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Resumo 
 

 

Nas últimas décadas, a Terra tem experimentado um aquecimento global e 

mudanças nos padrões de precipitação. Muitos estudos sobre a avaliação de risco de 

agrotóxicos em organismos não-alvo foram realizados com base em protocolos 

padronizados, com condições abióticas controladas. Mas, em campo, os organismos 

são expostos a flutuações de vários fatores ambientais, bem como a poluentes, que 

podem alterar os limites de tolerância dos organismos aos stressores naturais, bem 

como alterar a toxicidade ou biodisponibilidade do químico em causa. Considerando 

isso, o principal objetivo deste trabalho foi o de avaliar de que modo e em que 

medida os fatores ambientais (temperatura, humidade do solo e radiação UV) podem 
interagir uns com os outros ou afetar a toxicidade do carbaril para invertebrados do 

solo e plantas. Para isso, foram utilizadas quatro espécies padrão: Folsomia candida, 

Eisenia andrei, Triticum aestivum e Brassica rapa, e simulados diferentes cenários 

climáticos, com vários parâmetros letais e subletais analisados. A exposição 

combinada foi analisada utilizando, quando possível, a ferramenta MIXTOX, com 

base no modelo de referência de acção independente (IA) e possíveis desvios, assim 

como rácios sinergísticos/antagonísticos (a partir de valores de EC50/LC50), quando a 

dose-resposta de um dos stressores não foi obtida. Todos os fatores de stress 

aplicados isoladamente causaram efeitos significativos sobre as espécies testadas e 

sua exposição combinada com carbaril, apresentaram respostas diferenciadas: para 

as minhocas, a seca e temperaturas elevadas aumentaram os efeitos deletérios do 

carbaril (sinergismo), enquanto o alagamento e temperaturas baixas diminuíram sua 
toxicidade (antagonismo). Para os colêmbolos, o modelo IA mostrou ser uma boa 

ferramenta para prever a toxicidade do carbaril tanto para temperaturas altas como 

para as baixas. Para as duas espécies de plantas foram encontradas diferenças 

significativas entre elas: em termos gerais, as interações entre carbaril e os stressores 

naturais foram observadas, com sinergismo aparecendo como o padrão principal 

relacionado com a radiação UV, solos secos e temperaturas elevadas, enquanto o 

padrão principal relacionado com temperaturas baixas e stress de alagamento foi o 

antagonismo. Quando os efeitos de dois stressores naturais (radiação UV e 

humidade do solo) em plantas foram avaliados, uma interação significativa foi 

encontrada: a seca aliviou o efeito deletério da radiação UV em T. aestivum e o 

alagamento aumentou os seus efeitos, mas para B. rapa a adição de ambos os 
stresses de água causou um aumento (sinergismo) dos efeitos deletérios da radiação 

UV para todos os parâmetros avaliados. Portanto é necessário que as diferenças 

sazonais e latitudinais, bem como as mudanças climáticas globais, sejam integradas 

na avaliação de risco de contaminantes do solo. 
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Abstract 

 

In the last decades the Earth has been experiencing a global warming and changes 

in rainfall patterns. Many studies on risk assessment of pesticides on non target 

organisms have been performed based on standardized protocols, with controlled 

abiotic conditions, but, in field organisms are exposed to several environmental 

factors as well as pollutants, that may change the tolerance limits of organisms to 

natural stressors, as well as alter their toxicity or its bioavailability to organisms. 

Considering this, the main objective of this work, focused on how and to what 
extent environmental factors (temperature, soil moisture and UV radiation) may 

interact with one another or affect the toxicity of carbaryl to soil organisms and 

plants. For that, four standard species were used: Folsomia candida, Eisenia 

andrei, Triticum aestivum and Brassica rapa, different climatic scenarios were 

simulated and several endpoints were analyzed. The combined exposure was 

analyzed using, when possible, the MIXTOX tool, based on the reference model of 

independent action (IA) and possible deviations, but when the dose-response was 

not achieved; synergistic/antagonistic ratios were calculated from EC/LC50 values. 

All stressors applied alone caused significant effects on species tested and its 

combined exposure with carbaryl showed different responses: for earthworms, the 

drought and high temperature increased the deleterious effects of carbaryl 

(synergism), while flood and low temperature decreased its toxicity (antagonism). 
For collembola the IA model showed to be a good tool for predicting the toxicity 

of carbaryl both for low and high temperatures. For the two plant species 

significant differences between their responses were found.  In general terms, the 

interactions between carbaryl and natural stressors in plants occurred with 

synergism showing up as the main pattern related to UV irradiation, dry soils and 

high temperature, while antagonism, the main pattern related with low temperature 

and flood stress. When the effect of two natural stressors was evaluated (UV 

radiation and soil moisture), a significant interaction was found: the drought 

alleviated the deleterious effect of UV radiation on T. aestivum and the flood 

increased its effects, but for B. rapa the addition of both water stresses caused an 

increase (synergism) of deleterious effects of UV radiation for all endpoints 
evaluated. Therefore it is necessary that the seasonal and latitudinal differences, as 

well as global climate change, are integrated into risk assessment of soil 

contaminants. 
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Chapter 1. General Introduction 

1.1 Global Climatic Changes 

 

 Climate change is one of the greatest challenges and an increasing problem of the 

last decades, which has caused visible changes in environmental factors as temperature, 

UV radiation and rainfall around the world. These phenomena have generated different 

impacts and bring serious, far-reaching consequences for life on Earth. 

 The main factor contributing to climatic change is undoubtedly human activity 

which has caused large modifications on Earth's surface, where fossil fuel combustion, 

CO2 emissions, deforestation, afforestation, cultivation and mineral extraction are 

considered some examples to highlight. 

 The Intergovernmental Panel on Climate Change (IPCC) published four 

assessments about the impacts of climate change (IPCC, 2007). They report that in future 

decades the Earth will experience a global warming with an increase on the global mean 

air and ocean temperatures, occurrence of ice melts, and rising global sea level. Several 

scenarios have been modeled considering a substantial increased precipitation in Northern 

and Central Europe, North and South America, and Northern and Central Asia; on the 

other hand Southern Africa and Asia and the Mediterranean region are projected to 

experience severe drought conditions. 

 For the next few decades it is predicted extreme weather events, such as heat 

waves, heavy precipitation and thunderstorms (Cecchi et al., 2010). Therefore, a concern 

about the response of terrestrial ecosystems to this global climate change has increased 

substantially in recent years. Efforts have been concentrated on the effect of natural 

stressors on soil organisms, as well as the pollutants to which these organisms are normally 

exposed in the environment. Results from these studies have contributed to improve our 

understanding of the responses of soil organisms and plants to several factors as warming, 

UV radiation and changes in water availability. Nevertheless they are still scarce in order 

to derive accurate conclusions and therefore further investigation should be carried out. 
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1.1.1. The effects of climate change on soil ecosystem  

 

 The main factors that have been altered by global climate change are soil moisture 

and temperature regimes, which are closely related to the soil ecosystem functioning. The 

soil as substrate and source of recourses affects vegetation and edaphic organisms due it 

directs influence on water availability and soil temperature (Cheddadi et al., 2001), 

affecting species biology, biomass, composition and distribution in the ecosystem, i.e. the 

overall biodiversity functioning. 

 The effects of climate change may be different in different latitudinal areas (Lal, 

2004). Regions projected to experience increasing temperatures and decreasing 

precipitation levels may reflect on a decrease of the net primary production; this can be the 

case of tropical regions, southern Europe and eastern USA (White et al., 1999).  

 The ecology, biology and distribution of soil organisms and plant fitness (especially 

for crops) depend critically on the degree of precipitation and evaporation, which is related 

to several abiotic factors such as temperature, soil moisture and UV radiation.  

 Many studies have clearly indicated significant indirect effects resulting from 

warming on soil organisms, that can be depicted in moist soils as an increase on fauna 

biomass or the opposite with a decrease in dry soils (Harte et al., 1996). Warming is also 

known to cause dispersal of plant parasitic nematodes, earthworms and other soil 

organisms (Boag, 1991; Ghini et al., 2008), increasing therefore the dissemination of 

plagues and the increase needs of pesticide application. 

 Having a different perspective, in some areas of the world, climate change can 

induce positive effects on agricultural production. This is the case in areas where plants are 

currently growing in suboptimal temperatures and those changes in abiotic factors (e.g. 

warming) can possibly promote their growth and increase their development (McMichael 

and Burke, 1998). On the other hand, tropical and temperate regions where plants are 

currently growing within optimal or slight above optimal temperatures tend to be adversely 

affected and negative impacts on plants will be observed on crop productivity (Gregory et 

al., 2005; Morison and Morecroft, 2008; Parry et al., 2004). In dry regions as arid and 

semi-arid environments where crop production is mainly determined by precipitation, 

climate change has a profound influence on crop production and sustainability (Bannayan 

and Eyshi Rezaei, 2014).  
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 An important component of soil ecosystems is soil invertebrates, which play 

important functions on soils, providing as the end optimal growth conditions to plants and 

soil structure improvement (Holmstrup, 2002). Among them, there are the so called "soil 

engineers", the earthworms, which due to their burrow activities can change soil structure, 

creating pores through which oxygen and water can enter and provide the way out to 

carbon dioxide (Edwards, 1996. ). Another important functional group is the decomposers, 

from which the collembolan can be highlighted. They live on the litter or pore space of 

soil, preferring soils rich in organic matter, feeding on fungi, bacteria and leaf litter, and 

actively participating on decomposition and nutrient cycling processes (Lavelle and Spain, 

2001). 

 Both earthworms and collembolans are mediators of soil function through their 

activities by stimulating microbial decomposition rates and nutrient recycling processes 

(Seastedt and Crossley, 1984), organic matter decomposition/turnover and increasing soil 

fertility. In addition, arthropod interactions with plants and microbes influence the shifts 

between living and dead organic matter and transfers of nutrients in terrestrial ecosystems 

(Seastedt and Crossley, 1984). 

 Soil organisms and plants are continuously affected by a variety of environmental 

factors, which play an important role in the evolution, biology, physiology and 

geographical distribution of species, agricultural crop productivity and microbial activity.  

 The effects that each abiotic factor exerts on an organism depends on its quantity or 

intensity (Ahmad and Prasad, 2011), and each species will response specifically as they are 

quite different physiologically, with distinct optimum ranges of environmental conditions 

such as temperature, moisture content, or light (Coleman and Crossley Jr, 2004). These 

conditions provide an optimal growth, development, emergence and reproduction, and any 

deviation from such optimum become a natural stress and may cause injuries to soil 

organisms. Therefore populations can be affected, inferring to communities and finally to 

ecosystem functioning.  

  Typically, organisms show a behavioral response to seasonal environmental 

changes, either by migration or becoming inactive, until favorable conditions are restored. 

However, climate change has caused unforeseen unfavorable conditions, sometimes 

convened as daily variations, but undoubtedly causing profound changes in organisms’ 

tolerance to other stress sources. And these factors will, separately or combined, affect the 
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functioning of soil ecosystems (Swift et al., 1998) and also alter the response of soil 

organisms to chemical contaminants. So it has become crucial to study how they will cope 

with these challenges to which they are commonly exposed in field. 

 Earthworm survival, distribution and physiology is affected by soil moisture, 

temperature, and pH (Peijnenburg and Vijver, 2009). In prolonged drought events 

earthworms tend to burrow to deeper lays or stay in diapauses. During rainy periods 

earthworms tend to rise to the surface, escaping from possible drowning (Peijnenburg and 

Vijver, 2009). Soil temperature influences their metabolism, limiting earthworms’ 

activities during warm and cold periods. Regarding soil pH, the majority of earthworm 

species does not tolerate acid soils. Although it is known that earthworms are not expected 

to be exposed to UV radiation, because of their photosensitivity, heavy rains may induce 

their movement to the above ground which can signify an extra stressor (UV radiation) or a 

combination of stressors (UV and flood conditions).  

 Collembola are tolerant of a wide range of environmental conditions, but the 

sensitivity to environmental stress differ strongly between species (Gudleifsson and 

Bjarnadottir, 2008). It has been reported that they have the ability to change their body 

physiology when exposed to severe summer drought or cold stress (Bayley and Holmstrup, 

1999; Holmstrup, 2002). Few studies were performed evaluating the effects of UV 

radiation on collembola, because they live in soil pores, where radiation hardly reaches. 

But this improbable scenario may change in cases of flooding, or soils compaction where 

interstitial spaces are reduced and  therefore prone their exposure to UV radiation. But, in a 

study developed by Cardoso et al., (2014) collembola were exposed to UV radiation under 

natural soil Lufa 2.2, simulating natural conditions, and exhibited an avoidance behavior 

towards UV radiation. In addition, and after exposure, organisms exposed to UV radiation 

increased their reproduction effort. 

 Terrestrial plants play a very important role in soil ecosystem, as they represent an 

important source of organic matter, act in nutrient cycling and soil respiration, being the 

base of terrestrial food webs. Because plants are sessile organisms, they are more prone to 

be exposed to environmental and chemical stress mainly by root uptake or air deposition, 

and are generally good indicators of the soil ecosystem health. Some plants have developed 

numerous adaptive responses to cope with environmental stress as stomatal closure, 
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reduction of leaf area, changes in membranes, among others that will be further described 

below. 

1.1.2 Natural stressors 

 

  Temperature 

 

 The drastic increase on atmosphere concentration of carbon dioxide (CO2) and 

others greenhouse gases mainly due to anthropogenic activities, has led to an increase in 

the average global surface temperature (IPCC, 2001). It has been predicted that global 

mean temperature will arise in the future, if greenhouse gas emissions are kept to actual 

levels or are increased. 

 As consequence of global warming, land-surface precipitation trend to increase in 

some regions of the world and decrease in others, which may cause an imbalance on soil 

ecosystems. These changes may lead to a disequilibrium on  the soil organic carbon pool 

and alter soil physical properties, destabilizing its structure, with a possible increase in soil 

erosion or compaction.  

 Temperature greatly influences the rates of biological, physical, and chemical 

processes in soil. High temperature stimulates to some extent soil microbial activity, net 

nitrification rates, P and N mineralization rates, and total respiration (Andresen et al., 

2010), also increasing root turnover and providing more rapid mineralization rates (Gill 

and Jackson, 2000), leading to a decrease in the soil organic carbon pool. Under lower 

temperatures soil organic matter can accumulate due a reduction in microbial activity and 

potential inactivity of macrodecomposers. In addition, high temperatures can also promote 

a faster decomposition of chemicals in soil compared to low temperature (Dalias et al., 

2001), which can lead to less or higher toxicity to soil organisms, depending on the 

generated metabolites. 

 Temperature affects soil fauna in several ways. Vital metabolic processes are ruled 

by environmental temperature, which may affect enzymes involved in metabolic processes 

(Welch et al., 2010). The majority of soil organisms, in temperate regions, have their 

optimum temperature within (15 to 20 ºC), while in tropical regions, organisms live under 

an average temperature ranging around 25 to 30 ºC and special adaptations undergo on 

those organisms when extreme cold or hot temperatures occur. 
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 Exposed to extreme cold temperatures (below 15 °C), some organisms developed 

cryophilic response to tolerate those conditions, as some nematodes (Clark et al., 2007), 

freeze-tolerant earthworms (Bindesbol et al., 2005; Holmstrup, 2007) and enchytraeids 

(Silva et al., 2013). These responses include accumulation of cryoprotectant compounds in 

their corporal fluid (Overgaard et al., 2007), changes in lipid chemistry (Holmstrup, 2007) 

or increase of oxidative stress as a defense response to provides cold acclimation (Silva et 

al., 2013) and also thermotactic behavior (Clark et al., 2007). Under cold temperatures, 

physiological/reaction rates slow down and may almost completely stop, thereat, some 

organisms, that cannot migrate, remain in a relatively inactive state (dormancy), until more 

moderate temperatures prevail (Cáceres, 1997), while others maintain some degree of 

activity despite reductions in their body temperature. Low temperature is also the most 

important limiting factor to the productivity of agricultural crops in cold areas, limiting 

energy for biochemical processes, decreasing membrane permeability, and increasing 

protoplasm viscosity (Aber et al., 2001). Freeze-tolerant plants have several strategies to 

reduce the formation of ice inside plant cells, that is the major cause for plant devastation 

(Allen and Ort, 2001) at cold temperatures. These strategies include reduction of freezing-

point by production of solutes that increase intracellular osmolality (Kartha, 1985), 

alteration in the membrane lipid composition by increased fatty acid unsaturation 

(Sanghera et al., 2011) and production of antifreeze proteins (Griffith and Yaish, 2004). 

 On the other hand, at higher extreme temperature (above 40 ºC), only thermophiles 

organisms can survive, and most of them are microorganisms (Lebedinsky et al., 2007). At 

extreme temperatures, it is expected that some vital functions of the cells, as enzymatic 

activity, are impaired or destroyed and the organism die. Thus, biological reactions and 

processes tend to occur more rapidly as temperature rises above the optimum temperature 

for each species. But the earthworm Pontoscolex corethrurus is one of the few metazoans 

that shows tolerance to extreme high temperatures, and its occurrence has been reported by 

Cunha et al. (2014) in active volcanic soils in the Azores islands. In those environments the 

maximum temperature can reach 100 ° C it is suggested by the authors that these tolerance 

may be related with micro-evolutionary process. 
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 Soil moisture 

 

 Although soil moisture is usually related to the intensity of rainfall, it is, in fact, a 

result of temperature, precipitation, soil water-holding capacity (WHC) and texture. Soil 

moisture results from precipitation or irrigation exceeding evaporation (closely related to 

temperature) and soil drainage (closely related to soil texture and WHC), and it is 

exhausted by evaporation and drainage (Arnell, 1999). 

 Global warming have significant effects on the hydrological cycle, because 

increasing global surface temperatures is very likely to cause changes in rainfall and air 

humidity (Dore, 2005). In the last twentieth century, precipitation increased by 

approximately 10% in the mid to high latitudes of the Northern Hemisphere (Morison and 

Morecroft, 2008). These increases have caused increase on soil moisture and flood events 

in some areas within these latitudes (IPCC, 2001). Following an opposite trend, some parts 

of the world are reported to have significant reductions in precipitation (e.g. in Southwest 

Western Australia and North China). Therefore the Panel on Climate Change (IPCC) 

reported that global warming will cause extreme conditions of flood or droughts as 

potential future scenarios.  

 Soil water availability is one of most important limits on the distribution, 

abundance, life cycles and species dominance patterns of terrestrial organisms (Kennedy, 

1993; Lindberg et al., 2002), considering water as essential for enzyme activity and 

metabolism, a solvent for biological nutrients and other chemicals. So extreme conditions 

in soil water content may become a natural stressor and cause a profound impact in soil 

organisms, altering soil process.  

 At the soil system level, soil moisture affects soil aeration, microbial population 

and its activity and soil organisms’ movements. In general, dry soil hampers plants water 

uptake through the root system, due to the decrease of soil pores size, which interferes with 

water removal. Organisms exposed to long drought stress periods may increase their water 

loss through evapotranspiration, and impair their growth and development (Mahajan and 

Tuteja, 2005). It has been reported that some species of collembola have the ability to 

change their body physiology when exposed to severe summer drought or cold stress 

(Bayley and Holmstrup, 1999; Holmstrup, 2002). Drought stress prevents crop growth, 

development and productivity, especially in arid and semi-arid areas, where the input of 

fresh water is lower (Shao et al., 2009). On the other hand, higher levels of soil moisture 
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contribute to higher decomposition rates, optimal plant root functioning and rapid 

microbial turnover rates compared to dry soils (Skopp et al., 1990; Wardle, 2002). But 

leading moisture to extremes, i.e. flooded soils, reduces the partial pressure of oxygen 

around the plant's root, reducing their water uptake capacity (Morison and Morecroft, 

2008) and causing anoxic conditions that can lead to the death of other soil organisms, as 

oxygen does not diffuse through soil easily. 

 

 UV radiation 

 

 In addition to changes in temperature and precipitation, substantial changes in solar 

irradiance are also linked to global warming. The production of greenhouse gases has 

depleted the stratospheric ozone continuously, also resulting in increasing ultraviolet (UV) 

radiation reaching the Earth surface. 

 UV radiation comprises the wavelength UV-A (320-400 nm), UV-B (290-320 nm) 

and UV-C (200-290 nm). The most dangerous UV-C is reflected by stratospheric ozone 

and therefore does not reach the Earth surface. The least harmful, UV-A, passes through 

the stratosphere and UV-B is the most significant biologically damaging radiation reaching 

the Earth's surface, but as most is absorbed by ozone in the troposphere and stratospheric, 

only part of UVB radiation crosses the Earth's surface. 

 Although organisms are adapted to UV-A, studies have reported important plant 

response to the UVA irradiation (Flint and Caldwell, 2003). Relative to UV-B radiation, 

the majority of the organisms are not adapted to this radiation and several studies have 

reported that, due the ozone depletion, levels of UV-B radiation have risen significantly in 

the tropics and in temperate regions (Kerr and McElroy, 1993). Increased solar UV-B 

radiation may exert effects on terrestrial ecosystems, affecting soil organisms and plants.  

 In the environment, under normal conditions, many organisms can protect 

themselves from UV radiation by skin pigments or integuments or even by their behaviour. 

But, organisms exposed to high UV radiation may activate protective responses to tolerate 

this imbalance. Plants generally adapt to changes in UV radiation by several ways, by 

morphological changes (Ballare et al., 1996; Liao and Lin, 1995), increased DNA repair, 

(Britt and Fiscus, 2003) induction of protective compounds (Middleton and Teramura, 

1993) and increased levels of antioxidant compounds(Agrawal and Mishra, 2009). Soil 
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organisms are known to be more “tolerant” to UV radiation when compared to aquatic 

organisms (Gies et al., 1995), but this assumption is possibly derived from a less 

probability of exposure. Anyway, some edaphic organisms may developed behavioural 

changes as S-shaped movement and jumping, when exposed to UV radiation, as it was 

found in the case of earthworms (Chuang et al., 2006). Others organisms developed 

microhabitat selection and migrations (Callaghan et al., 2004) to prevent this stress.  

 Considering the environmental effects of ozone depletion and global warming, the 

interaction of several extreme abiotic factors is prompted to occur in terrestrial ecosystems. 

High temperature accompanied by drought or flood, added to high ultraviolet radiation are 

some scenarios that we find in the field as a result of environmental global changes. These 

interactions are prone to impact the fauna and flora at all different biological levels. 

 Several studies have drawn attention to the environmental risk caused by the 

interaction of these factors. It is predicted that temperature and water stress will cause 

extinction of some amphibians and other aquatic species in Costa Rica, Spain and Australia 

(Pounds et al., 2006). As a result to high temperature and changes in rainfall patterns in 

South America, it is predicted a replacement of some Amazonian forests by ecosystems 

more resistant to these stressors (IPCC, 2001; Rowell and Moore, 2000).  

 In natural conditions, effects of UV-B radiation on plants are related to other 

environmental factors, as CO2, drought, temperature and nutrition (Allen, 1999; Caldwell 

et al., 2007; Conner and Zangorini, 1998.; Koti et al., 2005; Zhao et al., 2004). These stress 

factors have been shown to modify or mask the UV radiation effects (Conner and 

Zangorini, 1998.).  

 

1.1.3 Effects of climate change on chemical fate and behavior in the environment. 

 

 Regarding the above mentioned, changing the abiotic factors will change also the 

diversity of species inhabiting several regions and the occurrence of crop plagues are more 

prone to happen. Therefore the application of pesticides is also predicted to suffer some 

increase within the near future. Another consequence of climate change is its potential to 

alter the fate and behaviour of chemical compounds. Temperature and precipitation have 

great influence on the partitioning of chemicals (Noyes et al., 2009), because high 

temperature may reduce the parental pesticide concentrations by increased volatilization 
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and degradation (Komprda et al., 2013) and the increase on precipitation rates enables the 

wet deposition of pesticides on terrestrial ecosystems (Asman et al., 2001). 

 Regions with elevated soil moisture and high precipitation could also enhance the 

degradation of pesticides by hydrolyses, and show higher pesticide volatilization than dry 

soils, due the polar water molecules that are strong competitors for adsorption sites on the 

soil (Bailey, 2004; Dörfler et al., 1991; Van den Berg et al., 1999).  

 The concern about the influence of environmental factors on chemical toxicity is 

not recent, and studies have been reported since early 20th century (Gordon, 2003). Several 

studies have shown that temperature can affect the toxicity of a variety of chemical 

compounds (e.g.,Baetjer and Smith, 1956; Doull, 1972; Fuhrman, 1946; Weihe, 1973), but 

the majority of these studies are related to small mammals or human health. Recently there 

has been greater attention and concern about the interaction of natural and chemical 

stressor on different terrestrial and aquatic organisms (Bednarska et al., 2009; Bindesbol, 

2005; Boone and Bridges, 1999; Boone and James, 2003; Chen et al., 2003; Coors and De 

Meester, 2008; Crain et al., 2008; Fischer et al., 2013; H. M. Abdel-Lateif, 1998; 

Holmstrup, 2010) and several outputs were obtained. For example, the bioavailability and 

toxicity of chemical compounds in edaphic organisms and plants increase in response to 

high temperatures (Bauer and Rombke, 1997; Bednarska and Laskowski, 2008; Bednarska 

et al., 2009; Boina et al., 2009; Boone and Bridges, 1999; H. M. Abdel-Lateif, 1998; Lima 

et al., 2014), possibly because temperature may alters the toxicokinetics of pollutants or 

may increase its uptake and elimination (Buchwalter et al., 2003; Heugens et al., 2006).  

 In contrast, some chemicals showed an increase on toxicity at low temperature 

(Cedergreen, 2013) and one of those case studies is DDT which has been reported as 

generally more toxic under low temperature conditions (Gordon, 2005). Increasing toxicity 

at low temperature is normally related to the decrease in metabolic rate and reduced 

chemical biotransformation in these conditions, resulting in greater persistence of toxicants 

into organisms body (Harwood et al., 2009).  

 Besides temperature, several other natural stressors (e.g. soil moisture and UV 

radiation) may alter physiological mechanisms in organisms, and therefore increase the 

deleterious effects of contaminants. Drought stress will reduce the internal water content, 

increasing its chemical concentration, consequently increasing the risk of intoxication 
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(Holmstrup, 2010). It is also known that UV-B exposure may destroy organisms’ defenses, 

becoming more susceptible to anthropogenic stressors (Tevini, 1993). 

 In addition, organisms living near the boundaries to their tolerance to abiotic stress, 

may be more vulnerable to interaction between those natural and chemical factors 

(Gordon, 2003). Therefore, their ability to tolerate extreme environmental events may be 

impaired by the presence of the chemical compound. Holmstrup (1997) demonstrated this, 

after exposing the collembolan Folsomia candida to sublethal concentration of three soil 

contaminants significantly reducing their tolerance to desiccation. 

 Two scientific reviews from the Nomiracle FP6 project reported the interactions of 

natural and chemical stressors (holmstrup et al, 2009; Laskowski et al., 2010), where clear 

synergistic interactions, for more than 50% of the reviewed studies were highlighted, 

showing that the influence of natural stressors should be considered in risk assessment 

procedures. 

 

1.1.4 Predictions of joint effects of natural and chemical stressors  

 

 In face of the actual global scenarios of climatic changes, a greater concern about 

interactions between multiple stressors, both natural and chemicals, has aroused the 

scientific communities to more effective and realistic environmental risk analysis by 

considering a larger number of factors to which organisms are exposed in the environment. 

 So, for the prediction of joint effects, theoretical models has been recently used for 

evaluate combined chemicals and natural stressor (Ferreira, 2008; Jonker, 2005; Long, 

2009). This approach was based on two concepts developed for predicting mixtures 

toxicity in pharmacology, the concentration addition (CA) and the independent action (IA) 

conceptual models, based on a preliminary assumption on the similarity and dissimilarity 

of modes of action, respectively. The IA model, also called ”response additivity” is the 

most applicable in cases of predicting the combined effects of natural stressor and 

chemical compounds. The assumption behind independent action is that stressors do not 

physically, chemically or biologically interact (Bliss 1939), and the toxicity of each 

component is independent and the effects of two stressors can be estimated directly from 

the probability of responses to the each individual components (Faust et al., 2003).  
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The mathematical expression for the IA model is based on probability of responses and is 

expressed as: 

)(

max 1 ciqin

iY    

 

 

 where Y denotes the biological response, Ci is the concentration of chemical i in 

the mixture, qi (Ci) is the probability of non-response, µmax is the control response for 

endpoints and  the multiplication function. 

 Deviations from the Independent Action model indicate that the probabilities of 

response to the chemicals are not independent and somehow there is an interaction 

between them. Possible deviations from the conceptual models can be predicted using the 

MIXTOX tool proposed by Jonker et al., (2005) . The description behind this approach 

allows evaluating if some deviation patterns (from the models) occur in combined 

exposure. The standard deviations considered and that are then transposed from 

mathematical results to biologically relevant patterns are the following and are based on 

each stressors individual effects: 

1) Synergism (S): when the combination of stressors cause a more severe effect than 

predicted from either reference model.  

2) Antagonism (A): when the combined stressors cause a less severe effect than calculated 

from either reference model.  

3) Dose-level dependent deviation (DL): when the deviation from either reference model is 

dependent of the dose of each component (e.g. the deviation at low doses levels is different 

from the deviation at high dose levels). 

4) Dose-ratio dependent deviation: when the deviation from either reference model is 

dependent of the ratio of the two components (e.g., antagonism may be found when one of 

the stressors is the dominant in the combination, whereas synergism may be found where 

the toxicity is mainly caused by the other stressor. 
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1.2. Objective and thesis structure 

 

 This thesis is divided in six chapters, including the current General Introduction 

(Chapter 1), four chapters (Chapters 2 to 5) describing the main results of joint exposure of 

natural and chemical stressors or combined natural stressors on soil fauna and flora, in the 

form of five manuscripts and a General Discussion and conclusions of the main results 

(Chapter 6). 

 The main objective of this work focused on how and to what extent environmental 

factors (temperature, soil moisture and UV radiation) affect the toxicity of carbaryl to soil 

organisms and plants. For that different endpoints and species were used: survival 

(Folsomia candida and Eisenia andrei), reproduction (Folsomia candida), biomass 

(Triticum aestivum, Brassica rapa and Eisenia andrei), growth, germination and foliar 

changes (Triticum aestivum and Brassica rapa).  

1.3 General procedures 

1.3.1 Test Organisms 

 

 In this study two soil invertebrate species were used as test organisms: earthworms 

(Eisenia andrei, Bouché, 1972) and collembolans (Folsomia candida, Willem, 1902) and 

two plants species: the monocotyledonous wheat (Triticum. aestivum) and the 

dicotyledonous turnip (Brassica rapa). All of them are widely used as standard test species 

in soil ecotoxicological tests. 

 E. andrei (Lumbricidade, Oligochaeta) is an a ubiquitous species with resilience to 

wide ranges of temperature and moisture (Dominguez et al., 2005). Due to their ecological 

significance and ability to be cultivated in the laboratory this species is a standard test 

organism widely used in terrestrial ecotoxicology (OECD, 1984). In the field they are 

continuously exposed to contaminants through the intake of large amounts of soil or by 

uptaken chemicals through skin. In addition they have chemoreceptors in their body 

surface which allows the detection of the presence of chemicals in soil. The acute toxicity 

tests with earthworms allow to evaluate, short-term, mortality and loss weight, and are 

relevant endpoints that provide sufficient information to initiate ecotoxicological risk 

management. 
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 Folsomia candida is an insect, belonging to the family Isotomidae, and it is an 

unpigmented, edaphic and surface-dwelling species, with a short life cycle and easy to 

maintain in laboratory cultures. They have been extensively used in ecotoxicology assay 

due to their short generation time, asexual reproduction, sensitivity to chemical exposure 

and easily maintenance in the laboratory. F. candida has optimal reproduction rates in well 

watered soils and at 20 ºC (Fountain and Hopkin, 2005). 

 T. aestivum belongs to the Poaceae family, and is one of the most important 

agricultural crops and most studied plants in the evaluation of responses to climate 

changes; therefore it has also been widely used as a standard species in ecotoxicity testing 

(ISO 1995 ). Despite being a plant of temperate environments, it is well adapted to tropical 

and sub-tropical areas (above 17 ºC), with high solar radiation and grows across a wide 

range of environments worldwide. Their optimal temperature for growth is around 25 ºC 

and the maximal tolerance is around 32 ºC (Briggle and Curtis, 1987), but for a good 

growth rate, a well moistened soil is necessary.  

  B. rapa belongs to the Brassicaceae family and constitutes one of the world’s most 

economically important plant groups. It is considered a temperate species, widely adapted 

within a wide range of soil conditions. Air and soil temperatures influence their growth and 

productivity and their optimum temperature for growth and development is around 20 ºC, 

with the minimum being considered around 12 ºC and the maximum 30 ºC (CCME, 2009). 

 Rapid-cycling brassicas (within the Wisconsin Fast Plants Program) are nowadays 

being used in ecotoxicology because they are easily grown under laboratorial condition, 

where a full life cycle assessment can be carried out “from seed to seed”. The early stages 

of plant life, as germination, root emergence and shoot development, have been considered 

the most sensitive endpoints within plant’s life-stage (OEHHA, 2008), which justifies the 

large use of these endpoints in ecotoxicological tests with plants. 

1.3.2 Test chemical  

 

 The insecticide and acaricide carbaryl, also known by the trade name Sevin®, is the 

ISO common name for 1-naphthyl N- methylcarbamate (IPCS, 1993.). It belongs to the 

carbamate family, known to be an inhibitor of acetilcholinesterase. The molecular formula 

of carbaryl (CAS registry number 63-25-2) is C12H11NO2(FAO, 2004) and its chemical 

structure is presented below in figure 1.1 
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Fig. 1.1. Chemical structure of carbaryl. 

 

 Carbaryl was the first carbamate pesticide to be used successfully for the control of 

pests on agricultural crops, ornamental production, and residential pet and lawn uses. It 

was registered by Bayer CropScience and is largely used in countries worldwide, (CCME, 

2009), in more than 100 species of insects that are considered plagues to crops. 

 Carbaryl is a lipophilic chemical, with low volatility, and it is considered a stable 

product under light conditions and at temperatures below 70°C (IPCS, 1993.); its half-life 

depends on temperature, pH and the initial concentrations. In soil the degradation half-life 

for carbaryl at 20± 2°C was reported to be less than 31 days, but the degradation rate was 

found to be 2.7 times slower with a decrease in temperature to 10°C (CCME, 2009). The 

degradation of carbaryl in soil is highly dependent of environmental factors, soil type and 

soil aeration. 

 The soil adsorption coefficient (Koc) is the value that determines how well the 

chemical binds to the soil particles. The larger the Koc, the smaller is the probability of a 

chemical to move along the ground. The knowledge on the sorption phenomena of 

pesticides in soils is very important for an accurate risk assessment procedure, because 

pesticide sorption affects important processes that will influence the final fate of these 

compounds in the soil environment (Kumar and Philip, 2006). In sandy soils, where there 

is a low concentration of organic matter, the mobility of carbaryl is high, and consequently 

a low adsorption is observed in these soils. On the other hand, adsorption of carbaryl on 

soils with a high organic matter content occurs more readily (IPCS, 1993.). Carbaryl has 

been considered to have medium mobility in silty clay loam, sandy loam, sediment and silt 

loam soils (CCME, 2009). Regarding soil aeration, carbaryl is degraded faster under 

aerobic conditions than under anaerobic conditions by microbial processes. The main 

metabolites from carbaryl degradation both in water and in the soil is 1-naphthol (IPCS, 

1993.), which is generally more toxic than carbaryl. 
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 Regarding the toxicity of carbaryl to soil organisms, the European Food Safety 

Authority (2005) considers that carbaryl represents a low acute risk for earthworms. But a 

potential high risk to other non-target organisms as collembola. In addition they declare 

that the inherent risk of carbaryl to plants is considered to be low for the representative use, 

once plants are exposed via spraying and therefore, exposed to lower doses of carbaryl. But 

these conclusions were based on experiments where abiotic factors were controlled in the 

laboratory, which may completely change the scenario if compared to the simultaneous 

presence of extreme environmental conditions. 

 The specific aims of each work are described below.  

 

Chapter 2: Lima, M. P. R., Soares, A. M. V. M., Loureiro, S. (2011) Combined effects of 

soil moisture and carbaryl to earthworms and plants: Simulation of flood and drought 

scenarios. Environmental Pollution 159, 1844-1851. 

 

 In order to evaluate the responses of soil organisms to the changes in soil moisture 

and the influence of these changes in carbaryl toxicity, the plant species Brassica rapa and 

Triticum aestivum and the earthworm Eisenia andrei were exposed to different levels of 

soil moisture, simulating drought and flood scenarios and a range of carbaryl 

concentrations. Both stress factors were tested individually, as well as combined. Acute 

and chronic tests were performed. When possible, data were fitted to the IA conceptual 

model for describing combined responses.  

Chapter 3: Lima, M. P. R., Cardoso, D. N., Soares, A. M. V. M., Loureiro, S. (in press) 

Carbaryl toxicity prediction to soil organisms under high and low temperature regimes, 

Ecotoxicology and Environmental Safety doi: 10.1016/j.ecoenv.2014.04.004. 

 

 The toxic effects of the pesticide carbaryl were evaluated under different 

temperature regimes, which are indicative of temperate and tropical climates and are 

relevant to climate change predictions or seasonal temperature fluctuations. Four standard 

organisms were used (Folsomia candida, Eisenia andrei; Triticum aestivum and Brassica 

rapa) and the effects were assessed using synergistic ratios, calculated from EC/LC50 

values. When possible, the MIXTOX tool was used based on the reference model of 

independent action (IA) and possible deviations.  
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Chapter 4: Lima, M. P. R., Soares, A. M. V. M., Loureiro, S. Responses of wheat 

(Triticum aestivum) and turnip (Brassica rapa) to the combined exposure of carbaryl and 

ultraviolet radiation. Paper submitted to Environmental Toxicology and Chemistry. 

 

 The purpose of this study was to evaluate the influence of UV radiation on carbaryl 

toxicity in crop plants. For that two important crop plants Triticum aestivum (wheat) and 

Brassica rapa (turnip) were exposed to UV radiation and carbaryl, singly and in 

combination. For this evaluation, plant growth, weight, leaf changes and biomass 

accumulation were used as response parameters. The MIXTOX tool was used to predict 

the combined exposures and was based on the conceptual model of Independent Action 

(IA), where possible deviations to synergism or antagonism, dose-ratio or dose-level 

response pattern were also considered.  

 

Chapter 5: Lima, M. P. R., Soares, A. M. V. M., Loureiro, S. Drought and flooded soils 

affect the response of wheat (T. aestivum) and turnip (B .rapa) to ultraviolet radiation.   

 

 The purpose of this work was to analyze if the water availability can change the 

response of T. aestivum and B. rapa to UV radiation exposure. For that seedlings 

immediately after emergence were submitted to different doses of UV radiation, combined 

with two watering regimes (drought and flood simulations). The endpoints analyzed were 

length, weight, foliar changes and dry matter accumulation. 

 

Chapter 6. A general discussion and concluding remarks of this study. 
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Abstract 

 

Studying tolerance limits in organisms exposed to climatic variations is key to 

understanding effects on behaviour and physiology. The presence of pollutants may 

influence these tolerance limits, by altering the toxicity or bioavailability of the 

chemical. In this work, the plant species Brassica rapa and Triticum aestivum and the 

earthworm Eisenia andrei were exposed to different levels of soil moisture and 

carbaryl, as natural and chemical stressors, respectively. Both stress factors were tested 

individually, as well as in combination. Acute and chronic tests were performed and 

results were discussed in order to evaluate the responses of organisms to the 

combination of stressors. When possible, data was fitted to widely employed models for 

describing chemical mixture responses. Synergistic interactions were observed in 

earthworms exposed to carbaryl and drought conditions, while antagonistic interactions 

were more representative for plants, especially in relation to biomass loss under flood-

simulation conditions. 

 
 
 
 

Keywords: Soil moisture, Carbaryl, Synergism, Antagonism, Non-target species 
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2.1 Introductionn 

 

 In the last decades, several factors have had an impact on ecosystem 

sustainability. Among them, anthropogenic activities (e.g. agricultural practices) and 

environmental (including climatic) changes are important causes for such an imbalance. 

Global climatic changes are increasingly redirecting ecotoxicological studies, and there 

has been an increment on the knowledge about interactions between natural and 

chemical stressors, and the way they affect organisms and their performance. The 

response of soil fauna and flora to chemicals is dependent on the environmental 

conditions under which they are exposed. Environmental conditions cannot only 

increase the organism susceptibility to pollutants, but also become stress factors 

themselves (Holmstrup et al., 2007; Sjursen and Holmstrup, 2004; Spurgeon et al., 

2005; Svendsen et al., 2007). 

 Biota play an important role in maintaining soil quality and functioning, since 

they intervene on the decomposition of dead organic material and nutrient cycling 

(Bardgett et al., 2005). The species used in this work represent different groups of 

organisms in terms of function, trophic level, life history strategy and route of exposure 

to chemicals. 

 Earthworms are one of the most important biocomponents of ecosystems, 

contributing to maintaining soil structure and fertility promote plant growth, and aid in 

important soil processes such as carbon and nitrogen cycling (Edwards and Bohlen, 

1996). Higher plants are considered to be versatile tools for identifying and monitoring 

the effects of pollutants on soil (Gong et al., 2001; Loureiro et al., 2006). Plants can be 

used as bioindicators for toxicity assessment in both aquatic and terrestrial ecosystems 

(Azevedo et al., 2005; Gorsuch et al., 1991). In this context, the monocotyledonous 

Triticum aestivum and the dicotyledonous Brassica rapa are amongst those species 

more commonly used in environmental risk assessment, while being representative of 

economically relevant plants. 

Soil available water is a key factor in determining soil fauna and plant fitness 

(Fragoso and Lavelle, 1992; Lavelle and Spain, 2001), while influencing the activity 

and habitat selection of soil organisms, as well as the behaviour and toxicity of 

anthropogenic contaminants towards edaphic species and plants (Højer et al., 2001; 
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Martikainen and Krogh, 1999). Some studies have been carried out on the influence of 

soil moisture on soil fauna dynamics, evaluating changes in sensitivity to soil moisture 

after chemical exposure or vice-versa or even the combined assessment simultaneously 

(Bindesbøl et al., 2005; Friis et al., 2004; Højer et al., 2001; Holmstrup, 1997; 

Holmstrup et al., 2007, 1998; Long et al., 2009; Maraldo et al., 2006; Sjursen and 

Holmstrup, 2004; Sjursen et al., 2001; Sorensen and Holmstrup, 2005). Such 

approaches are crucial to understand scenarios of drought and flood, which have 

become more frequent over the last decades. 

 Analysing the effects of pharmaceutical mixtures has become common practice 

in toxicology, with conceptual models such as concentration addition (CA) and 

independent action (IA) amongst those more widely used. Such models have also been 

transposed to environmental research, for predicting effects of chemical mixtures or 

combinations of natural and chemical stressors (e.g. Holmstrup, 2008; Loureiro et al., 

2009; Pestana et al., 2009). The CA concept described by Loewe and Muischnek (1926) 

is based on the assumption that the individual components of the mixture have similar 

mechanisms of action. The IA principle relates to independent modes of action of the 

mixture components and was firstly described by Bliss (1939). Recently, both models 

were successfully employed as part of the European project No Miracle (2004 and 

2009), for describing the combined effects of chemicals and natural stressors (Ferreira 

et al., 2008, 2010; Long et al., 2009). 

 The aim of this study was to investigate and predict the toxicity of carbaryl 

under different soil moisture contents, thus simulating drought and flood scenarios. 

Earthworms and plants were used as test-organisms. Dose-response curves for single 

stressors exposure was modelled using the independent action (IA) concept, and tested 

for possible deviations for synergism or antagonism. The carbamate insecticide carbaryl 

(1-naphthol N-methyl carbamate) was chosen as test-chemical, due to the fact that it is 

widely used in both agricultural and domestic applications, while being considered a 

potential neurotoxicant to non-target species (Gambi et al., 2007). The inhibition of 

cholinesterase (ChE) activity by carbaryl is well documented for different animal 

species (e.g. Caselli et al., 2006; Ferrari et al., 2004; Gambi et al., 2007; Gupta and 

Sundararaman, 1991). The persistence of carbaryl in plants has also been investigated, 

with fruit trees having shown to be able to accumulate this pesticide (Galhotra et al., 
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1985; Iwata et al., 1979; Rao and Ramasubbaiah, 1988). In addition, other studies have 

also reported the side effects of carbaryl on plant growth, e.g. apple trees (Jones et 

al.,1991; Murthy and Raghu,1990). 

2.2 Materials and methods 

2.2.1. Test substance and test species 

 

 Carbaryl (CAS No 63-25-2) was purchased from Sigma and Aldrich Ltd. (99.8% 

purity). Carbaryl stock solution was prepared using acetone and applied to pre-

moistened soil one day before the experiment started, in order to allow the evaporation 

of acetone. 

 All experiments were carried out using the natural standard soil LUFA 2.2 from 

Speyer, Germany (Løkke and van Gestel, 1998). Lufa 2.2. soil is considered a standard 

sandy-loam soil (17% silt, 6% clay and 77% sand), with 4.4% of organic matter, a 

carbon/nitrogen ratio of 14, pH 5.8, water holding capacity of 55% (weight per volume) 

and a cation exchange capacity of 11.2 cmol/kg. 

 The earthworm Eisenia andrei Bouché was kept in laboratory cultures, in plastic 

boxes with a mixture of Sphagnum peat (50%) and horse dung (50%) as substrate, with 

pH 6.0 ± 0.05 adjusted with powdered calcium carbonate (CaCO3). Organisms were fed 

weekly with horse dung. Cultures were maintained at 16:8 h light: dark photoperiod and 

at 20±2 ºC. 

 Seeds of B. rapa were purchased from Carolina Biological Supply Company 

(US) and T. aestivum from a local supplier (Aveiro, Portugal). 

 

2.2.2. Single exposure - chemical stressor 
 

Earthworms 

 

 Tests were performed in accordance to the OECD 207 guideline (OECD, 1984). 

Ten adult worms (clitellated), with individual fresh weight between 300 and 600 mg, 

were exposed to different carbaryl concentrations (20, 40, 60, 80, 100 mg/kg) at four 

replicates each. In addition to the negative control, a solvent control was prepared for 

comparison with 100 ml acetone/kg. The chemical exposure test was carried out in a 
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climatic chamber at 20±2 ºC; 16h light/8h dark, and soil moisture adjusted to 60% water 

holding capacity (WHC). After 7 and 14 days of exposure, surviving worms were 

counted, and at the end of the test (14 day), earthworms were pooled weighted and their 

mean biomass (mg) reported. For the earthworms, loss of weight was calculated using 

the equation: 

i

fi

Fw

FwFw
LW

)( 
  

 

where LW is the mean loss of weight; Fwf is the mean weight after 14 days; Fwi is the 

mean weight at the beginning of the test. 

 

Plants 

 

 The plant tests were performed following the protocol ISO 11269-2 (ISO, 1995). 

For each species, ten seeds were placed per plastic pot with 500 g of soil at a depth of 1 

cm from the soil surface. Four replicates/pot per treatment were used. Carbaryl exposure 

treatments ranged from 50 to 150 mg/kg. In addition to the negative control, a solvent 

control was prepared with 100 ml acetone/kg. Bioassays were carried out at 20±2 ºC, at 

12000 lx, in a 16:8 (light: dark) photoperiod. The test duration was 14 days after 50% of 

seeds had emerged in the control soil. In the first 7 days, seeds’ germination was 

reported. The soil moisture was maintained by capillary action, through a fibreglass 

wick (between 5 and 10 mm ø) located at the pot’s bottom (Loureiro et al., 2006). At 

the end of the tests, individual growth (shoot length), fresh and dry weight were 

recorded and the hydric content (HC) calculated using the equation: 

100



FW

DWFW
HC  

where DW is the plant dry weight and FW the plant fresh weight. 

2.2.3. Single exposure - natural stressor 

 

 The tests with earthworms and plants were adapted from that described in the 

OECD 207 (OECD, 1984) and ISO 11269-2 (ISO, 1995), respectively. Earthworms and 

plants were exposed to different soil moisture contents, simulating drought (10, 20 and 
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40% of the WHC), as well as flood conditions (80, 100 and 120% of the WHC). In both 

approaches, a control (60% of the WHC), similarly to that described in the chemical 

exposure bioassays. To control moisture levels during the experiments, soil pots were 

weighted daily and water added when needed. 

 

2.2.4. Combined exposure 

 

 The procedures for the tests with earthworm and plants were carried out in 

accordance to that described in the OECD 207 (OECD, 1984) and ISO 11269-2 (ISO, 

1995), with further adaptations. Dry soil was contaminated with different carbaryl 

concentrations dissolved in acetone, left to evaporate for one day and then moistened 

with deionized water in order to obtain 10, 20, 40, 60 (control), 80, 100 and 120% WHC 

 All procedures were carried out as previously described for the single stressors 

exposures. 

 

2.2.5. Statistical analysis 

 

 One way (ANOVA), followed by Dunnett’s test, was used to analyze differences 

between control and treatments. Whenever data were not normally distributed and data 

transformation did not correct for normality, a Kruskal-Wallis ANOVA on Ranks was 

performed (Zar, 1996), followed by the Dunn’s method when significant differences 

were found. Differences between control and solvent control were analyzed using a t-

test or a Mann-Whitney Rank test, when normality failed (α = 0.05). For this statistical 

analysis, the software package Sigma Stat was used (SPSS, 1995). 

 EC50 values were calculated using a sigmoidal (logistic, 3 parameter) equation 

(Systat Software Inc, 2002). LC50 values were calculated through the Probit method 

(SPSS, 2003). Data from the mixture exposures were analyzed by comparing the 

observed data with the expected mixture effects from the IA reference model using the 

MIXTOX model of Jonker et al. (2005). Under this approach, in the second step, the IA 

model was extended according to Jonker et al. (2005), using deviation functions to 

describe synergistic/antagonistic interactions, dose level, and dose-ratio dependency. 

For that a nested framework was built with the extra parameters needed for the 

deviation functions. Data are fitted to the models using the method of maximum 
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likelihood, resulting on model fits that can be statistically compared through likelihood 

testing. The effect patterns were then deduced directly from the parameter values 

(Jonker et al., 2004, 2005). 

 When dose-response curves where not established for one of the stressors or 

parameter EC50/LC50 values for carbaryl were compared between soil moisture 

treatments to detect shifts in toxicity. 

2.3. Results 

2.3.1. Single-exposure 

 

 There were no significant differences of the parameters measured between the 

control and solvent control; therefore the solvent control data will be used to compare 

the results obtained. The EC50 and LC50 values calculated from the single exposures to 

carbaryl and soil moisture, as well as the No Observed Effect Concentration (NOEC) 

values are presented in Table 2.1. 

 Earthworms’ survival was significantly affected by carbaryl exposure (ANOVA, 

p < 0.05), opposed to that of biomass, which was not significantly influenced at the 

concentrations used (ANOVA, p ≥ 0.05) (Figure 2.1A and B). A dose-response pattern 

was observed for both plant species. B. rapa and T. aestivum showed similar responses 

for length and biomass weight when exposed to carbaryl (Table 2.1). Plant biomass 

production (Figure 2.2), growth (Figure 2.3) and emergency were adversely affected 

and the severity of the response was directly related to increasing carbaryl 

concentrations. When analyzing plant water content, T. aestivum showed a decrease in 

its water content for carbaryl concentrations above 50 mg/kg, while B. rapa showed 

significant decreases from 100 mg carbaryl/kg soil (Dunn’s Method, p < 0.05) (Figure 

2.4). 

 The evaluation of stress induced by changes in soil moisture to organisms was 

carried out in two experimental setup groups: drought stress evaluation (10-40% WHC) 

and flood stress evaluation (80-120% WHC). Mortality and weight loss in earthworms 

were not significant affected by moisture, with only one earthworm having died in the 

40% WHC treatment (ANOVA, p > 0.05). 
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Table 2.1 EC50, LC50 and NOEC values obtained after single exposures of Eisenia andrei, Brassica rapa 

and Triticum aestivum to carbaryl (mg/kg) and soil moisture (%WHC). Soil moisture is depicted as 

percentage of soil water holding capacity (WHC). 

  Carbaryl Drought Stress Flood Stress 

Species endpoint 

E/LC50 

(mg/kg) 
NOEC 

E/LC50 

(%WHC) 
NOEC 

E/LC50 

(%WHC) 
NOEC 

(SE) (mg/kg) (SE) (mg/kg) (SE) (mg/kg) 

Eisenia 

Andrei 

survival (7d) 53.3 (2.8) 40 n.d. >60 n.d. >120 

survival (14d) 45.5 (4.02) 20 n.d. >60 n.d. >120 

Biomass n.d >80 n.d. >60 >120  >120 

Brassica 
rapa 

Length 
66.48 

(2.26) 
<50 

37.63 

(16.50) 
>40<60 120 (5.9) 100 

fresh weight 
45.34 

(1.81) 
<50 37.2 (51.0) 40 120 (95.7) 100 

dry weight 
42.31 
(2.40) 

<50 7.4 (22.0) 40 120 (84.8) 100 

hydric content >150 75 n.d. >40<60 n.d. 100 

Triticum 

aestivum 

Length 
68.12 

(2.81) 
<50 8.9 (0.98) 40 120 (9.1) 80 

fresh weight 
70.72 

(2.55) 
50 14.0 (4.0) 40 49.8 (58.3) 80 

dry weight 
77.66 

(2.81) 
50 11.0 (1.8) 40 n.d. 80 

hydric content >150  <50 n.d. 40 n.d. >120 

 

NOEC - No-observed-effect concentration; EC50 - Median effective concentration; SE - Standard Error; 

n.d -  data not determined. 
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Fig. 2.1. Effect of carbaryl on Eisenia andrei survival after 7 and 14 days of exposure (A) and weight loss 

after 14 days of exposure (B). * and + -  p ≤ 0,05 Dunn’s test, for 7 and 14 days, respectively, compared 

to the control. 

 

 

 

 

 

 

 

 

 

 

A 

B 



Chapter 2. Simulation of flood and drought scenarios 

 

39 

 

A 

0 50 75 100 125 150

F
W

 (
m

g
)

0

200

400

600

800

0 50 75 100 125 150

D
W

 (
m

g
)

0

10

20

30

40

50

60

*

*

*

*

* *

*

*

*
*

 

 

B 

0 50 75 100 125 150

F
W

 (
m

g
)

0

50

100

150

200

250

300

*
*

* *

Carbaryl (mg/Kg)

0 50 75 100 125 150

D
W

 (
m

g
)

0

10

20

30

40

*

*
* *

 

 

Fig. 2.2 Effect of carbaryl on the dry weight (DW) and fresh weight (FW) of Brassica rapa (A) and 

Triticum aestivum (B) after 14 days of exposure. * - P≤0,05 Dunn’s test, comparison to the control (0 

mg/Kg). 

 

 Both plant species showed similar responses to moisture, where the extreme 

drought and flood conditions caused low seed germination and plant development. In 

extreme flood stress, it was observed both a retarded seedling growth for wheat and in 
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some cases, unsuccessful seed germination. For B. rapa, higher plant water content was 

reported in exposures to extreme stress (10, 120% WHC). In contrast, T. aestivum 

showed a different response pattern, with extreme drought stress causing a significant 

decrease on its hydric content, while the flood stress did not produce significant effects 

(ANOVA, p > 0.05). 
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Fig. 2.3 Effect of carbaryl on Brassica rapa (A) and Triticum aestivum (B) length after 14 days of 

exposure. *- p ≤ 0,05 Dunn’s test, comparison to the control. 
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Fig. 2.4. Effect of carbaryl on the hydric content of Brassica rapa (A) and Triticum aestivum (B) after 14 

days of exposure. * - P ≤ 0,05 Dunn’s test, comparison to the control (0 mg/Kg). 

 

2.3.2. Combined exposure 

 

 In order to understand the response of soil organisms to the combined stressors, 

the IA reference model was used when dose-response curves were observed for both 

stressors, assuming that they do not share the same mode of action. For all case-studies, 

the effects of carbaryl at different soil moistures were also analyzed by calculating the 

corresponding LC50/EC50 values. This output is depicted in Tables 2.2 and 2.3, 

respectively. 

 

B 
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 Although there were no effects induced by changes in soil moisture on the 

survival of earthworms, changes in soil water content induced changes in the toxicity of 

carbaryl. The LC50 of carbaryl decreased with decreasing soil moisture, suggesting a 

potential synergism. After 14 days of combined exposure, there was 100% mortality in 

the carbaryl treatments in soil at 10 and 20% WHC. In contrast, the flood-simulation 

scenario induced a decrease of carbaryl toxicity, showing low mortalities as response to 

higher concentrations after 14 days of exposure, and increasing the LC50 from 54.74 mg 

carbaryl/kg soil (60% WHC) to 89.4 mg carbaryl/kg (120% WHC). Soil pH was 

consistent throughout the assays (between 6 and 7). 

 

Table 2.2 Toxicity of carbaryl to Eisenia andrei, Brassica rapa and Triticum aestivum in different soil moisture regimes. 

Data is presented as EC50 or LC50 (mg/Kg) with standard error (SE). Moisture regimes are depicted as percentage of soil 

water holding capacity. 

 
  Carbaryl EC50/LC50 (ES) for moisture conditions (mg/Kg) 

Species endpoint 10%WHC 20% WHC 40% WHC 60% WHC 80% WHC 
100% 

WHC 
120% WHC 

E. andrei 

survival 

(7d) 

<20 (n.d) <20 (n.d) 49.19 

(6.23) 

86.5 

(11.87) 

>100 (n.d) >100 

(n.d) 

>100 (0,39) 

survival 

(14d) 

<20 (n.d) <20 (n.d) 26.20 

(4.52) 

54.74 

(5.58) 

93.05 

(14.27) 

>100 

(n.d) 

89.4 (0.007) 

Biomass n.d n.d n.d. n.d n.d n.d. n.d. 

B. rapa 

Length 
62.4 (54.1) n.d 59.2 (15.4) 90.5 (10.3) 99.0 (13.5) 85.4 

(5.5) 

72 (4.0) 

fresh weight 17.0 (25.2) >150 45.3 (9.5) 59.7 (5.4) 63.0 (4.9) 54 (3.3) 51 (4.8) 

dry weight 
n.d. 28.6 

(150.1) 

n.d. 49.9 (14.5) 59.4 (5.3) 56.6 

(4.6) 

47.5 (5.7) 

hydric 

content 

>150 n.d n.d. n.d n.d n.d. n.d. 

T. 

aestivum 

Length 
>150 132.5 

(41.1) 

71 (8.2) 41.5 (4.1) 42.2 (7.2) 44.0 

(2.8) 

55.0 (4.7) 

fresh weight 
n.d 145 (47.1) 56.4 (7.2) 37 (4.3) 26.7 (10.7) 31.5 

(4.1) 

57 (7.4) 

dry weight 
105.2 

(59.6) 

129 (64) 65.2 (8.5) 51.5 (3.0) 55.6 (18.1) 53.3 

(7.0) 

89 (13.4) 

hydric 

content 
n.d n.d n.d. n.d 

n.d n.d. n.d. 

 

 The response patterns in B. rapa showed that the reference model IA provided a 

valid estimation of the overall toxicity for combined carbaryl and drought stress (p < 

0.05, Table 2.3); no deviation from the model was observed. 

 In the flood stress conditions, the mass production parameters (FW and DW) 

showed an antagonistic deviation from the reference model (p < 0.05, Table 2.3), and 
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shoot length data revealed a dose-dependent deviation from the independent action 

model (p < 0.05; SS = 2770; ɑ = 7.15; b = 1.4; r
2
 = 0.44; Table 2.3). In the latter case, 

antagonism was detected at low carbaryl concentrations and switching to a synergistic 

pattern for doses above the corresponding EC50 level, i.e. extreme water content and 

high carbaryl concentrations. 

 The combined effects of drought conditions and carbaryl in T. aestivum length 

caused a “dose ratio” deviation from the IA model (p < 0.05; Table 2.3). An 

antagonistic pattern was observed when drought stress was dominant, whereas 

synergism occurred when carbaryl was the dominant stressor, i.e. high doses of carbaryl 

and low drought stress. For the FW and DW parameters, an antagonistic effect was 

detected (p < 0.05). In flood conditions, DW data also showed an antagonistic pattern (p 

< 0.05; Table 2.3), and a “dose level” deviation from the IA model for length and FW (p 

< 0.05), with antagonism being dominant at higher dose levels and synergism at low 

dose levels. 

 

Tabela 2.3. Summary of the analysis done for the effects on length, fresh weight (FW) and dry weight (DW) of Brassica 

rapa and Triticum aestivum exposed to the combination of carbaryl and drought or flood regimes. IA is independent action; 

SS is the objective function used for continuous data; r2 is the coefficient of determination; a and b are parameters of the 

deviation functions; S/A is synergism/antagonism; DR and DL are “dose ratio” and “dose level” deviation from the reference 

model 

Species and parameter Carbaryl IA Deviation   

            

  SS r2  Deviation type SS r2 a b  
Brassica rapa 

length Drought 3.96 0.69         

 Flood 2895 0.42  DL 2770 0.44 7.15 1.4   
Brassica rapa 

FW Drought 149398 0.78   

16 x105 

     

 Flood 1768860 0.66  A 0.68 2.5 -  
Brassica rapa 

DW Drought 1879 0.51         

 Flood 8626 0.65  A 8307 0.66 1.7 -  
Triticum aestivum 

length Drought 1019 0.87  DR 8.63 0.89 3.9 -4.6   

 Flood 2385 0.85  DL 1972 0.88 0.04 -   

Triticum aestivum  

FW Drought 87716 0.89  A 82744 0.90 1.15 

 
 
- 49.5  

 Flood 845314 0.71  A 691305 0.76 0.65 -  
Triticum aestivum 

DW Drought 2477 0.85  A 2395 0.86 1.13 -  

 Flood 19390 0.61  A 16734 0.66 3.0 -  
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2.4. Discussion 

2.4.1. Single stressor exposures 

 

 The impact of carbaryl on the inhibition of cholinesterase (ChE) activity has 

been well documented for various organisms, including earthworms (Caselli et al., 

2006; Ribera et al., 2001; Stenersen, 1980), which are known for exhibiting high 

sensitivity towards chemical carbamates. Gambi et al. (2007) reported maximal 

cholinesterase (ChE) inhibition for carbaryl concentrations of 48.3 mg/kg, whereas 

Ribera et al. (2001) observed cholinesterase (ChE) inhibition at the lower dose of 12 mg 

carbaryl/kg soil. Although carbaryl toxicity in earthworms is caused mainly by 

acetylcholinesterase inhibition, LC50 values found in this study are above those reported 

in the afore mentioned studies. Edwards and Lofty (1977) have shown that carbamates 

are highly toxic to earthworms and can kill them rapidly.  

 Heimbach (1984) calculated an LC50 value for carbaryl exposure of 174 mg/kg, 

and it was cited by Jänsch et al. (2006) as the lowest LC50 values reported in the 

literature. In the present study, even lower values were calculated for 7 and 14 days of 

exposure using two different approaches: testing carbaryl in a single exposure 

experiment (53.3 and 45.5 mg/ kg, respectively) and in the combined exposure under 

60% WHC (86.5 and 54.74 mg/kg, respectively). From the values calculated, lethality 

did not vary significantly with time of exposure (from 7 to 14 days). Carbaryl alone had 

no significant detrimental impact on earthworm biomass, thus concurring with the 

findings of Mostert et al. (2000), who reported an effect (although not always signifi-

cant) on biomass relative to the control. 

 Regarding plant toxicity, Chakrabarti et al. (1990) reported that carbaryl 

inhibited the growth of germinating mustard seed, while causing accumulation of 

reserved triglycerides. In this study, carbaryl showed to affect plant growth and biomass 

production at concentrations around 65 mg/kg. It has been reported that carbaryl 

concentrations in cultivated soils from Udaipur in the Indian state of Rajasthan ranged 

from 232 to 525 mg/kg (Kavadia et al., 1978), which is above the calculated EC50 

values and concentrations used in the present study. 

 The influence of soil moisture on soil fauna and flora has been widely described 

in various studies. Gunadi et al. (2003) recorded an increment in earthworms’ mortality 
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and growth rate in pig manure soils with high moisture content (90% WHC), which is 

not consistent with our results. On the other hand, Dominguez and Edwards (1997) 

found that the optimum soil moisture content for E. andrei growth is around 85% WHC, 

cultured in pig manure. Reinecke and Venter (1987) pointed out that earthworms thrive 

at higher soil moisture levels, showing also higher mean biomass weights. Drought is 

known to be an important stressor to earthworms, with small decreases in soil moisture 

being able to cause dramatic losses in their body water contents (Petersen et al., 2008). 

In this study, however, soil moisture did not affect significantly E. andrei survival or 

biomass gain/loss. 

 Several studies have highlighted the importance of climate change research, 

focussing mainly on their effects on wheat crops, which account for 21% of food and 

200 million hectares of farmland worldwide (Reilly et al., 2003). In this study, T. 

aestivum and B. rapa emergence, growth and biomass were strongly affected by 

drought and flood extreme conditions. Oxidative stress during water deficit has been 

shown to be detrimental to plant growth and leaf photosynthesis (Dat et al., 2000; Selote 

and Khanna-Chopra, 2004). 

 Mishra et al. (1999) showed that moisture stress (10-12% WHC) reduced the 

relative water content in four Brassica species. This does not corroborate with that 

found in our study, where B. rapa exhibited an unexpected increase in water content 

under drought conditions. This might be explained as a physiological response to hydric 

stress, where early and progressive effects of drought are related to stomata closure for 

preventing water loss (Flexas and Medrano, 2002). 

 In contrast, this pattern was not found for T. aestivum, where our results 

corroborate those reported for Vicia fabia plants, in which water contents decreased 

with drought stress (Abdel-Basset, 1998). 

 A more recent study with Brassica napus showed that water stress (low 

watering) explained reductions in plant length and stem diameter, leaf area, plant dry 

weight, leaf weight ratio and shoot/ root weight ratio, as well as impact on parameters 

related to photosynthesis, such as chlorophyll-a and carotenoids (Sangtarash et al., 

2009). 
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2.4.2. Combined exposures 

 

 Carbamates in general exhibit a prolonged effect on the fitness of earthworms in 

soil (Gilman and Vardanis, 1974), with sublethal concentrations having shown to retard 

their growth and reproduction (Neuhauser and Clarence, 1990). Additionally, moisture 

availability can strongly influence the activity of soil organisms and cause desiccation 

in extreme drought conditions (Hayward et al., 2004), while in plants, dehydration leads 

to oxidative stress (Chaves et al., 2003). Flood conditions can cause mortality due to 

anaerobiosis in the soil environment (Hartenstein, 1981). Exposures to extreme soil 

moistures and carbaryl will induce toxicity to earthworms and plants by acting in 

different targets (MoA). In this context, the IA reference model was chosen as a 

baseline, to help predicting the effects of combined stressors. This was done only when 

each stressor could be well described by a logistic model (Bliss, 1939). 

 

Drought stress 

 

 Regarding the combined toxicity of carbaryl and soil moisture in earthworms, 

there was a significant synergism between drought stress and carbaryl on survival and 

weight loss of E. andrei. This means that the combined effects observed in our 

experiment were stronger than expected, considering the single exposure responses for 

both stressors individually. This can be explained by dehydration, whereby reducing the 

volume of water within the organism, leads to increasing concentration of the chemical 

and the risk for toxic damage to occur (Holmstrup, 2008). Various studies reported 

similar synergistic processes caused by interactions of desiccation and chemicals (Friis 

et al., 2004; Højer et al., 2001; Holmstrup, 1997; Holmstrup et al., 1998; Sjursen et al., 

2001; Sorensen and Holmstrup, 2005). 

 Using the Independent Action model for predicting effect patterns on the 

combined toxicity of fluoranthene and drought stress in the reproduction (cocoon 

production rate) of Lumbricus rubellus, Long et al. (2009) showed that this model 

provided a good description of the combined stressors data. Although their results 

suggested that the IA model interprets accurately the combined effects of chemical and 

nonchemical stressors, authors highlighted that such an approach needs to be done 
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cautiously, as interactions between stressors may result in deviations from the IA model 

predictions, as observed in the current study. 

 In the bioassays with plants, data from all parameters reported for B. rapa 

showed that the IA model had an accurate fit, describing the additivity of responses 

expressed in this model. From the EC50 values, we can see that as drought increases, the 

toxicity of carbaryl is more pronounced, as a result of combined toxicity (as additivity), 

demonstrating that in drought periods, carbaryl toxicity towards plants will be more 

marked, compared to periods of regular soil moisture. 

 For T. aestivum however, there was no additivity in the responses. Biomass 

parameters showed antagonism, where toxic effects were less than that expected, while 

for the shoot length, carbaryl was responsible for the increase in toxicity under 

combined exposures. 

 As far as we know, there are no studies published on the combined effects of 

chemicals and different soil moisture regimes in plant species, including those used in 

this study. There are several hypotheses that can be raised towards these results. One 

hypothesis can be that at low moisture regimes, less water is available for uptake by 

plants. As chemicals enter plants as water solutions, under a contaminated scenario and 

low water levels in soil, less water will be available for uptake by the roots, thus less 

chemical will enter. 

 

Flood stress 

 

 Flood scenarios are not usually considered as stressors in environmental risk 

assessment. Although the water excess will not jeopardize plants over short-term 

periods, its combined exposure should be evaluated and considered. 

 Regarding the increase of water in soil and the presence of carbaryl, one can 

hypothesize that when the concentration of chemical in pore water is reduced (higher 

dilution), then we will see lower than the expected toxicity. In this study, there were no 

differences on the LC50 of the earthworms exposed to carbaryl under simulated flood 

scenarios. The relatively low coefficient of adsorption of carbaryl allows its dissolution 

and transport in water (Lin et al., 2007). This might raise also a problem for carbaryl in 

soil when flood scenarios occur, related to groundwater contamination. 
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 In a study where the collembolan Folsomia candida was exposed to cadmium at 

different ranges of soil moisture (from 74 to 162% of field capacity), there were no clear 

effects of soil moisture on the bioavailability and toxicity of cadmium to F. candida 

(van Gestel and van Diepen, 1997) which is not in accordance with the findings 

reported here. 

 For the plants bioassay, antagonism was the pattern that showed more 

consistency, appearing as a predictability pattern in four out of the six evaluations. This 

antagonism was observed for both plant species parameters related to biomass weight 

(fresh and dry). For the shoot length, antagonism was the main pattern observed, 

although synergism became dominant when high doses of carbaryl were applied at high 

moisture levels. This might be related to lower concentrations of carbaryl in soil pore 

water due to higher moisture contents in soils, i.e. water dilution effect, with consequent 

decrease on carbaryl uptake by plants. 

 

2.5. Conclusions 

 

 The present study showed that soil moisture content has a strong influence on 

the toxicity of carbaryl. A synergistic effect was associated to extreme drought 

conditions, increasing the toxicity of carbaryl towards earthworms, as confirmed by the 

decrease of the LC50 values observed under drought conditions. 

 The reference model, Independent Action (IA), gave a valid estimation for the 

combined toxicity under simultaneous exposure trials of this chemical and drought 

stressors in B. rapa. In flood stress conditions, deviations from reference models were 

found (antagonism, “dose ratio” and “dose level” dependence), despite that antagonistic 

deviations were verified for the majority of combinations studied. 

 The pronounced deleterious effects on earthworms from carbaryl exposure under 

drought soil conditions, highlighted the importance of climate change in the 

performance of pesticides in soil organisms. However, the lesser deleterious effects than 

expected under flood stress in plants, may be explained by carbaryl dilution in soil pore 

water. Therefore, lixiviation of carbaryl must be considered and evaluated in future 

studies as it can represent a potential risk to underground water. 
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 Finally drought and flood scenarios should also be included as stress parameters 

in risk assessment procedures, as they can possibly induce additive responses or 

increase toxicity, compared to that expected (i.e. higher toxicity than the sum of 

responses of individual stressors). Similarly, flood scenarios should also be taken into 

consideration, as these can contribute for increasing leaching of chemicals that have 

high mobility in soils, and low adsorption to soil particles. 
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2.6 Supplementary Data 
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Fig. S 2.1. Concentration–response for length (A), fresh weight (B) and dry weight (C) of Brassica rapa 

exposed to carbaryl under several drought regimes [10, 20, and 40% Water Holding Capacity (WHC)]: 
independent action (IA) model fit to the data (2D Isobolic Surface). 60% of WHC was considered the 

control situation. Concentrations and moisture levels are reported as nominal values. Parameters from the 

MIXTOX model can be checked on Table 2.3. 
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Fig. S 2.2 Concentration–response for length (A), fresh weight (B) and dry weight (C) of Brassica rapa 
exposed to carbaryl under several flood regimes [80, 100, and 120% Water Holding Capacity (WHC)]: 

dose level (DL) deviation (A), antagonism deviation (B and C) and after independent action model fit to 

the data (2D Isobolic Surface). 60% of WHC was considered the control situation. Concentrations and 

moisture levels are reported as nominal values. Parameters from the MIXTOX model can be checked on 

Table 2.3. 
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Fig. S 2.3 Concentration–response for length (A), fresh weight (B) and dry weight (mg) of Triticum 

aestivum exposed to carbaryl under several drought regimes [10, 20, and 40% Water Holding Capacity 

(WHC)]: dose ratio (DR) deviation (A), antagonism deviation (B and C) after independent action model 

fit to the data (2D Isobolic Surface). 60% of WHC was considered the control situation. Concentrations 

and moisture levels are reported as nominal values. Parameters from the MIXTOX model can be checked 

on Table 2.3. 
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Fig. S 2.4. Concentration–response for length (A), fresh weight (B) and dry weight (C) of Triticum 

aestivum exposed to carbaryl under several flood regimes [80, 100, and 120% Water Holding Capacity 

(WHC)]: dose level (DL) deviation (A and B) and antagonism (DL) deviation (C) after independent 

action model fit to the data (2D Isobolic Surface). 60% of WHC was considered the control situation. 

Concentrations and moisture levels are reported as nominal values. Parameters from the MIXTOX model 

can be checked on Table 2.3. 
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Abstract 

 

Many studies on risk assessment of pesticides on non-target organisms have been 

performed based on standardized protocols that reflect conditions in temperate climates. 

However, the responses of organisms to chemical compounds may differ according to 

latitude and thus predicting the toxicity of chemicals at different temperatures is an 

important factor to consider in risk assessment. The toxic effects of the pesticide 

carbaryl were evaluated at different temperature regimes, which are indicative of 

temperate and tropical climates and are relevant to climate change predictions or 

seasonal temperature fluctuations. Four standard organisms were used (Folsomia 

candida, Eisenia andrei; Triticum aestivum and Brassica rapa) and the effects were 

assessed using synergistic ratios, calculated from EC/LC50 values. When possible, the 

MIXTOX tool was used based on the reference model of independent action (IA) and 

possible deviations. A decrease on carbaryl toxicity at higher temperatures was found in 

F. candida reproduction, but when the MIXTOX tool was used no interactions between 

these stressors (Independent Action) was observed, so an additive response was 

suggested. Synergistic ratios showed a tendency to synergism at high temperatures for 

E. andrei and B. rapa and antagonism at low temperatures for both species. T. aestivum 

showed to be less affected than expected (antagonism), when exposed to both low and 

high temperatures. The results showed that temperature may increase the deleterious 

effects of carbaryl to non-target organisms, which is important considering both 

seasonal and latitude related differences, as well as the global climate change context. 

 

Keywords: Temperature, Carbaryl, Folsomia candida, Eisenia andrei, Triticum 

aestivum, Brassica rapa
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3.1 Introductionn 

 

 Standardized ecotoxicological tests have been conducted under strict limits on 

abiotic factors such as temperature, simulating temperate regions (Martikainen and 

Krogh, 1999; Smit and van Gestel, 1995), while risk assessment for tropical and cold 

temperate climates is often carried out through extrapolations from these data (de Silva 

et al., 2009). 

 Factors such as organic matter, soil moisture, UV radiation and temperature can 

differ widely according to the planet region. In temperate regions, soils are seasonally 

cold, characterized by a low biological activity (Robertson and Grandy, 2006). 

Whereas, tropical regions are characterized by high moisture and temperatures that 

cause a fast turnover of organic compounds and organic matter in soil (Ayanaba and 

Jenkinson, 1990; Trumbore, 1993). Fate and transport of pesticides, toxicity and 

exposure routes may differ between these regions, mainly due to the temperature 

(Bourdeau et al., 1989; Laabs et al., 2002). So, risk assessment based on these 

standardized tests may not be representative of tropical and cold temperate regions. 

 Besides differences in latitude, seasonal fluctuations and global climate change 

can also lead to different temperature regimes, which may therefore influence the fate 

and transport of chemicals in the environment. 

 The high temperature favours the volatilization and degradation of some organic 

chemicals in soil (Martikainen and Krogh, 1999; Viswanathan and Murti, 1989) and on 

the other hand, degradation of pesticides occur slowly at lower temperatures (Topp et 

al., 1997), favouring its stability in the environment (Viswanathan and Murti, 1989). 

 Regarding the terrestrial environmental compartment, the increase in 

temperature may affect the structure and dynamics of plant communities (Aerts et al., 

2006) and crops (Blum et al., 1994; Ortiz et al., 2008), accelerate earthworm growth and 

reproduction (Butt, 1997; Fayolle et al., 1997; Presley et al., 1996; Reinecke and Kriel, 

1981), affect development and reproduction of soil organisms, such as collembolan 

(Choi et al., 2002). Moreover, it may lead to enhanced metabolic activity of the 

organisms as well as the uptake rates of toxicants (Martikainen and Krogh, 1999; Smit 

and van Gestel, 1997). 
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 On the other hand, low temperatures are potentially lethal for many soil 

organisms and plants (Holmstrup et al., 2008), causing a decrease in burrowing activity 

in earthworms (Perreault and  Whalen, 2006), changes in membrane physical properties 

of plants (Crockett et al., 2001), inducing a relatively inactive state in many 

invertebrates (Cáceres, 1997), decreasing rates of oxygen consumption (Tripathi et al., 

2011) and metabolism (Penick et al., 1998) or desiccation. 

 The aim of this study was to predict the toxicity of carbaryl at low and high 

temperature, using four standard organisms that are representative of different 

taxonomic levels, ecological functions, trophic level, life history and route of exposure 

to chemicals. 

 Carbaryl (1-naphthyl-N-methylcarbamate) is a carbamate insecticide commonly 

used in agricultural activities worldwide, known for its action on insects by inhibiting 

the acetylcholinesterase (AChE), an essential enzyme in the nervous system of 

invertebrates. Carbaryl is not considered persistent in soil, and the adsorption coefficient 

values (from 100 to 600) indicate that it moderately binds to soil particles ( IPCS, 1994; 

Jana and Das, 1997). Its half-life ranges from 4 to 27 days in aerobic soils and from 72 

to 78 days in anaerobic soils (IPCS, 1994; Miller, 1993), but the half-life of carbaryl in 

soil can be significantly reduced by increasing the temperature (Uyanik and Özdemir, 

1999). 

 Studies on the effects of temperature on carbaryl toxicity are limited to aquatic 

toxicology. Sanders et al. (1983) reported that at temperatures of 7, 12 and 22 ºC, there 

were no differences within carbaryl toxicity to rainbow trout (Oncorhynchus mykiss), 

but for other fish species (Lepomis macrochirus) an increase in temperature of 12 ºC 

from 22 ºC increase its toxicity twice, causing mortality. Increase of temperature also 

affected the survival of Rana clamitans tadpoles (Boone and Bridges 1999), of the 

midge, Chironomus riparius (Lohner and Fisher, 1990) and the molluscs Melanopsis 

dufouri (Almar et al., 1988) exposed to carbaryl. 

 However studies regarding the effect of temperature on the toxicity of carbaryl 

to soil organisms are scarce. The toxicity of carbofuran, another carbamate pesticide, 

did not differ much on its acute toxicity to earthworm when exposed to tropical (26 ºC) 

and temperate (20 ºC) conditions (de Silva et al., 2009). 

 To predict joint effects of the carbaryl and temperature on the chosen test-

species, the Independent Action (IA) conceptual model for mixture toxicity prediction 
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was adopted in this study. This model has been used to evaluate mixtures of chemicals 

that have different modes of action and their effects are statistically independent of each 

other (Bliss, 1939). 

 

3.2 Materials and methods 

3.2.1. Test species 

 

 Due to their sensitivity to chemicals, important role in the soil ecosystem, rapid 

life cycle and ease to maintain in the laboratory, these species are widely used in 

ecotoxicological tests (Crouau and Cazes, 2003; Fountain and Hopkin, 2005) and so 

were chosen for this study. 

 Folsomia candida and Eisenia andrei were obtained from laboratory cultures. 

The earthworm cultures were maintained at a constant photoperiod (16:8/Light: dark) 

and temperature (20±2 ºC), in plastic boxes with artificial soil prepared according to 

OECD (1984) and fed weekly with horse manure. The springtails were kept in 

laboratory cultures on a moist substrate of plaster of Paris and activated charcoal, at 18 

ºC in the dark, and fed weekly with dried Baker’s yeast. Seeds of Brassica rapa were 

purchased from Carolina Biological Supply Company (US) and caryopsis of Triticum 

aestivum from a local supplier (Aveiro, Portugal). 

 Collembolans are abundant and distributed worldwide (Hopkin, 1997) whose 

role is to contribute to the decomposition of leaf litter (Klironomos et al., 1999), 

representing also a key position in the soil food web as a prey and consumer (Fountain 

and Hopkin, 2004). In addition, they have shown to be vulnerable to the effects of soil 

contamination (Fountain and Hopkin, 2005). Earthworms are ubiquitously distributed 

(Diao et al., 2007) and their feeding and burrowing activity facilitates the nutrient 

cycling, increases soil organic matter, changes the activity of microorganisms and 

consequently soil fertility and nutrient availability to plants (Coleman and Ingham, 

1988; Haynes et al., 2003). They are generally good indicators of the relative health of 

soil ecosystems (Kuhle, 1983; Spurgeon and Hopkin, 1996). Also, terrestrial plants play 

a very important role in ecosystems, as they are an important source of organic matter, 

act in nutrient cycling and soil respiration (Boutin et al., 1995; Singh and Gupta, 1977), 

and play an important role in food supply to animals and man. 
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3.2.2 Test soil and test chemical 

 

 All bioassays were carried out with the natural standard soil LUFA 2.2 from 

Speyer, Germany (Løkke and van Gestel, 1998). This soil is considered a standard 

sandy-loam soil (17% silt, 6% clay and 77% sand), with 4.4% of organic matter, a 

carbon/nitrogen ratio of 14, pH 5.8, maximum water holding capacity (WHC) of 55% 

(weight per volume) and a cation exchange capacity of 11.2 mol/kg. 

 Carbaryl (CAS no. 63-25-2) was purchased from Sigma Aldrich Ltd. (99.8% 

purity). Carbaryl stock solution was prepared using acetone and applied to pre-

moistened soil a day before the experiment started, in order to allow acetone 

evaporation. The carbaryl concentrations used for each test species was chosen based on 

the LC50/EC50 previously carried out and reported by Lima et al. (2011). 

 Contaminated soil (100 mg/kg) exposed under the same abiotic conditions, i.e., 

highest temperature (28 ºC), control (20 ºC) and the lowest temperature (8 ºC) without 

organisms were used for carbaryl quantification, immediately after soil spiking and after 

15 days of exposure with three replicates, per time and temperature. This allowed 

determining the degradation of carbaryl at different temperature regimes for 15 days. 

 Samples were analyzed at Marchwood Scientific Services, Southampton, UK. 

The procedure considered an initial single-phase QuEchers extraction of 10 g of soil 

with 10 ml acetonitrile, followed by quantification using liquid chromatography– 

tandem mass spectrometry (LCMS–MS), with a limit of detection of 0.1 mg/kg. 

3. 2.3. Single exposure to carbaryl 
 

Collembolan mortality and reproduction 
 

 

 The test was performed according to the ISO guideline 11267 (ISO, 1999). Ten 

springtails, 10–12 days old, were placed in a test vessel containing the pre-moistened 

test soil (at 60% WHC) at 2072 1C with a 16/8 h photoperiod and the food supply. The 

Vials were covered with parafilm with a small hole to allow air flow, limiting moisture 

loss. Three nominal concentrations of carbaryl (1, 4 and 7 mg/kg) plus a negative 

control and a solvent control of acetone were used, at five replicates per treatment. After 

14 days, approximately 2 mg of dry yeast was added and moisture re-adjusted to all test 

containers. After 28 days, test vessels were filled with distilled water to which dark ink 
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was added for contrast, after which contents were transferred into larger vessels. 

Juveniles and adults floating the surface were photographed and counted using the 

image analysis software SigmaScan Pro5. 

 

Earthworm acute toxicity test 

 

 Tests were performed in accordance with the OECD 207 guideline (OECD, 

1984). Ten adult worms (clitellated), with individual fresh weight between 250 and 600 

mg were selected and placed within a glass vessel, containing 500 g of the test soil. The 

vials were covered with parafilm with a small hole to allow air flow, limiting moisture 

loss. A nominal concentration range of 20–100 mg/kg was used, plus a negative control 

and an acetone control, with four replicates per treatment. 

 After 7 days of exposure at 20±2 ºC with a 16/8 h photoperiod, living worms 

were counted and soil moisture replenished based on the vessels weight loss; after 14 

days, earthworms were recounted, pooled weighted and their mean biomass (mg) 

reported. Earthworm’s weight loss was calculated using the ratio of the difference 

between the initial and final weight, and the initial weight. 

 

Plant growth and emergence test 

 

 The plant tests were performed following the protocol ISO 11269-2 ( ISO, 

1995). For each species, ten seeds were introduced at 1 cm depth of the soil surface, per 

plastic pot, containing 500 g of soil. Bioassays were carried out at 20±2 ºC, with a 16/8 

h photoperiod and a light intensity of 12000 lx. Carbaryl nominal concentrations ranged 

from 50 to 150 mg/kg. In addition to the negative control, a solvent control (acetone) 

was prepared with four replicates per treatment. Soil moisture was pre-adjusted to 60% 

WHC and maintained using capillary action, through a fiberglass wick (between 5 and 

10 mm) located at the bottom of the pot ( Loureiro  et al., 2006). The test duration was 

14 days counted from after 50% of the seeds had emerged in the control soil. In the first 

7 days, seed germination was reported. At the end of the tests the number of plants, their 

length, fresh weight and dry weight were recorded. The water content (WC) was also 

calculated using the equation: 
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where DW is the plant dry weight and FW is the plant fresh weight. 

100



FW

DWFW
HC  

 

3.2.4.Single exposure to temperature 

 

 To analyze the effects of single temperature in collembolan, earthworm and 

plants, the tests were adapted from that described in the ISO guideline 11267 ( ISO,  

1999), OECD 207 ( OECD, 1984) and ISO 11269-2 (ISO, 1995), respectively. In 

uncontaminated Lufa 2.2 soil, collembolan and earthworms were exposed to two 

temperature sets: low (8 ºC, 12 ºC, 16 ºC and the control 20 ºC) and high (22 ºC, 24 ºC, 

26 ºC), plus the control temperature of 20 ºC. In order to analyze only the effects of 

extreme temperatures, plants were exposed to uncontaminated soil at 8 ºC, 28 ºC, and 

the control temperature of 20 ºC, for comparison. These temperatures were chosen in 

order to simulate typical scenarios of cold temperate, temperate and tropical climates 

(Lavelle and Spain, 2001; Römbke et al., 2007; Blenkinsop et al., 2008). 

 All tests were carried out in climatic chambers in order to maintain a constant 

temperature regime. To avoid drought stress at high temperatures, soil moisture (60% 

WHC) was controlled daily in collembola and earthworm tests. For that vessels were 

weighed at the beginning of the test and daily, and water loss was replenished when 

necessary. 

3.2.5. Combined temperature and carbaryl exposure 

 

 The procedures for this test were carried out in accordance with that described in 

the ISO guideline 11267 (ISO, 1999), OECD 207 (OECD, 1984) and ISO 11269-2 

(ISO, 1995), with adaptations. Soil was contaminated with different carbaryl 

concentrations dissolved in acetone (the same concentrations described above for the 

single carbaryl experimental set up for each species), left to evaporate for one day and 

then moistened with deionized water to obtain 60% of water holding capacity (WHC). 

After that, organisms were included in the vials and exposed to different temperatures 

(the same previously described for the single temperature exposure). 
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 Temperatures and carbaryl concentrations used for all tests performed are 

summarized in Table 3.1. 

 
Table 3.1 Summary of single and combined experiments for each test-species. In the combined 

exposures, the carbaryl ranges were used under each temperature. 

Tests      

Test – species 

Uncontaminated 

soil Contaminated soil 

  
Standard 

protocol 

conditions (20 ºC) 

   

  

Trials with different temperatures   

     

F. candida 8 ºC   8 ºC 

 12 ºC Control Control 12 ºC 

 16 ºC 1 mg/kg 1 mg/kg 16 ºC 

 20 ºC 4 mg/kg 4 mg/kg 20 ºC 

 22 ºC 7 mg/kg 7 mg/kg 22 ºC 

 24 ºC   24 ºC 

 26 ºC   26 ºC 

E. andrei 8 ºC   8 ºC 

 12 ºC Control Control 12º1C 

 16 ºC 20 mg/kg 20 mg/kg 16 ºC 

 20 ºC 40 mg/kg 40 mg/kg 20 ºC 

 22 ºC 60 mg/kg 60 mg/kg 22 ºC 

 24 ºC 80 mg/kg 80 mg/kg 24 ºC 

 26 ºC 100 mg/kg 100 mg/kg 26 ºC 

B. rapa and  

T. aestivum 8 ºC Control Control 8 ºC 

 20ºC 50 mg/kg 50 mg/kg 20 ºC 

 28 ºC 75 mg/kg 75 mg/kg 28 ºC 

  100 mg/kg 100 mg/kg   

  125 mg/kg 125 mg/kg   

  150 mg/kg 150 mg/kg   

      

 

3.2.5. Statistics 

 

 Differences between control and treatments were analyzed using One Way 

analysis of variance (ANOVA), followed by a post-hoc Dunnett’s test (α < 0.05). When 

the data provided were not normally distributed and data transformation was not 

possible, a Kruskal–Wallis ANOVA on Ranks was performed. From the ANOVA 

results, the No Observed Effect Concentration (NOEC) and the Lowest Observed Effect 

Concentration (LOEC) were derived. EC50 and LC50 (or ET50, for temperature only 

induced effects) values were calculated using a sigmoidal (logistic, 3 parameter) 

equation (Sigma Plot 10.0). 



Chapter 3 High and low temperature regimes 

66 

 

 For the data on combined exposure to carbaryl at different temperature regimes, 

the approach followed was dependent on the experimental setup or on results obtained 

from tests employing both stressors individually. When full dose/ temperature response 

curves were obtained, the observed combined effect of carbaryl and temperature was 

compared to that expected based on their individual toxicity using the reference model 

of Independent Action (IA) described by Bliss (1939) and by the equation below: 

 

                    

 

   

 

 

 where E(Cmix) is the combined effect at the mixture concentration Cmix, and 

E(Ci) is the effect of the individual mixture component i applied at the concentration Ci. 

 Deviation functions to describe synergistic/antagonistic interactions, dose level, 

and dose-ratio dependency were achieved by extending the IA equation and tested using 

the MIXTOX tool (e.g. Jonker et al., 2005). Parameters derived from the deviation 

equations are then converted into biological responses as also described in several other 

studies (e.g. Santos et al., 2010). When a full temperature–response curve was not 

achieved, the EC50/LC50 values for carbaryl were compared considering each 

temperature, in order to detect shifts in toxicity. In addition, synergistic ratios (SRs) 

were calculated by dividing the EC50/LC50 value for carbaryl at 20 ºC by the EC50/LC50 

values for carbaryl at each temperature. Synergistic ratios (SRs) of 1.0 indicated no 

effects of temperature on carbaryl toxicity, whereas values >1.0 and <1.0 indicated 

greater and smaller effects than expected, respectively. For the plant experimental setup, 

where only both temperature extremes (8 ºC and 28 ºC) and control (20 ºC) were used, 

EC50 values for carbaryl were derived under 8 ºC and 28 ºC exposures, and 

consequently the SRs were calculated to control the 20 ºC. 
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3.3. Results 

 

 There were no significant differences between the control and solvent control 

data for all tests carried out (One Way ANOVA, p>0.05). The solvent control data was 

used in the statistical analysis to compare the performance of organisms in all carbaryl 

treatments. 

 Carbaryl exposure was determined using chemical analysis; after spiking, 3 

replicates of the nominal concentration of 100 mg/ kg retrieved a mean real 

concentration of 118 mg carbaryl/kg (±7.9, standard deviation). Therefore, nominal 

concentrations were used for the parameters calculation. In the experiment where the 

behaviour of carbaryl was reported after 15 days from soil spiking, it was observed that 

carbaryl concentration in soil decreased to 30% and 33% of the initial concentration at 

the temperature extremes of 8 ºC and 28 ºC, respectively, and 22.8% of the initial 

concentration under a 20 ºC temperature regime (Table S 3.1). 

 

3.3.1. Effects of single exposure to carbaryl 

 

 No significant differences between the control and solvent control (ANOVA, 

p>0.05) for the all tests and for all parameters measured, therefore the solvent control 

data will be used to compare the results. 

 The EC50/LC50 values for the species exposed to carbaryl at 20 ºC and at 

different temperatures, according to the ISO guidelines, based on nominal initial 

concentrations are presented in Table 3.2. 

 Collembolans survival (One-way ANOVA, F3,24=180.911, p≤0.001) and 

reproduction (Kruskal–Wallis, H=18.321, df=3, p≤0.001) were significantly affected by 

carbaryl exposure at higher concentrations (4 and 7 mg/kg) compared to the control 

(Figure 3.1A). The NOEC for both parameter analysed was 1 mg/kg (data not show) 

and The EC50 and LC50 values were 4.6 (SE=0.16) and 7.0 (SE=7.6) mg/kg, 

respectively (Table 3.2.) 
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Table 3.2 EC/LC50 values (mg/kg) and synergistic ratios (SR) calculated for carbaryl toxicity co-occurring at each temperature 

in tested species. Data from 20 ºC was used as the control to calculate the SR. Gray areas represent conditions that were not 

present in the experimental setup. 
 

n.d.=data not determined. 

 

 

 

 

 

 

 

 

 
Test - species Endpoint Temperature (ºC)       

  8 12 16 20 22 24 26 28 

F. candida Survival LC50 (SE) 10.1 (7.7) 8.0 (1.4) 7.5 (1.2) 

7.0 

(7.6) 8.1 (0.92) 7.8 (2.2) n.d.  

 SR 0.69 0.88 0.93  0.88 0.9 n.d.  

 Reproduction EC50 (SE) 4.1 (0.3) 4.0 (0.2) 6.0 (0.6) 

4.6 

(0.22) 8.0 (0.81) 6.8 (1.7) 7.3 (2.9)  
 SR 1.12 1.15 0.85  0.57 0.68 0.63  

E. andrei Survival 7days LC50 (SE) >100 >100 >100 
51.28 
(2.6) 42.1 (5.3) 42.1 (7.0) 26.7 (4.4)  

 SR 0.5 0.5 0.5  1.02 1.02 1.61  

 
Survival 14 days LC50 

(SE) 69.1 (5.1) 99.3 (1.7) 87.5 (4.8) 
43.2 

(3.53) 32.3 (3.8) 33.3 (6.4) 22.1 (3.5)  
 SR 0.62 0.43 0.49  1.33 1.29 1.9  
 Biomass EC50 (SE) 23.5 (9.2) 54.6 (68.6) 52.6 (209) >100 68.7 (7.3) n.d. 50.8 (5.3)  
 SR >4.3 >1.8 >1.9  >1.5 n.d. >2.0  

B. rapa Length EC50 (SE) 72.2 (4.4)   
66.4 
(2.2)    26.5(4.1) 

 SR 0.91       2.5 

 Fresh weight EC50 (SE) 43.4 (7.0)   
45.42 
(1.7)    

17.2 
(9.0) 

 SR 1.04       2.64 

 Dry weight EC50 (SE) >150   
42.4 
(2.3)    6.6 (9.1) 

 SR 0.28       6.4 
 Water content EC50 >150   >150    >150 
 SR n.d.       n.d. 

T. aestivum Length EC50 (SE) 82.2 (6.0)   
61.04 
(1.7)    

73.4 
(2.3) 

 SR 0.74       0.83 

 Fresh weight EC50 (SE) 87.5 (7.9)   
48.8 
(2.0)    

56.7 
(2.7) 

 SR 0.56       0.86 

 Dry weight EC50 (SE) 110.4 (8.5)   
53.7 
(1.9)    

61.5 
(3.4) 

 SR 0.49       0.87 
 Water content EC50 >150   >150    >150 
 SR n.d.       n.d. 
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Fig. 3.1. Folsomia candida survival and reproduction. Effect of single carbaryl exposure (A) and single 

temperature exposure (B). Data is shown as mean value ± std. error. */+p≤0.05. Dunn’s test: when 

temperatures are employed the 20 ºC was used as control and for the carbaryl treatments the solvent 

control was used for comparison. 

 

 Earthworm’s biomass was not affected by the tested carbaryl concentrations 

(Kruskal–Wallis, H = 10.104, df=5, p=0.072), but a negative effect on earthworms’ 

survival was observed with increasing concentration from 80 mg/kg at 7 days of 

exposure (Kruskal–Wallis, H=16.331, df=5, p =0.006), and from 40 mg/kg at 14 days of 

exposure, The NOEC was 60 mg/kg and 20 mg/kg respectively (one-way ANOVA, 

F5,17 =45.179, p≤0.001). The LC50 value for 7 days was 51.28 mg/kg (SE=2.6) and for 

14 days was 43.2 mg/kg (SE=3.53) (Table 3.2.) 
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 Carbaryl affected T. aestivum at concentrations above 50 mg/kg in respect to all 

parameters analyzed (Dunnett’s method, p<0.05). For B. rapa there was a decrease in 

plant growth (Kruskal–Wallis, H=193.001, df=5, p≤0.001), and fresh weight (Kruskal–

Wallis, H=198.221, df=5, p≤0.001), for carbaryl concentrations higher than 75mg/kg, 

while water content significantly decreased at above 100 mg/kg of carbaryl (Kruskal–

Wallis, H=121.493, df=5, p≤0.001). Both plant species showed similar EC50 values 

(Table 3.2). In like manner, seed emergence of both species did not present significant 

differences between the concentrations used and the control (ANOVA, p>0.05). 

 

3.3.2. Effects of single temperature on test species 

 

 The ET50 and LT50 for collembolan and earthworms exposed to low and high 

temperatures are summarized in Table 3.3. For F. candida, the tested temperatures did 

not affect survival (Kruskal–Wallis, H=15.910, df=6, p=0.014), although both the lower 

(8, 12 and 16 ºC) and the two highest temperatures (24 and 26 ºC) inhibited their 

reproduction (Figure 3.1B, One Way ANOVA, p<0.05). The optimum temperatures for 

reproduction were 20 and 22º. 

 In addition, the temperatures used in this study did not cause significant effects 

on earthworms’ mortality (Kruskal–Wallis, H=17.965, df=6, p=0.006) when compared 

to the control (20 ºC), despite a significant weight loss (26%) was observed under the 

26 ºC exposure (One-way ANOVA, F3,15 =4.11, p<0.05) (data not show). 

 With regard to plant length parameters, T. aestivum was shown to be sensitive 

only in cold temperatures (Kruskal–Wallis, H=46.047, df=2, p<0.001), lower 

temperatures induced also a negative effect on B. rapa length (Kruskal–Wallis, 

H=68.105, df=2, p<0.001), but B. rapa was equally sensitive to both conditions (Figure 

3.2A). There was an increase in the water content of B. rapa at 8 ºC and 28 ºC (One-

way ANOVA, F2,94 =88.6 p<0.001), whereas such an increase was observed for T. 

aestivum only at 28 ºC (Kruskal–Wallis, H=21.656, df =2, p<0.001)( Figure 3.2B). Bio-

mass production of both species was affected as at 8 ºC and 28 ºC (ANOVA, p<0.05; 

Figure 3.2C and D). 

 

 



Chapter 3 High and low temperature regimes 

71 

 

Table 3.3 Median lethal temperature (LT50) and median effective temperature (ET50) values for the 

exposures of Folsomia candida and Eisenia andrei to low (8, 12,16 ºC) and high temperatures (22, 24, 26 

ºC). 

 

Species Endpoint High temperatures Low temperatures 

  (ºC) (ºC) 

  (SE) (SE) 

    

Folsomia 

candida 

Survival (LT50) >26 <8 

Reproduction (ET50) 23.68 (4 x 10-6) 16.9 (0.65) 

Eisenia 

andrei 

Survival (7days) n.d. 12.1 (3.7) 

(LT50)   

 Survival (14days) >26 n.d 

 (LT50)   

 Biomass (ET50) >26 16.3 (2.5) 

    
LT50 = median lethal temperature; ET50 = median effective temperature;  SE = standard error; 

n.d.= not determined. 

 Seed’s emergence is summarized in Table S3.2. At the control temperature (20 

ºC) both species germinated within 3 days, the same time for emergence was observed 

in T. aestivum at 28 ºC, but B. rapa in these conditions, emerged right after 1 day of 

exposure. On the other hand, colder conditions delayed emergence of both species (7 

days). Seeds of B. rapa showed 100% of emergence for all temperatures tested, while T. 

aestivum showed 100% of emergence in the control temperature (20 ºC), whereas at 8 

ºC emergence significantly decreased to 70% and at 28 ºC it decreased to 86% 

(ANOVA, p<0.05). 

 

3.3.3. Effects of combined exposure of carbaryl and temperature 

 

 To understand collembolan response to the combined stressors exposure, the 

reference model for Independent Action (IA) was used, because a dose–response for 

both stressors was obtained. A clear adjustment to the IA model was observed for the 

reproduction data under heat (sum of squares=14101; r
2
 =0.98; p<0.05) and cold (sum 

of squares=6620; r
2
=0.99; p≤0.05) stress. A similar observation was made concerning 

data for survival under heat and cold stress (sum of squares=1668; r
2
=0.66; p<0.05 and 

sum of squares=812; r
2
=0.74; p<0.05, respectively). 
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 The earthworm response to the combined stressors exposure was also analyzed 

by calculating synergistic/antagonistic ratios, because a dose–response to both stressors 

was not possible, so the reference model for Independent Action (IA) was not used. The 

synergistic/antagonistic ratios for earthworms’ survival after 7 and 14 days of exposure 

to carbaryl and biomass were summarized in Table 3.2. For survival, the synergistic 

ratio (SR) increased with increasing temperature while at low temperatures a decrease in 

SR ratio was observed. For the earthworms’ biomass, both high and low temperatures 

induced an increase of the SR. 

 The plant species exposed to carbaryl at low and high temperatures showed a 

different pattern of response. At low temperatures, synergism/antagonism ratios for both 

species, indicated low sensitivity in respect to almost parameters analyzed. At higher 

temperatures, however, a greater effect (trend to synergism) was observed in B. rapa in 
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Fig. 3.2. Effects of single temperature exposure on Brassica rapa (■) and Triticum aestivum (□) length (A), water 

content (B), fresh weight (C) and dry weight (D). Data is shown as mean value ± std. error. */ p≤0.05. Dunn’s 
test, compared to the control (20ºC) 
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contrast to that observed in T. aestivum (trend to antagonism) for all parameters 

analyzed (Table 3.2). 

 The emergence of both plant species was influenced by the combined exposure 

of carbaryl and the extreme temperature. 

 B. rapa was strongly affected by the exposure to carbaryl at 28 ºC. At the two 

highest concentrations (125 and 150 mg/kg), the emergence was 96% and 70%, 

respectively, but before the end of the test, mortality was observed for many seedlings 

at concentrations above 75 mg/kg (Dunnett’s method, p<0.05) (Table S3.2). 

 

3.4. Discussion 

3.4.1. Effects of single carbaryl exposure 

 

 The high toxicity of carbaryl to soil invertebrates and plants is well reported in 

the literature (Ferrari et al., 2004; Fukuto, 1990; Gambi et al., 2007; Gupta and 

Sundararaman, 1991; Jones et al., 1991; Lima et al., 2011; Murthy and Raghu, 1990; 

Ribera et al., 2001). However, to our knowledge, there are no data available on the 

toxicity of carbaryl to F. candida survival or reproduction in laboratory conditions. Few 

studies reported the sensitivity of collembolans to carbaryl when applied in the field, 

showing a significant reduction in the population, similar to other non-target species 

such as mites (Bishop et al., 1998; Hoy and Shea, 1981; Schulze et al., 2001; Spain, 

1974; Stegeman, 1964). Spain (1974) reported a noticeable reduction in collembolan 

populations exposed to 0.11 g/m
2
 of carbaryl. 

 Moreover, our results showed a high mortality rate of collembolan at higher 

concentrations of carbaryl. Therefore, results concerning the production of juveniles, at 

these concentrations, must be regarded carefully as it is not clear if carbaryl was 

affecting reproduction directly, if juveniles were not produced due to adult mortality or 

if juveniles died upon exposure. This can be highlighted using the similar effect values 

obtained for lethality and reproduction reduction. 

 The high toxicity of carbaryl to earthworms is also well reported. Gambi et al. 

(2007) showed that carbaryl concentrations of 48.3 mg carbaryl/kg of natural soil, 

comparable to the LC50 values found in this study (43.2 mg/kg), led to a maximal choli-

nesterase (ChE) inhibition in E. andrei, while the epigeic earthworm Perionyx 

excavatus exposed in grasslands soil to sub-lethal doses of carbaryl (3.03 mg/kg) 
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showed significant loss of weight compared to the respective control (Dasgupta et al., 

2012). On the other hand, Gupta and Saxena (2003) showed that a 20 min exposure to a 

low concentration of carbaryl (0.125 mg/kg, which is 160 times smaller than our lowest 

concentration) lead to a decrease in locomotion and geotaxis of the cosmopolitan 

earthworm Metaphire posthuma. Similarly, Gupta and Sundararaman (1991) reported 

the reduction in the burrowing behavior of Pheretima posthuma exposed for 5 min to 

soil contaminated with 1 mg carbaryl/kg. 

 Furthermore, Mostert et al. (2002) reported a lower LC50 value (of 16 mg/kg) for 

the earthworm Pheretima sp., after a 7 days exposure to carbaryl when compared to that 

calculated in the present study for E. andrei (LC50 of 51.28 mg/kg).  

 Many studies have been carried out in relation to carbaryl residues in plants 

(Argente and Heinrichs, 1983; Demirbas, 2000; Galhotra et al., 1985; Iwata et al., 1979; 

Pieper, 1979; Ruiz-Medina et al., 2012), but few have reported the deleterious effects 

caused by carbaryl on plant growth (Jones et al., 1991; Murthy and Raghu, 1990). 

Murthy and Raghu (1990) reported a NOEC value of 2.5 mg/kg for seedling length of 

barley, while higher concentrations of 25 and 100 mg/kg caused inhibitory effects in 

this parameter. These data are consistent with this study results, since the LOEC values 

for T. aestivum and B. rapa were 50 mg/kg and 75 mg/kg respectively, with regard to 

length and weight parameters, and 50 mg/kg and 100 mg/kg, respectively, with regard 

to water content. 

 

3.4.2. Effect of single temperature exposure 

 

 Collembolans and earthworms were shown to be tolerant with regards to their 

survival to both high and low temperatures within the studied range. These effects may 

be more visible in long term exposures to these temperatures. Snider and Butcher 

(1973) isolated collembolan juveniles and observed their longevity at 15 and 26 ºC, 

reporting that survival was drastically reduced at 26 ºC, with 50% of  the individuals 

mortality reached after 70 days compared with control (21 ºC) where 50% of the 

animals had died after 150 days. Hutson (1978) showed that collembolan survival was 

affected by temperature, where adults survived for longer than 400 days at 15 and 20 

ºC, compared to the 126 days (mean value) at 25 ºC. Considering the duration of the 

present study (28 days) and the lack of observed effects on survival, one can conclude 
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that time is also an important factor to consider when different  temperature  regimes are 

present, as they can also influence collembolan lifespan and responses to stress 

conditions.  

 However, with regard to the reproduction data, our results suggest that 26 ºC is a 

possible upper limiting temperature for the F. candida offspring production. 

Martikainen and Rantalainen (1999) using field soil, and temperatures of 13, 16 and 19 

ºC found that temperature was positively correlated with reproduction. According to 

Fountain and Hopkin (2005) the optimal temperature for F. candida hatching success is 

21 ºC which is in agreement with our results, showing the highest production of 

juveniles at 20 ºC and 22 ºC. 

 Temperature tolerance and preference in earthworms vary from species to 

species. Dendrobaena octaedra is known to be a freeze tolerant earthworm species 

(Bindesbøl et al., 2009); While Lumbricus rubellus is a soil dwelling species, with an 

optimal temperature around 15 ºC (Butt, 1991); Eisenia fetida lives in compost and 

manure heaps, usually at higher temperatures due to heat generated from decomposition 

processes. While their optimum temperature is considered to be between 20 and 25 ºC 

(Presley et al., 1996), E. fetida has shown to survive at 43 ºC in a work undertaken 

outdoors in artificial containers (Reinecke et al., 1992). 

 In the present study, the tolerance of E. andrei to extreme temperature was 

expected, as it is considered an ubiquitous species with resilience to wide ranges of 

temperature and humidity (Domínguez et al., 2005). The weight loss caused by the 

highest temperature (26 ºC) is also in accordance with that described by Presley et al. 

(1996), where the authors linked the lower growth rates and weight loss of E. fetida 

exposed to 28 ºC in peat moss under laboratory conditions. 

 The effects of temperature in plants have already been reported. The rate of 

growth and development processes is controlled by air or soil temperature (Wheeler et 

al., 2000). Similarly, warmer temperatures can result in the reduction of leaf area, 

influencing photosynthesis, transpiration and respiration (Dat et al., 2000; Mittler, 2002; 

Rizhsky et al., 2002; Vierling, 1991), producing smaller grain weights, due to increase 

in growth rate and consequent shorter grain-filling durations (Al-Khatib and Paulsen, 

1984; Blum et al., 1994; Hakim et al., 2012), leading to reduction in yield (Entz and 

Fowler, 1991) and total plant biomass (Hossain et al., 2012). 
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The plant species used in this study showed different sensitivities to temperature. 

B. rapa is a temperate species, therefore, its response to high temperatures as found in 

this study, with reduced growth, biomass and germination, has been reported by others 

authors (Morrison, 1993; Xiang Yu et al., 2012). T. aestivum is also a species of 

temperate climates, but its high temperature tolerance is expected, since it grows well in 

tropical and subtropical areas, at temperatures above 17 ºC (Ortiz el at., 2008). 

Accordingly, in the present study T. aestivum showed no changes in length, but a 

decrease in fresh and dry weight at high temperatures. Its optimum growth and 

development temperature has been reported to be between 20 ºC and 25 ºC (Acevedo et 

al., 2002; Hakim et al., 2012; Hossain et al., 2012), with an upper tolerance limit 

reported for temperatures of 34.3 ºC (± 2.6) (Farooq et al., 2011). 

Low temperature is also an abiotic stress known to induce negative effects on 

crops, by inducing changes in membrane lipid composition (Tasseva et al., 2004). In the 

present study the effects of low temperature induced growth inhibition, reduction of 

biomass, delay in germination for both species and increased water content in B. rapa.  

Temperature is an important factor in germination of many plant species and 

may affect the absorption of water and other compounds essential for growth and 

development (Essemine et al., 2002; Walbot, 2011; Wanjura and Buxtor, 1972). Delay 

in germination at low temperatures has been described by others authors (Al-Qasem et 

al., 1999; Hossain et al., 2012). For instance, Al-Qasem et al. (1999) obtained similar 

results, with no germination observed in spring wheat cultivars at 5 °C, but starting on 

day 7 at 10 °C, and on day 2 and 3 at 20 and 30 ºC, respectively. 

 

3.4.3 Combined exposure of Carbaryl and temperature. 

 

The analysis of carbaryl in soil showed an increased degradation over time, 

however, differences between control and test temperatures were not significant. This 

was somehow unexpected, since pesticide degradation would be expected to be greater 

in tropical conditions (Racke et al., 1997). Nevertheless, Odeyemi (1982) reported that 

carbaryl disappeared in an agricultural soil after 53 days of incubation in tropical 

ecosystems. Uyanik and Özdemir (1999) reported that carbaryl half-life was higher than 

four weeks under temperatures of 40 ºC, 16 ºC and 5 ºC; but a remarkable decrease was 

found with increasing temperature. In the present study the exposure time of 15 days 
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was possibly not sufficient to observe significant effects on the degradation of the 

chemical as reported for longer time period studies.  

Considering that carbaryl is used worldwide, under a range of temperature and 

seasonal conditions, while accounting for temperature shifts associated to global 

climatic changes, studies like the present are important contributions to more 

representative predictions of pesticide toxicity. 

To our knowledge, there are no existing reports on the effects of temperature on 

the carbaryl toxicity of non-target organisms, but the influence of a post-treatment of 

temperature on the toxicity of carbaryl to the insect Diaphorina citri was studied by 

Boina et al. (2009), reporting an increased toxicity with increasing temperature from 17 

to 37 ºC. 

Many studies have reported the effects on collembolan reproduction upon metal 

combined with temperature exposure (Sandifer and Hopkin, 1997; Smit and van Gestel, 

1995, 1997), but similar studies using pesticides are scarce.  

Martikainend and Krogh (1999) reported an increase in the toxicity of the 

organophosphate insecticide dimethoate to Folsomia fimetaria with low temperatures, 

while Sjursen and Holmstrup (2004) observed that the springtail Protaphorura armata 

exposed to pyrene at low temperatures (±1 ºC and 3 ºC) showed higher survival rates, 

when compared to a standardize temperature (20 ºC). These results corroborate with the 

present study, where the highest LC50 value for adult survival was found at the lowest 

temperature (8 ºC). 

Martikainend and Krogh (1999) showed a delay in the reproduction of F. 

fimetaria when temperature decreased from 20 ºC to 15 ºC in the presence of 

dimethoate, and the same was found in the present study where the EC50 values for 

reproduction decreased at low temperatures. Nevertheless, the interpretation of modeled 

data by the MIXTOX tool suggests that there was no interaction between stressors 

(independent action) for all parameters analyzed and, probably, even if an additive 

effect occurred. 

Synergistic effects were found by Jensen et al. (2009) when the freeze tolerant 

earthworm Dendrobaena octaedra was exposed to the surfactant nonylphenol (NP) 

combined with high (25–35 ºC) temperatures. The same species exposed to 

Phenanthrene at freezing temperatures showed an antagonistic effect and when exposed 

to Carbendazim no interactions were found (Bindesbol et al., 2009). 
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In the present study E. fetida showed a tendency to synergism (SR>1) when 

exposed to combined carbaryl and high temperatures, and antagonism when exposed to 

carbaryl and low temperatures. These results corroborate with some of the literature 

cited above and with the review conducted by Holmstrup et al. (2010), with reports of 

synergistic interactions between chemicals and heat stress. In fact, this pattern has been 

reported for several earthworm species exposed to chemicals at higher temperatures. For 

instance, Khan et al. (2007) found a synergistic effect when Lumbricus terrestris were 

exposed to lead or zinc at higher temperatures (22 ºC) compared to procedures of 

standardized protocols.  

The synergistic interaction may be associated with increased metabolism of 

earthworms at high temperatures, which may promote an increase in the uptake of 

pesticides through the earthworm skin (Khan et al., 2007; Rombke et al., 2007). 

Similarly, the trend found for antagonism at low temperatures may be due to the 

reduced metabolism and consequently reduced absorption of carbaryl by earthworms. In 

addition, one can hypothesize about the possible metabolites arising from carbaryl 

degradation. One of the metabolites of carbaryl is 1-naphthol (IPCS, 1993) which has 

been found to be more toxic than carbaryl itself for some aquatic species (CCME, 

2009), but to our knowledge no information on their toxicity in soil organisms is 

available.  

There are many studies about the effects of temperature on plant development 

(e.g. Angadi et al., 2000; Buriro et al., 2011; Hossain et al., 2012) and on herbicide 

efficacy (e.g. Mervosh et al., 1995; Olson et al., 2000), but little is known about the 

effects of other chemicals on plants influenced by temperature.  

 B. rapa and T. aestivum showed the same response when exposed to carbaryl at 

low temperatures (antagonism), whereas an opposite response between the two species 

was observed when exposed to carbaryl at higher temperatures, with synergism for B. 

rapa and antagonism for T. aestivum. These results suggest that the influence of 

temperature on chemical toxicity depends on the plant species possibly due to the 

differences between the root system of monocotyledon and dicotyledon species. Sadana 

et al. (2003) analyzing the manganese efficiency, showed a more efficient uptake 

kinetics in Brassica juncea L. than Triticum aestivum due, among others, to its root 

system. Aroca et al. (2001) showed that two maize genotypes differed in the response of 

their root water uptake rate when exposed to abiotic stress.  
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 The combined exposure to carbaryl and high temperatures for B. rapa may have 

increased its transpiration rate, which consequently increased the need for water, 

causing a higher chemical uptake that lead to a stronger effect than expected (Kerstien, 

2006; Rizhsky et al., 2002) while for T. aestivum an increased in chemical 

metabolisation may have occurred, causing a reduction of the chemical in their tissue 

(Collins et al., 2006). 

 The antagonism found at low temperatures for both species is expected since 

low temperatures induce changes in the cell membrane, reducing its permeability and 

also causing a higher water viscosity, which difficult transport within the plant system 

and consequently chemical uptake (Norisada et al., 2005; Pavel and Fereres, 1998; 

Simon, 1974).  

3.5. Conclusions  

 

It was concluded from the present study that carbaryl is toxic to non-target 

species, representing an environmental risk which can also be increased when combined 

with temperature. Synergistic effects were observed at higher temperatures for Eisenia 

andrei and Brassica rapa, while antagonism occurred at higher temperatures in 

Triticum aestivum and at low temperatures for all species studied, except for F. candida. 

No interactions between stressors were observed for F. candida exposures and an 

addictive response was suggested regarding survival and reproduction. 

Therefore, it is important to consider both seasonal and latitude-related 

differences, as well as the global climate change context. This highlights the importance 

of studies that allow predicting toxicological impacts under a range of temperatures that 

are representative of tropical and temperate regions, favoring a better assessment of 

environmental risk and contributing to improve agricultural production and ecosystem 

maintenance. 
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3.6 Supplementary Data 

 

Table S 3.1 - Carbaryl concentrations (mg/kg) in Lufa 2.2 soil after soil spiking and after 15 days of 

exposure under 8ºC, 20ºC and 28ºC. Data is presented as mean values and standard values are in brackets. 

          

Time 
 

8ºC 20ºC 28ºC 

after 

spiking 
- 118.13 - 

      (7.90)   

after 15 

days 
82.97 91.23 78.70 

    (7.70) (1.29) (7.76) 

     

 

     

Table S 3.2 - Seed germination (days to germinate and % of success) and plant survival of Brassica rapa 

and Triticum aestivum after exposure to carbaryl at different temperatures. 

 
plant species Carbaryl 

(mg/kg) 

Days to 

germination 

Germination (%) Survival (%) 

 

 

 

B. rapa 

 8ºC 20ºC 28ºC 8ºC 20ºC 28ºC 8ºC 20ºC 28ºC 

0 7 3 1 100% 100% 100% 100% 100% 100% 

50 7 3 3 100% 100% 96% 100% 100% 100% 

75 8 3 3 90% 100% 100% 100% 100% 90% 

100  8 3 3 100% 97% 90% 100% 100% 89% 

125  8 3 3 90% 97% 96% 100% 100% 58% 

150  8 4 3 100% 90% 70% 100% 100% 32% 

 

 

T. aestivum 

0 7 3 3 95% 97% 86% 100% 100% 100% 

50 7 3 3 83% 95% 86% 100% 100% 100% 

75 9 3 3 90% 87% 86% 100% 100% 100% 

100  9 3 4 93% 85% 60% 100% 100% 100% 

125  9 3 4 70% 85% 76% 100% 100% 100% 

150  12 4 4 70% 85% 66% 100% 100% 100% 
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Chapter 4. Responses of wheat (Triticum aestivum) and turnip 

(Brassica rapa) to the combined exposure of carbaryl and 

ultraviolet radiation. 
_________________________________________________________________________ 

 

Under review in Environmental Toxicology and Chemistry  

Abstract 

 The increase of ultraviolet radiation reaching the Earth’s surface due to the 

increase of ozone layer depletion have affected crop production systems, and in 

combination with pesticides, used in agricultural activities, can lead to greater risks to 

the environment. The impact of ultraviolet radiation and carbaryl singly and in 

combination on Triticum aestivum (wheat) and Brassica rapa (turnip) was studied. The 

combined exposure was analyzed using the MIXTOX tool and was based on the 

conceptual model of Independent Action (IA) where possible deviations to synergism or 

antagonism, dose-ratio or dose-level response pattern were also considered. Compared 

to the control, carbaryl and ultraviolet radiation (UV radiation) individually led to 

reductions in growth, fresh and dry weight and water content for both species. 

Combined treatment of ultraviolet and carbaryl were more deleterious when compared 

to single exposure. For T. aestivum length an additive effect (Independent Action) 

between the two stressors was found and analyzing weight parameters a synergism 

occurred at low concentrations of carbaryl combined with low UV intensities. 

Synergistic patterns were observed for B. rapa length and dry weight when UV 

radiation was the dominant stressor and carbaryl was present at low concentrations.  

  

Key words: Brassica rapa, Triticum aestivum, Ultraviolet radiation, carbaryl, 

Independent Action, Synergism. 
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4.1 Introduction 

 

 The increase of ultraviolet radiation on the Earth’s surface due to the depletion 

of the ozone layer has caused a great impact on terrestrial and aquatic ecosystems 

(Ballaré et al., 2001; Caldwell et al., 2007 Zaller et al., 2002) and in crop production 

(Yao et al. 2013). In the environment, ultraviolet radiation is an additional stress besides 

the stress caused by the presence of pollutants to which the organisms are commonly 

exposed (Dubé and Bornman, 1992; Misra et al., 2005) and a synergistic or additive 

effect between these stressors may be found, causing higher environmental hazards than 

those predicted for chemical exposure and also may lead to severe economic 

consequences. 

 To accurately relate photobiological effects with UV radiation, ultraviolet 

spectral functions need to be implemented and integrated, describing the relative 

effectiveness of a spectrum band in relation to a specific biological response (Diffey, 

1991). In the case of humans, this response is standardized by the erythemic action 

spectrum, which is the skin's sensitivity to UV radiation absorbed (McKinlay and 

Diffey, 1987). The spectral irradiance UV should be weighted by the action spectrum in 

order to obtain the biologically active irradiance. 

 The biological spectral weighting function most commonly used for plants is the 

generalized plant response developed by Caldwell (1971), which is composed by nine 

different UV-B responses. But this methodology involves several constraints being one 

of them the exclusion of the responses regarding plant growth and also take into account 

only the effects of wavelengths up to 313 nm (Flint and Caldwell, 2003), when 

biological responses in plants have been reported to occur at the UV-A region (320-

400nm) (Fagerberg, 2007; Flint and Caldwell, 1996; 2003; Kataria and Guruprasad, 

2012). 

 Studies have reported effects of high UV-B radiation on the physiology, growth 

and development of plants which have also been modified by the presence of heavy 

metals (Agrawal and Mishra, 2009; Dubé and Bornman, 1992; Shahbaz et al., 2012; 

Shweta and Agrawal, 2006; Srivastava et al., 2012). However, from our knowledge, no 

work has been done on the combined exposure of ultraviolet radiation and pesticides in 

plants.  



   Chapter 4. Plant responses to the combined exposure of carbaryl and ultraviolet radiation. 

 

96 

 

 Given this, an evaluation of the effects caused by pollutants on crop plants under 

different doses of ultraviolet radiation, using the more recent plant action spectrum 

described by Flint and Caldwell (2003), which include the effects of wavelengths until 

390 nm, is very important to acquire a more realistic view of the current scenario of 

environmental changes induced by the ozone depletion. So, the purpose of this study 

was to analyze the individual and combined effects of different and realistic doses of 

ultraviolet radiation (UVA and UVB) and carbaryl on two species of plants, very 

important for global food crop, the monocotyledonous Triticum aestivum and the 

dicotyledonous Brassica rapa. Carbaryl is a widely used pesticide in agriculture 

worldwide, considered for many insect pests of fruits, vegetables, cereals, and more 

than 100 crop species (Branch and Jacqz, 1986; Jana and Das, 1997). 

 In order to predict the joint effects of UV radiation and carbaryl on these plant 

species, the conceptual model of Independent Action (IA) was adopted. The IA 

principle is that the stressors do not interact physically, chemically or biologically 

(Bliss, 1939), and assumes that stressors affect organisms through different modes of 

action (Loureiro et al., 2010). 

4.2 Material And Methods  

4.2.1 Plants growth bioassay 
 

 The plants’ bioassay methodology was adapted from that described in ISO 

11269-2 (ISO 1995). The experimental designs of single and combined exposure to 

carbaryl and UV radiation were performed in a laboratory room at 20± 2
o
C, at 12000 lx, 

in a 16:8 (light: dark) photoperiod.  

 The caryopses of Triticum aestivum (wheat) were obtained from an agricultural 

store (Aveiro, Portugal), whereas the seeds of Brassica rapa (turnip) were purchased 

from Carolina Biological Supply Company (US). The tests were performed with LUFA 

2.2 soil, commercialized by the German  Institution LUFA Speyer, with the properties: 

pH = 5.5 ± 0.2 (0.01 M CaCl2), water holding capacity = 41.8 ± 3.0 (g/100 g), organic 

C = 1.77 ± 0.2 (%), nitrogen = 0.17 ± 0.02, texture = 7.3 ± 1.2 (%) clay; 13.8 ± 2.7 (%) 

silt and 78.9 ± 3.5 (%) sand.  Each test pot contained 500g of natural Lufa 2.2 soil and 

ten caryopses/seeds were placed per pot at a maximum depth of 1 cm from the soil 

surface; the bottom of each pot was perforated and a fiberglass wick was placed in 

direct contact with the soil (5-10 mm in diameter). These pots were then placed on the 
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top of a container filled with water, and the wick maintained the soil moisture 

(60%WHC) by capillarity. Seeds and caryopses germination time was reported. After 

14 days, plants were harvested and growth parameters (individual shoot length, dry and 

fresh weight) were recorded. The water content (WC) was calculated using the 

following equation: 

100



FW

DWFW
WC  

DW = plant's dry weight  

FW = plant's fresh weight.  

 Visible changes in plant color or other symptoms of foliar morphology or death 

were also recorded for all plants. 

 

4.2.2 Stressors: test chemical and UV radiation 
 

 Carbaryl (CAS No 63-25-2) was purchased from Sigma-Aldrich Ltd. (99.8% 

purity). The pesticide was applied in pre-moistened soil one day before the experiment 

started, in order to allow the evaporation of acetone. In addition to the negative control, 

a solvent control was prepared with 100 ml acetone/kg. Nominal concentrations used 

ranged from 50 to 150 mg/kg and four replicates for treatments were used. These 

concentrations were the same used in previous chapter (2 and 3). 

 The UV radiation was produced by a UV lamp (Spectroline XX15F/B, 

Spectronics Corporation, NY, USA, peak emission at 313 NM and 365nm 

corresponding UV-B and UV-A), applied on metal frames and suspended 30 cm above 

the plant apex and kept constant throughout the experiment. A clear cellulose acetate 

sheet (0.003 mm, Grafix plastics, USA) was used for cut-off UV-C range wavelengths 

and was previously UV irradiated for 12 h before being used in the experiments to 

minimize differences in UV radiation intensity. The sheets were changed frequently to 

avoid aging effects on the spectral transmission of UV-B. The intensities of transmitting 

UV and visible light at the top of the plant was measured with a Spectroradiometer 

connected to a monochromator and spectral radiance was obtained by the BenWin+ 

Software (Bentham Instruments, Reading, UK). Intensity values were converted into 
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biologically effective UV radiance by using the plant growth BSWF (Flint and 

Caldwell, 2003). Since research on the effects of UV radiation on terrestrial plants 

different action spectra are used, as biological spectral weighting functions (BSWFs), a 

summary of the effective doses used in this work, calculated with different BSWFs is 

shown in Supporting Information Table S 4.1, which will also allow a better comparison 

with other works. 

  For UV experiments, seedlings, immediately after emergence, were irradiated 

daily for 4h, 6h and 8h, corresponding to three levels of ultraviolet radiation. The total 

biologically effective doses were 14.2 kJm
-2 

d
-1

, 21.3 kJm
-2 

d
-1

 and 28.4 kJm-
2
 d

-1
, and 

were calculated as follows:  

 

100
000.1

)(exp)(
)(

2
2 


 sosureofTimeXmWcmI

JmdoseUV BE
BE

 

Where IBE is the biologically effective UV irradiance. Plants irradiated with PAR light 

were kept as control. 

 These doses used in this work are relevant, considering as an example the mean 

effective daily ambient UV-B dose for Portugal, weighted with generalized plant 

spectrum, reported for a day summer solstice, with clear sky conditions, as 6.84 kJ m
-2 

(Correia et al., 2012). 

 

4.2.3 Joint toxicity of carbaryl and UV radiation  
 

 Immediately after emerging in clean or carbaryl contaminated soil, seedlings 

were exposed to different doses of UV radiation to evaluate the joint effects of carbaryl 

and UV radiation. Carbaryl analysis in soil was performed after 15 days of exposure. 

Soil samples (three replicates) of spiked soil (time zero), soil without UV exposure (at 

day 15) and soil exposed to the highest UV radiation dose (28.5 kJm
-2

d
-1

) (at day 15) 

were sent for chemical analysis at Marchwood Scientific Services, Southampton, UK. 

 The procedure involved initial single-phase QuEchers extraction of 10 g of soil with 10 

mL acetonitrile, followed by analysis using liquid chromatography-tandem mass 

spectrometry (LCMS-MS), with a limit of detection of 0.1 mg/kg 
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4.2.4 Statistical analysis 
 

 Data for both single and combined exposures were analyzed by one way 

ANOVA (Systat, 2006). When data were normally distributed, the Dunnett’s test was 

used to analyze differences between control and treatments. For data that failed the 

normality test and data transformation did not correct for normality, a non-parametric 

Kruskal–Wallis test was performed, followed by the Dunn’s method when significant 

differences were found (Systat, 2006). 

 EC50 values were calculated using a non-linear regression, a sigmoidal logistic 

3-parameter equation (Systat, 2006). Lowest-observed-effect concentration (LOEC) and 

no-observed-effect concentration (NOEC) were also derived from the multiple 

comparison test (Dunn’s or Dunnett’s test, =0.05). 

 The sensitivities of B. rapa and T. aestivum to UV radiation were assessed using 

two methods: 

1) The changes in dry weight and plants length were calculated for all UV-radiation 

doses used and an UV sensitivity index (UV-SI) was determined by the equation 

(Adapted from Saile- Mark and Tevini, 1997): 

 

controlweightDry

treatmentweightDry

controllengthShoot

treatmentlengthShoot
SIUV   

 

When UV-SI<1, then plants are classified as sensitive to the exposure conditions; when 

UV-SI≥1, plants are considered tolerant. This limit value of 1 was chosen based on the 

fact that when treatment plants have half the parameter values when compared to the 

control (equivalent to an EC50), their sum will be 1. 

2) The UV sensitivity was determined by the biomass accumulation from shoot dry 

weight (Smith et al., 2000) 

 It has been shown that biomass accumulation is a good parameter to evaluate 

UV sensitivity in plants (Smith et al., 2000), because a decrease in biomass 

accumulation indicates some damage to physiological functions caused by ultraviolet 

radiation. (Smith et al., 2000; Visser, 1997). 

 Conceptual models have been used to predict the mixture toxicity and also the 

combined effects of natural and chemical stressor to several organisms (Ferreira et al., 
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2008; Lima et al., 2011; 2014; Ribeiro et al., 2011;). Deviations from the model as 

synergism, antagonism, dose-level and dose-ratio dependency can be characterized by a 

nested approached using the MIXTOX tool that can be further explored in Jonker et al., 

(2005).  

 

4.3 Results 

 

 The data from chemical analysis to carbaryl spiked soil showed that although 

there was a decrease on carbaryl concentration after 15 days of exposure (in both UV 

irradiated and non-irradiated trials), no significant changes were attained (One Way 

ANOVA, F2,6=2.26; p>0.05, Table 4.1). Due to the high variability of results obtained 

on the soils after 15 days and no UV irradiation, a t-test was performed between data in 

time zero and UV irradiated soil after 15 days, and a significant decrease of 25% was 

achieved (t-test, p=0. 027). 

 

Table 4.1. Concentrations of carbaryl in soil after spiking (time zero-T0), after 15 days of exposure 

without UV-radiation (15d without UV) and exposed to UV-radiation (15d with UV), and carbaryl 

degradation (%) compared to T0. Data is presented as mean values and standard error in brackets.* 

p<0.05, t-test with T0. 

 

 

Treatments [Carbaryl] 

(mg/kg) 

% degradation 

(related to T0) 

T0 152.3 

(11.18) 

 

 

15d without UV 144.8 

(20.36) 

 

4.95% 

(13.36) 

15d with UV 114.3 

(0.15) 

24.96%* 

(0.10) 
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4.3.1 Single exposure to carbaryl and UV radiation. 
 

Growth parameters 
 

 Growth was adversely affected by carbaryl applied alone for both plant species. 

Shoot length decreased in both T. aestivum and B. rapa under carbaryl exposure of 50 

mg/kg and from 75 mg/kg onwards (Dunnett’s, p<0.05) respectively, compared to the 

control (Table 4.2). T. aestivum was considered more sensitive than B. rapa for the 

length parameter with EC50= 62.0± 2.0 mg/kg and 76.9±2.5 mg/kg (mean ± St. Err.), 

respectively. The fresh and dry weight of T. aestivum was significantly reduced from 75 

mg/kg onwards and the water content from 50 mg/kg onwards (Dunnett’s, p<0.05), and 

B. rapa all these parameters were affected from 75 mg/kg
 
onwards (Table 4.2). The 

fresh weight parameter, showed that B. rapa was more sensitive than T. aestivum with 

an EC50 values of 48 ±2.3 mg/kg and 65.1 ±3 mg/kg (mean ± St. Err.), for the dry 

weight, the EC50 value for T. aestivum was also lower (78.0 ±3 mg/kg) than B. rapa, 

which could not be calculated, being higher than the highest concentrations (>150 

mg/kg) (Table 4.2). 

 UV irradiation showed significant reductions in shoot length for both species, 

from the lowest dose used (14.2 kJm
-2 

d
-1

) onwards (Dunnett’s, p<0.05) (Figure 4.1A 

and D). T. aestivum showed high tolerance to UV radiation, where the ED50 could not 

be calculated within the intensities used, being higher than the highest dose of UV 

radiation; for B. rapa the ED50 for shoot length was 21.8±0.7 kJm
-2

d
-1

 (Table 4.2). UV 

irradiation also caused a reduction in fresh weight (Figure 1B and E) for both species. 

Again, B. rapa was more affected, and a significant reduction of the fresh weight was 

found from 14.2 kJm
2
d

-1
 onwards, with a decrease of 90.9% on at the highest UV dose, 

when compared to control (Figure 1E). T. aestivum was affected only at the highest 

dose (28.4 kJm
2
d

-1
), with a lower decrease in fresh weight (30.6%) compared to 

controls. (Figure 1 B). Analyzing the ED50 values for these parameters, T. aestivum was 

more tolerant to UV radiation than B. rapa with an ED50 higher than the highest dose 

used (28.4 kJm
2
d

-1
) for fresh and dry weight, and water content (Table 4.2). 
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UV sensitivity index. 

 

 Table 4.3 shows the sensitivity indexes of B. rapa and T. aestivum to UV 

radiation. The calculated UV sensitivity index (UV-SI) showed that T. aestivum is more 

tolerant to UV radiation than B. rapa for all doses used. The lowest UV-SI was 0.35 for 

B. rapa exposed to 28.4 kJm
-2

d
-1 

,whereas for T. aestivum exposed to same UV radiation 

the UV index was 1.48 (the lowest UV-IS for this species).  

 The highly significant reductions in biomass and highest sensitivity to UV-

radiation were observed in B. rapa from 14.2 kJm
-2

d
-1 

onwards, accumulating only 

58.9% of the biomass of controls, while T. aestivum showed a decrease in biomass only 

at the dose of 28.4 kJm
-2

d
-1

 (Table 4.3), accumulating in this UV-dose 70.3% of the 

biomass of control. 

Foliar changes 
 

 T. aestivum and B. rapa exposed to single carbaryl did not show any visible 

changes in plant morphology or death. But in the exposure to UV radiation, both species 

showed changes in their leaf morphology. T. aestivum showed foliar changes even at the 

lower radiation used (14.2 kJm
-2

d
-1

): shorter stems, smaller leaves, serrated tips and 

rolled down leaves. Necrosis of tip leaves was found at the highest dose (28.4 kJm
-2

d
-1

). 

Foliar changes in B. rapa appeared only after the UV dose of 21.3 kJm
-2

d
-1

, with shorter 

stems, smaller leaves, and rolled down leaves. Despite of these morphological changes, 

none of emerging seedlings died by the end of the test for both species. 
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Table 4.2. EC50/ED50 values with standard error values (under brackets) and LOECs for the exposures of Triticum aestivum and Brassica rapa to carbaryl and UV radiation 

alone and upon a combined exposure.  

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

EC50= Median effective concentration; ED50= Median effective Dose UV-B; LOEC- Lowest Observed Effect Concentration; n.d = not determin

  
    

Species Endpoint 

UV Single 
ED50 (kJ/m2d-1 ) 

Carbaryl Single 
EC50 (mg/kg) 

EC50 

Carbaryl 

 + 

14.2 kJ/m
2
d

-1
 

EC50 

Carbaryl 

 + 

21.3 kJ/m
2
d

-1
 

 

EC50 

Carbaryl 

 + 

28.4 kJ/m
2
d

-1
 

Triticum 

aestivum 
 

Length 
 

>28.4 
LOEC=14.2 

 
62.0 (2.0) 
LOEC=50 

 
62.1 (2.9) 
LOEC=50 

 
59.2 (3.3) 
LOEC=50 

 
72.1 (4.3) 
LOEC=50 

Fresh weight 
 

>28.4 
LOEC=28.4 

 
65.1 (3.0)  
LOEC=75 

 
40.5 (3.8) 
LOEC=50 

 
39.9 (4.9) 
LOEC=50 

 
23.5 (8.6) 
LOEC=50 

Dry weight 
 

>28.4 
LOEC=28.4 

 
78.0 (3.7) 
LOEC=75 

 
50.9 (4.9) 
LOEC=50 

 
47.8 (6.0) 
LOEC=50 

 
43.6 (8.9) 
LOEC=50 

Water Content 
 

>28.4 
LOEC=28.4 

 
>150 

LOEC=50 

 
>150 

LOEC=50 

 
>150 

LOEC=75 

 
>150 

LOEC=50 

Brassica 

rapa 

Length 

 

21.8(0.7) 
LOEC=14.2 

 

76.9 (2.5) 
LOEC=75 

 

75.2 (6.6) 
LOEC=50 

 

67.0 (21.8) 
LOEC=50 

 

>150 
LOEC=125 

Fresh weight 

 
15.3 (0.7) 

LOEC=14.2 

 
48.0 (1.8) 
LOEC=75 

 
34.6 (6.2) 
LOEC=50 

 
24.9 (13.4) 
LOEC=50 

 
34.4 (15.3) 
LOEC=50 

Dry weight 
 

 

15.4 (0.76) 
LOEC=14.2 

 

46 (2.3) 
LOEC=75 

 

80 (10.4) 
LOEC=50 

 

n.d 
LOEC>150 

 

>150 
LOEC=>150 

Water content 
 

n.d 
LOEC=21.3 

 
>150 

LOEC=75 

 
n.d 

LOEC=50 

 
>150 

LOEC=50 

 
>150 

LOEC=50 
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Fig. 4.1. The effects of UV radiation after 14 days of exposure on Triticum aestivum shoot length (A), 

fresh weight (B) and water content (C) and Brassica rapa shoot length (D), fresh weight (E) and water 

content (F) respectively. Asterisks indicate significant difference from the control (p<0.05 – Dunnett’s 

test). 
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*P<0.05 (Dunn's Test);  T= Tolerant; S= sensitive; Tolerant : UV-SI > 1; Sensitivy: UV-SI < 1  

 

4.3.2 Combined exposure to carbaryl and UV radiation 
 

 The joint toxicity was predicted by using the MIXTOX tool and the data set was 

fit to generate the best description of the biological response of B. rapa and T. aestivum 

to this combination. The Independent Action (IA) was chosen considering that UV 

radiation and carbaryl have different modes of action on plants. All parameters 

generated from the MIXTOX tool are presented in Table 4.4. 

 

UV- radiation 

   UV Sensitivity index 

 

 Biomass accumulation 

 

Sensitivity         %    Sensitivity 

 

 

 

Brassica 

rapa 

 

14.2 kJ m-2d-1 1.48 
T 58.9* S 

21.3 kJ m-2d-1 0.78 

S 25.4* S 

28.4 kJ m-2d-1 0.35 

S 8.7* S 

 

 

 

Triticum 

aestivum 

14.2kJ m-2d-1 1.75 

 

T 

 

87.3 

 

T 

21.3kJ m-2d-1 1.6 
 

T 
 

79.2 
 

T 

28.4kJ m-2d-1 1.48 

 

T 

 

70.3* 

 

S 

Table 4 3 Sensitivity of Brassica rapa and Triticum aestivum to UV radiation, using the percentage of changes in 

DW and plants length and the biomass accumulation (dry weight) for all UV radiation doses used. 
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Table 4.4 Summary of carbaryl and ultraviolet radiation effect on Triticum aestivum and  Brassica rapa. IA is independent action; SS is the objective function used for 

continuous data; r2 is the coefficient of determination; a and b are parameters of the deviation functions; S is synergism; DR and DL are “dose ratio” and “dose level” deviation 

from the reference model. 

 

 

Species 

 Reference Model (IA)  Deviation 

Endpoints 
SS r2   Type SS r2 a B 

            

Triticum aestivum 

 
Length 

 

9921 0.64       

Fresh 
weight 

 

 
910134 

 
0.83  DL 8055370 0.85 -8.2 1.2 

Dry 
weight 

 

 
14774.2 

 
0.82  DL 13146 0.85 -7.6 1.3 

Brassica rapa 

 
Length 

 

 
1804 

 
0.70  DR 

 
1800 

 
0.72 - 4.7 8.7 

 
Fresh 
weight 

 

 
2119371 

0.77       

 
Dry 

weight 
 

 
19707 

 
0.55  DR 

 
16462 

 

 
0.63 

 
- 2,8 8,6 
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Fig. 4.2 Dose-response relationship for the combination of carbaryl and UV- radiation on T. aestivum, showing an 

additive effect (Independent Action) for the parameter length (A) and dose- level dependent deviations for the 

parameters fresh weight (B) and dry weight (C). 

  

 

 
 

 

 

 

 

 

 

 

 

  

 

 

Growth parameters 

 

 The combined exposure to both stressors induced an additive effect regarding 

the T. aestivum shoot length, with a good estimation by the IA model (p=1. 11×10
−128

; 

Table 4.4 and Figure 4.2A). For B. rapa shoot length the effects of combined exposure 

fitted by Independent Action showed a SS value of 1804 and by adding the parameters ɑ 

and bDR to the nested framework a dose-ratio dependent deviation was achieved, with a 

decrease in the SS value and increase on the r
2
 of the fit (SS=1800; r

2
=0. 72; P=2.1 
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Fig. 4.3 Dose-response relationship for the combination of carbaryl and UV- radiation on B.rapa, showing a dose-
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(Independent Action) for the parameter fresh weight (B) 
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×10
−10

; Table 4.4). In this case, the values of ɑ (-4.7) and b (8.7) parameters indicate an 

increase on the toxicity (synergism) when UV radiation was the dominant stressor, i.e. 

low carbaryl concentrations combined with high UV radiation doses (Figure 4.3A)

 T. aestivum fresh and dry weight data were fitted by the IA model (SS= 910134; 

r
2
=0.82 and SS=14774.2; r

2
=0.82, respectively) but a significantly better fit was 

obtained after adding the parameter ɑ and bDL (SS=805537; r
 2

=0.85 and SS=13146; r
 2

 

=0.85, respectively, Table 4.4), showing a deviation dependency on the dose level 

present. The negative parameter ɑ was indicative of a synergism occurring at low dose 

levels of both stressors and antagonism at higher doses of both stressors (Figure 4.2B 

and C). 

 The combined exposure to both stressors induced an additive effect regarding B. 

rapa fresh weight, with a good estimation by the IA model (p=1. 1×10
−188

; Table 4.4; 

Figure 4.3B). Looking at B. rapa dry weight and after the data fit to the IA model 

(SS=19707; r
2
= 0.55), a dose-ratio dependent deviation was observed with parameters ɑ 

and bDR provides a better estimation of the joint toxicity (SS=16462; r
2
=0. 63; P=3. 

3×10
−24

 Table 4.4 and Figure 4.3C). The values of ɑ (-2.8) and b (8.6) parameters 

indicate an increase on the toxicity (synergism) when UV radiation was the dominant 

stressor. 

 

Foliar changes and mortality 
 

 The combined action of UV radiation and carbaryl on leaf morphology of T. 

aestivum was greater than the individual effects of these stressors, and were visible 

earlier, at lower doses of UV radiation (14.2 kJm
-2

d
-1

) and intensified at higher doses of 

UV radiation (28.4 kJm
-2

d
-1

). In this scenario all leaves showed yellowing and in some 

plants yellow patch turned into necrotic regions. Foliar changes in B. rapa only 

appeared from the UV radiation of 21.3 kJm
-2

d
-1 

onwards, similar to what occurred in 

the single UV exposure, but were intensified at carbaryl concentration of 75 mg/kg and 

onwards. Foliar changes included yellowing leaves, loss of leaf rigidity, some wilting 

and dried leaves, and the leaf edges curled down. Before the end of the test, under a UV 

radiation dose of 28.4 kJm
-2

d
-1

 combined with 125 mg carbaryl/kg, 5.5% of the B. rapa 

seedlings died and 24.5% of the plants died at this UV dose combined with 150 mg/kg. 

No dead plants were registered on the T. aestivum trial. 
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4.4 Discussion 

4.4.1 Single exposure 
 

 The exposures to carbaryl and UV radiation as single stressors showed a 

negative influence on growth, water content and biomass. Some studies have already 

reported that carbaryl severely affects plant growth, water content, emergency and 

biomass production (Jones et al., 1991; Lima et al., 2011; Murthy, 1990;). Murthy and 

Raghu (1990) reported a high LOEC (100 mg/kg of carbaryl) and significant decrease in 

barley dry weight of 32.6%, compared to the control, in sandy loam soils. Comparing 

with our results, a low LOEC was found (75 mg/kg) for both T. aestivum and B. rapa, 

and a high and significant reduction in their dry weight in this concentration, compared 

to the control, of 52% and 78.5%, respectively (data not show).  

 Inconsistent UV-B doses and different BSWFs used in studies on the effects of 

UV-radiation in plants has generated many different outputs which lead to a difficult 

comparison and conclusions regarding the response of plants to this stressor. 

Furthermore, many these studies. e.g., (Correia, 2012; Fagerberg, 2007; Li et al., 2000; 

Qaderi and Reid, 2005; Qaderi et al., 2007; Singh et al., 2012) have used only UV-B 

wavelengths and exposure to just one level, comparing with and without UV irradiation, 

but different biological response can be found at different levels of UV radiation 

(Frohnmeyer and Staiger, 2003) and under UV-A wavelengths (Flint and Caldwell, 

2003).  

 Studies indicate that ultraviolet radiation affects mainly the photosystem II 

(Booij-James at al, 2000), and the main plant protection mechanisms to that stress is the 

biosynthesis of UVabsorbing compounds, as phenolic compounds and flavonoids, that 

attenuate the penetration of the UV-B range of the solar spectrum through the leaf 

(Frohnmeyer, and Staiger, 2003). 

 Among the negative effects of UV radiation on the plants are: reduced plant 

growth, reproduction and development, reducing photosynthesis and decreasing plant 

productivity (Caldwell et al., 2007; Rousseaux et al., 1999; Srivastava et al., 2012; 

Stapleton, 1992; Zuk-Golaszewska et al., 2003) but the effect varies among species (Li 

et al., 2000) In present study UV radiation had a significant inhibitory effect on shoot 

length, fresh and dry weight of both plant species and this agrees with results from other 

works (Alexieva et al., 2001; Li et al., 2000; Qaderi et al., 2007; Yuan, 1998) where T. 

aestivum and B. rapa also were negatively affected in their growth by UV radiation. At 
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the highest UV radiation, the decrease in B. rapa shoot length was more accentuated 

(75%), while T. aestivum at the same conditions decreased their shoot length in 16.3%, 

when compared to the control. This reduction in shoot length has been commonly found 

in other plant species exposed to UV radiation (Dai et al., 1994; Lydon, 1986) and may 

be related to several factors such as photooxidative stress, DNA damage (Rozema et al.,  

1997; Rousseaux et al., 1999, Strid, 1993), decrease in cell division (Hopkins et al., 

2002) and energy allocation to others routes, as production of ultraviolet-absorbing 

sunscreens (Jaakola and Hohtola, 2010; Mazza et al., 2000). 

 Tian and Lei (2007) reported a decrease of 29.1% on T. aestivum fresh weight 

exposed to 3.5 kJm
2
 of UV-B (weighted with the generalized plant response action 

spectrum) for 7 days of exposure, which is above that was reported in the present study, 

for the same species in more days of exposure (14 days). The dose used by the author 

mentioned above corresponds approximately to our dose of 14.2 kJm
2
d

-1
 where a 

decrease in fresh weight of 12.2% and 10.7% was observed in T. aestivum and B. rapa, 

respectively. In table S 4.1 we can compare the doses used by the authors with the doses 

used in this study, since different BSWFs were used. 

 Our results also showed that T. aestivum was less affected regarding the water 

loss, with a LOEC of 28.4 kJm
2
d

-1
, which corroborates with other studies where no 

changes were observed on leaf water content of wheat after UV-B treatments (Alexieva 

et al., 2001), and only one cultivar, among three spring wheat (T. aestivum L.) cultivars, 

was significantly affected in their water content by UV radiation (Feng et al., 2007).  

 The reduction in plant height and dry weight are two parameters that have often 

used to assess the plant's sensitivity to UV radiation (Biggs et al., 1981; Mishra and 

Agrawal, 2006; Teramura, 1983). The dry weight represents the adverse effects of 

cumulative radiation on some functions of plants (Smith et al., 2000) and reduction in 

plant length are a characteristic of UV radiation sensitive plants (Tevini and Teramura, 

1989). In the present work, these two endpoints were used to evaluate the differences in 

UV sensitivity of both plants species. In table 4.3 is presented a index of sensibility to 

UV and the biomass accumulation of both species, and have proved to be good 

indicators of the UV sensitivity. Both indicators reported the low tolerance of B. rapa to 

ultraviolet radiation.  

 The tolerance of plants to UV radiation vary inter and intraspecifically (Li et al., 

2000; Lv et al., 2013; Yuan et al., 2000) and plants grown at higher altitudes, 
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continuously exposed to higher levels of UV-B, are commonly more tolerant to this 

radiation than plants grown at lower altitudes, with low UV-B exposure (Jordan, 1996). 

Several studies have reported high UV sensitivity of the family Brassicaceae (Tevini et 

al., 1981; Van et al., 1976), and also regarding wheat species (Yuan, 1998), but to our 

knowledge, there is no study comparing the tolerance between these two species to UV  

radiation. Our results showed that T. aestivum can be considered more tolerant to UV 

radiation for the doses used when compared to B. rapa.  

 In contrast, monocotyledonous as T. aestivum are, generally, more sensitive to 

UV radiation, when regards to morphology endpoints, than dicotyledonous as B. rapa 

(Barnes et al., 1990). This was observed in our study, where visible foliar changes 

occurred in T. aestivum at lower UV radiation (14.2 kJm
2
d

-1
) and the more severe 

visible effects, such as leaf necrosis, were found at the highest dose of UV radiation 

(28.4 kJm
2
d

-1
). In the case of B. rapa the lowest UV radiation used to have no effect on 

leaf morphology, and no necrosis was found in a single UV radiation exposure. The 

foliar changes for this species occurred from 21.3 kJm
2
d

-1
 onwards.  

 The changes in leaf color that occurred in both species have been reported also 

for other species exposed to UV radiation, like a visible foliar bronzing of irradiated pea 

leaves (Strid and Porra, 1992) or the appearance of black leaf symptoms in grape Vitis 

vinifera L. (Lang et al., 2000). The leaf curling, found in the present study for B. rapa 

exposed to high UV radiation, was also reported in other Brassicacea species treated 

with UV-B as Arabidopsis thaliana (Boeger and Poulson, 2006) and Brassica napus L. 

(Wilson and Greenberg, 1993), where it was suggested an association with the 

degradation of auxin in the adaxial epidermis. On the other hand, Zlatev et al. (2012) 

suggested that this symptom can be a result of a photomorphogenic response that helps 

diminish the leaf area exposed to UV radiation. The shorter stem and smaller leaves that 

occurred in both species exposed to UV radiation were also reported as defense 

mechanisms developed in plants to protect them against UV radiation (Bornman and 

Vogelmann, 1991; Laakso and Huttunen, 1998; Stratmann, 2003). These morphological 

changes can result in a decrease in photosynthesis (Barnes et al., 1990; 1996), which 

also affects plant growth. 

 

 



   Chapter 4. Plant responses to the combined exposure of carbaryl and ultraviolet radiation. 

 

112 

 

4.4.2 Combined exposure 
 

 UV radiation is responsible for most of the pesticide photolysis (Crosby, 1969), 

and carbaryl has a high absorbance within the UV- B range (300 nm) (Addison et al., 

1974; Zaga et al., 1998), which facilitates its degradation. Our data showed a higher 

degradation of carbaryl (25%) when soil was irradiated with UV light, while in the non-

exposed soil only almost 5% was lost. Therefore, the increase on toxicity found in the 

UV irradiated trial can be seen in light of the effects of UV combined with carbaryl or 

with its degradation products. Although carbaryl metabolites are considered generally 

less toxic than the original compound (WHO, 1993) the main decomposition product 1-

naphthol is the exception, being considered more toxic than carbaryl (Blaustein et al., 

2003; CCME, 2009). This was highlighted by Crosby et al. (1965) where it was 

reported modifications on carbaryl molecule by UV radiation, increasing the formation 

of 1-naphtol, and therefore inducing higher toxicity than the original compound. 

 There have been some reports on the increase of carbaryl toxicity when 

combined with temperature to the earthworm Eisenia andrei, the plant Brassica rapa 

(Lima et al., 2014) and to the Hemiptera Diaphorina citri (Boina, 2009). In addition, 

when combined with UV radiation Zaga et al. (1998) suggested that carbaryl was 

photoactivated by UV-B, causing synergistic effects in anuran embryos of Xenopus 

laevis when carbaryl was irradiated, by inducing higher mortality. The only study 

reporting the combined effect of carbaryl and UV radiation for soil organisms showed 

that a short exposure of the Collembola Folsomia candida to these stressors, caused an 

increase in reproduction and decrease in hatch success (Cardoso et al., 2014).  

 In the present study, the combination of carbaryl and UV radiation showed that 

the response depends on the species studied and the endpoint analyzed, and this has 

already been reported by other studies using the combined effects of chemicals and 

abiotic stressors (Holmstrup, 2010; Lima et al., 2011; 2014). Synergistic patterns were 

observed for B. rapa length and dry weight when UV radiation was the dominant 

stressor and carbaryl was present at low concentrations. Decreasing in the shoot height 

and synergism was also reported by others authors when UV radiation was combined 

with metals exposure in spruce seedlings of Picea abies (Dubé and Bornman, 1992) and 

in the soybean Glycine max L. (Chen et al., 2003).  

 Analyzing weight parameters, T. aestivum showed synergism at more relevant 

scenarios, where low concentrations of carbaryl are combined with low UV intensities. 

http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=Picea%20abies
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Other studies have reported the synergistic effect of UV radiation and metals on 

biomass production and accumulation in soybean (Glycine max L) (Chen et al., 2003), 

Triticum aestivum seedlings (Shukla et al., 2002) and in the spinach Spinacia oleracea 

L (Mishra and Agrawal, 2006). 

 In foliar morphology an effect higher than the predicted based on each single 

stressor was observed. Yellow patches on leaves and necrotic regions found only at the 

highest dose of UV radiation for T. aestivum (single exposure), were also found at lower 

UV intensities when combined with carbaryl, being then intensified at higher UV levels 

reaching necrosis. Loss of stiffness of B. rapa leaves were found in combined exposure 

and it can be related to decrease on fresh weight and water content in this species. The 

mortality of B. rapa seedlings found at high doses of UV radiation and high 

concentration of carbaryl (from 125 mg/kg onwards) showed the high sensitivity of 

these species to combined exposure and it can be related to the synergism output for 

plant fresh weight. The increase of carbaryl toxicity to these plants can be due to 

changes in membrane permeability of plants exposed to UV radiation, facilitating the 

uptake of carbaryl. This has been reported previously by Agrawal and Mishra (2009) 

when Pisum sativum was exposed to Cd after UV-B irradiation.  

 As a conclusion, this study highlights the importance of studying the combined 

effects of UV radiation and pesticides to crop species, as most of the studies are carried 

under controlled conditions disregarding UV irradiation. Important results were 

achieved, considering that interactions between both stressors inside plants occurred, 

with synergism showing up as the main pattern related to UV irradiation. 
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4.5 Supplementary Data 

 
Table. S 4.1 - Comparative summary of the biologically effective UV radiation doses using different  
biological spectral weighting functions (BSWFs) commonly used for terrestrial plants in each time of 

exposure used in the present work. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

*BSWF used in the present work 
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Chapter 5. Drought and flood conditions in soils affect the 

responses of crop plants to ultraviolet radiation  
______________________________________________________________________ 

 
 

Abstract 

 

The effect of different doses of ultraviolet radiation (UVR), combined with two 

watering regimes (drought and flood) on two crop species (T. aestivum and B. rapa) 

was investigated. Seedlings immediately after emergence were exposed to single and 

combined stressors. In single exposure UVR caused significant decrease on the growth 

of both plant species, although T. aestivum was more tolerant than B. rapa to UVR 

effects. Drought and flood significantly affected growth and biomass production for 

both species. A significant interaction between UVR and soil moisture was found and 

the two plant species responded differently to combined exposure. The drought stress 

alleviated the deleterious effect of UVR on T. aestivum length and biomass production 

and the flood stress increased its effects. For B. rapa, both water stresses caused an 

increase of the deleterious effects of UVR for all endpoints evaluated, showing potential 

synergistic interaction in all combined exposure.  

 

Key words: Brassica rapa, Triticum aestivum, Ultraviolet radiation, Drought, Flood, 

Soil moisture. 
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5.1 Introduction 

 

 Climate change is a result of human activities over the decades, such as forest 

destruction, burning of fossil and the release of chlorofluorocarbon, that have led to 

atmospheric increases in CO2, and accumulation of greenhouse gases (Molina and 

Rowland, 1974; Worrest, 1989). The amounts of these gases induce or increment the 

depletion of the ozone layer and consequent incoming of solar radiation to reach the 

Earth's surface, producing global warming.  

 In addition to warming effect and also as a consequence of climate change 

significant changes in precipitation patterns are expected (Caldwell et al., 2007), 

causing annual variations and local changes in precipitation, exposing plants to flood 

scenarios (Walther, 2002). Beyond that, extreme drought events are projected to 

increase in future also due the climatic change (Tao et al., 2003). 

 So, in field, several environmental stressors, sequentially or simultaneously, may 

affect plant development, which will lead to socio-economic crucial issues. Factors as 

temperature, water deficit and increased of UV radiation reaching the Earth surface are 

important factors limiting productivity of crops in many regions (Caldwell et al., 2007; 

Farooq et al., 2009). 

 Some studies have shown that natural stressors as soil moisture (Balakumar, 

1993; Mark and Tevini, 1996), temperature (Takeuchi et al., 1993) and nutrients 

(Murali and Teramura, 1985) can also decrease or increase the negative effect of UV 

radiation on plants and alter the effect of the individual stress response. 

 It has been predicted that UV radiation affects plants by many pathways, 

reducing plant growth , reproduction (Caldwell, 1989; Tevini and Teramura, 1989), 

primary productivity (Bornman and Teramura, 1993; de Almeida, 2012) photosynthesis 

(Tevini and Teramura, 1989), by causing foliar changes as reduced leaf area (Caldwell 

et al., 2007) and increased epidermal thickness (Ren et al., 2007). Also, reduction in 

plant's dry weight is often a reliable indication of a plant's sensitivity to UVR (Smith et 

al., 2000). 

 Drought has affected agricultural production in some regions (Balouchi, 2009), 

impairing plant development, growth, emergence and weight (Lima et al., 2011). It 

causes stomatal closure, which will lead to a reduction on the CO2 diffusion into leaves 
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(Li et al., 2004), limiting the photosynthesis and consequently reducing cell division, 

leaf area and biomass (Nogués and Baker, 2000; Tsukaya, 2003). It is also known that 

roots exposed to flood stress may suffer hypoxia, causing morphological changes and 

mechanisms of anaerobic metabolism (Liao and Lin, 1995), reduction in plant growth 

and development (Lima et al., 2011). 

 Some studies have reported that UV radiation combined with drought stress have 

synergistic effects on plants (Feng et al., 2007), causing oxidative burst (Monk et al., 

1989), reducing plant growth, biomass and water content (Bandurska et al., 2012; Feng 

et al., 2007; Sullivan and Teramura, 1990). Moreover, it has also been reported that 

natural plant adaptation to drought can provide tolerance to UVR due to induction of 

protective mechanisms (Alexieva, 2001; Balakumar, 1993), but the effects of flood 

stress combined with UV radiation on plants are still unknown. 

 Since crop plants are very responsive to these two important climate factors, the 

present study pretends to infer whether drought or flood stress can influence the 

sensitivity of plants to ultraviolet radiation, in order to provide a better analysis of 

environmental risk in the face of climate changes but also regarding seasonality and 

climate conditions in different countries worldwide.  

 

5.2. Material and Methods  

5.2.1 Plants and growth conditions 
 

 For both single and combined exposure, the seeds of Brassica rapa (turnip) were 

purchased from Carolina Biological Supply Company (US) and the caryopses of 

Triticum aestivum (wheat) were obtained from an agricultural store in Aveiro, Portugal. 

The methodology for all bioassays was adapted from the ISO 11269-2 guideline (ISO 

1995).  

  The seeds/caryopses were sown in natural soil Lufa 2.2, obtained by the 

German Institution LUFA Speyer, with a pH=5.5 ± 0.2 (0.01 M CaCl2), water holding 

capacity=41.8 ± 3.0 (g/100 g), organic C = 1.77 ± 0.2 (%), nitrogen=0.17 ± 0.02, 

texture=7.3 ± 1.2 (%) clay; 13.8 ± 2.7 (%) silt and 78.9 ± 3.5 (%) sand. The 

experimental design was constituted of four replicates per treatment, being each 

replicate a pot filled with 500g of soil and ten caryopses/seeds. The initial soil moisture  
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was adjusted to 60% of Water Holding Capacity (WHC) and plants were grown in a 

laboratory room (20± 2
o
C; 12000 lx; photoperiod of 16:8 light: dark). 

5.2.2.Single exposure 

UV radiation treatments 

 

 Seedlings, immediately after emergence, were irradiated using three different 

doses of UV radiation, converted to kilojoules per day of exposure : 14.2 kJ m
-2 

d
-1

 

(corresponding to 4h of exposure); 21.3 kJ m
-2 

d
-1

 (6h) and 28.4 kJ m
-2

 d
-1

 (8h). These 

UVR doses were chosen based on previous results described in chapter 4. During the 

single UVR exposure the soil moisture was maintained at 60%WHC. 

 The UV radiation was provided by a UV lamp (Spectroline XX15F/B, 

Spectronics Corporation, NY, USA, peak emission at 313 nm and 365nm corresponding 

UV-B and UV-A), that was placed in mobile adjustable metal frames suspended 30 cm 

above the top of the plants. 

 To eliminate the UV-C range wavelengths, that do not reach the earth's surface, 

a clear cellulose acetate sheet (0.003mm) was used; and was previously UV irradiated 

for 12 h before use in the experiments to minimize differences in intensity of UVR that 

crosses the sheets. The cellulose acetate films were regularly replaced to avoid aging 

effects on the spectral transmission of UVR. PAR light was also used simultaneously to 

UVR exposure and intensities were measured at the top of the plant with a 

spectroradiometer connected to a monochromator; the spectral radiance was obtained by 

the BenWin+ Software (Bentham Instruments, Reading, UK). To yield the biologically 

effective dose of UV radiation, the intensity values were converted into biologically 

effective UV radiance by using the plant growth action spectrum BSWF (Flint and 

Caldwell, 2003). 

 For all intensities, UV doses were calculated, according to the time of exposure 

at that intensity and the total biologically effective dose was calculated as follows:  

 

100
000.1

)(exp)(
)(

2
2 


 sosureofTimeXmWcmI

JmdoseUV BE
BE

 

 

Where IBE is the biologically effective UV irradiance.  
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For a better comparison between the effective doses used in this study (using the BSWC 

as weight function) and the doses used in others studies, Table S 4.1 (chapter 4) presents 

comparative values, calculated using different weight functions. 

Drought and flood treatments 

 

 The seeds/caryopses were sown in a pot filled with 500g of natural soil Lufa 2.2 

moistened in three irrigation regimes, simulating drought stressed (10%WHC), flood 

stressed (120%WHC) and regular optimum conditions (control, 60%WHC). To control 

soil moisture levels during the experiments, test vessels were weighted daily and water 

added whenever needed.  

 

5.2.3 Exposure to combined treatments 

 

 This exposure followed the same pattern described above for the single 

exposure, with some adjustments: All seeds and caryopsis were introduced in test pots 

with a soil moisture of 60%WHC; immediately after emergence, soil moisture was 

adjusted to the pretended soil moisture regimes and seedlings were exposed 

simultaneously to different doses of UV radiation and water stress (10% WHC and 

120% WHC). The joint effect of UV and soil moisture exposures was compared to 

responses from control plants (without UV and at 60%WHC). Soil pots were weighted 

daily and water added whenever needed. 

 

5.2.4 Endpoints 

 

 Plants were harvested and the shoot length, fresh and dry weight recorded after 

14 days of 50% of seeds had emerged in the control soil. The water content in plants 

(WC) was calculated using the following equation, where DW is the plant dry weight 

and FW the plant fresh weight.  

100



FW

DWFW
WC  

  



Chapter 5. Drought and flood conditions combined with ultraviolet radiation 

 

129 

 

 Visible foliar changes were also recorded for all plants exposed as changes in 

leaf edges, color of leaves and  stem stiffness. The results were initially expressed in 

percentage of seedlings affected by symptoms.   

5.2.5 Statistical analysis 

 

 Data from single exposures were analyzed by a One-way ANOVA. The 

Dunnett’s test was used to analyze differences between control and treatments. 

Whenever the normality test failed and data transformation did not correct for 

normality, non-parametric Kruskal–Wallis test was performed, followed by the Dunn’s 

method when significant differences were found (Systat, 2006). 

 A two-way ANOVA was applied to assess the interaction between UV radiation 

and soil moisture. The median effective dose (ED50) was calculated using a non-linear 

regression, a sigmoidal logistic 3-parameter equation. All analyses were performed 

using the software package SigmaPlot 12.5 (Systat Software, Inc.). 

 Synergistic ratios (SRs) were calculated, when possible, by dividing the ED50 

value for UV radiation at 60%WHC by the ED50 values for UV radiation at drought and 

flood stress. Synergistic ratios (SRs) of 1.0 indicated no effects of water stress on UV 

radiation sensibility, whereas values >1.0 and <1.0 indicated greater and smaller effects 

than expected, respectively.  

5.3. Results 

5.3.1 Single exposure  

 

UV radiation 

 

 UVR caused a significant decrease on T. aestivum and B. rapa length (Figure 

5.1E and G, respectively) from 14.2 kJ m
2 

d
-1 

onwards (ANOVA, p≤0.05), the FW and 

DW of T.aestivum was affected just at 28.4 kJ m
2 

d
-1

 (Figure 5.2B), while B. rapa FW 

and DW decreased from 21.3 and 14.2 kJ m
2 

d
-1 

onwards, respectively (Figure 5.3B). 

But, the plants water content did not change in any doses used for T. aestivum (Figure 

5.1F), whereas for B. rapa a significant increase was found at 14.2 kJ m
2 

d
-1 

 and at 28.4 

kJ m
2 
d

-1
(Figure 5.1H). 
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 Foliar changes were also reported by visual observation in both species: for T. 

aestivum from 14.2 kJ m
2 

d
-1 

onwards and for B. rapa this changes were observed at 

21.3 kJ m
2 

d
-1 

 onwards. These changes included: shorter stems, smaller leaves, serrated 

tips and curled down leaves. Chlorosis and necrosis of tip leaves were found at the 

highest dose (28.4 kJ m
2 
d

-1
) for both species. 

 

Soil moisture  

 

 T. aestivum length decreased significantly (ANOVA, p≤0.05) in both water 

extreme regimes, but the decrease caused by drought was higher (62%) than the 

decrease caused by flood (18%). B. rapa length showed similar responses to both water 

stress, with a significant decrease of 21.3% at drought stress and 22.5% at flood stress 

when compared to control (ANOVA, p≤0.05). 

 The fresh weight of the two plant species decreased at both water regimes. 

Under drought stress the decreased was of 76.2% for T. aestivum and 51% for B. rapa; 

in flood stress simulation, the decreased was of 28.5% and 47.1%, respectively. 

Regarding the dry weight, different responses were found between species. B. rapa was 

not affected by water stress (ANOVA, p>0.05), while T. aestivum was only affected by 

drought, with a significant decrease of 70.7% under these conditions (ANOVA, 

p≤0.05). The water content of both species decreased significantly (ANOVA, p<0.05) in 

both water stress, however, the effect was higher in B. rapa (5.3% under drought and 

9% under flood) than in T. aestivum (2.2% under drought and 2.93% under flood). 

 T. aestivum exposed to single drought or flood stress did not show any change in 

leaf morphology, whereas B. rapa showed a few brownish leaves (10% of exposed 

leaves) in drought stress and wilting leaves (8%) in flooding stress (data not shown). 

 

5.3.2 Combined exposure 

 

 The effects of different levels of UVR to both plant species depended on the 

level of soil moisture for all endpoints. There was a statistically significant interaction 

between these stressors for T. aestivum length (Two Way Anova, F6,316=8.94, p<0.001). 

When under optimal water conditions (60%WHC) a decrease on its length was 

observed (ANOVA, p< 0.05) with the increase of UVR (Figure 5.1E), with the highest 
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dose of UVR causing a reduction on their length of 25%, compared to the control. 

When the flood stress was added, the sensitivity to UVR was maintained (ANOVA, p< 

0.05) and a similar response to those observed under optimal water conditions at the 

highest UVR dose was found (reduction of 25.8% on its length) (Figure 5.1I). But the 

addition of drought stress caused greater tolerance of plants to UVR, because the 

increase of UVR did not cause significant effects in T. aestivum length (ANOVA, p> 

0.05).  

 The length of B. rapa was also affected by the interaction of stressors (Two Way 

Anova, F6,326=47.21, p<0.001), and in both water conditions the increase of UVR 

caused a decrease on Brassica’s length (ANOVA, p< 0.05). Under optimal water 

conditions (60%WHC) the decreased caused by the highest UVR dose was 77.3% 

(Figure5.1G), similar to effects under flood conditions (74.2%), compared to controls 

(Figure 5.1K), whereas under drought conditions the reduction was of 27.1% (Figure 

5.1C). But in flood conditions, the first dose UVR caused a greater reduction in length 

than that recorded under ideal conditions. 
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Fig. 5.1. Effects of UV radiation on Triticum aestivum shoot length (A, E, I) and water content (B, F, J) and B.rapa shoot length (C, G, K) and  

water content (D, H, I) subjet to different soil moisture regimes. Asterisks indicate significant difference from the control (p<0.05 – Dunnett’s test). 
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Fig. 5.2. Effects of UV radiation on Triticum aestivum fresh weight and  dry weight in drought stress (A); control 

conditions (B) and flood stress (C). Asterisks indicate significant difference from the control (p<0.05 – Dunnett’s test). 
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Fig. 5.3. Effects of UV radiation on B. rapa fresh weight and  dry weight in drought stress (A); control conditions (B) 

and flood stress (C). Asterisks indicate significant difference from the control (p<0.05 – Dunnett’s test). 
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 The water content of T. aestivum and B. rapa was significantly affected by 

different levels of UVR and soil moisture (Two Way Anova, F6,316=5.73, p<0.001 and 

F6,326=16.7, p<0.001, respectively). Under optimal water conditions, UVR did not 

induce significant effects on the water content of T.aestivum (Figure 5.1F; ANOVA, 

p>0.05), under drought stress (Figure 5.1B), no significant changes were observed 

regarding the water content with a decrease of 2.4% at the lowest UVR dose and 3.8% 

at the highest dose of UVR, when compared to controls (ANOVA> 0.05), but when 

flood stress were added as a second stressor there was a change on its UVR sensitivity 

(Figure 5.1J), plants’ water content slightly increased when exposed to the first two 

doses of ultraviolet radiation (2.3%; P>0.05 and 4.3%; P<0.05 respectively), compared 

to controls.  

 For B. rapa, under all water treatments, an increase of plant's water content, 

compared to the control, was found at the first UVR dose. Under optimal water 

conditions (Figure 5.1H) its increase (3%) remained in the highest UVR dose, while in 

the drought conditions (Figure 5.1D) the first UVR dose caused an increase of 3.7%, on 

its WC, followed by a significant decrease (5.5% and 7.9%) at 23.1 kJ m
2 

d
-1

 and 28.4 

kJ m
2 

d
-1

, respectively (ANOVA, p<0.05) and under flood conditions (Figure 5.1L), a 

similar increase of 3% in its WC was found in the first two UVR dose, compared to the 

control, but the following dose did not affect plants’ water content (ANOVA, p>0.05), 

 The ED50 and SRs were summarized on table 5.1. Under optimal conditions of 

soil moisture and under flood stress the ED50 values for T. aestivum were higher than the 

highest dose of UVR for all endpoints, for drought stress the ED50 could not be 

calculated, as well as the SRs for all treatments as low levels of toxicity were observed. 

For B. rapa, under both water stress the ED50 values decreased for most endpoints, and 

a trend to synergism (SRs >1) was found in both water stress.  

 The interaction between UVR and drought caused foliar changes to both species 

from 14.2 kJ m
-2

d
-1

onwards. B. rapa showed curled down and wilted leaves and 

necrosis of tip leaves at 14.2 kJ m
-2

d
-1

 in 60% of exposed plants and at 21.3 kJ m
-2

d
-1 

onwards, dry and poorly developed leaves were observed in approximately 20% of 

exposed plants for both UV doses. T. aestivum showed foliar changes in all doses of 

UVR in approximately 30% of plants for each UVR treatment. These changes included 

withered and curled down leaves, serrated and burn tips and in some cases, the 

development only of the first leaf (data not shown). 
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 The interaction between UVR and water excess also caused changes on the 

leaves of both species from the first UVR dose (14.2 kJ m
-2

d
-1

) onwards, but the 

frequency of occurrence was less than under drought stress. B. rapa showed only curled 

down leaves in 10% of plants in each UVR treatment. T. aestivum showed weak leaves, 

brownish and curled down in 10% of plants in each UVR treatment. Chlorosis or 

necrosis was not found in the combined exposure (data not shown). 

 

Table 5.1. ED50 (SE) and Sinergistic Ratios (SRs) for the exposures of Triticum aestivum and Brassica rapa to UV 

radiation under different soil moisture.  

 

 

n.d= data not determined; SE= standard error 

 

 

 

  

Species Endpoint 
Control 

(60% WHC) 

Drought 

10%WHC 

Flood 

120%WHC 

  

ED50 (SE) (kJ/m
2
d

-1
) ED50 (SE) 

(kJ/m
2
d

-1
) 

 

SRs 

ED50 (SE) (kJ/m
2
d

1
)  

SRs 

Triticum 

aestivum 

 

Length 
>28.4 n.d n.d    >28.4 n.d 

Fresh weight 
>28.4 n.d n.d >28.4 n.d 

Dry  weight 
>28.4 n.d n.d >28.4 n.d 

Water Content n.d n.d n.d >28.4 n.d 

Brassica 

rapa 

Length 
20.1 (0.54) 11.2 (2.06) 1.8 12.5 (1.6) 1.6 

Fresh weight 
18.2 (0.86) 6.8 (3.3) 2.7 9.52 (1.3) 1.9 

Dry weight 

 

16.2 (0.60) n.d n.d 1.47 (4.0) 11 

Water content n.d >28.4 n.d >28.4 n.d 
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5.4 Discussion 

5.4.1 Single exposure 

 

 The negative effects induced by UVR on growth and biomass production 

founded in present work for both plant species are consistent with our previous data 

(chapter 4) and with others for the same plant species (Ballare et al., 1996; Conner and 

Zangori, 1997; Lv et al., 2013), as well as for other crop species, like Pisum sativum 

(pea) (Nogues et al., 1998), Oryza sativa L. (rice) (Teramura et al., 1991), Glycine max 

L.(soybean) (Caldwell et al., 1994) and Gossypium hirsutum (cotton) (Coleman and 

Day, 2004).  

 The control of water content by T. aestivum under UVR treatments, which 

corroborate with our previous study (chapter 4), was also reported by Alexieva et al. 

(2001) for T. aestivum and Pisum sativum, and according to the authors, this water 

control may be related to induction by UVR of osmolytes or stress proteins. Another 

hypothesis is that the water regulation by T. aestivum may be related with stomata, since 

it is known that UVR causes changes in plant-water relations through the stomata 

(Nogues et al., 1998). The higher tolerance of T. aestivum, compared to B. rapa, for the 

UVR doses used in this work was also found in our previous study (chapter 4), where 

the UV sensitivity index (UV-SI) and biomass accumulation showed that T. aestivum 

was more tolerant to UV radiation than B. rapa for the same doses used in this work. 

This proves the reproducibility of results and reinforces the deleterious effects of UVR 

on crop species under ecological relevant doses. 

 The water stress is also harmful to plants, and the significant reduction on 

growth and biomass production reported here, mainly in drought conditions, 

corroborates with those reported in others studies (Chaves et al., 2002; Farooq et al., 

2009; Lima et al., 2011; Mahajan and Tuteja, 2005). The most prominent response of 

plants to drought is stomatal closure and reduction of cell division and expansion 

(McCree and Fernandez, 1989), which result in reduced leaf area, root proliferation and 

biomass (Farooq et al., 2009; Liu et al., 2009). The response of plants to flood stress is 

related to the reduction of water absorptions due a high CO2 concentration in the soil 

water, causing leaf dehydratation and stomatal closure. But these response vary with the 

type of plant and with duration of flooding (Kozlowski, 1984). 
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 Our results showed that despite the two species respond similarly to water stress, 

and that T. aestivum is known as sensitive species to flood condition (Liao and Lin, 

1995), the negative effects caused by flood stress were higher in B. rapa. These 

differences reinforce the discussed by Chaves et al. (2002) on plants’ responses to water 

stress which the authors considered to be complex, and involving many factors, with 

tolerance varying among species and genotypes. 

5.4.2 Combined exposure 

 

 The interactive effects between UVR and drought stress to plants was also 

reported by others authors for T. aestivum (Alexieva, 2001; Feng et al., 2007), Pisum 

sativum (pea) (Alexieva, 2001), Glycine max L. (soybean) and for Hordeum vulgare 

(barley) (Bandurska et al., 2012). But no study, so far, has shown potential effects of 

flood stress on UVR sensitivity.  

 Drought stress alleviated the detrimental effect of UVR to T. aestivum for most 

endpoints, but the same did not occur for B. rapa. These different growth responses 

between these species to combined exposure to UVR and drought was expected, since 

different results were found for this combined exposure in several crop species. 

Teramura et al. (1990) reported that the soybean cultivar (Glycine max L.) sensitive to 

UVR became more tolerant when subjected to drought stress, while a UVR tolerant 

cultivar became more sensitive to UVR, when subjected to drought conditions. Contrary 

to our findings, Feng et al. (2007) reported a decrease in T. aestivum growth and 

biomass by the combination of UVR and drought. On the other hand, no significant 

effect were found on the growth of Mediterranean olive (Olea europea L), rosemary 

(Rosmarinus officinalis L.) and lavender (Lavandula stoechas L.) under drought and 

UVR stress (Nogués and Baker, 2000). Similarly to what was found in the present 

study, UVR and drought stress showed a beneficial effect on the growth of wheat 

(Triticum aestivum L., cv. Centauro) (Alexieva, 2001) and cowpea (Vigna unguiculata 

L. Walp.) (Balakumar, 1993).  

 Although the addition of drought stress decreased the negative effects of UVR 

on T. aestivum length and weight, for its water content the addition of soil moisture 

stress (drought and flood) increased UVR damage, showing that the control of water 

content is more associated with soil moisture than UVR effects. These results are 

supported by those found by Bandurska et al. (2012), where it was reported for barley 
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seedlings (Hordeum vulgare L. cv. Granal) an increase on effects induced by combined 

exposure of drought and UVR, when compared to a single exposure to UVR, that did 

not cause any changes on the water content. 

 It is known that adaptation to drought stress contributes to tolerance to UVB 

radiation by plants (Hofmann et al., 2003; Monk et al., 1989), and this event may be 

related to anatomical adjustments on leaves (Murali and Teramura, 1986), induction of 

stress proteins and other UV-absorbing compounds, as flavonoides (Alexieva, 2001; 

Balakumar, 1993; Middleton and Teramura, 1993). The latter may explain the 

maintenance of the dry weight with increase of UVR in T. aestivum and related to 

increased of production and accumulation of UV-screening compounds in these 

conditions. The accumulation of UV-absorbing compounds may have not occurred in 

single exposure to both stressors, once our results showed that the dry weight was 

clearly reduced by each stressor individually, but in combined exposure its production 

may be increased, and due to accumulation of flavonols by plants, which alleviates the 

negative effects of UVR (Klem, 2013). In addition, production of flavonoid differs 

according to the species (Beggs et al., 1986) and may be the cause of the great 

variability of UVR response between T. aestivum and B. rapa.  

 Although there are no studies on effects of plants exposed to UVR in flood 

scenarios, we hypothesize  that plants could be more susceptible to UVR damage in 

flood conditions, because the accumulation of flavonols probably would not occur 

under these conditions. A study with the perennial herbaceous plant Hypericum 

maculatum and the grass Agrostis tenuis showed that drought treatments caused an 

increase on the accumulation of UV-screening compound (flavonols) compared which 

was not observed in the wet treatment (Klem, 2013). 

 The synergistic ratios calculated for B. rapa reinforced the discussed above, 

where a high sensitivity of this species to single UVR and combined UVR and water 

stress was observed. Here the SRs were always greater than 1 for all UVR treatments 

under drought and flood stress, showing synergistic interaction between these stressors. 

A possible explanation for the difference in sensitivity to UVR (as single as well in 

combined exposure) between these crop species may be the fact that dicots as B. rapa 

have a horizontal growth of leaves, thus receiving more sunlight and hence more UVR 

than the monocot T. aestivum whose vertical pattern of leaf growth are more prone to 

receive less direct sunlight (He et al., 1993).  
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 The foliar changes observed in both species exposed to single UVR were 

reported and discussed in our previous study (chapter 4). But adding drought as a 

second stress, similarly to what happened with the other endpoints, showed to be more 

harmful to B. rapa than T. aestivum, with an increase in leaves symptoms. Some foliar 

changes found in both plant species, as reduced leaf area, smaller leaves and leaf 

curling, are considered protective responses that will reduce radiation absorption and 

were already reported in the literature (Teramura and Ziska, 1996), likewise reduction 

of the leaf size and rolling leaf which are also strategies for adaptation to drought stress 

(Bosabalidis and Kofidis, 2002).  

5.5. Conclusions  

 

 The effectiveness of UVR on plants was dependent of soil moisture conditions, 

and the combination of these stressors was harmful for most simulated scenarios. But 

the two plants species showed different responses. Flood stress is an environmental 

factor that is often overlooked in environmental risk analysis, but our findings showed 

that flood is a weather event of high environmental risk, especially when interacting 

with other environmental stressor as UV radiation or chemical stressors. Therefore, 

there is a need for more research to understand how the combinations of several factors 

related with future global environmental changes may affect physiological responses in 

plants. 
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Chapter 6. General discussion and final considerations 
______________________________________________________________________ 

 
 The main aim of this dissertation was to evaluate how abiotic factors can affect 

the toxicity of stressors or impair soil organisms by its own, using ecotoxicological 

assays, and simulating more realistic environmental scenarios; this will provide a better 

understanding and prediction of adverse effects of chemical stressors on soil ecosystem. 

In the environment, soil invertebrates and plants experience the exposure to multiple 

stressors, as chemical and abiotic, that act individually or interact with each other 

causing significant effects to exposed organisms.  

 In the previous chapters, it has been noticed that the U.N. Intergovernmental 

Panel on Climate Change (IPCC) has published four assessment reports on the possible 

future impacts that climate change will have on the environment, even in this century, as 

well as mitigation measures to reduce them (IPCC, 2007). The extreme predicted 

climate events will consist on periods of extreme heat, cold, drought, and flooding with 

greater severity than historical standards (IPCC, 2013). In the present work scenarios 

simulating different climatic areas and also extreme events predicted for the next 

decades in some regions of the world were explored (Figure 6.1).  

 Although these scenarios for 100 years may raise several criticism (Gleditsch 

and Nordåsa, 2014), it is known that these changes will probably not occur exactly as 

predicted, since climate change depend on several factors, mainly related to human 

activities, but most of these scenarios may already be happening globally. Some studies 

of climatic change have reported a decrease in soil moisture globally since the 1970s 

(Sheffield et al., 2012). A study developed by Dai et al. (2004), using an index of 

meteorological drought, indicated that climate change is already leaving several parts of 

the world drier, and concluded that the percentage of land area affected by serious 

drought rose by more than half, between 1970 and 2000. 
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Fig. 6.1. Climate model projections of rainfall changes and soil moisture by end of 21st Century in A1B 

scenario (based on average over all IPCC models). Dots represent areas where at least five of the nine 

models agree in determining that the change is statistically significant. Source: IPCC (IPCC, 2007). 

 

 In traditional ecotoxicological studies, the use of standard guideline tests are 

described to be run under controlled laboratory conditions (often as close to optimum as 

possible) and they have proven to be an efficient toll to assess the toxicity of chemicals 

towards model species. But they do not address all climate scenarios or latitudinal 

differences and seasonal fluctuations. Therefore, the scenarios of drought and flood 

applied in chapter 2 and 5, will help to understand the environmental risk that may 

occur in organisms that lives in mediterranean areas, such as Portugal, which is 

expected to increase in terms of consecutive dry days in the next future, as well as in 

areas of high latitude, where it is predicted to experience high rainfall and consequent 

flood (IPCC, 2007). The scenarios of heat and cold performed in chapter 3, allows also 

the prediction of what might happen with soil organisms and plants exposed to 

pesticides in areas such as tropical countries, experiencing high temperatures throughout 

the year, as well as in countries with low temperatures or temperate regions in winter. 

The scenarios of UV radiation will allow inferring what can happen with plants exposed 

simultaneously to relevant levels of UVR and pesticides (chapter 4) or with extreme 

events considering drought and flood scenarios (chapter 5). 

 Our results support that single environmental abiotic factors, as soil moisture, 

temperature and UV radiation, may became natural stressors for soil organisms and 

plants, inducing significant effects on their survival, biomass acquisition, growth and 

development. This work showed that when soil organisms are exposed to combined 
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natural and chemical stressors as carbaryl, significant interaction may occur, altering 

their response to chemical exposures. Our findings also allowed understanding the way 

two environmental factors (UV and water stress) can act simultaneously on plants, by 

increasing or decreasing the effect of each other, and causing significant changes on 

plant's development. Our results also showed that the intensity of response to natural 

and chemical stressors varies according to the species and endpoint analyzed.  

 The earthworm Eisenia andrei, which is known to have a wide temperature and 

soil moisture tolerance range (Dominguez et al., 2010), was not affected in terms of 

survival when exposed to extreme dried or flooded soils (chapter 2), nor in heat or cold 

scenarios (chapter 3). Only the temperature of 26ºC caused loss of weight, showing that 

biomass is a more sensitive endpoint than survival to temperature exposures. Despite 

these stressors, in general, have not caused significant effect on earthworm's survival or 

biomass, for the range of temperature and soil moisture examined here, long-term 

drought or extreme events on a large spatial scale, are not excluded of potentially affect 

earthworm's survival and biomass negatively. In accordance to the findings of this 

study, Reinecke and Venter (1985) showed that soil moisture did not cause significant 

effects in E. fetida weight upon 10 days of exposure, but after 20 days significant 

changes were observed, which can reinforce the idea that long term exposures can 

induce higher effects. 

 Certainly a chronic reproduction test or a biochemical approach (enzymatic 

activities or lipid composition) could reveal significant effects of temperature and water 

stress on earthworms, since Reinecke and Venter (1985) showed that soil moisture have 

a profound influence on the rate of clitellum development of Eisenia fetida and in 

another study (Reinecke, 1987 ), the optimal moisture level for growth and development 

of clitella were considered not necessarily optimal for the production of cocoons for this 

species. 

 Carbaryl is an insecticide registered in several countries (e.g., Canada, United 

States, South Africa and Portugal) and the agricultural dose recommended is 2.000 g ha
-

1
 (Gupta et al., 2011). The doses used in present work were chosen based on LC50 and 

EC50 values for carbaryl, or others carbamates reported in literature for each tested 

species. 
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 Earthworms are known to be very sensitive to sublethal concentrations of 

carbaryl, which acts, primarily, as an inhibitor of acetylcholinesterase (AChE) (Ribera, 

2001). In chapters 1 and 2 it was discussed that very low concentrations of carbaryl, far 

below those used in this study, caused significant effects on locomotion, burrowers 

activities, inhibition of AChE, as well as lethality for some species, but information on 

lethality of Eisenia andrei exposed to carbaryl in literature are not very consistent. 

Studies reported that E. andrei and E. fetida have a high lethal threshold to this pesticide 

(Stenersen et al., 1992), Heimbach (1984) found a LC50 value of 174mg/kg, but the 

author has submitted the earthworms to different conditions from those used in this 

work, such as, 28 days of exposure in artificial soil (OECD) at 22ºC. However, Saxena 

et al. (2014) reported, recently, for E. fetida a LC50 of 26.86 mg /kg and Ribera et al. 

(2001) reported a LC50 of 50 mg/kg after 14 days of carbaryl exposure in OECD 

artificial soil, which are indeed more similar to our findings in the control situations of 

the three different approaches used: testing carbaryl in a single exposure experiment 

(LC50 = 54.74 mg/kg), in combined exposure with soil moisture (LC50 = 45.5 mg/kg at 

control conditions) and temperature (LC50 = 51.28 mg/kg at control conditions) for 14 

days of exposure.  

 Ours results showed that the single exposure of earthworms to different 

temperatures or different soil moisture regimes, in general, have not caused significant 

effect on earthworm's survival and biomass, but, when these natural stressors were 

combined with carbaryl, the toxicity of its pesticide was strongly influenced by these 

environmental factors. The combined exposure of carbaryl and soil moisture was 

performed using the reference models of independent action (IA), based on the 

assumption of independently probabilities of response to both stressors. But the 

application of the IA model, for assess joint effects requires that there is a definable 

dose-response between the measured parameters and the stressor, and that these 

responses are reasonably modeled using a nonlinear model (Long et al., 2009), thence, 

since the dose response for earthworm's exposure to combined carbaryl and temperature 

was not possible, the interaction between stressors was assessed using synergistic ratios.  

 The results showed that, in general, dry soils and high temperature increased the 

deleterious effects of carbaryl to earthworms. These results highlighted the 

ecotoxicologial risks of natural stressors on chemical toxicity, because the LC50 for 
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earthworms exposed to carbaryl under standard conditions (approximately 50 mg/kg), 

decreased considerably in dry soils (<20 mg/kg) and in hot environments (22.1 mg/kg). 

These results support the hypothesis that the traditional ecotoxicological studies, with 

optimal conditions of temperature and soil moisture, may lead to the underestimation of 

the general toxicity of a chemical. 

 Folsomia candida, as well as Eisenia andrei, is tolerant of a wide range of 

environmental conditions and when exposed to different temperatures in the work 

presented in chapter 2, it showed high tolerance regarding survival, but looking at the 

reproduction output, at temperatures below or above the optimum (20-22 ºC) it was 

observed a decrease on the juveniles production. Our results suggest that 8 and 26 ºC 

were the lower and upper limit for F. candida ability to reproduce. Our findings are in 

agreement with those reported by Martikainen and Rantalainen, (1999), where the 

temperature of 13 ºC to 19 ºC did not cause changes on F. candida survival after 28 

days of exposure, but the numbers of juveniles decreased at lower temperatures (13º and 

16 °C). But, regarding high temperature, Bandow et al. (2014) reported that 26 ºC did 

not affect F. candida reproduction, which does not corroborate with our results, and 

also with those reported by Sandifer and Hopkin (Sandifer and Hopkin, 1997), where, 

similarly to our results, the juvenile production of F. candida was very low at 25 ° C. 

 The single exposure of F. candida to carbaryl showed that these organisms are 

very sensitive to this pesticide, both for survival (LC50=7.0 mg/kg) and for the 

reproduction (EC50=4.6 mg/kg). Cardoso et al. (2014) showed that the short exposure 

(4h) of F. candida at the same range of carbaryl concentrations used here, cause no 

mortality, but affect the reproduction output (EC50 of 5.93 mg/kg) but in an opposite 

way, with an increase in the reproduction output (increase of number of eggs laid with 

increasing doses of carbaryl, but no influence on the hatching of the eggs). Therefore 

differences on mortality between both studies are probably due to time of exposure (4h 

vs 28 days), while differences on reproduction output can only be explained by a 

potential increase on the mortality of juveniles that may occur, which was not 

confirmed by the authors.  

 However, when collembolan were exposed to combined carbaryl and 

temperature (Chapter 3), no deviations occurred from the IA model, meaning that the 

temperature and carbaryl had no interactions among effects induced to organisms; 
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however, the negative effect of each stressor separately and independently from each 

other, are summed, resulting in an additive toxicity to organisms. 

 Regarding plants bioassay, the high and low temperatures (chapter 3), as well as 

extreme drought and flood conditions (chapter 2 and 5), also affected significantly their 

growth, biomass production and emergence, and although the two species exhibited 

different responses to temperature, they respond similarly to water stress. Our findings 

showed that high temperature induced positively the emergence of B. rapa but not of T. 

aestivum, while low temperature and flood conditions, in general, delayed the 

emergence and decreased the fitness of both species. T. aestivum length showed 

tolerance to high temperature, but B. rapa showed a decrease on its length at 28ºC.  

 The plants are divided into two categories (C3 and C4), according to the 

biochemical pathways of carbon dioxide assimilation by their photosynthetic systems 

(Rowley and Mockler, 2011), and both species used in this study are C3 plants, which 

differ from the C4 plants, because they have a low rate of CO2 uptake, reduced 

photorespiration and photosynthesis rate. Consequently, C3 plants are sensitive to dry 

conditions, high temperatures (> 25ºC) and luminosity, their stomata remains partially 

closed during the hottest hours of the day to avoid water loss by perspiration and stay 

open at night when the temperature drops (Goudriaan and Zadoks, 1995). But it is also 

important to highlight that the plant's tolerance to abiotic factors is related to several 

other physiological and cellular responses, and monocots as T. aestivum and dicots as B. 

rapa differ on their ability to survive to environmental stressors (Rowley and Mockler, 

2011). This may be one explanation for the different responses to natural stressors 

between these crop species in the different studies used. It is also important to note that, 

although the protocol for plants suggests optimum growth in soil moisture of 40-60% 

WHC, our results showed that both species had optimal growth and faster development 

in wetter soils around 80% WHC. 

 In chapter 4 and 5, a new biological spectral weighting function (called here 

BSWF03) proposed by Flint and Caldwell (2003) for plant growth was applied, which 

differs from most studies on the effect of ultraviolet radiation on plants that use the 

generalized plant response (called here BSWF71) of Caldwell (1971). As explained in 

chapter 4, this BSWF71 is a composite of nine different UV-B responses that does not 

involve plant growth measurements, and furthermore, it does not take into account 
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wavelengths greater than 313 nm (UV-A region). On the other hand, Flint and Caldwell 

(1996) showed that wavelengths higher than 310 nm are more effective than would be 

predicted by the BSWF71. The validity of the BSWF03 (that was used in our study) was 

verified in field experiments and proved to be a realistic representation of UV-induced 

(UV-A and UV-B) growth and morphological responses in plants (Flint and Caldwell, 

2003).  

 Nevertheless, many studies have been conducted with the BSWF71, making it 

difficult to compare results, or used inconsistent UV-B doses and different BSWFs that 

generated many outputs which lead to a difficult conclusions regarding the response of 

plants to UV radiation. 

 Our results showed that the single exposure of UV radiation to these plant 

species (chapter 4 and 5) also showed greater influence on plants growth and biomass 

production. B. rapa was more sensitive to UV radiation as well as high temperature and 

flood conditions than T. aestivum. The UV sensitive index used in chapter 4 was an 

important tool to evaluate the difference in sensitivity of both species to ultraviolet 

radiation, considering also that the UVR doses used in present work are not as high as 

those found in countries like China, where the ambient UVBBE is around 11.02 kJ m-

2
d

-1
, weighted with the generalized plant action spectrum (Caldwell, 1971), on a 

summer solstice (An et al., 2000), but are relevant for Portugal and other European 

countries. These doses were sufficient to cause damage to the crop species, and we can 

highlight an emerging risk when ultraviolet radiation is acting simultaneously with 

carbaryl (chapter 4) or with natural stressors like water stress (chapter 5), which may be 

crucial to enhance or potentiate the effect of each other on plants. 

 The carbaryl toxicity to plants was explored on chapter 2, 3 and 4, and consistent 

responses were found in all approaches, with significant effect from the range of 50 

mg/kg - 75 mg/kg onwards, showing that both plants are equally sensitive to carbaryl. 

But the combined exposure of this chemical with different natural stressors showed 

different responses regarding the endpoints and the plant species. All combined 

exposure affected plants emergence, except the UV radiation, where plant emergence 

was not assessed.  
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Table 6.1. Summary of the main responses of tested species to carbaryl under different natural stressors. 

 

Bioassay 

 

Natural Stressor 

 

Mainly response in 

carbaryl toxicity 

 

Assessment 

tool 

 

Eisenia andrei  

Acute test 

Drought Increased the toxicity EC50 values 

Flood Decreased the toxicity EC50 values 

High temperature Synergism Survival and biomass SRs 

 

Low temperature 

Antagonism Survival 

Synergism Biomass 

 

SRs 

Folsomia candida 

Reproduction test 

High temperature Independent Action Survival and Reproduction Mixtox 

Low temperature Independent Action survival and reproduction Mixtox 

 

Brassica rapa  

Growth and emergence 

 

Drought Independent Action Mixtox 

 

Flood 

Antagonism FW and DW 

Synergism at high carbaryl and 

extreme flood Length 

 

Mixtox 

High temperature Synergism SRs 

Low temperature Antagonism SRs 

UV radiation Synergism when UV is dominant Mixtox 

 

Triticum aestivum  

Growth and emergence 

 

Drought 

Antagonism FW and DW 

Synergism when carbaryl was 

dominant Length 

 

Mixtox 

 

Flood 

Antagonism FW and DW 

Synergism at low carbaryl and low 

flood stress Length  

 

Mixtox 

High temperature Antagonism SRs 

Low temperature Antagonism SRs 

 

UV radiation 

Synergism at low carbaryl and low 

UVR intensities 

Mixtox 

 

 In general terms, the interactions between carbaryl and natural stressors in plants 

occurred with synergism showing up as the main pattern related to UV irradiation and 

high temperature, while antagonism showing up as the main pattern related with low 

temperature and flood stress. A general summary of the response for each of the tested 

species to combined exposure (carbaryl and natural stressors) is shown on table 6.1. In a 

review paper about the interactions between chemicals and natural stressors (Holmstrup 
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et al., 2010) synergistic interactions were also found in most exposure of soil organisms 

to pesticides and high temperatures or drought stress, corroborating the results found in 

this dissertation, while no interaction was reported in pesticides exposures under cold 

stress.  

 In an overall assessment of combined exposure, the reference model of 

independent action (IA) gave a valid estimation for the toxicity of 23.7% of the assays 

performed, while synergism occurred in 16% and antagonism was the interaction 

described in the majority of the assays/endpoints (42.1%); although antagonism 

occurred most frequently, its occurrence was found mainly in simulated scenarios with 

low temperatures, flooded soils and low ultraviolet radiation. But our results showed 

that a high risk is predicted for tropical environments, where temperatures are often very 

high, for arid and semiarid regions, where drought is the main scenarios, as well as 

temperate environments, where summers will be hotter and drier each year.  

 Finally, in Chapter 5, another approach to natural stressors was made, where 

Triticum aestivum and B. rapa were exposed to the same doses of UV radiation used in 

the chapter 4, but under extreme drought (10% WHC), optimal (60%WHC) and flood 

(WHC 120%) conditions. The main objective of this approach was to evaluate whether 

soil moisture alters the tolerance of both plants to UV radiations, and this goal was 

successfully achieved. Our results revealed that a significant interaction between UVR 

and soil moisture was found for both plant species, and as occurred with most of the 

single exposure to natural stressors, plants responded differently to this combined 

exposure. Drought stress alleviated the deleterious effect of UVR on T. aestivum 

(antagonism) while flood stress increased its effects (synergism). But for B. rapa, a 

synergism was found when both water stress was added to UVR exposure. Within our 

findings it was shown that the response of one organism to one natural stressor may be 

changed not only by the presence of a chemical stressor, but also when other natural 

stressor act simultaneously. 

 The different sensitivity between B. rapa and T. aestivum to environmental 

stressors and combined exposures reported here shows the importance of including, in 

ecotoxicological assays, different species of plants with different photosynthetic (C3 

and C4 plants) and root systems, number of cotyledons, among others. 
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 One of the major outputs of this study was the demonstration that altered 

climatic conditions can dramatically alter the toxicity of pesticide (by using carbaryl as 

model) and impair organisms’ development and survival. One novelty of this study was 

to evaluate the effects of flooding stress since this environmental factor is commonly 

disregarded, and our results showed flood as a factor increasing carbaryl toxicity, e.g., 

high carbaryl concentration and high soil moisture, or increase the deleterious effect of 

ultraviolet radiation on plants.  

 Our results showed also that the assessment of the toxicological risk in 

agricultural soils should be suitable for different climatic zones, which will ensure a 

better assessment of the effects of climate change on the soil ecosystem. 
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