Organic acids  
 

 Organic acids make major contributions to the composition, stability and 

organoleptic qualities of wines, especially white wines. Their preservative properties also 

enhance wines microbiological and physicochemical stability. Quantitatively, the organic 

acids control the pH of wine (Ribéreau-Gayon et al., 2006). The tartaric and malic acids 

are the most abundant acids in wine. However, if the wine undergoes malolactic 

fermentation, as occurs in red wines, malic acid is replaced by lactic acid (Jackson 2000). 

The role of organic acids in maintaining a low pH (3.1 to 3.6) is crucial to the colour 

stability of red wines. As the pH increases, anthocyanins decolorize and may eventually 
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turn blue (de Freitas and Mateus, 2006). Acidity also affects phenolic compounds 

ionization. The ionized form of phenols is more readily oxidized than is the non-ionized 

form. Accordingly, wines with high pH (>3.9) are very susceptible to oxidation and loss 

of their fresh aroma and young colour (Karbowiak et al. 2010). Ascorbic acid appears 

naturally in grapes at a concentration range from 10 to 100 mg/L. However, it rapidly 

disappears during the winemaking, due to oxidation. In some white wines addition of few 

milligrams per liter of ascorbic acid may be used as adjuvant to SO2 (Ribéreau-Gayon et 

al., 2006). Independently of their origins, most of the main organic acids in must and wine 

consist on polyfunctional molecules, and many are hydroxyl acids. These functional 

groups confer polar and hydrophilic characteristics to these compounds. As a result, they 

are soluble in water, and even in dilute alcohol solutions, such as wine. Their 

polyfunctional character is also responsible for the chemical reactivity that enables them 

to develop over time as wine ages (Jackson 2000). In Table I.3 are represented the most 

important organic acids present in wine. 

 

Table I.3. Most important organic acids present in wine (adapted from Ribéreau-Gayon et al., 

2006). 

Acids 
Concentration 

in wine (g /L) 

Tartaric 2-5 

Malic 1-6.5 

Lactic 0.3-3 

Citric 0.5-1 

Succinic 0.5-1 

 

 

I.2.9 Carbonylated Compounds  
 

Aldehydes and ketones are compounds also named carbonylic compounds due to 

the presence, in both groups, of a carbonyl group (C=O). In these compounds, 

acetaldehyde is the most abundant in wine. The many ways it can be produced and its 

high reactivity, as well as its rapid combination with sulphur dioxide at low temperature 
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and its organoleptic properties, make acetaldehyde a very important component of wine 

(Ribéreau-Gayon et al., 2006). The presence of acetaldehyde, produced by the oxidation 

of ethanol, is closely linked to oxidation–reduction phenomena. It can also be produced 

by the decarboxylation of pyruvate during alcoholic fermentation. Furthermore, 

acetaldehyde plays a role in the colour changes occurring in red wines during aging by 

facilitating the copolymerization of phenols (anthocyanins and catechins) (de Freitas and 

Mateus, 2006; Oliveira et al., 2011). 

 A few other aldehydes are present in wine in trace amounts and contribute to the 

wine aroma. The neutralizing effect of sulfur dioxide on the fruitiness of certain white 

wines is due to the fact that it combines with the aldehyde fraction in the bouquet 

(Villamor and Ross, 2013). The molecules with ketone function, such as propanone, 

butanone and pentanone, have been identified in wines. The most important are 3-

hydroxy-2-butanone (acetoin), and 2,3-butanedione (diacethyl). Diacethyl can have the 

pyruvic acid as its precursor, but it can also result from the oxidation of the acetoin and 

can be formed during excessive maturation of the grape by the decarboxylation and 

oxidation of α-acetolactate (Moreno-Arribas 2000). With the exception of acetaldehyde 

and acetoin (Table I.4), most of this type of compounds is present in trace amounts. 

Table I.4. Some aldehydes and ketones identified in wine (adapted from Ribéreau-Gayon et al., 

2006). 

 

 

 

 

 

 

 

 

 

Compound name 
Concentration 

in wine (mg/L) 

Acetaldehyde 7- 252 

3-Hydroxy-2-butanone 0-140 

Ethanedial 2-4.5 

2,3-Butanedione 0.2-4.1 

Phenylethanal 0.12 

5-hydroxymethyl-2–furfural 0-87 

2-Furfural 0-10.3 
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I.2.10 Carbohydrates 

In dry wines, the residual sugar content consists primarily of pentoses, such xylose  

and  mostly arabinose (0.3–2 g/L), and some hexoses such as glucose and fructose (in the 

order of 1 g/L). The hexoses are mainly fructose, because glucose is preferentially 

fermented by the great majority of yeasts. For this reason, the glucose/fructose ratio, 

which is around 1 in grape must, decreases regularly during fermentation. Pentoses are 

not fermentable by yeast and are more common in red than white wines (Jackson 2000; 

Ribéreau-Gayon et al., 2006). 

The polysaccharide level in finished wine can reach 740 mg/L (Moreno-Arribas 

2000) but, depending on their composition, structure and concentration, is relevant for 

explaining and controlling wine stability and retention of aroma compounds (Coimbra et 

al., 2005). They are originated both from grape and microorganisms. Arabinans, type II 

arabinogalactans, rhamnogalacturonans and galacturonans arise from native cell-wall 

pectic polysaccharides of grape berry after degradation by pectic enzymes during grape 

maturation and during the first steps of wine making. Yeasts produce mannans and 

mannoproteins during and after fermentation, whereas glucans are produced by Botrytis 

cinerea, which may infect grape berries (Coimbra et al., 2005). 

 

I.2.11 Minerals 

 The wine contains about 2 to 4 g/L of salts of mineral acids and some organic 

acids. The major mineral anions existing in the wine are phosphates (white wine: 70-500 

mg/L; red wine: 150 mg/L to 1 g/L) and sulfates (100 to 400 mg/L), although the 

concentration of sulfates tends to increase with aging due to oxidation of SO2, may 

achieving concentrations of 2 g/L. Chlorides are also present in concentrations below 50 

mg/L and nitrates in trace amounts (Burin et al., 2010a; Ribéreau-Gayon et al., 2006). 

  Potassium is the dominant cation, with concentrations ranging from 0.5 to 2 

g/L. The calcium concentration ranges from 80 to 140 mg/L, while the sodium has values 

between 10 and 40 mg/L.Therefore, wine has more magnesium (60-150 mg/L) 

than sodium. The average concentration of iron and copper ions in wine is 2.8 to 16 mg/L 

and 0.11 to 3.6 mg/L, respectively (Burin et al., 2010a; Jackson 2000; Ribéreau-Gayon 

et al., 2006).  
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I.2.12 Nitrogen compounds  

There are two forms of nitrogen in musts and wines, mineral nitrogen and organic 

nitrogen. The mineral nitrogen exists in form of ammonium salts (NH4
+).  There may be 

a few tens of mg/L of inorganic nitrogen in wine after aging on the lees, or even after 

malolactic fermentation (Martínez-Rodríguez and Polo, 2000; Mauricio et al., 2001). 

Indeed, lactic bacteria do not assimilate ammonia nitrogen and may even excrete it 

(Ribéreau-Gayon et al., 2006). Organic nitrogen is divided in eight families: amino acids,  

oligopeptides and polypeptides (under 10,000 Dalton), protein (above 10,000 Dalton), 

amides, biogenic amines, nucleic nitrogen, amino sugar nitrogen, and pyrazines (Jackson 

2000).  

Amino acids are an important source of nitrogen in musts and wines. The total 

concentration of free amino acids can vary from 1 to 4 g/L (Bouloumpasi et al., 2002; 

Košir and Kidrič, 2001; Lehtonen 1996). The predominant amino acids in wine are 

alanine, serine, arginine, proline, and glutamic acid and glutamine that can reach 

concentrations of the order of hundreds of milligrams per liter (Bouloumpasi et al., 2002). 

These substances are very useful, due to their antimicrobial, surfactant, and emulsifying 

properties (Dartiguenave et al., 2000). 

Glutathione is an important tripeptide that contains a cysteine residue that reacts 

partially with quinones resulting from oxidation of phenols. Grapes and wine contain 

many proteins with a wide range of molecular weights (30 kDa–150 kDa). Some unstable 

proteins are responsible for protein casse in white wines. Other proteins are associated 

with a carbohydrate fraction (Jackson 2000). The amides family is represented by small 

quantities of urea (Ribéreau-Gayon et al., 2006), as well as ethyl carbamate. This 

compound is very strictly controlled for health reasons, such is potentially toxic, and was 

re-classified in 2007 as probable human carcinogen compound (Group 2A) by the 

International Agency for Research on Cancer (Perestrelo et al., 2010). 

 Nucleic nitrogen is present in purine and pyrimidine bases, nucleosides and 

nucleotides, as well as nucleic acids. Amino sugar nitrogen consists of hexoses in which 

an –OH is replaced by –NH2. Small quantities of glucosamine and galactosamine have 

been found in protein nitrogen in wine (Ribéreau-Gayon et al., 2006).  

 Biogenic amines in wine can be formed mainly as a consequence of the 

decarboxylation of amino acids by various microorganisms associated with the different 

stages of wine production and storage, and wines usually contain a few milligrams per 
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liter (Beneduce et al., 2010). The main biogenic amines associated with wine are 

putrescine, histamine, tyramine and cadaverine, followed by phenylethylamine, 

spermidine, spermine, agmatine and tryptamine (Figure I.9) (Smit et al., 2008). The 

presence of these compounds is considered by some authors a fundamental parameter for 

the detriment of wine, and high concentrations of biogenic amines can cause undesirable 

physiological effects in sensitive humans (Landete et al., 2005). 

Figure I.9. The main biogenic amines presented in wine (adapted from Smit et al., 2008). 

Pyrazines are heterocycles with six links containing two nitrogen atoms and four 

carbon atoms bearing radicals and can appear in wines. The methoxypyrazines have been 

reported to be produced by the metabolism of amino acids (Ribéreau-Gayon et al., 2006). 

Some studies suggest that some methoxypyrazines have a microbiologic origin in wine 

(Allen et al., 1995). Pyrazines can also be formed by Maillard reactions (Van Lancker et 
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al., 2012). The 2-methoxy-3-isopropylpyrazine, 2-methoxy-3-sec-butylpyrazine and 2-

methoxy-3- isobutylpyrazine have a vegetal odour resembling green pepper with some 

earthy, potato or herbaceous nuances (Fan and Qian, 2006; Pripis-Nicolau et al., 2000). 

 

I.2.13 Sulphur compounds 
 

Sulphur compounds have in their structure, at least, one sulphur atom. In wine, a 

considerable number of sulfur volatile compounds from several origins have been 

identified. Thiols come from grapes, having an important contribution to the varietal 

aroma of certain wines (Coutinho 2007). 

The intensity of the odour perception of sulfur compounds seems to be related 

with the molecular weight. The sulphur compounds can be classified in two main groups: 

those with lower molecular weight (boiling points inferior to 90 ºC) and those with higher 

molecular weight (boiling points superior to 90 ºC) (Ribéreau-Gayon et al. 2006) (Table 

I.5). The first group is usually associated to defects in wines and the second group is more  

 

Table 1.5. Some sulphur compounds identified in wines (Adapted from Ribéreau-Gayon et al., 

2006). 

Formula Compound name 
Concentration 

in wine (µg/L) 

Sulphur compounds with low molecular weight 

H2S Hydrogen sulphide 0.3 

CH3-S-CH3 Dimethyl sulphide 1.4 

CH3-SH Methanethiol 0.7 

CS2 Carbon disulphide 1.7 

Sulphur compounds with high molecular weight 

CH3-S-CH2-CH2-CH2-OH 
3-Methylthiopropan-1-ol 

(methionol) 
838 

CH3-S-CH2-CH2-OH 2- Methylthioethanol 56 

CH3-S-CH2-CH2-CH2-COO-

CH3 

3-Methylthiopropyl acetate 50-115 

HS-CH2-CH2-OH 2-Mercaptoethanol 72  
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abundant and may contribute to the global white wine aroma. These compounds are 

produced by yeasts during fermentation, as well as during the vinification process, aging 

in oak barrels, or during storage in bottles (Fedrizzi et al. 2007; Siebert et al. 2010). 

 

I.2.14 Phenolic compounds 
 

Phenolic compounds are very important in wine since they are responsible for 

several organoleptic properties, namely colour, astringency, and bitterness (Ribéreau-

Gayon et al., 2006). Wine phenolic compounds consist on both grape phenolic 

compounds and new phenolic compounds derived from them during winemaking and 

ageing process (Soto Vázquez et al., 2010; Sun et al., 2011). These compounds are also 

associated with the beneficial effects related with moderate wine consumption, especially 

in relation to cardiovascular and degenerative diseases, due to the antioxidant capacity of 

polyphenols (Garrido and Borges, 2011; Radovanović and Radovanović, 2010; Touriño 

et al., 2008). Their structures enable them to scavenge and neutralize free radicals 

(Rivero-Pérez et al., 2008; Tabart et al., 2009). These compounds are oxidized 

sequentially to semiquinones and quinones, while oxygen is reduced to hydroperoxyl 

radicals and hydrogen peroxide. This process is catalyzed by the redox cycle Fe3+/Fe2+. 

Hydrogen peroxide is then reduced by Fe2+, in the Fenton reaction, to hydroxyl radicals, 

which oxidize hydroxyl groups of saturated compounds (Figure I.10). Radical 

intermediates can also react with oxygen to form an additional pathway to their reduction 

(Karbowiak et al., 2010; Oliveira et al., 2011). 

 

  

Figure I.10. Proposed catalytic action of iron and copper ions in the oxidation of catechols to 

produce quinones and hydrogen peroxide (adapted from Oliveira et al., 2011). 
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The phenolic compounds represent a family of many compounds, since they are 

grouped under that name all the molecules that have at least one benzene ring substituted 

by a variable number of hydroxyl groups. However, the family is divided into two main 

groups: non-flavonoids, present mainly in the pulp of grapes, and flavonoids, present in 

the solid parts of the grape (seed and skin) (Busse-Valverde et al., 2012; Kelebek et al., 

2010; Perestrelo et al., 2012). 

 

I.2.14.1 Non-flavonoids 

 

The grapes and wines present phenolic acids in concentrations range of 100 to 200 

mg/L in red wine and 10 to 20 mg/L  in white wine (Jackson 2000; Ribéreau-Gayon et 

al., 2006). The phenolic acids are divided into two classes: the derivatives of benzoic acid 

and those of hydroxycinnamic acid (Table I.6). In grapes, benzoic acids are mainly 

present as glycoside combinations, from which they are released by acid hydrolysis, and  

 

Table I.6. Some phenolic acids identified in wines. 

 

R2
R3

R4

R5

O

OH

 

    

R2
R3

R4

R5

O

OH

 

Benzoic acids R2 R3 R4 R5 Cinnamic acids 

p-Hydroxybenzoic 

acid 
H H OH H p-Coumaric acid 

Protocatechuic acid H OH OH H Caffeic acid 

Vanillic acid H OCH3 OH H Ferulic acid 

Gallic acid H OH OH OH  

Syringic acid H OCH3 OH OCH3 Sinapinic acid 

Salicyclic acid OH H H H  

Gentianic acid OH H H OH  

http://agclass.nal.usda.gov/mtwdk.exe?w=57758&k=default&s=5&t=2&n=1&l=60
http://agclass.nal.usda.gov/mtwdk.exe?w=57759&k=default&s=5&t=2&n=1&l=60
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esters (gallic and ellagic tannins). Free forms are more prevalent, mainly in red wine, due 

to the hydrolysis of these combinations and heat breakdown reactions of more complex 

molecules, especially anthocyanins (Carvalho et al., 2010; Mateus and de Freitas, 2001; 

Vidal et al., 2002). Several cinnamic acids are present in wines mainly esterified, in 

particular with tartaric acid, therefore they have been identified in small quantities in the 

free form (Schwarz et al., 2003).  

 Phenolic acids are colorless in a dilute alcohol solution, but they may become 

yellow due to oxidation. From an organoleptic standpoint, these compounds have no 

particular flavour or odour (Ribéreau-Gayon et al., 2006). However, they are precursors 

of the volatile phenols (Table I.7) produced by the action of certain microorganisms. Ethyl  

 

Table 1.7. Some volatile phenolic compounds identified in wines. 

 R Name 

OH

R  

CH2-CH3 Ethyl phenol 

CH=CH2 Vinyl phenol 

CH2-CH2OH Tyrosol 

OH

R

H3CO

 

H Guaiacol 

CH3 Methyl guaiacol 

CH2-CH3 Ethyl guaiacol 

CH=CH2 Vinyl guaiacol 

CH2-CH2-CH3 Propyl guaiacol 

CH=CH-CH3 Allyl guaiacol 

OH

R

H3CO OCH3

 

H Syringol 

CH3 Methyl syringol 

 

phenol and ethyl guaiacol are found in red wines whereas vinyl phenol and vinyl 

guaiacols are found in white wines (Arapitsas et al., 2004; Jeleń et al., 2011; Larcher et 

al., 2012). It has been established that these compounds result from the breakdown of p-

coumaric acid and ferulic acid (Larcher et al., 2012). Tyrosol is present in both red and 
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white wine (20–30 mg/L) and is formed during alcoholic fermentation (Jackson 2000). 

When wines are aged in new oak barrels, the toasting of the wood involved in barrel 

manufacture causes the breakdown of lignins and the formation of various components 

from the same family, with a variety of smoky, toasty and burnt smells (Table I.7), such 

as guaiacol, methyl guaiacol, propyl guaiacol, allyl guaiacol (isoeugenol), syringol and 

methyl syringol (Arapitsas et al., 2004; Chira and Teissedre, 2013a; Escudero et al., 2007; 

Ribéreau-Gayon et al., 2006; Ristic et al., 2011). 

The stilbenes are another family of phenolic compounds present in grapes and 

wines. These compounds have two benzene rings bonded by an ethane or ethylene chain 

(C6-C2-C6). In the stilbenes family, resveratrol (Figure I.11) is recognized as compound 

capable of preventing or reducing a wide range of diseases (Burns et al., 2000; Galmarini 

et al., 2013), and is present in red wine at a concentration range of 1 to 3 mg /L (Ribéreau-

Gayon et al., 2006).     

 

A different class of non-flavonoids is the hydrolysable tannins, which can be 

hydrolyzed by the action of hot water or enzymes. They can be formed from gallic acid 

and ellagic acid and in the simplest element of this type of tannin the gallic acid is 

esterified with a molecule of glucose (Figure I.12) (Jackson 2000; Ribéreau-Gayon et al., 

2006).    

Figure 1.11. Structure of  trans- resveratrol. 

Figure I.12. Structure of a hydrolysable tannin. 
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I.2.14.2 Flavonoids 

Flavonoids constitute the largest group of naturally occurring phenolic 

compounds (Ribéreau-Gayon et al., 2006). Their basic structures (Figure I.13) are built 

upon a C6-C3-C6 skeleton, consisting of two aromatic rings (A- and B-ring) linked by an 

oxygen containing a pyran-derived ring (C-ring) (Valls et al., 2009). 

 

Figure I.13. Basic structure of flavonoids showing A, B, and C rings and the numbers for the 

various positions in the flavonoids structure. 

 

In the flavonoid group, the flavonols are compounds characterized by the presence 

of an insaturation in heterocyclic ring and a hydroxyl group in the position 3. The 

flavonols are differentiated by substitution of the lateral nucleus, producing kaempferol, 

quercetin and myricetin (Figure I.14). These molecules are present in red wine in 

concentrationsin the order of 100 mg/L, while in white wine the concentration is between 

1 and 3 mg/L (Ribéreau-Gayon et al., 2006).  

 

O

OOH

OH

OH

R5

R3

OH

 

R3 R5 Name 

 H H Kaempferol 

OH H Quercetin 

OH OH Myricetin 

Figure I.14. Some flavonols identified in wines. 
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Flavanols 

One important group of flavonoids are the flavanols that include monomers, 

oligomers, and polymers. The latter two forms are also known as proanthocyanidins or 

condensed tannins. They can have substituent groups in up to three positions in the B-

ring (3’, 4’ and 5’). In flavanols structure, the C-ring is a saturated heterocycle with a 

hydroxyl group in position 3, that can be esterified with gallic acid. Catechin, epicatechin, 

gallocatechin, and epigallocatechin are the most common flavanol monomers (Ribéreau-

Gayon et al., 2006) (Figure I.15). 

 

Figure I.15. Most important flavanol monomers identified in wines in wine. 

The proanthocyanidins are extracted during alcoholic fermentation and post-

fermentation maceration. Their content in red wines are between 1 and 4 g/L depending 

on the grape variety and the winemaking method. In the case of white wines, this content 

are between 100 and 300 mg/L (Ribéreau-Gayon et al., 2006). Besides the winemaking 

method, these levels also depend on many factors such as the nature of the grape (Chira 

et al., 2009; Fang et al., 2008), and the soil or the climate (Andrés-de Prado et al., 2007; 

Downey et al., 2003). Different classes of tannins are characterized by the degree of 

hydroxylation of the B ring of the constituent units. These classes can be distinguished in 

procyanidins and prodelphinidins and the names of these two groups comes from their 

properties to turn into red anthocyanidins, cyanidin and delphinidin respectively, when 

depolymerized under oxidative conditions (Ribéreau-Gayon et al., 2006). Procyanidins 

are polymers of (+)-catechin and (-)-epicatechin, and the prodelphinidins polymers of (+) 

-gallocatechin and (-)-epigallocatechin. Condensation of flavanols are between a flavan-

3-ol electrophilic unit (position 4) and a flavan-3-ol nucleophilic unit (postions 6 and / or 

8), which leads to the formation of interflavanic bonds between C4-C8 and/or C4-C6 

(Figure I.16).   
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Figure I.16. Structure of flavanols condensation. 

 

The proanthocyanidins play an important role in the taste quality of the wines, 

since they have the ability to interact with salivary proteins, forming stable complexes 

that cause a sensation of dryness and constriction, denominated as astringency (Carvalho 

et al., 2006). The molecular weight of proanthocyanidins, expressed as mean degree of 

polymerization (mDP) is one of their most important properties, since it influences wine 

astringency and bitterness (Peleg et al., 1999). Monomers are more bitter than astringent, 

whereas the reverse is true for large molecular weight derivatives (Chira et al., 2009).  

During wine aging, different reactions can occur, giving rise to proanthocyanidins 

with different degree of polymerization. In the first months of wine storage, the mDP 

tends to increase due to condensation reactions of flavan-3-ols in the wine (Ribéreau-

Gayon et al., 2006). However, along aging, a decrease in mDP and prodelphinidins could 

occur due to the easier degradation of higher molecular weight proanthocyanidins and 

also due to their precipitation after condensation with other compounds, namely 

polysaccharides and proteins (Cheynier et al., 1997; Chira et al., 2011; Cosme et al., 

2009). Vidal et al., (2002) also attributed the decrease in mDP to a cleavage reaction that 
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occurs in acidic media like wine. In this case, these reactions dominate in relation to the 

polymerisation reaction of proanthocyanidins that also occur. 

 

Anthocyanins 

 

The anthocyanins correspond to the red pigments of grapes and are present in red 

wines at concentrations on the order of 200 to 500 mg/L (Ribéreau-Gayon et al., 2006). 

Anthocyanin classification is based primarily on the position of the hydroxyl and methyl 

groups on the B ring of the anthocyanidin molecule (Figure I.17). On this basis, grape 

anthocyanins are divided into five classes, namely cyanidin, peonidin, delphinidin, 

petunidin and malvidin. These compounds are much more stable in the glycosylated form 

than in the glycone form (anthocyanidins) (He et al., 2012). For the genus Vitis, the 

glycosylation occurs at position O-3 giving a higher solubility and stability to these 

compounds. The glycosidic fragments could be esterified at position 6 with some acids, 

including acetic acid, p-coumaric acid, and caffeic acid (von Baer et al., 2008).  

 The proportion and amount of each class of compounds vary widely among 

cultivars and with growing conditions. The proportion of anthocyanins markedly 

influences both hue value and colour stability. Both properties are directly affected by the 

hydroxylation patern of the anthocyanidin B ring (Alcalde-Eon et al., 2006; Boulton 

2001; González-Manzano et al., 2007). 
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Figure I.17. Anthocyanidins identified in wines from Vitis vinifera. 
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The anthocyanins have been investigated in aqueous solution and have been 

shown to exist in different forms in equilibrium depending on the pH. Under very weak 

acidic conditions, four anthocyanin structural types exist in equilibrium (Figure I.18) 

(Castañeda-Ovando et al., 2009). In very acidic aqueous solutions, anthocyanins occur as 

 

 

red flavylium cations AH+. In aqueous media, increasing the pH leads to a reduction of 

color intensity because of a decrease in the concentration of the flavylium cation AH+ that 

is converted into its colorless hemiketal form B through nucleophilic attack of water. This 

Figure 1.18. Malvidin 3-O-glucoside equilibria in aqueous media (adapted from Es-Safi et al., 2008). 
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pseudo-base form is in equilibrium with the colorless hydroxy chalcone form C. At low 

acidic, neutral, and basic pH values, deprotonation of the flavylium cation also occurs, 

giving rise to the violet/blue quinonoidal forms (Es-Safi et al., 2008; He et al., 2012; 

Monagas et al., 2003). 

In the presence of sulphur dioxide, free anthocyanins are strongly discolored. At 

pH 3.2, 96% of sulphurous acid are in form of HSO3
- (Ribéreau-Gayon et al., 2006). 

HSO3
- reacts with the flavylium cation (A+) on carbon 2 or carbon 4 leading to the 

formation of colorless compounds of type AHSO3 (Mazza and Francis, 1995). The 

formation of such colorless compounds is a function of the concentration of free 

anthocyanins. The effect of SO2 on the combined and polymerized anthocyanins is less. 

In addition, this substitution prevents the condensation of anthocyanins with other 

molecules (Mirabel et al., 1999). 

During wine maturation and aging, phenolic compounds, including anthocyanins 

and flavanols, are subject to various chemical transformations due to oxidation-reduction 

reactions, condensation, polymerization and complexation with other compounds such as 

proteins, polysaccharides or metals (Ricardo-da-Silva et al., 1991). Consequently, 

anthocyanins and tannins are gradually being transformed into oligomeric and polymeric 

pigments more stable and with physical and chemical characteristics distinct from their 

precursors, contributing to the change in the organoleptic properties such as colour and 

taste of wine (Monagas et al., 2005). 

The colour evolution of red wines is a complex process that is in part attributed to 

copigmentation phenomena and to the progressive displacement of the original 

anthocyanins by newly formed pigments (Marquez et al., 2013; Mateus et al., 2002; 

Pissarra et al., 2004) (Figure I.19). These pigments usually arise from the interaction 

between anthocyanins and other phenolic compounds, especially flavanols such as 

catechins (He et al. 2012). Different mechanisms have been suggested to explain the 

formation of these new pigments  (Blanco-Vega et al., 2011; Gómez-Míguez et al., 2006; 

Mateus et al., 2002, 2004; Oliveira et al., 2013; Sánchez-Ilárduya et al., 2014). Processes 

such as direct reaction between anthocyanins and flavanols (Remy et al., 2000), reaction 

between anthocyanins and flavanols through ethyl bridges (Es-Safi et al., 1999; Francia-

Aricha et al., 1997), or the reaction between anthocyanins and other small compounds 

such as glyoxylic acid, vinylphenol and pyruvic acid  (Benito et al., 2011) have already 

been demonstrated in model solutions. Among these pigments, the pyranoanthocyanins 
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are currently acknowledged as one of the most important classes of anthocyanin 

derivatives. Correct assignment of their structures and formation in red wine has been 

achieved relatively recently over the last two decades. Their general structure includes an 

additional ring D formed between the OH group at C-5 and the C-4 of the anthocyanin 

pyranic ring. This new pyranic ring D may have different kinds of substituents linked 

directly at C-10 (de Freitas and Mateus, 2011).  

 

 

Figure I.19. Anthocyanin-derived pigments formation during red wine aging (adapted from de 

Freitas and Mateus, 2011). 

 

Figure I.20 shows the formation of pyranoanthocyanins during wine aging from 

condensation reaction of malvidin-3-O-glucoside and acetaldehyde, pyruvic acid and 

vinylphenol. However, pyranoanthocyanins with analogous structures are also formed 

from other anthocyanin-3-O-glucosides and their acetylic, p-coumarilic and caffeoilic 

derivatives (Blanco-Vega et al., 2011; Mateus et al., 2004; Sánchez-Ilárduya et al., 2014). 

All these events result in the formation of more stable pigments that stabilize wine colour 

(Carvalho et al., 2010; Marquez et al., 2013; Oliveira et al., 2010; Pechamat et al., 2014; 

Talcott et al., 2003). The pyranoanthocyanins in their diverse forms have been estimated 

to constitute more than 50% of the total derived pigments present in red wines with two 

and five years old (Alcalde-Eon et al., 2006; Boido et al., 2006). 
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Figure I.20. Formation of pyranoanthocyanins during wine aging (adapted from Benito et al., 

2011). 

 

I.3 High pressure in winemaking  
 

In the oenological sector, the use of HHP treatments has already been tested to 

preserve the quality and sustainability of grape juice and must (Daoudi et al., 2002; 

Talcott et al., 2003), and also to preserve the wine (Buzrul 2012; Delfini et al., 1995; Mok 

et al., 2006; Morata et al., 2012; Puig et al., 2003). In 1995, Delfini et al., (1995) 

demonstrated that microorganisms added to the wine, such as Leuconostoc oenos, 

Lactobacillus spp, Acetobacter, and Botrytis cinerea were killed with pressure treatments 

of 400 MPa during 2 min at 20 ºC. Puig et al., (2003) investigated the microbiological 

and biochemical stabilization of wines by use of HHP. Two yeasts (S. cerevisiae and 

Brettanomyces bruxellensis), two lactic acid bacteria (LAB), and two acetic acid bacteria 
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(A. aceti and A. pasteurianus) (L. plantarum and Oenococcus onei) were inoculated into 

a white wine and a red wine with SO2. HHP treatments (400 – 500 MPa for 5 - 15 min at 

4 °C - 20 °C) resulted in almost complete inactivation (6 log10 reduction for yeasts and 8 

log10 reduction for bacteria) of the microorganisms. It was  also observed that HHP 

treatments did not affect PPO activity, alcohol level, total and volatile acidity, free and 

total SO2, protein stability, malic acid, lactic acid, reducing sugars and pH compared to 

untreated wines. Sensory evaluation was done with 12 series of tasting using 8 tasters. 

Tasters detected plastic taste in samples of three series which was due to the plastic 

container used in HHP treatment, but no other organoleptic differences was found 

between untreated and HHP treated wines. 

Mok et al., (2006) reported the effect of pressure treatments ranging from 100 to 

350 MPa until 30 min on microorganism (aerobic bacteria, yeast, and LAB) of wine. They 

showed that the microbial inactivation increased with the pressure treatment and with 

time. It was also reported that aerobic bacteria were more susceptible to the HHP 

treatments than yeast and LAB (Mok et al., 2006). Sensory evaluation done using 10 

tasters revealed that there were no differences in the aroma, taste, and overall sensory 

quality between the HHP treated (350 MPa for 10 min) and untreated samples.  However, 

some studies conducted in muscadine grape juice demonstrated that HHP treatments, 

depending on pressure and time, may activate some enzymes, such as polyphenoloxidase 

(PPO), leading to a decrease in antioxidant capacity and anthocyanins content (Del Pozo-

Insfran et al., 2007; Talcott et al., 2003). Morata et al., (2012) showed that pressure 

treatments (100 MPa for 24 h at 25 ºC) are efficient in the control of 

Dekkera/Brettanomyces growth in red wines, although the HHP-treated wines showed a 

smaller total anthocyanin content (by about 15 %) than the non-HHP-treated controls. 

Furthermore, more severe high pressure treatments (650 MPa for 1 and 2 h) revealed to 

change the physicochemical characteristics of red wine, namely the decrease of colour 

intensity and the content of phenolic compounds. In terms of sensorial properties, the sour 

and fruity aroma of the wine became weaker after 2 h of pressurization whereas the 

intensities of several gustatory attributes, including astringency and alcoholic and bitter 

taste, were enhanced slightly (Tao et al., 2012). This result indicate that HHP can also be 

potentially used to change the equilibrium of chemical reactions in wine and modify the 

organoleptic properties of wine rapidly, accelerating the wine aging process (Tao et al., 

2012, 2014). 
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Recently, besides the use for wine conservation, HHP has been also tested to delay 

haze formation in wine during storage (Tabilo-Munizaga et al., 2014). Pressure 

treatments of 450 MPa for 3 and 5 min showed to decrease α-helical structure in wine 

proteins, due to the increase of intermolecular interactions between proteins and other 

non-protein compounds in the wine matrix.  These structural changes improved thermal 

stability of wine proteins and thus delay haze formation in wine during storage (Tabilo-

Munizaga et al., 2014). 

The principal limitation of the HHP treatment is the current impossibility to be 

used in a continuous process. Therefore, the use of HHP for wine conservation is only 

viable in the final stage of winemaking, replacing the addition of SO2 before bottling, for 

a pressure treatment after bottling. The requirement of packaging the wine in a resistant 

and flexible package before the treatment is expected to be a challenge for product 

presentation. It should be noted that installation of an HHP equipment in a winery would 

definitely bring an extra cost. However, the HHP treated wine would be healthier and 

would most probably attract the consumer attention. Moreover, the application of HHP 

process in winemaking is still at an early stage of development and the effect on the 

physical-chemical characteristics of wine is still largely unknown, namely in respect to 

antioxidant activity, phenolic and volatile compounds composition.  

It is important to refer that in the studies about HHP effect in wine, both physico-

chemical and sensorial properties of the HHP treated wine have been only analysed after 

the pressure treatment, without ever having references on these properties during storage. 

As mentioned above, chemical reactions occur during wine maturation, mainly between 

phenolic compounds, and it is important to understand what the effect of HHP treatments, 

together with the absence of SO2, in the course of these reactions during wine storage.  

Furthermore, the beneficial qualities that a moderate consumption of wine have, due 

essentially of the bioactive properties of the wine phenolic compounds (namely, 

antioxidant, anticancer, anti-inflammatory, blood sugar-lowering, and cardiovascular 

beneficial effects) must be ensured in the HHP treated wine for the benefit of consumers. 
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I.4 Aim of the work 
 

Since, it seems that HHP treatments modify the chemical and sensorial properties 

of wine, and in order to increase the fundamental knowledge about the effect of HHP on 

wine, the aim of this PhD thesis is to study the influence of HHP treatments on wine 

chemical and sensorial characteristics. These studies are still required to further evaluate 

the feasibility of this technology to preserve or /and aging wine.  

To achieve the main objective it will be fulfilled the following specific aims:  

-Study the effect of HHP in the physicochemical and sensorial properties of sulphur 

dioxide-free wines during bottle storage. 

- Study the influence of HHP treatments in the sulphur dioxide-free wine volatile 

composition.  

-Study the effect of HHP treatments on the structure and interaction of wine compounds, 

using wine model solutions. 

- Study the impact of HHP treatments on red wine phenolic composition. 

 The application of high hydrostatic pressure treatments in winemaking for wine 

preservation, as an alternative to sulphur dioxide, was evaluated in the Chapter 2, being 

Chapters 2.1 and 2.2 related to the effect of HHP in the physicochemical and sensorial 

properties of sulphur dioxide-free red and white wines, respectively, during bottle storage. 

In addition, the impact of the pressure treatments in wine volatile composition is 

presented in the Chapter 2.3. 

 In Chapter 3 is reported the effect of HHP treatments on the structure and 

interaction of wine compounds, such the formation of Maillard reaction-derived volatile 

compounds (Chapter 3.2) and new phenolic compounds (Chapter 3.1), using wine model 

solutions. 

  The application of high hydrostatic pressure treatments in winemaking to treat 

young wines was evaluated in the Chapter 4. For this propose, the effect of a high 

hydrostatic pressure treatment in the phenolic composition of a red wine was studied 

(Chapter 4.1), and compared with the effect of different enological practices, such oak 

barrels, oak chips and micro-oxygenation with oak chips (Chapter 4.2). 

Chapter 5 presents a general discussion of all the results obtained, representing 

not only a summary of the main results obtained as also a global analysis of the different 

results. Final remarks and recommendations for future research activities are also 

proposed. 
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Keywords: Colour; phenolic compounds; Anthocyanins; sensorial analyses; high pressure 

 

II.1.1 Overview 

Sulphur dioxide (SO2) is probably one of the most versatile and efficient additives 

used in winemaking due to its antiseptic and antioxidant properties. This compound is also 

important for minimizing phenolic polymerisation rate and colour loss during wine aging 

(Karbowiak et al., 2010; Ribéreau-Gayon et al., 2006). However, allergies caused by SO2 

derived compounds, namely the sulphites, are becoming more frequent, causing symptoms 

such as headaches, nausea, gastric irritation, and breathing difficulties in asthma patients 

(Vally and Misso, 2012). Consequently, the legislated maximum concentration of SO2 

allowed in wines has been gradually reduced, which is nowadays 150 mg/L for red wines 

and 200 mg/L for white wines (Regulation (EC) No 607/2009). For this reason, the search 

of new healthy safe strategies able to replace totally or partially the action of SO2 in wines 

has increased in the last years. 

The application of HHP in winemaking for substitution of the use of sulphur dioxide 

is still at a very early stage of development, since knowledge about the effect on 

physicochemical and sensorial characteristics of the wine during storage is very scarce. The 

aim of this work was to increase the fundamental knowledge about the effect of HHP on 

wine, contributing for the evaluation of the feasibility of using HHP for wine long term 

preservation in the absence of SO2. This was pursued by studying the physicochemical and 

sensorial properties of a red wine treated with HHP along its storage in bottles during 12 

months. For this purpose, a red wine was produced without the addition of SO2 and was 



 CHAPTER II.1 

 

58 
 

pressurized at two pressure conditions, 500 and 425 MPa, for 5 min at 20 ºC. A wine with 

40 ppm of SO2 and a wine with no preservation treatment were used as controls. Colour, 

antioxidant activity, total phenolic compounds, and monomeric anthocyanins composition 

of the wines were evaluated. 

 

II.1.2 Materials and methods 

II.1.2.1 Chemicals 

Absolute ethanol p.a, tartaric (99%) acid and gallic acid (99%) were purchased from 

Panreac (Barcelona, Spain), while sodium carbonate anhydrous (99%) and 2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic) (ABTS, 99%) were purchased from Fluka (St. Louis, MO). 

Potassium persulfate (99%), Folin-Ciocalteu reagente, 6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid (Trolox, 99%), and formic acid (HPLC grade) were 

purchased from Sigma–Aldrich (Seelze, Germany), while acetonitrile (HPLC grade) was 

purchased from from LAB-SCAN (Gliwice, Poland). 

 

II.1.2.2 Wine samples and high pressure treatments 

Red wine samples without the addition of SO2 were produced by Dão Sul SA 

(Carregal do Sal, Portugal) using Touriga Nacional grapes from Dão Appelation, at 2010 

and 2011 vintages. After alcoholic fermentation, the wines were transferred to polyethylene 

bottles of 250 mL, stoppered, and were pressurized during 5 min at 20 ºC at 425 MPa and 

500 MPa in a hydrostatic press (Avure Technologies, Model 215L-600, USA), giving origin 

to the samples named 425 MPa and 500 MPa, respectively. Two lots of the same wine were 

also bottled in the polyethylene bottles, one with the addition of 40 ppm of SO2, the typical 

amount used in the wine industry (sample named as SO2), and another with neither addition 

of SO2 nor submitted to any high pressure treatment (sample named as Untreated). All wine 

samples were stored at 80% relative humidity, in the absence of light at a temperature 

ranging between 10 ºC and 15 ºC. The wines were analysed in triplicate along storage in the 

bottles. 
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II.1.2.3 Spectrophotometric determinations 

Colour 

The measurement of the wine colour was carried out using the CIELab space. The 

absorption spectra were recorded using a PerkinElmer Instruments Lambda 35 

spectrophotometer and a 1 mm optical path glass cell. The whole visible spectrum (380-780 

nm) was recorded and Illuminant D65 and 10° Observer were used in the calculations. The 

CIELab parameters were determined using the original PerkinElmer UV WinLab® Software 

according to regulations by the International Commission on Illumination: red/green colour 

(a*) and yellow/blue colour (b*) components, and luminosity (L*). The parameters 

correlated with the colour perception, namely the polar coordinates chroma (C*ab) and hue 

angle (hab) were determined according to the equations C*ab = (a*2 + b*2)0.5 and hab = 

tan−1(b* / a* ). Colour differences (∆E*) between wines were calculated from the equation 

∆E* = (∆L*2 + ∆C*2 + ∆H*2)0.5, where ∆L*= L*(sample) – L*(ref), ∆C* = C*ab(sample) – C*ab(ref) 

and ∆H* (hue difference) = 2 sin(∆hab/2)(C*ab(ref) × C*ab(sample)), with ∆ hab = hab(sample) – 

hab(ref) (hue angle difference) (Berké and de Freitas, 2007). 

 

Total phenolic content and antioxidant activity 

The total phenolic (TP) content of the samples was determined by the Folin–Ciocalteu 

method, as described by Singleton (1985). The samples were appropriately diluted in a 

solution of 10% ethanol. The calibration curve was performed using gallic acid as standard 

in a concentration range between 50 and 500 mg/L. The results were expressed as gallic acid 

equivalents.  

The antioxidant activity (AOA) was determined by the 2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic) acid (ABTS) method (Pellegrini et al., 2000). The samples 

were appropriately diluted in a solution of 10% ethanol. The calibration curve was performed 

using 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) as standard in a 

concentration range between 50 and 400 µM. The results were expressed as Trolox 

equivalent antioxidant capacity (TEAC).  

 

Total proanthocyanidins content  

Total proanthocyanidins were estimated according to Chira et al., (2011). This method 

is based on the Bate-Smith reaction, in which the proanthocyanidins in acid medium release 
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anthocyanidins by heating. The wines were diluted to 1/50 in a 10% ethanol solution. One 

mL of the samples was added to 0.5 mL of water and 1.5 mL of 12 M HCl and the mixture 

was homogeneized. Two tubes for each sample were prepared: one was heated for 30 min 

in boiled water (sample A), while the other was maintained at room temperature (sample B). 

To each tube, 0.25 mL of 95% ethanol were added. The absorbance at 550 nm was read 

under 10 mm optical path. The content in proanthocyanidins was determined using a 

calibration curve obtained with a mixture of procyanidin oligomers as standard, obtained 

according to de Freitas et al., (1998). 

 

Anthocyanins content  

The anthocyanin content of samples was estimated using the pH shift method described 

by Burns et al., (2000). Two test tubes were set up, each containing 1 mL of wine and 1 mL 

of 0.1% HCl prepared in 95% ethanol. Ten mL of 2% HCl (pH 0.6) were added to one tube 

and 10 mL of phosphate/citrate buffer pH 3.5 were added to the other tube. Absorbance was 

read at 700 nm to allow for correction of the haze and then at 520 nm for anthocyanin 

determination. Anthocyanins were quantified as malvidin-3-glucoside equivalents, the major 

anthocyanin in red wine, using the extinction coefficient of ε = 28000 Lm-1mol-1. At pH <1 

anthocyanins are in their red flavylium form, allowing the determination of the total 

anthocyanins. At pH 3.5 the flavylium form of the anthocyanin is primarily in equilibrium 

with the colourless carbinol. Therefore, at this pH the absorbance observed is due to 

polymeric anthocyanins. The free anthocyanin content is estimated by the difference in 

absorbance between pH <1 and pH 3.5.  

All samples were analysed in triplicate for the estimation of TP, AOA, 

proanthocyanidins, and anthocyanins content.  

 

II.1.2.4 Analysis of monomeric anthocyanins by HPLC 

The monomeric anthocyanins (MA) present in the wine samples were analysed by HPLC 

using the method described by (Gonçalves et al., 2012). A HPLC Dionex Ultimate 3000 

Chromatographic System (Sunnyvale, California, USA) equipped with a quaternary pump 

Model LPG-3400 A, a ACC-3000 auto sampler, having a thermostatted column 

compartment (adjusted to 30 ºC), and a multiple Wavelength Detector MWD-300 was used. 

The column (250 x 4.6 mm, particle size 5 μm) was a C18 Acclaim® 120 (Dionex, Sunnyvale, 
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California, USA) protected by a guard column of the same material. The eluents were: (A) 

40% formic acid, (B) acetonitrile and (C) bidistilled water. The initial conditions were 25 % 

A, 10 % B, and 65 % C, followed by a linear gradient from 10 to 30% B, and 65 to 45 % C 

for 40 min, with a flow rate at 0.7 mL/min. The injection volume was 20 µL. The detection 

was made at 520 nm and a Chromeleon (version 6.8) software program (Sunnyvale, 

California, USA) was used. 

Anthocyanins were identified according to their UV-Vis spectrum (Dallas and Laureano, 

1994). The chromatographic peaks of all anthocyanins were identified by comparing their 

retention times with the retention time of the respective standard. The quantification of the 

monomeric anthocyanins was done based on a calibration curve obtained with standard 

solutions of malvidin-3-glucoside (Extrasynthese, Genay, France), and the results for each 

target phenolic component were expressed in equivalents of the standard used. All analyses 

were done in triplicate. 

 

II.1.2.5 Phenolic extraction of the deposits present in wine bottles  

In order to recover the phenolic compounds present in the deposits and covering the walls 

of each bottle, an acidic methanol extraction was done on the 2011 vintage wine samples 

after 6 months of storage. Firstly, the wine samples were decanted, and to the remaining 

insoluble material 20 mL of methanol/formic acid (99:1, v/v) solution were added and the 

mixture was left under constant stirring during 24h. The methanolic solution was then 

centrifuged (3500 g for 5 min) to remove the insoluble material. The phenolic extracts were 

analysed by spectrophotometry to determine the total phenolic, proanthocyanidin, and 

anthocyanidin contents. 

 

II.1.2.6 Sensorial analysis 

A blind tasting test was done to the wine after 9 months of bottling by 7 expert panellists 

of the wine producer (5 men and 2 women). Wines (30 mL) were presented in transparent 

glasses coded with a three-digit random code and distributed in a completely randomized 

order. In each session a descriptive analysis of each wine was conducted.  

All tasters were informed that the wines had different treatments, but the panellists did 

not have any details of the experimental design. Each panellist was presented with the four 

samples: untreated, SO2, 425 MPa and, 500 MPa. Wines were evaluated on a predefined 
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score sheet (scale from 0 to 5) that included 17 descriptors in three categories: colour 

(limpidity, red colour, violet colour, and brown colour), aroma attributes (balance, fruity, 

floral, cooked fruit, spices, leather, and metallic) and taste attributes (body, astringency, 

bitterness, acidity, balance, and persistence). The score sheet was drawn up by the project 

team in accordance with the objectives of the trials. Also a global evaluation was done on a 

scale from 0 to 20 in 4 categories: colour, aroma, taste and global attributes. Averages of the 

scores for each descriptor were calculated. 

 

 

II.1.2.7 Statistical analysis  

Statistical data analysis was performed by Analysis of Variance (ANOVA). Tukey’s 

HSD Test was used as comparison test when significant differences were observed by 

ANOVA (p<0.05).  

Principal components analysis (PCA) was conducted in order to extract the main 

sources of variability and thus grouping the wine samples. PCA was performed on the 

normalized values of the following parameters: a*, b* and L*, antioxidant activity, and total 

phenolic content for the pressurized and unpressurized wines at the beginning and after 12 

months of storage.  

 

II.1.3. Results and discussion 

II.1.3.1 Physicochemical analysis of the 2010 vintage wine 

Colour 

The CIELab (L*, a*, and b*) parameters calculated for the four wine samples of 2010 

vintage (untreated, with 40 ppm of SO2, and pressurized at 425MPa and 500 MPa) during 

12 months are shown in Figure. II.1.1. An increase in a*, b*, and L* parameters was 

observed for the wines along storage, indicating a change in the wine colour, shifting to more 

red, yellow, and transparent, respectively. This change was also verified through the 

increment in the Chroma (C*ab) and hue (hab) values. These results are in agreement with 

other reports that observed that during aging, red wine acquires a more orange and clear 

colour, corresponding to increments in b*, L* and hab (Boido et al., 2006; Garcia-falcon et 

al., 2007; Gutierrez et al., 2005). The colour change during wine ageing is mainly due to the 

reaction of the anthocyanins, with formation of polymeric compounds. These compounds 
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had different physicochemical features that could stabilize wine colour changing it from the 

red-purple of young wines to the more orange-red hue of aged wines ( He et al., 2006; 

Mateus and de Freitas, 2001).  

 

 

 

Figure. II.1.1. Evolution of CIELab parameters (a*, b*, L*, C*ab and hab) of wine simples, 2010 

vintage, during 12 months of aging in bottle. 

 

The pressurized samples, at 12 months of storage, presented higher values of CIELab 

parameters, especially b*, when compared with the unpressurized wines (p<0.05). This 

difference was statistically different after 9 months of storage for b*, while for a* and L* 

the pressurized samples presented a higher increase at 12 months, leading to more 

pronounced orange-red hue in the samples. As consequence, an increment of the C*ab and 

hab values in these samples was also observed (p<0.05) at 12 months of storage. 

In order to establish whether the observed changes in the chromatic parameters were 

visually relevant, the colour differences (ΔE*) between pressurized and unpressurized 

samples were calculated. This parameter has been suggested to estimate in CIELab units 

how samples are different: ΔE* values higher than 3 CIELab units indicate that the 

differences can be perceived by the human eye (Martínez et al., 2001). Until nine months of 
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storage, the ΔE* values for the wines pressurized at 425 MPa and 500 MPa were lower than 

3 CIELab units (data not shown), but for nine months of storage the ΔE* values were 4 and 

6 respectively, when compared with the unpressurized wines. At the end of 12 months of 

storage, the ΔE* values increased to 10 and 8, respectively. These results show that although 

in the early stages after pressurization, the difference in colour of the pressurized wines in 

relation to the unpressurized wines is not perceived by the human eye. However, after nine 

months of storage, a difference is noticed, increasing along the storage time.  

 

Total Phenolic Compounds and Antioxidant Activity  

The total phenolics (TP) content and the antioxidant activity (AOA) of the wine samples 

during bottle storage are shown in Figure II.2.2. At the beginning of the storage, the wine 

samples did not show any statistical differences on TP and AOA. However, along the time 

of storage, the wines showed different evolution of TP and AOA values. In relation to the 

TP (Fig. II.2.1), the pressurized wines presented a slight decrease (9%) of TP after 9 months 

of storage (p<0.05).  

 

 

Figure. II.1.2. Evolution of total phenolic compounds content (TP), and antioxidant activity 

(AOA) of wine simples, 2010 vintage, during 12 months of aging in bottle. 

 

Regarding the evolution of wines AOA, the untreated and pressurized samples showed 

a slight decrease in AOA along storage. After 12 months, the untreated, 425 MPa, and 500 

MPa treated wine samples had, respectively, 21%, 27%, and 15% lower AOA than the wine 

with SO2 (Fig. II.2.2). The wine with SO2 exhibited at the end of 12 months of storage, 15% 

higher AOA compared to the value at the beginning of storage, which is due to the 
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antioxidant capacity that the SO2 provides to the wine (Burin et al., 2010b). During wine 

aging, different condensation reactions can occur in each wine, leading to different 

antioxidant activity of the compounds. Therefore, besides the possible occurrence of a higher 

rate of condensation reactions of phenolic compounds in the pressurized red wine, these 

reactions should be different to those occurring in untreated wine and wine with SO2, 

explaining the different behaviour of the antioxidant activity and total phenolic content 

observed for these wines during aging. 

 

Anthocyanins Composition  

The pronounced orange-red hue and the lower TP and AOA of the pressurized wines 

points to a higher degree of pigmentation/polymerization of the anthocyanins in these 

samples (He et al., 2006), when compared with the untreated wine and with the wine with 

SO2. This indicates that the pressurized wines should present a higher degree of anthocyanins 

polymerization, and a lower content of monomeric anthocyanins (MA). To verify this 

assumption, the wines were analysed after 9 and 12 months of storage for their content in 

MA. All samples showed from 9 to 12 months of storage, a decrease in the individual 

anthocyanin content and, consequently, a decrease in total monomeric anthocyanins content 

(Table.II.1.1). This decrease was mainly due to the high decrease of malvidin 3-glucoside 

content, the MA present in high content in red wines. 

After 9 months of storage, the pressurized wines presented a significant lower total MA 

content (54 - 68 mg/L) than the unpressurized wines (124 – 138 mg/L). The 425 MPa wine 

presented a total MA content 56% and 61% lower than the untreated and SO2 wines, 

respectively, while the 500 MPa wine presented a total MA content 45% and 51% lower. 

These results are in agreement with those reported by (Morata et al., 2012) which showed 

that the final anthocyanin content of red wine is affected by HHP treatments. As the lower 

monomeric anthocyanin content in the pressurized samples was in agreement with the higher 

CIELab values found, it is possible that the high pressure treatments promote the 

acceleration of condensation reactions during the wine storage period, involving monomeric 

anthocyanins and possibly other phenolic compounds. Accordingly, Boido et al., (2006) 

suggested that the increase in the hab values along wine aging could be attributed to the 

decrease of the amount of the monomeric anthocyanins. This is also reinforced by results 
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obtained by Corrales et al., (2008), who described the formation of vitisin A-type derivative 

by degradation of cyanidin 3-glucoside after HHP treatment. 

The higher content of monomeric anthocyanins of the wine with SO2 (Table II.1.1) 

might be due to the reaction of SO2 with the anthocyanins, as well as with several other 

constituents, reducing the rate of phenolic compounds polymerization and, consequently, the 

colour alteration usually observed during wine aging (Santos et al., 2012). 

 

Table I.1.1.  Monomeric anthocyanins content of the wine samples, 2010 vintage, after 9 and 12 

months of storage. 

 Monomeric anthocyanins content (mg/L)1 

 9 Months  12 Months 

Anthocyanin2 Untreated SO2 425 

MPa 

500 

MPa 

 Untreated SO2 425 

MPa 

500 

MPa 

Dp3Glc 2.01  

± 0.12a 

2.57 

 ± 0.26b 

0.25 

 ± 0.06c 

0.43 

± 0.01cd 

 0.41 

± 0.10cd 

0.62 

± 0.07d 

0.32 

± 0.02cd 

0.39 

± 0.03cd 

Pt3Glc 5.04  

± 0.06a 

5.98 

± 0.14b 

0.95 

± 0.11c 

1.44 

± 0.18de 

 1.76 

± 0.25e 

2.39 

± 0.29f 

0.94 

± 0.09c 

1.12 

± 0.05cd 

Pn3Glc 2.36 

 ± 0.16ab 

2.61 

± 0.12b 

0.81 

± 0.07c 

1.15 

± 0.13cd 

 1.56 

± 0.17cde 

1.94 

± 0.20abd 

0.77 

± 0.42c 

1.07 

± 0.61c 

Mv3Glc 81.49 

 ± 1.55a 

89.08 

± 1.92b 

29.38 

± 1.42c 

36.18 

± 2.91d 

 57.06 

± 7.72e 

69.70 

± 3.66f 

23.63 

± 0.30c 

23.29 

± 0.88c 

Dp3AcGlc 5.01  

± 0.35a 

5.91 

± 0.17a 

10.75 

± 0.29b 

12.49 

± 0.81b 

 3.97 

± 1.13a 

5.91 

± 0.75a 

10.51 

± 0.34b 

11.11 

± 1.48b 

Cy3AcGlc 1.34 

 ± 0.06ab 

1.67 

± 0.13ab 

2.18 

± 0.61ac 

3.02 

± 0.24c 

 0.85 

± 0.68b 

1.51 

± 0.34ab 

2.24 

± 0.30ac 

2.33 

± 0.24ac 

Pt3AcGlc 1.42 

 ± 0.25a 

1.96 

± 0.21b 

0.15 

± 0.01c 

0.20 

± 0.03c 

 0.77 

± 0.13d 

0.69 

± 0.26de 

0.15 

± 0.01c 

0.29 

± 0.02ce 

Pn3AcGlc 2.84 

 ± 0.43ab 

3.23 

± 0.25b 

2.32 

± 0.19a 

2.83 

± 0.31ab 

 0.48 

± 0.10c 

2.90 

± 0.54ab 

2.04 

± 0.10a 

2.16 

± 0.32a 

Mv3AcGlc 17.09 

 ± 0.90a 

18.78 

± 0.99a 

5.93 

± 0.29b 

8.27 

± 0.73c 

 11.95 

± 0.49d 

12.40 

± 0.83d 

4.45 

± 0.12b 

4.40 

± 0.02b 

Pn3CmGlc 0.87 

 ± 0.05a 

1.01 

± 0.05a 

0.18 

± 0.02bc 

0.28 

± 0.02bc 

 0.35 

± 0.13c 

0.57 

± 0.09d 

0.13 

± 0.02b 

0.11 

± 0.02b 

Mv3CmGlc 4.89 

 ± 0.36a 

5.57 

± 1.58a 

1.54 

± 0.12b 

2.03 

± 0.10c 

 3.45 

± 0.40c 

4.41 

± 0.51a 

1.20 

± 0.14b 

1.05 

± 0.17b 

Total 
124.38 

 ± 4.30a 

138.38 

± 5.86b 

54.44 

± 3.19c 

68.32 

± 5.48d 

 82.90 

± 6.26e 

103.04 

± 7.53f 

46.43 

± 1.86c 

47.32 

± 3.84c 

1 All data are expressed as mean value ± standard deviation (n = 3).  In the same line, different letters indicate significant differences according 

to a Tukey test (p<0.05). 2Dp3Glc-Delphinidin-3-glucoside, Pt3Glc-Petunidin-3-glucoside, Pn3Glc-Peonidin-3-glucoside, Mv3Glc-
Malvidin-3-glucoside, Dp3AcGlc-Delphinidin-3-glucoside-acetaldehyde, Cy3AcGlc-Cyanidin-3-glucoside-acetaldehyde, Pt3AcGlc-

Petunidin-3-glucoside-acetaldehyde, Pn3AcGlc-Peonidin-3-glucoside-acetaldehyde, Mv3AcGlc-Malvidin-3-glucoside-acetaldehyde, 

Pn3CmGlc-Peonidin-3-(6-p-coumaroyl)-glucoside, Mv3CmGlc-Malvidin-3-(6-p-coumaroyl)-glucoside 
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Principal component analysis  

The principal component analysis (PCA) was performed on the normalized values of a 

*, b* and L* CIELab values, AOA, and TP for the pressurized and unpressurized wines at 

the beginning and after 12 months of storage (Figure II.1.3). At the beginning of storage, the 

PC1 explained 64% of the variation of the data. The scores scatter plot (Figure II.1.3A) 

showed that along PC1 axis the samples were separated according to the presence (PC1 

positive) or absence (PC1 negative) of SO2. Regarding to the loadings plot (Figure II.1.3B), 

it can be seen that the variables a*, L*, and AOA contributed to the samples located on PC1 

positive, while b* and TP contributed to the samples location in PC1 negative. These results 

suggest that at the beginning of storage the addition of SO2 was the main factor to 

differentiate the wines and, comparatively, the high hydrostatic pressure treatments have a 

lower impact on the physicochemical parameters of the wine.  

 

 

Figure II.1.3. PC1×PC2 scatter plots of the wine samples, 2010 vintage, at the beginning (A- scores; 

B- loadings) and after 12 months of storage (C- scores; D- loadings) related to a*, b*, L*, AOA, and 

TP. 
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After 12 months of storage, the PCA showed a variation of 86% explained by PC1 

(Figure II.1.3C), positively related to the CIELab parameters and negatively related to the 

AOA and TP (Figure II.1.3D). Contrarily to the beginning of storage, after 12 months the 

wines were separated according to the pressure treatments. The pressurized wine samples 

were located in PC1 positive, while the unpressurized wines were located in PC1 negative 

(Figure II.1.3C). Moreover, the treatment with SO2, that at the beginning of storage was the 

main source of differentiation, was after 12 months of storage, explained by PC2 (13% 

variation). Regarding to the loadings plot (Figure II.1.3D), it can be seen that the parameters 

responsible for the differentiation of the pressurized wines from those unpressurized were 

the CIELab values, whereas the AOA was the parameter that influenced the distinction 

between untreated wine (PC2 negative) and wine with SO2 (PC2 positive). These results 

confirm that the high pressure treated wines presented alterations in the physicochemical 

properties only after several months of storage, being colour the principal factor of difference 

comparing with unpressurized wines. This effect had only been reported for severe high 

pressure treatments (> 30 min and >600 MPa) that modify immediately the physicochemical 

properties of the wine (Tao et al., 2012), while possible effects during the wine conservation 

in bottle were never reported. 

 

II.1.3.2 Physicochemical analysis of the 2011 vintage wine 

In order to confirm, in a different vintage, the effect of HHP treatments in red wine, 

wine samples were produced in 2011 using the same conditions and grapes origin of the 

2010 vintage. The wines physicochemical properties were analysed along 6 months of bottle 

storage being shown in Table II.1.2 As was observed in the 2010 data set, the pressurized 

samples presented higher b* values after six months of storage, when compared to the 

unpressurized wines, leading to the increment of the C*ab and hab values, indicating a more 

orange-red hue colour. The ΔE* for the 425 MPa and 500 MPa wines were 8 and 6, 

respectively, when compared with the unpressurized wines after 6 months of storage, 

indicating that the difference of colour between unpressurized and pressurized wine samples 

of 2011 vintage was also perceptible by the human eye. None of these differences were 

perceived after 3 months of storage. In terms of AOA and TP, the behaviour was also similar 

to the 2010 vintage, since the wine samples presented no significant differences (p<0.05), at 

the beginning of storage or after 3 months, but began to show different AOA and TP content 
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after 6 months. The pressurized wines presented an AOA and TP around 20% and 10% 

lower, respectively, than the unpressurized wines. These results show that the effect of HHP 

treatments, namely the increase of the orange-red hue colour, as well as the decrease of the 

antioxidant activity and total phenolic content in the pressurized wine samples were similar 

for the two vintages (2010 and 2011) studied. 

 

Table II.1.2.  Evolution of the colour, antioxidant activity and total phenols content of the 

wine samples, 2011 vintage, during 6 months of storage. 

Wine Samples 

Parameter1 

Colour 
AOA2 

( TEAC mM) 

TP3 

(mg/L) 

a* b* L* C*ab hab   

Beginning of 

storage 

Untreated 42.1 24.2 15.7 48.5 29.9 
12.81 

± 0.59abc 

1701 

± 11a 

SO2 44.7 24.1 17.6 50.7 28.4 
13.64 

± 0.89bc 
1900 

± 30b 

425 MPa 41.4 29.7 15.6 50.9 35.7 
13.09 

± 0.23abc 
1773 

± 22c 

500 MPa 44.7 31.8 13.4 54.9 35.4 
12.69 

± 0.16abc 
1675  

± 17ad 

         

3 months 

Untreated 44.5 27.3 16.9 52.2 31.5 
12.70 

± 0.44abc 

1852 

± 79b 

SO2 47.6 29.3 18.9 55.9 31.6 
14.22 

± 0.71c 
1918 

± 57b 

425 MPa 47.1 32.9 20.3 57.4 35.0 
11.35 

± 0.51ad 
1633 

± 48ad 

500 MPa 44.8 29.9 17.3 53.9 33.8 
11.58 

± 1.12a 
1660 

± 11d 

         

6 months 

Untreated 47.2 30.2 21.2 56.1 32.6 
12.00 

± 0.81ab 

1705 

± 38ad 

SO2 49.8 30.8 21.4 58.5 31.7 
13.11 

± 0.66abc 
1752 

± 21a 

425 MPa 48.3 39.4 21.8 62.3 39.2 
9.63 

± 0.58d 
1528 

± 18e 

500 MPa 47.1 36.0 19.9 59.3 37.4 
9.62 

± 0.49d 
1587 

± 57e 

1 AOA and TP data are expressed as mean value ± standard deviation (n = 3).  In the same column, different letters 

indicate significant differences according to a Tukey test (p<0.05). 
2 AOA Antioxidant activity data are expressed as  nM Trolox equivalent antioxidant capacity (TEAC). 
3 TP Total Phenolic Compounds data are expressed as mg/L acid gallic equivalents. 
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II.1.3.3 Phenolic characterization of wine and deposits  

During storage it was observed in the pressurized wine bottles a lower amount of TP in 

wine and also a higher formation of deposits when compared with the unpressurized wines. 

Therefore, the amount of TP, anthocyanins, and proanthocyanidins present in the deposits 

formed in the wine bottles of 2011 vintage were quantified after 6 months of storage. The 

anthocyanins and proanthocyanidins content were also quantified in the wine samples. These 

results are presented in Table II.1.3, expressed as amount (mg) per bottle (250 mL) for better 

comparison between the amount of phenolic content in the wines and deposits of each bottle.  

 

Table II.1.3.  Total phenols, anthocyanins and proanthocyanidins content of the wine and wine 

deposits samples, 2011 vintage, after 6 months of storage. 

 

Parameter1 

Total Phenolic 

Compounds 

(mg/bottle)2 

Anthocyanins3 

(mg/bottle) 
Total 

proanthocyanidins 

(mg/bottle) Free Polymeric Total 

Wine 

Untreated 426.26 ± 9.54a 
11.28 

± 0.61ac 

16.15 

± 1.62ab 

27.43 

± 1.23a 
397.34 ± 68.55a 

SO2 438.13 ± 5.27a 
21.16 

± 2.17b 

18.27 

± 0.41b 

39.42 

± 2.19b 
372.10 ± 58.89a 

425 MPa 381.93 ± 4.50b 
9.61 

± 0.46c 

14.79 

± 0.46a 

24.40 

± 0.92c 
421.50 ± 129.91a 

500 MPa 396.70 ± 13.92b 
11.31 

± 0.27a 

15.49 

± 1.33a 

26.80 

± 1.13ac 
380.69 ± 47.89a 

       

Wine 

deposit 

Untreated 3.02 ± 0.43A 
0.16 

± 0.01A 

0.84 

± 0.01A 

1.00 

± 0.01A 
9.17 ± 0.84A 

SO2 0.05 ±0.01B 
0.01 

± 0.01B 

0.04 

± 0.01B 

0.05 

± 0.01B 
0.61 ± 0.01B 

425 MPa 10.81 ± 0.93C 
0.24 

± 0.01C 

0.83 

± 0.02A 

1.07 

± 0.01A 
31.40 ± 1.47C 

500 MPa 38.90 ± 3.38D 
0.25 

± 0.01C 

0.92 

± 0.01C 

1.18 

± 0.02C 
95.21 ± 4.00D 

1 All data are expressed as mean value ± standard deviation (n = 3).  In the same column, different letters (non-capitals 

for wine and capitals for bottle deposit) indicate significant differences according to a Tukey test (p<0.05). 
2 Anthocyanins are data expressed as mg of malvidin 3-glucoside equivalents. 
3Total Phenolic Compounds data are expressed as mg of acid galic equivalents. 

 

The pressurized samples presented deposits with higher TP content, 4-fold and 13-fold 

higher content in the 425 MPa and 500 MPa samples, respectively, when comparing with 

the untreated sample. These results are in accordance with the lower TP content present in 

the pressurized wines (around 10%). In terms of total anthocyanins content, the wines 
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without SO2 (untreated, 425 MPa, and 500 MPa) presented the lower amount in wine 

(mainly 425 MPa sample), but the higher amount in the deposits (mainly 500 MPa sample). 

The deposit of the wine with SO2 presented a very low amount of phenolic compounds when 

compared with the pressurized and untreated sample, pointing again to a lower rate of 

phenolic polymerization and precipitation due to the presence of SO2. All wine samples 

presented a similar proanthocyanidins content in wine (p<0.05). However, considering that 

the amount of proanthocyanidins in the deposits were 3 and 10-fold higher for the samples 

pressurized at 425 MPa and 500 MPa, respectively, when compared with the untreated one 

(Table II.1.3), it seems that the pressure treatments accelerated the polymerization of the 

wine phenolic compounds, forming compounds with higher degree of polymerization that 

became insoluble in wine along the storage time. These results are in accordance with the 

transformations reported to occur to anthocyanins during wine ageing (de Freitas and 

Mateus, 2011; González-Manzano et al., 2008; Monagas et al., 2006). Therefore, the 

alterations that occur in the pressurized red wine characteristics, such more orange-red 

colour, the lower antioxidant activity, total phenolic content, and anthocyanins content, may 

be due to the increase of condensation reactions of phenolic compounds, resulting in 

compounds with higher polymerization degree, namely anthocyanins and 

proanthocyanidins, along the wine aging. 

 

II.1.2.4 Sensorial properties  

The sensorial properties of the wines of 2010 vintage were analysed after 9 months of 

storage in order to assess the organoleptic characteristics of the pressurized wines in terms 

of aroma, colour and taste. The results of the average scores of the panellists are displayed 

in Figure II.1.4. 

The wines pressurized at 425 MPa presented a very similar aroma compared to the wines 

with SO2 (Figure II.1.4A). However, the wine pressurized at 500 MPa presented more scents 

of cooked fruit and spices aroma. The untreated wines presented less perceived fruity and 

floral aroma and had a more pronounced metallic and leather aroma than the other wines. 

Comparing the taste assessment of the different wine samples, the pressurized wines 

presented a similar taste assessment than the wine with SO2 (Figure II.1.4B). Untreated 

wines showed a higher acidity and lower balance. In terms of colour (Figure II.1.4C), the 

pressurized wines presented higher values of brown and limpidity and lower values of violet 
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than unpressurized wines. These results are in agreement with the colour analysis by CIELab 

parameters, since the pressurized wines presented higher values of b*, L*, and hab. 

Therefore, the pressurized wines showed, after 9 months of storage, a similar global 

assessment when compared with the wines with SO2, but a better global assessment than the 

untreated wine (Figure II.1.4D).  

 

 

 

Figure II.1.4. Descriptive sensory analysis of the aroma (A), taste (B), colour (C), and global 

attributes (D) of wines, 2010 vintage, after 9 months of storage.   

 

 

The high pressure treatments seems to alter significantly the colour, aroma, and taste of 

the wine after several months of storage. Although no differences were observed in the 

aroma, taste, mouth-feel, and overall sensorial quality between HHP treated and untreated 

wine samples, immediately after the HHP treatment (Mok et al., 2006). 
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II.1.4.Concluding remarks 

This work demonstrates that high pressure treatments with processing time of 5 min and 

pressures between 400 and 500 MPa can influence red wine physicochemical and sensorial 

characteristics. However, the effects are only perceptible after, at least, 6 months of storage.  

The alterations that occur on the pressurized red wine characteristics, such as the more 

orange-red colour and the lower antioxidant activity, total phenolic content, and 

anthocyanins content, are due to an increase of condensation reactions of phenolic 

compounds. These changes lead to aged wine-like characteristics and do not affect 

negatively the global sensorial appreciation of wines. 

This is the first report where physicochemical and sensorial characteristics of 

pressurized wines of two consecutive vintages were evaluated during one year of bottle 

aging. The data presented showed that the use of HHP to pasteurize wine needs to be applied 

with care to minimize the impact on long term wine quality. More studies concerning the 

chemical reactions promoted by HHP treatments in wine are needed to identify the optimal 

conditions to preserve wine by this new technology. 
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CHAPTER II.2 

 

Impact of high pressure treatments on the physicochemical properties 

of a sulphur dioxide-free white wine during bottle storage: Evidence of 

Maillard reaction acceleration 
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II.2.1 Overview 

As reported in chapter II.1, pressure treatments of 400-500 MPa for 5 min have 

shown to influence long term red wine physicochemical and sensorial characteristics, 

namely more orange-red colour, and lower antioxidant activity, total phenolic content, 

and anthocyanins content due to an increase of condensation reactions of phenolic 

compounds along the wine aging. These changes led to aged wine-like characteristics, 

reflected not only on wines physicochemical properties, but also on sensorial appreciation 

of wines. In order to use high hydrostatic pressure to preserve also white wine more studies 

are needed, namely the effects of HHP on the white wines physicochemical properties 

during storage. Therefore, the aim of this work was to study the effects of HHP treatments 

on colour, antioxidant activity and total phenolic compounds of a sulphur dioxide-free 

white wine during one year of bottle storage. For this purpose, a white wine was produced 

without the addition of SO2 and was pressurized at two pressure conditions, 500 and 425 

MPa, for 5 min at 20 ºC. A wine with 40 ppm of SO2 and a wine with no preservation 

treatment were used as controls.  
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II.2.2 Materials and methods 

II.2.2.1 Chemicals 

Absolute ethanol p.a, tartaric (99%) acid and gallic acid (99%) were purchased 

from Panreac (Barcelona, Spain) Sodium carbonate anhydrous (99%) and 2,2'-azino-

bis(3-ethylbenzthiazoline-6-sulphonic) (ABTS, 99%) were purchased from Fluka (St. 

Louis, MO). Potassium persulfate (99%), Folin-Ciocalteu reagent, 6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid (Trolox, 99%), ethyl acetate, isobutanol, 3,5-di-

tert-butyl-4-hydroxytoluene (BHT) of gas chromatography (GC) grade quality, sodium 

chloride (99.5%, foodstuff grade), heptafluorobutyric anhydride of derivatization grade 

quality, and also the L-amino acids standards (alanine, glycine, valine, threonine, serine, 

leucine, isoleucine, proline, aspartic acid, phenylalanine, glutamic acid, lysine, tyrosine, 

and arginine) and the internal standard (L-norleucine) were purchased from Sigma 

(Seelze, Germany). 

 

II.2.2.2 Wine samples and high pressure treatments 

Wine samples without the addition of SO2 were produced by Dão Sul SA 

(Carregal do Sal, Portugal) using Encruzado white grape variety from Dão Appellation 

from 2010 harvest. An industrial batch fermenter of 200 L was used. After alcoholic 

fermentation, the wine was transferred to 250 mL polyethylene bottles, stoppered, and 

were pressurized during 5 min at 20 °C at 425 MPa or 500 MPa, conditions that assured 

microbiologically safe wines (Buzrul et al., 2004), in a hydrostatic press from Avure 

Technologies (Model 215L-600, USA), giving origin to the samples 425 MPa and 500 

MPa, respectively. Pressurizing water was used at a controlled temperature of 15 °C. 

Pressure build-up took place at a compression rate of about 300 MPa/min (adiabatic 

heating caused an increased in temperature of about 4.0 °C), while decompression was 

nearly instantaneous. Two lots of the same wine were also bottled in the polyethylene 

bottles, one with an addition of 40 ppm of SO2, the typical amount used in the wine 

industry (sample named as SO2), and other with no addition of SO2 nor submitted to any 

high pressure treatment (untreated). As polyethylene bottles can have a little impact on 

the sensorial properties of the white wine (Ghidossi et al., 2012), all wine samples 

(pressurized and unpressurized) were bottled in polyethylene bottles. The oenological 

parameters of the wines at the beginning of storage are shown in Table II.2.1. All the 

oenological parameters were determined by the methods described by the Office 
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International de la Vigne et du Vin (1990). All wines were stored at 80% relative 

humidity in the absence of light at a temperature ranging between 10 °C 

 

Table II.2.1. Oenological parameters of the wine samples at the beginning of bottle storage. 

 

 Wine samples 

 Untreated SO2 425 MPa 500 MPa 

Alcohol level (% v/v) 13.21 13.15 13.18 12.99 

Volatile acidity 

 (g/L, expressed as acetic acid) 0.38 0.39 0.39 0.40 

Total acidity  
(g/L, expressed as tartaric acid) 6.49 6.55 6.52 6.55 

pH 3.41 3.37 3.43 3.38 

Reducing sugars (g/L) 1.37 2.02 1.88 1.79 

 

 

II.2.2.3 Physicochemical analysis of wine 

Colour  

The measurement of the wine colour was carried out using the CIELab space. The 

absorption spectra were recorded using a PerkinElmer Instruments Lambda 35 

spectrophotometer (USA) and a 10 mm optical path glass cell. The whole visible 

spectrum (380-780 nm) was recorded and Illuminant D65 and 10° Observer were used 

for the calculations. The CIELab parameters were determined using the original 

PerkinElmer UV WinLab® Software according to regulations by the International 

commission on Illumination: red/green colour (a*) and yellow/blue colour (b*) 

components, and luminosity (L*). The parameters correlated with the colour perception, 

namely the polar coordinates chroma (C*ab) and hue angle (hab) were determined 

according to the equations C*ab = (a*2 + b*2)0.5 and hab = tan−1(b*/a* ). Colour differences 

(∆E*) between wines were calculated from the equation ∆E* = (∆L*2 + ∆C*2 + ∆H*2)0.5, 

where ∆L*= L*(sample) – L*(ref), ∆C* = C*ab(sample) – C*ab(ref) and ∆H* (hue difference) = 2 

sin(∆hab/2)(C*ab(ref) × C*ab(sample)), with ∆ hab = hab(sample) – hab(ref) (hue angle difference) 

(Berké and de Freitas, 2007). 

 

 Total phenolic content and antioxidant activity  

The total phenolic (TP) content of the samples was determined by the Folin–

Ciocalteu method as described by Singleton (1985). The samples were a diluted 1:2 in a 

solution of 10% ethanol. The calibration curve was performed using gallic acid as 
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standard in a concentration range between 50 and 500 mg/L. The results were expressed 

as gallic acid equivalents.  

The antioxidant activity (AOA) was determined by the 2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid (ABTS) method (Pellegrini et al., 2000). The 

samples were diluted 1:5 in a solution of 10% ethanol. The calibration curve was 

performed using 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) as 

standard in a concentration range between 50 and 400 µM. The results were expressed as 

Trolox equivalent antioxidant capacity (TEAC). All samples were analysed in triplicate 

for TP and AOA methods.  

 

II.2.2.4 Free amino acids analysis 

Amino acids analysis was carried out by derivatisation and subsequent separation and 

analysis by gas chromatography according to the methodology described by (Coimbra et 

al., 2011).  

Two milliliters of each wine sample were added to test tubes. The wine samples 

were dealcoholized under vacuum using a centrifugal evaporator. After, 500 µL of the 

internal standard solution (L-norleucine 5.0 mM in HCl 0.1 M) were added and the tubes 

content was evaporated to dryness under vacuum. The resulting material was dissolved 

in 1 mL HCl 0.1 M, filtered with 0.45 µm filters and dried under vacuum using a 

centrifugal evaporator.  The resultant solid residue was dissolved in 200 µL of a solution 

of 3 M HCl in isobutanol. This solution was prepared by adding 270 µL of acetyl chloride 

per mL of dry isobutanol. The isobutanol was dried with calcium hydride, distilled and 

stored on 4 Å molecular sieves. The mixture was heated to 120 ºC for 10 min using test 

tubes with a screw cap with PTFE. After shaking in a vortex, the tubes were heated for 

further 30 min. After cooling to ambient temperature, the excess of reagent was 

evaporated under vacuum using a centrifugal evaporator. Then, 200 µL of 0.2 mg/mL 

BHT prepared in ethyl acetate was added and the solvent was removed under vacuum. 

Afterwards, 100 µL of heptafluorobutyric anhydride was added and the mixture was 

heated during 10 min at 150 ºC. After cooling to room temperature, the excess of solvent 

was removed under vacuum and the material obtained was dissolved in 50 µL of ethyl 

acetate and analysed immediately or frozen at -20 ºC until analysis. 

  The separation of amino acids was achieved by gas chromatography, carried 

out in a PerkinElmer Clarus 400 instrument (PerkinElmer, Massachusetts, USA) 
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equipped with a flame ionisation detector (FID). The injector was kept at 250 ºC and the 

detector at 260 ºC. Hydrogen was used as carrier gas. A DB-1 (30 m, 0.25 mm i.d. and 

0.15 µm thickness) fused-silica capillary column (J & W Scientific, USA) was used with 

the following temperature programme: 1 min hold at 70 ºC, increase to 170 ºC at 2.0 ºC/ 

min and then to 250 ºC (5 min hold) at 16 ºC/min. The compounds were identified by 

their retention times and chromatographic comparison with authentic standards. 

Quantification was based on the internal standard method using L-norleucine, and the 

calibration curves were built for 14 amino acids. For asparagine (Asn) and aspartic acid 

(Asp), as well as for glutamine (Gln) and glutamic acid (Glu), the methodology does not 

allow the distinction between the amide and carboxylic acid forms. As such, those amino 

acids were quantified together as Asx and Glx, respectively. Also, the methodology used 

did not allow the detection of histidine. The limit of quantification of the analysed amino 

acids was determined to be ten times the value of the residual signal peaks.  

 

II.2.2.5 Furans composition analysis  

The furans composition of the white wine samples was analysed by headspace solid 

phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas 

chromatography with time of flight mass spectrometry (GC × GC–ToFMS). 

The SPME holder for manual sampling and fibre were purchased from Supelco 

(Aldrich, USA). The SPME device included a fused silica fibre coating partially cross-

linked with 50/30 μm divinylbenzene/carboxen/ polydimethylsiloxane coating 

(DVB/CAR/PDMS). Prior to use, the SPME fibre was conditioned at 270 ºC for 60 min 

in the GC injector, according to the manufacturer’s recommendations. Then, the fibre was 

daily conditioned for 10 min at 250 ºC. For the HS-SPME assay, aliquots of 3 mL of the 

sample were placed into a 9 mL glass vial. After the addition of 0.6 g of NaCl at 400 rpm 

the vial was capped with a PTFE/Silicone Septa (Supelco, USA). The vial was placed in 

a thermostated bath adjusted to 40.0 ± 0.1 C and stirring (1.5 x 0.5 mm bar), and the 

SPME fibre was manually inserted into the sample vial headspace for 20 min. Each 

sample was analysed in triplicate. Blanks, corresponding to the analysis of the coating 

fibre not submitted to any extraction procedure, were run between sets of three analyses. 

The GC × GC-ToFMS methodology was based on a previous study (Perestrelo et 

al., 2011), with the exception that the modulation time was 5 s. Total ion chromatograms 

(TIC) were processed using the automated data processing software ChromaTOF® 
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(LECO) at a signal-to-noise threshold of 6. Contour plots were used to evaluate the 

separation general quality and for manual peak identification; a signal-to-noise threshold 

of 100 was used. The ion extraction chromatography (IEC) mode was used to increase 

the specificity and sensitivity detection of the target analyte. IEC allows the analysis of a 

global volatile profile by combining the spectral evidence with a target ion selection and 

retention time, thus minimizing the contribution of co-eluted compounds and increasing 

the peak area of the targeted compound (Coelho et al., 2009). The ions at m/z 118, 110, 

95, 81, and 43 were used for furans detection. Two commercial databases (Wiley 275 and 

US National Institute of Science and Technology (NIST) V. 2.0, Mainlib and Replib) 

were used. A mass spectral match factor, the identified compounds showed similarity 

matches >850, was set to decide whether a peak was correctly identified or not. 

Furthermore, a manual inspection of the mass spectra was done, combined with the use 

of additional data, such as the retention index (RI) value, which was determined according 

to the van den Dool and Kratz RI equation (van Den Dool and Kratz, 1963). For the 

determination of the RI, a C8 – C20 n-alkanes series was used, and these values were 

compared with values reported in the literature for chromatographic columns equivalents 

to that used in the first dimension (Ansorena et al., 2000; Cardeal et al., 2008; Engel et 

al., 2002; Eyres et al., 2005; Fan and Qian, 2006; Leffingwell and Alford, 2005; 

Perestrelo et al., 2011; Robinson et al., 2011b). The GC × GC area data was used as an 

approach to estimate the relative content of each component. Reproducibility was 

expressed as relative standard deviation (RSD). 

 

II.2.2.6 Sensorial analysis 

A blind tasting test was done to the wines after 9 months of bottling by 7 expert 

panellists of the wine producer (5 men and 2 women). Wines (30 mL) were presented in 

transparent glasses coded with a three-digit random code and distributed in a completely 

randomized order. In each session a descriptive analysis of each wine was conducted.  

All tasters were informed that the wines had different treatments, but the panellists 

did not have any details of the experimental design. Each panellist was presented with the 

four samples: untreated, SO2, 425 MPa and, 500 MPa. Wines were evaluated on a 

predefined score sheet (scale from 0 to 5) that included 13 descriptors in three categories: 

colour (limpidity, yellow, green, and brown), aroma attributes (balance, fruity, floral, and 

cooked fruit) and taste attributes (body, bitterness, acidity, balance, and persistence). The 

score sheet was drawn up by the project team in accordance with the objectives of the 
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trials. Also a global evaluation was done on a scale from 0 to 20 in 4 categories: colour, 

aroma, taste and global attributes. Averages of the scores for each descriptor were 

calculated. 

 

II.2.2.7 Statistical analysis  

Statistical data analysis was performed using Analysis of Variance (ANOVA). 

Tukey’s HSD Test was used for free amino acids data as comparison test when samples 

analyses gave significantly different after ANOVA (p<0.05).  

 

II.2.3 Results and discussion 

 

II.2.3.1 Physicochemical characteristics 

Colour  

The CIELab (a*, b*, and L*) parameters calculated for the four white wine samples: 

without the addition of SO2 (Untreated) with the addition of 40 ppm of SO2 (SO2), 

pressurized at 425 MPa for 5 min (425 MPa), and pressurized at 500 MPa for 5 min (500 

MPa) are presented in Figure II.2.1. An increase in the a* and b* parameters and a 

decrease in the L* parameter (p<0.05) was observed for all wines along storage, 

indicating a change in the wine colour, shifting to more yellow and red and less luminous, 

respectively. This change was also verified through the increment in the chroma (C*ab) 

and a decrease in the hue (hab) values. These results are globally in agreement with others 

reported in the literature which showed that the increase of the C*ab and decrease of the 

hab are the characteristic colour changes in white wines during storage, resulting in a 

change in the colour of the wine from pale yellow to yellow-brown (Recamales et al., 

2006).  

Although with the same trends, the pressurized samples presented different values 

of the CIELab parameters, when compared with the unpressurized wines (Figure II.2.1). 

For a* and b* parameters, a higher increase of red (reaching positive a* values) and 

yellow colours in the pressurized samples was observed at 6 and 12 months of storage, 

respectively, leading to the increment of the C*ab and the decrease of the hab values in 

these samples (p<0.05). L* value is similar for all the wine samples until 3 months of 

storage, but after 6 months the pressurized wine samples presented a significant lower 

luminosity when compared with the unpressurized wine samples. Therefore, the 
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pressurized wine samples presented a more brownish colour when compared to the 

unpressurized wines. 

 

 

Figure II.2.1. Evolution of CIELab parameters (a*, b*, L*, C*ab and hab) of wine samples, during 

12 months of aging in bottle. 

 

In order to establish whether the observed changes in the chromatic parameters were 

visually relevant, the colour differences (ΔE*) between pressurized and unpressurized 

samples, were calculated. This parameter has been used to evaluated if two wines are 

different as when ΔE* values are higher than 3 CIELab units the differences can be 

perceived by the human eye (Martínez et al., 2001). Until 3 months of storage the ΔE* 

values were all lower than 3 CIELab units (data not shown). However, after 3 months of 

storage, the ΔE* values between the unpressurized and pressurized wines are all higher 

than 3 CIELab units (5.5, 3.5, and 7.5 CIELab units for 6, 9, and 12 months, respectively). 

Therefore, after 3 months of storage the differences in the CIELab parameters, such the 

increase of the red colour (higher a*) and the decrease in the luminosity (lower L* values) 

for the pressurized wines, become perceived by the human eye and increase with storage 

time. 
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Total phenolic compounds and antioxidant activity  

The total phenolic compounds (TP) content and the antioxidant activity (AOA) of 

the wine samples during bottle storage are presented in Figure II.2.2. The wine samples 

presented, at the beginning of storage, no TP and AOA differences. However, along the 

storage time, the pressurized samples showed a slight decrease in TP and AOA at 9 

months of storage, presenting at 12 months of storage an TP and AOA 10% and 15% 

lower (p<0.05), respectively, comparing with the untreated wines (Figure II.2.2). The 

decrease of the TP and AOA in the pressurized wines after 6 months of storage seems to 

be related with the higher increase of b* parameter (Figure II.2.1). The decrease of the 

total phenolic content and antioxidant activity in the pressurized wines may be associated 

with the generation of high-reactive radicals during pressurization and the enhancement 

of chemical oxidation of polyphenols during storage (Clariana et al., 2011). 

 

 

 

Figure II.2.1. Evolution of the total phenols content (A) and antioxidant activity (B) of the 

wine samples, during 12 months of aging in bottles. 

 

 

The increase of yellow colour in white wines is reported to be due to the oxidation 

of polyphenols forming new compounds with a typical yellow-brown hue (Clark 2008; 

Recamales et al., 2006). This was also observed in red wines, where chemical reactions 

among phenolic compounds can be accelerated by HHP, namely phenolic compound 

polymerization, leading to a decrease of the polyphenol and antioxidant activity (Chapter 

II.1; Tao et al., 2012). The increase of the a* parameter in the pressurized wines (Figure 



CHAPTER II.2 

86 
 

II.2.1), together with ΔE* values higher than 3 CIELab units at 6 months of storage, may 

not be only due to the possible higher oxidation rate of phenols, and the respective 

decrease of the TP and AOA in these wines (Figure II.2.2), since this decrease is only 

significantly different at 12 months of storage. In fact, additionally to the major chemical 

browning reactions involving wine phenols, the main browning reactions occurring 

during wine storage are Maillard reaction (Oliveira et al., 2011). The Maillard reaction 

involves condensation of reducing sugars with amino acids and proteins can occurs in 

foods during processing and cooking or even during storage (Jaeger et al., 2010; Oliveira 

et al., 2011), giving rise to different compounds that include reductones, furfurals, and a 

variety of other cyclic substances (Glomb and Monnier, 1995; Moreno et al., 2003). The 

results obtained infer the possibility of Maillard reactions acceleration in the pressurized 

wine samples, however to confirm this hypothesis, at 9 months of storage, the analysis of 

free amino acids and volatile furans content of all wine samples was performed.  

 

II.2.3.2 Investigation of the occurrence of Maillard reaction  

Amino acids analysis 

The free amino acid content of the white wines was quantified at 9 months of 

storage (Table II.2.2). Pressurized wines presented around less 20 and 15% of free amino 

acids content than the untreated and SO2 samples, respectively (p<0.05). The pressurized 

wine samples presented lower content of serine (81 to 87%), valine (19 to 42%), 

phenylalanine (25 to 28%), glutamic acid (including glutamine) (20 to 30%), and arginine 

(9 to 24%), when compared with the two unpressurized wines (p<0.05). The pressurized 

samples did not show significantly different lysine content when compared with the SO2 

sample, but they showed 85% less lysine content than untreated sample. 

The lower content of amino acids indicates that reactions involving amino acids 

occurred to a higher extent in the pressurized wine samples. These results, together with 

the higher brownish colour presented in the pressurized wines at 9 months of storage, lead 

to infer a possible effect of HHP treatments in the acceleration of Maillard reactions 

during the wine storage period. These observations are in accordance with the studies 

conducted in model systems containing amino acids and sugars that demonstrated that 

high pressure treatments can accelerate the formation of Amadori rearrangement 

compounds (Hill et al., 1996; Jaeger et al., 2010; Moreno et al., 2003; Schwarzenbolz et 

al., 2002).  
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Table II.2.2. Free amino acid content of the wine samples at 9 months of storage. 

 

Free amino acids content (mg/L)1 

Amino acids2 

 

Wine samples 

Untreated SO2 425 MPa 500 MPa 

Ala 14.49 ± 0.12a 13.49 ± 0.38b 12.86 ± 0.59bc 12.13 ± 0.69c 

Gly 7.17 ± 0.21a 5.66 ± 0.98b 4.94 ± 0.79b 4.48 ± 0.69b 

Val 5.90 ± 0.28a 5.12 ± 0.50a 4.15 ± 0.22b 3.41 ± 0.14c 

Thr 2.61 ± 0.53a 1.96 ± 0.36ab 1.55 ± 0.16b 1.32 ± 0.36b 

Ser 8.17 ± 1.31a 7.04 ± 1.52a 1.36 ± 0.44b 1.08 ± 0.55b 

Leu 6.08 ± 0.59a 8.25 ± 0.96b 10.30 ± 0.99b 8.30 ± 0.95b 

Ile 2.06 ± 0.10a 2.75 ± 0.34b 1.74 ± 0.52ac 1.62 ± 0.21c 

Pro 44.56 ± 2.72a 43.87 ± 3.60a 34.39 ± 7.15ª 35.06 ± 6.12a 

Asx 24.36 ± 0.30a 24.06 ± 2.40a 25.10 ± 0.46ª 23.80 ± 1.43a 

Phe 7.70 ± 0.16a 7.88 ± 0.47a 5.76 ± 0.44b 5.65 ± 0.53b 

Glx 30.14 ± 0.64a 29.74 ± 1.43a 23.81 ± 2.81b 21.16 ± 2.20b 

Lys 8.58 ± 0.74a 1.50 ± 0.32b 1.39 ± 0.36b 1.33 ± 0.17b 

Tyr 1.33 ± 0.09a 1.52 ± 0.18ac 2.32 ± 0.27b 2.15 ± 0.43bc 

Arg 1.63 ± 0.10a 1.55 ± 0.16a 1.41 ± 0.18ab 1.22 ± 0.05b 

Total content 162.84 ± 2.51a 152.15 ± 4.20b 133.02 ± 11.02c 124.96 ± 4.35c 
1 All data are expressed as mean value ± standard deviation (n = 3). In the same line, different 

letters indicate significant differences according to a Tukey test (p<0.05). 
2 Gly-glycine,  Ala-alanine, Ser-serine, Pro-proline,  Val-valine,  Thr-threonine, Leu-leucine, 

Ile-isoleucine, Asx-asparagine + aspartic acid, Glx-glutamic acid + glutamine, Lys- lysine, Phe-

phenylalanine, Tyr-tyrosine and  Arg-arginine. 

 
 

Furans composition analysis 

At 9 months of storage it was also investigated the presence of furans in the white 

wine samples by HS-SPME/GC × GC-ToFMS. Table II.2.3 gives detailed information 

for each compound, including GC peak area, RSD, and RI experimentally calculated as 

well as reported in the literature. 
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Table II.2.3.  Furans identified by HS-SPME/GC × GC-ToFMS in the white wines at 9 months 

of storage. 

1tR 
a 

(s) 

2tR 
a 

(s) Furans RIlit.
b RIcal

c 

Wine samples 

Untreated SO2 425 MPa 500 MPa 

     Peak Aread (x105) and RSD e (%) 

110 0.416 Tetrahydro-furan 623 648 26.16 (13) 27.02 (9) 22.07 (11) 17.48 (4) 

205 1.808 2-Furanylmethanal (2-furfural) 830 840 20.97 (34) 31.28 (12) 280.13 (1) 166.46 (7) 

240 3.816 
2-Furanylmethanol (Furfuryl 
alcohol) 

866 867 44.87 (16) 42.02 (24) 41.90 (25) 29.89 (21) 

275 1.536 
1-(2-Furanyl)-ethanone (2-
Acetylfuran) 

910 917 3.51 (29) 2.94 (19) 3.54 (4) 3.33 (21) 

325 1.504 
5-Methylfuran-2-carbaldehyde 

(5-Methylfurfural) 
962 965 - - 4.16 (26) 6.03 (52) 

325 1.536 
Methyl furan-2-carboxylate 

(Methyl 2-furoate) 
983 975 1.11 (31) 1.03 (14) - - 

345 0.568 2-Pentyl-furan 992 990 0.73 (41) 0.49 (34) 0.41 (50) 0.30 (7) 

350 1.112 Benzofuran 1006 996 1.26 (15) 1.23 (7) 1.22 (8) 1.27 (5) 

365 1.272 
1-(2-Furanyl)-propan-1-one (2-

Propionylfuran) 
1008 1007 0.54 (7) 0.68 (8) 0.85 (11) 0.95 (7) 

390 1.288 2-Acetyl-5-methylfuran 1039 1046 - - 1.12 (6) 1.18 (7) 

405 1.224 
Ethyl 2-furancarboxylate (Ethyl 

2-furoate) 
1062 1051 14.69 (18) 15.20 (18) 20.72 (6) 18.94 (11) 

485 0.696 2-Heptylfuran 1196 1154 1.88 (11) 2.11 (8) 1.50 (15) 1.82 (10) 

  Total (GC Peak Area)   
115.72 

(20) 
114.75 (29) 377.49 (3) 247.22 (7) 

  
 Total (Number of Identified 

Furans) 
  10 10 11 11 

a Retention times for first (1tR) and second (2tR) dimensions. 
b RI, Retention Index reported in the literature for HP-5 GC column or equivalents (Ansorena et al., 2000; Cardeal et 

al., 2008; Engel et al., 2002; Eyres et al., 2005; Fan & Qian,2006; Leffingwell & Alford, 2005; Perestrelo et al., 

2011; Robinson et al., 2011a). 
c RI: retention index obtained through the modulated chromatogram. 
d Mean of three replicates. 
e Relative standard deviation, expressed in percentage. 

 

 The pressurized wines showed higher content of furans (3 and 2 fold higher for 

425 MPa and 500 MPa, respectively) than the unpressurized wine samples. The higher 

content of furans in pressurized wines was mainly due to the higher content of 2-furfural, 

10 and 5-fold higher content for 425 MPa and 500 MPa samples, respectively. Moreover, 

5-methylfurfural and 2-acetyl-5-methylfuran were only detected in the pressurized wine 

samples.  

 Furans, namely 2-furfural, are considered Maillard volatile compounds, since they 

can be formed by the dehydration of sugars through Maillard reaction (Oliveira e Silva et 

al., 2008). These results reinforce the idea that the HHP treatments accelerated the 

Maillard reaction, leading to the decrease of amino acids content and the increase of 
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volatile Maillard compounds formation. The pressurized wines presented a furans 

composition characteristic of a faster aged/thermally treated wine as the furans have a 

tendency to increase linearly during wine aging (Perestrelo et al., 2011). 

 

II.2.3.3 Sensorial characteristics  

The sensorial properties of the wines were analysed, at 9 months of storage, to 

assess the organoleptic characteristics of the wine in terms of colour, aroma, and taste. 

The results of the average scores of the panelists are displayed in Figure II.2.3.  

 

 

Figure II.2.3. Descriptive sensory analysis of the colour (A), aroma (B), taste (C), and global 

attributes (D) of wines, at 9 months of storage. 

 

Regarding the colour evaluation (Figure II.2.3A), it can be observed that the 

pressurized wines presented higher values of brown colour and limpidity, and lower 

values of green colour than unpressurized ones. These values are in agreement with the 

CIELab parameters obtained for the pressurized wines, since these wines presented higher 
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values of a* and b*. In terms of aroma (Figure II.2.3B), the pressurized wine samples 

presented a higher scents of cooked fruit aroma and lower scents of fruity and floral 

aromas than the unpressurized wines. The higher cooked fruit aroma detected in the 

pressurized wines could be explained by the higher content of Maillard volatile 

compounds, namely 2-furfural, in these samples, since these compounds are described to 

have “roasty” fruit notes (Castro-Vázquez et al., 2011; Jeleń et al., 2011; Pripis-Nicolau 

et al., 2000). The perception threshold of 2-furfural (around 20 mg/L) is normally higher 

than the concentrations found in non-sherry wines (Prida and Chatonnet, 2010). However, 

the sensorial evaluation of pressurized wines allows to infer that the 5 and 10-fold higher 

content of 2-furfural in the pressurized wines could exceed its perception threshold. 

Comparing the taste assessment of the different wine samples (Figure II.2.3C), the 

pressurized wines showed a slightly higher bitterness level and a lower body and balance 

level than the other wines. No significant differences were observed in terms of taste and 

aroma between the two pressurized wine samples. The pressurized wines showed at 9 

months of storage a lower global assessment, namely in terms of aroma and taste quality, 

when compared with the unpressurized wines samples (Figure II.2.3D). In general, 

regarding sensorial analysis, it seems that the physicochemical changes caused by the 

acceleration of Maillard reactions due to the HHP treatments alter significantly the colour, 

aroma, and taste of the wine. In a sensorial point of view, the pressurized wines are not 

considered suitable for commercialization as table white wines due to the higher brownish 

colour and cooked fruit aroma characteristic of an aged or thermally treated wine (Chaves 

et al., 2007; López de Lerma et al., 2010).  

 

II.2.4.Concluding remarks 

 

The results obtained in this work demonstrate that high hydrostatic pressure 

treatment with 5 min of processing time and pressures of 425 and 500 MPa influence the 

physicochemical characteristics of the wines. These effects are perceptible only after, at 

least, 6 months of storage, and leading to alterations in the wine sensorial characteristics. 

The higher brownish colour and cooked fruit aroma, and also the lower free amino acid 

content and higher furans content in the pressurized wines indicate that the HHP 

treatments accelerates the Maillard reaction, leading to wine physicochemical and 

sensorial characteristics of an aged white wine. This work is in agreement with the results 

obtained for red wine (Chapter II.1) that showed that high pressure treatments (400-500 
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MPa for 5 minutes) do not alter immediately the wine physicochemical and sensorial 

properties, but influence/accelerate the wine aging characteristics, leading to alterations 

in the wine during storage. These aspects should be taken into consideration in the 

implementation of HHP treatments to wine conservation as an alternative to SO2. 
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 II.3.2 Overview 

In chapters II.1 and II.2 it was shown that moderate HHP treatments, 425 and 500 

MPa during 5 min, influenced long term sensorial characteristics of red and white wines, 

respectively, since the pressurized wines presented higher cooked fruit aroma and lower 

fruity and floral aromas than the unpressurized wines. Furthermore, pressurized white 

wines presented, after 9 months of storage higher content of furans when compared with 

the unpressurized wines (chapter II.2). These results demonstrate that the HHP treatments 

influence the volatile composition of the wines. As the aroma is one of the most important 

quality parameters of the wine for consumers’ acceptance, the aim of this work was to 

study the effect of high hydrostatic pressure treatments on the volatile composition of the 

sulphur dioxide free-red and white wines. 

In order to obtain a deeper characterization of the chemical groups potentially 

affected by HHP treatments, comprehensive two-dimensional gas chromatography 

coupled to mass spectrometry with a high resolution time of flight analyzer (GC×GC-

ToFMS) combined with headspace solid-phase microextraction (HS-SPME) was used. 

This technique is the most suitable gas chromatography technique for untargeted analysis 

of complex samples, such as wine (Welke et al., 2014). GC×GC-ToFMS offers superior 

separation capabilities afforded by high peak capacity, selectivity, structural 

chromatographic peak organization, and sensitivity enhancement in comparison to 1D-

GC (Marriott and Shellie, 2002; Rocha et al., 2013). GC×GC has been used in the 

determination of volatile compounds in different grape and wine varieties, including 

Cabernet Sauvignon (Robinson et al., 2011a), Fernão-Pires (Rocha et al., 2007), Madeira 
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(Perestrelo et al., 2011), Pinotage (Weldegergis et al., 2011b), Muscat (Bordiga et al., 

2013), and Marsala (Dugo et al., 2014) wines.  

 

II.3.2 Materials and methods 

II.3.2.1 Wine samples and high pressure treatments 

Wine samples without the addition of SO2 were produced by Dão Sul SA 

(Carregal do Sal, Portugal) using Encruzado white grape variety and Touriga Nacional 

red grape variety from Dão Appellation of 2010 harvest. An industrial batch fermenter of 

200 L was used. After alcoholic fermentation, the wines were transferred to 250 mL 

polyethylene bottles, stoppered, and pressurized during 5 min at 20 °C at 425 MPa or 500 

MPa, conditions that assured microbiologically safe wines (Buzrul 2012), in a hydrostatic 

press from Avure Technologies (Model 215L-600, USA), giving origin to samples 425 

MPa and 500 MPa, respectively. Pressurizing water was used at a controlled temperature 

of 15 °C. Pressure build-up took place at a compression rate of about 300 MPa/min 

(adiabatic heating caused an increased in temperature of about 4.0 °C), while 

decompression was nearly instantaneous. Two lots of the same wines were also bottled 

in the polyethylene bottles, one with an addition of 40 ppm of SO2, the typical amount 

used in the wine industry (sample named as SO2), and other with no addition of SO2 nor 

submitted to any high pressure treatment (untreated). As polyethylene bottles can have a 

little impact on the sensorial properties of the white wine (Ghidossi et al. 2012), all wine 

samples (pressurized and unpressurized) were bottled in polyethylene bottles. All the 

oenological parameters were determined by the methods described by the Office 

International de la Vigne et du Vin (1990). Therefore, the oenological parameters of the 

wines at the beginning of storage was not altered by the pressure treatments (Table II.3.1). 

All wines were stored at 80% relative humidity in the absence of light at a temperature 

around 10 °C. 
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Table II.3.1. Oenological parameters of the wine samples at the beginning of bottle storage. 

 

 White wines  Red wines 

 
 

Untreated SO2 

425 

MPa 

500 

MPa  Untreated SO2 

425 

MPa 

500 

MPa 

Alcohol level 
(% v/v) 

13.21 13.15 13.18 12.99 14.41 14.43 14.38 14.34 

Volatile acidity 
(g/L, expressed as 

acetic acid) 
0.38 0.39 0.39 0.40 0.48 0.60 0.48 0.48 

Total acidity 
(g/L, expressed as 

tartaric acid) 
6.49 6.55 6.52 6.55 6.49 6.88 6.47 6.06 

pH 3.41 3.37 3.43 3.38 3.96 3.95 3.97 3.92 

Reducing 

sugars (g/L) 
1.37 2.02 1.88 1.79 1.72 1.98 2.12 2.02 

 

 

II.3.2.2 Volatile composition analyses  

The volatile composition of the red and white wines samples was analysed (three 

independent aliquots) by HS-SPME combined with a GC×GC–ToFMS after 2 and 9 

months of storage.  

The solid-phase microextraction (SPME) holder for manual sampling and fiber 

were purchased from Supelco (Aldrich, USA). The SPME device included a fused silica 

fiber coating partially cross-linked with 50/30 μm divinylbenzene/carboxen/ 

polydimethylsiloxane (DVB/CAR/PDMS) coating. SPME fibres were preconditioned in 

the GC injector, according to the recommendation of the manufacturer and daily 

conditioned for 10 min at 250 ºC. Then, the fiber was daily conditioned for 10 min at 250 

ºC. For the HS-SPME assay, aliquots of 3.0 mL of the sample were placed into a 9 mL 

glass vial. After the addition of 0.6 g of NaCl each vial was capped with a PTFE/Silicone 

Septa (Supelco, USA). The vial was placed in a thermostated bath adjusted at 40.0 ± 0.1 

ºC with stirring (1.5x0.5 mm bar) at 400 rpm, and the SPME fiber was manually inserted 

into the sample vial headspace for 20 min. Blanks, corresponding to the analysis of the 

coating fiber not submitted to any extraction procedure, were run between sets of three 

analyses. 

 After the extraction/concentration step, the SPME coating fiber was manually 

introduced into the GC×GC-ToFMS injection port at 250 ºC and kept for 30 s for the 

compounds desorption. The injection port was lined with a 0.75 mm I.D. splitless glass 

liner. The LECO Pegasus 4D (LECO, St. Joseph, MI, USA) GC×GC-ToFMS system 

consisted of an Agilent GC 7890A gas chromatograph (Agilent Technologies, 
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Inc., Wilmington, DE), with a dual stage jet cryogenic modulator (licensed from Zoex) 

and a secondary oven, and mass spectrometer equipped with a high resolution ToF 

analyzer. The detector was a highspeed ToF mass spectrometer. A HP-5 column (30 m x 

0.32 mm I.D., 0.25 μm film thickness, J&W Scientific Inc., Folsom, USA) was used as 

first-dimension column, and a DB-FFAP (0.79 m x 0.25 mm I.D., 0.25 μm film thickness, 

J&W Scientific Inc., Folsom, USA) was used as a second-dimension column. The carrier 

gas was helium at a constant flow rate of 2.5 mL/min. The primary oven temperature was 

programmed from 40 (1 min) to 230 ºC (2 min) at 10 ºC/min. The secondary oven 

temperature was programmed from 70 (1 min) to 250 ºC (3 min) at 10 ºC/min. The MS 

transfer line temperature was 250 ºC, and the MS source temperature was 250 ºC. The 

modulation time was 5 s; and the modulator temperature was kept at 20 ºC offset (above 

primary oven). The ToFMS was operated at a spectrum storage rate of 125 spectra/s. The 

mass spectrometer was operated in the EI mode at 70 eV using a range of m/z 33-350 and 

the detector voltage was -1786 V.  

Total ion chromatograms (TIC) were processed using the automated data 

processing software ChromaTOF® (LECO) at a signal-to-noise threshold of 100. Two 

commercial databases (Wiley 275 and US National Institute of Science and Technology 

(NIST) V. 2.0, Mainlib and Replib) were used. A mass spectral match factor, the majority 

(86%) of the tentatively identified compounds showed similarity matches >850, was set 

to decide whether a peak was correctly identified or not. Furthermore, a manual inspection 

of the mass spectra was done, combined with the use of additional data, such as the 

retention index (RI) value, which was determined according to the van Den Dool and 

Kratz RI equation (van Den Dool and Kratz, 1963). For the determination of the RI, a C8 

– C20 n-alkanes series was used, and these values were compared with values reported in 

the literature for chromatographic columns similar to that used in the present work 

(Ansorena et al., 2000; Campeol et al., 2003; Cardeal et al., 2008; Engel et al., 2002; 

Eyres et al., 2005; Fan and Qian, 2006; Högnadóttir and Rouseff, 2003; Jalali et al., 2012; 

Jordán et al., 2002; Leffingwell and Alford, 2005; Perestrelo et al., 2011; Petronilho et 

al., 2011; Pino et al., 2005; Robinson et al., 2011b; Rocha et al., 2007; Salvador et al., 

2013; Silva et al., 2010, 2015). The DTIC (Deconvoluted Total Ion Current) GC×GC area 

data were used as an approach to estimate the relative content of each volatile component 

in wine, and were expressed as arbitrary units (a. u.). Reproducibility was expressed as 

relative standard deviation (RSD). 
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II.3.2.2 Statistical analysis  

Statistical data analysis was performed using Analysis of Variance (ANOVA) 

using Statistica6.1 (Statsoft Inc., Tulsa, OK, USA).  

Principal components analysis (PCA) was applied to the auto-scaled areas of all 

volatile compounds identified by HS-SPME/GC×GC–ToFMS presented in the the 

pressurized and unpressurized wines after 2 and 9 months of storage. The goal of this 

approach was to extract the main sources of variability and hence to help on the 

characterisation of the dataset. 

 

II.3.3 Results and discussion 

All the wine samples were analysed after 2 and 9 months of bottle storage in order 

to observe a possible effect of the high pressure treatments on the volatile composition of 

the wines. 

Tables S1 and S2 shown as Supplementary data, in  the thesis annex, gives detailed 

information for each compound, including GC peak area, RSD, and RI experimentally 

calculated as well as reported in the literature, for the white and red wines, respectively. 

The reproducibility, expressed as RSD, of the different identified volatile compounds 

ranged from 1% to 58%, which is a common range for natural products. The highest 

variability was usually observed for the compounds identified in trace amounts. 

 

II.3.3.1 Volatile composition of the wines after 2 months of storage 

The volatile composition analysis, after 2 months of storage, revealed for white 

wine samples the presence of 167, 172, 163, and 157 compounds in the untreated, SO2, 

and pressurized at 425 MPa and 500 MPa, respectively. In the red wine samples, 157, 

163, 166 and 167 compounds were detected in the untreated, SO2, 425 MPa and 500 MPa 

samples, respectively. These compounds belong to 12 chemical families, such as acids, 

esters, alcohols, volatile phenols, aldehydes, ketones, furans, lactones, acetals, thiols and 

others sulphur compounds, norisoprenoids, and terpenic compounds. Among all the 

chemical groups, the esters presented the higher number of identified compounds (62/63 

in white/red wines), followed by alcohols (30/35 in white/red wines), and terpenic 

compounds (15 in white wines and 23 in red wines) (Tables S1 and S2). These results are 

in accordance with the studies conducted in Pinotage wines (Weldegergis et al., 2011b), 
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South Africa red wines (Weldegergis et al., 2011a), and Brazilian Merlot wines (Welke 

et al., 2012). 

The total peak areas for each chemical group identified in the white and red wine 

samples, after 2 months of storage, are presented in Figures II.3.1 and II.3.2, respectively.  

 

 

Figure II.3.1. GC×GC–ToFMS peak area of the chemical groups identified in all white wines 

after 2 months of storage. 
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Figure II.3.2. GC×GC–ToFMS peak area of the chemical groups identified in all red 

wines after 2 months of storage 
 

After 2 months of storage, the impact of the two pressure treatments on the volatile 

composition of both white and red wines, are minimal, but statistically significant for 

some chemical groups (p<0.05), namely for esters and acids in the case of white wine, 

and acids and norisoprenoids for red wine. 

After 2 months of storage the pressurized white wines presented lower content of 

esters than the unpressurized white wines (p<0.05) (Figure II.3.1). This lower content of 

esters is mainly due to the lower content of the aliphatic ethyl esters, such as a 2-fold 

lower content of ethyl octanoate (peak number 27) and 6 to 9-fold lower amount of ethyl 

decanoate (peak number 32, Table S1) than the unpressurized white wines. These two 

esters are frequent products of fermentation, and described to have fruity and floral odours 

(Weldegergis et al., 2011b). 

 

http://en.wikipedia.org/wiki/Fermentation_(wine)
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In terms of red wine samples, both pressurized red wines presented a lower content 

of carboxylic acids (Figure II.3.2), mainly due to the 2 to 3-fold lower area of the acetic 

acid peak (peak number 1, Table S2) than the unpressurized wines. Acetic acid was one 

of the dominant acids in red wines, based on their peak area, in agreement with previous 

reports (Weldegergis et al., 2011a; Weldegergis et al., 2011b), and is known to contribute 

to a vinegar odour, contributing negatively to the wine bouquet (Fang and Qian, 2005). 

Since this compound is produced during fermentation, the lower content of acetic acid in 

pressurized wines could indicate that the pressure treatments stopped the fermentation of 

the wine in a more effective way than the addition of SO2. The pressurized red wines 

presented also higher content of norisoprenoids (p<0.05) when compared with the SO2 

and untreated samples. The higher content of norisoprenoids in pressurized wines, after 

2 months of storage, was mainly due to the presence of geranyl acetone (peak number 

117, Table S2) that was only identified in the pressurized wines samples. The C13 

norisoprenoids have been related to complex wine flavours, described as grassy, tea, lime, 

honey, and pineapple, and rose for the case of geranyl acetone (Pino et al., 2005; 

Weldegergis et al., 2011a; Weldegergis et al., 2011b). These compounds, similar to the 

monoterpenes, occur in grapes largely as non-bound carotenoid precursors (Ribéreau-

Gayon et al., 2006), while geranyl acetone may result from the oxidative cleavage of 

squalene (Ikeguchi et al., 1988) 

Overall, despite some differences observed in the volatile composition of the 

pressurized wines, the impact of the pressure treatments was minimal after 2 months of 

storage. This result is in agreement with the previous results showing that high pressure 

treatments (400–500 MPa for few minutes) do not alter significantly the white (Chapter 

II.2) and red (Chapter II.1) wine physicochemical and sensorial properties in the first 

months of storage. 

 

II.3.3.2 Volatile composition of the wines after 9 months of storage 

After 9 months of storage a lower number of compounds were detected (up to 

15% less) in both white and red wines when compared with the same wine samples after 

2 months of storage (Tables S1 and S2). This behavior is explained by the increase of the 

interaction between volatile compounds and other compounds present in wine, namely 

polyphenols, along wine aging (Ribéreau-Gayon et al., 2006). It were detected in white 

wine samples 148, 146, 148 and 148 compounds in the unpressurized, SO2 and 

pressurized 425 MPa and 500 MPa, respectively. In the red wine samples, it were detected 
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150, 151, 141 and 142 in the samples untreated, SO2, 425 MPa, and 500 MPa, 

respectively. As observed in the wines with 2 months of bottle aging, esters presented the 

higher number of identified compounds (59/69 in white/red wines), followed by alcohols 

(26/24 in white/red wines), and terpenic compounds (13/16 in white/red wines) for 9 

months of bottle aging (Tables S1 and S2).  

The total peak areas for each chemical group identified in the white and red wines, 

after 9 months of storage, are presented in Figures II.3.3 and II.3.4, respectively. It can 

be notice that, contrary to the wine samples with 2 months of bottle aging, the pressurized 

wine samples presented a volatile composition remarkably different than the 

unpressurized, indicating a large impact of the pressure treatments on the volatile 

composition of both white and red wines. Particularly, the pressurized wine samples 

presented higher content of acetals, ketones, furans, and aldehydes.  

 

 

Figure II.3.3. GC×GC–ToFMS peak area of the chemical groups identified in all white wines 

after 9 months of storage. 
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Figure II.3.4. GC×GC–ToFMS peak area of the chemical groups identified in all red wines after 

9 months of storage. 

 

In order to reduce the dimensionality of the data set, allowing to study the main 

sources of variability of the data set and detect differences/similarities among wine 

samples, a principal component analysis (PCA) procedure was performed using, as 

analytical variables, the GC peak area of all volatile compounds of white and red wine 

samples with 9 months of bottle storage. This allowed to study the effect of the different 

treatments in the wines volatile composition along storage and to establishment the 

relationships/correlations between wine samples and compounds. 

 

White wine  

Figure. II.3.5 shows a biplot reporting the score plots combined with the loadings 

plots of the two first principal components (which explains 77% of the total variability of 

the data set) for the white wine samples. The loadings establish the relative importance 

of each volatile compound for the observed sample distribution. PC1, which explains 60% 

of the total variability, allowing to distinguish wines treated with high pressure (425 MPa 
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and 500 MPa) from the untreated and SO2 ones. PC2, explaining 17% of the total 

variability, shows the distribution of the wines according to the presence of sulphur 

dioxide. The pressurized wines were negatively located in relation to PC1 and positively 

located in relation to PC2. These samples are characterized mainly by ketones, acetals, 

furans, and aldehydes.  

 

Figure. II.3.5. Biplots in the PC1×PC2 plane combining score plots and loadings plots of the 

different white wines, after 9 months of storage, related to the volatile compounds. Attribution of 

the peak number is shown in Table S1 in Supplementary Material. 

 

The ketones 3-pentanone (peak number 131), 3-penten-2-one (peak number 133), 

1-(ethenyloxy)-3-methyl-butane (peak number 134), octan-3-one (peak number 137), 

nonan-3-one (peak number 139), and octan-2,5-dione (peak number 141) were only 

identified in the pressurized wine samples (Table S1). Ketones are reported to result from 

the direct oxidation of fatty acids (Campo et al., 2006; Weldegergis et al., 2011b) and are 

mainly described to have “buttery” and “fatty” odours (Jiang and Zhang, 2010; Schneider 

et al., 1998). The presence of these ketones in the pressurized wines indicate the 

occurrence of fatty acids oxidation with the pressure treatments. These results are in 
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agreement with the literature, since some studies show that HHP treatments enhance lipid 

oxidation in foods (Bolumar et al., 2012a). 

In the acetal family, the 1,1-diethoxy-pentane (peak number 168) and 1-(1-

ethoxyethoxy)-butane (peak number 165) were only identified in the pressurized wines 

and the content of 1,1-diethoxy-ethane (peak number 162) and 1-(1-ethoxyethoxy)-

pentane (peak number 167) were 40 to 49% and 65 to 68% higher, respectively, in these 

samples when compared with the SO2 wine. These acetals are reported to have “caramel” 

and “dried fruit” odours and their presence is common in wines submitted to oxidative 

aging, as well as in Sherry wines (Schneider et al., 1998). These results are in agreement 

with the results of Chapters II.1 and II.2, since in this chpaters it was shown that both sulphur 

dioxide-free red and white wines presented higher “cooked fruit” aroma after pressure 

treatments. Since the acetals are formed by the reaction of aldehydes (mainly 

acetaldehyde) with alcohols, it seems that the HHP treatments accelerated the occurrence 

of this reaction during the wine storage.  

The importance of these furans and aldehydes in the differentiation of the 

pressurized wines from unpressurized (Figure II.3.5) is due to the higher content of these 

compounds in the 425 MPa and 500 MPa wines (Table S1). The higher content of furans 

in pressurized wines samples was mainly due to the 10- and 5-fold higher content of 2-

furfural (peak number 146) in the samples pressurized at 425 MPa and 500 MPa, 

respectively. Moreover, the 5-methylfurfural (peak number 149) and the 2-acetyl-5-

methylfuran (peak number 155) were only detected in the pressurized wine samples. The 

higher content of aldehydes in the pressurized wine samples was mainly due to the higher 

content of benzaldehyde (peak number 128), 10- and 15-fold higher content in the sample 

pressurized at 425 MPa and 500 MPa, respectively, when compared with the untreated 

and SO2 white wines. Both 2-furfural and benzaldehyde are considered Maillard reaction-

derived volatile compounds, as the 2-furfural can be formed by the dehydration of sugars 

through Maillard reaction (Oliveira et al., 2011; Perestrelo et al., 2011) and benzaldehyde 

by the Strecker degradation of amino acids as a result of the Maillard reaction (Pripis-

Nicolau et al. 2000). Nevertheless, benzaldehyde may be formed through the shikimic 

acid, having phenylalanine as intermediate (Ribéreau-Gayon et al. 2006). In the Strecker 

degradation, the amino acid in the presence of α-dicarbonyl compounds is decarboxylated 

and deaminated, forming an aldehyde with one carbon atom less than the amino acid, 

known as “Strecker aldehyde” (Keim et al., 2002; Oliveira et al., 2011). The results 

obtained lead to infer that the HHP treatments accelerated Maillard reactions during the 
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wine storage period. These conclusions are also supported by the studies of Chapter II.2 

that showed that pressurized white wines presented, at least after 6 months of storage, a 

more brownish colour, lower content of free amino acids and higher content of furans. 

According to Figure II.3.5, the untreated white wine is characterized (PC1 and 

PC2 positive) by 4-ethyphenol (peak number 114), 4-ethylguaiacol (peak number 115), 

isobutyl butyrate (peak number 55), propyl hexanoate (peak number 61), hexyl 2-methyl-

butyrate (peak number 65), and isophorone (peak number 175) (Table S1). The 

ethylphenols are normally produced by spoilage of Brettanomyces/Dekkera spp. yeasts 

involving cinnamic, coumaric, and ferulic acids, free or esterified with tartaric acid 

(Larcher et al., 2012). These compounds are responsible for a particularly unpleasant 

sensory defect known as ‘mousy off-flavour’ (Romano et al., 2008). Therefore, these 

compounds indicate wine spoilage in the untreated samples (Chatonnet et al., 1995). In 

fact, due to the absence of any inhibitor of microorganisms growth in the untreated wine 

(contrary to the pressurized wines and the wine with SO2) it was expected a possible 

contamination of these samples by microorganisms. The presence of the esters isobutyl 

butyrate, propyl hexanoate, and hexyl 2-methyl-butyrate may also be due to the presence 

of microorganisms in the untreated wine, since these compounds can result from 

fermentation occurring during wine ageing (Schulz and Dickschat, 2007; Weldegergis et 

al., 2011b). 

In the wine sample with addition of sulphur dioxide, geraniol (peak number 194, 

Table S1) is the principal contributor to its location in PC1 positive and PC2 negative 

(Figure II.3.5). The content of geraniol in this sample was 63% higher when compared 

with the untreated samples and was not identified in the pressurized wines (Table S1). 

Monoterpene alcohols, such geraniol, which contribute to the  wine varietal 

characteristics, belong to the most relevant flavour compounds of several white wine 

varieties and are responsible for their characteristic floral aroma (Ribéreau-Gayon et al., 

2006). The sulphur dioxide was reported to have a protective effect on these volatiles 

(Roussis and Sergianitis, 2008), which explain the higher concentration of geraniol in the 

SO2 wine sample, when compared with the other samples. In addition, geraniol content 

decreases with wine ageing and is usually present in trace amounts after two or three years 

in the bottle (Pedersen et al., 2003). This compound can undergo several reactions during 

wine storage (easily isomerizes and oxidizes, forming oxides and aldehydes), induced by 

the time of storage and relatively low pH (Dziadas and Jeleń, 2010).  
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Red wines  

Figure. II.3.6 shows the biplot reporting the score plots combined with the 

loadings plots of the two first principal components (which explain 65% of the total 

variability of the data set) of the PCA performed for the red wine samples. As observed 

for the white wine samples, also for the red wines the PC1, which explains 55% of the 

total variability, allowed to distinguish the wines as a function of the pressure treatments, 

and the PC2, explaining 10% of the total variability, differentiated the wines according 

to the presence of sulphur dioxide.  

 

Figure. II.3.6. Biplots in the PC1×PC2 plane combining score plots and loadings plots of the 

different red wines, after 9 months of storage, related to the volatile compounds. Attribution of 

the peak number is shown in Table S2 in Supplementary Material. 

 

The pressurized wines were negatively located in relation to PC1 and positively 

located in PC2, and no differences were observed between the samples 425 MPa and 500 

MPa (Figure. II.3.6). These results show that the difference in the pressure value between 

the two pressures applied (425 MPa and 500 MPa during 5 min) had no significant effect 

on the volatile composition of the red wines. As observed for the white wines, the 

pressurized red wines were also characterized mainly by ketones, acetals, furans, and 

aldehydes.  
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The ketones responsible for the pressurized wine discrimination were 3-pentanone 

(peak number 138), 2,3-pentanedione (peak number 139), hexane-2,3-dione (peak 

number 142), octan-3-one (peak number 146) and nona-3-one (peak number 148), since 

these compounds have been only identified in these wines (Table S2). In addition, acetoin 

(peak number 140), heptan-2-one (peak number 144), and nona-2-one (peak number 149) 

are presented in higher concentration in the pressurized wines (up to 78%, 82%, and 86%, 

respectively), compared to both unpressurized red wine samples (Table S2). These 

ketones are described to have “buttery” and “fatty” odours (Schneider et al., 1998) 

resultant from fatty acids oxidation. 

The acetals that characterized the pressurized red wines (Figure. II.3.6) are 1,1-

diethoxy-2-methyl-propane (peak number 163), 1-(1-ethoxyethoxy)-butane (peak 

number 164), and 1,1-diethoxy-3-methyl-butane (peak number 165) (Table S2). 1-(1-

Ethoxyethoxy)-butane was only identified in the pressurized wines and the content of 1,1-

diethoxy-2-methyl-propane and 1,1-diethoxy-3-methyl-butane were up to 70% and 68% 

higher, respectively, in these samples when compared with the SO2 wine. These results 

show that, as observed for white wines, the formation of acetals are accelerated with the 

pressure treatments, increasing the content of compounds with “dried fruit” odours.   

The hexanal (peak number 130) is one aldehyde that characterized the pressurized 

red wines, since these wines presented around 5-fold higher content of this compound 

than unpressurized wines. This result lead to infer that the oxidation of some alcohols, 

such hexanol, can also be accelerated by the pressure treatments. 

The pressurized red wines, as observed for white wines, were also characterized 

by the presence of a higher content of Maillard volatile compounds, namely 2-furfural 

(peak number 154), benzaldehyde (peak number 135), and phenyl acetaldehyde (peak 

number 136) (Table S2). In fact, the pressurized wines presented 5- to 11-fold higher 

furfural content, and 2-fold higher benzaldehyde and phenyl acetaldehyde content when 

compared with the unpressurized samples. These results lead to infer that the pressure 

treatments accelerated Maillard reactions also during the storage period of red wine. 

However, the difference of Maillard volatile compounds between pressurized and 

unpressurized wines was lower in red wines in comparison with white wines. This 

behaviour can be due to the higher content of polyphenols in red wine, when compared 

with white wine, that reduce the rate of Maillard reactions, due to their higher antioxidant 

activity, and consequently decrease the formation of Maillard reaction-derived volatile 

compounds (Cejudo-Bastante et al., 2010; Sonni et al., 2009).  
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As observed in Figure. II.3.6, the untreated and SO2 red wine samples are located 

in PC1 positive being separated by PC2, explaining 10% of the total variability. The 10% 

of variability of the PC2 is lower when compared with the 55% of variability of the PC1, 

due to higher dispersion of data of the unpressurized wines along the PC2. These results 

show that, contrary to the white wines where the untreated white wine was well separated 

from the SO2, due to the presence of volatile compounds possibly originating from 

microorganism contamination in the untreated white wines, the separation between the 

two unpressurized red wines was not so conclusive. Therefore the main separation in the 

red wine samples is due principally to the pressure treatments.  

 

II.3.3.3 Evolution of ketones, aldehydes, furans, and acetals profile along wine storage 

Since the pressurized wines with 9 months of storage were mainly characterized, 

by ketones acetals, furans, and aldehydes, it was necessary to understand the impact of 

the pressure treatments on these chemicals groups, after 2 months of storage, and their 

evolution during storage. For that, a heatmap (Figure II.3.7), a logarithmic normalization 

of the GC peak area, was performed for a direct and rapid interpretation of the relative 

abundance of each aldehydes, ketones, furans, and acetals compounds for the different 

white and red wines (with three independent assays) at 2 and 9 months of storage. White 

(Figure II.3.7A) and red wines (Figure II.3.7B) after 2 months of storage revealed a 

similar profile among the samples with different treatments, since the relative abundance 

of the chemical groups are homogenous for all the wines. These results are in accordance 

with the preview ones that show that after 2 months of storage, the impact of the two 

pressure treatments on the volatile composition of both white and red wine are minimal. 

However, after 9 months of storage is possible to observe that, for both pressurized white 

and red wines, the volatile profiles of each aldehyde, ketone, furan, and acetal compounds 

were very different when compared with the unpressurized wines. These results confirm 

that the impact of pressure treatments in both white and red wines, namely in these 

compounds, was only noticeable after several months of storage.  

Acetals, ketones, and Maillard volatile compounds, such furfural and 

benzaldehyde, have a tendency to increase linearly during wine aging and are reported as 

potential age markers of Sherry wines (Fernández de Simón et al., 2014; Sun et al., 2013) 

and Madeira wines (Perestrelo et al., 2011). Therefore, it seems that the pressurized wine 

samples present a volatile composition characteristic of faster aged/thermally treated 
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wines. These results indicate that the HHP treatment influences the white and red wine long term 

volatile composition and seems to accelerate their evolution during storage, being this particularly 

evident for lager storage periods. 

 

Figure II.3.7. Heatmaps (logarithmic normalization of the GC peak area) for white (A) and red 

(B) wines of the aldehyde, ketone, furan and acetal compounds. Different intensities correspond 

to the normalized GC peak areas of each compound (3 replicates). 
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II.3.4 Concluding remarks 

 

The results obtained in this work demonstrate that high pressure treatments with 

processing time around 5 min and pressures between 400 and 500 MPa influence white 

and red wine volatile composition. However, the effect is only perceptible after some 

months of storage, changing the wine aroma characteristics. The two pressure treatments 

studied showed similar effects on both white and red wines. The changes on the volatile 

composition of the pressurized wines, namely the increase of furans, aldehydes, ketones, 

and acetals content, indicate that the HHP treatments accelerate the Maillard reactions, and 

the oxidation of alcohols and fatty acids, leading to wines with a volatile composition 

characteristic of faster aged and/or thermally treated wines.  
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III.1.1 Overview 

  As mentioned in Chapter I, the Maillard reaction is responsible for the 

development of colour, aroma and flavour precursors in food products. The large number 

of compounds that can be formed through the different pathways gives rise to a complex 

mixture of products characteristic of the different foods. Briefly, this reaction is initiated 

by a condensation between the carbonyl group, as for example a reducing sugar, and an 

amino group, as for example an amino acid, giving rise to different compounds, such as 

furfurals, aldehydes, acrylamides, and heterocyclic amines (Jaeger et al., 2010). Brown 

polymers, so-called melanoidins, can be the final products of the reaction (Moreno et al., 

2003). Phenylacetaldehyde and benzaldehyde are also considered Maillard reaction-

derived volatile compounds, since they can be formed by the Strecker degradation of 

amino acids as a result of the Maillard reaction (Pripis-Nicolau et al., 2000). In the 

Strecker degradation, the amino acid in the presence of α-dicarbonyl compounds is 

decarboxylated and deaminated, forming an aldehyde with one carbon atom less than the 

amino acid, known as “Strecker aldehyde” (Keim et al., 2002; Oliveira et al., 2011). 

Nevertheless, some studies reported that the use of HHP treatments at moderate 

temperatures (30-60°C) may promote the Maillard reaction, changing the flavour, colour, 

and nutritional value of foods (Jaeger et al., 2010; Schwarzenbolz and Henle, 2010; 

Tamaoka et al., 1991).  

The results of Chapters II.2 and II.3 showed that HHP treatments at room 

temperature accelerate the Maillard reaction in wine, leading to the decrease of amino 

acids content and the increase of Maillard derived volatile compounds (MVC) 

formation. Besides that, only few studies have evaluated the effects of pressure in model 

systems containing amino acids and sugars, but with no results on the influence of the 
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treatment during storage time (Bristow and Isaacs, 1999; Hill et al., 1996; Moreno et 

al., 2003; Schwarzenbolz et al., 2000, 2002; van Boekel 2006). In an attempt to use 

HHP on wine, more studies concerning the chemical reactions caused by HHP are 

needed, namely the effects of HHP on the formation of MVC during storage. To achieve 

this objective, model wine solutions with equimolar (10 mM) mixtures of one sugar 

(arabinose or glucose) and one amino acid (lysine, serine or phenylalanine) were 

pressurized at 500 MPa for 5 min at 20 ºC. The content of MVC was determined along 

storage (up to 12 months) by gas chromatography coupled to mass spectrometry (GC-

MS) combined with solid-phase microextractrion (SPME). As control, untreated model 

wine solutions and heated (at 60 ºC during 5 min) model wine solutions were also 

analysed. 

 

III.1.2 Materials and methods 

III.1.2.1 Chemicals 

Milli-Q water (Millipore, Bedford, MA) was used in all this work. Absolute 

ethanol p.a, tartaric acid (99%), benzaldehyde (>99%), furfural (>99%) 

phenylacetaldehyde (>99%), L-amino acids standards (lysine, phenylalanine and 

serine), D-(-) arabinose (99%) and D-(-) glucose (99%) were purchased from Sigma 

(Seelze, Germany). 

 

III.1.2.2 Model wine solutions and high pressure treatments 

Model wine solutions (0.5% (w/v) tartaric acid containing 10% ethanol and 

adjusted to pH 3.5 with 0.1 M NaOH) with equimolar (10 mM) mixtures of one sugar 

(arabinose or glucose) and one amino acid (lysine, serine, or phenylalanine) were 

submitted to the pressure treatment (500 MPa for 5 min at 20 ºC) in polyethylene bottles 

(36.0 mL). The pressurisation was carried out using a hydrostatic press from Unipress 

Equipment, Model U33 (Warshaw, Poland), with a pressure vessel of 100 mL (35 mm 

diameter and 100 mm height), surrounded by an external jacket connected to a 

thermostatic bath in order to control the temperature. A mixture of propylene glycol and 

water (1:1) was used as pressurization fluid and the pressure build up was carried out at 

450 MPa/min compression rate. Simultaneously, as controls, a non pressurized 

(untreated) model wine solution and a model solution heated at 60 ºC during 5 min 
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(heated) were also produced and stored at room temperature (20 ºC) in the absence of 

light. Figure III.1.1 shows a schematic representation of the model wine solution 

elaboration followed in this study. 

 

 

Figure III.1.1. Flow chart of the model wine solution elaboration followed in this study 

 

 

III.1.2.3 Maillard derivated volatile compounds analysis  

The content of MVC presented in the model wine samples was determined along 

storage by SPME-GC-MS. The SPME device used was a fused silica fiber coating 

partially cross-linked with 50/30 μm divinylbenzene/carboxen/ polydimethylsiloxane 

coating (DVB/CAR/PDMS). For the headspace-SPME assay, aliquots of 3 mL of the 

sample were placed into a 9 mL glass vial. After the addition of 0.6 g of NaCl and stirring 

at 400 rpm, the vial was capped with a screw cap with septum. The SPME fiber was 

exposed to the headspace for 20 min at 40 ºC to extract the volatile compounds.  

The extracted compounds were analysed in a GC-qMS (Agilent Technologies 6890 

N) equipped with DB-FFAP fused silica capillary column (J&W Scientific Inc., Folsom, 

CA, USA) with 30 m×0.25 mm (i.d.) and 0.25 µm film thickness. The following 

temperature programme was used: 3 min hold at 60 ºC, increase to 130 ºC at 10 ºC/min 

and then to 220 ºC (1 min hold) at 40 ºC/ min. The MS was operated in the electron 

impact mode with an electron impact energy of 70 eV and data collected at a rate of 3 
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scan s-1. The ion source and the transfer line were kept at 230 ºC. Selected ion 

monitoring (SIM) was used for the detection of the compounds. The ions at m/z 96, 95, 

67, 39; m/z 126, 97, 69, 41; m/z 106, 105, 77, 51; and m/z 120, 91, 61, were used, 

respectively for 2-furfural, 5-hydroxymethylfurfural, benzaldehyde, and 

phenylacetaldehyde detection. Three independent aliquots of each sample were 

analysed. For quantification of MVC, calibration curves of furfural (R2=0.978), 

benzaldehyde (R2=0.968) and phenylacetaldehyde (R2=0.963) were performed. All 

analyses were performed in triplicate. 

 

III.1.2.4 Statistical analysis  

All statistical analyses were performed with the SPSS for Windows, 17.0. 

(SPSS Inc, Chicago, IL, USA). Data are expressed as means ± S.D. One-way analysis of 

variance (ANOVA) was carried out to determinate significant differences within and 

between groups. Tukey’s test was applied to compare the mean values. Statistical 

significance was set at p< 0.05. 

 

III.1.3 Results and discussion 

Maillard derived volatile compounds (MVC), namely furfural, 

phenylacetaldehyde, and benzaldehyde, were not detected at the beginning of storage in 

the pressurized and untreated model wine solutions, whereas they were found in the 

heated model wine solution (Figures III.1.2, III.1.3, and III.4).  Along storage, the MVC 

content increased in all model wine solutions. However, the pressurized model wine 

solutions presented a higher increase when compared to the controls (untreated and 

heated samples). These results show that pressure treatment (500 MPa for 5 min) did not 

prom ed immediately the Maillard reaction in model wine solutions, contrary to the 

temperature treatment (60 oC for 5 min), but have an acceleration during storage. 

 

III.1.3.1 Model solutions containing lysine or serine 

In the wine model solutions containing arabinose with lysine or serine (Figure 

III.1.2), the formation of furfural in the pressurized samples presented, after 6 months of 

storage, no significant  differences (p<0.05) when compared with the  heated samples. 
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However, after 12 months, the amount of 2-furfural for the pressurized samples 

containing lysine and serine was 2-fold and 3-fold higher, respectively, when compared 

with the heated ones.  

After 12 months, the content of 2-furfural was higher in the pressurized sample 

containing serine (448.95 µg/L) than in the pressurized sample containing lysine (301.68 

µg/L). In fact, despite the formation rate of 2-furfural until 6 months of storage was 

slightly higher for the pressurized solution containing lysine (26.13 µg/L/month) when 

compared with the pressurized solution containing serine (21.01 µg/L/month), in the last 

6 months of storage the formation of 2-furfural was 2.2-fold faster in pressurized samples 

containing serine than lysine. 

ot 

 

 

Figure III.1.2. 2-Furfural content in the model wine solutions containing the mixtures of 

arabinose/lysine (A) and arabinose/serine (B) during 12 months of storage 

 

The possible formation of 5-hydroxymethylfurfural, that can arise from the 

dehydration of glucose through Maillard reaction, was also evaluated in the model wine 

solutions containing glucose with lysine or serine. Nevertheless, contrary to furfural that 

was detected in the model wine solutions containing arabinose, the 5-

hydroxymethylfurfural was not detected in any of the model wine solutions. These results 

seem to indicate that after HHP treatments, the dehydration of pentoses through Maillard 

reaction might be more facilitated when compared to hexoses. These results are in 

agreement with the other reports that observed that pentoses, such arabinose (Biemel et 

al., 2001) and xylose (Hofmann 1999), are more reactive than hexoses (Hwang et al., 

1994) during Maillard reactions promoted by high temperature treatments (60-100 ºC, 
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until 2 hours). Also the type of amino acid had a minor effect when compared to the type 

of sugar on the formation of both intermediates and final products of the Maillard reaction 

(Göğüş et al., 1998; Lievonen et al., 2002).  

 

III.1.3.2 Model solutions containing phenylalanine 

 The content of MVC presented in the model wine solutions containing the 

mixtures arabinose/phenylalanine and glucose/phenylalanine are shown in Figures III.1.3 

and III.1.4, respectively. After 9 months of storage, the pressurized model wine solutions 

containing arabinose and phenylalanine presented higher concentration of 2-furfural (1.6-

fold higher), benzaldehyde (1.4-fold higher) and phenylacetaldehyde (2.3-fold higher) 

compared to the heated model wine solution (Figure III.1.3). Also, it can be observed that 

the formation rate of 2-furfural (Figure III.1.3A) and phenylacetaldehyde (Figure 

III.1.3C) of the pressurized samples containing the mixture arabinose/phenylalanine were 

almost constant along the 9 months of storage, contrary to the formation rate of 

benzaldehyde (Figure III.1.3B) that was 0.97 µg/L/month in the first 6 months of storage 

and 2.67 µg/L/month in the last 3 months.  

 

 

Figure III.1.3. 2-Furfural (A), benzaldehyde (B), and phenylacetaldehyde (C) content of the 

model wine solutions containing arabinose and phenylalanine during 9 months of storage 
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For the solutions containing glucose and phenylalanine (Figure III.1.4) the 

pressurized model wine solution presented, after 9 months, a benzaldehyde content 1.5-

fold and 1.9-fold higher when compared with the heated and untreated samples, 

respectively. However, for the same storage period, the pressurized model wine solution 

presented no significant differences (p<0.05) and 4-fold higher phenylacetaldehyde 

content, when compared with the heated heated and untreated samples, respectively. For 

the heated and pressurized solutions, the formation rate of  benzaldehyde (Figure 

III.1.4A)  was slower in the first 6 months of storage (0.19 µg/L/months), than in the last 

3 months (0.28 µg/L/months, respectively). However, for the same solutions, the 

formation rate of phenylacetaldehyde (Figure III.1.4B) was 4.1-fold faster in the first 6 

months of storage, than in the last ones. 

 

 

 

Figure III.1.4. Benzaldehyde (A) and phenylacetaldehyde (B) content of the model wine 

solutions containing glucose and phenylalanine during 9 months of storage 

 

At the end of storage, the pressurized solution containing arabinose presented higher 

content of benzaldehyde (7-fold higher) and phenylacetaldehyde (3-fold higher) than the 

pressurized solution containing glucose. These results show that Strecker degradation of 

phenylalanine after HHP treatment and the corresponding formations of benzaldehyde 

and phenylacetaldehyde was more faster/facilitated in the mixture containing the pentose 

than the mixture containing the hexose. 

Despite the fact that the results showed that high pressure treatment accelerated the 

Maillard reaction in the model wine solutions, the increase of 2-furfural and benzaldehyde 

contents in the pressurized model wine solution, after 9 months of storage, was lower that 
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their respective perception threshold (in wine and in water solutions), which are around 

200 mg/L and 2 mg/L for 2-furfural (Cutzach et al., 2000; Prida and Chatonnet, 2010) 

and benzaldehyde (Perestrelo et al., 2006), respectively. However, the content of 

phenylacetaldehyde, at the end of storage, in all the model wine solutions containing 

arabinose/phenylalanine and glucose/phenylalanine was higher than the perception 

threshold in wine, which is around 15 µg/L (Bakker and Clark, 2012; Campo et al., 2006; 

Mencarelli and Tonutti 2013), leading possibly to the perception, in these solutions, of 

“honey-like” and “sweet” odours (Schneider et al., 1998).   

Furthermore, the increase of MVC content in the pressurized model wine solutions, 

when compared with the untreated ones, was lower than that observed in Chapter II.3 for 

sulphur dioxide-free wines, being the content of 2-furfural and benzaldehyde 5-fold and 

15-fold higher, respectively, in white wines pressurized at 500 MPa for 5 min, when 

compared with the untreated ones. These results are probably due to the higher range of 

compounds that are affected by the pressure treatment in wine, when compared with the 

model wine solutions, that indirectly participate (or catalyse) the formation of MVC 

during storage. In fact, the formation of ortho-quinones, that can be formed during 

oxidation of phenolic compounds in pressurized wines, can react with phenylalanine 

producing the Strecker aldehydes, benzaldehyde and phenylacetaldehyde (Oliveira et al., 

2011; Rizzi 2006). Therefore, it seems that, besides the direct effect of the pressure 

treatment in the acceleration of reactions between sugars and amino acids, the effect of 

the pressure treatments on others wine compounds, such phenolic compounds, cause 

complex chain reactions leading indirectly also to the formation of MVCs. 

. 

III.1.4 Concluding remarks 

The results show that high pressure treatment accelerates the Maillard reaction in 

model wine solutions (acidic media) and this effect is measurable, mainly, after 6 months 

of storage. Pressurized model wine solutions presented higher concentration of 2-furfural, 

phenylacetaldehyde, and benzaldehyde, compared to the controls.  

5-hydroxymethylfurfural was not detected in any of the model wine solutions, 

contrary to 2-furfural that was detected in the model wine solutions containing arabinose. 

These results seem to indicate that the dehydration of pentoses (namely arabinose) 

through Maillard reaction might be more facilitated when compared to hexoses (namely 

glucose). Also, Strecker degradation of phenylalanine after HHP treatment and the 
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corresponding formations of benzaldehyde and phenylacetaldehyde were more facilitated 

in the mixture containing the pentose than the mixture containing hexose. 

Despite the higher concentration of MVC in the pressurized samples, only the 

content of phenylacetaldehyde was higher than the respective perception threshold in 

wine, which allow inferring the perception of “honey-like” and “sweet” odours. 

Furthermore, the increase of MVC content in the pressurized model wine solutions was 

lower than that observed in wines (Chapter II.3), indicating that probably a high range of 

compounds are affected by the pressure treatment in wine, when compared with the model 

wine solutions, that indirectly participate in the formation of MVC during storage. 

The implementation of HHP treatments to long term food products preservation, 

such wine, should be taken into consideration that Maillard reaction can occur influencing 

the sensorial characteristics of the foods along the storage. 
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III.2.1 Overview 

As mentioned in Chapter I, the colour evolution of red wines is a complex process 

that is in part attributed to copigmentation phenomena and to the progressive 

displacement of the original anthocyanins by newly formed pigments (Marquez et al., 

2013; Mateus et al., 2002; Pissarra et al., 2004). These pigments usually arise from the 

interaction between anthocyanins and other phenolic compounds, especially flavanols 

such as catechins (He et al., 2012). The direct reactions between anthocyanins and 

flavanols (Remy et al., 2000), between anthocyanins and flavanols through ethyl bridges 

(Es-Safi et al., 1999; Francia-Aricha et al., 1997), or between anthocyanins and small 

compounds such as acetaldehyde or pyruvic acid (Benito et al., 2011) have already been 

demonstrated in model solutions. 

The results of Chapter II.1 showed that HHP treatments at room temperature 

accelerated the polymerization of the wine phenolic compounds, forming compounds 

with higher degree of polymerization that became insoluble in wine along the storage 

time. Nevertheless, it was already reported the formation of a vitisin A-type derivative, 

in model solution, by degradation of cyanidin 3-O-glucoside after HHP treatments at high 

temperatures (Corrales et al., 2008). These results suggest that reactions involving 

covalent association of anthocyanins with other compounds can be accelerate by pressure 

treatments. However, the type of polymerization reactions of phenolic compounds 

promoted by HHP are not yet known. In order to understand this effect, model wine 

solutions with mixtures of malvidin-3-O-glucoside with (+)-catechin or/and acetaldehyde 

were pressurized at 500 MPa for 5 min at 20 ºC. The compounds formed were analysed 

immediately after the pressure treatment and after 8 months of storage by electrospray 

ionization mass spectrometry (ESI-MS) and tandem-mass spectrometry (ESI-MSn) 

fragmentation analyses. As control, untreated model wine solutions were also analysed. 
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III.1.2 Materials and methods 

III.1.2.1 Chemicals 

Milli-Q water (Millipore, Bedford, MA) was used in all work. Absolute ethanol 

p.a, methanol p.a, acetaldehyde p.a, formic acid (for mass spectrometry, ~98%), and (+)-

catechin (≥98%), were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). 

Malvidin-3-O-glucoside (~95%) was extracted and purified in laboratory (Pissarra et al., 

2003) from grapes (Vitis vinifera L.) and kindly supplied by Professor Victor de Freitas 

of Faculty of Sciences, University of Porto. 

 

III.1.2.2 Model wine solutions and high pressure treatments 

Model wine solutions containing malvidin-3-O-glucoside (Mv3Glc) with (+)-

catechin or/and acetaldehyde were prepared in 10% aqueous ethanol with a pH of 3.2 

adjusted with formic acid using a molar ratio Mv3Glc (0.3 mM)/catechin/acetaldehyde 

of 1:2:20. The solutions were subjected to the pressure treatment (500 MPa for 5 min at 

20 ºC) in polyethylene eppendorfs (500 µL). The pressurization was carried out using a 

hydrostatic press from Unipress Equipment (Model U33, Warshaw, Poland), with a 

pressure vessel of 100 mL (35 mm diameter and 100 mm height), surrounded by an 

external jacket connected to a thermostatic bath in order to control the temperature. A 

mixture of propylene glycol and water (1:1, v/v) was used as pressurization fluid and the 

pressure build up was carried out at 450 MPa/min compression rate. Simultaneously, as 

controls, non pressurized (untreated) model wine solutions were also produced. All model 

wine solutions were stored in the absence of light at room temperature (~20 ºC) for 8 

months. 

 

III.1.2.3 Electrospray Ionization Mass Spectrometry 

ESI-MS and ESI-MS2 spectra of the samples, at the beginning of storage, were 

carried out on a Q-TOF2 hybrid tandem mass spectrometer (Micromass, Manchester, 

U.K.). The cone voltage was set at 35 V and the capillary voltage was maintained at 3 

kV. The source temperature was 80 ºC and the desolvation temperature was 150 ºC. MSn 

spectra were obtained using argon as the collision gas, and the collision energy used was 
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set between 25 and 30 eV. The raw data were processed using a MassLynx software 

(version 4.0).  

After 8 months of storage, ESI-MS and ESI-MSn spectra of all the samples were 

carried out on an LXQ linear ion trap mass spectrometer (Thermo Fisher Scientific Inc., 

Waltham, MA). Typical operating conditions were as follows: electrospray voltage was 

5 kV; capillary temperature was 275 ºC; capillary voltage was 1 V; and tube lens voltage 

was 40 V. Samples were introduced at a flow rate of 8 μL/min into the ESI source. 

Nitrogen was used as nebulizing and drying gas. In the MSn experiments, the collision 

energy used was set between 18 and 31 (arbitrary units). Data acquisitions were carried 

out on an Xcalibur data system.  

For all ESI analyses, samples were diluted (1:17, v/v) in methanol/formic acid 

(99:1, v/v), and the spectra were acquired in the positive mode, scanning the mass range 

from m/z 100 to 1500. 

 

III.2.3 Results and discussion 

 

III.2.3.1 Evaluation of anthocyanin condensation reaction after high pressure treatment 

The model solutions containing the mixtures of 1) Mv3Glc with acetaldehyde; 2) 

Mv3Glc with catechin; and 3) Mv3Glc with acetaldehyde and catechin were analysed 

after the high pressure treatment, at the beginning of storage, by ESI-MS.  The ESI-MS 

spectra of the pressurized model solutions are shown in Figure III.2.1. The compounds 

identified as [M+H]+ and [M]+ ions and the respective MS2 fragments are shown in Table 

III.2.1.  

Mv3Glc ([M]+ at m/z 493) was detected in all model wine solutions as the ion with 

higher relative abundance, and the catechin ([M+H]+ at m/z 291) was detected in the 

solutions containing this compound.    
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Figure III.2.1. ESI-MS spectra obtained for the pressurized solution containing (a) Mv3Glc and 

acetaldehyde, (b) Mv3Glc and catechin, and (c) Mv3Glc, acetaldehyde and catechin after high 

pressure treatment. Ions marked with an asterisk are attributed to impurities 

 

 

Table III.2.1. Compounds identified in the model wine solutions after high pressure treatment, 

as [M+H]+ and [M]+  ions in ESI-MS spectra and the respective fragmentation. 

 

Compounds m/z 

 
Mv3Glc + 

acetaldehyde 

Mv3Glc + 

catechin 

Mv3Glc + 

acetaldehyde + 

catechin, 

 
[M+H]+/

[M]+ 

Main MS2 

fragments 

Main MS3 

fragments 

 

Untr. Press. Untr. Press. Untr. Press. 

(+)-Catechin 

291 

273 (-18 Da) 

165 (-126 Da) 

139 (-152 Da) 

- 

 

n.d n.d * * * * 

Malvidin-3-

O-glucoside 
493 331 (-162 Da) - 

 

* * * * * * 

Malvidin-3-

O-glucoside-

8-ethyl-

catechin 

809 

647 (-162 Da) 

519 (-290 Da) 

357 (-452Da) 

357 (-290 Da) 

357 (-162 Da) 

 

n.d n.d n.d n.d * * 

∗: Detected; n.d: not detected; Untr: untreated samples; Press: pressurized samples 

 

The solutions containing Mv3Glc, acetaldehyde and catechin show the formation 

of a compound, since it was detected a molecular ion at m/z 809. Figure III.2.2 shows the 

schematic fragmentation pathways of the ion at m/z 809. The MS2 of this ion gave the 
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major ions at m/z 647, 519, and 357, corresponding to the loss of one glucose moiety (162 

Da), a loss of one flavanol molecule (290 Da), and the loss of both molecules (162 Da + 

290 Da), respectively. MS3 of the ion at m/z 647 produced a major ion at m/z 357, 

corresponding to the loss of one flavanol molecule (290 Da). The MS3 of the ion at m/z 

519 produced a major ion at m/z 357, corresponding to the loss of one glucose moiety 

(162 Da). These data permit to identify this compound as malvidin-3-O-glucoside-8-

ethyl-catechin, formed by the reaction between Mv3Glc and catechin, mediated by 

acetaldehyde. This compound is usually formed during wine storage and is one of a group 

of pigments that are formed due to the condensation reactions of anthocyanins (de Freitas 

and Mateus, 2011; Flamini 2013). It plays a crucial role in colour evolution, namely the 

change of the initial purple-red colour to a more reddish brown hue (de Freitas and 

Mateus, 2011; Flamini 2013; He et al., 2012). As stated in literature (He et al., 2012; 

Pissarra et al., 2003), the formation of malvidin-3-O-glucoside-8-ethyl-catechin starts 

with the protonation of acetaldehyde, followed by addition to a nucleophilic position of 

the flavanol unit; the dehydration of the resulting protonated adduct yields a new 

carbocation, which suffers a nucleophilic attack by the anthocyanin (Figure II.2.3).  

In Table III.2.1, it can be observed that no new compound was formed in the 

pressurized samples when compared with the untreated ones. These results show that the 

pressure treatment (500 MPa for 5 min) did not promote, at the beginning of storage, new 

condensation reactions of the Mv3Glc with the catechin or acetaldehyde. 

  

Figure III.2.2. Fragmentation patterns of the ion at m/z 809 studied in ESI-MS positive ion mode. 
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Figure III.2.3. Mechanism proposed for the formation of the malvidin-3-O-glucoside-8-ethyl-

catechin (m/z 809) from the reaction between Mv3Glc and catechin, mediated by acetaldehyde 

(adapted from Pissarra et al., 2003). 

 

III.2.3.2 Evaluation of anthocyanin condensation reaction after 8 months of storage 

After 8 months of storage, in the untreated and pressurized solutions containing 

the mixture of “Mv3Glc + catechin” and “Mv3Glc + acetaldehyde + catechin” a 

molecular ion at m/z 805 was detected, indicating the formation of a condensation 

compound (Table III.2.2).The possible formation of malvidin-3-O-glucoside-8-ethyl-

catechin (m/z 809) was also detected in the untreated and pressurized solutions containing 

Mv3Glc, catechin and acetaldehyde, as observed in the beginning of storage, but also in 

the untreated and pressurized solutions containing only Mv3Glc and catechin (Table 

III.2.2). Despite the absence of acetaldehyde addition in the solution “Mv3Glc + 

catechin”, the possible oxidation of ethanol to acetaldehyde during storage (Sun et al., 

2007) can explain the presence of this compound in the solution and, consequently, its 

participation in the catechin-vitisin B and malvidin-3-O-glucoside-8-ethyl-catechin 

formation. The untreated and pressurized solutions containing the mixture of Mv3Glc 

with acetaldehyde did not present the formation of any compound.  

The fragmentation pattern of the molecular ion at m/z 805 (Figure III.2.4) was 

consistent with the structure of catechin-vitisin B. The fragments at m/z 397 and 517 

confirm that catechin moiety is the upper unit (Figure III.2.4), as reported by other studies 

(Macz-Pop et al., 2005; Nave et al., 2010), since the presence of these ion fragments are 

characteristic, discriminating between the catechin-vitisin B and vitisin B-catechin 

dimers. In contrast to anthocyanins, pyranoanthocyanins are described to be much more 
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resistant to the attack of water (Oliveira et al., 2009) and consequently could not become 

nucleophilic enough to react with the flavanol carbocation. Overall, the formation of 

catechin-vitisin B in the solutions probably arises from the attack of the nucleophilic C8 

or C6 position of the anthocyanin molecule to the electrophilic C4 position of the flavan-

3-ol, followed by a cycloaddition of the acetaldehyde in its enolic form forming a second 

pyranic ring between the C4 and the hydroxyl group on the C5 position of the anthocyanin 

molecule (Figure III.2.5). 

 

Table III.2.2. Compounds identified in the model wine solutions after 8 months of storage, as 

[M+H]+ and [M]+  ions in ESI-MS spectra and the respective fragmentation. 

 

Compounds m/z 

 

Mv3Glc + 

acetaldehyde 

Mv3Glc + 

catechin 

Mv3Glc + 

acetaldehyde 

+ catechin, 

 
[M+H]+/

[M]+ 

Main MS2 

fragments 

Main MS3 

fragments 
Untr. Press. Untr. Press. Untr. Press. 

(+)-Catechin 291 

273 (-18 Da) 

165 (-126 Da) 

139 (-152 Da) 

-  n.d n.d * * * * 

Malvidin-3-

O-glucoside 
493 331 (-162 Da) - 

 

* * * * * * 

Catechin-

Vitisin B 
805 

653 (-152 Da) 

 

643 (-162 Da) 

491 (-162 Da) 

 

517 (-126 Da) 

491 (-156 Da) 

397 (-246 Da) 

 

n.d n.d * * * * 

Malvidin-3-

O-glucoside-

8-ethyl-

catechin 

809 

647 (-162 Da) 

519 (-290 Da) 

357 (-452Da) 

357 (-290 Da) 

357 (-162 Da) 

 

 

n.d n.d * * * * 

Unknown 851 

699 (-152 Da) 

 

 

689 (-162 Da) 

537 (-162 Da) 

473 (-226 Da) 
 

n.d n.d n.d * n.d n.d 

Unknown 879 

717 (-162 Da) 

 

 

727 (-152 Da) 

753 (-126 Da) 

699 (-18 Da) 

591 (-126 Da) 

565 (-152 Da) 

 

n.d n.d n.d * n.d n.d 

∗: detected; n.d: not detected; U: untreated samples; P: pressurized samples 
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Figure III.2.4. Fragmentation patterns of the ion at m/z 805 studied in ESI-MS positive ion mode. 

RDA A: retro-Diels-Alder reaction with loss of ring A; RDA B: retro-Diels-Alder reaction with 

loss of ring A. 

 

 

 

Figure III.2.5. Mechanism proposed for the formation of the catechin-vitisin B (m/z 805), adapted 

from He et al., (2012). 
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Besides the molecular ions at m/z 805 and m/z 809, only the molecular ions at m/z 

851 and m/z 879, detected in the pressurized model solution containing Mv3Glc with 

catechin (Figure III.2.6), indicated a possible effect of the pressure treatment on the 

formation of new compounds due to condensation reaction. In fact, the MS2 of the ion at 

m/z 851 and 879 gave a major ion at m/z 689 and 717, respectively, corresponding to the 

loss of one glucose moiety (162 Da), and at m/z 699 and 727, respectively, corresponding 

to the loss of the fragment released by the retro-Diels-Alder (RDA B) decomposition (152 

Da). These fragments indicate the presence of Mv3Glc and catechin in the structure of 

both compounds.  

 

 

Figure III.2.6. ESI-MS spectra (m/z 450 to 900) obtained for the (a) untreated and (b) pressurized 

solution Mv3Glc and catechin after 8 months of storage.  

 

A few number of structures were reported in the literature for the molecular ion at 

m/z 851, such as malvidin-3-O-glucoside-8-(3-methylbutyl)-catechin (Pissarra et al., 

2005), malvidin-3-O-glucoside-8-(2-methylbutyl)-catechin (Pissarra et al., 2003), 

malvidin-3-O-(6-O-acetyl)-glucoside-8-ethyl-catechin (Flamini 2013), and pyruvic acid-

catechin-malvidin-3-O-glucoside adduct resulting from the addition of the cationic form 

of pyruvic acid to the C6/C8 carbons of ring A of the catechin moiety or the C6 carbon 
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of the ring D of the malvidin moiety (Nave et al., 2010). Nevertheless, the absence of 

malvidin-3-O-(6-O-acetyl)-glucoside, isovaleraldehyde, 2-methylbutyraldehyde, and 

pyruvic acid in the model wine solutions, suggest that the compound with the molecular 

ion at m/z 851 could not be one of those reported structures. The molecular ion at m/z 879 

was not reported in the literature. Both molecular ions at m/z 851 and at m/z 879 can be 

derived from the polymerization of Mv3Glc and catechin with a formic acid adduct, since 

this acid was present in the model wine solution, used to adjust the pH.  

 

III.2.4 Concluding remarks 

This study show that pressure treatment (500 MPa for 5 min) did not promote, at 

the beginning of storage, condensation reactions between anthocyanins and flavonols in 

the model wine solutions.    

After 8 months of storage, all the model solutions containing Mv3Glc with 

catechin and Mv3Glc with catechin and acetaldehyde presented the formation of 

condensation compounds, namely catechin-vitisin B and malvidin-3-O-glucoside-8-

ethyl-catechin. Conversely, the pressure treatment promoted the formation of two 

unknown compounds in the mixture of Mv3Glc with catechin, which appear to result 

from the polymerization of Mv3Glc and catechin with other compounds presented in the 

model wine solution (potentially formic acid). Therefore, it is possible that the pressure 

treatment had a higher impact in terms of kineticks of reactions and in less extent in terms 

of different compounds formed. Also, it is feasible that, besides a possible direct effect of 

the pressure treatment in the polymerization of anthocyanins, the effect of the pressure 

treatments on other wine compounds can cause complex reactions leading indirectly to 

the acceleration of condensation reaction of anthocyanins in wine. 
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 IV.1.1 Overview 

 During the aging of wine, phenolic compounds participate in several reactions, 

namely polymerization and oxidations, and could be used to follow the aging process of 

wine (Chen et al., 2012; Oliveira et al., 2011; Ribéreau-Gayon et al., 2006; Soto Vázquez 

et al., 2010). Also, it was mentioned in Chapter II.1 that HHP treatments promote 

reactions that are similar to those observed during  red wine aging, giving rise to sensorial 

characteristics of an aged-like wine. Given that, it seems possible to exploit this 

technology for production of young red wines with novel pleasant and distinct 

characteristics to address market and consumer demand. Therefore, the development of a 

novel aging-like HHP-based methodologies that can modify wine composition could 

benefit the wine industry, especially to improve wines with low aging potential (Tao et 

al., 2014). 

The aim of this work was to study the effect of high hydrostatic pressure 

treatments on the phenolic composition of a red wine after storage, since these compounds 

play an important role in wine colour and taste that are important wine quality parameters. 

For this purpose, a red wine was pressurized at two pressure conditions, 500 and 600 

MPa, for 5 and 20 min at 20 ºC, respectively.  
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IV.1.2 Materials and methods 

IV.1.2.1 Chemicals 

Milli-Q water (Millipore, Bedford, MA) was used in all this work. HPLC-grade 

methanol, acetonitrile and formic acid (Merck, Darmstadt, Germany) were used. 

Delphinidin-3-O-glucoside (≥95%), cyanidin-3-O-glucoside (≥96%), petunidin-3-O-

glucoside (≥95%), peonidin-3-O-glucoside (≥95%), malvidin-3-O-glucoside (≥95%), 

procyanidins B1 (≥80%), B2 (≥90%), B4 (≥80%) and C1 (≥80%), and phloroglucinol 

were purchased from Extrasynthese (Lyon, Genay-France). Gallic acid (≥99%), 

protocatechuic acid (≥90%), ferulic acid (≥90%), caftaric acid (≥95%), vanilic acid 

(≥95%), caffeic acid (≥95%), syringic acid (≥95%), p-hydroxybenzoic acid (≥98%), 

coutaric acid (≥90%) , p-coumaric acid (≥98%), sinapic acid (≥98%), chlorogenic acid 

(≥95%), myricetin (≥96%), quercetin (≥96%), kaempferol (≥90%), (+)-catechin (≥98%), 

and (−)-epicatechin (≥98%) were purchased from Sigma-Aldrich Co. (St. Louis, MO, 

USA). 

 

IV.1.2.2 Wine samples and high pressure treatments 

Red wine samples were produced by Dão Sul SA (Carregal do Sal, Portugal) using 

Tinta Roriz (50%) and Touriga Nacional (50%) red grape varieties from Dão Appellation 

from 2013 harvest. An industrial batch fermenter of 16,000 L was used. After malolatic 

fermentation, the wine was transferred to 250 mL polyethylene bottles, stoppered, and 

pressurized at 600 MPa during 20 min or 500 MPa during 5 min, at 20 °C, in a hydrostatic 

press (Hiperbaric 55, Hiperbaric, Burgos, Spain), giving origin to samples 600 MPa and 

500 MPa, respectively. The HHP equipment has a pressure vessel of 200 mm inner 

diameter and 2,000 mm length and a maximum operation pressure of 600 MPa. It was 

connected to a refrigeration unit (RMA KH 40 LT, Ferroli, San Bonifacio, Italy) that 

allowed to control the temperature of the input water used as a pressurizing fluid. 

Pressurizing water had a controlled temperature of 15 °C. Pressure build-up took place at 

a compression rate of about 600 MPa/min (adiabatic heating caused an increase in 

temperature of about 2.0 °C), while decompression was nearly instantaneous. A lot of the 

same wine was not submitted to high pressure treatment (unpressurized) and also bottled 

in the polyethylene bottles. All wines were stored at 80% relative humidity in the absence 

of light at room temperature ranging between 20 and 25 °C. 
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IV.1.2.3 Oenological parameters determination 

The ethanol content, titratable acidity, volatile acidity, pH, reducing sugars, free 

and bound SO2, HCl and gelatine indexes were determined for each wine according to 

the methods described by the Organisation International de la Vigne et du Vin (OIV 1990; 

Ough and Amerine, 1988; Ribéreau-Gayon et al., 2006). All analyses were carried out in 

triplicate. 

 

IV.1.2.4 Colour determination 

The colour intensity (CI) was calculated as the sum of the absorbance values at 

420 nm, 520 nm, and 620 nm and the colour tonality was determined by dividing the 

absorbance at 420 nm by the absorbance at 520 nm. Absorbance measurements were 

recorded on an Uvikon 922 spectrophotometer (Kontron Instruments, Saint Quentin en 

Yvelines, France). The contribution of each coloration (yellow, red, and blue) to the 

overall colour of wine was calculated by dividing the absorbance at 420 nm (Ye%), 520 

nm (Rd%), and 620 nm (Bl%) by the colour intensity (CI). The proportion of red 

coloration produced by free and bound anthocyanins under their flavylium cations form 

(dA%) was calculated using the following formula, as describe by Kelebek et al., (2010): 

 

dA% = [1 −
Abs420 +  Abs620

2 ×  Abs520
] × 100 

 

IV.1.2.5 Phenolic Composition by spectrophotometric methods 

The total phenolic (TP) content of the samples was determined by the Folin–

Ciocalteu method (Singleton 1985). The samples were appropriately diluted in a solution 

of 10% ethanol. The calibration curve was performed using gallic acid as standard in a 

concentration range between 50 and 500 mg/L. The results were expressed as gallic acid 

equivalents. 

Total proanthocyanidins were estimated according to Chira et al., (2011a). This 

method is based on the Bate–Smith reaction, in which the proanthocyanidins in acid 

medium release anthocyanidins by heating. The wines were diluted to 1:50 in a 10% 

ethanol solution. One millilitre of the samples was added to 0.5 mL of water and 1.5 mL 

of 12 M HCl and the mixture was homogenised. Two tubes for each sample were 
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prepared: one was heated for 30 min in boiled water (sample A), while the other was 

maintained at room temperature (sample B). To each tube, 0.25 mL of 95% ethanol were 

added. The absorbance at 550 nm was then read through a 10 mm optical path. Total 

proanthocyanidins (g/L) were calculated as 19.33 × (abs550nmA - abs550nmB).  

Anthocyanins (Anth) were determined using the SO2 bleaching method (Chira et 

al., 2011b). A solution ”A” was prepared as follows: 1 mL of wine, 1 mL of 0.1% HCl 

ethanol and 20 mL of 2% HCl. Blank (B) was prepared as follows: 2 mL of solution ”A” 

and 0.8 mL of water. Sample (S) was prepared as follows: 2 mL of solution ”A”, 0.4 mL 

of water and 0.4 mL of NaHSO3. After 20 min at room temperature, the absorbance at 

520 nm was measured through a 10 mm optical path. Anth (mg/L) were calculated as 875 

× (Abs520nmB - Abs520nmS).   

The proportion of polymerized pigments (%PP) was estimated according to  

Ribereau-Gayon and Stonestreet (1965). The assay consist to discolour the free fraction 

of anthocyanins with sodium metabisulphite (Na2S2O5). For this, 1 mL of wine sample 

was placed in two test tubes with 9 mL of synthetic wine solution at pH 3.2. In one of the 

tubes (tube M), 40 µL of 20% sodium metabisulphite was added, and in the other tube 

(tube C) 40 µL of distilled water was added. The absorbance at 420 and 520 nm were 

measured on each of the tubes and the percentage of polymerized pigments calculation 

was performed using the formula:  

 

%PP = [
(Abs420𝑀  +  Abs520𝑀)

(Abs420𝐶  +  Abs520𝐶)
] × 100 

 

IV.1.2.6 Phenolic compounds composition by HPLC-MS 

Samples were filtered through a 0.45 µm pore size membrane filter before 

injection. Analysis was performed on a Thermo-Finnigan Accela HPLC system 

consisting of an autosampler (Accela autosampler), a pump (Accela 600 Pump), a diode 

array detector (Accela PDA Detector) coupled to a Finnigan Xcalibur data system. 

Separation was performed on a reversed phase Agilent Nucleosil C18 (4.6 mm × 250 mm, 

5 μm) column. Triplicate analyses were performed for each sample 

For the monomeric anthocyanins analysis, the eluents used, water/formic acid 

(99:1, v/v) (solvent A) and acetonitrile/formic acid (99:1, v/v) (solvent B), were applied 

at a flow rate of 1 mL/min as follows: 10–35% B linear from 0–25 min, 35–100% B linear 
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from 25–26 min, 100% B isocratic from 26–28 min, 100–10% B linear from 28–29 min, 

with the re-equilibration of the column from 29–35 min under the initial gradient 

conditions. Detection was conducted at 520 nm. Quantification was performed by a 

comparison to malvidin-3-O-glucoside calibration curve. 

For phenolic acids and flavonols analysis the mobile phase consisted of two 

solvents: Solvent A, water/formic acid (95:5; v/v) and Solvent B, acetonitrile/solvent A 

(60:40; v/v). Phenolic compounds were eluted under the following conditions: 1 

mL/min flow rate and the temperature was set at 25 ºC, isocratic conditions from 0 to 15 

min with 100% A, gradient conditions from 0% to 20% B in 30 min, from 20% to 50% 

B in 40 min, and from 50% to 100% B in 5 min, isocratic conditions with 100% B during 

10 min, followed by washing and reconditioning the column. The ultra-violet-visible 

spectra (scanning from 200 nm to 600 nm) were recorded for all peaks. Identification of 

phenolic compounds were performed by comparison with their retention times and UV 

spectra of authentic standards and also confirmed by mass spectrometry analysis. 

Quantification was performed using external calibration curves using gallic acid, caffeic 

acid and kaempferol for benzoic acids, cinnamic acids and flavonols quantification, 

respectively, in the concentrations range normally present in wine (approximately 0.2–

200 mg/L) and the obtained regression coefficients (r2) were above 0.992 in all cases. 

 

 IV.1.2.7 HPLC-UV-Fluor/MS analysis of monomeric and oligomeric flavan-3-ols and 

mean degree of polymerisation (mDP) 

The equipment used was a Thermo-Finnigan Surveyor HPLC system formed by 

UV–Vis detector (Surveyor PDA Plus), an autosampler (Surveyor autosampler Plus) and 

a quaternary pump (Surveyor LC pump Plus) controlled by Xcalibur data treatment 

system. This HPLC System was also coupled to a Thermo-Finnigan LCQ Advantage 

spectrometer equipped with an ion trap mass analyser. 

The separation of monomeric and oligomeric flavan-3-ols was performed on a 

reversed phase Agilent Nucleosil C18 (250 mm × 4 mm, 5 μm). Water/formic acid 

(solvent A) (99:1, v/v) and acetonitrile/formic acid (99:1, v/v) (solvent B) were used at a 

flow rate of 1 mL/min. The gradient conditions were: 3% B isocratic from 0–3 min, 3–

5% B linear from 3–14 min, 5–10% B linear from 14–22 min, 10–14% B linear from 22–

26 min, 14–25% B linear from 26–40 min, 25– 100% B linear from 40–41 min, 100% B 

isocratic from 41–43 min, and 100–3% B linear from 43–44 min, with re-equilibration of 
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the column from 44–50 min under the initial gradient conditions. Detection was 

performed with a fluorescence detector set at 280 nm excitation wavelength and 320 nm 

emission wavelength with medium fluorescence intensity; as well as a diode array 

detector set at 280 nm. Identification of monomeric and oligomeric flavan-3-ols was 

carried out by comparison to the retention time of external standards ((+)-catechin, (-)-

epicatechin, and procyanidins B1, B2, B4 and C1) and also confirmed by HPLC-MS 

analysis. Quantification was performed using external standard calibration curves. 

For the determination of mean degree of polymerization (mDP), a solid-phase 

extraction (SPE) step was used to purify the wines. Each sample was diluted (3 times) 

and applied (10 mL) on a LC18 (octadecyl bonded, endcapped silica) cartridge (Supelco, 

St Quentin Fallavier, France) The column was washed with 50 mL of water and eluted 

with 50 mL of methanol. The methanol fraction was dried under reduced pressure, 

redissolved in 2 mL of methanol and used for mDP determination. The proanthocyanidin 

mDP concentrations were quantified by phloroglucinolysis (Drinkine et al., 2007). 

Reversed-phase HPLC analysis of the products formed allowed the determination of the 

structural composition of proanthocyanidins, which was characterised by the nature of 

their constitutive extension units (released as flavan-3-ols phloroglucinol adducts) and 

terminal units (released as flavan-3-ols). These analyses were carried out in triplicate on 

a column Xterra RP18 (100 mm × 4.6 mm, 3.5 μm, Waters, France). The elution 

conditions were: solvent A, water/acetic acid (99:1, v/v); solvent B, methanol. The elution 

gradient for the analysis of the reaction mixture was as follows: 5% B for 25 min, a linear 

gradient from 5 to 32% B in 45 min, a linear gradient from 30 to 100% B in 2 min. The 

column was then washed with 100% B for 5 min and re-equilibrated with 5% B for 10 

min. To calculate the apparent mDP, the sum of all subunits (flavan-3-ol monomer and 

phloroglucinol adducts, in molar basis) was divided by the sum of all flavan-3-ol 

monomers. To calculate the percentage of prodelphinidins (%P) the sum of (-)-

epigallocatechin (EGC) subunits [(∑Pterminal units (EGC) concentrations) + 

(∑Pextension units (EGC-P) concentrations)] was divided by the sum of all flavan-3-ol. 

 

 

IV.1.2.8 Sensorial analysis 

A blind tasting test was done to the wines after 5 months of bottling by 25 expert 

panellists from the Oenology department of the University of Bordeaux. Wines (30 mL) 
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were presented in transparent glasses coded with a three-digit random code and 

distributed in a completely randomized order. In each session a descriptive analysis of 

each wine was conducted.  

All tasters were informed that the wines had different treatments, but the panellists 

did not have any details of the experimental design. Three samples were given to each 

panellist: unpressurized, 500 MPa, and 600 MPa. Wines were evaluated on a predefined 

score sheet (intensity scale from 0 to 6) that included 23 descriptors in three categories: 

colour, aroma, and taste attributes. Also, a global evaluation was done on a scale from 0 

to 10 in 4 categories: colour, aroma, taste, and global attributes. Averages of the scores 

for each descriptor were calculated. 

 

IV.1.2.9 Statistical analysis  

Statistical data analysis was performed using Analysis of Variance (ANOVA). 

Tukey’s HSD Test was used for the data as comparison test when samples analyses 

showed significant differences after ANOVA (p<0.05).  

 

 

IV.1.3 Results and discussion 

 

IV.1.3.1 Effect of HHP treatments on the wine physicochemical characteristics 

The physicochemical characteristics of the wine samples at the beginning of 

storage and after 5 months of bottle aging are summarized in Table IV.1.1. At the 

beginning of storage no significant difference among the different wine samples was 

observed for all the parameters analysed (p<0.05), indicating that both pressure 

treatments did not affect the physicochemical characteristics of the wine immediately 

after the pressure treatments. These results are in accordance with results obtained in 

Chapter II.1 and with previous studies that showed that pressure treatments around 300 

to 600 MPa for few minutes have no impact in red wine properties at the beginning of 

storage (Mok et al., 2006; Tao et al., 2012).  

After 5 months of storage all wine samples presented no significant differences 

among them in terms of density, ethanol content, titratable and volatile acidity, reducing 

sugars content, and lactic and tartaric acid content. The composition of wines were in 
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accordance with previous studies carried out on Touriga Nacional and Tinta Roriz wines 

(Jordão et al., 2012; Rodrigues et al., 2012, 2013). The wine samples presented values of 

HCl index around 20 and a gelatin index around 55. The HCl index represents the tannin 

polymerization level, and the gelatin index measures tannin reactivity toward proteins 

and, therefore, assesses wine astringency. The red wine HCl index usually ranges between 

10 and 30 and the acceptable values of the gelatin index are between 40 and 60, in order 

to have a red wine with a satisfactory astringency for the consumer (Ribéreau-Gayon et 

al., 2006). Therefore, overall the comparison of the three wines is in accordance with 

previously reported data on high quality red wine (Glories 1984; Ribéreau-Gayon et al., 

2006), showing that the red wine produced can be considered a high quality red wine 

regarding colour specificities, and  HCl and gelatin indexes. After 5 months of bottle 

aging unpressurized wine presented less 41 and 46% content of free and total SO2, 

respectively, when compared with the beginning of storage.  
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Table IV.1.1. Physicochemical analysis of the different wine samples at the beginning and after 5 months of bottle storage  

 

Analysis / wine samples 
Beginning of storage  5 months 

Unpressurized 500 MPa 600 MPa  Unpressurized 500 MPa 600 MPa 

Density (20 ºC/20 ºC) 0.9907 ±0.00 0.9906 ± 0.00 0.9906 ± 0.00  0.9915 ± 0.00 0.9915  ± 0.00 0.9915 ± 0.00 

Ethanol (v/v; %) 13.67 ± 0.01 13.66 ± 0.00 13.63 ± 0.01  13.61 ± 0.01 13.61 ± 0.01 13.61 ± 0.01 

Titratable aciditya (g/L) 2.80 ± 0.00 2.75 ± 0.00 2.72 ± 0.01  3.11 ± 0.01 3.13 ± 0.01 3.12 ± 0.00 

pH 3.59 ± 0.00 3.58 ± 0.01 3.58 ± 0.01  3.62 ±0.00 3.61 ±0.00 3.62 ±0.00 

Volatile acidityb (g/L) 0.40 ± 0.01 0.38 ± 0.02 0.38 ± 0.01  0.45 ± 0.01 0.42 ± 0.00 0.41 ± 0.00 

Reducing sugar (g/L) 1.3 ± 0.1 1.3 ± 0.1 1.4 ± 0.0  1.5 ± 0.1 1.5 ± 0.1 1.6 ± 0.1 

Free SO2 (mg/L) 34.33 ± 0.58 33.33 ± 1.52 35.33 ± 1.15  20.33 ± 0.58 12.33 ± 0.58 11.67 ± 0.58 

Total SO2 (mg/L) 74.67 ± 0.58 74.33 ± 1.15 74.67 ± 1.5  40.33 ± 0.58 22.33 ± 1.53 25.33 ± 1.53 

Lactic Acid (g/L) 1.06 ± 0.01 1.01 ± 0.02 0.99 ± 0.03  1.04 ± 0.00 1.03 ± 0.01 1.03 ± 0.01 

Tartaric acid (g/L) 1.33 ± 0.01 1.19 ± 0.02 1.12 ± 0.01  2.22 ± 0.02 2.24 ± 0.01 2.21 ± 0.03 

HCl index 28.8 ± 0.04 26.28 ± 0.93 29.33 ± 0.46  18.66 ± 0.25 21.49 ± 0.45 21.33 ± 0.19 

Gelatin index 55.06 ± 0.65 53.83 ± 0.47 58.58 ± 1.71  55.97 ± 3.23 56.04 ± 5.74 60.81 ± 7.75 

Tannin (g/L) 3.38 ± 0.12 3.31 ± 0.26 3.68 ± 0.27  3.46 ± 0.06 3.90 ± 0.07 3.77 ± 0.13 

Phenolic compoundsc (mg/L) 3454.33 ± 31.82 3681.82 ± 200.68 3644.42 ± 66.27  3624.50 ± 27.41 3550.08 ± 52.78 3493.91 ± 77.72 

Anthocyaninsd (mg/L) 519.98 ± 4.85 509.42 ± 10.72 522.81 ± 10.04  401.48 ± 3.99 387.33 ± 1.53 389.40 ± 2.81 

Pigments polymerization (%) 58.15 ± 0.21 58.47 ± 0.08 61.78 ± 1.02  66.35 ± 0.29 71.62 ± 0.47 73.90 ± 0.27 

Colour intensity 0.92 ± 0.01 1.11 ± 0.03 1.11 ± 0.01  0.87 ± 0.01 0.81 ± 0.02 0.83 ±0.01 

Colour tonality 0.62 ± 0.01 0.67 ± 0.02 0.67 ± 0.01  0.75± 0.01 0.74 ± 0.02 0.75 ± 0.01 

Ye% 34.10 ± 0.02 35.25± 0.90 36.03 ± 0.04  36.89 ± 0.20 37.79 ± 0.52 37.54 ± 0.37 

Rd% 54.80 ± 0.02 52.77 ± 1.33 53.43 ± 0.05  49.18 ± 0.16 50.92 ± 0.67 49.85 ± 0.18 

Bl% 11.09 ± 0.01 11.97 ± 2.22 10.53 ± 0.01  13.91 ±0.05 11.28 ± 0.20 12.60 ± 0.19 

dA% 58.77 ± 0.03 55.22 ± 2.42 56.42 ± 0.09  48.34 ± 0.32 51.80 ± 1.29 49.71 ± 0.37 

All data are expressed as mean value ± standard deviation (n = 3); a Expressed as tartaric acid equivalent; b expressed as acetic acid equivalent; c expressed as gallic acid equivalents; d expressed 

as malvidin-3-glucoside equivalents. 

http://www.brianmac.co.uk/lactic.htm
http://en.wikipedia.org/wiki/Tartaric_acid
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The pressurized wines presented a more pronounced decrease of SO2 content 

during storage, since the samples 500 MPa and 600 MPa presented around 70% less of 

both free and total SO2 after 5 months of storage. Sulphur dioxide plays an important role 

against oxidation in wine, since it acts in three different ways: direct oxygen scavenging; 

reacting with hydrogen peroxide; and reducing the quinones formed during the oxidation 

process back to their phenol form (Karbowiak et al., 2010; Oliveira et al., 2011). Once in 

wine, SO2 may react with several constituents, namely acetaldehyde, pyruvic acid, 2-

oxoglutaric acid, and, to a lesser extent, anthocyanins, cinnamic acids, and reducing 

sugars, contributing for the modulation of the wine properties (Karbowiak et al., 2010; 

Ribéreau-Gayon et al., 2006). The reaction with these compounds reduces the rate of 

phenolic polymerization and, consequently, the colour loss usually observed during wine 

aging. Nevertheless, it is already reported the generation of high-reactive radicals during 

pressurization (Bolumar et al., 2012b; Tao et al., 2012), and once radicals are generated, 

an increased oxidation level could take place (Bolumar et al., 2012b). Therefore, HHP 

seems to alter the equilibrium of the SO2 reaction in wine during storage, since the free 

SO2 might react with the radicals formed in the pressure treatments, leading to a more 

pronounced decrease of SO2 content in pressurised wine during storage. Despite the 

decrease of SO2 content in pressurized wines, the pressurized wines did not present 

significant differences in the colour values (p<0.05) when compared with the 

unpressurized wine, indicating that the pressure treatments did not seem to promote the 

combination between SO2 and anthocyanins during storage and the content of sulphur 

dioxide in these wines appears to remain enough to decrease the rate of the colour loss 

during wine aging. 

After 5 months of storage the pressurized wines presented a slightly higher 

(p<0.05) tannin content and slightly lower content (p<0.05) of total anthocyanins than the 

unpressurized wine. In terms of percentage of polymerized pigments, the difference 

between the wine samples are more pronounced, since the samples 500 MPa and 600 MPa 

presented, respectively 5% and 7% more polymerized pigments when compared with the 

unpressurized wine. Therefore, the applied HHP treatments affected the rate of 

anthocyanins polymerization, leading to a higher percentage of polymerized pigment. 

These results are in agreement with the results obtained in Chapter II.1 for SO2-free red 

wine that showed that HHP treatments (400-500 MPa for 5 min) increase of condensation 

reactions of phenolic compounds, resulting in compounds with higher polymerization 

degree, namely anthocyanins and proanthocyanidins, along the wine aging.  
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IV.1.3.2 Effect of HHP treatments on the wine phenolic compounds composition. 

 Monomeric anthocyanin composition  

Nine different monomeric anthocyanins (MA), including five glucosides, two 

acetyl glucosides, and two coumaroyl glucosides were identified and quantified in the 

wine samples (Figure IV.1.1). All samples showed during storage a decrease in the 

individual anthocyanin content and, consequently, a decrease in total monomeric 

anthocyanins content (41% to 51% less), when compared with the begging of storage 

(Table IV.1.2). This decrease was mainly due to the high decrease of malvidin 3-

glucoside content, the MA present in higher content in red wines. Therefore, the decrease 

observed in MA during aging in bottle should be mainly due to their participation in 

numerous condensation reactions, as well as in hydrolytic and other degradation reactions 

(Monagas et al., 2006; Santos-Buelga et al., 1999) in a minor extent. 

 

Figure IV.1.1. HPLC chromatogram of unpressurized wine at the beginner of storage recorded 

at 520 nm. Identification: 1. Delfinidin-3-O-glucoside, 2. Cyanidin-3-O-glucoside, 3. Petunidin-

3-O-glucoside, 4. Peonidin-3-O-glucoside, 5. Malvidin-3-O-glucoside, 6. Peonidin-3-O-(6-O-

acetyl)-glucoside, 7. Malvidin-3-O-(6-O-acetyl)-glucoside, 8: Peonidin-3-O-(6-O-p-coumaryl)-

glucoside, 9. Malvidin-3-O-(6-O-p-coumaryl)-glucoside. 

 

After 5 months of storage, the pressurized wines presented lower content of 

delphinidin-3-glucoside (10% less), petunidin-3-glucoside (13 to 15% less), malvidin-3-

glucoside (13 to 15% less), malvidin-3-glucoside-acetaldehyde (15 to 16% less) and 

malvidin-3-(6-p-coumaroyl)-glucoside (14% less) when compared with the 
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unpressurized sample. Therefore, samples 500 MPa and 600 MPa presented, 

respectively, 13% and 14% less of total MA content than the unpressurized sample. These 

results are in agreement with previous works which showed that final anthocyanin content 

of red wine is affected by HHP treatment, due to the acceleration of condensation 

reactions during the wine storage period, involving monomeric anthocyanins and also 

other phenolic compounds (Tao et al., 2012). However, the effect of the pressure 

treatments on the anthocyanins content did not alter significantly the colour of the wines 

(Table IV.1.1), contrary to a SO2-free red wine pressurized with similar HHP treatments 

(Chapter II.1), probably because of the presence of sulphur dioxide in the wines that 

reduces the rate of phenolic polymerization and, consequently, the colour loss usually 

observed during wine aging (Bakker et al., 1998). 

 

Table IV.1.2. Monomeric anthocyanins content of the wine samples at the beginning and after 5 

months of bottle storage 

Peak 

number 

 

Anthocyanin 

(mg/L)1 

                 Beginning of storage 5 months 

Unpressurized 
500 

MPa 

600 

MPa 
 Unpressurized 

500 

MPa 

600 

MPa 

1 
Dp3Glc 16.04 ± 0.17a 16.62 ± 

0.39a 

16.60 ± 

0.12a  10.29 ± 0.18b 9.23 ± 

0.10c 

9.22 ± 

0.08c 

2 
Cy3Glc 2.46 ± 0.03a 2.48 

±0.09a 

2.57 ± 

0.08a  2.32 ± 0.02a 2.45 ± 

0.22a 

2.30 ± 

0.02a 

3 
Pt3Glc  21.01 ± 0.05a 21.94 ± 

0.19b 

22.22 ± 

0.24b  13.12 ± 0.26c 11.44 ± 

0.03d 

11.20 ± 

0.02d 

4 
Pn3Glc 7.88 ± 0.26a 8.15 ± 

0.30a 

8.14 ± 

0.05a  5.52 ± 0.20b 4.93 ± 

0.33b 

4.86 ± 

0.42b 

5 
Mv3Glc 160.49 ± 0.79a 162.20 

± 0.67a 

162.48 

± 1.32a  89.89 ± 0.36b 77.91 ± 

0.16c 

76.81 ± 

0.09c 

6 
Pn3AcGl 2.82 ± 0.10a 2.80 ± 

0.18a 

2.94 ± 

0.10a  2.39 ± 0.05b 2.29 ± 

0.06b 

2.23 ± 

0.01b 

7 
Mv3AcGlc 24.17 ± 0.35a 24.57 ± 

0.26a 

24.57 ± 

0.28a  14.08 ± 0.13b 11.91 ± 

0.05c 

11.77 ± 

0.04c 

8 
Pn3CmGlc 2.83 ± 0.06a 2.84 ± 

0.11a 

2.95 ± 

0.03a  2.31 ± 0.03b 2.24 ± 

0.02b 

2.23 ± 

0.03b 

9 
Mv3CmGlc 14.31 ± 0.15a 14.78 ± 

0.20b 

15.16 ± 

0.22b  7.91 ± 0.02c 6.80 ± 

0.04d 

6.77 ± 

0.08d 

 
Total 252.01 ± 1.30a 256.38 

± 1.07b 

257.63 

± 1.84b  147.82 ± 0.79c 129.19 

± 0.68d 

127. 40 

± 0.47d 

All data are expressed as mean value ± standard deviation (n = 3). In the same line, different letters indicate significant 

differences according to a Tukey test (p < 0.05). 1Dp3Glc-Delphinidin-3-O-glucoside, Cy3Glc-Cyanidin-3-O-

glucoside,  Pt3Glc-Petunidin-3-O-glucoside, Pn3Glc-Peonidin-3-O-glucoside, Mv3Glc-Malvidin-3-O-glucoside, 

Pn3AcGlc- Peonidin -3-O-(6-O-acetyl)-glucoside, Mv3AcGlc- Malvidin-3-O-(6-O-acetyl)-glucoside, Pn3CmGlc- 

Peonidin-3-O-(6-O-p-coumaryl)-glucoside, Mv3CmGlc- Malvidin-3-O-(6-O-p-coumaryl)-glucoside 
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Phenolic acids and flavonols composition  

Twelve different phenolic acids and three flavonols were identified and quantified 

in the different wine samples (Figure IV.1.2).  

Figure IV.1.2. HPLC chromatogram of Oak wine after 5 months of storage recorded at 280 and 

320 nm. Identification: 1. Gallic acid, 2. Protocatechuic acid, 3. Caftaric acid, 4. p-

Hydroxybenzoic acid, 5. Coutaric acid, 6. Vanilic acid, 7. Caffeic acid, 8: Chlorogenic acid, 9. 

Syringic acid, 10. p-Coumaric acid, 11. Ferulic acid, 12. Sinapic acid, 13. Ellagic acid, 14. 

Myricetin, 15. Quercetin, 16. Kaempferol. 
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At the beginning of the storage, the wine samples did not show any statistical 

differences on phenolic acids and flavonols content (p<0.05) (Table IV.1.3). However, 

after 5 months of storage, the wines showed different evolution of phenolic acids and 

flavonols content.  

 

Table IV.3. Phenolic acids and flavonols content of the wine samples at the beginning and after 

5 months of bottle storage 

Compounds 

(mg/L) 

Beginning of storage  5 months 

Unpressurized 500 MPa 600 MPa  Unpressurized 500 MPa 600 MPa 

Phenolic acids        

Gallic acid 57.01 ± 0.29a 56.07 ± 

0.30a 

55.32 ± 

0.28b  54.60 ± 0.20b 48.55 ± 

2.04c 

42.66 ± 

0.05d 

Protocatechuic acid 2.24 ± 0.05a 2.19 ± 

0.09ab 

2.14 ± 

0.06ab  2.02 ± 0.07bc 1.99 ± 

0.09bc 

1.79 ± 

0.03c 

Caftaric acid 116.39 ± 1.39a 117.65 ± 

1.72a 

118.44 ± 

0.47a  102.13 ± 0.16b 93.97 ± 

1.30c 

95.85 ± 

0.99c 

Vanilic acid 9.04 ± 0.21a 8.89 ± 

0.07a 

8.88 ± 

0.10a  7.43 ± 0.04b 7.53 ± 

0.41b 

7.92 ± 

0.50b 

Syringic acid 5.13 ± 0.05a 4.87 ± 

0.05a 

4.92 ± 

0.05a  4.03 ± 0.08b 3.85 ± 

0.11bc 

3.48 ± 

0.23c 

p-Hydroxybenzoic 

acid 
3.73 ± 0.12a 3.86 ± 

0.05a 

3.89 ± 

0.02a  1.43 ± 0.06b 1.16 ± 

0.02c 

1.33 ± 

0.01b 

Coutaric acid 13.37 ± 0.12a 13.44 ± 

0.05a 

13.34 ± 

0.14a  12.71 ± 0.18b 11.61 ± 

0.07c 

11.40 ± 

0.21c 

Caffeic acid 2.47 ± 0.05a 2.48 ± 

0.03a 

2.47 ± 

0.03a  2.69 ± 0.07b 3.13 ± 

0.03c 

3.20 ± 

0.05c 

Chlorogenic acid 0.48 ± 0.06a 0.42 ± 

0.02a 

0.42 ± 

0.04a  0.24 ± 0.04b 0.20 ± 

0.01b 

0.17 ± 

0.02b 

p-Coumaric acid 0.48 ± 0.05a 0.48 ± 

0.02a 

0.53 ± 

0.02ab  0.53 ± 0.06ab 0.61 ± 

0.03b 

0.64 ± 

0.06b 

Ferulic acid 0.16 ± 0.03a 0.16 ± 

0.02a 

0.16 ± 

0.01a  0.16 ± 0.02a 0.16 

±0.02a 

0.19 ± 

0.03a 

Sinapic acid 1.50 ± 0.05a 1.43 ± 

0.01a 

1.44 ± 

0.12a  1.60 ± 0.25a  
1.19 ± 

0.01b 

1.17 ± 

0.02b 

Total 211.99 ± 1.41a 211.94 ± 

1.84a 

211.96 ± 

0.64a  189.56 ± 0.64b 173.95 ± 

3.24c 

169.81 ± 

1.78c 

Flavonols        

Myricetin 12.19 ± 0.28a 11.00 ± 

0.24b 

10.75 ± 

0.04b  9.73 ± 2.21b 7.36 ± 

0.15 c 

7.42 ± 

0.29c 

Quercetin 10.62 ± 0.10a 10.41 ± 

0.34ab 

11.16 ± 

1.04ab  9.72 ± 0.16b 8.48 ± 

0.43c 

8.73 ± 

0.66c 

Kaempferol 10.68 ± 0.29a 10.32 ± 

0.22a 

10.20 ± 

0.32a  8.57 ± 0.58b 6.95 ± 

0.05c 

7.84 ± 

0.77bc 

Total 33.50 ± 0.55a 31.73 ± 

0.49a 

32.11 ± 

1.23a  28.02 ± 1.73b 22.79 ± 

0.41c 

23.99 ± 

0.93c 

All data are expressed as mean value ± standard deviation (n = 3). In the same line, different letters indicate 

significant differences according to a Tukey test (p < 0.05). 

 

As seen previously for the anthocyanins, the total content of phenolic acids and 

flavonols in all wine samples decreased during the 5 months of bottle storage (up to 11% 
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and 19% less content for the case of phenolic acids and flavonols, respectively), although 

to a lower extent than the antocyanins. This behaviour should be due to the chemical 

oxidation and formation of copigments of this compounds with anthocyanins during 

storage (Burin et al., 2011; Monagas et al., 2006).  

After 5 months of storage, the pressurised wines presented around 10% less 

phenolic acids content when compared with the unpressurised wine (Table IV.1.3). This 

behaviour was mainly due to the lower content of gallic and caftaric acids, the most 

dominant phenolic acids quantified, in the pressurized wines when compared with the 

unpressurized wine, since the 500 MPa and 600 MPa wines presented 11% and 22% less 

of gallic acid, and 8% and 6% less of caftaric acid, respectively. In relation to the flavonol 

content, the 500 MPa and 600 MPa wines presented 24% lower content of myricetin and 

13% and 10% lower content of quercetin, respectively, when compared with the 

unpressurized wine. The kaempferol content was 19% lower in the wine pressurized at 

500 MPa when compared with the unpressurized wine, while for the 600 MPa wine the 

content was not significantly different (p<0.05).  

These results show that phenolic acids and flavonols were also affected by HHP 

treatments, leading to wines with lower content of these compounds and consequently to 

wines with possible lower bioactive activity. The decrease of these phenolic compounds 

in the pressurized wines may be related with the generation of high-reactive radicals 

during pressurization, enhancement of chemical oxidation, and polymerization of 

phenolic compounds during storage (Chen et al., 2012; Clariana et al., 2011). 

 

Flavan-3-ols composition and mean degree of polymerisation  

 The flavan-3-ol monomers (+)-catechin and (-)-epicatechin, and oligomers (B1, 

B2, B4 dimers and C1 trimer) were identified and quantified in the wines at the beginning 

of storage and after 5 months of bottle aging (Table IV.1.4). Proanthocyanidins 

characteristics such as mean degree of polymerization (mDP) and percentage of 

prodelphinidins (%P) were also determined for all the wine samples (Table IV.1.4). At 

the beginning of storage no significant difference among the different wine samples was 

observed for the flavan-3-ols monomers and oligomers content. The mDP of the wines 

studied varied from 4.28 to 5.20, which are in agreement with values reported in the 

literature for Touriga Nacional, Trincadeira, Castelão, Syrah, and Cabernet Sauvignon 

wines with mDP varying from 2.1 to 9.6 (Cosme et al., 2009). Therefore, the 600 MPa 



CHAPTER IV.1 

158 
 

wine exhibited a slight higher mDP and %P values than the 500 MPa and unpressurized 

wines (Table IV.1.4). These results allow inferring that pressure treatment of 600 MPa 

for 20 min increased the polymerization rate of higher molecular weight 

proanthocyanidins in the beginning of storage, leading to higher mDP and %P values 

without changing the flavan-3-ols monomers and oligomers content. In addition, pressure 

treatment of 500 MPa for 5 min did not affect the polymerization rate of high and low 

molecular weight proanthocyanidins, at the beginning of storage. These results are in line 

with others reported in the literature (Chen et al., 2012; Tao et al., 2012) that showed that 

more severe high pressure treatments (≥ 600 MPa for large minutes or hours) can promote 

the polymerisation reaction of flavan-3-ols and/or higher molecular weight 

proanthocyanidins, at the beginning of wine storage.  

 

Table IV.1.4. Flavan-3-ol monomers and oligomers content, and tannin composition of the wine 

samples at the beginning and after 5 months of bottle storage 

Compounds 

(mg/L) 

Beginning of storage  5 months 

Unpressurized 500 MPa 600 MPa  Unpressurized 500 MPa 600 MPa 

Flavanols        

(+)-Catechin 71.82 ± 0.30a 71.03 ± 

0.66a 

72.41 ± 

0.20a  61.77 ± 0.66b 59.35 ± 

1.38c 

72.03 ± 

1.22a 

(-)-Epicatechin 35.12 ± 0.39a 35.14 ± 

0.31a 

35.78 ± 

0.04ac  29.01 ± 0.23b 26.34 ± 

0.47d 

37.61 ± 

2.10c 

Procyanidin B1 62.74 ± 0.46ab 62.38 ± 

0.29ab 

62.79 ± 

0.91ab  64.62 ± 1.58b 61.26 ± 

1.33a 

60.99 ± 

0.65a 

Procyanidin B2 17.83 ± 0.11a 17.56 ± 

0.37a 

17.79 ± 

0.16a  17.23 ± 0.08a 16.33 ± 

0.30b 

15.92 ± 

0.28b 

Procyanidin B4 3.84 ± 0.46a 4.86 ± 

0.79a 

4.77 ± 

0.27a  3.97 ± 0.43a 3.95 ± 

0.42a 

4.20 ± 

0.38a 

Procyanidin C1 11.48 ± 0.11a 11.69 ± 

0.41a 

11.40 ± 

0.30a  9.79 ± 0.20b 9.54 ± 

0.43b 

9.05 ± 

0.35b 

Total 202.83 ± 1.04a 202.66 ± 

0.62a 

204.95 ± 

1.38a  186.39 ± 2.56b 176.77 ± 

4.07c 

199.80 ± 

2.04a 

Tannin  

composition 
       

mDP 4.72 ± 0.04a 4.80 ± 

0.03a 

5.20 ± 

0.11b  4.72 ± 0.11a 4.99 ± 

0.06b 

4.28 ± 

0.14c 

%P 6.82 ± 0.42a 6.32 ± 

0.17a 

8.16 ± 

0.73b  7.72 ± 0.30b 7.78 ± 

0.18b 

5.82 ± 

0.20c 

All data are expressed as mean value ± standard deviation (n = 3). In the same line, different letters indicate 

significant differences according to a Tukey test (p < 0.05).  mDP mean degree of polymerization; %P percentage 

of prodelphinidins 
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Along the time of storage, the wines showed different evolution of flavan-3-ols 

content and degree of polymerization (Table IV.1.4). After 5 months of storage, the 500 

MPa wine presented the lower value (176.77 mg/L) of the total flavan-3-ols content, 

contrary to the 600 MPa wine that present the higher value (199.80 mg/L) among the 

wine samples (p<0.05). These values are mainly due to the lower content of catechin and 

epicatechin for the 500 MPa wine and the higher content of these compounds for the 600 

MPa wine (p<0.05). In relation to the mDP and %P the 500 MPa wine showed a higher 

mDP (4.99) among the wines samples, (p<0.05). The 600 MPa wine presented the lower 

mDP (4.28) and %P (5.82) values when compared with the 500 MPa and unpressurized 

wines. These results, together with the higher content of flavan-3-ol monomers presented 

in the 600 MPa, at 5 months of storage, lead to infer a possible effect of HHP treatments 

in the acceleration of flavan-3-ol/proanthocyanidins reactions that occur naturally during 

the wine storage period. In fact, during wine aging, different reactions can occur, giving 

rise to proanthocyanidins with different degree of polymerization. In the first months of 

wine storage, the mDP tends to increase due to condensation reactions of flavan-3-ols in 

the wine (Ribéreau-Gayon et al., 2006). However, along aging, a decrease in mDP and 

prodelphinidins could occur due to the easier degradation of higher molecular weight 

proanthocyanidins and also due to their precipitation after condensation with other 

compounds, namely polysaccharides and proteins (Cheynier et al., 1997; Chira et al., 

2011a; Cosme et al., 2009). Vidal et al., (2002) also attributed the decrease in mDP to a 

cleavage reaction that occurs in acidic media like wine. In this case, these reactions 

dominate in relation to the polymerisation reaction of proanthocyanidins that also occur. 

Therefore, with the pressure treatment of 600 MPa for 20 min, the condensation reactions 

between flavan-3-ol/proanthocyanidins increase immediately after the treatment, leading 

to higher mDP and %P values. However, during wine storage, the rate of cleavage 

reaction and the precipitation of proanthocyanidins in this pressurized wine are also 

higher, leading to a faster decrease in mDP and %P values and a higher content of flavan-

3-ol monomers in this wine comparing with the 500 MPa wine. 

These results show that the pressure treatments studied increased the rate of 

flavan-3-ol/proanthocyanidins reactions during wine storage, being this effect more 

pronounced with the most severe pressure treatment. 
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IV.1.3.3 Effect of HHP treatments on the wine sensorial characteristics  

The sensorial properties of the wines were analysed after 5 months of storage to 

assess the organoleptic characteristics of the wine in terms of colour, aroma, and taste. 

The results of the average scores of the panelists are displayed in Figure. IV1.3. Regarding 

the colour evaluation (Figure. IV1.3A), it can be observed that the pressurized wines did 

not present significant differences values for all the five colour descriptors (red, violet 

and brown colour, intensity and limpidity) when compared with the unpressurized wine 

(p>0.05). These results are in agreement with the chromatic parameters obtained for the 

pressurized wines (Table IV.1.1), since no significant difference (p>0.05) among the 

different wine samples was observed for all the parameters (colour intensity, Tint, Ye%, 

Rd%, Bl%, dA%). 

 

 

 
Figure. IV1.3. Descriptive sensory analysis of the colour (A), aroma (B), taste (C), and global 

attributes (D) of wines samples at 5 months of storage. All data are expressed as mean value. 

Different letters indicate significant differences according ANOVA followed by a Tukey test 

(p<0.05). 

 

The aroma of pressurized wine samples (Figure. IV1.3B) presented a higher scents 

of cooked fruit, and sulphur aroma and lower scents of fruity aromas than the 

unpressurized wine (p<0.05). This result is in agreement with results reported for SO2-
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free red (Chapter II.1) and white wines (Chapter II.2)  with pressure treatment that showed 

higher cooked fruit aroma perception, attributed to the increase of Maillard volatile 

compounds (Chapter II.3), namely 2-furfural, that have “roasty” fruit descriptors (Castro-

Vázquez et al., 2011; Jeleń et al., 2011). Also, the 600 MPa presented higher metallic 

notes than the unpressurized and 500 MPa wines. 

Comparing the taste assessment of the different wine samples (Figure. IV1.3C), 

the pressurized wines showed a slightly lower fruity level than the unpressurized wine 

(p<0.05). Furthermore, the wine pressurized at 600 MPa presented higher values of 

bitterness and persistence among the wine samples, and lower astringency when 

compared with the unpressurized wine (p<0.05). The lower astringency noticed in the 

600 MPa wine could be explained by the lower mDP and %P values in this wine, since it 

has been shown that the decrease of mean molecular mass of proanthocyanidins decreases 

their ability to precipitate proteins (Chira et al., 2011a; McRae et al., 2010; Obreque-Slíer 

et al., 2010), as well the perception of astringency (Chira et al., 2011b; Kallithraka et al., 

2011; Vidal et al., 2002). Therefore, higher values of bitterness and persistence detected 

in this wine could be explained by the higher content of flavan-3-ol monomers (Table 

IV.1.4), since flavan-3-ol monomers are reported to be more bitter than astringent, being 

these compounds the main  responsible for wine bitterness (Chira et al., 2009; Prieur et 

al., 1994). 

The pressurized wines showed at 5 months of storage a slight lower aroma 

assessment, (Figure. IV1.3D) probably due to the higher cooked fruit aroma and lower 

fruity notes (Figure. IV1.3B), when compared with the unpressurized wine. However, all 

the wines presented a similar global assessment among them.  

In general, regarding sensorial analysis, it seems that the phenolic composition 

changes, namely in terms of mDP and proanthocyanidins content, due to the HHP 

treatments, modify significantly the taste of the wines, although without decreasing their 

final quality. In addition, it seems that the lower content of anthocyanins present in the 

pressurized wines (Table IV.1.2) did not alter the wine colour. According to the sensorial 

analysis, the pressurized wines are considered suitable for commercialization as table red 

wines. 
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IV.1.4 Concluding remarks 

This work demonstrated that high pressure treatments with pressures of 500 MPa 

during 5 min and 600 MPa during 20 min influence red wine phenolic composition, and 

led to alterations in the wine sensorial characteristics. Most of these effects are only 

noticeable after storage for 5 months, being more pronounced for the pressure treatment 

of 600 MPa for 20 min. These data indicate that the conditions of pressure treatment, such 

as “pressure” and “pressure holding time”, had significant influence in the phenolic 

composition of pressurized wines. 

The main changes that occur on the pressurized red wine phenolic composition, 

such as the lower content of monomeric anthocyanins, phenolic acids, and flavonols, are 

probably due to an increase of condensation reactions and oxidation of these compounds. 

At the same time, HHP influenced the polymerisation and cleavage reactions in which 

proanthocyanidins are involved. Therefore, the HHP treatments seems to promote 

reactions that are similar to those observed during wine aging, leading to aged-like wine 

characteristics that are perceived in a sensorial analysis.  
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IV.2.1 Overview 

Wine ageing is a common winemaking practice for improving wine quality and 

organoleptic characteristics (Gómez García-Carpintero et al., 2012; Tao et al., 2014). 

Aging in wood barrels leads to wine changes in colour, structure, and, especially, in 

aroma. This changes are mainly due to reactions favoured by oxygen that occur among 

phenolic compounds and extraction of several compounds from wood, increasing wine 

complexity and stability (Del Barrio-Galán et al., 2011, 2012). However, several 

disadvantages are appointed for barrel aging, such as the high cost of oak barrel, the large 

space held by barrels in the winery, the wine loss due to evaporation, and mainly the long 

aging time required (Ruiz de Adana et al., 2005; Tao et al., 2014). For these reasons 

alternative techniques have been developed to simplify the ageing process, allow 

obtaining more economic wines with similar or novel characteristics (Gómez García-

Carpintero et al., 2012). The alternatives include oak chips (Arapitsas et al., 2004; Chira 

and Teissedre, 2013a; del Alamo et al., 2008; García-Carpintero et al., 2011) and micro-

oxygenation with and without the presence of oak chips (Cano-López et al., 2010; 

Cejudo-Bastante et al., 2011a, 2011b; del Alamo et al., 2010; Pérez-Magariño et al., 

2009; Tao et al., 2014), that have been an extended practice in the USA, Australia, and 

Chile for several years, but it was not a legal practice in EU countries until 2006 

(“Commission Regulation (EC).” 2006). These two techniques were recognized as being 

cheaper than oak barrels aging techniques (Tao et al., 2014), and also to accelerate the 

condensation reactions between flavonoids mediated by acetaldehyde and the 
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cycloaddition reactions between pyruvic acid and anthocyanins (Cano-López et al., 2010; 

Cejudo-Bastante et al., 2011a, 2011b; Del Barrio-Galán et al., 2012). As result of these 

reactions, polymeric structures are formed that enhance wine sensorial characteristics 

such as colour stability and astringency (Cejudo-Bastante et al., 2011a; Tao et al., 2014).  

In Chapter IV it was shown that HHP can be potentially used to produce wine 

with aged-like characteristics, since the pressure treatment accelerated the polymerisation 

and cleavage reactions of phenolic compounds that are similar to those observed during 

wine aging, leading, for example, to lower astringency and higher bitterness degree. 

Therefore, HHP showed great potential for accelerating the wine aging process, 

shortening the aging time and lowering the costs for the winemaking industry, but also in 

producing wines with different physicochemical and sensorial characteristics. 

As the phenols compounds play an important role in wine colour and taste, that 

are important quality parameters of the wine, the aim of this work was to study the effect 

of a high hydrostatic pressure treatment in the phenolic composition of a red wine, 

comparing with the effect of different aging processes. For this purpose, a red wine was 

pressurized at 500 MPa for 5 min at 20 ºC and the impact of HHP treatment on the 

phenolic compounds composition was studied after 5 months of storage and compared 

with the effect of different aging processes, such oak barrels, oak chips and micro-

oxygenation with oak chips.  A wine without any treatment was also produced in order to 

be used as control.  
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IV.2.2 Materials and methods 

IV.2.2.1 Chemicals 

Milli-Q water (Millipore, Bedford, MA) was used in all this work. HPLC-grade 

methanol, acetonitrile and formic acid (Merck, Darmstadt, Germany) were used. 

Delphinidin-3-O-glucoside (≥95%), cyanidin-3-O-glucoside (≥96%), petunidin-3-O-

glucoside (≥95%), peonidin-3-O-glucoside (≥95%), malvidin-3-O-glucoside (≥95%), 

procyanidins B1 (≥80%), B2 (≥90%), B4 (≥80%) and C1 (≥80%), and phloroglucinol 

were purchased from Extrasynthese (Lyon, Genay-France). Gallic acid (≥99%), 

protocatechuic acid (≥90%), ferulic acid (≥90%), caftaric acid (≥95%), vanilic acid 

(≥95%), caffeic acid (≥95%), syringic acid (≥95%), p-hydroxybenzoic acid (≥98%), 

coutaric acid (≥90%) , p-coumaric acid (≥98%), sinapic acid (≥98%), chlorogenic acid 

(≥95%), myricetin (≥96%), quercetin (≥96%), kaempferol (≥90%), (+)-catechin (≥98%), 

and (−)-epicatechin (≥98%) were purchased from Sigma-Aldrich Co. (St. Louis, MO, 

USA). 

 

IV.2.2.2 Wine samples  

Red wine samples were produced by Dão Sul SA (Carregal do Sal, Portugal) 

using Tinta-Roriz (50%) and Touriga Nacional (50%) red grape variety from Dão 

Appellation from 2013 harvest. An industrial batch fermenter of 16,000 L was used.  

After malolactic fermentation, the wine was separated in 5 different batches. 

Figure IV.2.1 shows a schematic representation of the winemaking process followed in 

this study. In one batch, the wine was transferred to 250 mL polyethylene bottles, 

stoppered, and pressurized at 500 MPa during 5 min, at 20 °C, in a hydrostatic press 

(Hiperbaric 55, Hiperbaric, Burgos, Spain) of the department of Chemistry of the 

University of Aveiro, Portugal, giving origin to the sample “pressurized”. This 

equipment has a pressure vessel of 200 mm inner diameter and 2,000 mm length and a 

maximum operation pressure of 600 MPa. It is connected to a refrigeration unit (RMA 

KH 40 LT, Ferroli, San Bonifacio, Italy) that allows to control the temperature of the 

input water used as pressurizing fluid. Pressurizing water was used at a controlled 

temperature of 15 °C. Pressure build-up took place at a compression rate of about 600 

MPa/min (adiabatic heating caused an increase in temperature of about 2.0 °C), while 

decompression was nearly instantaneous. In two other batches, the wine was transferred 

and stored during 3 months in two inox vats of 5,000 L with 5 g/L of a mixture of fresh 
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and toasted oak chips (Bioeno, Portugal) in both vats. One of these batches was also 

submitted to 1 month of micro-oxygenation treatment (5 mL/L/months of O2) originating 

the sample “Oak chips + mO2”, while the other batch, without micro-oxygenation 

treatment, gave origin to the sample “Oak chips”. A lot of the original wine was stored 

for 3 months in four 225 L French oak barrels from the region of Allier (Vicard, France), 

giving origin to the sample “Oak barrels”. As polyethylene bottles shown to have a little 

impact on the sensorial properties of the wine (Ghidossi et al., 2012), all wine samples 

(pressurized and unpressurized) were bottled, after the different treatments, in 

polyethylene bottles. The wine with no treatment (control) was also bottled in the 

polyethylene bottles. All wines were stored for 5 months at 80% relative humidity in the 

absence of light at a temperature ranging between 10 and 15 °C. 

 

Figure IV.2.1.  Flow chart of winemaking and storage process followed in this study for the 

production of the five wine samples. 

 

IV.2.2.3 Oenological parameters determination 

The ethanol content, titratable acidity, volatile acidity, pH, reducing sugars, free 

and bound SO2, HCl, and gelatine indexes were determined for each wine samples 

according to the methods described by the Organization International de la Vigne et du 

Vin (OIV 1990; Ough and Amerine, 1988; Ribéreau-Gayon et al., 2006). All analyses 

were carried out in triplicate. 
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IV.2.2.4 Colour determination 

The colour intensity (CI) was calculated as the sum of the absorbance values at 

420, 520, and 620 nm and the colour tonality was determined by the ratio between the 

absorbance at 420 and 520 nm. Absorbance measurements were recorded on an Uvikon 

922 spectrophotometer (Kontron Instruments, Saint Quentin en Yvelines, France). The 

contribution of each coloration (yellow, red, and blue) to the overall colour of wine was 

calculated by dividing the absorbance at 420 nm (Ye%), 520 nm (Rd%) and 620 nm 

(Bl%) by the colour intensity (CI). The proportion of red coloration produced by free and 

bound anthocyanins under their flavylium cations form (dA%) was calculated using the 

following formula (Kelebek et al., 2010): 

 

dA% = [1 −
Abs420 +  Abs620

2 ×  Abs520
] × 100 

 

IV.2.2.5 Phenolic Composition by spectrophotometric methods 

The total phenolic (TP) content of the samples was determined by the Folin–

Ciocalteu method (Singleton 1985). The samples were appropriately diluted in a solution 

of 10% ethanol. The calibration curve was performed using gallic acid as standard in a 

concentration range between 50 and 500 mg/L. The results were expressed as gallic acid 

equivalents. 

Total proanthocyanidins were estimated based on the Bate–Smith reaction, in 

which the proanthocyanidins in acid medium release anthocyanidins by heating (Chira et 

al., 2011a). The wines were diluted to 1:50 in a 10% ethanol solution. One millilitre of 

the sample was added to 0.5 mL of water and 1.5 mL of 12 M HCl and the mixture was 

homogenised. Two tubes for each sample were prepared: one was heated for 30 min in 

boiled water (sample A), while the other was maintained at room temperature (sample B). 

To each tube, 0.25 mL of 95% ethanol were added. The absorbance at 550 nm was read 

through a 10 mm optical path. Total proanthocyanidins were calculated as 19.33 × 

(Abs550nmA - Abs550nmB).  

Anthocyanins (Anth) were determined using the SO2 bleaching method (Chira et 

al., 2011b). A solution ”A” was prepared as follows: 1 mL of wine, 1 mL of 0.1% HCl in 

ethanol and 20 mL of 2% HCl. Blank (B) was prepared as follows: 2 mL of solution ”A” 

and 0.8 mL of water. Sample (S) was prepared by adding 2 mL of solution ”A”, 0.4 mL 

of water and 0.4 mL of HNaSO3 (15% w/v). After 20 min at room temperature, the 
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absorbance at 520 nm was measured through a 10 mm optical path. Anth were calculated 

as 875 × (Abs520nmB - Abs520nmS).  

The proportion of polymerized pigments (%PP) was estimated according to 

Ribereau-Gayon and Stonestreet (1965). The assay consists in discolouring the free 

fraction of anthocyanins with sodium metabisulphite (Na2S2O5). For this, 1 mL of wine 

sample was placed in two test tubes with 9 mL of synthetic wine solution (10% ethanol 

and 5 g/L of tartaric acid at pH 3.2). In one of the tubes (tube M), 40 µL of 20% sodium 

metabisulphite was added, and in the other tube (tube C) 40 µL of distilled water was 

added. The absorbance at 420 and 520 nm were measured on each one of the tubes and 

calculation of the percentage of polymerized pigments was performed using the formula:  

 

%PP = [
(Abs420𝑀  +  Abs520𝑀)

(Abs420𝐶  +  Abs520𝐶)
] × 100 

 

IV.2.2.6 Phenolic compounds composition by HPLC-MS 

Wine samples were filtered through a 0.45 µm pore size membrane filter before 

injection. Analysis was performed on a Thermo-Finnigan Accela HPLC system 

consisting of an autosampler (Accela autosampler), a pump (Accela 600 Pump), and a 

diode array detector (Accela PDA Detector) coupled to a Finnigan Xcalibur data system. 

Separation was performed on a reversed phase Agilent Nucleosil C18 (4.6 mm × 250 mm, 

5 μm) column. Triplicate analyses were performed for each sample. 

For the monomeric anthocyanins analysis, the eluents used, water/formic acid 

(99:1, v/v) (solvent A) and acetonitrile/formic acid (99:1, v/v) (solvent B), were applied 

at a flow rate of 1 mL/min as follows: 10–35% B linear from 0–25 min, 35–100% B linear 

from 25–26 min, 100% B isocratic from 26–28 min, 100–10% B linear from 28–29 min, 

with the re-equilibration of the column from 29–35 min under the initial gradient 

conditions. Detection was conducted at 520 nm. Quantification was performed by a 

comparison to malvidin-3-O-glucoside calibration curve. 

For phenolic acids and flavonols analysis the mobile phase consisted of two 

solvents: Solvent A, water/formic acid (95:5; v/v) and Solvent B, acetonitrile/solvent A 

(60:40; v/v). Phenolic compounds were eluted under the following conditions: 1 

mL/min flow rate and the temperature was set at 25 °C, isocratic conditions from 0 to 15 

min with 100% A, gradient conditions from 0% to 20% B in 30 min, from 20% to 50% 
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B in 40 min, and from 50% to 100% B in 5 min, isocratic conditions with 100% B during 

10 min, followed by washing and reconditioning the column. The ultraviolet-visible 

spectra (200 to 600 nm) were recorded for all peaks. The identification of phenolic 

compounds was performed by comparison with their retention times and UV-Vis spectra 

of authentic standards and also it was confirmed by mass spectrometry analysis. 

Quantification was performed using external calibration curves using gallic acid, caffeic 

acid, and kaempferol for benzoic acids, cinnamic acids, and flavonols quantification, 

respectively. The standards concentration ranges were those normally present in wines 

(approximately 0.2–200 mg/L) and the obtained regression coefficients (r2) were above 

0.992 in all cases. 

 

 

IV.2.2.7 HPLC-UV-MS/MS analysis of pyranoanthocyanins 

The pyranoanthocyanins present in the wine samples were analysed by HPLC-

UV-MS/MS using the method described by Pechamat et al. (2014). These analyses were 

performed on a Thermo-Finnigan Surveyor HPLC-UV system composed of an UV−Vis 

detector (Surveyor PDA Plus), an autosampler (Surveyor autosampler Plus), and a 

quaternary pump system (Surveyor LC pump Plus), controlled by a Xcalibur data 

treatment system. These analyses were carried out on a 250 × 4.6 mm, 5 μm Lichrospher 

100 RP 18 column. The solvents used for the gradient were solvent A, water with 0.5% 

of formic acid, and solvent B, acetonitrile with 0.5% formic acid. The gradient used was 

as follows: from 100 to 85% of A in 5 min, from 85 to 70% of A in 30 min, from 70 to 

0% of A in 1 min, then 0% of A during 4 min. The flow rate was set at 1 mL/min, and the 

temperature was fixed at 12 °C. The wavelengths used were 280 and 520 nm. This HPLC-

UV system was also coupled to a Thermo-Finnigan LCQ Advantage spectrometer 

equipped with an electrospray ionization source and an ion trap mass analyzer. The 

electrospray ionization mass spectrometry detection was performed in positive mode with 

the following optimized parameters: capillary temperature 300 °C, capillary voltage 5 V, 

nebulizer gas flow 1.75 L/min, desolvation gas flow 1 L/min, and spray voltage 5 kV. 

The pyranoanthocyanins were identified according to their mass spectra and 

fragmentation (Flamini 2013; Pechamat et al. 2014; Sánchez-Ilárduya et al. 2014). The 

pigments were quantified using pure malvidin-3-O-glucoside as standard and chlorogenic 

acid as internal standard. The calibration curve was accomplished by injecting solutions 
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of malvidin-3-O-glucoside ranging from 1 to 256 mg/L with 50 mg/L of chlorogenic acid. 

The response factor was established by plotting the concentrations ratios versus the peak 

area ratios of malvidin-3-O-glucoside ion (i.e., m/z 493) to the internal standard ion (i.e., 

m/z 355). The R2 obtained was 0.9998. The quantification of the pyranoanthocyanins-

procyanidin dimers was performed using their molecular ion: vitisin A [M]+ = 561, vitisin 

B [M]+ = 517, Pyranomalvidin-3-O-glucoside-phenol [M]+ = 609, Pyranomalvidin-3-O-

glucoside-catechin [M]+ = 805, and Pyranomalvidin-3-O-glucoside-catechin dimer [M]+ 

= 1093 (Flamini 2013; Pechamat et al. 2014; Sánchez-Ilárduya et al. 2014). 

 

IV.2.2.8 HPLC-UV-Fluor/MS analysis of monomeric and oligomeric flavan-3-ols and 

mean degree of polymerisation (mDP) 

The equipment used was a Thermo-Finnigan Surveyor HPLC system formed by 

UV–Vis detector (Surveyor PDA Plus), an autosampler (Surveyor autosampler Plus) and 

a quaternary pump (Surveyor LC pump Plus) controlled by Xcalibur data treatment 

system. This HPLC System was also coupled to a Thermo-Finnigan LCQ Advantage 

spectrometer equipped with an ion trap mass analyser. 

The separation of monomeric and oligomeric flavan-3-ols was performed on a 

reversed phase Agilent Nucleosil C18 (250 mm × 4 mm, 5 μm). Water/formic acid 

(solvent A) (99:1, v/v) and acetonitrile/formic acid (99:1, v/v) (solvent B) were used at a 

flow rate of 1 mL/min. The gradient conditions were: 3% B isocratic from 0–3 min, 3–

5% B linear from 3–14 min, 5–10% B linear from 14–22 min, 10–14% B linear from 22–

26 min, 14–25% B linear from 26–40 min, 25– 100% B linear from 40–41 min, 100% B 

isocratic from 41–43 min, and 100–3% B linear from 43–44 min, with re-equilibration of 

the column from 44–50 min under the initial gradient conditions. Detection was 

performed with a fluorescence detector set at 280 nm excitation wavelength and 320 nm 

emission wavelength with medium fluorescence intensity; as well as a diode array 

detector set at 280 nm. Identification of monomeric and oligomeric flavan-3-ols was 

carried out by comparison to the retention time of external standards ((+)-catechin, (-)-

epicatechin, and procyanidins B1, B2, B4 and C1) and also confirmed by HPLC-MS 

analysis. Quantification was performed using external standard calibration curves. 

For the determination of mean degree of polymerization (mDP), a solid-phase 

extraction (SPE) step was used to purify the wines. Each sample was diluted 3 times and 

applied (10 mL) on a LC18 (octadecyl bonded, endcapped silica) cartridge (Supelco, St 
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Quentin Fallavier, France). The column was washed with 50 mL of water and eluted with 

50 mL of methanol. The methanol fraction was dried under reduced pressure, redissolved 

in 2 mL of methanol and used for mDP determination. The proanthocyanidin mDP 

concentrations were quantified by phloroglucinolysis (Drinkine et al., 2007). Reversed-

phase HPLC analysis of the products formed allows determination of the structural 

composition of proanthocyanidins, which are characterised by the nature of their 

constitutive extension units (released as flavan-3-ols phloroglucinol adducts) and 

terminal units (released as flavan-3-ols). These analyses were carried out in triplicate on 

a column Xterra RP18 (100 mm × 4.6 mm, 3.5 μm, Waters, France). The elution 

conditions were: solvent A, water/acetic acid (99:1, v/v); solvent B, methanol. The elution 

gradient for the analysis of the reaction mixture was as follows: 5% B for 25 min, a linear 

gradient from 5 to 32% B in 45 min, a linear gradient from 30 to 100% B in 2 min. The 

column was then washed with 100% B for 5 min and re-equilibrated with 5% B for 10 

min. To calculate the apparent mDP, the sum of all subunits (flavan-3-ol monomer and 

phloroglucinol adducts, in molar basis) was divided by the sum of all flavan-3-ol 

monomers. To calculate the percentage of prodelphinidins (%P) the sum of (-)-

epigallocatechin (EGC) subunits [(∑Pterminal units (EGC) concentrations) + 

(∑Pextension units (EGC-P) concentrations)] was divided by the sum of all flavan-3-ol. 

 

IV.2.2.9 Sensorial analysis 

A blind tasting test was done to the wines after 5 months of storage by 25 expert 

panellists from the Oenology Department of the University of Bordeaux. Wines (30 mL) 

were presented in transparent glasses coded with a three-digit random code and 

distributed in a completely randomized order. In each session a descriptive analysis of 

each wine was conducted.  

All tasters were informed that the wines had different treatments, but the panellists 

did not have any details of the experimental design. Each panellist was presented with the 

five samples: control, pressurized, oak chips, oak barrels and oak chips + mO2. Wines 

were evaluated on a predefined score sheet (intensity scale from 0 to 6) that included 23 

descriptors in three categories: colour, aroma, and taste attributes. Also, a global 

evaluation was performed on a scale from 0 to 10 in 4 categories: colour, aroma, taste, 

and global attributes. Averages of the scores for each descriptor were calculated. 
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IV.2.2.10 Statistical analysis  

Statistical data analysis was performed using Analysis of Variance (ANOVA). 

Tukey’s HSD Test was used for the data as comparison test when samples analyses 

showed significant differences after ANOVA (p<0.05).  

 

IV.2.3 Results and discussion 

IV.2.3.1 Wines physicochemical characteristics 

The physicochemical characteristics of the wine samples at the beginning of 

storage and after 5 months of bottle aging are summarized in Table IV.2.1. At the 

beginning of storage no significant differences among the wine samples were observed 

for all the parameters analysed (p<0.05), indicating that the pressure treatment did not 

immediately affect the physicochemical characteristics of the wine. These results are in 

accordance with previous studies that showed that pressure treatments around 300 to 600 

MPa for few minutes have no impact in red wine properties at the beginning of storage 

(Mok et al., 2006, Tao et al., 2012, Chapter II.1, II2).  

After 5 months of storage, the wine samples presented no significant differences 

(p>0.05) among them in terms of density, ethanol content, titratable and volatile acidity, 

reducing sugar content, and lactic and tartaric acid content (Table IV.2.1). Their 

composition were in accordance with previous studies carried out on Touriga Nacional 

and Tinta Roriz wines (Jordão et al., 2012; Rodrigues et al., 2012; 2013). In terms of SO2 

content, the unpressurized wines presented around 40 and 45% less free and total SO2, 

respectively, when compared with the beginning of storage. The pressurized wine 

presented a more pronounced decrease of SO2 content during storage (54 and 51% less 

content of both free and total SO2, respectively). These results are in accordance with 

previous study that show the decrease of sulphur dioxide content with pressure treatments 

in wine during storage (unpublished results). Therefore, HHP seems to alter the 

equilibrium of the SO2 reactions in wine during storage, by promotion of the reaction of 

free SO2 with the radicals formed in the pressure treatments (Bolumar et al., 2012b; Tao 

et al., 2012), leading to a more pronounced decrease of sulphur dioxide content in 

pressurised wine during storage. The wine samples treated with wood (Oak chips, Oak 

barrels, and Oak chips + mO2) presented a free and total SO2 content similar to the control 
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sample, showing that, contrary to the high pressure, these treatments did not alter 

significantly the content of SO2 in wine. 

A red wine with a satisfactory astringency for the consumer should have a HCl 

index (tannin polymerization level) ranging between 10 and 30 and a gelatin index (tannin 

reactivity toward proteins) between 40 and 60 (Ribéreau-Gayon et al., 2006). All the wine 

samples presented HCl and gelatin indexes within the appropriate ranges at the beginning 

and after 5 months of storage. Nevertheless, after 5 months of storage, the four treated 

wines presented slightly higher values (p<0.05), more pronounced for the Oak chips + 

mO2 wines, when compared with the control, as well as a higher tannin content (Table 

IV.2.1). These results showed that pressurized wines, like the wines treated with wood, 

presented higher tannin polymerization level than the control. In terms of percentage of 

pigments polymerization, all the wines treated with aging processes presented 5 to 7% 

more polymerization when compared with the untreated wine. This higher percentage is 

in accordance with the lower values of colour intensity observed (Table IV.2.1), since it 

was reported that formation of polymeric pigments contributes to the loss in colour 

intensity (Monagas et al., 2006). These results showed that the pressure treatment, addition 

of oak chips with and without microoxygenation process, and storage in oak barrels had a similar 

impact on the physicochemical properties of the wine. All the aging treatments seem to 

increase the condensation reactions of phenolic compounds, resulting in compounds with higher 

polymerization degree along the wine aging. 
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Table IV.2.1 Physicochemical analysis of the different wine samples at the beginning and after 5 months of storage 

Analysis Beginning of storage  5 months 

Control Pressurized  Control Pressurized Oak chips Oak barrels Oak chips + mO2 

Density (20 ◦C/20 ◦C) 0.9907 ±0.00 0.9906 ± 0.00  0.9915 ± 0.00 0.9915 ± 0.00 0.9914 ± 0.00 0.9912 ± 0.00 0.9914 ± 0.00 

Ethanol (v/v; %) 13.67 ± 0.01 13.66 ± 0.00  13.55 ± 0.00 13.60 ± 0.00 13.66 ± 0.01 13.80 ± 0.01 13.66 ± 0.00 

Titratable aciditya (g L−1) 2.80 ± 0.00 2.75 ± 0.00  3.03 ± 0.00 3.11 ± 0.00 3.04 ± 0.01 3.05 ±0.00 3.04 ± 0.01 

pH 3.59 ± 0.00 3.58 ± 0.01  3.64 ± 0.01 3.62 ± 0.00 3.63 ± 0.00 3.63 ± 0.01 3.64 ± 0.00 

Volatile acidityb (g L−1) 0.40 ± 0.01 0.38 ± 0.02  0.43 ±0.01 0.41 ±0.01 0.39 ±0.01 0.45±0.01 0.39 ±0.01 

Reducing sugar (g L−1) 1.3 ± 0.1 1.3 ± 0.1  1.5 ± 0.0 1.5 ± 0.0 1.5 ± 0.1 1.6 ± 0.1 1.5 ± 0.0 

Free SO2 (mg L−1) 34.33 ± 0.58 33.33 ± 1.52  21.33 ± 0.58 15.33 ± 0.58 22.67 ± 0.58 21.00 ± 1.00 21.33 ± 0.58 

Total SO2 (mg L−1) 74.67 ± 0.58 74.33 ± 1.15  45.67 ± 0.58 36.67 ± 1.52 56.33 ± 0.58 43.33 ± 0.58 45.33 ± 0.58 

Lactic acid (g L−1) 1.06 ± 0.01 1.01 ± 0.02  1.01 ± 0.00 1.04 ± 0.01 1.02 ± 0.01 1.01 ± 0.02 1.01 ± 0.00 

Tartaric acid (g L−1) 1.33 ± 0.01 1.19 ± 0.02  2.08 ± 0.00 2.22 ± 0.03 2.10 ± 0.00 1.94 ± 0.00 2.10 ± 0.02 

HCl index 28.8 ± 0.04 26.28 ± 0.93  16.66 ± 0.51 19.54 ± 0.32 21.13 ± 0.29 18.91 ± 0.40 23.68 ± 0.26 

Gelatin index 55.06 ± 0.65 53.83 ± 0.47  44.90 ± 0.21 54.00 ± 0.15 56.85 ± 0.19 54.56 ± 0.56 58.47 ± 1.36 

Tannin (g L−1) 3.38 ± 0.12 3.31 ± 0.26  3.69 ± 0.01 3.95 ± 0.02 3.86 ± 0.02 3.98 ± 0.3 3.96 ± 0.14 

Phenolic compoundsc (mg/L) 3454.33 ± 31.82 3681.82 ± 200.68  3423.70 ± 42.67 3416.68 ± 89.00 3418.08 ± 145.10 3468.63 ± 147.76 3373.14 ± 240.57 

Anthocyaninsd (mg/L) 519.98 ± 4.85 509.42 ± 10.72  443.53 ± 6.03 423.50 ± 7.88 458.76 ± 7.28 448.23 ± 9.68 448.12 ± 4.59 

Pigments polymerization (%) 58.15 ± 0.21 58.47 ± 0.08  61.68 ± 0.59 68.44 ± 0.74 66.32 ± 0.75 67.34 ± 0.99 69.13 ± 0.94 

Colour intensity 0.92 ± 0.01 1.11 ± 0.03  1.11 ± 0.01 0.93 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.88 ±0.0 

Colour tonality 0.62 ± 0.01 0.67 ± 0.02  0.64 ± 0.00 0.64 ± 0.00 0.66 ± 0.01 0.66 ± 0.01 0.68 ± 0.01 

Ye% 34.10 ± 0.02 35.25± 0.90  34.84 ± 0.02 34.74 ± 0.01 35.28 ± 0.02 35.47 ± 0.02 35.83 ± 0.02 

Rd% 54.80 ± 0.02 52.77 ± 1.33  54.49 ± 0.02 54.42 ± 0.01 53.62 ± 0.03 53.77 ± 0.02 53.04 ± 0.03 

Bl% 11.09 ± 0.01 11.97 ± 2.22  10.66 ± 0.01 10.84 ± 0.01 11.10 ± 0.01 10.76 ± 0.01 11.12 ± 0.01 

dA% 58.77 ± 0.03 55.22 ± 2.42  58.25 ± 0.04 58.13 ± 0.02 56.75 ± 0.05 57.02 ± 0.04 55.74 ± 0.05 

All data are expressed as mean value ± standard deviation (n = 3); a Expressed as tartaric acid equivalent; b expressed as acetic acid equivalent; c expressed as mg of gallic acid equivalents; d 

expressed as mg of malvidin 3-glucoside equivalents. 

http://www.brianmac.co.uk/lactic.htm
http://en.wikipedia.org/wiki/Tartaric_acid
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IV.2.3.2 Effect of HHP treatments on the wine phenolic compounds composition 

Monomeric anthocyanin and pyranoanthocyanins composition  

Nine monomeric anthocyanins (MA), including five glucosides, two acetyl 

glucosides, and two coumaroyl glucosides, and five pyranoanthocyanins, were identified 

and quantified in the wine samples. Molecular ion and fragmentation information, 

together with λmax values for the identified pyranoanthocyanins are present in Table 

IV.2.2. Pyranoanthocyanins are formed by a cycloaddition reaction of anthocyanins in 

the flavylium form with different compounds, giving rise to the formation of a new 

pyranic ring (de Freitas and Mateus, 2011; Oliveira et al., 2010; Sánchez-Ilárduya et al., 

2014). The formation of these anthocyanin derivatives could be the result of a 

nucleophilic cycloaddition reaction involving the C4 and the hydroxyl group at C5 of the 

anthocyanin and an ethylene of the other compound (Sánchez-Ilárduya et al., 2014). 

Pyranoanthocyanins were shown to arise mainly from the association of anthocyanins, 

such as malvidin 3-O-glucoside, with pyruvic acid, acetaldehyde, hydroxycinnamic acids 

or their decarboxylation products, and vinylflavanols during wine storage (Carvalho et 

al., 2010; Marquez et al. 2013; Monagas et al., 2006; Oliveira et al., 2014; Rentzsch et 

al., 2010; Sánchez-Ilárduya et al., 2014), resulting in the structures showed in Figure 

IV.2.2. 

  

Table IV.2.2. Mass spectral details and UV data of pyranoanthocyanins identified in the wines 

 

Pyranoanthocyanins [M]+ 

MS2 

fragments 

(m/z) 

MS3 

fragments 

(m/z) 

λmax 

(nm) 
Ref a 

Vitisin A 561 399 - 513 a, b 

Vitisin B 517 355 - 490 a, b 

Pyranomalvidin-3-O-glucoside-phenol 609 447 - 503 a, b 

Pyranomalvidin-3-O-glucoside-catechin 805 643 491 506 a, b 

Pyranomalvidin-3-O-glucoside-catechin 

dimer 
1093 931,803 641 513 a, b, c 

a(a) Flamini 2013; (b) Sánchez-Ilárduya et al., 2014; (c) Pechamat et al., 2014,  
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Figure IV.2.2. Structures of pyranoanthocyanins identified and quantified in all wine samples. 

 

All samples showed during storage a decrease in the individual anthocyanin content and, 

consequently, a decrease in total MA content (26% to 34% less), when compared with 

the beginning of storage (Table IV.2.3). This decrease was mainly due to the high 

decrease of malvidin 3-O-glucoside content, the MA present in higher content in red 

wines. Therefore, this decrease should be mainly due to MA participation in numerous 

condensation reactions, forming pyranoanthocyanins, as well as in hydrolytic and other 

degradation reactions (Monagas et al., 2006; Santos-Buelga et al., 1999) in a minor 

extent. In fact, the content of pyranoanthocyanins of the pressurized, Oak chips, Oak 

barrels, and Oak chips + mO2 wines increased significantly (p>0.05) during wine storage  
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Table IV.2.3 Monomeric anthocyanins and pyranoanthocyanins content of the wine samples at the beginning and after 5 months of storage 

Compounds (mg/L) 

Beginning of storage  5 months 

Control Pressurized  Control Pressurized Oak chips Oak barrels 
Oak chips + 

mO2 

Monomeric anthocyanins*         

Delphinidin-3-O-glucoside 16.04 ± 0.17a 16.62 ± 0.39a  12.00 ± 0.14bc 11.63 ± 0.16c 12.44 ± 0.15b 11.87 ± 0.08c 12.04 ± 0.07bc 

Cyanidin-3-O-glucoside 2.46 ± 0.03a 2.48 ±0.09a  2.39 ± 0.07a 2.50 ± 0.26a 2.44 ± 0.05a 2.39 ± 0.04a 2.37 ± 0.05a 

Petunidin-3-O-glucoside 21.01 ± 0.05a 21.94 ± 0.19b  15.76 ± 0.07c 15.06 ± 0.52c 16.26 ± 0.02d 15.43 ± 0.07c 15.58 ± 0.17c 

Peonidin-3-O-glucoside 7.88 ± 0.26a 8.15 ± 0.30a  6.57 ± 0.16b 6.35 ± 0.31b 6.74 ± 0.25b 6.23 ± 0.08b 6.26 ± 0.20b 

Malvidin-3-O-glucoside 160.49 ± 0.79a 162.20 ± 0.67a  111.81 ± 0.20b 100.82 ± 1.92c 118.41 ± 0.16d 110.37 ± 0.26b 111.26 ± 0.35b 

Peonidin-3-O-(6-acetyl)-glucoside 2.82 ± 0.10ad 2.80 ± 0.18ab  2.50 ± 0.08c 2.52 ± 0.04bc 2.56 ± 0.06bcd 2.47 ± 0.06c 2.48 ± 0.11c 

Malvidin- 3-O-(6-acetyl)-glucoside 24.17 ± 0.35a 24.57 ± 0.26a  17.16 ± 0.23b 16.20 ± 0.23c 18.39 ± 0.05d 16.97 ±0.02b 17.24 ± 0.03b 

Peonidin-3-O-(6-p-coumaroyl)-

glucoside 
2.83 ± 0.06a 2.84 ± 0.11a  2.49 ± 0.01b 2.43 ± 0.02b 2.50 ± 0.02b 2.39 ± 0.03b 2.39 ± 0.01b 

Malvidin-3-O-(6-p-coumaroyl)-

glucoside 
14.31 ± 0.15a 14.78 ± 0.20b  9.62 ± 0.05c 8.97 ± 0.13d 10.05 ± 0.03e 9.44 ± 0.06cf 9.19 ± 0.07df 

Total 252.01 ± 1.30a 256.38 ± 1.07b  180.30 ± 0.42c 166.49 ± 1.90d 189.79 ± 0.27e 177.55 ± 0.26c 178.82 ± 0.82c 

Pyranoanthocyanins**         

Vitisin A 16.74 ± 1.28a 22.98 ± 0.90b  17.05 ± 0.75a 21.41 ± 0.28b 18.17  ± 0.08a 18.06 ± 0.41a 21.96 ± 0.18b 

Vitisin B 6.68 ± 0.64a 6.39 ± 0.73a  3.55 ± 0.05b 5.02 ± 0.14c 5.04 ± 0.09c 5.18 ± 0.37c 3.69 ± 0.07b 

Pyranomalvidin-3-O-glucoside-

phenol 
10.26 ± 1.44ab 8.97 ± 0.42a  9.53 ± 0.74a 8.06 ±0.91ab 7.83 ± 0.25b 7.47 ± 0.58b 7.99 ± 0.51ab 

Pyranomalvidin-3-O-glucoside-

catechin 
0.82 ± 0.06a 0.76 ± 0.02a  1.15 ± 0.29b 3.08 ± 0.81c 2.69 ± 0.80c 3.51 ± 0.88cd 4.68 ± 0.38d 

Pyranomalvidin-3-O-glucoside-

catechin dimer 
1.55 ± 0.32a 1.93 ± 0.58a  5.10 ± 0.99b 8.97 ± 0.74c 6.09 ± 0.69b 7.37 ± 1.41bc 9.36 ± 0.77c 

Total 36.04 ± 2.55a 41.03 ± 0.33b  36.38 ± 1.25a 46.53 ± 0.83c 39.82 ± 0.70b 41.58 ± 0.45b 47.69 ± 0.95c 

* Data expressed as mean value ± standard deviation (n = 3); ** Data expressed as mean value ± standard deviation (n = 4). In the same line, different letters indicate significant differences 

according to Tukey test (p < 0.05).  
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(up to 24 % more in the case of Oak chips + mO2), indicating a higher polymerization 

rate of monomeric anthocyanins. These results are in agreement with the pigments 

polymerization analyses (Table IV.2.1), since the wines treated by aging processes 

presented higher proportion of polymerized pigments (%PP) when compared with the 

control wine. 

After 5 months of storage, the pressurized wine presented a lower content of 

malvidin-3-O-glucoside (8% less), malvidin-3-O-(6-acetyl)-glucoside (7% less) and 

malvidin-3-O-(6-p-coumaroyl)-glucoside (6% less), and consequently 8% less of total 

MA content when compared with the control sample. In terms of pyranoanthocyanins 

content, the pressurized wine presented a higher content of vitisins A and B (20% and 

29% more, respectively), and pyranomalvidin-3-O-glucoside-catechin and 

pyranomalvidin-3-O-glucoside-catechin dimer (43% and 62% more, respectively) than 

the control sample. These results are in line with the results reported in Chapter IV.1, 

which showed a lower anthocyanin content of red wine treated with HHP, due to the 

acceleration of condensation reactions during the wine storage period involving 

monomeric anthocyanins with other phenolic compounds.  

Comparing the different aging processes, as can be observed in Table IV.2.2, the 

pressurized sample presented the lower content of monomeric anthocyanins (p<0.05). In 

addition, the pressurized sample presented a higher content of pyranoanthocyanins, than 

the Oak chips and Oak barrels samples (14% and 11% higher, respectively), and no 

significant different value when compared with Oak chips + mO2 sample. These results 

indicate that the HHP treatment and the addition of oak chips to the wine with 

microoxygenation process were the treatments that accelerated more the polymerization 

of the monomeric anthocyanins during storage. These results are in line with other  results 

reported in the literature that showed that HHP treatments (Tao et al., 2012) and 

microoxygenation process (Cano-López et al. 2010; Cejudo-Bastante et al. 2011a, 2011b; 

Gómez-Plaza and Cano-López, 2011; Pechamat et al., 2014) can be effective procedures 

for wine aging acceleration.  

 

Phenolic acids and flavonols composition  

Thirteen different phenolic acids (Table IV.2.4) and three flavonols (Table IV.2.5) 

were identified and quantified in the different wine samples. At the beginning of the 

storage, the wine samples did not show any statistical difference on phenolic acids and 

flavonols content (p<0.05). However, after 5 months of storage, different evolution of 
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these compounds were noticed (18% and 25% less content for the case of phenolic acids 

and flavonols, respectively), as seen previously for the anthocyanins, although to a lower 

extent.  

 

Table IV.2.4. Phenolic acids content of the wine samples at the beginning and after 5 months of 

storage 

Phenolic acids 

(mg/L) 

Beginning of storage  5 months 

Control Pressurized  Control Pressurized 
Oak 

chips 

Oak 

barrels 

Oak chips 

+ mO2 

Gallic acid 
57.01 ± 

0.29a 

56.07 ± 

0.30a  
57.02 ± 

2.39a 

47.87 ± 

3.02b 

76.85 ± 

0.07c 

78.90 ± 

0.56d 

78.95 ± 

0.13d 

Protocatechuic acid 
2.24 ± 

0.05a 

2.19 ± 

0.09ab  
1.78 ± 

0.09bc 

1.91 ± 

0.06bd 

1.56 ± 

0.06c 

2.06 ± 

0.07d 

1.62 ± 

0.18c 

Caftaric acid 
116.39 ± 

1.39a 

117.65 ± 

1.72a  
102.48 ± 

4.76b  

93.27 ± 

1.68c 

94.58 ± 

1.00c 

99.09 ± 

1.65b 

93.66 ± 

2.00c 

Vanilic acid 
9.04 ± 

0.21a 8.89 ± 0.07a  
8.31 ± 

0.50ac 

7.52 ± 

0.10bc 

7.63 ± 

0.08bc 

7.62 ± 

0.08bc 

7.35 ± 

0.11b 

Syringic acid 
5.13 ± 

0.05a 4.87 ± 0.05a  
3.87 ± 

0.03b 4.35 ± 0.10c 4.21 ± 

0.12c 

3.91 ± 

0.12bc 

3.63 ± 

0.36b 

p-Hydroxybenzoic 

acid 

3.73 ± 

0.12a 3.86 ± 0.05a  
1.62 ± 

0.17b  
1.32 ± 0.08b 1.51 ± 

0.04b 

1.58 ± 

0.07b 

1.57 ± 

0.02b 

Coutaric acid 
13.37 ± 

0.12a 

13.44 ± 

0.05a  
12.23 ± 

0.12b 

11.73 ± 

0.33bc 

11.84 ± 

0.06bc 

11.50 ± 

0.18c 

11.26 ± 

0.40c 

Caffeic acid 
2.47 ± 

0.05a 2.48 ± 0.03a  
2.54 ± 

0.03ac 3.18 ± 0.04b 2.80 ± 

0.07c 

3.04 ± 

0.02b 

2.87 ± 

0.15c  

Chlorogenic acid 
0.48 ± 

0.06a 0.42 ± 0.02a  
0.37 ± 

0.01a 0.23 ± 0.04b 0.39 ± 

0.03a 

0.40 ± 

0.02a 

0.38 ± 

0.02a 

p-Coumaric acid 
0.48 ± 

0.05a 0.48 ± 0.02a  
0.46 ± 

0.10b 0.27 ± 0.01a 0.46 ± 

0.04a 

0.32 ± 

0.02b 

0.41 ± 

0.03a 

Ferulic acid 
0.16 ± 

0.03a 0.16 ± 0.02a  
0.25b ± 

0.04 

0.15 ± 

0.03ab 

0.14 ± 

0.02a 

0.15 ± 

0.02a 

0.17 ± 

0.04ab 

Sinapic acid 
1.50 ± 

0.05a 1.43 ± 0.01a  
2.10 ± 

0.20b 1.61 ± 0.01c 1.83 ± 

0.05c 

1.66 ± 

0.02c 

1.61 ± 

0.02c 

Ellagic acid - -  - - 
1.09 ± 

0.04a 

0.33 ± 

0.03b 1.41± 0.02c 

Total 
211.99 ± 

1.41a 

211.94 ± 

1.84a  
193.24± 

4.73b 

173.42 ± 

0.95c 

204.88 ± 

1.21d 

210.54 ± 

2.19a 

204.90 ± 

2.52d 

All data are expressed as mean value ± standard deviation (n = 3). In the same line, different letters indicate significant 

differences according to a Tukey test (p < 0.05). 

 

 

 After 5 months of storage, the pressurised wines presented around 10% less of 

phenolic acids content when compared with the control (Table IV.2.4). This behaviour 

was mainly due to the lower content of gallic (16%) and caftaric acids (19%), the most 
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dominant phenolic acids quantified in the pressurized wine. The Oak chips, Oak barrels 

and Oak chips + mO2 samples showed, after 5 months of storage, higher content of 

phenolic acids when compared with the pressurized and control wines, mainly due to the 

higher content of gallic acid and the presence of ellagic acid. In fact, it is known that 

hydrolysable tannins, formed by gallic and/or ellagic acids esterified to glucose are 

extracted from the wood to the wine due to the contact with the wood and by action of 

esterases, releasing gallic and ellagic acids into the wine (Chira and Teissedre, 2013b; 

Jordão et al., 2005, 2008; Vázquez et al., 2010). The content of gallic acid was higher 

than that of ellagic acid since the wood utilized in this work was French oak, that is 

generally richer in gallic acids than the American oak (Cabrita et al., 2011).  

 

Table IV.2.5. Flavonols content of the wine samples at the beginning and after 5 months of 

storage 

 

In relation to the flavonol content (Table IV.2.5), the pressurized wine presented, 

after 5 months of storage, up to 34% and 19% lower content of myricetin and quercetin, 

respectively, when compared with the other four wines. The kaempferol content was 31% 

lower in the pressurized wine when compared with the control, while compared with the 

other wines treated with aging processes the content was not significantly different 

(p<0.05). These results show that the phenolic acids and flavonols were also affected by 

HHP treatments, leading to wines with lower content of these compounds and, 

consequently, to wines with possible lower bioactive activity, when compared with wines 

treated with wood. The decrease of these phenolic compounds in the pressurized wine 

may be related with the generation of high-reactive radicals during pressurization, 

Flavonols 

(mg/L) 

Beginning of storage  5 months 

Control Pressurized  Control Pressurized Oak chips 
Oak 

barrels 

Oak chips 

+ mO2 

Myricetin 
12.19 ± 

0.28a 

11.00 ± 

0.24b  
9.90 ± 

2.54b 7.62 ± 0.29c 11.92 ± 

0.58ab 

12.29 ± 

1.00ab 

11.70 ± 

0.61ab 

Quercetin 
10.62 ± 

0.10a 

10.41 ± 

0.34a  
10.13 ± 

0.56ab 9.13 ± 0.57b 11.27 ± 

0.87a 

10.32 ± 

0.62a 

11.57 ± 

2.69ab 

Kaempferol 
10.68 ± 

0.29a 

10.32 ± 

0.22a  
10 .48 ± 

1.20a 7.18 ± 1.46b 8.27 ± 0.48b 8.26 ± 

0.17b 

7.87 ± 

0.67b 

Total 
33.50 ± 

0.55a 

31.73 ± 

0.49a  
30.51 ± 

1.99a 

23.92 ± 

1.02b 

31.46 ± 

1.24a 

30.87 ± 

1.77a 

31.14 ± 

3.02a 

All data are expressed as mean value ± standard deviation (n = 3). In the same line, different letters indicate significant 

differences according to a Tukey test (p < 0.05). 
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enhancement of chemical oxidation, and polymerization of phenolic compounds during 

storage (Chen et al., 2012; Clariana et al., 2011). 

 

Flavan-3-ols composition and mean degree of polymerisation  

 The flavan-3-ol monomers ((+)-catechin and (-)-epicatechin) and oligomers (B1, 

B2, B4 dimers and C1 trimer) were identified and quantified in the wines at the beginning 

of storage and after 5 months of bottle aging (Table IV.2.6). Proanthocyanidins 

characteristics such as mean degree of polymerization (mDP) and percentage of 

prodelphinidins (%P) were also determined for all the wine samples (Table IV.2.6). 

 

Table IV.2.6. Flavan-3-ol monomers and oligomers content, and tannin composition of the wine 

samples at the beginning and after 5 months of storage 

Compounds 

(mg/L) 

Beginning of storage  5 months 

Control Pressurized  Control Pressurized Oak chips Oak barrels 
Oak chips + 

mO2 

Flavanols         

Catechin 71.82 ± 0.30a 71.03 ± 0.66a  
65.70 ± 

0.55b 

63.63 ± 

0.05c 

62.34 ± 

0.88c 

62.02 ± 

1.88c 

61.74 ± 

0.22c 

Epicatechin 35.12 ± 0.39a 35.14 ± 0.31a  
30.26 ± 

0.29b 

27.19 ± 

0.34c 

29.29 ± 

0.57b 

29.82 ± 

1.56bc 

29.71 ± 

0.24b 

Procyanidin 

B1 
62.74 ± 0.46ab 62.38 ± 0.29a  

65.55 ± 

0.76b 

62.04 ± 

1.64a 

64.18 ± 

1.51ab 

63.80 ± 

1.15ab 

63.24 ± 

1.03ab 

Procyanidin 

B2 
17.83 ± 0.11a 17.56 ± 0.37ab  

17.71 ± 

0.32a 

16.98 ± 

0.01b 

17.46 ± 

0.38ab 

17.68 ± 

0.07ab 

17.40 ± 

0.26ab 

Procyanidin 

B4 
3.84 ± 0.46a 4.86 ± 0.79a  4.41 ± 0.47a 3.70 ± 0.31a 3.77 ± 

0.33a 3.93 ± 0.30a 4.01 ± 0.59a 

Procyanidin 

C1 
11.48 ± 0.11a 11.69 ± 0.41a  

10.82 ± 

0.29ab 9.80 ± 0.14b 10.04 

±0.57bc 

10.38 ± 

0.89abc 

10.15 ± 

0.38bc 

Total 202.83 ± 1.04a 202.66 ± 0.62a  
194.86 ± 

0.39b 

183.33 ± 

2.10c 

187.09 ± 

2.05c 

187. 63 ± 

2.44c 

186.26 ± 

2.16c 

Tannin 

composition 
        

mDP 4.72 ± 0.04a 4.80 ± 0.03a  4.77 ± 0.07a 5.12 ± 0.12b 5.45 ± 

0.02c 5.14 ± 0.05b 5.28 ± 0.04b 

%P 6.82 ± 0.42a 6.32 ± 0.17a  5.42 ± 0.01b 7.78 ± 0.23c 8.97 ± 

0.19d 8.13 ± 0.21c 8.19 ± 

0.36cd 

All data are expressed as mean value ± standard deviation (n = 3). In the same line, different letters indicate significant differences 

according to a Tukey test (p < 0.05). mDP mean degree of polymerization; %P percentage of prodelphinidins 

 

At the beginning of storage no significant difference among the different wine 

samples was observed for the flavan-3-ols monomers and oligomers content, and for mDP 
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and %P values. The flavan-3-ols content of the wines studied varied from 183.33 to 

202.83 mg/L and the mDP varied from 4.72 to 5.45, which are in agreement with values 

reported in the literature for Touriga Nacional, Trincadeira, Castelão, Syrah, and Cabernet 

Sauvignon wines, with flavan-3-ols content and mDP varying from 62.3 to 228.3 mg/L 

and 2.1 to 9.6, respectively (Cosme et al., 2009). 

Along the time of storage, the wines showed different evolution of flavan-3-ols 

content and degree of polymerization (Table IV.2.6). After 5 months of storage, the 

pressurized wine presented 6% less total flavan-3-ols content than the control (p<0.05). 

This value was mainly due to the lower content of (+)-catechin, (-)-epicatechin, and 

procyanidins B1 and B2 in the pressurized wine (p<0.05)., whereas the pressurized wine 

presented a higher mDP (4.8) and %P (5.4) than the control (p<0.05).  

The pressurized wine showed no significant difference in terms of flavan-3-ol 

monomers and oligomers (p>0.05) when compared with Oak chips, Oak barrels, and Oak 

chips + mO2 wine samples, having all the samples a content of flavan-3-ol monomers and 

oligomers lower than the control. In terms of mDP and %P, the pressurized, Oak barrels 

and Oak chips + mO2 wine samples presented similar values among them, but slight lower 

values when compared with the Oak chips sample (p<0.05). These results together with 

the lower content of flavan-3-ol monomers and oligomers presented in the four wines 

treated with aging processes (pressurized, Oak chips, Oak barrels, and Oak chips + mO2 

wine) at 5 months of storage, lead to infer similar effect among the four aging processes 

in the acceleration of flavan-3-ol/proanthocyanidins condensation reactions that occur 

naturally during the wine storage period. The acceleration of these condensation reactions 

in wines treated with wood aging processes are probably due to the presence of 

compounds extracted from the wood during aging, such as phenolic acids, aldehydes, and 

ellagitannins that participate in chain reactions that can promote flavan-3-

ol/proanthocyanidins condensation reactions (Cano-López et al., 2010; Gómez García-

Carpintero et al., 2012; González-Sáiz et al., 2014; Sartini et al., 2007; Soto Vázquez et 

al., 2010; Tao et al., 2014). Dissolution of some quantities of oxygen into the wine by the 

diffusion of the oxygen through the barrels semipermeable walls during barrels storage 

(Garde-Cerdán and Ancín-Azpilicueta, 2006; Martínez-Gil et al., 2011; Tao et al., 2014) 

or by microoxygenation process (Gambuti et al., 2013; Gómez-Plaza and Cano-López, 

2011; Parpinello and Versari, 2012) are also reported to influence the acceleration of 

some phenolic condensation reactions. The pressure treatment, as referred previously, can 

generate high-reactive radicals during pressurization that enhances chemical oxidation 
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(Chen et al., 2012; Clariana et al., 2011), and probably lead also to flavan-3-

ol/proanthocyanidins condensation reactions acceleration. In addition, as a 

thermodynamic factor, it is expected that HHP treatments can influence these reactions, 

since pressure, by “Le Chatelier principle”, influences equilibrium of chemical reactions 

according to changes in volume (Corrales et al., 2008). 

 

IV.2.3.3 Effect of HHP treatments on the wine sensorial characteristics  

The sensorial properties of the wines were analysed after 5 months of storage, to 

assess the organoleptic characteristics of the wine in terms of colour, aroma, and taste. 

Regarding the colour evaluation (Figure IV.2.3), it can be observed that the wine samples 

did not present significant differences among them for all the five colour descriptors (red, 

violet, and brown colour, intensity and limpidity) (p>0.05). These results are in agreement 

with the chromatic parameters obtained for the wines (Table IV.2.1), since no significant 

differences (p>0.05) among the different wine samples were observed for the colour 

tonality, Ye%, Rd%, Bl%, and dA% parameters. Therefore, the slight lower colour 

intensity observed in the wines treated with aging processes (Table IV.2.1) was not 

enough to be detected in the sensorial analysis.  

 

Figure IV.2.3. Descriptive sensory analysis of the colour of wine samples at 5 months of storage. 

All data are expressed as mean value. Different letters indicate significant differences according 

ANOVA followed by a Tukey test (p<0.05). 

 

In terms of aroma (Figure IV.2.4), the pressurized wine presented the higher 

scents of cooked fruit and lower scents of fruity aromas (p<0.05). This result is in 

agreement with results obtained for sulphur dioxide-free red (Chapter II.1) and white 
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wines (Chapter II.2) that showed that pressure treatments increase the cooked fruit aroma 

perception due to the increase of Maillard volatile compounds, namely 2-furfural and 

benzaldehyde (Chapter II.3), since these compounds are described to have “roasty” fruit 

notes (Castro-Vázquez et al., 2011; Jeleń et al., 2011). The Oak chips, Oak barrels, and 

Oak chips + mO2 samples presented higher scents of fruity, spicy, woody, and toasty 

aromas, when compared with the control and pressurized wines. Also, the Oak barrels 

presented the higher scents of leather aroma. These results could be explained by the 

migration of volatile compounds from the wood to the wines. The volatile compounds 

extracted from wood are mainly 2-furfural, oak lactone, eugenol, vanillin, 

syringaldehyde, and guaiacol (Arapitsas et al., 2004; Tao et al., 2014), most of them 

described to have “spicy”, “woody” and “toasty” notes (Castro-Vázquez et al., 2011; 

Jeleń et al., 2011). 

 

Figure IV.2.4.  Descriptive sensory analysis of the aroma of wine samples at 5 months of storage. 

All data are expressed as mean value. Different letters indicate significant differences according 

ANOVA followed by a Tukey test (p<0.05). 
 

Comparing the taste assessment of the different wine samples (Figure IV.2.5), no 

significant differences values were observed for eight of the nine taste descriptors (fruity, 

astringency, acidity, bitterness, persistence, body, sweetness, and spices). The only 

significant difference noticed was a higher woody taste for the wines treated with wood 

when compared with the pressurized and control.  
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Figure IV.2.5.  Descriptive sensory analysis of the taste of wine samples at 5 months of storage. 

All data are expressed as mean value. Different letters indicate significant differences according 

ANOVA followed by a Tukey test (p<0.05). 

 

The Oak chips, Oak barrels, and Oak chips + mO2 wines showed a better aroma 

assessment (Figure IV.2.6) due probably to the higher fruity, spicy, woody, and toasty 

notes in these wines (Figure IV.2.4), when compared with the control and pressurized 

wines. However, all the wines presented a good and similar global assessment.  

 

Figure IV.2.6.   Descriptive sensory analysis of the global attributes of wine samples at 5 months 

of storage. All data are expressed as mean value. Different letters indicate significant differences 

according ANOVA followed by a Tukey test (p<0.05). 
 

In general, regarding sensorial analysis, it seems that the phenolic composition 

changes, namely in terms of anthocyanins polymerization, mDP, and proanthocyanidins 

content in HHP treated wines did not alter significantly their taste and colour assessment. 

This behavior can also be observed for the wine treated by wood, since these wines only 

showed differences in taste and aroma due to compounds extracted from wood during the 
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wine storage. According to the sensorial analysis, the pressurized wines could be 

considered suitable for commercialization as table red wines.  

 

IV.2.4 Concluding remarks 

 

This study shown that a high pressure treatment of 500 MPa during 5 min and the 

wood aging treatments influenced red wine phenolic composition after 5 months of 

storage. The main changes that occured in the pressurized wine phenolic composition was 

the decrease of monomeric (anthocyanins, phenolic acids, and flavonols) and an increase 

of polymeric compounds, due to the promotion of condensation reactions.  These changes 

are similar to those observed in wines treated with wood, such as storage in oak barrels, 

and addition of oak chips with or without microoxygenation process, leading to aged 

wine-like characteristics. Despite the chemical composition changes verified, all the 

wines presented a similar global assessment, with the aroma and taste characteristics of 

the pressurized wine resembling more to the wine without any aging process (control) 

than the wines treated with wood. 

HHP can be potentially used to accelerate the wine aging process of wines with 

low aging potential, producing young red wines with pleasant and distinct characteristics. 

In spite of the promising results, the ideal wine aging process is quite extensive. The 

challenge for the academic community and wine industry is the combination of these or 

other new methodologies in a concerted strategic approach in order to produce novel 

wines meeting the modern wine consumer demands, keeping  tradition along with 

innovation. 
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In this PhD thesis, the influence of HHP treatments on wine chemical and 

sensorial characteristics was studed in order to increase the fundamental knowledge about 

the effect of HHP on wine, contributing for the evaluation of the feasibility of using this 

technology in winemaking.  

 The application of high hydrostatic pressure treatments in winemaking for wine 

preservation, as an alternative to sulphur dioxide, was evaluated studying the effect of 

HHP in the physicochemical and sensorial properties of sulphur dioxide-free in both red 

and white wines, during bottle storage. This is the first report where physicochemical and 

sensorial characteristics of pressurized red and white wines were evaluated during one 

year of bottle aging. 

High pressure treatments with 5 min of processing time and pressures of 425 and 

500 MPa were shown to have influence on both red and white wine physicochemical and 

sensorial characteristics. However, the effects are only perceptible after, at least, 6 months 

of storage. The alterations that occurred on the pressurized red wine characteristics, such 

as the more orange-red colour and the lower antioxidant activity (15- 27% less), total 

phenolic content (9% less), and anthocyanins content (45–61% less), were due to an 

increase of condensation reactions of phenolic compounds. The increase of these 

condensation reactions lead to the formation of compounds with higher degree of 

polymerisation that became insoluble in wine along storage, increasing consequently the 

amount of wine deposits in the pressurized wines. In terms of white wines, pressurized 

wines showed, after one year of storage, a more brownish colour and a lower antioxidant 

activity (15% less) and total content of phenolic compounds (10% less) compared to the 

unpressurized wines. These results, together with the lower content of free amino acids 

(e.g 87% less of serine) and higher content of furans (e.g 10 fold higher of 2-furfural), 

present in the pressurized wines after nine months of storage, lead to propose an effect of 

HHP treatments in the acceleration of Maillard reactions occurring during the wine 

storage period. Sensorial analysis showed that the pressurized wines presented a higher 

cooked fruit aroma and lower fruity and floral aromas, and also slightly higher bitterness 

level and a lower body and balance level than the unpressurized wines. Therefore, 

contrary to the pressurized sulphur dioxide-free red wine, the pressurized white wines are 

not considered suitable for commercialization as table white wines due to the higher 

brownish colour and cooked fruit aroma characteristic of an aged or thermally treated 

wine. 
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As the aroma is one of the most important quality parameters of the wine for 

consumers, the impact of the pressure treatments on the volatile composition of the 

sulphur dioxide free-red and white wines, during bottle storage, was also evaluated. 

Despite some differences observed in the volatile composition of the pressurized wines 

after 2 months of storage, namely lower content of esters in pressurized white wines and 

lower content of carboxylic acids and higher content of norisoprenoids in pressurized red 

wines, when compared with the unpressurized wines, the impact of the pressure 

treatments was minimal in the first months of storage. After 9 months, the pressurized 

wines presented a higher content of Maillard derived volatile compounds (e.g up to 10- 

and 15-fold higher of furfural and benzaldehyde, respectively), acetals and ketones when 

compared to the unpressurized wines. The two pressure treatments studied showed similar 

effects on both white and red wine volatiles. The changes on the volatile composition of 

the pressurized wines, namely the increase of furans, aldehydes, ketones, and acetals 

content, indicated that, in addition to the acceleration of the Maillard reactions mentioned 

above, the HHP treatments accelerate also the oxidation of alcohols and fatty acids. This 

effect lead to wines with a volatile composition network approaching the characteristic 

of faster aged and/or thermally treated wines. 

The acceleration of the Maillard reactions by high pressure treatments was also 

studied in model wine solutions to better understand the effects of HHP on the formation 

of Maillard derived volatile compounds (MVC) during storage. The results showed that 

high pressure treatment accelerates the Maillard reaction in model wine solutions (acidic 

media) and this effect was quantifiable, mainly, after 6 months of storage. Pressurized 

model solutions presented higher concentration of 2-furfural, phenylacetaldehyde and 

benzaldehyde, when compared to the controls. Despite the higher concentration of MVC 

in the pressurized samples, only the content of phenylacetaldehyde was higher than the 

respective perception threshold in wine, which allow inferring the perception of “honey-

like” and “sweet” odours. Furthermore, the increase of MVC content in the pressurized 

model wine solutions was lower than that observed in wines, indicating that probably a 

high range of compounds are affected by the pressure treatment in wine, when compared 

with the model wine solutions, that indirectly participate in the formation of MVC during 

storage. 

Also, in model wine solutions, it was observed that pressure treatment (500 MPa 

for 5 min) did not promote, at the beginning of storage, condensation reactions between 

anthocyanins and flavonols. Conversely, after 8 months of storage it was observed the 
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formation of two unknown compounds in pressurized model wine solution, which appear 

to result from the polymerization of malvidin-3-O-glucoside and catechin with other 

compounds presented in the model wine solution (potentially formic acid), being an 

artifact. Therefore, it is possible that the pressure treatment had a higher impact in terms 

of kineticks of reactions and in less extent in terms of different compounds formed.  

 The application of high hydrostatic pressure treatments in winemaking to treat 

young wines was evaluated. For this propose, the effect of a high hydrostatic pressure 

treatment in the phenolic composition of a red wine was studied. High pressure treatments 

with pressures of 500 MPa during 5 min and 600 MPa during 20 min showed  to influence 

red wine phenolic composition, and led to alterations in the wine sensorial characteristics. 

Most of these effects are only noticeable after storage for 5 months, being more 

pronounced for the pressure treatment of 600 MPa for 20 min. These data indicate that 

the conditions of pressure treatment, such as “pressure” and “pressure holding time”, had 

significant influence in the phenolic composition of pressurized wines. The main changes 

that occur on the pressurized red wine phenolic composition, such as the lower content of 

monomeric anthocyanins (up to 14% less), phenolic acids (up to 11% less), and flavonols 

(up to 19% less), are due to an increase of condensation reactions and oxidation of these 

compounds. At the same time, HHP influenced the polymerisation and cleavage reactions 

in which proanthocyanidins are involved. The sensorial analysis of pressurized wines 

showed a slight lower evaluation regarding the aroma, due to the higher intensity of 

cooked fruit aroma and lower intensity of fruity notes, when compared with the 

unpressurized wine. The wine pressurized at 600 MPa presented the higher values of 

bitterness and persistence, and lower astringency among all the wine samples that could 

be explained by the lower mDP value (4.28) and higher content of flavan-3-ol monomers 

(199.80 mg/L). 

The effect of the pressure treatment of 500 MPa for 5 min on the wine phenolic 

composition was also compared with the effect of different aging processes, such oak 

barrels, oak chips and micro-oxygenation with oak chips. The main changes that occurred 

in the pressurized wine phenolic composition such the decrease of monomeric 

anthocyanins, phenolic acids, and flavonols and an increase of polymeric compounds, 

due to the promotion of condensation reactions, were similar to those observed in wines 

treated with wood aging processes. Also, the pressurized wines presented a higher content 

of pyranoanthocyanins than the wines aged with oak chips and oak barrels (14% and 11% 

higher, respectively), and no significant different value was observed when compared 
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with the wine aged with addition of oak chips and microoxygenation process. These 

results indicated that HHP treatment and the addition of oak chips to the wine with 

microoxygenation process were the treatments that accelerated more the polymerization 

of the monomeric anthocyanins during storage. Despite the chemical composition 

changes verified, all the wines presented a similar global assessment, where the aroma 

and taste characteristics of the pressurized wine resembled more to the wine without any 

aging process than the wines treated with wood, due to the absence of woody taste and 

aromas. Therefore, the HHP treatments seem to promote reactions that are similar to those 

observed in wine wines treated with wood aging processes.  

In conclusion, the results presented in this thesis showed that HHP treatments 

accelerate the Maillard reaction and the polymerization reactions between phenolic 

compounds present in the wine, influencing the chemical and sensorial properties of wine. 

However, it seems that HHP can be potentially used to preserve red wine, as an alternative 

to sulphur dioxide, producing wines with pleasant and distinct characteristics. The use of 

this technology proved to be most promising for preservation of red wines than white 

wines due its effect on sensorial properties that was evaluated positively for red wines 

and negatively for white wines. These aspects should be taken into consideration in the 

implementation of HHP treatments to wine conservation as an alternative to SO2. 

From the wine aging point of view, it was shown that HHP can be potentially used 

to modify the organoleptic properties of wine. As the traditional barrel aging technology 

has several disadvantages, the application of HHP processing during wine aging process 

can benefit the winemaking industry in overcoming these disadvantages. On the other 

hand, the utilization of HHP processing is recommended to commence with the aging of 

wines with low aging potential. For these wines, HHP processing can be potentially used 

to accelerate their aging process, modify their sensorial properties and stop the quality 

decrease. However, the cost of HHP equipment also needs to be taken into account when 

using it for wine aging in the winemaking industry. In addition, a market research and 

consumer preference tastings are essential to know the acceptance of wine consumers 

towards high-pressure treated wines. 
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From the results obtained herein future studies can be proposed:  

 

i) Evaluate the application of HHP treatments in the production of different sherry 

wines, in substitution of thermal treatments. 

ii) Evaluate the application of HHP treatments in wine with low aging potential in order 

to accelerate their aging process and conferring different sensorial properties. 

iii) Evaluate the application of HHP treatments  on wine with oak chips in order to 

accelerate the aging process  and extract some compounds of the wood to confer some 

wood sensorial properties to the pressurized wine.    

iv) Study the effect of HHP treatments on the structure, antioxidant capacity, and 

interactions of phenolic compounds in model wine solutions. 

v) Study the effect of HHP treatments on the volatility and perception of wine aroma 

compounds in model wine solutions. 

 

vi) Study the formation of Maillard derived volatile compounds by HHP treatments in 

model wine solutions containing also phenolic compounds. 
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Table S1. Volatile compounds identified by HS-SPME/ GC×GC -ToFMS in the white wine samples (Chapter II.3) 

Peak 

number 

1tR 
a 

(s) 

2tR 
a 

(s) 
Compound RIlit.

b RIcal
c 

After 2 months of storage  After 9months of storage 

      
Untreated SO2 425 MPa 500 MPa  Untreated SO2 425 MPa 500 MPa 

      Peak Aread (x105) and RSD f (%) 

   Carboxylic Acids           

1 95 3.176 Acetic acid 600 619 533.36 (6) 751. 31 (6) 41.03 (24) 48.36 86) 674.02 (10) 607.97 (27) 341.55 (6) 331.51 (11) 

2 155 3.856 2-Methylpropanoic acid (Isobutyric acid) 767 762 5.02 (35) 8.57 (13) 7.34 (9) 6.97 (6) - - - - 

3 175 4.632 Butanoic acid (Butyric acid) 808 806 13.34 (18) 16.59 (29) 15.44 (30) 10.17 (28) 14.46 (1) 11.26 (2) - - 

4 225 3.896 2-Methyl butanoic acid 867 878 6.85 (22) 9.77 (24) 7.84 (18) 3.70 (24) - - - - 

5 235 3.680 3-Methylbutanoic acid (Isovaleric acid) 876 880 10.79 (19) 17.05 (18) 10.14 (38) 13.02 (27) 19.59 (34) 13.65 (3) - - 

6 360 3.864 Hexanoic acid (Caproic acid) 1017 1015 225.02 (13) 533.28 (14) 370.42 (11) 237.24 (12) 286.59 (7) 306.94 (39) 360.79 (21) 286.23 (8) 

7 525 2.704 Octanoic acid (Caprylic acid) 1179 1203 596.36 (28) 859.19 (10) 595.55 (22) 537.90 (5) 397.22 (20) 424.85 (40) 504.07 (21) 365.63 (13) 

8 690 2.056 n-Decanoic acid (n-Caprinic acid) 1380 1372 47.55 (14) 94.55 (8) 126.41 (10) 65.56 (9) 32.88 (44) 23.78 (33) 13.93 (30) 19.11 (33) 

9 1070 1.488 n-Hexadecanoic acid (Palmitic acid) 1985 1984 - 21.48 (1) 28.16 (26) 17.60 (24) - - - - 

   Subtotal (GC Peak Area)   1438.28 (17) 2311.79 (10) 1202.32 (18) 940.51 (8) 1424.77 (13) 1388.45 (33) 1220.33 (17) 1002.48 (11) 

   Subtotal (Number of Compounds)   8 9 9 9 6 6 4 4 

   Subtotal (%)   13.6 19.2 14.6 11.9 17.9 14.2 14.6 11.4 

   Esters           

   Aliphatics Ethyl esters            

10 95 0.456 Ethyl ethanoate (Ethyl acetate) 613 613 585.77 (4) 453.84 (20) 334.97 (26) 357.59 (2) 510.28 (9) 541.90 (11) 278.12 (18) 313.52 (23) 

11 125 0.496 Ethyl propanoate (Ethyl proprionate) 714 684 51.26 (12) 54.33 (19) 38.39 (23) 41.45 (30) 48.45 (2) 42.85 (3) 46.37 (5) 45.76 (7) 

12 150 0.488 Ethyl 2-methylpropanoate (Ethyl isobutyrate) 762 742 15.48 (26) 11.52 (14) 13.07 (18) 13.14 (8) 33.71 (3) 39.87 (2) 35.66 (12) 37.96 (14) 

13 180 0.536 Ethyl butanoate (Ethyl butyrate) 800 807 230.97 (10) 201.75 (13) 192.13 (8) 187.32 (6) 171.28 (11) 167.61 (2) 172.98 (2) 167.42 (6) 

14 190 1.184 Ethyl 2-hydroxypropanoate (Ethyl lactate) 815 820 22.80 (13) 29.74 (4) 25.92 (7) 21.94 (3) 274.84 (12) 262.08 (11) 53.06 (5) 53.46 (5) 

15 210 0.656 Ethyl but-2-enoate 844 845 27.20 (4) 23.53 (24) 22.37 (13) 19.55 (3) 16.09 (5) 16.49 (1) 17.30 (1) 17.38 (1) 

16 215 0.512 Ethyl 2-methylbutanoate (Ethyl 2-methylbutyrate) 849 851 - - - - 15.12 (7) 15.83 (2) 18.77 (3) 20.06 (3) 

17 220 0.528 Ethyl 3-methylbutanoate (Ethyl isovalerate) 856 857 33.03 (4) 25.92 (34) 26.75 (19) 21.33 (4) 38.91e 41.12 (1) 48.09 (3) 48.78 (2) 

18 260 0.552 Ethyl pentanoate (Ethyl valerate) 898 906 4.13 (17) 3.44 (17) 3.30 (18) 2.37 (19) 3.75 (26) 2.79 (5) 3.92 (32) 3.92 (32) 

19 300 1.352 Ethyl 3-hydroxy-butanoate 949 949 1.95 (20) 4.60 (10) 3.24 (17) 2.75 (13) - - - - 

20 350 0.576 Ethyl hexanoate (Ethyl caproate) 1001 1001 489.23 (7) 422.62 816) 181.08 (35) 394.23 (39) 415.41 (11) 460.34 (11) 474.81 (26) 497.69 (28) 

21 360 0.632 Ethyl hex-3-enoate 1006 1012 5.91 (12) 4.63 (27) 3.55 (13) 3.84 (8) 2.51 (9) 3.35 (61) 2.41 (14) 2.69 (19) 
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22 390 0.64 Ethyl hex-2-enoate 1040 1045 17.72 (3) 16.88 (36) 14.06 (17) 10.78 (4) 12.04 (4) 11.56 (5) 12.26 (3) 12.79 (6) 

23 405 0.952 Ethyl 2-hydroxy-4-methyl-pentanoate 1060 1062 1.25 (30) 2.28 (14) 1.51 (26) 1.45 (10) 8.65 (12) 9.17 (28) 6.87 (4) 5.88 (19) 

24 420 2.040 Ethyl 4-hydroxybutanoate 1039 1080 79.80 (21) 89.16 (34) 74.19 (47) 62.43 (8) - 15.73 (22) 9.86 (7) 9.37 (18) 

25 440 0.658 Ethyl heptanoate 1104 1100 28.30 (17) 21.04 (29) 22.16 (14) 12.84 (26) 6.72 (5) 9.23 (4) 10.15 (11) 9.61 (6) 

26 515 0.936 Diethyl butanedioate (Diethyl succinate) 1182 1189 20.95 (8) 44.85 (15) 33.46 (4) 19.43 (5) 248.57 (31) 403.92 (1) 216.85 (8) 221.49 (23) 

27 530 0.576 Ethyl octanoate (Ethyl caprylate) 1199 1207 646.16 (30) 488.72 (19) 260.90 (7) 272.72 (22) 740.75 (20) 1090.71 (17) 901.46 (25) 1061.91 (21) 

28 570 0.64 Ethyl oct-2-enoate 1246 1254 1.89 (27) 1.75 (23) 2.12 (6) - 1.69e 1.19 (10) 0.67 (5) 1.03 (3) 

29 595 0.880 
Ethyl-n-propyl butanedioate  

(m/z = 129,101,73,43) - 1283 - - - - 0.90 (38) 0.59 (45) 0.44 (52) 0.56 (11) 

30 610 0.576 Ethyl nonanoate (Ethyl pelargonate) 1294 1301 42.99 (11) 43.82 (27) 38.10 (26) 20.35 813) 5.17 (1) 5.38 (45) 1.88 (11) 1.77 (11) 

31 640 0.816 
Ethyl butyl butanedioate  

(m/z = 147,129,101,56) - 1339 - - - - 1.79 (27) 1.92 (34) 0.69 (16) 0.56 (17) 

32 690 0.584 Ethyl decanoate (Ethyl caprinate) 1394 1401 668.03 (5) 703.06 (9) 75.34 (19) 114.51 (20) 202.45 (35) 248.32 (25) 244.67 (45) 393.92 (34) 

33 715 0.816 Ethyl 3-methylbutyl succinate 1429 1435 0.91 (15) 1.77 (21) 1.25 (12) 0.65 (13) 20.06 (36) 22.08 (36) 9.26 (14) 7.92 (19) 

34 795 0.920 Ethyl 3-hydroxytridecanoate 1539 1553 0.97 (32) 2.25 (26) 1.95 (5) 1.26 (13) 1.71 (40) 1.64 (18) 1.89 (23) 1.59 (5) 

35 835 0.592 Ethyl dodecanoate (Ethyl laurate) 1593 1601 121.28 (6) 117.53 (1) 129.32 814) 125.72 (5) 88.02 (1) 53.34 (8) 24.81 (7) 119.80 (13) 

36 965 0.600 Ethyl tetradecanoate (Ethyl myristate) 1793 1801 8.97 (22) 12.55 (15) 27.67 (31) 11.70 (15) 5.13 (56) 4.92 (10) 6.38 (32) 9.54 (21) 

37 1085 0.616 Ethyl hexadecanoate (ethyl palmitate) 1994 2010 19.28 (2) 22.99 (34) 16.83 (24) 14.34 (19) 15.19 (35) 11.89 (3) 23.31 (42) 23.06 (54) 

   Aromatics Ethyl esters            

38 510 0.96 Ethyl benzoate 1179 1184 1.00 (12) 1.11 (22) 1.00 (11) 0.86 (7) 1.52 (27) 0.98 (18) 1.06 (8) 0.98 (15) 

39 570 1.016 Ethyl 2-phenylethanoate (Ethyl 2-phenylacetate) 1251 1254 3.92 (24) 5.98 (15) 5.86 (8) 3.07 (18) 3.01 (28) 2.82 (22) 4.01 (11) 3.54 (16) 

   Subtotal (GC Peak Area)   3131.17 (12) 2811.64 (16) 1550.51 (20) 1737.62 (17) 2893.75 (16) 3489.64 (12) 2628.01 (21) 3093.95 (22) 

   Subtotal (Number of Compounds)   27 27 27 26 28 29 29 29 

   Subtotal (%)   29.7 23.4 18.8 21.9 36.3 35.5 31.5 35.2 

   Aliphatic acetate esters           

40 75 0.456 Methyl ethanoate (Methyl acetate) 559 566 5.79 (27) 6.49 (12) 13.07 (15) 7.44 (24) - 3.18 (66) 2.88 (28) 4.85 (33) 

41 125 0.52 n-Propyl ethanoate (n-Propyl acetate) 712 684 58.91 (5) 46.85 (31) 49.76 (9) 43.06 (8) 11.31 (41) 14.06 (4) 12.14 (2) 14.00 (23) 

42 160 0.52 2-Methylpropyl ethanoate (Isobutyl acetate) 767 766 149.62 (20) 143.19 (23) 118.75 (9) 111.06 (4) 26.35 (10) 42.86 (1) 38.82 (3) 40.76 (2) 

43 190 0.56 Butyl ethanoate (Butyl acetate) 812 819 25.36 (5) 22.72 (28) 21.70 (8) 19.03 (9) 6.67 (16) 3.92 (16) 3.33 (32) 3.24 (2) 

44 235 3.208 2-Methylbutyl ethanoate (2-Methylbutyl  acetate) 885 879 30.05 (14) 32.36 (17) 10.07 (42) 10.14 (47) 8.46 (19) 16.24 (3) 4.87 (27) 5.01 (4) 

45 240 0.544 3-Methylbutyl ethanoate (Isoamyl acetate) 876 882 393.62 (1) 681.65 (11) 307.91 (15) 335.99 (26) 310.89 (7) 280.80 (14) 363.87 (6) 337.09 (16) 

46 270 0.576 Pentyl ethanoate (Amyl acetate) 915 916 19.63 (18) 21.16 (20) 19.76 (17) 11.47 (29) 2.57 (50) 2.42 (24) 1.16 (4) 1.29 (18) 

47 270 0.680 Pent-2-enyl ethanoate (Pent-2-enyl acetate) 909 916 3.17 (19) 1.79 (26) 2.55 (29) 15.48 (14) - - - - 

48 355 0.672 Hex-3-enyl ethanoate  (Hex-3-enyl acetate) 1007 1006 83.37 (11) 88.71 (13) 79.20 (2) 75.30 (15) 14.25 (52) 24.41 (7) 16.00 (28) 12.75 (15) 
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49 360 0.64 Hexyl ethanoate (Hexyl acetate) 1014 1006 370.82 (13) 457.23 (26) 338.09 (34) 332.11 (28) 86.79 (7) 137.91 (14) 113.21 (3) 109.55 (2) 

50 455 0.592 Heptyl ethanoate  1118 1118 3.44 (2) 3.95 (4) 2.88 823) 1.44 (45) - - - - 

51 535 0.624 Octyl ethanoate 1213 1211 6.74 (5) 5.45 (25) 5.38 822) 3.82 (6) - - - - 

   Aromatics acetates            

52 580 1.064 2-Phenylethyl ethanoate (2-Phenylethyl acetate) 1256 1260 307.61 (2) 273.32 (14) 263.64 (23) 235.91 (7) 86.95 (10) 98.50 (11) 79.86 (4) 78.95 (8) 

   Subtotal (GC Peak Area)   1458.13 (8) 1784.88 (17) 1232.75 (20) 1202.23 (19) 554.22 (10) 624.30 (12) 636.15 (6) 607.48 (12) 

   Subtotal (Number of Compounds)   13 13 13 13 9 10 10 10 

   Subtotal (%)   13.8 14.9 14.9 15.18 6.9 6.4 7.6 6.9 

   Aliphatic esters           

53 170 0.568 3-Methylbutyl methanoate (Isoamyl formate) 792 780 - - - - - - 1.52 (17) 1.46 (5) 

54 280 0.600 Methyl hexanoate (Methyl caproate) 934 927 17.39 (1) 14.60 (28) 12.94 (30) 11.67 (3) 11.76 (25) 6.74 (6) 4.73 (16) 6.03 (9) 

55 300 1.352 2-Methylpropyl butanoate (Isobutyl butyrate) 961 949 - - - - 1.19 (11) - - - 

56 320 0.560 Pentyl propanoate (Amyl propionate) 969 972 10.64 (16) 11.07 (11) 8.02 (14) 6.77 (5) - - - - 

57 365 0.520 3-Methylpropyl butanoate (Isoamyl butyrate) 1013 1017 7.22 (6) 1.36 (31) 3.51 833) 1.94 (29) - - - - 

58 405 0.544 Butyl 3-methylbutanoate (n-Butyl isovalerate) 1048 1062 - - - - 6.84 (11) 7.27 (8) 7.39 (2) 7.28 (7) 

59 410 1.080 
3-Methylbutyl 2-hydroxypropanoate (Isoamyl 

lactate) 
1047 1068 

- - 2.04 (15) 1.46 (18) 
26.14e 25.94 (30) 3.58 (18) 3.60 (21) 

60 420 0.936 Octy methanoate (Octyl formate) 1104 1079 - - - - 36.27 (13) 31.87 (12) 16.25 (27) 14.94 (31) 

61 440 0.560 Propyl hexanoate (Propyl caproate) 1093 1101 3.96 (10) 4.46 (26) 3.86 (28) 2.51 (3) 4.89 (25) - - - 

62 465 0.600 Methyl octanoate (Methyl caprylate) 1126 1130 35.40 (5) 34.64 (18) 26.00 (19) 17.00 (5) 21.25 (8) 22.73 (8) 24.12 (4) 23.32 (4) 

63 490 0.536 2-Methylpropyl hexanoate (Isobutyl caproate) 1148 1160 3.22 (13) 3.35 (21) 2.35 (9) 1.70 (2) 3.91 (13) 4.58 (5) 4.97 (3) 5.26 (6) 

64 515 0.592 Butyl hexanoate (Butyl caproate) 1189 1188 - 1.73 (19) - - - - - - 

65 560 0.544 
Hexyl 2-methyl-butanoate (Hexyl 2-methyl-

butyrate) 
1234 1242 

6.99 (20) 7.24 (20) 4.70 (23) 3.18 (7) 
2.76 (58) - - - 

66 575 0.552 3-Methylbutyl hexanoate (Isoamyl caproate) 1250 1259 41.32 (7) 28.31 (28) 31.57 823) 20.58 (4) 30.46 (12) 30.03 (27) 47.40 (48) 86.66 (32) 

67 610 0.560 Propyl octanoate (Propyl caprylate) 1296 1301 8.30 (5) 8.11 (7) 5.80 (12) 4.05 (4) 7.75 (32) 7.79 (34) 7.16 (24) 6.13 (35) 

68 635 0.600 Methyl decanoate (Methyl caprinate) 1326 1332 3.46 (10) 3.03 (33) 4.39 (12) 2.24 (4) 2.18 (43) 1.13 (3) 0.80 (5) 1.54 (5) 

69 650 0.552 2-Methylpropyl octanoate (Isobutyl caprylate) 1348 1351 6.42 (7) 5.16 (22) 5.51 815) 4.20 85) 3.84 (1) 4.48 (5) 3.98 (6) 4.69 (3) 

70 730 0.552 3-Methylbutyl octanoate (Isoamyl caprylate) 1444 1456 79.33 (5) 63.38 (12) 79.85 (10) 63.74 (4) 36.75 (19) 36.64 (5) 26.12 (26) 27.90 (16) 

71 840 0.608 

1-[2-(Isobutyryloxy)-1-methylethyl]-2,2-

dimethylpropyl 2-methylpropanoate 

(m/z = 243,159,111,83,71,43)  

- 1607 8.09 (4) 4.56 (11) 6.28 (26) 4.56 (18) 6.28 (36) 4.23 (62) 8.49 (69) 4.53 (63) 

72 855 0.560 1-Methylethyl dodecanoate (Isopropyl laurate) 1627 1632 2.21 (15) 2.22 (17) 2.77 (11) 2.08 (31) 3.16 (7) 2.27 (24) 1.60 (2) - 

73 870 0.568 3-Methylbutylpentadecanoate (Isoamyl decanoate) 1651 1655 7.76 (11) 8.14 (13) 20.25 831) 10.59 (20) 4.59 (66) 2.95 (6) 2.00 (9) 3.95 (23) 

74 975 0.568 Methylethyl tetradecanoate (Isopropyl myristate) 1824 1834 3.28 (5) 7.10 (29) 4.79 (24) 2.90 (20) 2.40 (23) 4.37 (23) 2.57 (27) 2.70 (17) 
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75 1035 0.672 Methyl 14-methylpentadecanoate 1887 1919 0.89 (12) 0.63 (18) 0.86 811) 0.65 (16)     

76 1100 0.592 Methylethyl hexadecanoate (Isopropyl palmitate) 1999 2037 3.46 (23 6.33 (31) 6.31 814) 3.75 (4) 5.16 (6) 37.38 (61) 27.67 (27) 21.98 (22) 

77   Aromatics esters           

 530 1.192 Methyl 2-hydroxibenzoate (Methyl salicylate) 1190 1207 - 1.33 (21) 1.30 816) 1.32 (19) 2.73 (9) 2.60 (36) - - 

78 720 0.960 2-Phenylethyl butanoate (2-Phenylethyl butyrate) 1442 1439 0.69 (32) 0.74 (29) 0.74 (13) 0.42 (23) - - - - 

79 885 0.936 Hexyl 2-hydroxybenzoate (n-Hexyl salicylate) 1682 1678 0.55 (14) 0.58 (27) 0.86 (16) 0.53 (11) - - - - 

   Subtotal (GC Peak Area)   250.61 (7) 218.07 (19) 234.70 (16) 167.82 (7) 220.31 (15) 234.49 (24) 190.34 (28) 221.99 (23) 

   Subtotal (Number of Compounds)   20 22 22 22 20 18 17 16 

   Subtotal (%)   2.4 1.8 2.9 2.1 2.8 2.4 2.3 2.5 

   Alcohols           

   Aliphatics alcohols           

80 80 0.712 Propan-1-ol (Propyl alcohol) 595 578 6.92 (22) 8.41 (26) - - 28.68 (33) 22.30 (16) 24.52 (6) 17.77 (18) 

81 90 0.800 2-Methyl-propan-1-ol (Isobutyl alcohol) 600 602 146.93 (29) 145.09 (33) 163.10 (18) 139.19 (25) 151.29 (4) 134.26 (14) 156.19 (14) 147.66 (9) 

82 105 0.816 Butan-1-ol (Butyl alcohol) 653 637 11.15 (18) 11.04 (30) 10.53 (11) 7.76 (6) 19.14 (2) 18.04 (4) 17.60 (2) 17.16 (7) 

83 110 0.816 1- Penten-3-ol 656 649 - - - - 1.30e 1.28 (4) 1.33 (1) 1.39 (3) 

84 120 0.688 Pentan-3-ol (Diethyl carbinol) 710 672 - - - - 0.55 (18) 0.39 (14) - - 

85 120 0.712 Pentan-2-ol (Methylpropyl carbinol) 706 672 - - - - 0.87 (8) 0.59 (3) - - 

86 145 0.864 3-Methyl-butan-1-ol (Isoamyl alcohol) 737 731 942.69 (21) 1145.90 (20) 716.02 (5) 697.36 (3) 937.34 (4) 1301.66 (10) 717.12 (17) 725.79 (17) 

87 160 0.944 Pentan-1-ol (Amyl alcohol) 768 767 10.62 (26) 11.45 (35) 10.70 (4) 7.87 (15) 5.93 (3) 3.95 (1) 5.06 (27) 4.87 (3) 

88 155 4.840 Propane-1,2-diol (Propylene Glycol) 792 764 23.93 (19) 18.95 (8) 21.70 (8) 17.79 (20) - - - - 

89 160 1.200 Pent-2-en-1-ol 769 768 1.80 (34) 1.47 (31) 1.54 (9) 1.67 (12) - - - - 

90 170 3.144 Butane-2,3-diol  806 796 322.84 (18) 560.15 (34) 377.00 (19) 366.79 (2) 341.15 (40) 375.95 (60) 281.59 (9) 353.90 (24) 

91 175 3.608 Butane-2,2-diol  806 805 250.97 (14) 242.77 (17) 180.96 (17) 192.07 (14) 155.94 (36) 149.87 (31) 126.28 (7) 169.71 (1) 

92 215 0.992 3-Methyl-pentan-1-ol 854 852 70.98 (9) 73.92 (19) 67.96 (5) 55.30 (3) 34.14 (3) 35.25 (4) 36.34 (3) 35.54 (1) 

93 215 1.184 3-Ethoxy-propan-1-ol 855 852 8.97 (14) 15.29 (9) 11.53 (15) 5.63 (10) 7.74 (1) 6.94 (23) 8.86 (8) 7.51 (5) 

94 220 1.112 Hex-3-en-1-ol isomer 856 858 39.44 (14) 39.52 (19) 38.76 (4) 32.08 (6) 19.26 (4) 19.16 (7) 19.84 (1) 19.66 (3) 

95 225 1.168 Hex-3-en-1-ol isomer 864 861 6.86 (20) 8.30 (22) - - 5.74 (3) 4.98 (22) 3.98 (21) 2.72 (11) 

96 230 1.040 Hexan-1-ol 870 870 189.47 (19) 194.60 (15) 203.55 (16) 165.92 (7) 159.30 (4) 224.09 (4) 167.99 (5) 220.64 (13) 

97 260 0.832 Heptan-2-ol 905 906 2.97 (9) 3.35 (24) 2.76 (8) 2.18 (2) 4.29 (2) 3.81 (11) 1.40 (4) 1.22 (15) 

98 330 0.928 Heptan-1-ol 969 979 9.02 (16) 11.50 (27) 9.45 (13) 6.90 (5) 12.79 (18) 9.94 (14) 11.03 (6) 12.83 (23) 

99 335 0.936 Oct-1-en-3-ol 980 985 3.29 (14) 3.90 (25) 3.09 (15) 2.39 (8) 3.49 (31) 2.97 (12) 2.32 (13) 2.27 (8) 

100 365 1.016 3-Ethyl-4-methylpentanol 1020 1018 1.77 (8) 2.23 (26) 1.85 (6) - 3.27 (10) 2.76 (17) - - 

101 380 0.88 2-Ethyl-hexan-1-ol 1029 1034 3.97 (12) 5.64 (14) 4.01 (3) 3.55 (16) 12.55 (3) 5.29 (12) 6.48 (2) 5.91 (10) 

102 410 1.000 Octan-1-ol 1070 1068 23.28 815) 28.83 (23) 24.07 (5) 18.70 (4) - - - - 
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103 445 0.784 Nonan-2-ol 1098 1107 13.40 (12) 16.04 (29) 12.13 (13) 8.75 (5) 22.15 (13) 17.86 (15) 14.27 (32) 9.96 (18) 

104 515 0.880 Nonan-1-ol 1171 1189 6.36 (10) 9.32 (27) 7.34 (12) 6.34 (12) 9.30 (16) 4.34 (23) 3.53 (45) 3.81 (32) 

105 590 0.664 Dec-2-en-1-ol 1283 1277 2.05 (23) 6.15 (30) 3.53 (18) 4.33 (1) - - - - 

106 595 0.856 Decan-1-ol 1272 1283 9.04 (17) 12.76 (27) 11.72 (7) 7.62 (6) 15.42 (25) 10.86 (21) 8.87 (9) 8.48 (1) 

107 615 0.752 
Dec-2-en-4-ol 

(m/z = 71,58) 
- 1307 0.22 (17) 0.26 (6) 0.26 (16) 0.21 (22) - - - - 

108 620 0.744 Undecan-2-ol 1309 1313 1.89 (17) 2.28 (28) 2.50 (11) 1.58 (1) 4.83 (20) 2.81 (21) 0.97 (14) 1.30 (7) 

109 740 0.888 Dodecan-1-ol 1473 1470 8.64 (36) 8.67 (9) 10.69 (24) 11.56 (17) 3.73 (35) 2.65 (5) - - 

110 770 0.664 Tridec-2-en-1-ol 1585 1511 3.63 (4) 4.10 (22) 4.99 (24) 4.50 (16) - - - - 

   Aromatics           

111 400 2.96 Benzyl alcohol 1043 1059 1.05 (21) 1.49 (14) - - - - - - 

112 465 2.296 Phenylethyl alcohol 1116 1132 963.29 (10) 1009.95 (11) 861.99 (4) 1058.63 (13) 413.07 (47) 1059.83 (6) 905.76 (15) 841.07 (22) 

   Subtotal (GC Peak Area)   3087.44 (16) 3603.36 (20) 2763.72 (9) 2826.67 (9) 2373.25 (20) 3426.42 (15) 2521.34 (13) 2611.20 (17) 

   Subtotal (Number of Compounds)   30 30 27 26 26 26 22 22 

   Subtotal (%)   29.3 30.0 33.5 35.7 29.7 34.8 30.2 29.7 

   Volatile phenols           

113 430 2.504 2-Methoxy-phenol (Guaiacol) 1090 1092 0.84 (32) 1.54 (5) - - - - - - 

114 525 4.040 4-Ethylphenol 1178 1205 - - - - 10.23 (26) - - - 

115 600 1.664 4-Ethyl-2-methoxy-phenol (4-Ethylguaiacol) 1288 1290 0.08 (25) 0.10 (17) - - 18.05 (21) - - - 

116 625 2.560 2-Methoxy-4-vinylphenol (p-Vinylguaiacol) 1327 1322 9.01 (24) 16.03 (6) 12.33 (6) 8.03 (7) - - - - 

117 780 0.704 2,6-bis (1,1-dimethylethyl)-4-methyl-phenol  1514 1525 5.51 (5) 5.35 (4) 3.99 (5) 3.84 (9) 1.41 (38) 1.07 (5) 0.87 (11) 0.79 (12) 

118 780 1.488 2,4-bis (1,1-dimethylethyl)-phenol 1512 1526 28.86 (24) 40.71 (11) 41.29 (5) 25.58 (4) 27.32 (49) 22.56 (8) 24.97 (7) 25.43 (18) 

   Subtotal (GC Peak Area)   44.30 (22) 63.73 (9) 57.62 (6) 37.46 (5) 57.02 (36) 23.65 (8) 25.84 (7) 26.23 (17) 

   Subtotal (Number of Compounds)   5 5 3 3 4 2 2 2 

   Subtotal (%)   0.4 0.5 0.7 0.5 0.7 0.2 0.3 0.3 

   Aldehydes           

   Aliphatics           

119 100 0.472 3-Methylbutanal (Isovaleraldehyde) 652 625 9.44 (19) 7.93 (29) 10.07 (26) 10.09 (16) 3.10 (5) 3.58 (24) 8.07 (21) 8.07 (22) 

120 100 0.624 But-2-en-1-al 623 625 - - - - 7.16 (18) 2.66 (43) 8.80 (4) 6.03 (3) 

121 175 0.584 Hexanal 780 801 12.49 (9) - - - 2.29 (59) - 3.04 (11) 2.62 (4) 

122 220 0.744 2-Hexenal 855 857 - - - - - - 1.63 (4) 1.24 (5) 

123 260 0.640 Heptanal 906 906 5.16 (18) 1.63 (4) 4.38 (24) 5.21 (28) - - - - 

124 445 0.632 Nonanal 1106 1106 38.12 (1) 45.09 (23) 37.68 (8) 30.25 (18) 14.64 (6) 9.29 (16) 15.38 (25) 13.72 (11) 

125 535 0.632 Decanal 1208 1207 44.51 (15) 55.74 (21) 50.77 (9) 51.04 (22) 26.65 (1) 15.98 (18) 17.71 (33) 25.18 (24) 
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126 620 0.632 Undecanal 1310 1313 6.85 (16) 7.16 (25) 7.97 (25) 6.19 (32) 1.70 (19) - 3.97 (27) 2.15 (5) 

127 700 0.624 Dodecanal 1409 1415 34.77 (4) 38.17 (25) 33.94 (32) 28.52 816) 4.03 (7) 5.10 (38) 2.20 (5) 2.60 (26) 

   Aromatics           

128 310 1.360 Benzaldehyde 962 959 10.23 (5) 8.07 (9) 12.80 (6) 11.47 (4) 5.15 (9) 8.08 (16) 80.57 (5) 127.45 (23) 

129 390 1.480 Phenyl acetaldehyde 1049 1046 4.14 (19) 6.45 (3) 4.80 (6) 4.18 (4) 7.60 (24) 5.36 (23) 10.23 (6) 9.16 (14) 

   Subtotal (GC Peak Area)   165.71 (9) 170.24 (22) 162.40 (16) 146.94 (18) 72.32 (9) 50.05 (22) 151.59 (12) 198.22 (21) 

   Subtotal (Number of Compounds)   9 8 8 8 9 7 10 10 

   Subtotal (%)   1.6 1.4 2.0 1.9 0.9 0.5 1.8 2.3 

   Ketones           

   Aliphatics           

130 70 0.384 Butan-2-one 600 554 - 8.14 (29) 10.59 (8) 2.32 (36) - - - - 

131 115 0.528 3-Pentanone 650 660 - - - - - - 1.78 (5) 2.00 (5) 

132 130 1.224 3-Hydroxy-butan-2-one  711 697 4.02 (30) 9.12 (10) 6.17 (14) 5.93e 4.51 (7) 11.08 (16) 2.93 (10) 3.31 (14) 

133 140 0.712 3-Penten-2-one 729 719 - - - - - - 2.16 (3) 1.33 (3) 

134 150 0.44 
1-(ethenyloxy)-3-methyl-Butane 

(m/z = 114,99,70,55,43) - 742 - - - - - - 11.39 (10) 11.19 (11) 

135 170 0.600 
3-Ethoxy-butan-2-one 

(m/z = 73,45) - 790 7.30 (10) 5.94 (22) 6.79 (10) 4.79 (5) 1.87 (13) 2.00 (7) 2.63 (3) 2.54 (4) 

136 250 0.632 Heptan-2-one 889 895 14.50 (15) 13.25 822) 11.39 (25) 11.81 (1) 5.54e 0.41 (5) 8.00 (18) 8.67 (6) 

137 340 0.600 Octan-3-one 985 985 0.68 (16) 1.01 (45) - - - - 0.44 (1) 0.42 (5) 

138 335 0.736 6-Methyl-hept-5-en-2-one (Sulcatone) 986 985 7.63 (17) 10.26 (7) 10.45 (5) 9.50 (8) 5.18 (4) 3.13 - 5.14 (14) 

139 430 0.608 Nonan-3-one 1091 1084 1.28 (8) 1.44 (9) 0.97 (15) 0.73 (6) - - 0.80 (4) 0.73 (9) 

140 435 0.640 Nonan-2-one 1100 1090 43.80 (3) 46.09 (20) 34.89 (17) 25.81 (5) 8.18 (16) 8.28 (9) 24.57 (2) 24.94 (6) 

141 455 1.112 Octan-2,5-dione 1102 1119 - 2.68 (7) 2.31 (7) 1.65 (14) - - 1.47 (15) 1.45 (9) 

142 600 0.648 Undecan-3-one 1283 1289 2.31 (11) 1.54 (33) 1.35 (19) 1.01 815) - - - - 

143 605 0.672 Undecan-2-one 1291 1295 6.61 (13) 7.16 (32) 5.59 (44) 3.63 (7) 1.09 (62) 2.03e 0.79 (11) 1.27 (6) 

   Aromatics           

144 415 1.304 Acetophenone 1069 1074 2.11 (13) 2.76 (14) 2.43 (7) 1.71 (9) 2.03 (33) 1.48 (12) 1.65 (1) 1.46 (1) 

   Subtotal (GC Peak Area)   90.25 (9) 109.37 (19) 93.43 (16) 68.89 (6) 28.39 (12) 28.41 (12) 58.63 (7) 64.45 (8) 

   Subtotal (Number of Compounds)   10 12 11 11 7 7 12 13 

   Subtotal (%)   0.9 0.9 1.1 0.9 0.4 0.3 0.7 0.7 

   Furans           

145 110 0.416 Tetrahydro-furan 623 648 1.79 (20) 12.10 (5) 15.09 (4) 15.45 (8) 26.16 (13) 27.02 (9) 22.07 (11) 17.48 (4) 

146 205 1.808 2-Furanylmethanal (Furfural) 830 840 80.33 (6) 63.96 (4) 70.45 (1) 87.86 (3) 20.97 (34) 31.28 (12) 280.13 (1) 166.46 (7) 



 
 

235 
 

147 240 3.816 2-Furanylmethanol (Furfuryl alcohol) 866 867 69.93 (21) 103.81 (9) 85.18 (4) 69.35 (4) 44.87 (16) 42.02 (24) 41.90 (25) 29.89 (21) 

148 275 1.536 1-(2-furanyl)-ethanone (2-Acetylfuran) 910 917 3.45 (13) 4.13 (1) 3.78 (4) 3.36 (4) 3.51 (29) 2.94 (19) 3.54 (4) 3.33 (21) 

149 325 1.504 5-Methylfuran-2-carbaldehyde (5-Methylfurfural) 962 965 3.28 (8) 4.60 (9) 5.33 (13) 5.97 (13) - - 4.16 (26) 6.03 (52) 

150 325 1.536 Methyl furan-2-carboxylate (Methyl 2-furoate) 983 975 1.78 (7) 1.90 (9) 1.79 (6) 1.72 (4) 1.11 (31) 1.03 (14) - - 

151 345 0.568 2-Pentyl-furan 992 990 0.76 (9) 0.78 (15) 0.75 (14) 0.60 (19) 0.73 (41) 0.49 (34) 0.41 (50) 0.30 (7) 

152 345 1.224 Furfuryl ethanoate (Furfuryl acetate) 998 995 2.20 (1) 2.09 (11) 1.67 (18) 1.26 (2) - - - - 

153 350 1.112 Benzofuran 1006 996 1.42 (24) 1.66 (14) 1.12 (11) 1.08 (17) 1.26 (15) 1.23 (7) 1.22 (8) 1.27 (5) 

154 365 1.272 1-(2-Furanyl)-propan-1-one (2-Propionylfuran) 1008 1007 0.93 (13) 1.16 (18) 1.06 (3) 0.87 (9) 0.54 (7) 0.68 (8) 0.85 (11) 0.95 (7) 

155 390 1.288 2-Acetyl-5-methylfuran 1039 1046 - - - - - - 1.12 (16) 1.18 (7) 

156 405 1.224 Ethyl 2-furancarboxylate (Ethyl 2-furoate) 1062 1051 11.36 (12) 13.34 (19) 12.50 (3) 10.00 (2) 14.69 (18) 15.20 (18) 20.72 (6) 18.94 (11) 

157 485 0.696 2-n-Heptylfuran 1196 1154 - - - - 1.88 (11) 2.11 (8) 1.50 (15) 1.82 (10) 

   Subtotal (GC Peak Area)   177.22 (13) 209.52 (8) 198.72 (3) 197.52 (4) 115.72 (20) 123.99 (16) 377.63 (5) 247.64 (10) 

   Subtotal (Number of Compounds)   11 11 11 11 10 10 11 11 

   Subtotal (%)   1.7 1.7 2.4 2.5 1.4 1.3 4.5 2.8 

   Lactones           

158 275 2.336 γ-Butyrolactone 915 918 16.26 (11) 38.50 (19) 30.11 (10) 25.00 (6) 28.79 (2) 27.23 (8) 23.44 (9) 25.23 (10) 

159 610 1.144 3-methyl-4-octanolide (Whiskey lactone) 1310 1301 2.37 (12) 4.79 (6) 3.39 (4) 2.32 (9) 1.93 (33) 1.76 (37) 2.11 (11) 1.98 (10) 

160 630 1.288 β-Methyl-γ-octalactone 1340 1327 2.52 (30) 5.43 (7) 3.56 (7) 2.70 (6) 1.95 (37) 2.36 (11) 2.07 (11) 1.97 (19) 

161 670 1.272 γ-Nonanoic lactone 1360 1377 - 0.53 (20) - - - - - - 

   Subtotal (GC Peak Area)   21.15 (14) 49.25 (16) 37.06 (10) 30.01 (6) 32.66 (6) 31.35 (10) 27.62 (9) 29.18 (11) 

   Subtotal (Number of Compounds)   3 4 3 3 3 3 3 3 

   Subtotal (%)   0.2 0.4 0.4 0.4 0.4 0.3 0.3 0.3 

   Acetals           

162 130 0.488 1,1-Diethoxy-ethane 719 695 242.57 (4) 182.53 (20) 204.36 (30) 153.83 (9) 23.07 (18) 105.06 (7) 177.05 (33) 210.75 (12) 

163 155 0.512 2,4,5-Trimethyl-1,3-dioxolane 739 754 171.56 (26) 170.68 (11) 274.98 (22) 231.01 (19) 16.40 (32) 140.64 (10) 137.51 (22) 271.64 (10) 

164 225 0.440 
1,1-Diethoxy-2-methyl-propane (Isobutanal 

diethyl acetal) 
858 863 2.66 (4) 2.20 (21) 1.11 (20) - 0.57 (14) 0.95 (9) 1.69 (15) 1.82 (12) 

165 235 0.456 1-(1-Ethoxyethoxy)-butane 872 876 - - - - - - 5.48 (2) 4.36 (9) 

166 310 0.464 1,1-Diethoxy-3-methyl-butane  954 953 5.76 (15) 3.76 (20) 2.25 (31) 1.31 (17) 3.30 (26) 2.61 (10) 6.83 (16) 7.23 (15) 

167 325 0.480 
1-(1-Ethoxyethoxy)-pentane (Acetaldehyde ethyl 

amyl acetal) 
977 974 69.54 (12) 61.58 (21) 39.41 (24) 28.36 (15) - 15.97 (21) 44.45 (10) 49.17 (7) 

168 365 0.696 1,1-Diethoxy-pentane 1016 1017 - - - - - - 2.42 (11) 2.11 (9) 

   Subtotal (GC Peak Area)   492.08 (13) 420.75 (17) 522.12 (25) 414.51 (15) 43.34 (24) 265.22 (10) 375.43 (25) 547.10 (11) 

   Subtotal (Number of Compounds)   5 5 5 4 4 5 7 7 



 

236 
 

   Subtotal (%)   4.7 3.5 6.3 5.2 0.5 2.7 4.5 6.2 

   Thiols and others sulphur compounds           

169 115 0.608 Methyl thiolacetate 701 660 11.11 (9) 10.03 (26) 10.49 (10) 8.94 (12) 3.23 (18) 4.52 (8) 4.70 (8) 4.66 (3) 

170 140 0.624 Dimethyl disulfide 722 719 0.78 (4) 1.30 (12) - - - - - - 

171 155 0.640 Ethyl ethanethioate (Ethyl thioacetate) 756 754 4.17 (26) 3.80 (21) 3.90 (14) 3.18 (10) - 1.51 (9) 1.32 (11) 1.57 (5) 

172 340 1.216 2-Methyl-tetrahydrotiophen-3-one 994 991 19.06 (9) 20.67 (5) 19.97 (3) 18.44 (5) 13.15 (47) 7.48 (38) 1.16 (9) 1.17 (6) 

173 350 2.168 3-(Methylthio)-propan-1-ol (Methionol) 982 1002 9.83 (10) 21.27 (1) 16.83 (16) 10.07 (19) 14.31 (13) 11.17 (5) 13.06 (9) 13.93 (12) 

174 445 0.912 Ethyl 3-(methylthio)propionate 1098 1101 - - - - 1.17 (7) 1.31 (12) 1.34 (12) 1.30 (8) 

   Subtotal (GC Peak Area)   44.95 (11) 57.07 (8) 51.19 (9) 40.63 (11) 31.86 (27) 25.99 (16) 21.59 (18) 22.63 (20) 

   Subtotal (Number of Compounds)   5 5 4 4 4 5 5 5 

   Subtotal (%)   0.4 0.5 0.6 0.5 0.4 0.3 0.3 0.3 

   Norisoprenoids           

175 405 0.72 3,5,5-Trimethylcyclohex-2-enone (Isophorone) 1118 1062 - - - - 0.30 (39) - - - 

176 600 0.600 Vitispirane 1281 1289 3.70 (11) 4.56 (1) 4.30 (24) 2.06 812) 18.31 (11) 22.47 (8) 28.05 (5) 27.43 (2) 

177 660 0.744 1,1,6-Trimethyl-1,2-dihydro-naphathalene (TDN) 1354 1363 1.08 (8) 8.80 (31) 0.95 (19) 3.80 (13) 2.93 (20) 3.35 (6) 4.46 (9) 3.98 (9) 

178 675 0.848 β-Damascenone isomer 1359 1388 12.02 (18) 14.49 (33) 11.69 (22) 7.47 (6) - - - - 

179 685 0.792 β-Damascenone isomer 1359 1395 0.62 (21) 0.81 (25) 0.55 (34) - 7.05 (28) 7.44 (19) 10.23 (7) 8.80 (10) 

180 735 0.728 Geranyl acetone 1453 1463 21.03 (34) 28.28 827) 34.39 (15) 18.65 (9) 20.01 (33) 9.04 (20) 8.64 (25) 11.20 (9) 

181 880 1.016 Methyl dihydro jasmonate 1650 1671 3.97 833) 5.73 (22) 3.89 (20) 3.45 (33) 1.29 (6) 1.91 (40) 1.05 (34) 1.14 (33) 

   Subtotal (GC Peak Area)   42.42 (26) 62.67 (27) 55.77 (18) 35.43 (11) 49.88 (23) 44.21 (14) 52.44 (10) 52.56 (6) 

   Subtotal (Number of Compounds)   6 6 6 5 6 5 5 5 

   Subtotal (%)   0.4 0.5 0.7 0.4 0.6 0.5 0.6 0.6 

   Terpenic compounds           

   Monoterpenic compounds           

182 285 0.448 α-Pinene 934 932 0.95 (27) 1.15 (28) 0.76 (7) 0.96 (24) - - - - 

183 340 0.520 β-Pinene 980 990 0.52 (12) 0.67 (23) - - - - - - 

184 345 0.504 α-Terpinene 1018 995 - - - - 1.21 (29) 1.06 (6) 0.87 (11) 0.90 (12) 

185 375 0.520 Limonene 1031 1028 42.50 (4) 65.67 (23) 19.78 (2) 35.27 (4) 19.83 (12) 22.55 (2) 15.91 (6) 18.35 (8) 

186 410 0.792 Dihydromyrcenol 1072 1068 4.65 (17) 6.48 (24) 5.86 (23) 3.64 (14) - - - - 

187 435 0.896 Linalool 1105 1095 24.42 (13) 27.96 (38) 20.86 (23) 14.07 (3) 28.17 (18) 24.04 (15) 17.21 (32) 21.27 (20) 

188 450 0.968 Hotrienol 1110 1112 1.09 (10) 1.21 (29) 1.07 (7) - 2.23 (54) 1.65 (23) 0.97 (26) 0.99 (26) 

189 490 0.656 Nerol oxide 1172 1154 1.50 (11) 1.94 (21) 1.46 (16) - 2.45 (39) 2.44 (10) 3.43 (8) 2.88 (15) 

190 495 1.088 endo-Borneol 1165 1166 0.60 (3) 1.82 (31) 2.02 (19) 1.07 (20) - - - - 
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191 520 0.992 α-Terpineol 1224 1195 3.66 (32) 7.08 (17) 8.77 (23) 4.10 (8) 5.08 (33) 4.16 (20) 5.16 (10) 5.26 (28) 

192 560 0.976 β-Citronellol 1234 1242 4.58 (24) 5.43 (14) 5.14 (5) 3.05 (7) 1.71 (11) 2.43 (9) 2.13 (13) 2.22 (7) 

193 580 0.552 Myrtenol 1264 1265 2.70 (6) 5.58 (19) 2.58 (22) 1.32 (14) 4.31 (22) 3.09 (11) - - 

194 580 1.08 Geraniol 1265 1272 2.08 (24) 3.06 (15) 2.29 (4) 1.83 (5) 1.39 (4) 3.72 (28) - - 

195 605 0.560 Nerol 1245 1295 - - - - 3.34 (4) 3.15 (20) 3.29 (27) 4.43 (32) 

196 780 0.944 Limonene dioxide 1294 1304 6.36 (31) 4.79 (28) 4.39 (28) 3.46 (11) - 4.40 (19) 1.94 (60) 1.85 (35) 

   Sesquiterpenic compounds           

197 815 0.784 Nerolidol 1564 1573 2.49 (35) 3.48 (24) 5.72 (5) 4.22 (17) 4.66 (8) 4.92 (14) 2.54 (7) 4.37 (18) 

198 995 0.752 Farnesol 1792 1801 1.39 (25) 2.81 (7) 4.37 (2) 2.85 (18) 4.46 (18) 2.40 (18) 3.44 (25) 5.16 (13) 

   Subtotal (GC Peak Area)   99.50 (13) 139.15 (22) 85.07 (12) 75.84 (7) 78.84 (18) 80.01 (12) 56.91 (19) 67.67 (17) 

   Subtotal (Number of Compounds)   15 15 14 12 12 13 11 11 

   Subtotal (%)   0.9 1.2 1.0 1.0 1.0 0.8 0.7 0.8 

   Total (GC Peak Area)   
10543.20 (13) 12011.51 

(16) 

8247.38 (15) 7922.09 (12) 
7976.33 (16) 9836.17 (16) 8343.84 (16) 8792.76 (17) 

   Total (Number of Identified Compounds)   167 172 163 157 148 146 148 148 

a Retention times for first (1tR) and second (2tR) dimensions in seconds. 
b RI, Retention Index reported in the literature for HP-5 GC column or equivalents (Ansorena et al., 2000; Campeol et al., 2003; Cardeal et al., 2008; Engel et al., 2002; Eyres et al., 2005; Fan & Qian, 2006; Högnadóttir & Rouseff, 2003; Jordán et al., 2002; 

 Leffingwell & Alford, 2005; Perestrelo et al., 2011; Petronilho et al., 2011; Pino et al., 2005; Robinson A.L., 2011a; Rocha et al., 2007; Salvador et al., 2013; Silva et al., 2015; Silva et al., 2010, Jalali et al., 2012). 
c RI: retention index obtained through the modulated chromatogram. d Mean of three replicates. e The compound was only detected in one replicate. f Relative standard deviation, expressed in percentage, in parenthesis. 
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Table S2. Volatile Compounds Identified by HS-SPME/ GC×GC -ToFMS in the red wine samples (Chapter II.3) 

Peak 

number 

1tR 
a 

(s) 

2tR 
a 

(s) 
Compound RIlit.

b RIcal
c 

After 2 months of storage  After 9months of storage 

      
Untreated SO2 425 MPa 500 MPa  Untreated SO2 425 MPa 500 MPa 

      Peak Aread (x105) and RSD f (%) 

   Carboxylic Acids           

1 95 3.176 Acetic acid 619 600 729.59 (15) 681.43 (12) 269.35 (12) 201.66 (9) 297.91 (19) 255.73 (13) 134.46 (20) 243.18 (17) 

2 155 3.856 
2-Methylpropanoic acid (Isobutyric 

acid) 
762 767 21.38 (3) 19.58 (16) 21.88 (17) 29.50 (3) - - - - 

3 175 4.632 Butanoic acid (Butyric acid) 808 806 9.04 (22) 6.71 (23) 9.24 (28) 16.55 (13) - - - - 

4 225 3.896 2-Methyl butanoic acid 867 878 23.20 (18) 22.50 (30) 35.65 (11) 31.10 (6) - - - - 

5 235 3.680 
3-Methylbutanoic acid (Isovaleric 

acid) 
880 876 30.86 (13) 24.79 (41) 33.21 (1) 27.17 (30) 30.05 (2) 26.36 (23) 27.77 (6) 23.58 (35) 

6 360 3.864 Hexanoic acid (Caproic acid) 1015 1017 89.02 (10) 109.65 (16) 100.30 (22) 143.71 (11) 75.70 (29) 75.35 (10) 79.96 (10) 71.68 (21) 

7 525 2.704 Octanoic acid (Caprylic acid) 1203 1179 108.03 (27) 131.33 (26 96.42 (18) 141.13 (11) 85.56 (16) 62.11 (5) 49.66 (12) 51.63 (27) 

8 690 2.056 n-Decanoic acid (n-Caprinic acid) 1380 1372 17.59 (19) 15.67 (3) - -     

9 950 1.624 Tetradecanoic acid  1779 1768 - - - - 10.62 (43) 5.76 (18) - 7.31 (26) 

10 1070 1.488 n-Hexadecanoic acid (Palmitic acid) 1985 1984 - 11.98 (21) - - 20.03 (24) 24.58 (33) - 18.66 (37) 

   Subtotal (GC Peak Area)   1028.69 (16) 1023.64 (16) 566.05 (15) 591.81 (11) 519.88 (20) 449.89 (13) 291.85 (15) 416.03 (21) 

   Subtotal (Number of Compounds)   8 9 7 7 6 6 4 6 

   Subtotal (%)   10.6 10.3 7.2 7.0 6.9 7.9 5.3 7.3 

   Esters           

   Aliphatics ethyl esters            

11 95 0.456 Ethyl ethanoate (Ethyl acetate) 613 613 577.06 (26) 126.67 (1) 330.65 (10) 3030.71 (7) 292.36 (22) 288.11 (13) 208.89 (6) 234.88 (8) 

12 125 0.496 Ethyl propanoate (Ethyl proprionate) 714 684 75.20 (11) 86.36 (12) 61.17 (22) 68.20 (4) 64.33 (9) 51.56 (8) 40.41 (5) 44.56 (15) 

13 150 0.488 
Ethyl 2-methylpropanoate (Ethyl 

isobutyrate) 
762 742 31.47 (14) 33.44 (11) 28.14 (31) 32.57 (2) 53.80 (12) 42.99e 43.74 (2) 42.84e 

14 165 0.632 Diethyl carbonate 785 778 1.58 (7) 1.41 (13) 1.22 (18) 1.39 85) 1.36 (4) 0.74 (56) 1.41 (15) 1.21 (6) 

15 180 0.536 Ethyl butanoate (Ethyl butyrate) 800 807 186.27 (9) 199.73 (11) 175.33 (20) 219.00 (3) 175.32 (28) 142.67 (9) 116.62 (21) 144.12 (3) 
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16 190 1.184 
Ethyl 2-hydroxypropanoate (Ethyl 

lactate) 
815 820 33.87 (6) 27.34 (5) 32.15 811) 33.74 (5) 255.38 (10) - 45.11 (3) 50.34 (4) 

17 210 0.656 Ethyl but-2-enoate 844 845 13.35 (5) 13.95 (3) 11.75 (17) 13.89 (1) 9.60 (5) 7.64 (3) 8.09 (4) 7.88e 

18 215 0.512 
Ethyl 2-methylbutanoate (Ethyl 2-

methylbutyrate) 
849 851 13.53 (14) 19.08 (14) 18.92 (6) 21.34 (9) 21.65 (4) 17.85 (6) 18.40 (17) 16.68 (2) 

19 220 0.528 
Ethyl 3-methylbutanoate (Ethyl 

isovalerate) 
856 857 34.65 813) 41.56 (28) 37.46 (35) 32.52 (3) 40.69 (6) 34.04 (4) 32.27 (15) 35.05 (1) 

20 260 0.552 Ethyl pentanoate (Ethyl valerate) 898 906 11.64 (24) 11.73 (14) 10.88 (22) 12.72 (8) 6.89 (17) 4.76 (27) 4.87 (7) 4.91 (15) 

21 300 1.352 Ethyl 3-hydroxy-butanoate 949 949 10.56 (6) 9.07 (14) 10.68 (20) 11.98 (10) 5.82 (7) 4.88 (15) 5.63 (12) 5.54 (7) 

22 315 0.568 Ethyl 4-methyl-pentanoate 964 968 2.21 (6) 2.03 (4) 2.92 (29) 2.90 (20) - - - - 

23 320 0.936 Ethyl 2-hydroxyisovalerate 968 969 - - - - 6.65 (4) 4.15 (11) - - 

24 340 0.632 Ethyl hex-5-enoate 975 990 20.02 (17) 23.02 (10) 19.01 (32) 24.27 (3) 13.10 (18) 12.39 (2) 12.56 (10) 9.79 (3) 

25 350 0.576 Ethyl hexanoate  1001 1001 417.89 (35) 518.75 (22) 279.76 (18) 359.73 (26) 257.93 (5) 301.05 (12) 370.05 (17) 389.38 (9) 

26 360 0.632 Ethyl hex-3-enote 1006 1012 17.06 (40) 18.59 (25) 16.96 (6) 16.84 (20) 6.01e 6.19 (16) 10.99 (9) 10.79 (8) 

27 390 0.64 Ethyl hex-2-enoate 1040 1045 56.39 (12) 57.12 (7) 51.70 (34) 66.49 (4) 32.00 (10) 32.05 (2) 39.36 (28) 32.50 (1) 

28 405 0.952 Ethyl 2-hydroxy-4-methyl-pentanoate 1060 1062 11.40 (8) 10.64 (10) 13.12 (20) 14.30 (3) 29.21 (12) 29.40 (11) 13.14 (16) 14.24 (11) 

29 420 1 Diethyl malonate 1069 1079 - - - - 1.30 (58) 0.65 (4) 0.62 (31) 0.57 (8) 

30 420 2.040 Ethyl 4-hydroxybutanoate 1039 1080 - - - - 61.59 (10) 38.88 (9) 28.29 (7) 33.99 (25) 

31 435 0.616 Ethyl hept-4-enoate 1090 1095 - - - - 4.45 (32) 3.85 (3) 3.66 (10) 2.78 (6) 

32 440 0.658 Ethyl heptanoate 1104 1100 47.40 (22) 42.47 (10) 39.77 (17) 42.17 (12) 26.88 (8) 22.72 (6) 20.18 (9) 20.44 (6) 

33 450 1.048 Ethyl methyl succinate 1120 1113 - - - . 5.91 (6) 4.24 (6) 1.58 (18) 1.30 (7) 

34 515 0.936 Diethyl butanedioate  1182 1189 78.03 (17) 62.09 (9) 63.87 (35) 76.31 (5) 153.81 (1) 170.88 (15) 143.98 (2) 161.06 (24) 

35 520 0.632 Ethyl 7-octenoate 1186 1195 - - - - 10.61 (18) 9.18 (5) 9.10 (15) 7.77 (28) 

36 530 0.576 Ethyl octanoate  1199 1207 500.57 (36) 557.02 (2) 280.71(1) 236.28 (13) 287.78 (31) 275.19 (17) 208.40 (14) 230.55 (39) 

37 570 0.64 Ethyl oct-2-enoate 1246 1254 - - - - 0.80 (20) 0.74 (15) - - 

38 595 0.880 
Ethyl-n-propyl butanedioate  

(m/z = 129,101,73,43)  
- 1283 - - - - 2.93 (21) - - - 

39 610 0.576 Ethyl nonanoate  1294 1301 34.04 (33) 35.53 (5) 38.18 (16) 37.96 (11) 7.94 (30) 12.08 (13) 3.77 (40) 2.25 (17) 

40 640 0.816 
Ethyl butyl butanedioate  

(m/z = 147,129,101,56)  
- 1339 - - - - 9.83 (10) 8.27 (4) 1.96 (19) 1.43 (15) 

41 675 0.672 Ethyl dec-9-enoate 1382 1389 18.00 (29) 8.95 (13) 24.92 (8) 17.77 (37) - - - - 

42 690 0.584 Ethyl decanoate (Ethyl caprinate) 1394 1401 305.35 (25) 346.68 (11) 186.32 (6) 189.93 (35) 120.76 (7) 102.17 (9) 80.92 (13) 87.85 (7) 

43 715 0.816 Ethyl 3-methylbutyl succinate 1429 1435 3.74 (21) 2.87 (5) 2.71 (34) 3.89 (5) 65.52 (12) 63.22 (7) 14.83 (23) 12.41 (15) 

44 835 0.592 Ethyl dodecanoate (Ethyl laurate) 1593 1601 30.46 (15) 20.31 (11) 17.74 (26) 20.99 (11) 18.42 (47) 6.09 (28) 3.95 (15) 3.46 (14) 

45 965 0.600 Ethyl tetradecanoate (Ethyl myristate) 1793 1801 1.95 (27) 1.81 (30) 3.56 (11) 2.07 (7) 0.95 (9) 1.79 (25) 1.01 (13) 0.89 (21) 

46 1085 0.616 Ethyl hexadecanoate (ethyl palmitate) 1994 2010 5.31 (27) 5.68 (25) 3.45 (20) 5.09 (26) 4.03 (18) 4.11 (10) 4.44 (19) 3.00 (27) 

   Aromatics ethyl esters           
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47 510 0.96 Ethyl benzoate 1179 1184 3.78 (8) 3.72 (8) 3.65 (33) 4.49 (3) 5.59 (17) 2.86 (10) 2.56 (9) 2.71 (7) 

48 570 1.016 Ethyl 2-phenylethanoate  1251 1254 4.84 (17) 4.83 (6) 5.00 (28) 5.75 (5) 3.46 (33) 3.01 (7) 3.65 (28) 3.31 (13) 

49 655 0.968 Ethyl dihydrocinnamate 1347 1357 0.97 (12) 0.89 (3) 1.17 (15) 1.04 (3) 1.09 (10) 0.75 (10) - - 

   Subtotal (GC Peak Area)   2548.58 (26) 2293.34 (11) 1771.87 (14) 1879.33 (14) 
2065.75 

(15) 

1711.16 

(12) 

1504.41 

(12) 

1620.47 

(14) 

   Subtotal (Number of Compounds)   30 30 30 30 37 35 33 33 

   Subtotal (%)   26.3 23.0 22.1 22.1 27.9 30.1 27.3 28.5 

   Aliphatic acetate esters           

50 75 0.456 Methyl ethanoate  559 566 10.35 (18) 11.40 (12) 12.11 (31) 9.43 (10) 12.12 (50) 5.55 (53) 9.19 (26) 11.16 (7) 

51 125 0.52 n-Propyl ethanoate  712 684 18.49 (5) 20.24 (12) 16.03 (12) 19.13 (8) 10.49 (24) 10.74 (15) 6.10 (5) 6.44 (6) 

52 145 1.328 Methyl 2-hydroxypropanoate 748 732 - - - - 1.15 (17) 1.49 (2) - - 

53 160 0.52 2-Methylpropyl ethanoate  767 766 109.77 (9) 112.75 (6) 92. 25 (15) 101.47 (7) 53.17 (6) 44.26 (2) 80.69 (4) 74.64 (1) 

54 190 0.56 Butyl ethanoate  812 819 22.26 (2) 23.82 (1) 21.60 (16) 22.11 (18) 6.49 (15) 5.80 (15) 5.35 (16) 4.74 (13) 

55 235 0.704 1-Methoxy-2-propyl acetate 870 876 - - - - 3.21 (4) 3.17 (23) 2.77e 3.15 (1) 

56 235 3.208 2-Methylbutyl ethanoate  885 879 - - - - 8.21 (11) 6.55 (5) 2.90 (50) 3.54 (13) 

57 240 0.544 3-Methylbutyl ethanoate  876 882 489.58 (4) 362.34 (23) 339.37 (10) 536.13 (14) 243.43 (7) 165.74 (21) 204.71 (35) 155.55 (2) 

58 360 0.64 Hexyl ethanoate  1014 1006 97.87 (7) 92.36 (10) 83.30 (23) 93.37 (1) 46.70 (14) 35.33 (6) 36.89 (3) 39.48 (7) 

59 455 0.592 Heptyl ethanoate  1118 1118 6.48 (27) 5.24 (10) 5.00 (30) 6.17 (17) - 2.21 (40) 1.19 (9) 1.70 (20) 

60 535 0.624 Octyl ethanoate 1213 1211 3.89 (23) - - - - - - - 

   Acetates aromatics esters           

61 580 1.064 2-Phenylethyl ethanoate  1256 1260 73.93 (18) 66.43 (6) 63.81 (28) 82.47 (5) 33.43 (10) 27.41 (5) 24.79 (15) 25.91 (9) 

   Subtotal (GC Peak Area)   832.61 (7) 694.57 (16) 633.48 (15) 870.28 (11) 418.42 (10) 308.24 (15) 374.56 (23) 326.31 (4) 

   Subtotal (Number of Compounds)   9 8 8 8 10 11 10 10 

   Subtotal (%)   8.6 7.0 7.9 10.2 5.6 5.4 6.8 5.7 

   Aliphatic esters           

62 170 0.568 3-Methylbutyl methanoate  792 780 6.03 (6) 5.34 (10) 5.83 (32) 5.58 (1) 0.99 (77) 0.71 (30) 1.25 (4) 1.44 (3) 

63 280 0.600 Methyl hexanoate (Methyl caproate) 934 927 17.17 (20) 16.66 (11) 14.38 (27) 10.40 (28) 7.76 (8) 5.94 (11) 6.51 (6) 4.75 (26) 

64 300 1.352 
2-Methylpropyl butanoate (Isobutyl 

butyrate) 
961 949 - 1.54 (14) 1.13 (29) 1.70 (8) 1.17 (13) 0.85 (7) 0.55 (26) 0.52 (1) 

65 320 0.560 Pentyl propanoate (Amyl propionate) 969 972 19.42 (20) 25.46 (37) 31.60 (15) 39.66 (35) - - - - 

66 365 0.520 
3-Methylpropyl butanoate (Isoamyl 

butyrate) 
1013 1017 11.07 (18) 11.18 (3) 7.35 (22) 9.13 (16) 14.81 (25) 14.83 (20) 16.11 (16) 18.98e 

67 405 0.544 
Butyl 3-methylbutanoate (n-Butyl 

isovalerate) 
1048 1062 - - - - 11.02 (7) 9.00 (1) 7.43 (11) 7.33 (4) 

68 410 1.080 
3-Methylbutyl 2-hydroxypropanoate 

(Isoamyl lactate) 
1047 1068 8.32 (8) 7.90 (3) 7.90 (12) 9.40 (13) 78.38 (18) 65.90 (8) 5.80 (3) 8.33 (25) 

69 420 0.936 Octy methanoate (Octyl formate) 1104 1079 - - - - 69.60 (11) 41.87 (1) 36.53 (3) 37.11 (9) 
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70 440 0.560 Propyl hexanoate (Propyl caproate) 1093 1101 2.41 (19) 2.27 (4) 2.39 (33) 2.60 (12) 2.82 (14) 2.16 (10) 1.67 (12) 1.61 (12) 

71 445 0.528 2-Methylbutyl 2-methylbutanoate 1103 1107 - - - - 1.98 (11) 1.71 (15) 1.07 (6) 1.12e 

72 465 0.600 Methyl octanoate (Methyl caprylate) 1126 1130 29.65 (16) 33.78 (9) 34.24 (28) 36.76 (6) 18.26 (10) 17.60 (6) 15.47 (9) 16.01 (7) 

73 490 0.536 
2-Methylpropyl hexanoate (Isobutyl 

caproate) 
1148 1160 7.75 (21) 8.97 (21) 6.52 (28) 8.76 (5) 8.31 (23) 6.28 (3) 7.07 (10) 6.79 (8) 

74 515 0.592 Butyl hexanoate (Butyl caproate) 1189 1188 2.15 (36) - 0.74 (13) 0.85 (5) - - - - 

75 560 0.544 
Hexyl 2-methyl-butanoate (Hexyl 2-

methyl-butyrate) 
1234 1242 8.68 (21) - 6.31 (19) 7.93 (8) 6.05 (29) 3.00 (7) 3.74 (30) 6.47 (11) 

76 575 0.552 
3-Methylbutyl hexanoate (Isoamyl 

caproate) 
1250 1259 54.02 (22) 81.10 (17) 69.31 (11) 76.75 (9) 28.33 (12) 25.65 (10) 24.09 (11) 24.36 (6) 

77 600 0.600 Propyl octanoate (Propyl caprylate) 1289 1296 2.51 (27) 2.99 (8) 2.56 (25) 3.97 (20) - - - - 

78 635 0.600 Methyl decanoate (Methyl caprinate) 1326 1332 1.58 (29) 2.03 (8) 2.05 (30) 2.37 (3) 0.50 (26) 0.61 (12) 0.40 (7) 0.37 (11) 

79 650 0.552 
2-Methylpropyl octanoate (Isobutyl 

caprylate) 
1348 1351 - 3.87 (9) 4.04 (29) 4.35 811) 2.63 (3) 4.86 (3) 2.66 (30) 3.00 (31) 

80 730 0.552 
3-Methylbutyl octanoate (Isoamyl 

caprylate) 
1444 1456 24.10 (23) 25.76 (7) 25.19 (16) 25.85 (2) 16.87 (14) 14.20 (14) 10.91 (14) 10.44 (9) 

81 840 0.608 

1-[2-(Isobutyryloxy)-1-methylethyl]-

2,2-dimethylpropyl 2-

methylpropanoate 

(m/z = 243,159,111,83,71,43)  

- 1607 - - - - 2.04 (38) 4.57 (55) 2.60 (22) 2.42 (34) 

82 850 0.600 
1-Methylethyl dodecanoate (Isopropyl 

laurate) 
1624 1627 - 1.51 (20) 2.99 (23) 1.96 818) - - - - 

83 870 0.568 
3-Methylbutylpentadecanoate 

(Isoamyl decanoate) 
1651 1655 2.17 (36) 3.43 (23) 2.32 (43) 1.34 (9) 0.81 (29) 0.91 (13) - - 

84 975 0.568 
Methylethyl tetradecanoate (Isopropyl 

myristate) 
1824 1834 - - 2.41 (15) 2.94 (4) 1.95 (27) 2.42 (12) 2.13 (7) 2.51 (24) 

85 1100 0.592 
Methylethyl hexadecanoate (Isopropyl 

palmitate) 
1999 2037 - - 2.35 (3) 3.24 (51) 17.89 (29) 14.80 (30) 7.25 (9) 3.47 (3) 

   Aromatics esters           

86 505 1.328 
2-Phenylethyl methanoate (2-

Phenylethyl formate) 
1178 1178 0.90 (18) 0.75 (3) 1.10 (22) 0.91 (6) - - - - 

87 530 1.192 
Methyl 2-hydroxibenzoate (Methyl 

salicylate) 
1190 1207 1.68 (30) 1.24 (11) 1.75 (8) 1.39 (6) 12.07 (12) 3.08 (9) - - 

88 720 0.960 
2-Phenylethyl butanoate (2-

Phenylethyl butyrate) 
1442 1439 - - 0.81 (6) 0.69 (1) - - - - 

89 885 0.936 
Hexyl 2-hydroxybenzoate (n-Hexyl 

salicylate) 
1682 1678 - - 0.68 (26) 0.68 (17) - - - - 

   Subtotal (GC Peak Area)   199.63 (20) 235.78 (15) 235.94 (19) 259.21 (13 304.23 (15) 240.92 (10) 
282.48 

816) 
303.48 (10) 

   Subtotal (Number of Compounds)   17 18 24 24 22 22 20 20 

   Subtotal (%)   2.1 2.4 2.9 3.0 4.1 4.2 5.1 5.3 

   Alcohols           

   Aliphatics alcohols           

90 80 0.712 Propan-1-ol (Propyl alcohol) 595 578 18.06 (26) 10.10 (37) 15.47 (15) 15.39 (10) 50.99 (48) 19.75 (56) 21.91 (6) 22.21 (15) 

91 90 0.800 2-Methyl-propan-1-ol  600 602 405.98 (27) 367.88 (8) 306.10 (15) 307.66 (4) 282.60 (9) 188.87 (19) 229.63 (37) 282.24 (7) 
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92 105 0.816 Butan-1-ol (Butyl alcohol) 653 637 40.38 (28) 45.97 (16) 48.98 (17) 55.78 (1) 29.76 (25) 21.39 (22) 23.26 (3) 23.37 (1) 

93 110 0.816 1- Penten-3-ol 656 649 10.07 (1) 10.15 (13) 9.85 (26) 11.39 (8) 5.35 (23) 4.04 (21) 4.76 (3) 4.74 (3) 

94 120 0.688 Pentan-3-ol (Diethyl carbinol) 710 672 - - 1.45 (5) 1.36 (4) 2.65 (4) 1.14 (32) - - 

95 120 0.712 Pentan-2-ol (Methylpropyl carbinol) 706 672 - - - - 4.78 (14) 3.34 (16) - - 

96 145 0.864 3-Methyl-butan-1-ol (Isoamyl alcohol) 737 731 891.56 (9) 1333.04 (21) 612.80 (39) 776.30 (23) 1041.42 (8) 801.47 (9) 432.38 (15) 407.61 (22) 

97 160 0.944 Pentan-1-ol (Amyl alcohol) 768 767 25.17 810) 22.89 (6) 23.52 (16) 26.86 (4) 15.18 (29) 13.39 (7) - - 

98 160 1.200 Pent-2-en-1-ol 769 768 5.79 (18) 5.50 (10) 5.72 (15) 6.51 (4) - - - - 

99 170 3.144 Butane-2,3-diol  806 796 476.57 (11) 583.96 (25) 487.99 (30) 553.80 (14) - - - - 

100 175 3.608 Butane-2,2-diol  806 805 311.74 (28) 275.07 (20) 302.10 (25) 277.47 (27) - - - - 

101 215 0.992 3-Methyl-pentan-1-ol 854 852 82.61 (6) 79.91 (9) 85.52 (17) 94.90 (4) 34.29 (25) 28.32 (27) 25.05 (3) 28.21 (6) 

102 215 1.184 3-Ethoxy-propan-1-ol 855 852 5.09 (13) 4.57 (18) 4.19 (27) 5.10 (14) 8.43 (29) 3.16 (13) - 2.43 (9) 

103 220 1.112 Hex-3-en-1-ol isomer 856 858 14.40 (11) 11.75 (27) 1.78 (3) 2.03 (8) 8.01 (33) 5.39 (25) 6.56 (14) 5.72 (12) 

104 225 1.168 Hex-3-en-1-ol isomer 864 861 - - - - 2.62 (16) 3.46 (3) 3.71 (7) 4.40 (7) 

105 230 1.040 Hexan-1-ol 870 870 408.68 (3) 285.46 (25) 383.73 (23) 407.20 (14) 483.24 (35) 359.44 (15) 537.14 (11) 465.83 (11) 

106 230 1.296 Hex-2-en-1-ol 862 870 4.24 (38) 3.11 (10) 3.61 (32) 4.66 (10) - - - - 

107 260 0.832 Heptan-2-ol 905 906 9.74 (9) 9.56 (10) 10.14 (22) 12.07 (7) 14.73 (9) 6.74 (7) 4.12 (7) 4.30 (4) 

108 315 1.200 Hept-4-en-1-ol - 964 8.63 (6) 7.92 (4) 8.99 (17) 10.42 (6) - - - - 

109 330 0.928 Heptan-1-ol 969 979 88.73 (3) 94.03 (11) 147.17 (25) 125.70 (16) 68.14 (21) 76.56 (20) 68.55 (20) 90.17 (8) 

110 335 0.936 Oct-1-en-3-ol 980 985 11.33 (10) 11.71 (16) 13.65 (23) 16.08 (12) 11.04 (15) 8.26 (12) 5.61 (47) 4.19 (16) 

111 340 0.960 6-Methyl-hept-5-en-2-ol (Sulcatol) 992 990 1.59 (26) 3.47 (17) 1.77 (35) 1.52 (20) - - - - 

112 350 0.832 Octan-2-ol 997 1001 2.30 (7) 2.77 (13) 2.31 (8) 3.72 (24) - - - - 

113 355 0.752 Octan-3-ol 994 1006 3.65 (27) 3.85 (35) 2.99 (32) 3.42 (8) 4.91 (7) 2.86 (5) 1.64 (7) 1.67 (3) 

114 365 1.016 3-Ethyl-4-methylpentan-1-ol 1020 1018 3.57 (8) 3.40 (9) 3.74 (26) 3.85 (18) - - - - 

115 380 0.88 2-Ethyl-hexan-1-ol 1029 1034 5.25 (15) 4.45 (5) 5.89 (15) 7.04 (33) 5.74 (8) - 5.55 (8) 5.49 (5) 

116 410 1.000 Octan-1-ol 1070 1068 65.01 (12) 62.82 (6) 76. 34 (21) 75.94 (1) - - - - 

117 420 1.104 2-Octen-1-ol 1069 1079 3.09 (10) 2.83 (7) 3.06 (28) 3.43 (11) 5.92 (20) 3.05 (5) - - 

118 445 0.784 Nonan-2-ol 1098 1107 5.40 (15) 5.68 (24) 5.66 (22) 6.96 (4) 10.74 (15) 8.36 (15) 3.02 (21) 2.56 (29) 

119 515 0.880 Nonan-1-ol 1171 1189 42.11 (13) 39.74 (10) 44.18 (28) 48.55 (3) 26.71 (36) 14.67 (18) 35.60 (21) 25.40 (19) 

120 575 1.016 Dec-4-en-1-ol 1257 1260 3.51 (32) 3.23 (9) 3.52 (31) 4.45 (9) - - - - 

121 590 0.664 Dec-2-en-1-ol 1283 1277 - 3.88 (1) 3.83 (28) 5.42 (32) - - - - 

122 595 0.856 Decan-1-ol 1272 1283 16.33 (18) 14.59 (6) 16.64 (31) 19.33 (5) 13.89 (2) 8.72 (25) 10.01 (1) 11.00 (1) 

123 740 0.880 Dodecan-1-ol 1473 1470 6.56 (32) 6.69 (9) 7.42 (22) 7.43 (11) - - - - 

124 770 0.664 Tridec-2-en-1-ol 1585 1511 3.32 (20) 2.64 (11) 4.18 (8) 3.35 (9) - - - - 
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   Aromatics           

125 400 2.96 Benzyl alcohol 1043 1059 35.33 (12) 30.35 (9) 30.22 (24) 37.95 (3) 134.38 (18) 58.35 (4) - - 

126 465 2.296 Phenylethyl alcohol 1116 1132 1112.69 (10) 1177.32 (13) 1039.46 (5) 832.36 (2) 
1042.86 

(10) 
607.99 (19) 554.59 (12) 522.77 (14) 

   Subtotal (GC Peak Area)   4128.49 (12) 4530.26 (18) 3723.93 (21) 3775.43 (12) 
3308.37 

(15) 

2248.73 

(15) 

1973.10 

(16) 

1914.32 

(14) 

   Subtotal (Number of Compounds)   33 34 35 35 24 23 18 19 

   Subtotal (%)   42.6 45.5 46.4 44.4 44.7 39.5 35.9 33.7 

   Volatile phenols           

127 780 0.704 
2,6-bis(1,1-dimethylethyl)-4-methyl-

phenol  
1514 1525 4.51 (11) 4.88 (7) 4.90 (34) 5.37 (9) 1.06 (18) 1.65 (14) 1.10 (7) 1.43 (18) 

128 780 1.488 2,4-bis(1,1-dimethylethyl)-phenol 1512 1526 6.57 (31) 5.25 (8) 5.52 (12) 5.83 (9) 4.01 (34) 4.42 (21) 5.66 (15) 4.04 (20) 

   Subtotal (GC Peak Area)   11.09 10.13 10.42 11.20 5.07 (30) 6.07 (19) 6.76 (14) 5.47 (19) 

   Subtotal (Number of Compounds)   2 2 2 2 2 2 2 2 

   Subtotal (%)   0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

   Aldehydes           

   Aliphatics           

129 100 0.472 3-Methylbutanal (Isovaleraldehyde) 652 625 14.62 (9) 7.55 (19) 11.65 (14) 8.15 (11) 1.86 (13) 5.57 (3) 3.64 (7) 4.90 (29) 

130 175 0.584 Hexanal 780 801 - - - - 1.85 (11) 2.54 (15) 9.01 (2) 9.73 (7) 

131 445 0.632 Nonanal 1106 1106 22.75 (24) 26.33 (12) 28.83 (24) 29.61 (9) 11.13 (19) 10.57 (25) 9.96 (10) 8.10 (10) 

132 535 0.632 Decanal 1208 1207 30.47 (21) 33.66 (16) 39.31 (10) 47.15 (20) 26.81 (23) 34.38 (16) 31.19 (10) 15.25 (5) 

133 620 0.632 Undecanal 1310 1313 4.94 (37) 5.37 (23) 4.95 (31) 5.27 (4) 1.76 (17) 2.90 (10) 1.98 (7) - 

134 700 0.624 Dodecanal 1409 1415 19.00 (50) 16.14 (7) 11.29 (13) 6.12 (23) 2.97 (30) 2.45 (11) 3.35 (11) 2.47 (7) 

   Aromatics           

135 310 1.360 Benzaldehyde 962 959 147.71 (4) 321.62 (8) 366.01 (2) 350.26 (2) 197.75 (8) 214.41 (3) 444.94 (10) 473.16 (10) 

136 390 1.480 Phenyl acetaldehyde 1049 1046 10.01 (11) 9.09 (10) 10.98 (13) 12.19 (4) 6.66 (10) 6.50 (7) 12.55 (4) 15.51 (11) 

   Subtotal (GC Peak Area)   249.48 (14) 419.77 (9) 473.03 (5) 458.74 (5) 250.79 (10) 279.31 (5) 516.62 (9) 529.13 (10) 

   Subtotal (Number of Compounds)   7 7 7 7 8 8 8 7 

   Subtotal (%)   2.6 4.2 5.9 5.4 3.4 4.9 9.4 9.3 

   Ketones           

   Aliphatics           

137 110 0.512 3-Methyl-butan-2-one 600 554 5.53 (29) 4.90 (9) 3.63 (11) 3.28 (5) - - - - 

138 115 0.528 3-Pentanone 650 660 6.52 (22) 6.54 (15) 6.10 (34) 8.17 (12) - - 5.28(2) 5.27 (2) 

139 115 0.632 2,3-Pentanedione 658 660 19.16 (2) 23.59 (10) 13.47 (5) 14.51 (13) - - 26.98 (9) 27.78 (6) 

140 130 1.224 3-Hydroxy-butan-2-one  711 697 10.36 (6) 5.56 (9) 5.94 (6) 6.15 (10) - 1.27 (11) 4.50 (38) 5.81 (2) 
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141 140 0.712 3-Penten-2-one 729 719 - 0.59 (36) 0.36 (21) 0.63 (4) 9.46e 8.40 (17) 5.12 (3) 4.39 (3) 

142 165 0.664 Hexane-2,3-dione 786 778 0.90 (4) 3,66 (5) 3.77 (8) 4.04e - - 2.75 (5) 2.05 (2) 

143 175 0.664 Hexane-3,4-dione 793 801 - 0.80 (15) 1.20 (9) 1.11 (13) - - - - 

144 250 0.632 Heptan-2-one 889 895 5.50 (3) 5.23 (6) 5.30 (25) 5.16 (14) - 0.36 (15) 1.93 (19) 2.23 (7) 

145 260 0.688 4-Ethoxy-2-pentanone 900 906 - - - - 1.47 (14) 1.12 (5) 0.74 (5) 0.86 (19) 

146 335 0.600 Octan-3-one 985 985 5.42 (13) 5.66 (8) 4.99 (30) 6.30 (3) - - 2.46 (5) 2.32 (4) 

147 335 0.736 6-Methyl-Hept-5-en-2-one (Sulcatone) 985 988 13.16 (6) 14.67 (13) 15.07 (7) 15.70 (3) - - - - 

148 430 0.608 Nonan-3-one 1091 1084 1.00 (8) 1.10 (2) 0.68 (1) 1.34 (12) - - 2.46 (5) 2.32 (4) 

149 435 0.640 Nonan-2-one 1100 1090 11.16 (14) 8.26 (7) 10.04 (23) 10.98 (8) 0.64 (15) 1.15 (6) 4.50 (16) 4.77 (5) 

150 600 0.648 Undecan-3-one 1283 1289 1.50 (19) 1.32 (36) 1.53 (11) 1.70 (23) - - - - 

151 605 0.672 Undecan-2-one 1291 1295 0.47 (23) 0.66 (15) 0.90 (1) 0.86 (2) - - - - 

   Aromatics           

152 415 1.304 Acetophenone 1069 1074 2.84 (19) 2.52 (6) 2.64 (15) 3.10 (6) 0.56 (11) 0.85 (19) 1.59 (13) 1.34 (9) 

   Subtotal (GC Peak Area)   83.52 (10) 85.03 (10) 75.63 (14) 83.02 (8) 12.13 (4) 13.14 (15) 58.32 (11) 59.15 (5) 

   Subtotal (Number of Compounds)   13 15 15 15 4 6 11 11 

   Subtotal (%)   0.9 0.9 1.0 1.0 0.2 0.2 1.1 1.0 

   Furans           

153 110 0.416 Tetrahydro-furan 623 648 - - - - 11.48 (10) 11.55 (6) 10.28 (30) 10.54 (27) 

154 205 1.808 2-Furanylmethanal (Furfural) 830 840 - 3.04 (3) 3.68 (9) 3.47 (7) 2.65 (11) 5.46 (4) 28.32 (5) 28.17 (2) 

155 325 0.488 
2,6,6-trimethoxy-2-

vinyltetrahydropyran 
971 974 - - - - 12.86 (11) 4.36 (12) 5.03 (3) 4.78 (2) 

156 345 0.568 2-Pentyl-furan 992 990 0.93 (35) 1.27 (24) 0.97 (15) 0.80 (13) 1.90 (39) 0.85 (22) 0.28 (37) 0.65 (28) 

157 350 1.112 Benzofuran 1006 996 - - - - 1.08 (9) 0.62 (5) - - 

158 405 1.224 
Ethyl 2-furancarboxylate (Ethyl 2-

furoate) 
1062 1051 1.20 (10) 1.03 (3) 1.16 (26) 1.32 (1) 1.37 (5) 1.11 (7) 1.38 (12) 1.43 (12) 

   Subtotal (GC Peak Area)   2.12 (21) 5.33 (8) 5.81 (14) 5.59 (7) 31.34 (12) 23.95 (7) 45.30 (11) 45.58 (8) 

   Subtotal (Number of Compounds)   2 3 3 3 6 6 5 5 

   Subtotal (%)   0.1 0.1 0.1 0.1 0.4 0.4 0.8 0.8 

   Lactones           

159 275 2.336 γ-Butyrolactone 915 918 53.59 (10) 53.56 (14) 45.81 (18) 56.22 (14) 47.02 (16) 48.16 (6) 26.72 (6) 32.01 (4) 

160 670 1.272 γ-Nonanoic lactone 1360 1377 1.45 (30) 1.13 (17) 1.44 (21) 1.58 (13) 1.08 (22) 0.76 (13) 0.87 (26) 0.80 (7) 

   Subtotal (GC Peak Area)   55.04 (11) 54.69 (14) 47.25 (18) 57.80 (14) 48.10 (16) 48.92 (7) 27.59 (7) 32.80 (4) 

   Subtotal (Number of Compounds)   2 2 2 2 2 2 2 2 

   Subtotal (%)   0.6 0.5 0.6 0.7 0.6 0.9 0.5 0.6 
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   Acetals           

161 130 0.488 1,1-Diethoxy-ethane 719 695 206.64 (23) 212.12 (35) 248.89 (23) 269.12 (55.9) 30.10 (15) 50.13 (18) 97.57 (3) 101.77 (2) 

162 155 0.512 2,4,5-Trimethyl-1,3-dioxolane 739 754 9.75 (17) 154.81 (27) 18.99 (23) 24.45 (2) 21.92 (6) 44.34 (28) 107.74 (3) 83.11 (10) 

163 225 0.440 
1,1-Diethoxy-2-methyl-propane 

(Isobutanal diethyl acetal) 
858 863 2.24 (24) 1.11 (25) - - 0.58 (16) 0.93 (12) 1.80 (14) 1.89 (1) 

164 235 0.456 1-(1-ethoxyethoxy)-Butane 872 876 10.45 (7) - - - - - 2.09 (20) 2.77 (22) 

165 310 0.464 
1,1-Diethoxy-3-methyl-butane 

(Isovaleraldehyde diethyl acetal) 
954 953 8.43 (17) 3.19 (14) 3.04 (26) 3.20 (8) 1.97 (22) 1.97 (19) 5.69 (18) 6.14 (5) 

166 325 0.480 
1-(1-Ethoxyethoxy)-pentane 

(Acetaldehyde ethyl amyl acetal) 
977 974 88.27 (11) 39.86 (12) 36.74 (30) 49.95 (9) - 10.82 (18) 22.68 (8) 24.15 (7) 

167 365 0.696 
1,1-Diethoxy-pentane (Varealdehyde 

diethyl acetal) 
1016 1017 0.34 (17) 0.48 (19) 0.46 (23) 0.51 (21) - - - - 

   Subtotal (GC Peak Area)   326.12 (19) 411.57 (30) 59.22 (27) 78.12 (7) 54.57 (12) 108.19 (22) 237.57 (4) 219.83 (6) 

   Subtotal (Number of Compounds)   7 6 5 5 4 5 6 6 

   Subtotal (%)   3.4 4.1 3.1 3.1 0.7 1.9 4.3 3.9 

   
Thiols and others sulphur 

compounds 
          

168 140 0.624 Dimethyl disulfide 722 719 - - - - 3.83 (30) 1.47 (24) 1.27 (1) 0.98 (16) 

169 340 1.216 
2-Methyl-tetrahydrotiophen-3-one 

(Dihydro-2-methyl-3(2H)-

thiophenone) 
994 991 4.60 (4) 3.47 (4) 3.25 (8) 3.55 (5) - - - - 

170 350 2.168 
3-(Methylthio)-propan-1-ol 

(Methionol) 
982 1002 33.42 (4) 27.13 (28) 30.34 (28) 40.02 (10) 25.83 (26) 23.22 (13) 12.62 (9) 14.65 (10) 

171 445 0.912 Ethyl 3-(methylthio)propionate 1098 1101 - 1.95 (14) 1.95 (21) 2.22 (5) 2.49 (27) 2.34 (6) 1.51 (13) 1.28 (5) 

   Subtotal (GC Peak Area)   38.02 (4) 32.55 (25) 35.54 (26) 45.79 (9) 32.15 (27) 27.03 (13) 15.41 (9) 16.91 (10) 

   Subtotal (Number of Compounds)   2 3 3 3 3 3 3 3 

   Subtotal (%)   0.4 0.3 0.4 0.5 0.4 0.5 0.3 0.3 

   Norisoprenoids           

172 380 0.64 2,6,6-Trimethylcyclohexanone 1035 1034 2.28 (10) 2.36 (4) 2.36 (23) 2.64 (7) 0.85 (21) 0.89 (12) 1.45 (4) 1.98 (12) 

173 405 0.72 
3,5,5-Trimethylcyclohex-2-enone 

(Isophorone) 
1118 1062 - . 0.61 (19) 0.74 (2) 0.41 (15) 0.34 (9) 0.36 (6) 0.36 (6) 

174 600 0.600 Vitispirane 1281 1289 - - - - 16.65 (11) 13.13 (7) 6.77 (5) 8.05 (3) 

175 660 0.744 
1,1,6-Trimethyl-1,2-dihydro-

naphathalene (TDN) 
1354 1363 - - - - 0.82 (22) 0.78 (19) 0.43 (4) 0.43 (6) 

176 685 0.792 β-Damascenone 1359 1395 4.95 (20) 4.81 (4) 4.10 (28) 5.94 (2) 8.54 (13) 7.19 (7) 7.96 (12) 8.06 (10) 

177 735 0.728 Geranyl acetone 1453 1463 - - 37.22 (22) 16.92 (28) 7.16 (31) 3.72 (29) 4.02 (14) 6.02 (13) 

178 880 1.016 Methyl dihydro jasmonate 1650 1671 5.06 (32) 6.29 (23) 5.40 (12) 7.16 (26) - - - - 

   Subtotal (GC Peak Area)   12.29 (23) 13.46 (13) 49.69 (21) 33.40 (16) 34.42 (16) 26.05 (11) 20.99 (9) 24.90 (9) 

   Subtotal (Number of Compounds)   3 3 5 5 6 6 6 6 

   Subtotal (%)   0.1 0.1 0.6 0.4 0.5 0.5 0.4 0.4 
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   Terpenic compounds           

   Monoterpenic compounds           

179 285 0.448 α-Pinene 934 932 0.77 (17) 0.97 (22) 0.80 (21) 0.79 (20) - - - - 

180 340 0.520 β-Pinene 980 990 1.02 (24) 1.16 (21) 0.92 (20) 1.27 (36) - - - - 

181 345 0.504 α-Terpinene 1018 995 - - - - 2.83 (6) 1.56 (3) 1.16 (9) 1.13 (7) 

182 375 0.520 Limonene  1031 1028 50.16 (19) 30.75 (12) 33.12 (28) 31.25 (24) 27.93 (6) 26.46 (12) 22.26 (15) 35.60 (18) 

183 395 0.536 β-Ocimene 1050 1051 - - - - 1.22 (5) 0.66e - - 

184 400 0.632 m-Cymene 1033 1056 0.77 (24) 0.96 (5) 0.85 (29) 1.13 (5) - - - - 

185 410 0.792 Dihydromyrcenol 1072 1068 4.02 (22) 4.02 (24) 5.15 (3) 4.96 (22) - - - - 

186 425 0.560 α-Terpinolene 1096 1084 - 1.10 (11) - 1.20 (9) - - - - 

187 435 0.896 Linalool 1105 1095 36.35 (17) 34.43 (8) 31.91 (23) 42.82 (2) 115.80 (13) 72.54 (7) 54.16 (6) 58.11 (8) 

188 445 0.608 Rose oxide 1115 1107 2.24 (30) 3.31 (23) 2.03 (20) 3.61 (7) - - - - 

189 450 0.968 Hotrienol 1110 1112 2.32 (12) 2.27 (15) 1.56 (8) 3.33 (6) 2.30 (29) 1.15 (9) 1.33 (18) 1.22 (11) 

190 490 0.656 Nerol oxide 1172 1154 1.42 (22) 1.36 (11) - - 5.37 (9) 3.24 (4) 3.47 (17) 3.47 (11) 

191 495 1.088 endo-Borneol 1165 1166 0.63 (29) 0.53 (4) 0.64 (4) 0.46 (17) - - - - 

192 515 0.808 Terpinen-4-ol 1177 1189 5.97 (13) 5.81 (8) 5.58 (13) 7.29 (3) 10.35 (12) 4.63 (10) 3.71 (15) 3.60 (12) 

193 520 0.992 α-Terpineol 1224 1195 5.10 (19) 6.21 (11) 6.13 (2) 6.78 (8) 71.02 (5) 29.56 (9) 10.98 (12) 10.99 (9) 

194 525 0.944 Pinocarveol 1195 1201 1.80 (9) 0.84 (6) - - - - - - 

195 535 0.856 1-p-Menthen-9-al 1217 1213 1.11 (1) 0.89 (10) 1.28 (7) 1.03 (16) - - - - 

196 545 0.816 Piperitol 1220 1225 2.06 (12) 1.83 (9) 2.24 814) 2.25 (1) - - - - 

197 560 0.976 β-Citronellol 1234 1242 31.77 (21) 28.60 (15) 32.00 (18) 37.58 (5) 12.12 (26) 11.59 (13) 12.03 (10) 15.50 (20) 

198 580 0.552 Myrtenol 1264 1265 2.12 (17) 2.27 (16) 1.93 (1) 2.20 (2) 13.16 (10) 9.86 (10) 9.00 (9) 9.43 (10) 

199 580 1.08 Geraniol 1265 1272 6.15 (21) 5.76 (3) 4.61 (16) 1.51 (12) 16.33 (1) 6.87 (3) - - 

200 585 0.552 Geranyl vinyl ether 1275 1271 - - - - 3.49 (7) 3.26 (4) 3.18 (6) 2.99 (5) 

201 585 0.600 Mentha-1,8-dien-7-ol 1330 1271 - - - - 18.76 (19) 11.18 (35) 15.23 (16) 18.45 (8) 

202 605 0.560 Nerol 1245 1295 5.00 (17) 4.00 (8) 4.40 (4) 5.71 (9) 12.53 (15) 9.63 (9) 7.73 (15) 7.64 (14) 

203 780 0.944 Limonene dioxide 1294 1304 6.08 (25) 7.00 (21) 2.50 (6) 2.86 (3) - - - - 

   Sesquiterpenic compounds           

204 695 0.584 Longifolene 1402 1408 4.22 (16) 4.52 (30) 6.86 (28) 3.79 (12) - - - - 

205 815 0.784 Nerolidol 1564 1573 - - - - 3.62 (39) 2.79 (26) - - 

206 995 0.752 Farnesol 1792 1801 3.05 (2) 5.62 (19) 3.12 (17) 3.74 (14) 2.60 (30) 3.35 (92) 1.02 (16) 2.54 (21) 

   Subtotal (GC Peak Area)   174.15 (19) 154.20 (13) 147.64 (19) 165.58 (9) 319.42 (11) 198.34(12) 145.27 (11) 170.68 (12) 

   Subtotal (Number of Compounds)   22 23 20 21 16 16 13 13 
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   Subtotal (%)   1.8 1.5 1.8 1.9 4.3 3.5 2.6 3.0 

   Total (GC Peak Area)   9689.84 (16) 9964.32 (16) 8025.17 (17) 8505.29 (12) 
7404.65 

(15) 

5689.96 

(13) 

5500.24 

(14) 

5685.05 

(12) 

   
Total (Number of Identified 

Compounds) 
  157 163 166 167 150 151 141 142 

a Retention times for first (1tR) and second (2tR) dimensions in seconds. 
b RI, Retention Index reported in the literature for HP-5 GC column or equivalents (Ansorena et al., 2000; Campeol et al., 2003; Cardeal et al., 2008; Engel et al., 2002; Eyres et al., 2005; Fan & Qian, 2006; Högnadóttir & Rouseff, 2003; 

Jordán et al., 2002; Leffingwell & Alford, 2005; Perestrelo et al., 2011; Petronilho et al., 2011; Pino et al., 2005; Robinson A.L., 2011a; Rocha et al., 2007; Salvador et al., 2013; Silva et al., 2015; Silva et al., 2010, Jalali et al., 2012). 
c RI: retention index obtained through the modulated chromatogram.d Mean of three replicates. e The compound was only detected in one replicate. f Relative standard deviation, expressed in percentage, in parenthesis.  

 


