
Universidade de Aveiro
Departamento de Electrónica,
Telecomunicações e Informática

2014

André
Fidalgo Ventura

Sistema colaborativo para a identificação de
cultivares de camélia

Crowdsourcing information system for camellia
cultivar identification

“I have not failed. I’ve just found 10,000 ways that won’t work.”

— Thomas A. Edison

Universidade de Aveiro
Departamento de Electrónica,
Telecomunicações e Informática

2014

André
Fidalgo Ventura

Sistema colaborativo para a identificação de
cultivares de camélia

Crowdsourcing information system for camellia
cultivar identification

Universidade de Aveiro
Departamento de Electrónica,
Telecomunicações e Informática

2014

André
Fidalgo Ventura

Sistema colaborativo para a identificação de
cultivares de camélia

Crowdsourcing information system for camellia
cultivar identification

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
de Computadores e Telemática, realizada sob a orientação científica dos
doutores António Guilherme Rocha Campos e Hélder Troca Zagalo, pro-
fessores auxiliares do Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro.

This dissertation is dedicated to my parents, who have given me the
opportunity of an education and support throughout my life.

o júri / the jury

presidente / president Prof. Doutor Joaquim Arnaldo Carvalho Martins
professor catedrático da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Fernando Joaquim Lopes Moreira
professor associado do departamento de Inovação, Ciência e Tecnologia

da Universidade Portucalense

Prof. Doutor Hélder Troca Zagalo
professor auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

This dissertation would never have been possible without the ideas, friendship,
support and assistance of numerous people. Foremost among them are of
course ANTÓNIO GUILHERME CAMPOS and HÉLDER TROCA ZAGALO, who are
a constant source of motivation, ideas and inspiration, and I feel enormously
privileged to have them as my supervisors.
I thank all of my friends for the great times we’ve had together and for pushing
me forward when needed.
Most importantly, I thank my mother ISABEL GUIMARÃES and father ÉLIO

VENTURA who were always supportive and where I needed them to be. I’m
grateful for the trust, support and opportunity they gave me to be who I am
now.

Palavras Chave base de dados de espécimes, registo de cultivares, sistema colaborativo,
reputação, desenvolvimento web.

Resumo A identificação de cultivares de camélia é difícil devido à falta de informação
completa e sistemática sobre os mais de 20 000 cultivares registados, e não
pode ser alcançada através de esforços individuais desconexos. Esta disser-
tação descreve uma plataforma colaborativa para a identificação de cultivares
de camélia, aproveitando as capacidades das tecnologias de informação e
comunicação actuais. A estratégia proposta é baseada no conceito de crowd-
sourcing. Os registos neste sistema têm origem em pedidos de identificação
de cultivares enviados online. O sistema está equipado com um registo de
nomes de cultivares. Através de questionários de identificação apresentados
online, o sistema recolhe, gradualmente, as respostas aos pedidos de identi-
ficação. Simultaneamente, com base no desempenho dos participantes dos
questionários, o sistema aplica métricas para estabelecer a sua reputação e
pesar as suas respostas no cálculo da probabilidade de um espécime per-
tencer a um determinado cultivar. Os pedidos de identificação podem ser
respondidos com um grau quantificável de certeza, de acordo com o número
de respostas, a sua concordância e a reputação de cada participante.

Keywords specimen database, cultivar register, crowdsourcing system, reputation, web
development.

Abstract Camellia cultivar identification is difficult due to the lack of complete, system-
atic information about the more than 20,000 registered cultivars, and cannot
be achieved through disjointed individual efforts. This dissertation describes
a collaborative platform for camellia cultivar identification harnessing the ca-
pabilities of modern information and communication technologies. The strat-
egy proposed is based on the crowdsourcing concept. The entries on this
system originate in cultivar identification requests submitted online. The sys-
tem is equipped with a register of cultivar names. Through cultivar identifica-
tion quizzes presented online, it gradually collects responses to the requests.
Simultaneously, based on the performance of quiz respondents, the system
applies metrics to establish their reputation and weigh their answers accord-
ingly to calculate the probability of a specimen belonging to a given cultivar.
User requests can be answered with a quantifiable degree of certainty ac-
cording to the number of answers, their agreement and the reputation of each
respondent.

C O N T E N T S

C O N T E N T S xvii

L I S T O F F I G U R E S xxi

L I S T O F TA B L E S xxiii

AC R O N Y M S xxv

1 I N T R O D U C T I O N 27
1.1 Motivation . 28

1.1.1 The Camellia . 29
1.1.2 Historical significance . 29
1.1.3 Economical significance . 29

2 ST AT E O F T H E A R T 31
2.1 Existing efforts . 31
2.2 Crowdsourcing . 33

2.2.1 Crowdsourcing applied to camellias . 33
2.3 Web reputation . 34
2.4 Technologies . 34

2.4.1 Open source . 34
2.4.2 Web framework . 34
2.4.3 Database . 35

3 S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G 37
3.1 Actors . 39

3.1.1 Guest . 40
3.1.2 Registered user . 40
3.1.3 Translator . 40
3.1.4 Moderator . 41
3.1.5 Administrator . 41

3.2 Use cases . 41
3.2.1 Create account . 44
3.2.2 Login . 45
3.2.3 Submit identification request . 45
3.2.4 Answer quiz . 45
3.2.5 View cultivar . 45

xvii

xviii C O N T E N T S

3.2.6 Search cultivar by name . 46
3.2.7 View specimen . 46
3.2.8 View specimens nearby . 46
3.2.9 View profile . 47
3.2.10 Edit profile . 47
3.2.11 Receive notification by email . 47
3.2.12 Manage website languages/translations . 47
3.2.13 Manage cultivar register . 49
3.2.14 View user profiles and statistics . 50
3.2.15 Approve identification request . 51
3.2.16 Set member auto-approval of identification requests 51
3.2.17 Manage users . 51
3.2.18 Define quiz parameters . 53
3.2.19 Suggest new cultivar . 53
3.2.20 Vote cultivar for a specimen . 53

3.3 Supplementary specifications . 54
3.3.1 Specimen database . 54
3.3.2 Standard Specimens . 57
3.3.3 User reputation and cultivar probability metrics 57

3.4 Domain Model . 57
3.5 Activity Diagrams . 60

3.5.1 Create account . 60
3.5.2 Login . 61
3.5.3 Submit identification request . 62
3.5.4 Answer quiz . 63
3.5.5 View cultivar . 64
3.5.6 Search cultivar by name . 65
3.5.7 View specimen . 66
3.5.8 View specimens nearby . 66
3.5.9 View profile . 67
3.5.10 Edit profile . 68
3.5.11 Receive notification by email . 69
3.5.12 Manage website languages/translations . 70
3.5.13 Manage cultivar register . 74
3.5.14 View user profiles and statistics . 77
3.5.15 Approve identification request . 78
3.5.16 Set member auto-approval of identification requests 79
3.5.17 Manage users . 80
3.5.18 Define quiz parameters . 84
3.5.19 Suggest new cultivar . 85
3.5.20 Vote cultivar for a specimen . 86

4 I M P L E M E N T AT I O N 87
4.1 Python . 87

4.1.1 Python Packages . 88
4.1.2 Virtual environment tools . 88

4.2 Django . 89
4.2.1 Model–View–Controller . 89
4.2.2 Reusable Apps . 90
4.2.3 Models . 91

C O N T E N T S xix

4.2.4 Views . 92
4.2.5 Templates . 93

4.3 Django Project Structure . 95
4.3.1 Specimens Application . 96
4.3.2 Cultivars Application . 99
4.3.3 Quizzes Application . 100
4.3.4 Userprofiles Application . 102
4.3.5 Mainpages Application . 103

4.4 PostgreSQL . 104
4.5 Bootstrap . 107

4.5.1 Django integration . 107
4.6 Web Interface . 109

4.6.1 Main page . 109
4.6.2 Identification request . 110
4.6.3 Quizzes . 113
4.6.4 Specimens . 116
4.6.5 Cultivars . 120
4.6.6 User profile . 121
4.6.7 Manage users . 123
4.6.8 About, FAQ, and Contact . 123

4.7 Internationalization and localization . 126
4.7.1 Column approach . 126
4.7.2 Multi-row approach . 126
4.7.3 Single translation table approach . 127
4.7.4 Additional translation table approach . 128

4.8 User reputation and cultivar probabilities . 129
4.8.1 User reputation . 130
4.8.2 Cultivar probabilities . 130

4.9 Initial cultivar data . 131
4.10 Revision Control . 135
4.11 Domain name and web hosting . 137

4.11.1 Domain name . 137
4.11.2 Web hosting . 137

5 S U M M A RY & F U R T H E R WO R K 139
5.1 Tests and validation . 139
5.2 Summary . 139
5.3 Further Work . 139

5.3.1 Forum . 140
5.3.2 Mobile application . 140
5.3.3 Auto-identification of cultivars . 140

B I B L I O G R A P H Y 141

L I S T O F F I G U R E S

3.1 Prototype of a cultivar identification quiz . 38
3.2 System actors . 40
3.3 High-level system use case diagram . 42
3.4 Manage users use case diagram . 43
3.5 Manage cultivar register use case diagram . 43
3.6 Manage website languages and translations use case diagram 44
3.7 Example 1 of morphological features (UPOV guidelines[25]) 55
3.8 Example 2 of morphological features (UPOV guidelines[25]) 56
3.9 High-level system class diagram . 58
3.10 System class diagram . 59
3.11 Activity diagram for the use case create account . 60
3.12 Activity diagram for the use case login . 61
3.13 Activity diagram for the use case submit identification request 62
3.14 Activity diagram for the use case answer quiz . 63
3.15 Activity diagram for the use case view cultivar . 64
3.16 Activity diagram for the use case search cultivar by name . 65
3.17 Activity diagram for the use case view specimen . 66
3.18 Activity diagram for the use case view specimens nearby . 66
3.19 Activity diagram for the use case view profile . 67
3.20 Activity diagram for the use case edit profile . 68
3.21 Activity diagram for the use case receive notification by email 69
3.22 Activity diagram for the use case add language . 70
3.23 Activity diagram for the use case update language . 71
3.24 Activity diagram for the use case delete language . 71
3.25 Activity diagram for the use case add translation . 72
3.26 Activity diagram for the use case update translation . 73
3.27 Activity diagram for the use case delete translation . 73
3.28 Activity diagram for the use case add cultivar . 74
3.29 Activity diagram for the use case update cultivar . 75
3.30 Activity diagram for the use case accept suggested cultivar 76
3.31 Activity diagram for the use case delete cultivar . 77
3.32 Activity diagram for the use case view user profiles and statistics 77
3.33 Activity diagram for the use case approve identification request 78
3.34 Activity diagram for the use case set member auto-approval of identification requests . . 79
3.35 Activity diagram for the use case create user . 80
3.36 Activity diagram for the use case update user profile . 81

xxi

xxii L I S T O F F I G U R E S

3.37 Activity diagram for the use case update user role . 82
3.38 Activity diagram for the use case delete user . 83
3.39 Activity diagram for the use case define quiz parameters . 84
3.40 Activity diagram for the use case suggest new cultivar . 85
3.41 Activity diagram for the use case vote cultivar for a specimen 86

4.1 The Zen of Python, by Tim Peters . 87
4.2 Dependency diagram for the Django project applications . 95
4.3 Form fields images example for the identification request form 97
4.4 Bootstrap template example . 107
4.5 Website: main page . 109
4.6 Website: identification request form (location and photo) . 111
4.7 Website: identification request form (some characteristics) 112
4.8 Website: quiz example . 114
4.9 Website: selecting a cultivar for a quiz answer . 115
4.10 Website: specimens list . 116
4.11 Website: specimen example (photos, map and voted cultivars) 117
4.12 Website: specimen example (characteristics) . 118
4.13 Website: specimen vote example . 119
4.14 Website: cultivars list . 120
4.15 Website: cultivar example . 121
4.16 Website: user profile . 122
4.17 Website: edit profile . 122
4.18 Website: edit user profile through Django admin site . 123
4.19 Website: about page . 124
4.20 Website: contact page . 125
4.21 Example of a Camellia Web Register cultivar page . 131
4.22 Example of Git commits . 136

L I S T O F TA B L E S

4.1 Multi-language database: column approach . 126
4.2 Multi-language database: multi-row approach . 127
4.3 Multi-language database: single translation table approach 128
4.4 Multi-language database: additional translation table approach 129

xxiii

AC R O N Y M S xxv

AC R O N Y M S

ACID Atomicity, Consistency, Isolation,
Durability 35

API Application Programming Inter-
face 91

DBMS Database Management System 35,
87, 104

DDNS Dynamic Domain Name System
(DNS) 137

DNA Deoxyribonucleic Acid 28
DNS Domain Name System xxv, 137
DRY Don’t Repeat Yourself 88

FCCN Fundação para a Computação Cien-
tífica Nacional 137

FTP File Transfer Protocol 138

GOE Garden of Excellence 27
GPS Global Positioning System 54, 140

ICJ International Camellia Journal 28,
29, 31

ICR International Camellia Register 27–
29, 31, 37, 99

ICS International Camellia Society 27,
29, 31

ICT Information and communication
technology 28

IP address Internet Protocol address 137
ISP Internet service provider 137

JSON JavaScript Object Notation 98, 132

MVC Model–View–Controller 34, 89, 90,
93

ORM Object-Relational Mapper 91

PyPI Python Package Index 88

SQL Structured Query Language 35

TLD Top Level Domain 137

UPOV International Union for the Protec-
tion of New Varieties of Plants 54,
110

URL Uniform Resource Locator 133

VPS Virtual Private Server 137, 138

WCR Web Camellia Register 27, 29, 31,
131, 132, 134

C H A P T E R 1
I N T R O D U C T I O N

THE breeding and naming of new camellia cultivars—a plant or grouping of plants
selected for desirable characteristics that can be maintained by propagation—has been

going on for centuries. The efforts put into camellia cultivar identification stem from the
natural curiosity of owners and aficionados about the origin of different specimens. Cultivar
identification can also add economic value, because there is growing interest in plants with
historical provenance and, as pointed out in [1] with regard to Cornwall—where tourism
is the single most lucrative industry—, garden visitors are prepared to pay a premium for
complete, reliable information about them. The same paper also deplores the fact that
camellias are often propagated and sold unidentified or—even worse—wrongly identified.
The importance attributed to this subject is reflected in the criteria set by the International
Camellia Society (ICS) for the recognition of International Camellia Gardens of Excellence
(GOEs). Some of the criteria for being a camellia GOE are having a minimum collection
of 200 cultivars or species, all with identifying labels, and maintaining a register of every
specimen and their location [2]. Obviously, the GOE accolade itself is a valuable visitor
attraction factor.

However, even without considering variations due to growing conditions (e.g. soil,
climate) and sporting (i.e. when a part of a plant shows morphological differences from
the rest of the plant, such as differences on foliage shape or color, flowers, or branch
structure, often propagated to form new cultivars that retain the characteristics of the
new morphology), camellia cultivar identification is a very demanding challenge. The
first obstacle is the huge number of cultivars developed and recorded over the centuries.
The ICS’s International Camellia Register (ICR), a result of 50 years of painstaking data
collection [3], publicly available online since 2008 as the Web Camellia Register (WCR)
[4] lists over 20,000 entries. But the main difficulty is the lack of complete, systematic
information about those registered cultivars. The temporal span covered by the ICR is

27

28 C H A P T E R 1. I N T R O D U C T I O N

enormous; its entries are essentially text descriptions taken from catalogues which, barring
occasional references to paintings or photographs, are normally rather incomplete, with
disparate levels of detail. With no formal structure support for this information, there is no
systematic way of searching for matches based on given specimen characteristics, making
identification, even tentative, virtually impossible.

A crucial step in the massive task of filling in the missing information is to establish
standard specimens of the cultivars (i.e. specimens which are known for sure to be from
a certain cultivar). This is another tricky problem; recent research case-studies using De-
oxyribonucleic Acid (DNA) testing have found specimens deemed to be of the same cultivar,
producing seemingly identical flowers, that actually belonged to different camellia varieties
[5]. Many ICR entries, especially the older ones, may be affected by this problem.

Countless identification studies have been reported in the literature; examples can be
easily found in recent issues of the International Camellia Journal (ICJ), such as [1], [6] and
[7], to name only a few. The difficulty of the subject is invariably confirmed. Also, camellia-
related websites tend to be poorly maintained and offer very disparate and incomplete
identification data. Creating an efficient, easy-to-use and reliable cultivar identification
system is the aim of this project. Considering all the difficulties summarised above and
previous projects addressing this problem, it is clear that:

1. It cannot be achieved through disjointed individual efforts. It must be able to draw
contributions from the whole camellia community, integrating the collected pieces of
information in a single repository shared at global level.

2. It must be acknowledged as a long-term aim, because it can only be implemented
gradually.

3. Information and communication technology (ICT) is a key tool for this purpose.

ICT is sometimes regarded as a panacea for all sorts of problems, but the strategy
proposed here, although it does involve an information system of camellia specimens fed
online, is by no means based on that misconception. Cultivar identification relies on the
collaborative work of camellia aficionados and, essential as they may be, computers and
Internet communication are just tools to promote and assist that collective effort. The key
concept here is crowdsourcing, as explained in section 2.2 on page 33.

1.1 MOTIVATION

The motivation for this work arises from both the significance of camellias and the
current lack of collaboration mechanisms in the efforts for specimen identification, as
discussed in section 2.1 on page 31.

1.1. M O T I VAT I O N 29

1.1.1 THE CAMELLIA

Camellia is a genus of flowering plants in the family Theaceae. The name Camellia was
given by Carl Linnaeus (Carl von Linné) (1707–1778)—a Swedish botanist, physician, and
zoologist, known as the father of modern taxonomy[8]—in honour of Jǐrí Josef Kamel
(Georg Joseph Camel) (1661–1706), a Moravian (Czech) lay brother who travelled in Asia
and wrote an account of the plants of Luzon—the largest island in the Philippines—which is
included in the third volume of John Ray’s Historia Plantarum (1704)[9].

Camellias are important due to their historical and economical significance. The Inter-
national Camellia Society, a non-profit organisation devoted to the genus Camellia, founded
April 1962 and with over two thousand members worldwide, is the official registration
authority for the genus Camellia, maintaining the International Camellia Register, available
online since 2008 as the Web Camellia Register. The ICS has an annual publication, the
International Camellia Journal, besides being an important centre for research in the genus
Camellia, through its Otomo Fund[10]. The Society also holds regular congresses and
meetings.

1.1.2 HISTORICAL SIGNIFICANCE

Camellias had been cultivated in the gardens of China and Japan for centuries before
they were even known in Europe. There are indications that camellias may have been first
introduced in Europe by the Portuguese during the 16th century, but active commercial
spreading in Europe started in the early 18th century when the English prospected and
brought back varied plants from their travels[11]. Portugal’s most famous horticulturist,
José Marques Loureiro, wrote in 1882 that the first camellias arrived in Porto between 1808
and 1810, ordered by some well-known local amateurs[12].

Although there are thirty-two thousand entries of Camellia cultivars in the International
Register, some of these are invalid names—synonyms, duplications—and many represent
cultivars found in books and catalogues produced in Japan and China hundreds of years
ago, as well as in Europe in the 19th century, which have since become extinct. The number
of valid entries is possibly around fifteen thousand[13].

1.1.3 ECONOMICAL SIGNIFICANCE

The leaves of Camellia sinensis—the tea plant—have huge economic importance in Asia,
and especially in the Indian subcontinent, but there’s also a significant trade of ornamental
species like Camellia japonica, Camellia oleifera and Camellia sasanqua and their hybrids, of

30 C H A P T E R 1. I N T R O D U C T I O N

which a large number of cultivars have been developed.
As an example, Camellias represent an important part of the nursery trade in New

Zealand. The Camellia industry generates about $2–4 million worth of domestic sales and
$0.4 million in export sales annually with most of the plants being used for amenity or
ornamental purposes[13].

Beside the nursery trading, there is the economic importance associated with tourism.
In this context, cultivar identification efforts can provide added value. Citing the example of
Cornwall, England, where tourism is the single most lucrative industry, [1] underlines that
garden visitors are prepared to pay a premium for complete, reliable historic information
about ancient plant specimens.

C H A P T E R 2
ST AT E O F T H E A R T

THIS chapter will discuss the existing camellia identification efforts and examples of
some related websites/projects, in section 2.1. The crowdsourcing technique—the

concept behind this project—, how it works, its key principles, and some of the most
known examples, are discussed in section 2.2 on page 33. The Web reputation—used both
as the crowdsourcing reward principle and as a weight in the calculation of probabilities—is
discussed in section 2.3 on page 34. Finally, there is a section about the Web development
technologies, discussed in section 2.4 on page 34.

2.1 EXISTING EFFORTS

Countless identification studies have been reported in the literature; examples can be
easily found in recent issues of the ICJ, such as naming of 19th century camellias[1], the
identification, history, cultivation, and conservation of heritage camellias in Hawaii[6], and
a personal search for pre-1900 camellia cultivars and their preservation[7], to name only a
few. The difficulty of the subject is invariably confirmed. Also, camellia-related websites
tend to be poorly maintained and offer very disparate and incomplete identification data.
The official effort, the WCR (the online version of the ICR), lacks a coherent and easy
reading information structure that would also be easy to update and allow contributions to
be made.

There are some websites that have a list of specimens and photos, but they are not a
collaboration effort in cultivar identification. Here are some examples:

Web Camellia Register (http://camellia.unipv.it/camelliadb2)
This website, developed by the University of Pavia, Italy, has a list of cultivars from the
ICS and has documents, with the registry of plants, that can be downloaded. There’s

31

http://camellia.unipv.it/camelliadb2

32 C H A P T E R 2. S T AT E O F T H E A R T

a file for each alphabet letter and each file contains all the plants—which name begins
with that letter—registered. There is a search tool that allows searching by cultivar
name, species or description, and there is a list of all registered cultivars, totalling
around twenty-two thousand, but there are almost no photos, just textual descriptions,
and it is not possible to contribute directly.

As Camélias das Japoneiras (http://ascameliasdasjaponeiras.com)
This is the website from the Portuguese Association of Camellias (Associação Por-
tuguesa das Camélias) and the last update was made in 2009. It contains a list of
gardens with information and photographs, and a list of camellia specimens with
some information but almost without any photographs. There’s a photo album of
nurseries, exhibitions and cities but only with photographs and without any other
information.

Camélias Flavius Viveiros (http://cameliasflavius.com)
António J. S. Assunção’s website with a photo album without information about the
specimens.

There are also more generic websites including camellias, like The International Plant
Names Index or the Plants For A Future:

The International Plant Names Index (IPNI) (http://ipni.org)
This is the website resulting from the collaboration between the Royal Botanic Gardens
(Kew), the Harvard University Herbaria, and the Australian National Herbarium. It
is possible to search, nevertheless there are no photographs and the website is very
academic or specialized, containing only technical information on plants. It is possible
to send a comment but it is not a system of active collaboration.

Plants For A Future (PFAF) (http://pfaf.org)
Existing since 1996 and belonging to “Plants For A Future, Registered Charity
No.1057719”, this website contains a lot of information and news articles, has a
database of plants and it is possible to search on it. Most of the records have pho-
tographs and useful and well presented information such as if the plant is edible, if it
has a medicinal use, their physical characteristics, details of cultivation, propagation,
etc. However, there is no collaboration system.

Outside the plant realm there are other areas like the register and conservation of
butterflies.

Butterfly Conservation (http://butterfly-conservation.org)
The website of the English company Butterfly Conservation, having a searchable
list of butterfly and moth species, with factsheets and plenty of detailed information.
There is no collaboration system.

http://ascameliasdasjaponeiras.com
http://cameliasflavius.com
http://ipni.org
http://pfaf.org
http://butterfly-conservation.org

2.2. C R OW D S O U RC I N G 33

2.2 CROWDSOURCING

The term crowdsourcing, used by the first time in 2006 by the journalist Jeff Howe [14],
refers to the practice of obtaining services, ideas or data content through the contribution
of a large number of people, especially in online communities. The most remarkable and
well-known example is undoubtedly the Wikipedia, the online encyclopedia whose content
can be created, reviewed and improved by anyone. The success of this revolutionary concept
is the best demonstration that information and communication technologies have the power
to involve communities in tasks that would otherwise be extremely hard or even impossible
to accomplish.

Crowdsourcing is proving useful in increasingly diverse areas of application. An inter-
esting example along similar lines to those proposed here is the Treezilla project [15], based
on the OpenTreeMap engine [16], whose purpose is to identify and map every tree in the
UK, in an effort to raise awareness on the benefits of trees to the local environment.

2.2.1 CROWDSOURCING APPLIED TO CAMELLIAS

In general there are few websites that use a collaborative model to grow and enrich their
content. Nevertheless, there are some exceptions like the Treezilla, a collaborative website
for the record of Britain’s trees, using a crowdsourcing approach, in a similar manner to the
goal of this work on camellias.

Treezila (http://treezilla.org)
A platform that allows to record Britain’s trees, resorting to crowdsourcing, wherein
anyone can and is encouraged to help and register the trees nearby. It allows searching
by species or location, and for each record there are several and well structured pieces
of information.

For this to yield good results, the system must follow some key principles: it must offer
stimulus or rewards, be simple and easy to use by anyone, and there must be some filtering
of bad contributions so we can have only the good and clean results.

In this specific subject the stimulus will be given by a personal ranking or reputation that
will build up as the user interacts with the system and answers to quizzes, thus helping with
the identification requests; the simplicity will be given by an easy to use website; the filtering
of bad contributions will be possible through the reputation that works as a stimulus at the
same time, in a way that the contributions from people with a lower reputation will have a
lower weight on the metrics that are used to calculate the probabilities of a given specimen
belonging to a given cultivar.

http://treezilla.org

34 C H A P T E R 2. S T AT E O F T H E A R T

2.3 WEB REPUTATION

As put by Randy Farmer and Bryce Glass, “Today’s Web is the product of over a billion
hands and minds. Around the clock and around the globe, a world full of people are pumping
out contributions small and large: full-length features on Vimeo; video shorts on YouTube;
comments on Blogger; discussions on Yahoo! Groups; and tagged-and-titled Del.icio.us
bookmarks.”[17], and there are many ways of defining, calculating and representing (e.g.
percentages, five-star systems) a reputation.

Despite all the myriad of contexts in which reputation is being used today, in this project
it is defined as the information used to make a value judgement about the users knowledge on
camellias, and that information is then used as weight when calculating the probabilities of
a specimen being of a given cultivar. It is discussed in more detail in section 4.8 on page 129.

2.4 TECHNOLOGIES

2.4.1 OPEN SOURCE

To implement the system, free and open source tools were preferred. These can deliver
superior security and quality[18], as users are able to actually examine the code being
used, which is not possible with propriety software. They also allow more flexibility,
interoperability and better support options, as most have online communities with excellent
documentation, forums, mailing lists, and wikis.[19].

2.4.2 WEB FRAMEWORK

Considering the existing Web application frameworks and narrowing them down to
Java, Python and PHP, the chosen one was Django1—written in Python2 and based on the
Model–View–Controller (MVC) pattern—as it encourages rapid development and clean,
pragmatic design. “The Web framework for perfectionists with deadlines”[20]. Python and
Django are discussed in more detail in section 4.1 on page 87 and in section 4.2 on page 89,
respectively.

Two of most popular websites powered by the Django Web framework are Instagram[21],
an online mobile photo-sharing, video-sharing and social networking service, and Pinter-
est[22], a Web and mobile application company that offers a visual discovery, collection,
sharing, and storage tool.

1https://www.djangoproject.com/
2https://www.python.org/

2.4. T E C H N O L O G I E S 35

2.4.3 DATABASE

Regarding the database, the chosen object-relational database management system was
PostgreSQL3, also open source.

PostgreSQL is a powerful, open source object-relational database system, with more than
15 years of active development[23] and offers many advantages over other database systems.
There are no licensing costs, it runs on all major operating systems, it is fully Atomicity,
Consistency, Isolation, Durability (ACID) compliant, it supports storage of binary large
objects and its Structured Query Language (SQL) implementation strongly conforms to the
ANSI-SQL:2008 standard. It has won merit from its users and industry recognition, having
received a Linux New Media Award for Best Database System and being a five time winner
of the The Linux Journal Editors’ Choice Award for best Database Management System
(DBMS)[23].

PostgreSQL is used by hundreds of companies (e.g. IMDB.com — The Internet Movie
Database, Cisco, Skype)[24].

3http://www.postgresql.org/

C H A P T E R 3
S Y S T E M R E Q U I R E M E N T S A N D

M O D E L I N G

THIS chapter presents the software requirements specification, describing—from the
user’s perspective—how this product must work, and the system modeling.

The scope of the system is to give users an online platform where they can both get
help and contribute to help other users with the identification of the cultivar of a camellia
specimen.

The proposed solution to the problem presented in chapter 1 on page 27 is based on
an online information system serving a community of registered users, built around and
providing support to the following key elements:

• Specimen register (with both already identified and to be identified specimens);

• Cultivar identification requests;

• Cultivar identification quizzes;

• Cultivar register based on the ICR.
The specimen database will be fed primarily by identification requests submitted by

the users. The community will be challenged to try and answer those requests through
cultivar identification quizzes generated automatically. Respondents must choose from the
system’s cultivar register. The ICR will be loaded beforehand but the register will remain
dynamic and will allow respondents to suggest new cultivar names, which will only become
permanent after approval by system moderators.

The quizzes are presented as identification expertise tests for entertainment, displaying
flower photos and allowing access to additional information from the database entries under
scrutiny—a prototype of a quiz is presented in figure 3.1 on the following page.

37

38 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

Figure 3.1: Prototype of a cultivar identification quiz

3.1. AC T O R S 39

Statistical analysis of the answered quizzes will provide educated cultivar identification
guesses. Metrics will be established to rate both the probability of correct cultivar identifica-
tion and the identification expertise (reputation) of respondents. As new answered quizzes
are taken into account, the system will be able to update these two ratings dynamically
and also automatically notify the users concerned (identification requesters or quiz respon-
dents) of any changes deemed significant. The expectation is that, as information becomes
increasingly reliable, this will generate a ‘virtuous cycle’ of contributions to the system.

The specimen register may be empty to begin with, as it will be gradually fed by the
identification requests; these can only be submitted by registered users. Quiz respondents
must also be registered users, so that the system can keep track of their performance and
update their rating accordingly.

To encourage participation, users may be rewarded based on number and completeness
of identification forms submitted and/or performance as quiz respondents.

Since the philosophy of the system is to promote collaboration at global level, it will be
designed to support a multilingual user interface.

The users and the goals that the user wants to achieve—identified from the aforemen-
tioned requirements—are presented as actors and use cases, respectively, in section 3.1 and
section 3.2 on page 41.

3.1 ACTORS

The identified system actors and their relationships are shown in figure 3.2 on the next
page and explained in the following subsections.

40 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

Administrator

Moderator Translator

Registered UserGuest

Figure 3.2: System actors

3.1.1 GUEST

The guest user is able to create an account (becoming a registered user), view cultivars,
view specimens, search by cultivar name and view—on a map—specimens near them.

3.1.2 REGISTERED USER

The registered user is able to login, submit identification requests, answer quizzes, edit
their own profile, receive notifications by email and has the roles of the guest actor with the
exception of create an account.

3.1.3 TRANSLATOR

The translator inherits the role and properties of the registered user and is also able to
manage the website languages and translations.

3.2. U S E C A S E S 41

3.1.4 MODERATOR

The moderator inherits the role and properties of the registered user and is also able to
approve identification requests, manage the cultivar register, view user profiles and statistics,
and set auto-approval of identification requests to specific users.

3.1.5 ADMINISTRATOR

The administrator inherits the role and properties of the moderator and the translator
and is also able to define quiz parameters and manage the users.

3.2 USE CASES

Figure 3.3 on the following page captures the requirements as a use case diagram present-
ing a technology independent view of the system.

42 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

Administrator

Define quiz parameters

«abstract»

Manage users

Approve identification
request

«abstract»

Manage cultivar
register

Set member auto-
approval of

identification requests

View user profiles and
statistics

«abstract»

Manage website
languages and

translations

Login

Submit identification
request

Answer quiz Edit profile

Receive notification by
email

Create account

View cultivar

Search cultivar by
name

View specimen

View specimens
nearby

Guest

Registered User

Translator

Moderator

View profile

Vote cultivar for a
specimen

Suggest new cultivar

Figure 3.3: High-level system use case diagram

Manage users abstract use case is specialized by Create User, Update User Profile, Update
User Role and Delete User use cases, as shown in figure 3.4 on the next page. The administrator

3.2. U S E C A S E S 43

user, through the update user role use case, may set which role the user has: no role (registered
user), moderator, translator, and administrator.

«abstract»

Manage users

Administrator

(from
Actors)

Create User

Delete User

Update User Profile

Update User Role

Figure 3.4: Manage users use case diagram

Manage cultivar register abstract use case is specialized by Add Cultivar, Update Cultivar,
Accept Suggested Cultivar (when a user suggests a new cultivar a moderator must accept the
suggestion) and Delete Cultivar use cases, as presented in figure 3.5.

Moderator

(from
Actors)

«abstract»

Manage cultivar
register

Add Cultivar

Update Cultivar

Accept Suggested
Cultivar

Delete Cultivar

Figure 3.5: Manage cultivar register use case diagram

44 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

Manage website languages/translations abstract use case is specialized by Add Language,
Update Language, Delete Language, Add Translation, Update Translation and Delete Translation
use cases, as presented in figure 3.6.

«abstract»

Manage website
languages and

translations

Translator

(from
Actors)

Add Language

Update Language

Delete Language

Add Translation

Update Translation

Delete Translation

Figure 3.6: Manage website languages and translations use case diagram

The use cases are specified in more detail in the following subsections.

3.2.1 CREATE ACCOUNT

ID 1
Actors Guest
Brief Guest users register an account to be able to collaborate (e.g. submit identification

requests, answer quizzes). The system sends a confirmation email to the user with
a link for the user to activate the account, in an effort to reduce unwanted or
malicious accounts. The user activates the account and is now a Registered User.

3.2. U S E C A S E S 45

The create account activity diagram is shown in figure 3.11 on page 60.

3.2.2 LOGIN

ID 2
Actors Registered User
Brief A user with an account authenticates itself into the system to gain the registered

user permissions (e.g. submit identification requests, answer quizzes)

The login activity diagram is shown in figure 3.12 on page 61.

3.2.3 SUBMIT IDENTIFICATION REQUEST

ID 3
Actors Registered User
Brief Registered users submit specimen identification requests, containing at least a

photo and the location of the specimen, so that they get help from the community
when other users vote on the cultivars for this specimen or answer quizzes where
it appears

The submit identification request activity diagram is shown in figure 3.13 on page 62.

3.2.4 ANSWER QUIZ

ID 4
Actors Registered User
Brief Registered users answer quizzes, containing specimens to be identified, as a way

to earn reputation and to help the community, as each answer represents a vote
on one cultivar for that specimen. The system saves the votes and recalculates the
user reputation and the specimens—that the user voted—probabilities

The answer quiz activity diagram is shown in figure 3.14 on page 63.

3.2.5 VIEW CULTIVAR

46 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

ID 5
Actors Guest & Registered User
Brief Users access the cultivar list, select a cultivar and view its details page containing a

description, the species, and a list of standard specimens

The view cultivar activity diagram is shown in figure 3.15 on page 64.

3.2.6 SEARCH CULTIVAR BY NAME

ID 6
Actors Guest & Registered User
Brief Users access the cultivar list and enter a keyword on the filter field. The system

shows the list of cultivars which names contain that keyword

The search cultivar by name activity diagram is shown in figure 3.16 on page 65.

3.2.7 VIEW SPECIMEN

ID 7
Actors Guest & Registered User
Brief Users access the specimens (identification requests) list and select a specimen to

see its details page. The details page has the specimen gallery, location and all the
characteristics

The view specimen activity diagram is shown in figure 3.17 on page 66.

3.2.8 VIEW SPECIMENS NEARBY

ID 8
Actors Guest & Registered User
Brief Users access the main page and view the nearby specimens on the map

The view specimens nearby activity diagram is shown in figure 3.18 on page 66.

3.2. U S E C A S E S 47

3.2.9 VIEW PROFILE

ID 9
Actors Registered User
Brief Registered users access their profile page which contains information like their

reputation, the number of sent identification requests, the number of answered
quizzes and the number of voted cultivars

The view profile activity diagram is shown in figure 3.19 on page 67.

3.2.10 EDIT PROFILE

ID 10
Actors Registered User
Brief Registered users access their profile page and update their information (e.g. email

address)

The edit profile activity diagram is shown in figure 3.20 on page 68.

3.2.11 RECEIVE NOTIFICATION BY EMAIL

ID 11
Actors Registered User
Brief Registered users receive notifications by email when the system detects a consid-

erable change on the users identification requests answers (cultivar probability
values or the number of votes)

The receive notification by email activity diagram is shown in figure 3.21 on page 69.

3.2.12 MANAGE WEBSITE LANGUAGES/TRANSLATIONS

This abstract use case is specialized by Add Language, Update Language, Delete Language,
Add Translation, Update Translation and Delete Translation use cases, described below.

ID 12
Actors Translator

48 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

Brief Translators update the website languages and translations (e.g. add a new language,
fix a translated phrase)

ADD LANGUAGE

ID 12.1
Actors Translator
Brief Translators access the “manage translations” page and add a new language

The add language activity diagram is shown in figure 3.22 on page 70.

UPDATE LANGUAGE

ID 12.2
Actors Translator
Brief Translators access the “manage translations” page and change an existing language

The update language activity diagram is shown in figure 3.23 on page 71.

DELETE LANGUAGE

ID 12.3
Actors Translator
Brief Translators access the “manage translations” page and delete a language that has no

related translations. If the language has translations it can not be removed

The delete language activity diagram is shown in figure 3.24 on page 71.

ADD TRANSLATION

ID 12.4
Actors Translator
Brief Translators access the “manage translations”, select a language and add a missing

translation

The add translation activity diagram is shown in figure 3.25 on page 72.

3.2. U S E C A S E S 49

UPDATE TRANSLATION

ID 12.5
Actors Translator
Brief Translators access the “manage translations”, select a language and update an

existing translation

The update translation activity diagram is shown in figure 3.26 on page 73.

DELETE TRANSLATION

ID 12.6
Actors Translator
Brief Translators access the “manage translations”, select a language and delete a transla-

tion

The delete translation activity diagram is shown in figure 3.27 on page 73.

3.2.13 MANAGE CULTIVAR REGISTER

This abstract use case is specialized by Add Cultivar, Update Cultivar, Accept Suggested
Cultivar and Delete Cultivar use cases, described below.

ID 13
Actors Moderator
Brief Moderators update the cultivar register (e.g. add a new cultivar, accept a suggested

cultivar, edit an existing cultivar)

ADD CULTIVAR

ID 13.1
Actors Moderator
Brief Moderators access the “manage cultivars” page and add a new cultivar

The add cultivar activity diagram is shown in figure 3.28 on page 74.

UPDATE CULTIVAR

50 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

ID 13.2
Actors Moderator
Brief Moderators access the “manage cultivars” page and edit an existing cultivar

The update cultivar activity diagram is shown in figure 3.29 on page 75.

ACCEPT SUGGESTED CULTIVAR

ID 13.3
Actors Moderator
Brief Moderators access the “manage cultivars” page, select a “pending” (suggested by a

user) cultivar and accept it or reject it. If accepted the system makes the cultivar
visible to everyone. If rejected it is marked as rejected and stays visible only to the
moderators

The accept suggested cultivar activity diagram is shown in figure 3.30 on page 76.

DELETE CULTIVAR

ID 13.4
Actors Moderator
Brief Moderators access the “manage cultivars” page, select a cultivar and delete it. The

system only allows the deletion if there are no related specimen, that is, the cultivar
was not voted in a specimen

The delete cultivar activity diagram is shown in figure 3.31 on page 77.

3.2.14 VIEW USER PROFILES AND STATISTICS

ID 14
Actors Moderator
Brief Moderators access the “manage users”, select a user profile and view its statistics

The view user profiles and statistics activity diagram is shown in figure 3.32 on page 77.

3.2. U S E C A S E S 51

3.2.15 APPROVE IDENTIFICATION REQUEST

ID 15
Actors Moderator
Brief New specimen identification requests, by default, need to be approved by a mod-

erator before the other users can access it (specimens list or through quizzes).
Moderators access the “manage specimens”, select a specimen and approves or
rejects it. When approved, it is visible by anyone and appears on quizzes. If rejected
it is marked as rejected as is only visible to the moderators

The approve identification request activity diagram is shown in figure 3.33 on page 78.

3.2.16 SET MEMBER AUTO-APPROVAL OF IDENTIFICATION REQUESTS

ID 16
Actors Moderator
Brief Moderators access a user profile and selects “grant confidence vote” (or “revoke con-

fidence vote”). When granted, that user identification requests are auto-approved
when submitted. When revoked it returns to the default behaviour and the identi-
fication requests will have to be approved by a moderator before being visible by
everyone

The set member auto-approval of identification requests activity diagram is shown in
figure 3.34 on page 79.

3.2.17 MANAGE USERS

This abstract use case is specialized by Create User, Update User Profile, Update User Role
and Delete User use cases, described below.

ID 17
Actors Administrator
Brief Administrators access the “manage users” page and create a user, update a user role

(translator, moderator, administrator), update a user profile, etc.

CREATE USER

52 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

ID 17.1
Actors Administrator
Brief Administrators access the “manage users” page and create a user by filling the

details (e.g. user name, email, password). There will be no email sent to the chosen
email address and that user account will be just activated

The create user activity diagram is shown in figure 3.35 on page 80.

UPDATE USER PROFILE

ID 17.2
Actors Administrator
Brief Administrators access the “manage users” page, select a user and update its profile

(e.g. email address, name)

The update user profile activity diagram is shown in figure 3.36 on page 81.

UPDATE USER ROLE

ID 17.3
Actors Administrator
Brief Administrators access the “manage users” page, select a user and update its role

(e.g. translator, moderator, administrator)

The update user role activity diagram is shown in figure 3.37 on page 82.

DELETE USER

ID 17.4
Actors Administrator
Brief Administrators access the “manage users” page, select a user and remove the user

from the system. The user identification requests become hidden and the votes
are removed, leading to a cultivar probability recalculation

The delete user activity diagram is shown in figure 3.38 on page 83.

3.2. U S E C A S E S 53

3.2.18 DEFINE QUIZ PARAMETERS

ID 18
Actors Administrator
Brief Administrators access the “quiz settings” at the administration page and define

how many specimens will appear on the quizzes and how many of them are a
standard specimen. There has to be at least one standard specimen, so that the
reputation calculations may be used

The define quiz parameters activity diagram is shown in figure 3.39 on page 84.

3.2.19 SUGGEST NEW CULTIVAR

ID 19
Actors Registered User
Brief Registered users access the cultivars page and select “suggest a new cultivar” if they

can’t find it on the existing registry. They fill the specimen name and description
and then the suggestion is sent to approval by a moderator prior to joining the
registry and being available to everyone

The suggest new cultivar activity diagram is shown in figure 3.40 on page 85.

3.2.20 VOTE CULTIVAR FOR A SPECIMEN

ID 20
Actors Registered User
Brief Registered users access a specimen page, select “vote on a cultivar” and select a

cultivar from the ones that already have votes or a new cultivar from the list of
cultivars that is presented

The vote cultivar for a specimen activity diagram is shown in figure 3.41 on page 86.

54 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.3 SUPPLEMENTARY SPECIFICATIONS

3.3.1 SPECIMEN DATABASE

The specimen database must have the following information:
• Location of the garden (address and Global Positioning System (GPS) coordinates);
• Location within the garden (identifying label or map-based pointer); Owner;
• Documented historic data (e.g. planting date, origin);
• Photographic documentation;
• Cultivar identification and associated probability (normally, dynamic fields worked

out by the system);
• Characteristics according to International Union for the Protection of New Varieties

of Plants (UPOV) guidelines (details below).
A set of 50 characteristics (49 morphological features and time of flowering) are con-

sidered, in accordance with the guidelines recently issued by the UPOV for conducting
distinctness, uniformity and stability tests in the specific case of ornamental camellia vari-
eties [25], based on work by Jiyuan Li et al. [26]. The morphological features (examples in
figure 3.7 on the next page and in figure 3.8 on page 56) regard the plant as a whole (growth
habit), its branches, foliage, vegetative buds, shoots, leaves, petioles, sepals, flower buds,
flowers, petals, stamens, style, stigma and ovary.

Although the database must allow the storage of very complete and detailed specimen
information, the identification request form will be kept simple and intuitive, with a mini-
mum number of mandatory fields – possibly just the precise location of the specimen and a
photo of a flower meeting certain minimum technical criteria in terms of colour, resolution
and format, so it can be included in quizzes. The remaining fields will be optional, and users
will be allowed to update in their identification requests at any point, so as not to discourage
submission.

3.3. S U P P L E M E N T A RY S P E C I F I C AT I O N S 55

Figure 3.7: Example 1 of morphological features (UPOV guidelines[25])

56 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

Figure 3.8: Example 2 of morphological features (UPOV guidelines[25])

3.4. D O M A I N M O D E L 57

3.3.2 STANDARD SPECIMENS

If the cultivar represented by a specimen is known with absolute certainty, a moderator
user (or group of moderator users) with permission to do so can give that specimen the
status of standard specimen; its characteristics then become automatically associated to the
corresponding entry in the cultivar register. The answer to quizzes using standard specimens
is objective; so long as there are enough of them in the system, reputation metrics can
rely solely on objective data. Since the contribution of each response to an identification
request is weighed according to the reputation of the respondent, this makes the system
more reliable. In other words, if an effort is made to insert, as early as possible, a large
number of specimens whose cultivar is known with absolute certainty, the operation of
the system can be improved, with identifications converging more rapidly to the right
answer. Moreover, for identification requests with at least some characteristics filled-in,
and so long as the characteristics of the standard specimens are fully specified, the system
can automatically assist the identification process by narrowing down the range of possible
answers and detecting perfect matches, should they occur (in which case the specimen in
question would be an obvious candidate to standard specimen).

3.3.3 USER REPUTATION AND CULTIVAR PROBABILITY METRICS

The reputation of the respondents is a figure of merit based on their quiz performance.
Basing it only on questions referring to standard specimens, it can be computed very simply
as the percentage of right answers. It is fair to assume that a user with higher reputation is
more likely to correctly identify any given specimen. Therefore, in working out cultivar
probability, i.e. the probability of a specimen belonging to a certain cultivar, the respondent’s
reputation is the weighing factor applied to her response. These two figures are not static,
in the sense that they are recalculated whenever new quizzes are considered. Alternative,
more complex reputation metrics can be envisaged to avoid reliance on standard specimens.

3.4 DOMAIN MODEL

After the identification of the use cases for the system (in section 3.2 on page 41), the
main entities—resulting from the requirements analysis—will now be described in a domain
model. In this phase, the application domain is analysed to discover the domain requirements
of the system and create a high-level object model that describes how the system will be
logically constructed. The logical implementation of the functional requirements described
in the use case model is captured by a high-level class diagram in figure 3.9 on the following

58 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

page, reflecting initial domain knowledge.

User

Moderator

Administrator

Reputation

Quiz

Specimen

Location

OwnerPhoto Cultivar Characteristic

LanguageTranslation

Translator

Quiz Parameters

Reputation
Parameters

Figure 3.9: High-level system class diagram

The diagram shows that an Administrator is both a Moderator and a Translator, and they
are both a User. An Administrator sets Quiz Parameters (how many specimens and how
many of them are standard) and Reputation Parameters (the weight given to the standard
specimens answers and the weight given to the number of user votes). A Translator manages
Translations and Languages and each Language has Translations. A User has Reputation,
submits Specimen requests (that are approved by a Moderator), votes Specimen cultivars,
and answers Quizzes (that has Specimens). A Specimen has a Location, an Owner (that has
a Location), Photos, Characteristics, may have possible Cultivars and appears on Quizzes.

Figure 3.10 on the next page presents a more detailed class diagram. Here, the system
actors are turned into roles that a user may have. The main user information (e.g. username,
password, email address) is stored in the User class, whereas the additional information (e.g.
profile photo, reputation) is stored in the User Profile class, for the sake of organization. The
User Message is used to save the messages the users send to the site owners (e.g. to report a
problem or to suggest something). It is not related with the User class because it is available
to the visitors that do not have an account. The translation tables is described in more detail
in this diagram. For the sake of organization, each UPOV Characteristic table (type, name,
value) has a related translation table. This choice of design is discussed ahead in section 4.7

3.4. D O M A I N M O D E L 59

on page 126. Most of the classes are self-explanatory and will be covered in chapter 4 on
page 87 (Implementation).

User

- date_joined: timestamp
- email: string
- first_name: string
- last_login: timestamp
- last_name: string
- password: string
- role: Role
- username: string

Quiz

- created: timestamp
- submitted: boolean
- user: User

Specimen

- created_date: timestamp
- created_user: User
- dna_tested: boolean
- gallery: Gallery
- geo_latitude: numeric
- geo_longitude: numeric
- standard: Cultivar
- standard_date: timestamp
- standard_user: User

Specimen Cultivar

- cultivar: Cultivar
- probability: double
- specimen: Specimen
- votes: int

Cultivar

- approved: boolean
- approved_date: timestamp
- approved_user: User
- created_date: timestamp
- created_user: User
- icr_description: string
- icr_id: int
- icr_species: string
- name: string

Specimen UPOV Characteristic Value

- characteristic_name: UPOV Characteristic Name
- characteristic_value: UPOV Characteristic Value

UPOV Characteristic Value

- description: string
- name: UPOV Characteristic Name
- upov_note: int

UPOV Characteristic Type

- description: string

UPOV Characteristic Name

- description: string
- help_picture: boolean
- help_text: string
- type: UPOV Characteristic Type

UPOV Ch. Type Translation

- characteristic_type: UPOV Characteristic Type
- language: Language
- text: string

UPOV Ch. Name Translation

- characteristic_name: UPOV Characteristic Name
- language: Language
- text: string

UPOV Ch. Value Translation

- characteristic_value: UPOV Characteristic Value
- language: Language
- text: string

Language

- iso_369_code: string
- name: string

Website Translation

- language: Language
- page: string
- text_id: string
- translation: string

User Message

- body: string
- date: timestamp
- email: string
- name: string
- subject: string

Quiz Parameters

- changed_date: timestamp
- changed_user: User
- number_non_standard_specimens: int
- number_standard_specimens: int

User Profile

- photo: image
- reputation: float
- user: User

Reputation Parameters

- changed_date: timestamp
- changed_user: User
- weight_standard_specimen_answers: float
- weight_user_total_votes: float

User Specimen Cultivar Vote

- cultivar: Cultivar
- specimen: Specimen
- user: User
- voted: timestamp

Quiz Answer

- cultivar: Cultivar
- quiz: Quiz
- specimen: Specimen

Species

- name: string

Cultivar Species

- cultivar: Cultivar
- species: Species

«enumeration»
Role

Administrator
Moderator
Translator

Figure 3.10: System class diagram

60 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5 ACTIVITY DIAGRAMS

This section presents the activity diagrams for modeling the logic captured by the use
cases discussed in section 3.2 on page 41.

3.5.1 CREATE ACCOUNT

Start

Guest selects the sign up
button

System presents the sign
up form

Guest fills the form with
their email address and

desired username
password

System warns the user
that already exists a user

with the same
username/email address

Guest submits the sign up
form

System sends an email to
the provided email
address with the

confirmation of the
creation of the new

account and with a link so
that the user can activate
the account before using

the system

Guest activates the
account by following the

link received

System enables the
account

End

System
validation

[Existing user]

Figure 3.11: Activity diagram for the use case create account

3.5. AC T I V I T Y D I AG R A M S 61

3.5.2 LOGIN

Start

User selects the login
button

System presents the login
form

User fills the form with
their identifier and

password

User submits the login
form

System
validation

System warns the user
that the identifier or

password are invalid

System authenticates the
user

System redirects the user
to the previous page

End

[Invalid identifier or password]

Figure 3.12: Activity diagram for the use case login

62 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.3 SUBMIT IDENTIFICATION REQUEST

Start

User selects the submit
identification request

button

System presents the
identification request form

User selects a photo of
the specimen from their

computer/device

User selects the
specimen location on the

map shown

User fills the remaining
optional information about

the specimen

User submits the request

System
validation

The Registered User does
not set the location

The Registered User does
not select a photo

System redirects the user
to the newly created

specimen identification
request

End

[No location set] [No photo selected]

Figure 3.13: Activity diagram for the use case submit identification request

3.5. AC T I V I T Y D I AG R A M S 63

3.5.4 ANSWER QUIZ

Start

User selects the quizzes
button

Check for
existing
quiz

System presents the quiz
page with a newly

generated quiz

System presents the quiz
page with the last,

unfinished, user quiz

User selects a cultivar for
each specimen

User submits the quiz System calculates the
user reputation and the
specimens probabilities

System redirects the user
to the result page
showing the user

information about their
reputation

End

[New quiz]

Figure 3.14: Activity diagram for the use case answer quiz

64 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.5 VIEW CULTIVAR

Start

User selects the cultivars
button

System presents the
cultivars page with a list

of cultivars

User selects a cultivar
from the list

System presents the
chosen cultivar page

End

Figure 3.15: Activity diagram for the use case view cultivar

3.5. AC T I V I T Y D I AG R A M S 65

3.5.6 SEARCH CULTIVAR BY NAME

Start

User selects the cultivars
button

System presents the
cultivars page with a list

of cultivars

User fills the search form

Search

System updates the
cultivar list and warns the
user that the search found

no matching cultivars

FlowEnd1

System updates the
cultivar list with the

cultivars which names
match the user search

End

[No matches]

Figure 3.16: Activity diagram for the use case search cultivar by name

66 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.7 VIEW SPECIMEN

Start

User selects the
specimens button

System presents the
specimens page with a

list of specimens

User selects a specimen
from the list

System presents the
chosen specimen page

End

Figure 3.17: Activity diagram for the use case view specimen

3.5.8 VIEW SPECIMENS NEARBY

Start

User accesses the main
page

System requests the user
geolocation (on a

supported web browser)

User shares their
geolocation

System presents a map
centered on user

geolocation and shows
any specimens that are

near

End

Figure 3.18: Activity diagram for the use case view specimens nearby

3.5. AC T I V I T Y D I AG R A M S 67

3.5.9 VIEW PROFILE

Start

User selects the profile
button

System presents user
profile page containing

their reputation and other
statistics

End

Figure 3.19: Activity diagram for the use case view profile

68 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.10 EDIT PROFILE

Start

User selects the edit
profile button

System presents the user
profile page

User changes the
necessary fields

User submits the profile

System
validation

System warns the user
that there are invalid

fields

System redirects user to
their updated profile page

End

[Validation failed]

Figure 3.20: Activity diagram for the use case edit profile

3.5. AC T I V I T Y D I AG R A M S 69

3.5.11 RECEIVE NOTIFICATION BY EMAIL

Start

System detects a change,
beyond a given threshold,

on an the identification
requests answers (e.g.
due to users answering

quizzes)

System sends an email to
the user that submitted

that identification request
with the information about

their specimen and its
cultivar probabilities

End

Figure 3.21: Activity diagram for the use case receive notification by email

70 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.12 MANAGE WEBSITE LANGUAGES/TRANSLATIONS

ADD LANGUAGE

Start

Translator accesses the
translations page

System presents the
translations page

Translator chooses the
option "add new

language"

System presents the new
language page

Translator fills the
required information (ISO
639 code, native name,

english name) and
submits

Check the
information

System asks the
Translator to correct the

information

System validates the
request

System redirects the user
again to the main
translations page

End

[Language already exists]

Figure 3.22: Activity diagram for the use case add language

3.5. AC T I V I T Y D I AG R A M S 71

UPDATE LANGUAGE

Start

Translator accesses the
translations page

System presents the
translations page

Translator accesses a
language

System presents the
translations for the

chosen language

Translator updates the
necessary translation and

submits

System saves and
redirects the user to the

translations page

End

Figure 3.23: Activity diagram for the use case update language

DELETE LANGUAGE

Start

Translator accesses the
translations page

System presents the
translations page

Translator accesses a
language

System presents the
translations for the

chosen language

Translator chooses the
"delete language" option

System deletes the
language and redirects

the user to the
translations page

End

Figure 3.24: Activity diagram for the use case delete language

72 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

ADD TRANSLATION

Start

Translator accesses the
translations page

System presents the
translations page

Translator accesses a
language

System presents the
translations for the

chosen language

Translator enters the
missing translation and

submits

System validates the
request

System redirects user
again to the translations

page

End

Figure 3.25: Activity diagram for the use case add translation

3.5. AC T I V I T Y D I AG R A M S 73

UPDATE TRANSLATION

Start

Translator accesses the
translations page

System presents the
translations page

Translator accesses a
language

System presents the
translations for the

chosen language

Translator updates the
required translation and

submits

System saves and
redirects the user to the

translations page

End

Figure 3.26: Activity diagram for the use case update translation

DELETE TRANSLATION

Start

Translator accesses the
translations page

System presents the
translations page

Translator accesses a
language

System presents the
translations for the

chosen language

Translator erases the
required translation
(leaves it blank) and

submits

System saves the
translation and redirects

the user to the
translations page

End

Figure 3.27: Activity diagram for the use case delete translation

74 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.13 MANAGE CULTIVAR REGISTER

ADD CULTIVAR

Start

Moderator accesses the
cultivar management

page

System presents the
cultivar management

page

Moderator chooses the
"add new cultivar" option

System presents the new
cultivar page

Moderator fills the
cultivar information and

submits

Check
cultivar
name

System asks the user to
correct the cultivar name

System validates the
request

System redirects user
again to the cultivar

management page

End

[Name already exists]

Figure 3.28: Activity diagram for the use case add cultivar

3.5. AC T I V I T Y D I AG R A M S 75

UPDATE CULTIVAR

Start

Moderator accesses the
page of a cultivar

System presents the
cultivar page

Moderator chooses the
"edit" option

System presents the edit
cultivar page

Moderator updates the
cultivar information and

submits

System validates the
request

System redirects user
again to the cultivar page

End

Figure 3.29: Activity diagram for the use case update cultivar

76 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

ACCEPT SUGGESTED CULTIVAR

Start

Moderator accesses the
cultivar management

page

System presents the
cultivar management

page

Moderator chooses a the
"pending cultivars" option

System presents the
pending cultivars page

Moderator opens the page
of one pending cultivar

Alternate1

Moderator selects the
"decline suggestion"

option

System updates the
cultivar as declined

FlowEnd1

Moderator selects the
"accept cultivar" option

System updates the
cultivar as accepted

End

[Moderator declines the suggestion]

Figure 3.30: Activity diagram for the use case accept suggested cultivar

3.5. AC T I V I T Y D I AG R A M S 77

DELETE CULTIVAR

Start

Moderator accesses the
page of a cultivar

System presents the
cultivar page

Moderator chooses the
"edit" option

System presents the edit
cultivar page

Moderator chooses the
"delete cultivar" option System deletes the

cultivar and redirects the
user again to the cultivars

list

End

Figure 3.31: Activity diagram for the use case delete cultivar

3.5.14 VIEW USER PROFILES AND STATISTICS

Start

Moderator accesses the
users page

System presents a page
with the list of registered

users

Moderator selects one
user

System presents a page
with the profile for the

selected user

End

Figure 3.32: Activity diagram for the use case view user profiles and statistics

78 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.15 APPROVE IDENTIFICATION REQUEST

Start

Moderator accesses the
moderation page

System presents the
moderation page

Moderator selects the list
of pending identification

requests

System presents the list
of pending identification

requests

Moderator selects an
identification request

System presents the page
for the selected

identification request

Moderator
reviews the
request

Moderator selects
"reject" option at the
identification request

System changes the
identification request

status to hidden/rejected

FlowEnd1

Moderator selects
"approve" option at the

identification request

System changes the
identification request

status to visible/approved

End

[Moderator rejects the request]

Figure 3.33: Activity diagram for the use case approve identification request

3.5. AC T I V I T Y D I AG R A M S 79

3.5.16 SET MEMBER AUTO-APPROVAL OF IDENTIFICATION REQUESTS

Start

Moderator accesses the
user profile

System presents the
selected user profile page

Moderator selects the
revoke auto-approve

identification requests
option

Moderator selects the
grant auto-approve

identification requests
option

System saves the new
setting

End

[Revoke auto-approval]

Figure 3.34: Activity diagram for the use case set member auto-approval of identification
requests

80 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.17 MANAGE USERS

CREATE USER

Start

Administrator accesses
the administration page

System presents the
administration page

Administrator user
accesses the list of users

System presents the list
of users

Administrator selects the
"new user" command

System presents the new
user page

Administrator fills the
required fields and

submits

System
validation

System warns the user
that some fields are

invalid

System saves the new
user

End

[Validation fails]

Figure 3.35: Activity diagram for the use case create user

3.5. AC T I V I T Y D I AG R A M S 81

UPDATE USER PROFILE

Start

Administrator accesses
the administration page

System presents the
administration page

Administrator user
accesses the list of users

System presents the list
of users

Administrator selects a
user

System presents the user
page

Administrator changes the
required fields and

submits

System validates the
request and updates the

user profile

System redirects the user
to the list of users

End

Figure 3.36: Activity diagram for the use case update user profile

82 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

UPDATE USER ROLE

Start

Administrator accesses
the administration page

System presents the
administration page

Administrator user
accesses the list of users

System presents the list
of users

Administrator selects a
user

System presents the user
page

Administrator changes the
user role and submits

System validates the
request and updates the

user

System redirects the user
to the list of users

End

Figure 3.37: Activity diagram for the use case update user role

3.5. AC T I V I T Y D I AG R A M S 83

DELETE USER

Start

Administrator accesses
the administration page

System presents the
administration page

Administrator user
accesses the list of users

System presents the list
of users

Administrator selects a
user

System presents the user
page

Administrator chooses the
"delete user" option

System removes the user,
hides its identification
requests, removes its
votes and updates the

related specimens
probabilities

System redirects the user
to the list of users

End

Figure 3.38: Activity diagram for the use case delete user

84 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.18 DEFINE QUIZ PARAMETERS

Start

Administrator accesses
the administration page

System presents the
administration page

Administrator selects quiz
settings

System presents the quiz
settings page

Administrator changes the
value of how many

specimens appear on a
quiz and how many are a

standard specimen

System
validation

System warns the user
the values are invalid

System saves the new
values

End

[Invalid values]

Figure 3.39: Activity diagram for the use case define quiz parameters

3.5. AC T I V I T Y D I AG R A M S 85

3.5.19 SUGGEST NEW CULTIVAR

Start

Registered user accesses
the cultivars page

System presents the
cultivars page

Registered user selects
the "suggest a new

cultivar" button

System presents the
"suggest a new cultivar"

page

Registered user fills the
name and description of

the new cultivar

System
validation

System warns the user
that a cultivar with that

name already exists

System saves the
suggestion

End

[Already exists]

Figure 3.40: Activity diagram for the use case suggest new cultivar

86 C H A P T E R 3. S Y S T E M R E Q U I R E M E N T S A N D M O D E L I N G

3.5.20 VOTE CULTIVAR FOR A SPECIMEN

Start

Registered user accesses
the page of a cultivar

System presents the
cultivar page

Registered user selects
the "vote on a cultivar for

this specimen" button

System presents a page
with the current votes and
a filterable list of cultivars

Registered user selects a
cultivar

System saves the user
vote

End

Figure 3.41: Activity diagram for the use case vote cultivar for a specimen

C H A P T E R 4
I M P L E M E N T AT I O N

The system is implemented in Python, making use of the Django Web framework, Post-
greSQL as the DBMS and Bootstrap—an HTML, CSS, and JavaScript framework.

4.1 PYTHON

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren 't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity , refuse the temptation to guess.
There should be one–-and preferably only one–-obvious way to do it.
Although that way may not be obvious at first unless you 're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain , it's a bad idea.
If the implementation is easy to explain , it may be a good idea.
Namespaces are one honking great idea–-let 's do more of those!

Figure 4.1: The Zen of Python, by Tim Peters

The back-end system is implemented in Python, which is a powerful, fast, easy to learn—
the syntax of the language is designed to be readable—and dynamic programming language

87

88 C H A P T E R 4. I M P L E M E N T AT I O N

that has been around for quite some time now (appeared in 1991) and is used in nearly every
field and variety of application domains.

Python has a clean, concise and readable syntax that makes it a pleasant programming
language to work with, and makes use of the Don’t Repeat Yourself (DRY) principle of
software development—stated as “Every piece of knowledge must have a single, unambigu-
ous, authoritative representation within a system”—popularised by the 1999 Pragmatic
Programmer coding practices book[27].

Python has a feature-rich standard library and, by being modular and allowing the core
language kernel to be extended, has many frameworks and third-party libraries available.

4.1.1 PYTHON PACKAGES

One of the advantages of Python is the reuse of code used to solve similar problems,
made easy by Python packages. There is a central repository for packages, the Python
Package Index (PyPI), with around fifty thousand packages to the date (e.g. authentication,
testing, encoding/decoding). Even Django, the Web framework used in this project, is
distributed as a Python package.

One of the easiest and fastest ways to install and manage Python packages is through the
pip tool, which takes care of downloading and installing the package and its dependencies.
Listing 4.1 shows an example of some of the commands this tool allows.

Listing 4.1: Example of pip commands

$ pip install django
$ pip search xml
$ pip install simplejson
$ pip uninstall simplejson

4.1.2 VIRTUAL ENVIRONMENT TOOLS

Virtualenv is a tool that allows the creation of Python sandboxes, that is, it clones the
Python system so that a complete and isolated copy of Python is provided to the user to
develop the projects they want. In this sandbox the user may install any packages they
want, without interfering with the system-wide Python installation. Listing 4.2 on the
facing page shows an example of some of the commands this tool allows and shows how the
python pathname changes when inside the environment. The source command shown in
the example is used to activate the virtual environment by sourcing a script which modifies
the $PYTHONPATH environment variable, allowing the Python interpreter to import packages

4.2. D J A N G O 89

from the correct location instead of the default system location.

Listing 4.2: Example of virtualenv usage

$ which python
/usr/bin/python
$ virtualenv camellia_env # create the sandbox
$ source camellia_env/bin/activate # work on the sandbox
(camellia_env)$ which python
/home/user/. virtualenvs/camellia_env/bin/python
(camellia_env)$
(camellia_env)$ pip install django # install django inside the sandbox
(camellia_env)$
(camellia_env)$ deactivate # exit the sandbox
$

Virtualenvwrapper, another tool, extends the virtualenv and simplifies its usage. It
organizes all the virtual environments in one place, uses a single command to switch between
them, and allows tab completion for commands that take a virtual environment as argument.
Its usage is exemplified in listing 4.3.

Listing 4.3: Example of virtualenvwrapper usage

$ pip install virtualenvwrapper
$ mkvirtualenv camellia_env
(camellia_env)$
(camellia_env)$ deactivate
$
$ workon example_env # virtualenvwrapper wrapper command
(example_env)$ workon camellia_env # switch between environments
(camellia_env)$

4.2 DJANGO

The system is implemented making use of the Django Web framework, which was
designed to make common Web-development tasks fast and easy[28].

Django is a high-level Python Web framework that encourages rapid development
and clean, pragmatic design.1

4.2.1 MODEL–VIEW–CONTROLLER

Django follows the MVC pattern, a software architectural pattern for implementing user
interfaces—originally developed for desktop computing but already widely adopted as an

1www.djangoproject.com

90 C H A P T E R 4. I M P L E M E N T AT I O N

architecture for Web applications in major programming languages—where the application is
divided into three tiers or components so that the internal representations of information are
separated from the ways that the information is presented to or accepted from the user[29].
The three components, as the name implies, are the model, the view, and the controller.

Typically, the controller component interacts with the model to update its state (e.g. add
new user, change some system property) and can also send commands to its associated view
so that the view can be updated. In Django, the controller can be seen as the framework
itself, as it is the machinery that for dispatches the requests to the appropriate view.

The model component notifies its associated views and controllers when its state changes,
allowing the views to produce updated output and the controllers to update the available set
of commands. It is also possible to the MVC to be “passive”, meaning that the model must
be polled for updates rather than notifying the other components.

The view component requests information from the model and then uses it to generate
an output representation to the user. In Django’s interpretation of the MVC, the “view”—a
Python callback function for a particular URL—describes which data gets presented to the
user. A Django view does not define how the information is presented or looks like—that is
the role of templates.

It might be said that Django is a “MTV” framework—that is, “model”, “template”, and
“view”.

4.2.2 REUSABLE APPS

Many Python and Django projects share common problems and one of most appealing
aspects of Django is that of reusable apps. Besides separating the models, views and controllers,
Django encourages developers to separate the functionality of the overall system into loosely-
coupled apps—each one defining its own models, views and templates—that can then be
packaged up as Python modules and published for the community for reuse in other projects.

As an example, an app providing user registration and authentication using social
networks—allauth—is available and commonly used in systems which require this function-
ality.

In this project there are some 3rd party apps used with Django, like the allauth (authen-
tication related), south (database migrations) and photologue (photo galleries), discussed in
more detail in the following sections.

4.2. D J A N G O 91

4.2.3 MODELS

The models define the persistent data—that will be available to the application—as one
Python class for each data “entity”. They also define how that data should be accessed.

There are some prerequisites: the database and database user must be created, the database
adapter for Python must be installed, and the connection must be configured on the project
settings file (settings.py). This is explained in more detail in section 4.4 on page 104.

Listing 4.4: The ‘Quiz’ model

1 class Quiz(models.Model):

2 uuid = models.CharField(max_length=36, default=make_uuid ,

editable=False)

3 created = models.DateTimeField(auto_now_add=True)

4 user = models.ForeignKey(User , null=True , related_name='quizzes')
5 submitted = models.BooleanField(default=False)

6
7 def __str__(self):

8 return "Quiz %d" % self.id

9
10 class Meta:

11 ordering = ['-pk']

Listing 4.4 shows the definition of the Quiz model, which has four attributes: uuid (a
universally unique identifier), created (the date/time at which the quiz was created/gener-
ated), user (a foreign key to the User model, which tells which user the quiz belongs to),
and submitted (a boolean value indicating whether or not the quiz was already finished/-
submitted by the user).

The model definition also specifies how an instance of the model should be displayed
if it is printed on screen (the __str__() method) and what is the default ordering when
obtaining lists of objects (defined by the ordering list inside the Meta class), in this case
being ordered by primary key, in descending order (denoted by the ‘-’ prefix).

Django provides access to this data through its Object-Relational Mapper (ORM), pro-
viding a high-level Application Programming Interface (API) for querying the database.
This saves time and reduces mistakes in the application code. Listing 4.5 shows an example
of how one might query the database for all the Quizzes submitted by the User with ID 3.

Listing 4.5: Querying for all Quizzes the User 3 submitted

>>> Quiz.objects.filter(user__id=3, submitted=True)
[<Quiz: Quiz 73>, <Quiz: Quiz 72>, <Quiz: Quiz 71>, <Quiz: Quiz 63>]
>>>

92 C H A P T E R 4. I M P L E M E N T AT I O N

MIGRATIONS

By default, changes to models causing database table modifications must be followed by
the syncdb command, but each time it is run (e.g. after only adding, deleting or modifying a
field) the entire table is deleted and recreated.

Listing 4.6: Updating the database without a migration tool

$ python manage.py syncdb

However, there is a much more useful tool—South—that provides consistent, easy-to-use
and database-agnostic migrations for Django[30]. South can update a field without having
to recreate the table, thus maintaining all the existing data, and even supports rollback.
Listing 4.14 on page 105 shows an example of creating a migration—after adding a field on a
model—, and applying it.

Listing 4.7: Database migrations using the South tool

(camellia_env)$./ manage.py schemamigration users --auto
+ Added field reputation on users.UserProfile

Created 0002 _auto__add_field_userprofile_reputation.py. You can now apply this
migration with: ./ manage.py migrate users

(camellia_env)$./ manage.py migrate users
Running migrations for users:
- Migrating forwards to 0002 _auto__add_field_userprofile_reputation.
> users :0002 _auto__add_field_userprofile_reputation
- Loading initial data for users.

Installed 0 object(s) from 0 fixture(s)

The latest version of Django (1.7, released September 2014) has built-in support for
schema migrations, although this project was developed with Django version 1.6 and wasn’t
yet migrated.

4.2.4 VIEWS

The view’s purpose is to parse the incoming HTTP requests, extract the relevant data (if
any) from the data models, and respond with an appropriate HTTP response. This response
is usually constructed by rendering a template. There are two types of views: function-based
and class-based. Class-based views provide an alternative way to implement views as Python
objects instead of functions, having the advantage of providing a better organization of code
related to specific HTTP methods (e.g. GET, POST) as they can be addressed by separate
methods (see listing 4.8 on the facing page) instead of conditional branching when using a
function (see listing 4.9 on the next page). Another advantage is the use of object oriented
features, such as multiple inheritance, to factor code into reusable components[31].

4.2. D J A N G O 93

Listing 4.8: Class-based view handling HTTP GET request

1 class QuizView(View):

2 def get(self , request):

3 template = 'quiz.html'
4 args = {}

5
6 if request.user.is_authenticated ():

7 quiz_and_answers =

get_or_create_quiz_and_answers_for_user(request.user)

8 args['quiz'] = quiz_and_answers['quiz']
9 args['answers'] = quiz_and_answers['answers']

10 else:

11 args['quiz'] = None

12 args['answers'] = None

13 pass

14
15 return render(request , template , args)

Listing 4.8 shows a class-based view with a get function that handles HTTP GET requests
dispatched by Django.

Listing 4.9: Example of a function-based view

1 from django.http import HttpResponse

2
3 def my_view(request):

4 if request.method == 'GET':
5 # <view logic for GET >

6 return HttpResponse('result')
7 elif request.method == 'POST':
8 # <view logic for POST >

9 return HttpResponse('result')

Listing 4.9 shows a function-based view using conditional branching to check the request
method.

4.2.5 TEMPLATES

A template—the “view” on some frameworks and on the MVC pattern—is a text file
that can generate any text-based format (e.g. HTML, XML, CSV) and is meant to express
presentation, not program logic, although it supports variables and a limited set of control
logic. The variables are replaced by values when the template is evaluated, and the control
logic is possible by using tags (e.g. if, for). When dealing with the web interface, using an

94 C H A P T E R 4. I M P L E M E N T AT I O N

HTML format—which is what is used on this project—, the template describes how the
interface is rendered to the end user.

Listing 4.10: Example of a template

1 {% extends "base.html" %}

2 {% load i18n %}

3 {% load staticfiles %}

4
5 {% block content %}

6 <h1>Welcome {% if user.first_name %} back , {{ user.first_name

}}{% endif %}!</h1>

7
...

8 <h3>Latest specimens</h3>

9 <div id="latest_specimens" style="text-align: center">

10 {% for specimen in latest_specimens %}

11 <div class="specimen" style="display: inline-block">

12 {% if specimen.gallery %}

13
...

Listing 4.10 shows an example of a template. It does use inheritance, a powerful part of
Django’s template engine, that allows to build a base “skeleton” template that contains all
the common elements of the site and defines blocks that child templates can override[32].

In this case, the template inherits from base.html ({% extends "base.html" %} line)
and this is why there is no <html> and <head> tags on this file (they are on the parent
template). Also, this template overrides its parent content block ({% block content %}

line), resulting on a web page defined by base.html with some blocks defined or overridden
by this child.

Inside the content block we can see that there are some template tags and variables. For
example, the if tag checks if the user has a first name, {% if user.first_name %}...{%

endif %} and if it does, prints the name, using the {{ user.first_name }} variable. There
is also a for tag, {% for specimen in latest_specimens %} that iterates through all the
specimens found in the latest_specimens variable.

In this example there are some variables that come from the view and others that are
automatically injected on the template, like the {{ user }} variable, which is injected
on all templates automatically by the Django’s authentication support that is bundled as
a Django contrib module (django.contrib.auth, added to the project settings via the
INSTALLED_APPS tuple). The {{ latest_specimens }} variable is passed to this template
by the view that renders it, as shown on the last two lines of listing 4.11 on the next page.

4.3. D J A N G O P R O J E C T S T RU C T U R E 95

Listing 4.11: Example passing a variable from the view to the template

1
...

2 class IndexView(View):

3 def get(self , request):

4 template = 'index.html'
5 args = {}

6 latest_specimens = Specimen.objects.order_by('-id')[:3]
7 args['latest_specimens'] = latest_specimens

8 return render(request , template , args)

4.3 DJANGO PROJECT STRUCTURE

Django has historically used the term project to describe an installation of Django. A
project is defined primarily by a settings module.

A project is separated into multiple “applications”. The term application describes a
Python package that provides some set of features and is just a set of code that interacts with
various parts of the framework and include some combination of models, views, templates,
static files, URLs, etc.

The idea is that applications should be loosely coupled, so that they may be reused in
various projects, allowing developers to simply “plug in” the desired functionality.

Quizzes

Cultivars

Specimens

MainpagesUserprofiles

bUserprofiles
Auth

Photologue

Diplomat

(django.contrib)

Figure 4.2: Dependency diagram for the Django project applications

96 C H A P T E R 4. I M P L E M E N T AT I O N

This project is separated into five applications: specimens, cultivars, quizzes,
userprofiles and mainpages. The dependencies between them are shown in figure 4.2
on the preceding page, where the applications on the grey boxes (auth, photologue and
diplomat) are external applications and will be explained later. In this project the applica-
tions are not so loosely coupled—as almost every one depends on another—and could even
be merged, but it was decided to maintain them separate so that the structure can easily be
understood and so that the code is easier to read. Each application will now be described in
more detail.

4.3.1 SPECIMENS APPLICATION

The specimens application contains all the models, views and templates related to the
specimens.

MODELS

The models defined on the specimens application are the following:

Specimen
Contains the creation date, latitude and longitude geographic coordinates, the user
that submitted the identification request and—if it is a standard specimen—the corre-
sponding Cultivar, the user that set it as standard and the date it happened.

SpecimenGallery
Connects a Specimen to a Gallery from the Photologue application

UPOVCharacteristicType
Contains the description of the UPOV characteristic type (e.g. plant, branch, sepal,
petal)

UPOVCharacteristicName
Has a UPOVCharacteristicType as foreign key and contains the description of the
UPOV characteristic name (e.g. for the plant type: density of foliage and growth habit;
for the branch type: zigzagging)

UPOVCharacteristicValue
Has a UPOVCharacteristicName as foreign key and contains the description of the
UPOV characteristic value (e.g. for the density of foliage: sparse, medium and dense;
for the growth habit: upright, semi-upright, spreading, drooping and horizontal)

SpecimenUPOVCharacteristicValue
Connects a Specimen with a UPOVCharacteristicName and a UPOVCharacteristicValue,
where UPOVCharacteristicName is unique because each Specimen only have, at

4.3. D J A N G O P R O J E C T S T RU C T U R E 97

most, one characteristic value (e.g. upright, semi-upright) for each characteristic name
(e.g. growth habit)

SpecimenCultivar
Connects a Specimen with a Cultivar and has the probability of the specimen being
from that cultivar, and the number of user votes, that is, how many users think that
specimen belongs to that cultivar

UserSpecimenCultivarVote
Represents a user vote on this specimen. Each user may only vote for one cultivar on
each specimen, meaning that a vote on another cultivar replaces the previous vote on
that specimen

OtherCharacteristic
Saves characteristics beyond the UPOV ones, such as if the specimen was DNA tested

FORMS

The forms—used to accept input from site visitors, and then process and respond to the
input—defined on the specimens application are the following:

SpecimenUPOVCharacteristicValueForm
This is the class responsible for constructing the new identification request form,
used by the NewSpecimenView. It gets all the existing and possible characteristics
from the models described before, and for some of the characteristics—that have an
example image—it constructs the form field with that image instead of, say, a simple
radio button option, as shown in figure 4.3, making use of a customized RadioSelect

widget.

Figure 4.3: Form fields images example for the identification request form

98 C H A P T E R 4. I M P L E M E N T AT I O N

VIEWS

The views defined on the specimens application are the following:

SpecimenView
This view is responsible for rendering a specimen page, using the specimen.html

template.
SpecimensView

This view receives the request to the list of specimens and renders a page, using the
specimens.html template, with a paginated list

NewSpecimenView
This view prepares the page with the form for the users to submit a new specimen
identification request. When the user submits the form, this view validates it and saves
the information at the corresponding models

EditSpecimenView
As the name implies, this view is used to edit an existing specimen. It renders the
same form used to submit a new identification request, but it is pre-populated with
the existing information. It then validates the submit request and saves the changed
information

VoteCultivarView
This is the view used to present a list of cultivars so the user may vote on one, for a
particular specimen. When receiving a POST request with the user vote it saves the
vote accordingly

SpecimensLocationsView
Used to return a JavaScript Object Notation (JSON) response with all the specimens
close to a given geographical point.

TEMPLATES

The templates defined on the specimens application are the following:

new_specimen.html
This template receives a form from the NewSpecimenView and defines how the page
for the user to submit a new specimen identification request is presented

specimen.html
This template defines how the specimen details page is presented

specimens.html
This template receives the specimen list, paginated, and shows the pagination controls
(e.g. go to the previous, next or last page)

4.3. D J A N G O P R O J E C T S T RU C T U R E 99

vote_cultivar.html
This template shows the list of current possible cultivars (voted by the users) to the
current specimen, allowing the user to vote in one of them or to vote in a new cultivar
(not yet voted for this specimen) from the filterable list of cultivars that is presented

4.3.2 CULTIVARS APPLICATION

The cultivars application contains all the models, views and templates related to the
cultivars.

MODELS

The models defined on the cultivars application are the following:

Species
Contains the name of a species

Cultivar
Has the name and description (initially from the ICR) of a cultivar, plus the creation
date and the user who created it

CultivarSpecies
Makes the connection between a Cultivar and a Species

FORMS

The forms—used to accept input from site visitors, and then process and respond to the
input—defined on the cultivars application are the following:

NewCultivarForm
This form class extends the ModelForm class, meaning that it uses a model to know
which fields to present on the form. In this case, it uses the Cultivar model and
excludes the created and user fields as they are automatically saved when the form
is validated by the NewCultivarView

VIEWS

The views defined on the cultivars application are the following:

CultivarView
Receives the request to present the page of a specific cultivar and renders a page, using
the cultivar.html template, with that cultivar information

100 C H A P T E R 4. I M P L E M E N T AT I O N

CultivarsView
Receives the request to present the list of cultivars and renders a page, using the
cultivars.html template, with a paginated list

NewCultivarView
Uses the new_cultivar.html template to present a form for a user to suggest a new
cultivar, and receives the response, validates it and saves the information

EditCultivarView
This view is used to render a page for editing an existing cultivar

SearchNameView
Receives a search keyword, via a POST request method, and returns a list of cultivars
which name contains that keyword, using the cultivar_result.html template

TEMPLATES

The templates defined on the cultivars application are the following:

cultivar.html
This template defines the cultivar details page

cultivar_result.html
This template receives a paginated list of filtered cultivars from SearchNameView,
shows the pagination controls (e.g. go to the previous, next or last page) and—if the
request comes from the specimen voting page or from a quiz—provides the JavaScript
functions to allow the user to select one of the cultivars from the filtered list and,
accordingly to which page the request originated—specimen or quiz—use the selected
cultivar as a vote to the specimen or as an answer to the quiz, respectively

cultivars.html
This template receives the cultivar list, paginated, and shows the pagination controls
(e.g. go to the previous, next or last page)

new_cultivar.html
This template receives a form from the NewCultivarView and presents it on a page
for the user to submit a new cultivar suggestion

4.3.3 QUIZZES APPLICATION

The quizzes application contains all the models, views and templates related to the
quizzes.

4.3. D J A N G O P R O J E C T S T RU C T U R E 101

MODELS

The models defined on the quizzes application are the following:

Quiz
Contains the creation date, the associated user and a boolean field telling if the quiz
was already finished/submitted

Answer
This model saves all the quizzes answers. It is the relation between a Quiz, a Specimen
and a Cultivar

QuizParameters
This model is a “singleton” and holds the quizzes settings in one record. It has the
number of standard specimens that appear on quizzes (minimum of one) and the
number of non-standard specimens.

FORMS

The quizzes application has no forms defined.

VIEWS

The views defined on the quizzes application are the following:

QuizView
When receiving a GET request this view renders the quiz page for the user, using the
quiz.html template, and when receiving a POST request it validates the user answers
to the quiz and renders the results page, using the quiz_result.html template

VoteCultivarQuizView
This view receives a POST request each time the user answers or changes one of the
quiz answers, saving that answer to the Answer model, so that the user may leave the
quiz page and return at a later time without loosing the answers already answered

TEMPLATES

The templates defined on the quizzes application are the following:

quiz.html
This template receives a quiz from the QuizView and has the proper JavaScript func-
tions to load the specimens gallery and to present the list of possible cultivars for the
user to choose one (the list is obtained by sending a request to the SearchNameView
from the Cultivars application)

102 C H A P T E R 4. I M P L E M E N T AT I O N

quiz_result.html
This template receives the information from the QuizView POST result, showing how
many answers the user filled (it is not mandatory for the users to answer all the answers
before submitting a quiz), how many quizzes the user already answered, and its current
reputation

4.3.4 USERPROFILES APPLICATION

The userprofiles application contains all the models, views and templates related to
the user profiles.

MODELS

The models defined on the userprofiles application are the following:

UserProfile
This model is an extension of the User model from the Django’s authentication system
(django.contrib.auth.models) and stores additional user information like an avatar
and the user reputation

ReputationParameters
This model is a “singleton” and holds the reputation settings in one record. It has the
weight given to the user answers to quizzes (standard specimens) and the weight given
to the number of votes the user has given to the specimens/cultivars. The sum of the
weights must be between zero and one.

FORMS

The forms—used to accept input from site visitors, and then process and respond to the
input—defined on the userprofiles application are the following:

MySignupForm
This form is used by the django-allauth application to extend the sign up form and
must be configured at the project’s settings.py file as shown in listing 4.12, so that
the allauth knows which form to use. In this case, this form adds the first and last
names to the sign up form and reorders the fields (e-mail and user name first, followed
by first and last name, and the desired password).

Listing 4.12: Configuration of allauth custom sign up form

1 ACCOUNT_SIGNUP_FORM_CLASS = 'userprofiles.forms.MySignupForm'

4.3. D J A N G O P R O J E C T S T RU C T U R E 103

UserProfileForm
This is a ModelForm that uses the User model so that the users may edit their profiles
(e.g. first name, last name, email address, profile picture)

VIEWS

The views defined on the userprofiles application are the following:

profile
The profile view is used to pass the user information to the profile.html template

edit_profile
This view creates a UserProfileForm which it passes to the edit_profile.html and
also validates the form when submitted, saving the updated values

TEMPLATES

The templates defined on the userprofiles application are the following:

profile.html
This template receives the user profile variables from the profile view and presents
the user profile page

edit_profile.html
This template is used to present a form for editing the user profile

4.3.5 MAINPAGES APPLICATION

The mainpages application contains all the views and templates related to special-case
pages, such as “About”, “FAQ” and “Contact”.

MODELS

This application has no models.

FORMS

The mainpages application has no forms defined.

VIEWS

The views defined on the mainpages application are the following:

104 C H A P T E R 4. I M P L E M E N T AT I O N

IndexView
This view renders the index.html template, passing the latest specimens variable to it

AboutView
This view renders the about.html template

FAQView
This view renders the faq.html template

ContactView
This view renders the contact.html template

TEMPLATES

The templates defined on the mainpages application are the following:

index.html
This is the template that shows the website main page, containing a map with the
nearest specimens and a list of thumbnails of the latest submitted identification requests

about.html
This template presents a simple paragraph about the website

faq.html
This template presents some useful questions and answers

contact.html
This template presents a form which users fill to send a message to the site owner

4.4 POSTGRESQL

As referred in section 2.4 on page 34, the chosen DBMS for this project was PostgreSQL.
Django, as seen before, manages the data storage through its models, but the database

must be created beforehand. Listing 4.13 shows the database creation for this project.

Listing 4.13: Creation of the project database

[user@server ~]$ sudo su - postgres # change to the postgres system user
[postgres@server ~]$ createdb camellia # create the database
[postgres@server ~]$ createuser -P # create the database user (it will be

called django)
[postgres@server ~]$ psql # activate the PostgreSQL command line interface
postgres=# GRANT ALL PRIVILEGES ON DATABASE camellia TO django; -- grant

the new user (django) access to the database (camellia)

After the database creation, the Django project must be configured to use it. This is
done by installing the database adapter (listing 4.14 on the next page) and by configuring

4.4. P O S T G R E S Q L 105

the connection on the project settings file (settings.py), as shown in listing 4.15 on the
facing page.

Listing 4.14: Installing the PostgreSQL database adapter for Python

(camellia_env)$ pip install psycopg2

Listing 4.15: Django database connection configuration

1 DATABASES = {

2 'default': {

3 'ENGINE': 'django.db.backends.postgresql_psycopg2',
4 'NAME': 'camellia',
5 'USER': 'django',
6 }

7 }

After this, running syncdb will make Django add its initial configuration and other
tables (from the defined models) to the database (listing 4.16 on the next page).

106 C H A P T E R 4. I M P L E M E N T AT I O N

Listing 4.16: Running syncdb and listing the database tables

[user@server ~]$ workon camellia_env
(camellia_env)[user@server ~]$ python manage.py syncdb
(camellia_env)[user@server ~]$ sudo su - postgres
[postgres@server ~]\$ psql camellia

camellia=# \dt
List of relations

Schema | Name | Type | Owner
--------+---+-------+--------
public | account_emailaddress | table | django
public | account_emailconfirmation | table | django
public | auth_group | table | django
public | auth_group_permissions | table | django
public | auth_permission | table | django
public | auth_user | table | django
public | auth_user_groups | table | django
public | auth_user_user_permissions | table | django
public | cultivars_cultivar | table | django
public | cultivars_cultivar_species | table | django
public | cultivars_species | table | django
public | diplomat_isocountry | table | django
public | diplomat_isolanguage | table | django
public | django_admin_log | table | django
public | django_content_type | table | django
public | django_session | table | django
public | django_site | table | django
public | mainpages_usermessage | table | django
public | photologue_gallery | table | django
public | photologue_gallery_photos | table | django
public | photologue_galleryupload | table | django
public | photologue_photo | table | django
public | photologue_photoeffect | table | django
public | photologue_photosize | table | django
public | photologue_watermark | table | django
public | quizzes_answer | table | django
public | quizzes_quiz | table | django
public | quizzes_quizparameters | table | django
public | registration_registrationprofile | table | django
public | socialaccount_socialaccount | table | django
public | socialaccount_socialapp | table | django
public | socialaccount_socialapp_sites | table | django
public | socialaccount_socialtoken | table | django
public | south_migrationhistory | table | django
public | specimens_specimen | table | django
public | specimens_specimen_cultivar | table | django
public | specimens_specimen_gallery | table | django
public | specimens_specimen_upov_characteristic_value | table | django
public | specimens_upov_characteristic_name | table | django
public | specimens_upov_characteristic_name_translation | table | django
public | specimens_upov_characteristic_type | table | django
public | specimens_upov_characteristic_type_translation | table | django
public | specimens_upov_characteristic_value | table | django
public | specimens_upov_characteristic_value_translation | table | django
public | specimens_user_specimen_cultivar_vote | table | django
public | userprofiles_reputationparameters | table | django
public | userprofiles_userprofile | table | django

(47 rows)

4.5. B O O T S T R A P 107

4.5 BOOTSTRAP

Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive,
mobile first projects on the web[33].

Bootstrap is an open source front-end web development framework that provides tem-
plates that save a lot of design and implementation work and time. It comes with a bunch of
customized (and customizable) elements, such as toggleable contextual menus, responsive
navigation bars that collapse in smaller or mobile views, pagination links, alerts, among
many others. Figure 4.4 shows an example of a Bootstrap template with some elements.

Figure 4.4: Bootstrap template example

4.5.1 DJANGO INTEGRATION

Bootstrap, being a front-end framework, doesn’t clash with Django (a back-end frame-
work), and the only thing that must be done to start using Bootstrap is to add the stylesheet
and the JavaScript links to the web page. Listing 4.17 on the next page shows how this is
done on the base.html template. All the other project templates inherit from this, meaning
that the Bootstrap import must be done only in this parent template.

108 C H A P T E R 4. I M P L E M E N T AT I O N

Listing 4.17: Including Bootstrap on the base.html template

1
...

2 <head>

3
...

4 <!-- Bootstrap -->

5 <link rel="stylesheet" href="// netdna.bootstrapcdn.com/bootstrap

/3.1.1/ css/bootstrap.min.css">

6
...

7 </head>

8 <body>

9
...

10 <!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->

11 <script

12 src="// ajax.googleapis.com/ajax/libs/jquery /1.11.0/

jquery.min.js">

13 </script>

14 <!-- Latest compiled and minified JavaScript -->

15 <script

16 src="// netdna.bootstrapcdn.com/bootstrap /3.1.1/ js/

bootstrap.min.js">

17 </script>

18
...

Although this is the only required configuration, there are some Python packages that
help with the integration with the Django template forms. By default, to get a form into a
template, one needs only to use the form variable passed by the view, such as {{ the_form

}}. This will render its <label> and <input> elements appropriately but there are other
output options for the <label>/<input> pairs[34]:

• {{ the_form.as_table }}: renders them as table cells wrapped in <tr> tags
• {{ the_form.as_p }}: renders them wrapped in <p> tags
• {{ the_form.as_ul }}: renders them wrapped in tags

One of the packages that extend this functionality is django-bootstrap-form, that
allows the use of a simple Django template tag, {{ the_form|bootstrap }}, instead of the
output options described above, customizing the form by applying Bootstrap CSS classes to
the <label>/<input> pairs.

4.6. W E B I N T E R F AC E 109

4.6 WEB INTERFACE

4.6.1 MAIN PAGE

When the users access the website they will see a page like the one presented in figure 4.5,
with the main navigation bar at the top with links to the specimens, cultivars and quizzes
pages, and—if the user is not already logged in—two links for logging in or creating a new
account. The page has a button for the users to open the new identification request page
and has a map where the user can browse the nearby specimens. Selecting a specimen from
the map allows the users to go to that specimen page containing its details. After the map,
there is a list of the latest submitted specimen requests. At the bottom, there is another
navigation bar with links to the about, FAQ, and contacts pages.

Figure 4.5: Website: main page

110 C H A P T E R 4. I M P L E M E N T AT I O N

4.6.2 IDENTIFICATION REQUEST

The users may submit an identification request by filling a form where the only manda-
tory fields are the specimen photo and its location (figure 4.6 on the next page). The other
fields are optional, although helpful, and consist of the fifty morphological characteristics
defined by the UPOV. Figure 4.7 on page 112 shows an example of two characteristics, one
with a visual aid and another with textual information. After submitting the request, it
must be approved by a moderator and after that it will appear on the specimens page and on
quizzes that users will answer.

4.6. W E B I N T E R F AC E 111

Figure 4.6: Website: identification request form (location and photo)

112 C H A P T E R 4. I M P L E M E N T AT I O N

Figure 4.7: Website: identification request form (some characteristics)

4.6. W E B I N T E R F AC E 113

4.6.3 QUIZZES

The quizzes page shows some specimens that the user must try to identify, selecting a
cultivar for each one (figure 4.8 on the next page). The user may select a photo of a specimen
to see its gallery and its characteristics. When clicking on the Answer button there is a
list of cultivars from which the user selects one as the answer (figure 4.9 on page 115). On
that list, the user may see the cultivar details so that they make a more informed choice.
When the user submits the quiz the system will present a page with the results and the user
current reputation. Before submitting a quiz the user may leave the page whenever they
want and return later, as the answers are saved each time the user changes one. The results
(user reputation and specimens/cultivars probabilities) are calculated only when the user
submits the quiz and the next time the user goes to the Quizzes page there will be a newly
generated quiz.

114 C H A P T E R 4. I M P L E M E N T AT I O N

Figure 4.8: Website: quiz example

4.6. W E B I N T E R F AC E 115

Figure 4.9: Website: selecting a cultivar for a quiz answer

116 C H A P T E R 4. I M P L E M E N T AT I O N

4.6.4 SPECIMENS

When the user accesses the specimens page, a list with all the specimens—each originating
from a user identification request—and their number of votes is presented (figure 4.10). The
user can open one of the specimens and see which cultivars were voted, how many votes, and
the probability of the specimen belonging to each of them (figure 4.11 on the facing page).
On the specimen page there are the photos, location on a map and the known characteristics
(figure 4.12 on page 118). The user may suggest or vote on a cultivar for this specific specimen
(figure 4.13 on page 119) and may also, on the voting page, suggest a new cultivar if they
can’t find what they are looking for on the existing ones.

Figure 4.10: Website: specimens list

4.6. W E B I N T E R F AC E 117

Figure 4.11: Website: specimen example (photos, map and voted cultivars)

118 C H A P T E R 4. I M P L E M E N T AT I O N

Figure 4.12: Website: specimen example (characteristics)

4.6. W E B I N T E R F AC E 119

Figure 4.13: Website: specimen vote example

120 C H A P T E R 4. I M P L E M E N T AT I O N

4.6.5 CULTIVARS

By accessing the cultivars page the user sees a filterable list of all the cultivars (figure 4.14)
and a button to suggest a new cultivar, that will have to be approved by a moderator before
appearing on the list. By selecting a cultivar the user sees its description and a list of standard
specimens, the specimens which are certainly of from this cultivar (figure 4.15 on the facing
page).

Figure 4.14: Website: cultivars list

4.6. W E B I N T E R F AC E 121

Figure 4.15: Website: cultivar example

4.6.6 USER PROFILE

When the users access their profile page they can see some information about them, such
as how many identification requests they submitted, how many quizzes they answered, how
many cultivars they voted and also their current reputation (figure 4.16 on the next page).
The users may edit some profile information such as the first and last names and the email
address (figure 4.17 on the following page).

122 C H A P T E R 4. I M P L E M E N T AT I O N

Figure 4.16: Website: user profile

Figure 4.17: Website: edit profile

4.6. W E B I N T E R F AC E 123

4.6.7 MANAGE USERS

The administrators manage the users through the Django’s admin interface. This inter-
face works by reading the project models metadata and provides a powerful and production-
ready interface.

Figure 4.18: Website: edit user profile through Django admin site

4.6.8 ABOUT, FAQ, AND CONTACT

The about page (figure 4.19 on the next page) shows a simple text explaining the context
of the website and giving credit to the Portuguese Camellia Society—which provided the
web domain name and hosting—and the International Camellia Society—from where the
first cultivar list came.

The FAQ page will have the frequently asked questions that will help the users getting
around the site and contributing.

The contact page (figure 4.20 on page 125) has a form for users to send a message. The
messages will be saved on the database and accessible though the administration page.

124 C H A P T E R 4. I M P L E M E N T AT I O N

Figure 4.19: Website: about page

4.6. W E B I N T E R F AC E 125

Figure 4.20: Website: contact page

126 C H A P T E R 4. I M P L E M E N T AT I O N

4.7 INTERNATIONALIZATION AND LOCALIZATION

There are multiple techniques of creating a database for a multi-language web site. For
example:

• Column approach
• Multirow approach
• Single translation table approach
• Additional translation table approach

4.7.1 COLUMN APPROACH

This is the simplest approach. It works by having an additional column for each language
(example in table 4.1) but, although simple, it is hard to maintain and it is not scalable, as a
new language requires a table schema update to add a new column to each multi-language
table, and the website code must be updated to consider that new language and choose the
right table column to use.

id description_en description_fr description_de description_es

1 plant plante pflanze planta

2 branch ramification zweig rama

3 vegetativejbud bourgeon vegetativejknospe yemajdejmadera

4 terminaljvegetativejbud bourgeonjvégétatif terminalejvegetativejknospe yemajdejmaderajterminal

5 youngjshoot jeunejpousse jungtrieb tallojjovenj

6 leaf feuille blatt hoja

⋮

Table 4.1: Multi-language database: column approach

4.7.2 MULTI-ROW APPROACH

This technique is similar to the column one and differs by using a row for each translation
(example in table 4.2 on the facing page). In this case it is still hard to maintain, as inserting
a new language requires cloning the record for the default language and there is duplicate
content (type_id column, in this specific example).

4.7. I N T E R N AT I O N A L I Z AT I O N A N D L O C A L I Z AT I O N 127

id type_id lang_id description

1 1 en plant

2 1 fr plante

3 1 de pflanze

4 1 es planta

5 2 en branch

6 2 fr ramification

7 2 de zweig

8 2 es rama

9 3 en vegetative bud

10 3 fr bourgeon

11 3 de vegetative knospe

12 3 es yema de madera

⋮

Table 4.2: Multi-language database: multi-row approach

4.7.3 SINGLE TRANSLATION TABLE APPROACH

This solution, from database structure perspective, is cleaner, as all the texts that need
to be translated are stored on a single translation table and there is no duplicate content
(table 4.3 on the next page). This approach also makes adding a new language easier (no
schema changes), although the querying is more complex due to the multiple table joins
required to retrieve each translated name.

128 C H A P T E R 4. I M P L E M E N T AT I O N

id lang_code text

28 en plant

28 fr plante

28 de pflanze

28 es planta

33 en branch

33 fr ramification

33 de zweig

33 es rama

46 en vegetative1bud

46 fr bourgeon

46 de vegetative1knospe

46 es yema1de1madera

⋮

Translation

code name

en english

fr french

de german

es spanish

⋮

Language

type_id description

1 28

2 33

3 46

⋮

Characteristic Type

Table 4.3: Multi-language database: single translation table approach

4.7.4 ADDITIONAL TRANSLATION TABLE APPROACH

This technique is a improvement from the single translation table discussed above. Here,
there is a translation table for each table that has information to be translated. This improves
the translations maintainability and is easier to work with (requires just one table join).

Table 4.4 on the facing page shows the example for two tables—characteristic type and
characteristic name—and their corresponding translation table.

4.8. U S E R R E P U T AT I O N A N D C U LT I VA R P R O B A B I L I T I E S 129

type_id lang_code description

1 en plant

1 fr plante

1 de pflanze

1 es planta

2 en branch

2 fr ramification

2 de zweig

2 es rama

3 en vegetative bud

3 fr bourgeon

3 de vegetative knospe

3 es yema de madera

⋮

Characteristic Type Translation

name_id lang_code description

1 en growth habit

1 fr port

1 de wuchsform

1 es porte

2 en zigzagging

2 fr zigzagante

2 de zickzackform

2 es zigzagueo

3 en density of foliage

3 fr densité du feuillage

3 de dichte des laubs

3 es densidad del follaje

Characteristic Name Translation

⋮

code name

en english

fr french

de german

es spanish

Language

⋮

id

1

2

3

⋮

Characteristic Type

id type_id

1 1

2 2

3 1

Characteristic Name

⋮

Table 4.4: Multi-language database: additional translation table approach

This approach provides proper normalization, does not require schema changes when
adding a new language and there are no suffixes on column names (e.g. “_lang”, “_en”, “_fr”).

Due to this technique advantages and this project requirements, this last solution was
the chosen one, making use of the django-diplomat application to provide the models for the
countries and languages covered by the ISO 3166 and ISO 639 standards, respectively.

4.8 USER REPUTATION AND CULTIVAR PROBABILITIES

The specimen/cultivar pairs have a probability that tells how probable it is for the
specimen to be of that cultivar, and that probability is estimated from the users votes and
their reputation.

130 C H A P T E R 4. I M P L E M E N T AT I O N

4.8.1 USER REPUTATION

The user reputation is indicative of how much the user knows about the camellia cultivars.
Each time a user votes on a cultivar or submits a quiz, their reputation will be recalculated
based on all the standard specimens the user already answered through the quizzes and based
on how many votes the user has on the system.

One part of the reputation is simply the number of correct answers to the standard
specimens divided by the number of total answers the user had the opportunity to respond
(wrong and blank responses are considered the same), the other part being the number of
votes the user has in the system, over the total votes. The reputation is normalized and
presented to the user as a percentage. The weight given to each part, standard specimens
answers (AW) and votes (VW), is configurable and can be adjusted in the future, but the first
values, for testing purposes, given to each, was 0.8 and 0.2, respectively.

Rx =AW ×
AC x
AT x

+VW ×
Vx

VT

, (4.1)

Where:

Rx : is the reputation of user x
AW : is the weight given to the user answers

AC x : is the number of correct answers given by user x
AT x : is the number of total answers given by user x
VW : is the weight given to the user votes
Vx : is the number of votes from user x
VT : is the number of all user votes in the system

4.8.2 CULTIVAR PROBABILITIES

When a user reputation changes (e.g. by voting on a cultivar for a specimen, by answering
a quiz), the specimens cultivar probability values—for the specimens that user already voted—
must be recalculated.

The probability for a specimen/cultivar pair is calculated using the mean of the users
reputations,

µ=
∑

ui

n
, (4.2)

4.9. I N I T I A L C U LT I VA R DAT A 131

Where:

µ : is the cultivar probability
∑

ui : is the sum of all user reputations for this cultivar (u1, u2, u3, . . .)
n : is the total number of votes for this cultivar

4.9 INITIAL CULTIVAR DATA

The cultivar database was pre-populated with the information from the Web Camellia
Register (WCR), that was downloaded and transformed to be inserted into the system
database.

On the WCR a cultivar page is retrieved by passing a parameter called
pippo—containing the cultivar number—to the HTTP GET request method, such as
http://camellia.unipv.it/camelliadb2/dbwin.php?pippo=123 to retrieve the culti-
var 123.

Figure 4.21 shows an example of a cultivar page. The description is one whole paragraph
and, often, there are characters that should not be there, such as all the backslashes at the
end of the example.

Figure 4.21: Example of a Camellia Web Register cultivar page

132 C H A P T E R 4. I M P L E M E N T AT I O N

Listing 4.18 shows the partial source code from the same cultivar, that will be parsed
later to retrieve the essential information.

Listing 4.18: Example of the code of a Camellia Web Register cultivar page

1
...

2 <div style='position: absolute; top: 45px; padding:0px 10px 0 10px;

margin: 0 0 0 0; width:775px; height:509px; text-align:center;

word-wrap: break-word; overflow:auto;'><p style='font-weight:
bold; color:#FF0000; font-size:2em;'>A.J. Pink </p><p style='
font-weight: bold; color:#FFFFFF; font-size:1.5em;'>(C.japonica)
</p><p style='color:#FFFFFF; text-align:left; font-size:1.0em;'>

Wilmot , 1945, Camellia

Variety Classification Report , p.7. No description. Hertrich

,1955, vol.2 , p.12 , Camellias in the Huntington Gardens: Flower:

complete double , formal type; Camellia Rose 622/ self to/1 towards

haft; to 8 cm broad by 4 cm high. ... Originated from an old

plant growing in the Capitol grounds , Sacramento , California , USA

prior to 1945 (Olrich , 1945.

\\\ '
Camellias in Capitol Park

\\\ ')
. </p>
N/A

</div></body>

3 </html>

The parsing can be done directly when downloading the page. Listing 4.19 shows the
script used to parse a cultivar page. First, it saves a string ("QUOTE_HERE") to a variable so
that it can be replaced at the end by real quotes, after escaping all the quotes that appear
inside the cultivar description. The page is transferred from the WCR server by the curl
tool. After downloading the page the Line Feed (\n) and Carriage Return (\r) characters are
removed using the tr (translate or delete characters) tool, and then the useful information
is extracted and structured using the sed (stream editor for filtering and transforming text)
tool. Finally, sed is used again to remove all the extra spaces and backslashes, to escape the
double quotes and to replace the "QUOTE_HERE" by real double quotes. Listing 4.20 on the
facing page shows the parsing result. The information is clean and structured JSON-based,
to be easily imported into the database.

Listing 4.19: Example of the cultivar page parsing script

#!/bin/sh

quote="QUOTE_HERE";

curl -s "http :// camellia.unipv.it/camelliadb2/dbwin.php?pippo =3" \
| tr -d "\n" \

4.9. I N I T I A L C U LT I VA R DAT A 133

| tr -d "\r" \
| sed -n "s/.*font -size:2em;\x27 >\(.*\) <\/p>.*font -size :1.5em;\x27 >(\(.*\)) <\/p

>.*font -size :1.0em;\x27 >\(.*\) <\/p><br \/>.*/\{${quote}icr_id${quote }:${
quote}i{quote}, ${quote}cultivar_name${quote}:${quote }\1${quote}, ${quote}
species${quote }: ${quote }\2${quote}, ${quote}description${quote}:${quote }\3$
{quote }}\n/p" \

| sed "s/\" */\"/g" \
| sed "s/ *\"/\"/g" \
| sed "s/*//g" \
| sed "s/\"/\\\\\"/g" \
| sed "s/${quote }/\"/g";

Listing 4.20: Example of the cultivar page parsing result

1 {"icr_id": "3",

2 "cultivar_name": "A.J. Pink",

3 "species": "C.japonica",

4 "description": "Wilmot , 1945, Camellia Variety Classification Report

, p.7. No description. Hertrich ,1955 , vol.2 , p.12 , Camellias in

the Huntington Gardens: Flower: complete double , formal type;

Camellia Rose 622/ self to/1 towards haft; to 8 cm broad by 4 cm

high. ... Originated from an old plant growing in the Capitol

grounds , Sacramento , California , USA prior to 1945 (Olrich , 1945.

'Camellias in Capitol Park ')."}

The script was improved (listing 4.21) to receive two arguments, used as the first and
last cultivar number to be replaced at the Uniform Resource Locator (URL). For example,
if it is run using 50 and 53 as arguments (e.g. sh get_cultivars.sh 50 53), it will loop
through the URLs as follows:

http://camellia.unipv.it/camelliadb2/dbwin.php?pippo=50
http://camellia.unipv.it/camelliadb2/dbwin.php?pippo=51
http://camellia.unipv.it/camelliadb2/dbwin.php?pippo=52
http://camellia.unipv.it/camelliadb2/dbwin.php?pippo=53

Listing 4.21: Example of the cultivar page parsing script using a loop

#!/bin/sh

quote="QUOTE_HERE";

for ((i=$1;i<=$2;i++)); do
curl -s "http :// camellia.unipv.it/camelliadb2/dbwin.php?pippo=$i" \...
| sed "s/${quote }/\"/g";
done

134 C H A P T E R 4. I M P L E M E N T AT I O N

The WCR has 22 168 cultivars, which were saved at a file using the script. Then, using a
python script, only the cultivar names were extracted to a new file just to check whether
there was repeated names. It was found that 559 cultivars had more than one entry, with, at
most, three cultivars with 5 entries and four cultivars with 6 entries. Listing 4.22 shows the
example of the cultivar named Akebono. (Dawn), which appears in 6 entries with different
descriptions.

Listing 4.22: Example of the duplicate cultivar names

1 {"icr_id": "271", "cultivar_name": "Akebono. (Dawn)", "species": "

C.japonica", "description": "Chinka Zufu , (before 1700) , Watanabe

, 1969, plate 40: A medium sized , open peony , white with

irregular petals and intermixed stamens. Originated in Japan. (

Believed extinct.)"}

2 {"icr_id": "272", "cultivar_name": "Akebono. (Dawn)", "species": "

C.japonica", "description": "Chinka Zutu , (before 1700) , Watanabe

, 1969, plate 579: Medium size , white semi-double with two rows

of petals and a central column of stamens with white filaments.

Originated in Japan. (Believed extinct.)"}

3 {"icr_id": "273", "cultivar_name": "Akebono. (Dawn)", "species": "

C.japonica", "description": "Minagawa , 1931, Chinkashû; Wada ,

1941, Japanese Garden Treasures , p.28: Single , widely opened ,

large flowers , very pale , flesh pink , slightly paler at edge and

base , a leafy , compact grower; early blooming. ... "}

4 {"icr_id": "274", "cultivar_name": "Akebono. (Dawn)", "species": "

C.sasanqua", "description": "Itô Ihei , 1695, Kadan Chikinshô in

the section on sasanquas: Medium size , pale pink , red at the

base. Originated in Japan. (Believed extinct.)"}

5 {"icr_id": "275", "cultivar_name": "Akebono. (Dawn)", "species": "

C.sasanqua", "description": "Shirai-Bunko , 1789, Shoshiki

Hanagatachô: White with pink edges , medium size , some stripes.

Originated in Japan. (Believed extinct.) See: Kyôto Engei Kurabu ,

1964, Tsubaki Tokushû, No.5 , p.82."}

6 {"icr_id": "276", "cultivar_name": "Akebono. (Dawn)", "species": "

C.sasanqua", "description": "ICS. , Apr.1990. Japanese Camellia

Cultivar List , p.32: Medium size , white ground with light red

reverse , semi-double. Originated in Kumamoto Prefecture , Japan. A

Higo sasanqua selected and named by Kiyofusa Saitô."}

The disambiguation of these repeated names was made by adding a number to the title
(e.g. Akebono. (Dawn) (2), Akebono. (Dawn) (3)) when saving them to the database through
the Python script shown in listing 4.23 on the next page. This script was imported and run
inside the Django shell so that it makes use of the Cultivar model to save each cultivar which
was read from the file containing all the cultivars downloaded. The save() method throws a

4.10. R E V I S I O N C O N T R O L 135

IntegrityError if the name already exists and that is when the script adds (or increments) the
number to the cultivar name and tries to save it again.

Listing 4.23: Python script for saving the cultivars to the database

1 import json

2 from cultivars.models import Cultivar

3 from django.db.utils import IntegrityError

4
5 def save_cultivars ():

6 with open('all_cultivars') as f:

7 for line in f:

8 json_line = json.loads(line)

9 c = Cultivar ()

10 c.user_id = 1

11 c.name = json_line['cultivar_name']
12 c.icr_id = json_line['icr_id']
13 c.icr_description = json_line['description']
14 c.tmp_icr_species = json_line['species']
15
16 saved = False

17 count = 1

18 while not saved:

19 try:

20 c.save()

21 saved = True

22 except IntegrityError as e:

23 error = e.__str__ ()

24 if "DETAIL: Key (name)=" in error:

25 count += 1;

26 if count > 2:

27 c.name = c.name[:-4] # remove the

previous count

28 c.name += " (" + count.__str__ () + ")"

4.10 REVISION CONTROL

A revision control system is a repository of files, often the files for the source code of
computer programs, with monitored access. This is important because it provides the ability
to revert the files to a previous version (e.g. in case of a mistake), provides the ability to have
many people working on the same project and knowing that conflicting modifications can
be detected and resolved, and it also provides the ability to track the evolution and to see the

136 C H A P T E R 4. I M P L E M E N T AT I O N

comments about the intention behind each change. Even when the development is made by
only one person, like this project, the change history is an important aid to memory.

There are three models of revision control systems: local, client-server, and distributed,
the last two being the most used. In the local model all developers must use the same file
system. In the client-server model, developers use a shared single repository. The Apache
Subversion (SVN) is one of the most known client-server model software. In the distributed
model, each developer works directly with their own local repository, and the changes are
shared between repositories as a separate step. The most known software for this model are
Git, Mercurial, and Bazaar.

For this project was used Git, a free and open source distributed version control system.
Figure 4.22 shows an example of some commits made. Each one then allows to see which
files were modified and, on each file, what was modified.

Figure 4.22: Example of Git commits

There are some web-based hosting service repositories, like GitHub, that provide access
control and several collaboration features (e.g. wikis, task management, bug tracking, feature
requests), and serve also as a backup. However, this project was maintained on a local Git
repository with backups made with another tool.

4.11. D O M A I N N A M E A N D W E B H O S T I N G 137

4.11 DOMAIN NAME AND WEB HOSTING

In order to be accessible to everyone, the system needs a domain name and space on a
server that supports the chosen technologies discussed in section 2.4 on page 34.

4.11.1 DOMAIN NAME

The domain name camelias.pt was registered by the Portuguese Association of Camellias
(Associação Portuguesa das Camélias) after choosing one of the 1542 existing resellers of the
.pt Top Level Domain (TLD), managed by the Fundação para a Computação Científica
Nacional (FCCN)3, which registrar is Associação DNS.PT4. The chosen reseller was PT-
Servidor5, a company born in 2006 and an official reseller since 2010 with positive customer
reviews about the technical support and cost.

4.11.2 WEB HOSTING

Regarding the web hosting, the following types of hosting were considered:
• Home server (dedicated server at home)
• Shared hosting (virtual hosting)
• Virtual Private Server (VPS)
• Managed hosting
• Dedicated server
The home server approach would require, if we want the website reliably online and

available to visitors, a static Internet Protocol address (IP address), but most Internet service
providers (ISPs) refuse to provide it on a home (non enterprise) plan, although it could be
circumvented through the use of a Dynamic DNS (DDNS) service, a method used to resolve
a well-known domain name to an IP address that may change frequently. We would also
need to take into account the electricity costs to keep the system always on. For example,
in Portugal the cost per month for a server with approximately 100 W of electrical power
(0.1 kWh of electrical energy) would be around EUR 13.53 (0.1 kWh × 24 hours × 30 days
× EUR 0.18796 = EUR 13.53).

On shared hosting, also called virtual hosting, the customer’s website is placed on the
same server as many other sites and most providers have limits to what can be installed in

2https://www.dns.pt/en/registrars-list
3http://www.fccn.pt/
4https://www.dns.pt/
5https://www.ptservidor.pt/
6Energy price on most suppliers of the Portuguese free market per 2014: EUR 0.1528 × 1.23 (23% VAT)

= EUR 0.1879

138 C H A P T E R 4. I M P L E M E N T AT I O N

terms of resource allocation, including limits on what software may be used, although some
of the shared hosting support Django.

In a managed hosting service the customers gets their own web server but have only
partial control over it and, usually, are only allowed to manage their data via File Transfer
Protocol (FTP) or other remote management tools, meaning that typically there is no access
by the customers to the software configuration.

A dedicated hosting service is a web server devoted entirely to the customer. A VPS
hosting involves a dedicated server being shared by multiple users (multiple virtual servers
on the same web server), but as the server space is strictly divided and private, it is seen by
the users as a dedicated server. On both, the customers access their own space and, generally,
are responsible for maintaining the server software such as the required configuration and
upgrades. Any VPS or dedicated host, by its nature, should work with Django.

The memory, hard drive storage capacity and processing power required by this project
is satisfied by a shared hosting service but it would be necessary to exist some freedom
managing the database and configuration both during development and afterwards (possible
on a VPS or dedicated server) so the chosen type of hosting was a mixture of the shared
hosting with the dedicated hosting. The WebFaction7 company offers a shared hosting
service that has many of the benefits of a VPS or dedicated server (VPS like features for
shared hosting prices), thus having the best ratio of prices to service.

7https://www.webfaction.com/

C H A P T E R 5
S U M M A RY & F U R T H E R WO R K

5.1 TESTS AND VALIDATION

The system was populated with a small-scale dummy data set with the main goal of
validating and comparing the statistical metrics applied, and is being fed with real data
through the collaboration of volunteer Botany students filling-in identification requests
as completely as possible. Contacts were made with some top camellia gardens to try and
import a core of reliable data, including as many standard specimens as possible (especially
of Portuguese origin), but this validation with real data is still on-going work.

5.2 SUMMARY

The goal of this project, to develop a crowdsourcing information system for camellia
cultivar identification, given the project requirements outlined in chapter 3 on page 37, was
achieved, whilst leaving room for improvement and development upon the foundation that
has been laid.

5.3 FURTHER WORK

The system was implemented according to the design and requirements but there is
always room for improvement. It has to be tested with more users and the reputation metrics
must be analysed and adjusted as needed. Some of other possible areas for expansion are
detailed in this section.

139

140 C H A P T E R 5. S U M M A RY & F U R T H E R W O R K

5.3.1 FORUM

Cultivar identification is not black and white and generates a lot of discussion. For
this reason, an Internet Forum—or discussion board—would be helpful and could push
the users to collaborate more. There are some free and professional grade forum software
packages, such as the Simple Machines1 that allows to configure a forum easily and allows
the integration with the existing users on this system.

5.3.2 MOBILE APPLICATION

Although the website is designed to be mobile friendly, a native mobile app would take
advantage of the mobile phone camera and GPS location to help the user send identification
requests more easily. It would also enable the users—visiting a garden—to use the GPS
real-time location and be guided through the specimens on that place improving their visit
and satisfaction.

5.3.3 AUTO-IDENTIFICATION OF CULTIVARS

As the system is populated with specimens and when there are plenty of standard speci-
mens, a possibility of auto-identification arises. If it is known—for the standard specimens—
which characteristics they have, then when a user fills the characteristics of a new specimen
the system would automatically rule out the cultivars which would be an impossible match
due to the differences in the characteristics.

1http://www.simplemachines.org/

B I B L I O G R A P H Y

[1] B. Robson, “On the naming of 19th century camellias”, International Camellia Journal, no. 40, pp. 44–
49, 2008.

[2] I. C. Society. (). Scheme for the recognition of international camellia gardens of excellence, [Online].
Available: http://www.internationalcamellia.org/ (visited on 10/28/2012).

[3] ——, (). International Camellia Register, [Online]. Available: http://www.internationalcamellia.
org/international-camellia-register (visited on 02/13/2014).

[4] ——, (). Web Camellia Register, [Online]. Available: http://camellia.unipv.it/camelliadb2/
(visited on 02/13/2014).

[5] J. L. Couselo, P. Vela, C. Salinero, and M. J. Sainz, “Characterization and differentiation of old
Camellia japonica cultivars using single sequence repeat (SSRs) as genetic markers”, International
Camellia Journal, no. 42, pp. 117–122, 2010.

[6] M. F. Stoner, “Identification, history, cultivation, and conservation of heritage camellias in Hawaii”,
International Camellia Journal, no. 42, pp. 46–49, 2010.

[7] F. S. Crowder, “A personal search for pre-1900 camellia cultivars and their preservation”, International
Camellia Journal, no. 43, pp. 45–46, 2011.

[8] U. Universitet. (2010). Linné on line, [Online]. Available: http://www.linnaeus.uu.se/online/
index-en.html (visited on 10/18/2014).

[9] L. D.-V. Ryssel and R. D. Herdt, De camellia. Een’aristocratishe roos (The Camellia. An Aristocratic
Rose). Gent: MIAT - Museum over industrie, arbeid en textiel, 2008.

[10] I. C. Society. (). Otomo Endowment Research Fund, [Online]. Available: http : / / www .
internationalcamellia.org/the-ics-otomo-fund (visited on 10/18/2014).

[11] Camellias.pics. (). Camellia’s history, [Online]. Available: http://www.camellias.pics/histoire-
gb.php (visited on 10/18/2014).

[12] I. C. Society. (). The International Camellia Society Portugal Region, [Online]. Available: http:
//www.internationalcamellia.org/ics-portugal (visited on 10/18/2014).

[13] T. Nursery and G. I. A. of New Zealand. (). Science behind your garden - Ornamental - Camellias,
[Online]. Available: http://www.gardenscience.co.nz/ornamental/TGuides/camelias.htm
(visited on 10/17/2014).

[14] J. Howe. (Jun. 2, 2006). Crowdsourcing: a definition, [Online]. Available: http://crowdsourcing.
typepad.com/cs/2006/06/crowdsourcing_a.html (visited on 01/02/2014).

[15] (2014). Treezilla - the monster map of trees, [Online]. Available: http://treezilla.org (visited on
02/13/2014).

141

http://www.internationalcamellia.org/
http://www.internationalcamellia.org/international-camellia-register
http://www.internationalcamellia.org/international-camellia-register
http://camellia.unipv.it/camelliadb2/
http://www.linnaeus.uu.se/online/index-en.html
http://www.linnaeus.uu.se/online/index-en.html
http://www.internationalcamellia.org/the-ics-otomo-fund
http://www.internationalcamellia.org/the-ics-otomo-fund
http://www.camellias.pics/histoire-gb.php
http://www.camellias.pics/histoire-gb.php
http://www.internationalcamellia.org/ics-portugal
http://www.internationalcamellia.org/ics-portugal
http://www.gardenscience.co.nz/ornamental/TGuides/camelias.htm
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
http://treezilla.org

142 B I B L I O G R A P H Y

[16] (2014). OpenTreeMap Cloud - tree map for engaging communities and managing urban ecosystems,
[Online]. Available: https://www.opentreemap.org/ (visited on 02/13/2014).

[17] F. R. Farmer and B. Glass, Building Web Reputation Systems. O’Reilly Media, Inc., 2010.

[18] O. Roy Sarkar. (). Open source is secure, but only with proper tools and strategies, [Online]. Available:
http://www.openlogic.com/resources/enterprise-blog/november-2014/open-source-
is-secure,-but-only-with-proper-tools (visited on 10/12/2014).

[19] P. Katherine Noyes. (). 10 reasons open source is good for business, [Online]. Available: www.pcworld.
com/article/209891/10_reasons_open_source_is_good_for_business.html (visited on
10/12/2014).

[20] D. S. Foundation. (). Django, the web framework for perfectionists with deadlines, [Online]. Available:
https://docs.djangoproject.com/en/1.7/intro/overview/ (visited on 08/21/2014).

[21] Instagram. (). What Powers Instagram: Hundreds of Instances, Dozens of Technologies, [Online].
Available: http://instagram-engineering.tumblr.com/post/13649370142/what-powers-
instagram-hundreds-of-instances (visited on 12/13/2014).

[22] P. Sciarra. (). What is the technology stack behind Pinterest?, [Online]. Available: http://www.quora.
com/What-is-the-technology-stack-behind-Pinterest-1 (visited on 12/13/2014).

[23] T. P. G. D. Group. (). About PostgreSQL, [Online]. Available: http://www.postgresql.org/
about/ (visited on 08/21/2014).

[24] PostgreSQL. (). PostgreSQL: Featured Users, [Online]. Available: http://www.postgresql.org/
about/users/ (visited on 12/13/2014).

[25] I. U. for the Protection of New Varieties of Plants. (Oct. 20, 2011). Guidelines for the conduct of
tests for distinctness, uniformity and stability - Camellia L. - TG/275/1, [Online]. Available: http:
//www.upov.int/edocs/tgdocs/en/tg275.pdf (visited on 02/13/2014).

[26] J. Li, S. Ni, X. Li, X. Zhang, and J. Gao, “Developing the international test guideline of distinctness,
uniformity and stability for ornamental camellia varieties”, International Camellia Journal, no. 40,
pp. 112–118, 2008.

[27] A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley
Professional, 1999, ISBN: 0-201-61622-X.

[28] D. S. Foundation. (). Django at a glance, [Online]. Available: https://docs.djangoproject.com/
en/1.7/intro/overview/ (visited on 08/21/2014).

[29] S. Burbeck, How to use Model-View-Controller (MVC). Smalltalk Webring, 1992.

[30] A. Godwin. (). About South, [Online]. Available: https://south.readthedocs.org/en/latest/
about.html (visited on 08/21/2014).

[31] D. S. Foundation. (). Introduction to class-based views, [Online]. Available: https : / / docs .
djangoproject.com/en/1.7/topics/class-based-views/intro/ (visited on 08/21/2014).

[32] ——, (). The Django template language, [Online]. Available: https://docs.djangoproject.com/
en/1.7/topics/templates/ (visited on 08/21/2014).

[33] Bootstrap. (). Bootstrap, [Online]. Available: http://getbootstrap.com/ (visited on 08/21/2014).

[34] D. S. Foundation. (). Working with forms, [Online]. Available: https://docs.djangoproject.
com/en/1.7/topics/forms/ (visited on 08/21/2014).

https://www.opentreemap.org/
http://www.openlogic.com/resources/enterprise-blog/november-2014/open-source-is-secure,-but-only-with-proper-tools
http://www.openlogic.com/resources/enterprise-blog/november-2014/open-source-is-secure,-but-only-with-proper-tools
www.pcworld.com/article/209891/10_reasons_open_source_is_good_for_business.html
www.pcworld.com/article/209891/10_reasons_open_source_is_good_for_business.html
https://docs.djangoproject.com/en/1.7/intro/overview/
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances
http://www.quora.com/What-is-the-technology-stack-behind-Pinterest-1
http://www.quora.com/What-is-the-technology-stack-behind-Pinterest-1
http://www.postgresql.org/about/
http://www.postgresql.org/about/
http://www.postgresql.org/about/users/
http://www.postgresql.org/about/users/
http://www.upov.int/edocs/tgdocs/en/tg275.pdf
http://www.upov.int/edocs/tgdocs/en/tg275.pdf
https://docs.djangoproject.com/en/1.7/intro/overview/
https://docs.djangoproject.com/en/1.7/intro/overview/
https://south.readthedocs.org/en/latest/about.html
https://south.readthedocs.org/en/latest/about.html
https://docs.djangoproject.com/en/1.7/topics/class-based-views/intro/
https://docs.djangoproject.com/en/1.7/topics/class-based-views/intro/
https://docs.djangoproject.com/en/1.7/topics/templates/
https://docs.djangoproject.com/en/1.7/topics/templates/
http://getbootstrap.com/
https://docs.djangoproject.com/en/1.7/topics/forms/
https://docs.djangoproject.com/en/1.7/topics/forms/

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	The Camellia
	Historical significance
	Economical significance

	State of the art
	Existing efforts
	Crowdsourcing
	Crowdsourcing applied to camellias

	Web reputation
	Technologies
	Open source
	Web framework
	Database

	System Requirements and Modeling
	Actors
	Guest
	Registered user
	Translator
	Moderator
	Administrator

	Use cases
	Create account
	Login
	Submit identification request
	Answer quiz
	View cultivar
	Search cultivar by name
	View specimen
	View specimens nearby
	View profile
	Edit profile
	Receive notification by email
	Manage website languages/translations
	Manage cultivar register
	View user profiles and statistics
	Approve identification request
	Set member auto-approval of identification requests
	Manage users
	Define quiz parameters
	Suggest new cultivar
	Vote cultivar for a specimen

	Supplementary specifications
	Specimen database
	Standard Specimens
	User reputation and cultivar probability metrics

	Domain Model
	Activity Diagrams
	Create account
	Login
	Submit identification request
	Answer quiz
	View cultivar
	Search cultivar by name
	View specimen
	View specimens nearby
	View profile
	Edit profile
	Receive notification by email
	Manage website languages/translations
	Manage cultivar register
	View user profiles and statistics
	Approve identification request
	Set member auto-approval of identification requests
	Manage users
	Define quiz parameters
	Suggest new cultivar
	Vote cultivar for a specimen

	Implementation
	Python
	Python Packages
	Virtual environment tools

	Django
	Model–View–Controller
	Reusable Apps
	Models
	Views
	Templates

	Django Project Structure
	Specimens Application
	Cultivars Application
	Quizzes Application
	Userprofiles Application
	Mainpages Application

	PostgreSQL
	Bootstrap
	Django integration

	Web Interface
	Main page
	Identification request
	Quizzes
	Specimens
	Cultivars
	User profile
	Manage users
	About, FAQ, and Contact

	Internationalization and localization
	Column approach
	Multi-row approach
	Single translation table approach
	Additional translation table approach

	User reputation and cultivar probabilities
	User reputation
	Cultivar probabilities

	Initial cultivar data
	Revision Control
	Domain name and web hosting
	Domain name
	Web hosting

	Summary & Further Work
	Tests and validation
	Summary
	Further Work
	Forum
	Mobile application
	Auto-identification of cultivars

	Bibliography

